A RIEMANN-ROCH THEOREM IN TROPICAL GEOMETRY

ANDREAS GATHMANN AND MICHAEL KERBER

ABSTRACT. Recently, Baker and Norine have proven a Riemann-Roch theorem for fi-
nite graphs. We extend their results to metric graphs and thus establish a Riemann-Roch
theorem for divisors on (abstract) tropical curves.

Tropical algebraic geometry is a recent branch of mathematics that establishes deep re-
lations between algebro-geometric and purely combinatorial objects. Ideally, every con-
struction and theorem of algebraic geometry should have a tropical (i.e. combinatorial)
counterpart that is then hopefully easier to understand — e.g. the tropical counterpart of
n-dimensional varieties are certain n-dimensional polyhedral complexes. In this paper we
will establish a tropical counterpart of the well-known Riemann-Roch theorem for divisors
on curves.

Let us briefly describe the idea of our result. Following Mikhalkin, an (abstract) tropical
curve is simply a connected metric graph I". A rational function on I is a continuous,
piecewise linear real-valued function f with integer slopes. For such a function and any
point P € I" the order ordp f of f in P is the sum of the slopes of f for all edges emanating
from P. For example, the following picture shows a rational function f on a tropical curve
I' with simple zeroes at P> and Ps (i.e. ordp, f = ordp, f = 1), and simple poles at P3 and
Py (i.e. ordp, f = ordp, f = —1).

e e

As expected from classical geometry, a divisor on I" will simply be a formal Z-linear
combination of points of I'. Any rational function f on I gives rise to a divisor (f) :=
Y pcrordp f - P (so that (f) = P, — P; — P4+ Ps in the above example).

For a given divisor D we denote by R(D) the space of all rational functions f on I such that

(f) + D is effective, i.e. contains only non-negative coefficients (e.g. f € R(P; + P4) in the

example above). A Riemann-Roch theorem should make a statement about the dimension

of these spaces. However, we will see that in general R(D) is a polyhedral complex which

is not of pure dimension. As a replacement for the dimension of R(D) we define r(D)

to be the biggest integer n such that R(D — P; — --- — P,) is non-empty for all choices of
1
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Pi,...,P, € T (anumber that is closely related to the dimension of the cells of R(D) as we
will see).

With these notations our Riemann-Roch theorem now simply and expectedly states that
r(D)—r(K—D)=degD+1—g,

where g is the first Betti number of I', degD is the degree of D, and K is the canonical
divisor of I" following Zhang [Z], i.e. the sum of all vertices of I" counted with multiplicity
equal to their respective valence minus 2 (so that K = P; + P in our example above).

Our proof relies heavily on a recent result of Baker and Norine that establishes an anal-
ogous result for integer-valued functions on the vertices of a (non-metric) graph [BN].
Basically, we will interpret this result as a statement about tropical curves whose edge
lengths are integers (so-called Z-graphs) and rational functions on them whose divisors
consist of points with integer coordinates (so-called Z-divisors). We then pass from inte-
ger to rational and finally real coordinates, as well as to possibly infinite edge lengths, to
establish our Riemann-Roch theorem for tropical curves.

More precisely, we will first introduce our basic objects of study, namely divisors and
rational functions (and their moduli spaces) on tropical curves in section 1. We then use
the result of Baker and Norine to prove a Riemann-Roch theorem for Z- and Q-divisors in
section 2 and extend this result in section 3 to arbitrary divisors and graphs (with possibly
unbounded edges), with the main result being corollary 3.8.

Shortly after this manuscript had appeared on the e-print archive, Mikhalkin and Zharkov
published a preprint that also includes a proof of the Riemann-Roch theorem for tropical
curves [MZ]. Their results have been obtained independently and without our knowledge,
and in fact their method of proof is entirely different from ours, using Jacobians of tropical
curves.

1. TROPICAL RATIONAL FUNCTIONS AND DIVISORS

We start by introducing the basic notations used in this paper, in particular the notions of
(abstract) tropical curves as well as rational functions and divisors on them.

Definition 1.1 (Graphs). A graph I" will always mean a finite and connected multigraph,
not necessarily loop-free (i.e. there may be edges that connect a vertex to itself). The sets
of vertices and edges of " are denoted V(I") and E (T'), respectively. The valence of a vertex
P € V(I') will be denoted val(P).

