
RELATIVE GROMOV-WITTEN INVARIANTS AND THEMIRROR FORMULAANDREAS GATHMANNAbstra
t. Let X be a smooth 
omplex proje
tive variety, and let Y � X be asmooth very ample hypersurfa
e su
h that �KY is nef. Using the te
hnique ofrelative Gromov-Witten invariants, we give a new short and geometri
 proof of(a version of) the \mirror formula", i.e. we show that the generating fun
tionof the genus zero 1-point Gromov-Witten invariants of Y 
an be obtained fromthat of X by a 
ertain 
hange of variables (the so-
alled \mirror transforma-tion"). Moreover, we use the same te
hniques to give a similar expression forthe (virtual) numbers of degree-d plane rational 
urves meeting a smooth 
ubi
at one point with multipli
ity 3d, whi
h play a role in lo
al mirror symmetry.For a smooth very ample hypersurfa
e Y of a smooth 
omplex proje
tive varietyX , the theory of relative Gromov-Witten invariants gives rise to an algorithm thatallows one to 
ompute the genus zero Gromov-Witten invariants of Y from thoseof X [Ga℄. The goal of this paper is to show that in the 
ase when �KY is nef,this algorithm 
an be \solved" expli
itly to obtain a formula that expresses thegenerating fun
tion of the 1-point Gromov-Witten invariants of Y in terms of thatofX . This so-
alled \mirror formula" (also denoted \quantum Lefs
hetz hyperplanetheorem" by some authors) has already been known for some time ([Gi℄, [LLY℄, [K℄,[B℄, [L℄). Our approa
h however is entirely di�erent and essentially \elementary" inthe sense that it does not use any of the spe
ial te
hniques that have been used inthe previous proofs, like e.g. torus a
tions, equivariant 
ohomology, or moduli spa
esother than the usual spa
es of stable maps to X and their subspa
es. This doesnot only make our proof mu
h simpler than the previous ones, but also hopefullyeasier to generalize, e.g. to more general hypersurfa
es, or to higher genus of the
urves.Let us brie
y re
all the ideas and results from [Ga℄. For n � 0 and a homology
lass � 2 H2(X)=torsion we denote by �Mn(X; �) the moduli spa
e of n-pointedgenus zero stable maps to X of 
lass �. For any m � 0 there are 
losed sub-spa
es �M(m)(X; �) of �M1(X; �) that 
an be thought of as parametrizing 1-pointedrational 
urves in X having multipli
ity (at least) m to Y at the marked point.(For simpli
ity, we suppress in the notation the dependen
e of these spa
es on Y .)These moduli spa
es have expe
ted 
odimension m in �M1(X; �). In fa
t, they 
omeequipped with natural virtual fundamental 
lasses [ �M(m)(X; �)℄virt of this expe
teddimension. If X is a proje
tive spa
e and Y a hyperplane, then these moduli spa
esdo have the expe
ted dimension, and their virtual fundamental 
lasses are equal tothe usual ones.The idea is now to raise the multipli
ity m of the 
urves from 0 up to Y � � + 1by one at a time. Curves with multipli
ity (at least) 0 are just unrestri
ted 
urves1991 Mathemati
s Subje
t Classi�
ation. 14N35,14N10,14J70.Funded by the DFG s
holarships Ga 636/1{1 and Ga 636/1{2.1



2 ANDREAS GATHMANNin X , whereas a multipli
ity of Y � � +1 for
es at least the irredu
ible 
urves to lieinside Y . In other words, we 
onsider the 
hain of in
lusions�M1(Y; �) � �M(Y ��)(X; �) � �M(Y ���1)(X; �) � � � � � �M(0)(X; �) = �M1(X; �)of \virtual 
odimension one". The main theorem of [Ga℄ des
ribes ea
h of thesein
lusions expli
itly in terms of interse
tion theory. This gives us a way to des
ribe�M1(Y; �) inside �M1(X; �), and hen
e to 
ompute Gromov-Witten invariants of Yin terms of those of X .It is easy to write down a na��ve guess what these in
lusions should look like. Astable map in X has multipli
ity at least m to Y if and only if the (m � 1)-jet ofev�Y vanishes, where ev : �M1(X; �) ! X denotes the evaluation map. Hen
e the
y
le �M(m+1)(X; �) inside �M(m)(X; �) should just be the �rst Chern 
lass of theline bundle of m-jets modulo (m � 1)-jets of ev�O(Y ). This Chern 
lass is easily
omputed to be ev�Y + m , where  is the \
otangent line 
lass", i.e. the �rstChern 
lass of the line bundle whose �ber at a stable map (C; x; f) is the 
otangentspa
e of C at the point x.However, our above informal des
ription of �M(m)(X; �) as the spa
e of 
urveswith multipli
ity at least m to Y at the marked point breaks down at the \bound-ary", i.e. at those 
urves where the marked point lies on a 
omponent of the 
urvethat lies 
ompletely inside Y , so that the multipli
ity be
omes \in�nite". Hen
ethe above 
al
ulation re
eives 
orre
tion terms from these 
urves. Their expli
itform is given by the following theorem (see [Ga℄ theorem 2.6).Theorem 0.1. For all m � 0 we have(ev�Y +m ) � [ �M(m)(X; �)℄virt = [ �M(m+1)(X; �)℄virt + [D(m)(X; �)℄virt:Here, the 
orre
tion term D(m)(X; �) = `r`B;M D(X;B;M) is a disjoint unionof individual termsD(X;B;M) := �M1+r(Y; �(0))�Y r rYi=1 �M(m(i))(X; �(i))where r � 0, B = (�(0); : : : ; �(r)) with �(i) 2 H2(X)=torsion and �(i) 6= 0 fori > 0, and M = (m(1); : : : ;m(r)) with m(i) > 0. The maps to Y r are the evaluationmaps for the last r marked points of �M1+r(Y; �(0)) and ea
h of the marked pointsof �M(m(i))(X; �(i)), respe
tively. The union in D(m)(X; �) is taken over all r, B,and M subje
t to the following three 
onditions:rXi=0 �(i) = � (degree 
ondition),Y � �(0) + rXi=1m(i) = m (multipli
ity 
ondition),if �(0) = 0 then r � 2 (stability 
ondition).In the equation of the theorem, the virtual fundamental 
lass of the summandsD(X;B;M) is de�ned to be m(1) ���m(r)r! times the 
lass indu
ed by the virtual fun-damental 
lasses of the fa
tors �M1+r(Y; �(0)) and �M(m(i))(X; �(i)). The spa
esD(X;B;M) 
an be 
onsidered to be subspa
es of �M1(X; �) (see below), so the equa-tion of the theorem makes sense in the Chow group of �M1(X; �).



