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A main result of this thesis is a conceptual proof of the fact that the weighted number of tropical
curves of given degree and genus, which pass through the right number of general points in the plane
(resp., which pass through general points in R™ and represent a given point in the moduli space of genus
g curves) is independent of the choices of points. Another main result is a new correspondence theorem
between plane tropical cycles and plane elliptic algebraic curves.

Un principal résultat de la thése est une preuve conceptionnelle du fait que le nombre pondéré de
courbes tropicales de degré et genre donnés qui passent par le bon nombre de points en position générale
dans R? (resp., qui passent par le bon nombre de points en position générale dans R” et représentent un
point fixé dans I’espace de modules de courbes tropicales abstraites de genre ¢g) ne dépend pas du choix de
points. Un autre principal résultat est un nouveau théoréme de correspondance entre les cycles tropicaux
plans et les courbes algébriques elliptiques planes.
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Preface

Tropical geometry

Tropical geometry is a relatively new mathematical domaine roots of tropical geometry
go back to the seventies (sée [Be] and [BG]), but only tens/ago it became a subject on
its own. Tropical geometry has applications in several tinas of mathematics such as enu-
merative geometry (e.g._[IKS],.IM1]), symplectic geometeyg. [A]), number theory (e.g.
[G]) and combinatorics (e.g.l[J]). A powerful tool in enuragve geometry are the so-called
correspondence theorems. These theorems establish artamtpmorrespondence between
complex algebraic curves satisfying certain constraintsteopical analogs of these curves.
One of the first results concerning correspondence theonemsachieved by G. Mikhalkin
(seel[M1]). This theorem was proved again in slightly dgferform in [N], [NS], [Sh], [ST],
[[[]. These results initiated the study of enumerative peotd in tropical geometry (see for
example [[GML], IGM2], IGM3]). Dealing with counting probigs, it is naturally to work
with moduli spaces. The first step in this direction was thestmuction of the moduli spaces
of rational curves given ir_[M2] and [GKM]. I JGKM] the auth® developed some tools
to deal with enumerative problems for rational curves, gisie notion of tropical fan. They
introduced morphisms between tropical fans and showeduhder certain conditions, the
weighted number of preimages of a point in the target of sucloghism does not depend
on the chosen point. After showing that the moduli spacesidmal tropical curves have
the structure of a tropical fan, they used this result to toatonal curves passing through
given points.

Results

In the first part of this thesis we follow the approachlof IGKad introduce similar tools for
enumerative problems concerning curves of positive genube second part we establish a
new correspondence theorem. The main results of this thesiss follows.

e We develop the definitions of (tropical) orbit spaces andpftal) local orbit spaces
which are counterparts of a stack in algebraic geometry.

e We introduce morphisms between (tropical) orbit spaces (&mgbical) local orbit
spaces.
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e For tropical (local) orbit spaces we show that the weighteahiper of preimages of a
point in the target of such a morphism does not depend on th&echpoint.

e We equip the moduli spaces of tropical curves with the stmecof a tropical local
orbit space.

e For the special case of moduli spaces of elliptic tropicalzes we equip the moduli
spaces as well with the structure of a tropical orbit space.

e Using our results on tropical local orbit spaces, we give aesnconceptual proof than
the authors of( [KM] of the fact that the weighted number ofn@dropical curves of
a given degree and genus which pass through the right nunfilmirds in general
position inR? is independent of the choice of a configuration of points.

¢ In the same way we prove that the weighted number of tropiaales of given degree
and genus iR" which pass through the right number of point®RHhand which repre-
sent a fixed point in the moduli space of abstract gertuspical curves is independent
of the choice of a configuration of points in general position

¢ In the case of plane elliptic tropical curves of degilese prove the independence of
the choice of a configuration of points and the choice of a twech is thej-invariant
in this case) as well by using our results on tropical orbacgs.

e We prove a correspondence between plane tropical cycledlifaic curves with big
j-invariant satisfying point constraints) and elliptic pdaalgebraic curves (satisfying
corresponding constraints).

The chapterfl1 arid 2 recall definitions and do not contain esults. The chaptef$[3,[4,[5, 6
and[T are based on[H]. New results in chapler 8 are propnfii4, theoreri 8.5 and the
conjecturé_8.50.