(a) A metric graph is a pair (I',/) consisting of a graph I" together with a length func-
tion / : E(T') — Rso. We identify an edge e with the real interval [0,/(e)], leading
to a “geometric representation” of the graph by gluing these intervals together at
their boundary points according to the combinatorics of I'. By abuse of notation
we will usually denote this geometric representation also by I'. In this metric space
the distance between points as well as the distance from a point to a subset will be
written as dist( - , - ). The first Betti number of I will be called the genus of T

(b) If all edge lengths of a metric graph I" are integers (resp. rational numbers) we call
I" a Z-graph (resp. Q-graph). In this case the points of (the geometric representa-
tion of) I with integer (resp. rational) distance to the vertices are called Z-points
(resp. Q-points) of I'. We denote the set of these points by I'7 and I'g, respectively.
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(c) A tropical curve is a “metric graph with possibly unbounded ends”, i.e. a pair (I, /)
as in (a) where the length function takes values in R~ U {e}, and where each edge
of length o is identified with the real interval [0,00] = R>oU {0} in such a way
that the oo end of the edge has valence 1. These infinity points of will be called the
(unbounded) ends of .

Remark 1.2. Note that (in contrast to some other conventions on abstract tropical curves
found in the literature) our definition allows vertices of valence 1 and 2, and adds “points
at infinity” at each unbounded edge. Note also that every metric graph is a tropical curve.

Definition 1.3 (Divisors). A divisor on a tropical curve I is an element of the free abelian
group generated by the points of (the geometric representation of) I'. The group of all
divisors on I' is denoted Div(I"). The degree degD of a divisor D = Y ;a;P; (with a; € Z
and P; € I) is defined to be the integer ) ; a; and obviously gives rise to a morphism deg :
Div(T") — Z. The support supp D of D is defined to be the set of all points of I" occurring
in D with a non-zero coefficient. A divisor is called effective if all its coefficients a; are
non-negative. On a Z-graph (resp. Q-graph) a divisor D will be called a Z-divisor (resp. Q-
divisor) if suppD C I'z (resp. suppD C I'g). Following Zhang [Z] we define the canonical
divisor of I to be

Kr:= Z (val(P)—2)-P;

Pev(I)

on a Z-graph (resp. Q-graph) it is obviously a Z-divisor (resp. Q-divisor).

Definition 1.4 (Rational functions). A rational function on a tropical curve I' is a continu-
ous function f : T’ — RU{#ec} such that the restriction of f to any edge of I is a piecewise
linear integral affine function with a finite number of pieces. In particular, f can take on
the values +co only at the unbounded ends of I.

For a rational function f as above and a point P € I' the order ordp f € Z of f at P will
be the sum of the outgoing slopes of all segments of I" emanating from P (of which there
are val(P) if P € V(I') and 2 otherwise). In particular, if P is an unbounded end of I" lying
on an unbounded edge e then the order of f at P equals the negative of the slope of f at a
point on e sufficiently close to P.

Note that ordp f = 0 for all points P € T'\V(I') at which f is locally linear and thus for all
but finitely many points. We can therefore define the divisor associated to f

(f):= Y ordpf-P € Div(I)

per’

as in classical geometry.

Remark 1.5. If f is arational function on a tropical curve I" then the degree of its associated
divisor (f) is deg(f) = Y pcrordp f. By definition of the order this expression can be
written as a sum over all segments of I on which f is linear, where each such segment
counts with the sum of the outgoing slopes of f on it at the two end points of the segment.
But as these two slopes are obviously just opposite numbers on each such edge we can
conclude that deg(f) = 0 — again analogous to the case of compact curves in classical
geometry.

Definition 1.6 (Spaces of functions associated to a divisor). Let D be a divisor of degree n
on a tropical curve I'.
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(a) We denote by R(D) the set of all rational functions f on I such that the divisor
(f) + D is effective. Note that for any such f € R(D) the divisor (f) + D is a sum
of exactly deg((f) + D) = deg D = n points by remark 1.5. So if we define

S(D) :={(f,P1,-..,Py); f arational function on I,
Pi,...,P, €Tsuchthat (f)+D=P +---+P,}

then we obviously have R(D) = S(D)/S,, where the symmetric group S, acts on
S(D) by permutation of the points P;.

(b) If " is a Z-graph and D a Z-divisor we define a “discrete version” of (a) as follows:
let R(D) be the set of all rational functions f on I such that (f) + D is an effective
Z-divisor, and set

S(D) :={(f,Py,...,Py); f arational function on T,
Pi,...,P, ez suchthat (f)+D=P +---+P,},

so that again R(D) = S(D)/S,,.

If we want to specify the curve I' in the notation of these spaces we will also write them as
Rr(D), Sr(D), Rr(D), and Sr(D), respectively.

Remark 1.7. The spaces R(D), S(D), R(D), S(D) of definition 1.6 have the following
obvious properties:

(a) all of them are empty if degD < 0;
(b) R(D—P) CR(D) and R(D—P) C R(D) forall P€T;
(¢c) R(D) C R(D) and §(D) C S(D) if D is a Z-divisor on a Z-graph T.