RELATIVE GROMOV-WITTEN INVARIANTS AND THE MIRROR FORMULA 3Geometri
ally speaking, the moduli spa
es D(X;B;M) in the 
orre
tion termsdes
ribe 
urves with r + 1 irredu
ible 
omponents C(0); : : : ; C(r) with homology
lasses �(0); : : : ; �(r), su
h that C(0) lies inside Y , and the C(i) for i > 0 interse
tC(0) in a point where they have multipli
ity m(i) to Y . The marked point is al-ways on the 
omponent C(0). Using this des
ription, the spa
es D(X;B;M) 
an be
onsidered as subspa
es of �M1(X; �). The multipli
ity 
ondition ensures that theyare a
tually subspa
es of �M(m)(X; �) and have the 
orre
t expe
ted dimension.The fa
tor 1r! in the de�nition of the virtual fundamental 
lass of the 
orre
tionterms is just 
ombinatorial and 
orresponds to the 
hoi
e of order of the 
ompo-nents C(1); : : : ; C(r). In 
ontrast, the fa
tor m(1) � � �m(r) is of geometri
 nature andsomewhat tri
ky to derive.As an example of the theorem, 
onsider the 
ase where X = P3, Y = H isa hyperplane, and � is the 
lass of 
ubi
 
urves in X . Then the equations ofthe theorem for m = 0; : : : ; 3 
an be pi
tured as follows (where we set �M(m) :=�M(m)(P3; 3)):
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(Of 
ourse, in the pi
tures where we have drawn the marked point on a nodeof the 
urve, the 
orresponding stable maps have a 
ontra
ted 
omponent, i.e. wehave �(0) = 0.)So we see that �M1(H; 3) is equal to Q3i=0(ev�H + i ) � �M1(P3; 3) plus a bun
hof 
orre
tion terms 
oming from redu
ible 
urves as shown in the pi
ture. This isan equation of 9-dimensional 
y
les in �M1(P3; 3). To make this into equations forthe Gromov-Witten invariants of H , we have to interse
t it with some 
ohomology
lass 
 of 
odimension 9 that is a polynomial in ev�H and  . Note that in the
orre
tion terms this will impose 9 
onditions on the 
omponent C(0) 
ontained inH . However, in all the terms where the degree of C(0) is at most 2, the moduli spa
efor this 
omponent has dimension smaller than 9. Hen
e all these terms vanish,



4 ANDREAS GATHMANNand it follows that the 1-point Gromov-Witten invariants of H (of degree 3 in thisexample) are expressible in terms of those of P3 asIH3 (
) = IP33  
 � 3Yi=0(H + i )! :The same argument works for higher degree of the 
urves.Now let us 
ome ba
k to the 
ase of general X and Y . Can we still hope that the
orre
tion terms vanish when we 
ompute the Gromov-Witten invariants? Re
allthat the reason for the vanishing above was that the dimension of the moduli spa
eof 
urves in Y qui
kly gets bigger when the degree of the 
urves goes up (in theexample, the 9 
onditions that were needed for Gromov-Witten invariants for 
ubi
sin Y were \too many" for lines and 
oni
s in Y ). Hen
e, as the (virtual) dimensionof the moduli spa
e of stable maps to Y is vdim �M1(Y; �) = �KY � � +dimY � 2,we see that we need that �KY is suÆ
iently positive.If �KY is negative, basi
ally all 
orre
tion terms that 
ould appear in the 
om-putation of the Gromov-Witten invariants will do so. The main nuisan
e aboutthis is that the 
orre
tion terms 
ontain the full n-point Gromov-Witten invariantsof Y (namely, n = 1 + r in ea
h of the 
orre
tion terms), and not just the 1-pointinvariants that we originally wanted to 
ompute. There would be two ways topro
eed:� Use the version of theorem 0.1 for n-point invariants as proven in [Ga℄.� Use the WDVV equations to 
ompute the n-point invariants of Y in terms of1-point invariants whenever they o

ur.Both methods 
an be used without problems to write down an algorithm to 
omputethe Gromov-Witten invariants of Y in terms of those of X . However, we do notknow at the moment how to express the result in a ni
e 
losed form.Most interesting are the 
ases where �KY is nef, but yet not \positive enough"to ensure the vanishing of all 
orre
tion terms. We will show that, whenever �KYis nef, the only n-point invariants of Y that might o