Motivation

A relationship between tropical geometry and complex gegmeas conjectured in 2000
by M. Kontsevich and was made precise by the so-called quoretence theorem by G.
Mikhalkin in [M1]. In the cases where such a connection isleshed, it suffices to count
tropical curves to get the number of corresponding algebohjects. Therefore tropical
geometry became a powerful tool for enumerative geomeirglgebraic geometry one uses
moduli spaces in enumerative problems. Because of the omedtirelation, it would be
reasonable to construct moduli spaces in tropical geonastryell. For the construction of
moduli spaces in algebraic geometry one needs, in many,diaserotion of a stack. Put
simply, a stack is the quotient of a scheme by a group actionthis thesis we want to
make an attempt for the definition of a “tropical stack”. Sntis a first approach, we call
these objects tropical (local) orbit spaces (instead dihgaihem stacks). The definition of a
tropical orbit space avoids many technical problems. Tioeget is a useful definition to get
a first impression on the problems one wants to handle withopfittal stack”. Nevertheless
it seems to be not general enough for the problems we wantaiondtdh. Furthermore the
price we have to pay for the simplicity is loosing finitene@&ecause of this, we give the
definition of a tropical local orbit space which is more teicahbut more appropriate for our

Vi
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purposes. To show the usefulness of our definition, we edpgiprtoduli spaces of tropical

curves with the structure of a tropical local orbit space aselthis structure to show that the
weighted number of tropical curves through given pointssdo& depend on the position of
points.

As mentioned above, one motivation for tropical geometeythe correspondence theorems.
Therefore, it is of great interest to enlarge the number eésavhere a correspondence is
established. The hope is to understand better the algediypacts and to get a more efficient
way to count them (see for example Mikhalkin’s lattice pdtoathm in [M1]). Our goal is

to enlarge the correspondence theorem to the case of elipti-Archimedean curves with
a j-invariant of sufficiently big valuation.

Chapter synopsis

This thesis contains eight chapters, which can be dividiedaur parts. Chaptels 1 ahH 2 are
essential for the first seven chapters. Chajlidis 3, flandBddgether as well as chapters
and¥. Chaptdi 8 can be read separately.

e Chapter 1: [Polyhedral complexep
We start the chapter by defining general cones, which areenguty subsets of a finite-
dimensionalR-vector space and are described by finitely many linear rateggual-
ities, inequalities and strict inequalities. A union of $kecones, which satisfy some
properties, is ajeneral fan We equip each top-dimensional cone in the fan with a
number inQ calledweight If these weights together with the cones fulfill a certain
condition (the balancing condition) we call the fageneral tropical fan These ob-
jects are the local building blocks of tropical varietiesgarticular each tropical curve
is locally a one-dimensional fan). After this, we defingemeral polyhedroypwhich is
a non-empty subset of a finite-dimensioRal/ector space and is described by finitely
many affine linear integral equalities, inequalities anttstnequalities. Polyhedral
complexesre certain unions of general polyhedra (locally a polyaectsmplex looks
like a fan thus, we can define weights for the top-dimensionaks and consider the
balancing condition). We end the chapter by defining momhkibetween polyhedral
complexes.

e Chapter 2: [Moduli space$

In this chapter we define moduli spaces of tropical curves.tlkie we give a defini-
tion of n-marked abstract tropical curves and parameterized ldletearked tropical
curves. As in algebraic geometry we can define the genus ofve.c&n n-marked
abstract tropical curveof genusg is a connected graph with first Betti number equal
to g andn labeled edges connected to exactly one one-valent verixg@wsider the
curves up to isomorphism) such that the graph without oheatvaertices has a com-
plete metric. Each edge connecting two vertices of valemeatgr than one has a
length defined by the metric. Thus asmarked abstract tropical curve can be en-
coded by these lengths, which give as well a polyhedral stra¢o the moduli spaces
of n-marked abstract tropical curves. After doing this we cdesthe special case

Vil
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of genus one. The underlying graph of ammarked abstract tropical curve of genus
one contains exactly one simple cycle and we call its letmgibical j-invariant. Pa-
rameterized labeled-marked tropical curvesre n-marked abstract tropical curves
together with a map from the graph without one-valent vegito someR” fulfilling
some conditions.