We want to see now that R(D) and S(D) are polyhedral complexes in the sense of [GM],
i.e. spaces that can be obtained by gluing finitely many polyhedra along their boundaries,
where a polyhedron is defined to be a subset of a real vector space given by finitely many
linear equalities and strict inequalities. To do this we first need a lemma that limits the
combinatorial possibilities for the elements of R(D) and S(D). For simplicity we will only
consider the case of metric graphs here (but it is in fact easy to see with the same arguments
that lemmas 1.8 and 1.9 hold as well for tropical curves, i.e. in the presence of unbounded
ends).

Lemma 1.8. Let p > 0 be an integer, and let f be a rational function on a metric graph T’
that has at most p poles (counted with multiplicities). Then the absolute value of the slope
of f at any point of I' (which is not a vertex and where f is differentiable) is bounded by a
number that depends only on p and the non-metric graph I (i.e. the combinatorics of T').

Proof. To simplify the notation of this proof we will consider all zeroes and poles of f to
be vertices of I (by making them into 2-valent vertices in case they happen to lie in the
interior of an edge).

Let e be any edge of I" on which f is not constant. Construct a path y along I starting with
e in the direction in which f is increasing, and then successively following the edges of I,
at each vertex continuing along an edge on which the outgoing slope of f is maximal.

By our convention on 2-valent vertices above the function f is affine linear on each edge of
I'. Let us now study how the slope of f changes along ¥ when we pass a vertex P € I'. By
definition we have A; + - -- + A, = ordp f, where Ay, ..., A, are the outgoing slopes of f on
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the edges e, ..., e, adjacent to P. Now let N be the maximal valence of a vertex occurring
in I', and assume that our path y approaches P along the edge e; on which f has incoming
slope —A greater or equal to (N + p)% for some o > 1. It then follows that

A+ + Ay ==\ +ordp f
> (N+p)*=p
=N(N+p)* ' +p((N+p)* ' —1)
>N(N+p)*,

which means that the biggest of the numbers A, ..., A, i.e. the outgoing slope of f alongy
when leaving P, is at least (N + p)*~! (recall that n < N and that A; can never be the biggest
of the A, ..., A, since it is negative by assumption whereas at least one of the Ay, ..., A, is
positive).

So if we assume that the slope of f is at least (N + p)® on the edge e this means by induction
that the slope of f on yis at least (N + p)*~' after crossing i vertices, i.e. in particular that
f is strictly increasing on the first ot + 1 edges of y. But this is only possible if  is less
than the number of edges of I': otherwise at least one edge must occur twice among the
first o+ 1 edges of v, in contradiction to f being strictly increasing on 7y in this range. As
the initial edge e was arbitrary this means that the slope of f on any edge is bounded by

(N + p)%, with o being the number of edges of T. O

Lemma 1.9. For any divisor D on a metric graph I the spaces R(D) and S(D) are poly-
hedral complexes.

Proof. We will start with S(D). For each edge e of I" we choose an adjacent vertex that we
will call the starting point of e. To each element (f,Py,...,P,) of S(D) we associate the
following discrete data:

(a) the information on which edge or vertex P; lies foralli =1,...,n;

(b) the (integer) slope of f on each edge at its starting point;
and the following continuous data:

(c) the distance of each P; that lies on an edge from the starting point of this edge;

(d) the value of f at a chosen vertex.

These data obviously determine f uniquely: on each edge we know the starting slope of
f as well as the position and orders of all zeroes and poles, so f can be reconstructed on
each edge if its starting value on the edge is given. As I' is connected by assumption we
can thus reconstruct the whole function from the starting value (d).

Since there are only finitely many choices for (a) and (b) (use lemma 1.8 for (b)), we
get a stratification of S(D) with finitely many strata. The data (c) and (d) are given by
finitely many real variables in each stratum, so each stratum is a subset of a real vector
space. Finally, the condition on the given data to be compatible is given by several linear
equalities and inequalities (the distances (c) must be positive and less than the length of the
corresponding edges, and the values of f at the boundary points of the edges must be so
that we get a well-defined continuous function on I'), so that S(D) is indeed a polyhedral
complex.
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The space R(D) is then simply the quotient of S(D) by the affine linear action of the per-
mutation group of the Py, ..., P,, and hence is a polyhedral complex as well. O

Remark 1.10. For the spaces R(D) and §(D) the same argument as in the proof of lemma
1.9 holds, with the only exception that the data (c) becomes discrete since the points in
(f) are required to be Z-points. Hence the only continuous parameter left is the additive
constant (d), i.e. both R(D) and §(D) are finite unions of real lines. We can thus regard
R(D) and S(D) as “discrete versions” of the spaces R(D) and S(D).