ur in the algorithm arethose with fundamental or divisor 
lasses at all but the �rst marked point. Theseinvariants 
an of 
ourse be redu
ed immediately to 1-point invariants using thefundamental 
lass and divisor axioms for Gromov-Witten invariants. Thus we arriveat re
ursion formulas that involve only 1-point invariants. Solving them dire
tly,we obtain a ni
e expression for the invariants of Y : the \mirror formula".The ne
essary 
omputations to a
hieve this are done in se
tion 1. In se
tion 2we apply the results to two examples. First of all we rederive the expression for thegenus zero Gromov-Witten invariants of the quinti
 threefold. Se
ondly, we provea similar expression for the (virtual) numbers of plane rational 
urves of degree dhaving 
onta
t of order 3d to a smooth 
ubi
. These numbers play a role in lo
almirror symmetry (see [CKYZ℄ and [T℄). They are a by-produ
t of our work, asthey are just simple examples of relative Gromov-Witten invariants. The two main
omputational lemmas (that have nothing to do with algebrai
 geometry, but ratherare formal statements about 
ertain power series o

urring in the 
al
ulation) areproved in the appendix.The author would like to thank T. Graber, J. Harris, and R. Vakil for numerousdis
ussions. The work has been done at the Harvard University, to whi
h the authoris grateful for hospitality.



RELATIVE GROMOV-WITTEN INVARIANTS AND THE MIRROR FORMULA 51. The mirror transformationAs in the introdu
tion let X be a smooth 
omplex proje
tive variety, and let Ybe a smooth very ample hypersurfa
e su
h that �KY is nef. By abuse of notation,we denote by H�(X) and H�(X) the groups of algebrai
 (
o-)homology 
lassesmodulo torsion. For a 
lass � 2 H2(X) we write � � 0 if � is e�e
tive, and � > 0 if� � 0 and � 6= 0. To keep the notation as simple as possible, we will assume in thefollowing 
omputations that the 
lass of Y generates H2(X) over Q (see remark1.14 for the 
hanges needed in the general 
ase).For any � > 0 we denote by �Mn(X; �) the spa
e of n-pointed rational stablemaps of 
lass � to X . Let evi : �Mn(X; �)! X be the evaluation maps, and let  ibe the 
otangent line 
lasses. For 
ohomology 
lasses 
i 2 H�(X) the 
orrespondingGromov-Witten invariant is de�ned to beIX� (
1 k1 
 � � � 
 
n kn) := ev�1
1 �  k11 � � � ev�n
n �  knn � [ �Mn(X; �)℄virt 2 Qif the dimension 
ondition Pi(
odim 
i + ki) = vdim �Mn(X; �) is satis�ed, andzero otherwise. It is usual and 
onvenient to en
ode all the 1-point invariants of
lass � in a single 
ohomology 
lassIX� := ev�� 11�  � [ �M1(X; �)℄virt�=Xi;j IX� (T i j) � Ti 2 H�(X);where ev = ev1, fT ig is a basis of H�(X) 
 Q, and fTig is the dual basis. Notethat the dimension 
ondition ensures that for ea
h i at most one j 
ontributes anon-zero term to the sum above, so all 1-point invariants of X of 
lass � 
an bere
onstru
ted from the 
ohomology 
lass IX� .We de�ne the Gromov-Witten invariants IY� of Y in the same way, repla
ing�Mn(X; �) by �Mn(Y; �), but keeping the evi to denote the evaluation maps to X .Note that � is still a homology 
lass in X ; so stri
tly speaking �Mn(Y; �) is thespa
e of stable maps to Y of all homology 
lasses whose push-forward to X is �.For � = 0, we set IX0 := 1 and IY0 := Y .Now 
onsider the moduli spa
es �M(m)(X; �) of 1-pointed relative stable mapsto X with multipli
ity m to Y at the marked point ([Ga℄ de�nition 1.1). In thesame manner as above, these spa
es together with their virtual fundamental 
lasses([Ga℄ de�nition 1.18) give rise to invariants I�;(m)(
 k) that 
an be assembled intoa 
ohomology 
lassI�;(m) = ev�� 11�  � [ �M(m)(X; �)℄virt� 2 H�(X):Remark 1.1. For future referen
e, let us note that (as expe
ted from geometry)I�;(0) = IX� and I�;(m) = 0 for m > Y � � (see [Ga℄ remark 1.3).Finally, let D(m)(X; �) be the 
orre
tion terms de�ned in theorem 0.1, and setJ�;(m) = ev�� 11�  � [D(m)(X; �)℄virt�+m � ev�[ �M(m)(X; �)℄virt 2 H�(X):(1)The surprising additional term will appear in the proof of the following lemma. Ge-ometri
ally, it 
orresponds to unstable maps that have two irredu
ible 
omponents



6 ANDREAS GATHMANNC(0) and C(1), where C(0) is 
ontra
ted to a point in Y and 
ontains the markedpoint, and C(1) is a 
urve with multipli
ity m to Y at this point (see the end of theproof of lemma 1.8).The �rst thing to do is to rewrite theorem 0.1 in the new simpli�ed notation.Lemma 1.2. For all � > 0 and m � 0 we have(Y +m) � I�;(m) = I�;(m+1) + J�;(m) 2 H�(X):Proof. Interse
t the equation of theorem 0.1 with 11� and push it forward by theevaluation map to getev��(ev�Y +m ) � 11�  � [ �M(m)(X; �)℄virt�= ev�� 11�  � [ �M(m+1)(X; �)℄virt�+ ev�� 11�  � [D(m)(X; �)℄virt� :As  1� = 11� � 1, the left hand side of this equation 
an be rewritten as(Y +m) � ev�� 11�  � [ �M(m)(X; �)℄virt��m � ev�[ �M(m)(X; �)℄virt:Taking into a

ount the de�nitions of I�;(m) and J�;(m), we arrive at the equationstated in the lemma.Remark 1.3. In parti
ular,Y ��Yi=0(Y + i) � IX� = Y ��Xm=0 Y ��Yi=m+1(Y + i) � J�;(m):This follows from a re
ursive appli
ation of lemma 1.2, with the start and the endof the re
ursion given by remark 1.1.The next thing to do is to evaluate the J�;(m) expli
itly.Remark 1.4. Let us �rst 
onsider the �rst summand ev� � 11� � [D(m)(X; �)℄virt�in the de�nition (1) of J�;(m). Using the de�nition of D(m)(X; �) and its virtualfundamental 
lass given in theorem 0.1, we see that this �rst summand is a sum ofindividual terms, ea
h of whi
h has the formIY�(0) (T i j 
 