e Chapter 3: [Local orbit space$
In the first section we introduce tropical local orbit spacéscal orbit spacesare
finite polyhedral complexes in which we identify certain yfeédra with each other.
These identifications are done with the help of isomorphibata/een subsets of the
polyhedral complexes. For technical reasons the set ofagamsms has to fulfill
some properties. If the polyhedral complex was equippel wéights which are the
same for identified polyhedra, we can equip the local ortatspvith weights as well.
The word tropical refers again to a balancing condition \whigce local orbit space
with weights has to fulfill. After showing that the balanciogndition of the local orbit
space and of the underlying polyhedral complex are equivale start the second
section by defining morphisms between tropical orbit spaddsgese morphisms are
defined to be morphisms of the underlying polyhedral conggexhich respect the
properties of the set of isomorphisms (the properties whiehhave because of the
technical reasons). The morphisms allow us to define the enadig tropical local
orbit space. Under some conditions on the image we can phatehlie number of
preimages of a general point in the target space (countddagitain multiplicities)
is independent of the chosen point (corollary 8.41). Aftmds, we define rational
functions on tropical local orbit spaces and the correspandivisors.

e Chapter 4: [One-dimensional Tocal orbit spacds
For a better understanding of the local orbit spaces defimetiaptef B3 we study the
one-dimensional case more explicitly. The main result of thapter is a theorem
concerning the local structure of a local orbit space. Is tiapter we treat as well
non-Hausdorff local orbit spaces in the one-dimensionsé aghich we avoid in the
other chapters (the non-Hausdorffness).

e Chapter 5: [Moduli spaces for curves of arbitrary genu$
In the first section we equip the moduli spaceswaharked abstract tropical curves
of genusg and exactlyn one-valent vertices such that the underlying graph has no
two-valent vertices with the structure of local orbit spa&e mentioned above we can
equip the moduli spaces with a polyhedral structure. Thestiyithg graph (forgetting
the metric) of twon-marked abstract tropical curves might be different. Theoen
ing of the curve by the lengths of the bounded edges does wetaguseful global
description, since the cones encoding all curves with tineesanderlying graph are
spanned by unit vectors (one vector for each edge). Therefe do not get a tropical
structure with this description. Thus, instead of the lesgif the bounded edges we
take the distances between thanarkings. To get a global description of a moduli
space it seems reasonable to take these distances. Thiwadeased fomn-marked
abstract rational tropical curves in [GKM]. Unfortunatellge distance between two
markings for curves of higher genus is not well-defined; beeaof the cycles, there
iS no unique path from one point to the other. To get rid of grsblem, we cut each

viii
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cycle at one point such that the curve stays connected ard m$iew marked edge
at each endpoint of the cut. Now, all distances between mgslare well-defined (we
are in a case similar to the case of rational curves). Sincenage non-canonical
choices, we take all possibilities for such a cut and we gebfithe choices by an
identification of cones. Thus, we end up with a tropical lawdlit space which turns
out to be homeomorphic to the moduli space. In seiare construct moduli spaces
of parameterized labeledmarked tropical curves of genysn R”. A parameterized
tropical curve is an abstract tropical curve with a mafRtowhere the map satisfies
certain properties (in particular it is affine on each edd@#ing moduli spaces of ab-
stract curves we only need to encode the map. We considercames with fixed
directions of the marked edges and therefore it is enoughdode the position of one
fixed point to have all information needed for a map (the dioes of the edges are
fixed and the distances of two points are already encodes ttieumap is fixed by the
position of one point). In our construction of the moduli spsof abstract curves we
made a cut on each cycle and inserted two new edges. To makthatithe images of
the cut cycles are cycles again we use rational functionthédefinition of the moduli
spaces we are interested in. In the last section we intratthgéceondition that a curve
passes through given points and the condition that a cupresent a fixed point in the
moduli space 06-marked abstract tropical curves of gegudJsing the structure of a
local orbit space we show that the number of parameterizezlddrn-marked tropical
curves of given genus and given direction of marked endstedunith the multiplic-
ity defined by corollary_3.41 fulfilling the mentioned condiis does not depend on a
general choice of a configuration of points.