The following example shows that the polyhedral complexes R(D) and S(D) are in general
not pure-dimensional, i.e. there may exist inclusion-maximal cells of different dimensions:

Example 1.11. Consider the canonical divisor K = P 4 Q of the metric graph I" obtained
by connecting two cycles C; and C; of length 1 by an edge e of length I(e) € Z~¢ (see the
picture below). Furthermore, let f be a rational function on I such that (f) + Kr = P; + Px.

Assume first that both P; and P, lie in the interior of the edge e. Note that for all such
choices of the points P; there exists (up to an additive constant) exactly one rational function
with zeros at P; and P» and poles at the prescribed points P and Q. It follows that the
corresponding cell in S(Kr) can be identified with [0,/(e)] x [0,(e)] x R, where the first
two factors represent the position of the points P; and P,, and the last factor parametrizes
the additive constant. Hence the dimension of this cell in S(Kr) is 3.

Next, assume that (f,P[,P}) € S(Kr) such that P| is not on the closure of e but rather in
the interior of a cycle C;. We will see in lemma 2.2 that P} must then lie on the same cycle.
Moreover, it is easy to check that this requires P} to be the point on C; “opposite” to P| as
in the following picture:

. :
///. .
- 7 .
e :
-7 L :
~ - ,'//' N
- - - :
P : r
R
/
Pl

Hence for each choice of P| on one of the cycles there exists exactly one point P such that
(f,P;,P5) € S(Kr). It follows that this cell of S(Kr) can be identified with C; x R, where
the second factor parametrizes the additive constant as above. In particular, the dimension
of this cell is 2.
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Putting all this we obtain the following schematic picture of the polyhedral complex S(Kr),
where for simplicity we have omitted the factor R corresponding to the additive constant
in all cells:

(F0) (P1,P>)

(Q,P)

The space R(Kr) is then obtained from this by dividing out the action of the symmetric
group on two elements, which can be realized geometrically by “folding S(Kr) along the
dashed line above”. In particular, both R(Kr) and S(Kr) are not pure-dimensional, but
rather have components of dimensions 2 and 3.

The above example shows that when formulating a Riemann-Roch type statement about the
dimensions of the spaces R(D) we have to be careful since these dimensions are ill-defined
in general. The following definition will serve as a replacement:

Definition 1.12. Let D be a divisor of degree n on a tropical curve I'.

(a) We define r(D) to be the biggest integer k such that for all choices of (not necessar-
ily distinct) points Py,...,P, € I we have R(D— P} —--- — P) # 0 (or equivalently
S(D—P; —---—P) #0), where r(D) is understood to be —1 if R(D) (or equiva-
lently S(D)) itself is empty.

(b) If D is a Z-divisor on a Z-graph I there is also a corresponding “discrete version”:
we let #(D) be the biggest integer such that R(D — P; — - -- — P;) # 0 for all choices
of k points Py,...,P, € I'z.

If we want to specify the curve I in the notation of these numbers we will also write them
as rr(D) and 7r (D), respectively.

Example 1.13.

(a) By remark 1.7 (a) it is clear that r(D) = —1 if degD < 0, and r(D) < degD other-
wise. The same statement holds for #(D) for Z-divisors on Z-graphs.

(b) For the canonical divisor of the metric graph in example 1.11 we have r(Kr) = 1
since we have seen that

e for all points P; € T there is a rational function f with (f)+Kr =P, + P2
(i.e. f (S R(KF — P )),

e for some choice of P;,P, € I" (e.g. P; and P in the interior of the circles C;
and C,, respectively) there is no rational function f with (f)+ Kr = P; + P».

(c) Let I be a metric graph, and let A € R-. By a rescaling of I by A we mean
the metric graph of the same combinatorics as I" where we replace each edge e of
length /(e) by an edge of length A - /(e). Note that any divisor (resp. rational func-
tion) on I" gives rise to an induced divisor (resp. rational function) on the rescaling
by also rescaling the positions of the points (resp. the values of the function). In
particular, the numbers r(D) for a divisor D on I" remain constant under rescalings.
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Note that rescalings by positive integers take Z-graphs and Z-divisors again to Z-
graphs and Z-divisors, but that #(D) may change in this case since the rescaling
introduces new Z-points.

Remark 1.14. By the proof of lemma 1.9 the continuous parameters for the elements
(f,P1,...,P,) of S(D) are the positions of the points P; and the value of f at a chosen
vertex. In particular, when passing from S(D) to S(D — P) for a generic choice of P this
fixes one of the P; and thus makes each cell of S(D) (disappear or) one dimension smaller.
It follows that the maximal dimension of the cells of S(D) (and R(D)) is always at least
r(D) + 1 (with the +1 coming from the additive constant, i.e. the value of the functions at
the chosen vertex).