1 
 � � � 
 
r) � 1r! rYk=1 �m(k) � I�(k);(m(k))(
_k )� � Ti; (2)where 
_ denotes the dual of a 
lass 
 in Y . These terms are summed over all i,j � 0, r � 0, �(k) (with �(0) � 0 and �(k) > 0 if k > 0), and m(k) > 0, subje
t tothe 
onditions(i) �(0) + � � �+ �(r) = � (degree 
ondition),(ii) Y � �(0) +m(1) + � � �+m(r) = m (multipli
ity 
ondition),(iii) if �(0) = 0 then r � 2 (stability 
ondition).Moreover, the 
k have to run over a basis of H�(Y )
Q (a
tually it is suÆ
ient tolet them run over a basis of the part of H�(Y )
 Q indu
ed by X , see [Ga℄ remark5.4).



RELATIVE GROMOV-WITTEN INVARIANTS AND THE MIRROR FORMULA 7The main simpli�
ation of this huge sum is due to the following lemma, whi
hfollows from a simple dimension 
ount. It is the only point in our 
omputationswhere we need that �KY is nef.Lemma 1.5. The above expression (2) 
an only be non-zero if all 
k are funda-mental or divisor 
lasses. Moreover, for all k we must havem(k) = Y � �(k) �KY � �(k) � 1 if 
k is the fundamental 
lass;m(k) = Y � �(k) �KY � �(k) if 
k is a divisor 
lass:Proof. As the invariants I�(k);(m(k))(
_k ) must have dimension zero for all k, it fol-lows that
odim 
k = dimY � 
odim 
_k= dimY � dim �M(m(k))(X; �(k))= dimY � (�KX � �(k) + dimX � 2�m(k))= �Y � �(k) +KY � �(k) + 1 +m(k) (by adjun
tion):This shows the equation for the m(k). Moreover, as �KY is nef and we must havem(k) � Y � �(k) for the relative invariant to be non-zero (see remark 1.1), it followsthat 
odim 
k � 1, as desired.Remark 1.6. Obviously, in the same way one 
an show that:� If �KY �� � 1 for all � > 0 then all the 
k have to be fundamental 
lasses. (Inthe following 
omputations this would mean that all r� = 0, whi
h greatlysimpli�es the 
al
ulation.) This is e.g. the 
ase if Y is a hypersurfa
e inX = Pn of degree at most n.� If �KY � � � 2 for all � > 0 then no 
k 
an exist, i.e. we must always haver = 0. Hen
e in this 
ase we 
on
lude that there are no 
orre
tion termsin the 
omputation of the Gromov-Witten invariants. The only term on theright hand side of remark 1.3 is IY� (for r = 0 and m = Y � �), so it followsthat the \na��ve" formula IY� = Y ��Yi=0(Y + i) � IX�is true (as in the 
ase 
onsidered in the introdu
tion where Y � X is a planein P3). This is e.g. the 
ase if Y is a hypersurfa
e in X = Pn of degree atmost n� 1.Remark 1.7. As we have assumed that the 
lass of Y generates H2(X) over Q,lemma 1.5 states that the only fa
tors that 
an o

ur in the k-produ
t in (2) arethe numbers s� := (Y � � �KY � � � 1) � I�;(Y ���KY ���1)(1_)and r� := (Y � � �KY � �) � I�;(Y ���KY ��)(Y _)for some � > 0. Thus we 
an then rewrite (2) using multi-index notation asfollows. For a multi-index � = (��) of non-negative integers indexed by the positivehomology 
lasses � of H2(X), we apply the usual notationsP� :=P� �� ; s� :=Q� s��� ;�! :=Q� �� !; j�j :=P� �� � �:



8 ANDREAS GATHMANNThen we 
an rewrite (2) asIY�(0)(T i j 
 1
P� 
 Y 
P �) � 1r! � s�r� � Ti; (3)where � and � are the multi-indi
es su
h that the fa
tors s� and r� appear in (2)�� and �� times, respe
tively. In parti
ular, r =P�+P � is the number of nodesof the 
urves under 
onsideration.We are now ready to evaluate the J�;(m) expli
itly in terms of the 1-pointGromov-Witten invariants IY� of Y and the relative 1-point invariants s� and r� .Lemma 1.8. With the notation of remark 1.7,J�;(m) =X�;� �Y + Y � �(0)�P � � s��! r��! � IY�(0)for all � > 0 and m � 0, where the sum is taken over all multi-indi
es � and � su
hthat �(0) := ��j�j�j�j � 0 (degree 
ondition) and m = Y ���KY �(j�j+ j�j)�P�(multipli
ity 
ondition).Proof. Inserting expression (3) for (2) in remark 1.4, we see that the �rst summandin the de�nition (1) of J�;(m) isev�� 11�  � [D(m)(X; �)℄virt�=Xi;j X�;� IY�(0) (T i j 
 1
P� 
 Y 
P �) � s��! r��! � Ti;where the sum is taken over all i; j; �; � su
h that(i) �(0) := � � j�j � j�j � 0 (degree 
ondition),(ii) Y � ��KY � (j�j+ j�j)�P� = m (multipli
ity 
ondition | here we insertedthe expression of lemma 1.5 for the m(i)),(iii) if �(0) = 0 then P�+P � � 2 (stability 
ondition).Now we 
ompute the Gromov-Witten invariant IY�(0) (� � � ) in terms of 1-point in-variants of Y . We 
laim that for �(0) > 0Xi;j IY�(0) (T i j 
 1
P� 
 Y 
P �) � Ti = (Y + Y � �(0))P � � IY�(0) : (4)In fa
t, this follows from the fundamental 
lass axiomXi;j IY�(0) (T i j 
 1
 � � � ) � Ti = Xi;j 6=0 IY�(0) (T i j�1 
 � � � ) � Ti=Xi;j IY�(0) (T i j 
 � � � ) � Ti