Remark 1.15. There is another interpretation of the numbers (D) that we will need later:
let D be a divisor of degree n on a tropical curve I, let i € {0,...,n}, and assume that
S(D) # 0. Consider the forgetful maps

ni:S(D)_)ria (faplv"'vpn)'_)(Plv"'vpi)'

Note that these maps are morphisms of polyhedral complexes in the sense of [GM] (i.e.
they map each cell of the source to a single cell in the target by an affine linear map). It is
clear by definition that the number r(D) can be interpreted using these maps as the biggest
integer i such that 7; is surjective.

Example 1.16. Consider again the metric graph I" of example 1.11, but now the spaces
R(D) and S(D) for the divisor D = P'+ ', where P are ' are interior points of the cycles
C and G, respectively. In this case lemma 2.2 will tell us that (f, P;,P,) can only be in
S(D) if each cycle C; contains one of the points P;, P,, which is then easily seen to require
that in fact {P,Q} = {P,P,}, i.e. that f is a constant function. It follows that R(D) is
simply the real line, whereas S(D) is two disjoint copies of R (i.e. both spaces have pure
dimension 1). It also follows in the same way that r(D) = 0.

In particular, when comparing this to the result of examples 1.11 and 1.13 (b) (which can
be regarded as the limit case when P’ — P and Q' — Q) we see that (D) can jump, and that
the spaces R(D) and S(D) can change quite drastically under “continuous deformations of
D”. So as in the classical case it is really only the number r(D) — r(Kr — D), and not r(D)
alone, that will turn out to depend on the degree of D and the genus of I" only.

2. RIEMANN-ROCH FOR Q-DIVISORS

We will now start with the study of Riemann-Roch theorems. Our basic ingredient is the
Riemann-Roch theorem for finite (non-metric) graphs of Baker and Norine ([BN] theorem
1.11) that is easily translated into our set-up:

Theorem 2.1 (Baker and Norine). Let I" be a Z-graph of genus g all of whose edge lengths
are bigger than 1. Then for every Z-divisor D on T we have #(D) — F(Kr — D) = deg D +

1—g.

Sketch of proof. We start by replacing each edge e of I by a chain of /(e) edges of length
1, arriving at a graph whose geometric representation is the same as before, and where
all Z-points that were in the interior of an edge have been turned into 2-valent vertices.
Note that by the condition that all edge lengths of the original graph are bigger than 1 this
implies that the new graph has no loops, i.e. no edges whose two boundary points coincide
(an assumption made throughout in [BN]). As it is clear by definition that none of the
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terms in the Riemann-Roch equation changes under this transformation it suffices to prove
the theorem for the new graph. By abuse of notation we will also denote it by I

Note that every rational function f on I" whose divisor is a Z-divisor is uniquely determined
by its values on the vertices (since it is just given by linear interpolation on the edges).
Moreover, up to a possibly non-integer global additive constant all these values of f on the
vertices are integers. Conversely, every integer-valued function on the vertices of I" gives
rise to a rational function on I" (by linear interpolation) whose divisor is a Z-divisor. As all
edge lengths in I" are 1 the divisor (f) can then be rewritten using this correspondence as

(f) =) (f(Q) —f(P))-(P-Q) ()
PQ
where the sum is taken over all edges of I' (and P and Q denote the boundary vertices
of these edges in any order). In particular, for a Z-divisor D the number 7(D) can also
be defined as the maximum number k such that for each choice of vertices Pj,...,P; of
I" there is an integer-valued function f on the vertices of I" such that (f) + D is effective,
where (f) is defined by (x).

This is the approach that Baker and Norine take in [BN]. They establish the Riemann-Roch
theorem in this set-up, thus proving the theorem as stated above. To prove their theorem
their first step is to show its equivalence to the following two statements:

e #(Kr)>g—1;and

e for any Z-divisor D € Div(I") there exists a Z-divisor E € Div(T") with deg(E) =
g— 1 and #(E) = —1 such that exactly one of the sets R(D) and R(E — D) is empty.

The central idea in the proof of these two statements is then to consider total orderings on
the vertices of I'. For each such ordering there is an associated divisor
E= Z m(e) — Z P
ecE(T) Pev(I)
where m(e) denotes the boundary point of e that is the bigger one in the given ordering —

the divisor E in the second statement above can for example be taken to be of this form for
a suitable ordering (that depends on D). For details of the proof see [BN]. U

In order to pass from the “discrete case” (the spaces R(D)) to the “continuous case” (the
spaces R(D)) we need a few lemmas first.

Lemma 2.2. Let D be a Z-divisor on a Z-graph T, and let (f,P,...,P,) € S(D). Assume
moreover that some P; is not a Z-point. Then on every cycle of I containing P; there is
another point P; (with i # j) that is also not a Z-point.

Proof. Assume that C is a cycle containing exactly one simple zero P = P; € '\ I'z, (note
that if P is a multiple zero then we are done). Consider the cycle C to be the interval
[0,1(C)] with the endpoints identified such that the zero point lies on a vertex, and let
x € {l,...,1(C)} be the integer such that P € (x — 1,x) with this identification. By adding
a suitable constant to f we may assume that f(x— 1) € Z. Since P € (x — 1,x) and the
slope of f on the interval [x — 1, P] differs from that on the interval (P,x) by 1 we conclude
that f(x) ¢ Z. As all other points of non-differentiability of f on [0,/(C)] are Z-points
by assumption it follows that f(Q) € Z forall 0 =0,...,x—1 and f(Q) ¢ Z for all Q =
x,...,1(C). In particular, we see that f(0) # f({/(C)), in contradiction to the continuity of

f. O
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Lemma 2.3. For every Z-divisor D on a Z-graph T with R(D) # 0 we have R(D) # 0.

Proof. We will prove the statement by induction on n := degD.

Let f € R(D), so that (f)+D = P, +--- + P, for some (not necessarily distinct) points
P; € T. In particular, this requires of course that n > 0. Moreover, if n = 0 then (f) = —D
is a Z-divisor and hence f € R(D). As this finishes the proof in the case n < 0 we can
assume from now on that n > 0, and that the statement of the lemma is true for all divisors
of degree less than n.

If P, € Ty, for some i then f € R(D — P;) and hence R(D — P;) # 0 by the induction as-
sumption. As this implies R(D) # 0 we have proven the lemma in this case and may thus
assume from now on that none of the P, is a Z-point of the curve.

After possibly relabeling the points P; we may assume in addition that 0 < dist(P,,I'z) <
dist(P;,IT'z) foralli=1,...,n, i.e. that P, is a point among the P; that minimizes the distance
to the Z-points of the curve. Let P € I'z be a point with dist(P,, P) = dist(P,,I'z) =: d,
and let I" C T be the connected component of I'\{Py,...,P,} that contains P. With this
notation consider the rational function

—min(d,dist(Q,{P,...,P,})) ifQel’,
0 otherwise.

h:T'—R, Q»—>{

The following picture shows an example of this construction. In this example we have
assumed for simplicity that all edges of the graph have length 1 so that I'z is just the set of
vertices. The distance from Ps to P is smallest among all distances from the P; to a vertex,
and the subset I C T is drawn in bold.

h =0here————

P
pt

We claim that f +h € R(D — P). In fact, this will prove the lemma since R(D — P) # 0
implies R(D — P) # 0 and thus also R(D) # 0 by the induction assumption.

To prove that f +h € R(D — P) we have to show that (f +4) +D — P > 0, or in other
words that (h) +P; +---+ P, — P > 0. Let us assume that this statement is false, i.e. that
there is a point Q € I" that is contained in the divisor (k) 4+ P + - - - + P, — P with a negative
coefficient. Note that Q cannot be the point P since ordp s > 1 by construction. So Q must
be a pole of 4. But again by construction % can only have poles at the points P;, and the
order of the poles can be at most 2 since the slope of 4 is 0 or =1 everywhere. So the only
possibility is that Q is a point with ordg i = —2 that occurs only once among the P; (as it is
the case for Q = P, in the example above). But this means that I” contains both sides of Q,
and thus (since I" is connected) that IV U{Q} contains a cycle on which Q is the only point
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in (f) that is not a Z-point. But this is a contradiction to lemma 2.2 and hence finishes the
proof of the lemma. (|

Proposition 2.4. Let D be a Z-divisor on a Z-graph I'. Then there is an integer N > 1
such that r(D) = F(D) on every rescaling of T by an integer multiple of N (see example
1.13 (c)).

Proof. Let n:=degD and m := r(D) + 1, and assume first that m < n. Consider the map
My 2 S(D) — I'™ of remark 1.15. As T, is a morphism of polyhedral complexes its image is
closed in I'™. Since T,, is not surjective by remark 1.15 this means that I""\x,,(S(D)) is a
non-empty open subset of I that consequently must contain an element (P, ..., P,) with
rational coordinates. For this element we have S(D — P — - -- — P,;) = 0 by construction.

Now let N be the least common multiple of the denominators of these coordinates. Then
Py,..., P, become Z-points on each rescaling of I' by a multiple of N, and thus we also
have §(D — P; — --- — P,;) = 0 on each such rescaling by remark 1.7 (c). By definition this
then means that #(D) < m — 1 = r(D) on these rescalings. This proves the “F(D) < r(D)”
part of the proposition in the case m < n. But note that this part is trivial if m > n, since
then #(D) <n <m—1=r(D) by example 1.13 (a) (on any rescaling). So we have in fact
proven the “F(D) < r(D)” part of the proposition in any case.