RELATIVE GROMOV-WITTEN INVARIANTS AND THE MIRROR FORMULA 9and the divisor axiomXi;j IY�(0) (T i j 
 Y 
 � � � ) � Ti =Xi;j (Y � �(0)) � IY�(0) (T i j 
 � � � ) � Ti+ Xi;j 6=0 IY�(0) (T i � Y  j�1 
 � � � ) � Ti=Xi;j (Y � �(0)) � IY�(0) (T i j 
 � � � ) � Ti+ Xi;j 6=0 IY�(0) (T i j�1 
 � � � ) � (Ti � Y )= (Y � �(0) + Y ) �Xi;j IY�(0) (T i j 
 � � � ) � Ti(see e.g. [Ge℄ proposition 12), where \� � � " denotes any tensor produ
t of 
ohomol-ogy 
lasses (i.e. not in
luding 
otangent line 
lasses). In fa
t, the same formula (4)is also true for �(0) = 0, as in this 
aseXi;j IY0 (T i j 
 1
P� 
 Y 
P �) � Ti = (YP �) � Y= YP � � IY0by the \mapping to point axiom". Hen
e the �rst summand in the de�nition (1)of J�;(m) isev�� 11�  � [D(m)(X; �)℄virt� =X�;� �Y + Y � �(0)�P � � s��! r��! � IY�(0) (5)with the sum taken over all �; � satisfying the degree, multipli
ity and stability
onditions. The se
ond summand ism � ev�[ �M(m)(X; �)℄virt = m �Xi I�;(m)(T i) � Ti= s� � Y � Æm;Y ���KY ���1+ r� � Y 2 � Æm;Y ���KY ��by lemma 1.5. As we have de�ned IY0 = Y , this adds exa
tly the terms with�(0) = 0 and P� +P � = 1 to the sum in (5) that were ex
luded be
ause of thestability 
ondition. It follows thatJ�;(m) =X�;� �Y + Y � �(0)�P � � s��! r��! � IY�(0) ;with the sum taken over all �; � satisfying the degree and multipli
ity 
onditions.Remark 1.9. The multipli
ity 
ondition in lemma 1.8 
an be repla
ed bym = Y � � � �X�;where � 2 f0; 1g depends only on Y . To see this, re
all that the multipli
ity
ondition was obtained from the original onem = Y � �(0) +Xm(k) (6)



10 ANDREAS GATHMANNby inserting the expressions m(k) = Y � �(k) �KY � �(k) (for every r�(k)) or m(k) =Y � �(k) �KY � �(k) � 1 (for every s�(k)), respe
tively. But by remark 1.1 we haver�(k) = 0 if m(k) = Y � �(k) �KY � �(k) > Y � �(k). So (as KY is nef) r�(k) 
an onlybe non-zero if m(k) = Y � �(k). Hen
e we 
an insert this simpli�ed expression form(k) in (6).In the same way, s�(k) 
an only be non-zero if m(k) = Y � �(k) � 1 (in the 
aseKY = 0) or m(k) = Y ��(k) (in the 
ase KY > 0). In other words, m(k) = Y ��(k)��with � 2 f0; 1g depending only on Y .If we now take the original multipli
ity 
ondition (6) and insert the new simpli�edexpressionsm(k) = Y ��(k) (for every r�(k) ) and m(k) = Y ��(k)�� (for every s�(k)),respe
tively, we arrive at the desired multipli
ity 
ondition m = Y � � � �P�.Remark 1.10. Now we 
an insert the expression of lemma 1.8 (with the multipli
ity
ondition from remark 1.9) into the formula of remark 1.3. Thus we obtainY ��Yi=0(Y + i) � IX� =X�;� Y ��Yi=Y ����P�+1(Y + i) � �Y + Y � �(0)�P � � s��! r��! � IY�(0)=X�;� �P��1Yi=0 (Y + Y � � � i) � �Y + Y � �(0)�P � � s��! r��! � IY�(0) ;where the sum is now taken over all �; � satisfying the degree 
ondition �(0) :=� � j�j � j�j � 0. Note that this equation is trivially true in the 
ase � = 0 as well(both sides are equal to Y in this 
ase).To get rid of the degree 
ondition, we multiply these equations with qY �� (whereq is a formal variable) and add them up; so we getX� Y ��Yi=0(Y + i) � IX� � qY ��=X�(0)X�;� �P��1Yi=0 (Y + Y � � � i) � �Y + Y � �(0)�P � � s��! r��! � IY�(0) � qY ��; (7)where the sum now runs over all multi-indi
es �; � (and � = �(0) + j�j+ j�j).Although this equation looks quite 
ompli
ated, note that all geometri
 ideas inits derivation are still visible: the left hand side is the \na��ve" expression for theGromov-Witten invariants of Y that we already en
ountered in the introdu
tionand remark 1.6. The produ
t QY ��i=0 (Y + i) here 
orresponds to the pro
ess ofraising the multipli
ity of the 
urves from 0 to Y ��+1. The right hand side of theequation des
ribes the 
orre
tion terms. They 
orrespond to redu
ible 
urves withone 
omponent in the hypersurfa
e (IY�(0) ) and various others in the ambient spa
ewith spe
i�ed multipli
ities to the hypersurfa
e (s�r�). The fa
tor (Y +Y ��(0))P �
omes from the (P �)-fold appli
ation of the divisor axiom that we used to des
ribethe 
omponent in the hypersurfa
e by a 1-point invariant instead of by a (1 + r)-point invariant.All that remains to be done to arrive at the \mirror formula" is to simplify theright hand side of equation (7). To do so, de�ne P (t) to be \the right hand sidewith Y � �(0) repla
ed by a formal variable t":