To show the opposite inequality “#(D) > r(D)” (which in fact holds for any rescaling) we

just have to show that R(D — P —--- — Py(p)) # 0 for any choice of Z-points Py,..., Py p).
But this now follows immediately from lemma 2.3 since R(D — Py — -+ — Pyp)) # 0 by
definition. (]

We are now ready to prove the Riemann-Roch theorem for Q-divisors on Q-graphs.

Corollary 2.5 (Riemann-Roch for Q-graphs). Let D be a Q-divisor on a Q-graph T'. Then
r(D)—r(Kr—D)=degD+1—g.

Proof. Note that it suffices by example 1.13 (c) to prove the statement after a rescaling of
the curve.

As I has only finitely many edges and D contains only finitely many points we can assume
after such a rescaling that D is in fact a Z-divisor on a Z-graph I', and that all edge lengths
of I' are bigger than 1. By proposition 2.4 we can then assume after possibly two more
rescalings that both r(D) = #(D) and r(Kr — D) = #(Kr — D). The corollary now follows
from theorem 2.1. (]

3. RIEMANN-ROCH FOR TROPICAL CURVES

We will now extend our Riemann-Roch theorem for Q-graphs (corollary 2.5) in two steps,
first to metric graphs (i.e. graphs whose edge lengths need not be rational numbers) and
then to tropical curves (i.e. graphs with possibly unbounded edges).

Proposition 3.1 (Riemann-Roch for metric graphs). For any divisor D on a metric graph
T of genus g we have r(D) —r(Kr —D) =degD+ 1 —g.

Proof. Let D =a101+ -+ auOm, and let n = degD. The idea of the proof is to find a
“nearby” Q-graph I'" with a Q-divisor D’ on it such that rp/(D') = rp(D) and rpv (Kp —
D’) = r(Kr — D), and then to apply the result of corollary 2.5 to this case.
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To do so we will set up a relative version of the spaces S(D) of definition 1.6 and the
interpretation of r(D) of remark 1.15 in terms of these spaces. We fix € € Q¢ smaller
than all edge lengths of I" and denote by A(I") the set of all metric graphs that are of the
same combinatorial type as I" and all of whose edge lengths are greater or equal to €. For
such a metric graph I € A(T") we denote by B(I") the set of all divisors on I that can be
written as a; Q) + - -+ + a Q,, for some Q},...,0,, € I and the same aj,...,a, as in D.
With these notations we set

S:={(",D,f,P,...,P,); T' € A(T'), D' € B(I"), f arational function on I,
Py,....,P, €’ such that (f)+D' =P +---+ Py},
M;:={(",D',P,...,P); " € A(T), D' e B(T'), P,,...,P, €T’} fori=0,...,n,
M:={(',D'); " e A, D' € B(T")}

In the same way as in lemma 1.9 we see that all these spaces are polyhedral complexes
— the only difference is that there is some more discrete data (corresponding to fixing the
edges or vertices on which the points in D’ lie) and some more continuous data (corre-
sponding to the edge lengths of I and the positions of the points in D’ on their respective
edges). There are obvious forgetful morphisms of polyhedral complexes (i.e. continuous
maps that send each cell of the source to a single cell of the target by an affine linear map)

n:S—M;, (U,D, fP,. . P)— (' DP,.. . P)

and

pi:M;—M, (U',D,P,....P)— (I',D).
As in remark 1.15 we have rpv (D) > i for a divisor D’ € B(I'"") on a metric graph I € A(T)
if and only if m;(S) contains (I'",D', Py,...,P;) for all Py,...,P; € I, or equivalently if and
only if (T, DY) € M\ pi( M\ (S)).

Since S is a polyhedral complex and 7; a morphism of polyhedral complexes it follows that
the image m;(S) C M; is a union of closed polyhedra. Consequently, M;\m;(S) is a union of
open polyhedra (i.e. an open subset of M; whose intersection with each polyhedron of M;
can be written as a union of spaces given by finitely many strict linear inequalities).

Next, note that the map p; is open as it is locally just a linear projection. It follows that
pi(M;\m;(S)), i.e. the locus in M of all (I, D’) such that r/(D') < i, is a union of open
polyhedra as well. Consequently, its complement M\ p;(M;\;(S)), i.e. the locus in M
of all (I, D') such that rpv(D’) > i, is a union of closed polyhedra. Finally, note that all
polyhedral complexes and morphisms involved in our construction are defined over Q, so
that the locus of all (I, D) with rpv (D) < i (resp. rp(D’) > i) is in fact a union of rational
open (resp. closed) polyhedra in M. Of course, the same arguments hold for rp (K — D')
as well.

We are now ready to finish the proof of the proposition. By what we have said above the
locus of all (I, D') in M such that r(D') < rp(D) + 1 and rp (K — D') < rp(Kr— D) + 1
is an open neighborhood U of (I, D). Conversely, the locus of all (I",D’) in M such that
rp(D') > rr(D) and rp (K — D) > (K — D) is a union V of rational closed polyhedra.
In particular, this means that the rational points of V are dense in V. As U NV is non-empty
(it contains the point (I', D)) it follows that there is a rational point in U NV, i.e. a Q-graph
I'" with a Q-divisor D' on it such that r(D') = rp(D) and rpv (K — D) = rp(Kp — D). As
I and I have the same genus, and D’ and D the same degree, the proposition now follows
from corollary 2.5. (]
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So far we have only considered metric graphs, i.e. tropical curves in which every edge is
of finite length. In our final step of the proof of the Riemann-Roch theorem we will now
extend this result to arbitrary tropical curves (with possibly infinite edges). In order to do
this we will first introduce the notion of equivalence of divisors.

Definition 3.2. Two divisors D and D’ on a tropical curve I are called equivalent (written
D ~ D') if there exists a rational function f on I such that D’ = D+ (f).

Remark3.3. If D~ D', i.e. D' = D+ (f) for arational function f, then it is obvious that the
map R(D') — R(D), g — g+ f is a bijection. In particular, this means that (D) = r(D’),
i.e. that the function r : Div(I") — Z depends only on the equivalence class of D.

Lemma 3.4. Let T be a tropical curve, and let T be the metric graph obtained from T
by removing all unbounded edges. Then every divisor D € Div(T) is equivalent on T to
a divisor D' with suppD’ C I. Moreover, if D is effective then D' can be chosen to be
effective as well.

Proof. Toany P € I, we associate a rational function fpr as follows. If P € T, we define fp

to be the zero function. Otherwise, if P lies on some unbounded edge E, we define
fri T RU{w), 0 min(dist(P,I'),dist(Q,I)) %f Q€E,
0 ifQZE.

If P ¢ T, then the function fp has a simple pole at P and no other zeros or poles away from
I'. The following picture shows an example of such a function, where the metric graph I"
is drawn in bold:

e m -

--" ’ ~< . )
.- , S~ fp

Soif D=a;P,+---+a,P, and we set f =Y ;a;fp, then D+ (f) is a divisor equivalent to
D with no zeros or poles away from I'. Moreover, if D is effective then D + ( f) is effective
as well since all poles of f are cancelled by D by construction. O

Remark 3.5. With notations as above, let Py, - - - , P, denote the end points of the unbounded
edges E; of T, and consider the function f = Y; fp.. Then f is zero on the graph I and has
slope one on each unbounded edge. If we denote for all i € {1,...,n} the point E;NT by
Q;, then (f) =Y Q; — ¥ P:. Hence Kt + (f) = Kp, i.e. Kr ~ Kpon T.

Lemma 3.6. As in the previous lemma let T be a tropical curve, and let T be the metric
graph obtained from T by removing all unbounded edges. Moreover, let D be a divisor on
[ (that can then also be thought of as a divisor on T with support on T). Then Rr(D) # 0
if and only if Rp(D) # 0.
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Proof. “="": Let f be a rational function in Rr(D). Extend f to a rational function f on T’
so that it is constant on each unbounded edge. Then f € Rp(D).

“«”: Let f € Rp(D), and set f = f|r. Let e be an unbounded edge of I', and let P=T"Ne
be the vertex where e is attached to I'. Since f has no poles on e it follows that f|, is
(not necessarily strictly) decreasing if we identify e with the real interval [0,c]. Hence the
order of f on I at P cannot be less than the order of f on I at P, and so it follows that
f € Rr(D). Il

Remark 3.7. Let T, T, and D as in lemma 3.6. By lemma 3.4 any effective divisor Pj +
-+ P, on T is equivalent to an effective divisor P{ 4 ---+ P, with support on I". So
by remark 3.3 the number ri-(D) can also be thought of as the biggest integer & such that
Ry(D—Py—---—P;)#0forall P,...,P, €T (instead of for all Py,..., P, €'). By lemma
3.6 we can therefore conclude that rp(D) = rr(D).

With these results we are now able to prove our main theorem:

Corollary 3.8 (Riemann-Roch for tropical curves). For any divisor D on a tropical curve
[ of genus g we have r(D) — r(Kp —D) =degD+1 —g.

Proof. Let I be the metric graph obtained from I" by removing all unbounded edges. By
lemma 3.4 and remark 3.3 we may assume that suppD C I'. Moreover, by remark 3.5
we can replace Ky by Kr (which also has support in I') in the Riemann-Roch equation.
Finally, remark 3.7 now tells us that we may replace ry(D) and r(Kr — D) by rr(D) and
rr(Kr — D) respectively, so that the statement follows from proposition 3.1. g
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