RELATIVE GROMOV-WITTEN INVARIANTS AND THE MIRROR FORMULA 11De�nition 1.11. LetP (t) :=X�;� �P��1Yi=0 (Y + Y � (j�j+ j�j) + t� i) � (Y + t)P � � s��! r��! � qY �(j�j+j�j);so that (7) 
an be written asX� Y ��Yi=0(Y + i) � IX� � qY �� =X� P (Y � �) � IY� � qY �� : (8)Lemma 1.12. The power series P (t) of de�nition 1.11 satis�es the di�erentialequation d2dt2 lnP = 0. In parti
ular, if P (t) = P0 + P1 � t + � � � is the Taylorexpansion of P then P (t) = P0 exp(P1P0 t).Proof. This 
an be 
he
ked dire
tly from the de�nition of P (t). The statement doesnot depend on the spe
ial values of r� and s� ; it is equally true if the r� and s� are
onsidered to be formal variables. We give a proof of the statement in appendix A(apply lemma A.1 with the 
olle
tion of variables xi being the union of the r� ands�, z = 0, and t repla
ed by t+ Y ).Corollary 1.13 (Mirror formula). If we formally set ~q = q � exp P1P0 with P0 andP1 as in lemma 1.12, thenX� Y ��Yi=0(Y + i) � IX� � qY �� = P0 �X� IY� � ~qY ��;i.e. the generating fun
tion P� IY� � qY �� of the 1-point Gromov-Witten invariantsof Y 
an be obtained from the \na��ve" expression P�QY ��i=0 (Y + i) � IX� � qY �� by aformal 
hange of variables (q ! ~q) and a s
aling fa
tor (�P0).Proof. Immediately from (8) and lemma 1.12.Remark 1.14. In the above 
omputations we assumed that the 
lass of Y generatesH2(X) over Q. In fa
t, this is not essential. All that happens for higher dimensionof H2(X) is that the notation be
omes more 
ompli
ated at some steps of the
al
ulation. Most importantly, in remark 1.7 there are now more fa
tors that 
ano

ur in the k-produ
t of (2). Namely, instead of the r� we now haveri;� = (Y � � �KY � �) � I�;(Y ���KY ��)(
_i );for i = 1; : : : ; dimH2(X)
Q, where the 
i form a basis of H2(X)
Q, 
hosen su
hthat 
1 = Y . Correspondingly, lemma 1.8 be
omesJ�;(m) =X�;�iYi �
i + 
i � �(0)�P �i � s��! �Yi ri�i�i! � IY�(0)where the �i are multi-indi
es. In the alternative multipli
ity 
ondition of remark1.9, the number � will now depend on � (it is 1 if KY � � = 0 and 0 if KY � � > 0).Hen
e the multipli
ity 
ondition is now m = Y � � � ��, where � is a multi-indexwith entries 0 and 1. Finally, we need a formal variable qi for ea
h 
i to repla
e



12 ANDREAS GATHMANNthe expression qY �� by q� :=Qi q
i��i . De�nition 1.11 then be
omesP (ftig) :=X�;�i ���1Yj=0 (Y + Y � (j�j+Xi j�ij) + t1 � j) �Yi (
i + ti)P �i� s��! �Yi ri�i�i! � qj�j+Pi j�ij;with whi
h we obtain the equation (
ompare to (8))X� Y ��Yi=0(Y + i) � IX� � q� =X� P (f
i � �g) � IY� � q� : (9)The same proof as for lemma 1.12 works to show that �ti�tj lnP = 0 for all i; j,so it follows that P (t) = P0 exp(PPitiP0 ), where P (ftig) = P0 +Pi Pi � ti + � � � isthe linear expansion of P . Hen
e the mirror formula of 
orollary 1.13 holds in thesame way X� Y ��Yi=0(Y + i) � IX� � q� = P0 �X� IY� � ~q�;where ~qi = qi � exp PiP0 . 2. ExamplesExample 2.1 (Appli
ation to the quinti
 threefold). Let X = P4, and let Y � Xbe a smooth quinti
 hypersurfa
e, so that Y = 5H 2 H�(X), where H is the 
lassof a hyperplane. We are interested in the genus zero Gromov-Witten invariants ofY , i.e. in the numbers nd = 1dIYd (H) (note that H has d points of interse
tion witha degree-d 
urve). As this is the H3-
oeÆ
ient of IYd (up to a s
aling fa
tor), we
onsider the equation (8) modulo H4. (This dis
ards the invariants IYd ( ).)Sin
e the only Gromov-Witten invariants of Y are IYd (H) (and IYd ( )), thepolynomials IYd have no H0, H1, and H2 terms for d > 0. Hen
e as it is well-known that IXd = dYi=1 1(H + i)5 ;(see e.g. [P℄ se
tion 1.4) it follows from (8) thatXd�0 5H � Q5di=1(5H + i)Qdi=1(H + i)5 q5d = 5H P0 (mod H3):This is suÆ
ient to re
onstru
t P : if we expandXd�0 Q5di=1(5H + i)Qdi=1(H + i)5 q5d =: F0 + F1H + F2H2 + � � � (10)then P jt=H=0 = F0 and �HP jt=H=0 = F1. So as P is a fun
tion of t + 5H andsatis�es �2t lnP = 0, it follows that �tP jt=H=0 = 15 F1, and hen
eP = F0 � exp�� t5 +H� � F1F0� :



RELATIVE GROMOV-WITTEN INVARIANTS AND THE MIRROR FORMULA 13In parti
ular, P0 = F0 � exp�H F1F0�= F0 +H F1 + H22 F 21F0 + � � � :So by 
omparing the H3-
oeÆ
ient of (8) we getF2 = 12 F 21F0 + 15Xd>0 dndq5dF0 exp�d F1F0� :Together with (10), this equation determines the nd re
ursively and gives the well-known numbers n1 = 2875, n2 = 609250+ 28758 , : : : .Example 2.2 (Appli
ation to plane ellipti
 
urves). Wewant to 
ompute the (vir-tual) numbers of rational plane 
urves of degree d having multipli
ity 3d to a smoothellipti
 plane 
ubi
, i.e. the relative Gromov-Witten invariants Id;(3d)(1) = 3d rd inthe 
ase where X = P2 and Y is a smooth ellipti
 
ubi
. A

ording to [T℄ remark1.11 these numbers are related to the lo
al mirror symmetry of [CKYZ℄.The 
omputation of the numbers rd is very similar (yet not identi
al) to that ofthe Gromov-Witten invariants of Y in se
tion 1. This time we apply lemma 1.2re
ursively only up to multipli
ity 3d instead of 3d+ 1, so we get3d�1Yi=0 (3H + i) IXd = Id;(3d) + 3d�1Xm=0 3d�1Yi=m+1(3H + i) Jd;(m):Note that IYd = 0 for d > 0, as there are no rational 
urves in Y . So if we insertthe expression for Jd;(m) of lemma 1.8, we get in the same way as in remark 1.10Xd>0 3d�1Yi=0 (3H + i) IXd q3d =Xd>0 3H2d rdq3d+X�;� 3d�1Yi=3d�P�+1(3H + i) (3H)P � � s��! r��! � 3H q3d(11)where we already inserted the expression m = 3d �P� for Calabi-Yau hyper-surfa
es (see remark 1.9). Here, in the se
ond line we set d = j�j + j�j, and weobviously only sum over those � with P� � 1.Similar to de�nition 1.11 let us setQ(t) :=X� P��1Yi=1 (3H � j�j+ t� i) s��! q3H�j�j t;where the sum is now taken over all � | not only those with P� � 1. The � = 0term 
ontributes a 1 (together with the fa
tor t). The de�nition of Q(t) is so thatQ(3H)� 1 yields exa
tly the � = 0 terms in the se
ond line of (11).Similarly to lemma 1.12 the power series Q(t) satis�es a di�erential equation:by lemma A.2 lnQ(t) is linear in t, i.e. Q(t) = exp(
 � t). To 
ompute 
, we expand



14 ANDREAS GATHMANNas in example 2.1 the left hand side of (11)Xd>0 3H � Q3d�1i=1 (3H + i)Qdi=1(H + i)3 q3d =: F1H + F2H2 + � � �(in [T℄ F1(q3) is 
alled I(0)2 (z), and F2(q3) is 
alled I(0)3 (z)). As the t-expansion ofQ(t) is Q(t) = 1 + 
t+ 12
2t2 + � � � ;
omparison of the H1 terms in (11) gives F1 = (the H1 term of Q(3H)) = 3
; soQ(t) = exp(F1�t3 ).Now 
ompare the H2 term in (11). Note that we must haveP � � 1 be
ause ofthe fa
tor (3H)P �+1. The � = 0 term is exa
tly the se
ond 
oeÆ
ient of Q(3H)as remarked above, i.e. 12 F 21 . The terms with P � = 1 
an be written as a sumover d, where d is the index of the one non-zero entry of �. The 
ontribution fora given d is exa
tly 9rdq3d Q(3d)3d = 3drdq3d exp(dF1), with the � = 0 term in Q(3d)
oming from the right hand side of the �rst line of (11). Thus we get the equationF2 = 12 F 21 +Xd>0 3d rd q3d exp(dF1);whi
h determines the numbers 3drd = Id;(3d)(1). The �rst few numbers are given inthe following table.d 1 2 3 4 5 6 7 8Id;(3d)(1) 9 1354 244 3699916 63563425 307095 19391917549 342249075964This equation is equivalent to the 
onje
ture of remark 1.11 in [T℄. Together with[T℄ theorem 2.1 it proves that Id;(3d) = (�1)d3dKd, where Kd is the top Chern
lass of the rank-(3d�1) bundle on �M0(P2; d) with �ber H1(C; f�KP2) at the point(C; f) 2 �M0(P2; d). At the moment we do not know of a geometri
 proof of thisstatement. Appendix A. Proof of the main te
hni
al lemmasIn this appendix we show that the power series P (t) and Q(t) of de�nition 1.11and example 2.2 satisfy 
ertain di�erential equations.Lemma A.1. Let xi be a 
olle
tion of variables (possibly in�nite), and let ai; bi 2N, 
i 2 C . De�ne P (t; z) =Xk xkk! tak bk�1Yi=0 (
k + z + t� i);where k is a multi-index, and where we used the usual multi-index notations ak =Pi aiki, xk = Qi xkii , k! = Qi ki!. Assume that, for every i, the pair (ai; bi) is(0; 0), (1; 0), or (0; 1). Then�2t lnP = �2z lnP = �t�z lnP = 0:Proof. Step 1. We 
onsider the 
i to be formal variables and show by indu
tion onn that for every i and every n � 0if �2t lnP j
i=0 = �2z lnP j
i=0 = �t�z lnP j
i=0 = 0then �n
i�2t lnP j
i=0 = �n
i�2z lnP j
i=0 = �n
i�t�z lnP j
i=0 = 0:



RELATIVE GROMOV-WITTEN INVARIANTS AND THE MIRROR FORMULA 15So assume that�j
i�2t lnP j
i=0 = �j
i�2z lnP j
i=0 = �j
i�t�z lnP j
i=0 = 0for j � n. Note that by de�nition of P we have �
iP = xi�xi�zP . Let �1 and �2denote either �t or �z. Then it follows that (everything in the following 
al
ulationis evaluated at 
i = 0):�n+1
i �1�2 lnP = �n
i�1�2 �
iPP= xi�n
i�1�2 �xi�zPP= xi�n
i�1�2��xi �zPP � �zP � �xi 1P �= xi�n
i�1�2��xi �zPP + �zPP � �xiPP �= xi�xi�z �n
i�1�2 lnP| {z }=0 +xi�n
i�1�2(�z lnP � �xi lnP )= xi�n
i(�1�2�z lnP � �xi lnP + �1�z lnP � �2�xi lnP+ �2�z lnP � �1�xi lnP + �z lnP � �1�2�xi lnP )= 0(for the last step note that every summand has a fa
tor that 
ontains a �2t lnP ,�2z lnP , or �t�z lnP that gets at most n �
i 's, so it vanishes by the indu
tionassumption).Step 2. By step 1 it suÆ
es to prove the lemma in the 
ase 
 = 0. Note thatthen P be
omes a produ
t of two terms of the formR =Xk xkk! tak and S =Xk xkk! bk�1Yi=0 (z + t� i)where the �rst term 
ontains all the xi with (ai; bi) = (0; 0) or (ai; bi) = (1; 0), andthe se
ond term all the xi with (ai; bi) = (0; 1). Obviously, it suÆ
es to prove thelemma for R and S separately. ButR =Xk Yi (xitai )kiki! = exp�Xi xitai�and S =Xk xkk! �z + tP k� (X k)! = �1 +Xi xi�z+t;and in both 
ases it is obvious that the lemma holds.Lemma A.2. Let xi be a 
olle
tion of variables (possibly in�nite), and let 
i 2 C .De�ne Q(t) =Xk xkk! t P k�1Yi=1 (
k + t� i)in multi-index notation, where k is a multi-index. Then lnQ(t) is linear in t, i.e.(t�t � 1) lnQ = 0:



16 ANDREAS GATHMANNProof. The proof is very similar to that of lemma A.1.Step 1. We 
onsider the 
i to be formal variables and show by indu
tion on nthat for every i and every n � 0if (t�t � 1) lnQj
i=0 = 0 then �n
i(t�t � 1) lnQj
i=0 = 0:So assume that �j
i(t�t � 1) lnQj
i=0 = 0 for j � n. By de�nition of Q we have�
iQ = xi�xi(�t� 1t )Q. Hen
e it follows that (everything in the following 
al
ulationis evaluated at 
i = 0):�n+1
i (t�t � 1) lnQ = �n
i(t�t � 1)xi�xi(�t � 1t )QQ= xi(t�t � 1)0BB��n
i ��t � 1t� �xi lnQ| {z }=0 +�n
i�t lnQ � �xi lnQ1CCA= xi�n
i (�t lnQ � �xi(t�t � 1) lnQ+ �t(t�t � 1) lnQ � �xi lnQ)= 0(for the last step note that every summand has a fa
tor that 
ontains a (t�t�1) lnQthat gets at most n �
i 's, so it vanishes by the indu
tion assumption).Step 2. By step 1 it suÆ
es to prove the lemma in the 
ase 
 = 0. But thenQ(t) =Xk xkk! P k�1Yi=0 (t� i) = �1 +Xi xi�t;whi
h obviously satis�es the statement of the lemma.Referen
es[B℄ A. Bertram, Another way to enumerate rational 
urves with torus a
tions, preprintmath.AG/9905159.[CKYZ℄ T. Chiang, A. Klemm, S. Yau, E. Zaslow, Lo
al mirror symmetry: 
al
ulations andinterpretations, preprint hep-th/9903053.[Ga℄ A. Gathmann, Absolute and relative Gromov-Witten invariants of very ample hypersur-fa
es, preprint math.AG/9908054.[Ge℄ E. Getzler, Topologi
al re
ursion relations in genus 2, in Integrable systems and algebrai
geometry (Kobe/Kyoto, 1997), 73{106, World S
i. Publishing, River Edge, NJ, 1998.[Gi℄ A. Givental, Equivariant Gromov-Witten invariants, Internat. Math. Res. Noti
es 13(1996), 613{663.[K℄ B. Kim, Quantum hyperplane se
tion prin
iple for 
on
avex de
omposable ve
tor bun-dles, J. Korean Math. So
. 37 (2000), no. 3, 455{461.[L℄ Y. Lee, Quantum Lefs
hetz hyperplane theorem, preprint math.AG/0003128.[LLY℄ B. Lian, K. Liu, S. Yau, Mirror prin
iple I, Asian J. of Math. 1 (1997), no. 4, 729{763.[P℄ R. Pandharipande, Rational 
urves on hypersurfa
es (after A. Givental), Ast�erisque 252(1998), Exp. No. 848, 5, 307{340.[T℄ N. Takahashi, Log mirror symmetry and lo
al mirror symmetry, preprint math.AG/0004179.Harvard University, Department of Mathemati
s, S
ien
e Center, 1 Oxford Street,Cambridge, MA 02138, USAE-mail address: andreas�math.harvard.edu