Chapter 6;

This chapter is relatively similar to chapfdr 3. In the firsttson we define tropical

orbit spaces and in the second section we define morphisme®ethese objects. As
for tropical local orbit spaces we define tropical orbit gmto be polyhedral com-
plexes in which we identify polyhedra by using isomorphisfike difference in this

construction is that we weaken the conditions on the polsdiembmplex and tighten

the condition on the set of isomorphisms. This time we allogpolyhedral complex
to be infinite but we ask the set of isomorphisms to be a groumceShe conditions

of the set of isomorphisms in chaplér 3 are technical busfeedi if the set is a group,
we can simplify some problems. Unfortunately, the price aeehto pay for this is an

infinite polyhedral complex. This is due to the fact that ituMbbe too restrictive for

our problems to consider only finite groups. Because of tindasiities we can develop
the same theory for orbit spaces as for local orbit spaces.

Chapter 7: [Moduli spaces of ellipiic fropical curve$

In the first section we equip the moduli spaceswaharked abstract tropical curves
of genusl and exactlyn one-valent vertices such that the underlying graph has no
two-valent vertices with the structure of local orbit spaés in chapteflb we cut the
cycle of the genus-one curve. Since this case is a specelofahaptefls5 most of the
calculations are similar to those in that chapter but eadrethe second section we
build moduli spaces of parameterized labeletharked elliptic tropical curves iR"
using rational functions. We end the section with a calooedf weights in the case

r = 2. In this case M. Kerber and H. Markwig have already constaithe moduli
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spaces as weighted polyhedral complex ]KM]. It turns out tha weights defined by
our construction are the same except for the case when thgeiofahe cycle of the
curve is zero-dimensional. If the cycle is zero-dimensioua weights differ from the
weights of M. Kerber and H. Markwig bj In particular, it follows that the moduli
spaces we constructed are reducible. In the third sectitm®thapter we show that
the number of plane elliptic tropical curves of degrewith fixed j-invariant which
pass through a given configuration of points does not deparal general choice of
the configuration.

e Chapter 8: [Correspondence theorems
Since we want to prove a correspondence theorem we recadl somespondence the-
orems in the first section. Especially theorem B.30 by |. Tkimmwhich is the first
one stating a correspondence for elliptic curves with gij4mvariant, is related to our
work. For a correspondence theorem, the multiplicity obaittal curve is the number
of algebraic curves corresponding to it. By recalling soroeespondence theorems,
we observe that the multiplicity of a curve depends in paléicon the problem. We
end the section by proving a statement which expresses thiplciies of theorem
in a tropical way. These multiplicities agree with thaegfined by M. Kerber and
H. Markwig (resp., calculated in the thesis). In the secartisn we prove a corre-
spondence between elliptic non-Archimedean curves whaske la givenj-invariant
with big valuation and tropical cycles which are the imageparameterized elliptic
tropical curves with big tropicaj-invariant. The multiplicities we are using for this
are those defined by M. Kerber and H. Markwig. Since |. Tyomidas the same mul-
tiplicities we conjecture that the multiplicities of M. Kegr and H. Markwig are the
right ones in each case.

Keywords

Tropical geometry, tropical curves, enumerative geomaetrgtric graphs, moduli spaces,
elliptic curves,j-invariant.
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Introduction en francais

Géom étrie tropicale

La géomeétrie tropicale est un domaine relativement nauves mathématiques. Ses débuts
remontent aux années soixante-dix (voirl[Be] et [BG]), sriby a seulement dix ans qu’elle
est devenue un sujet a part entiere. La géométrie g des applications dans plusieurs
branches des mathématiques comme la géométrie éativag(cf. [IKS], [M1]), la géome-
trie symplectique (voir, par exemplel[A]), la théorie desnbres (voir, par exempl2[G]) et la
combinatoire (cf.[[J]). Les theoremes de correspondanoéun outil puissant en géomeétrie
enumeérative. Ces théoremes établissent une comdapoe importante entre les courbes
algébriques complexes qui satisfont certaines congsiat leurs analogues tropicaux. Un
des premiers résultats concernant les théoremes despomdance est du a G. Mikhalkin
(voir [M1]). Ce théoreme a été redémontré dans unmélegerement differente dans [N]
[NS], [SH], [ST], [T]). Ces résultats sont a I'origine détude de problemes en géométrie
tropicale énumérative (voir par exemple [GM1], [GM2],M3]). Face a des problemes
de dénombrement, il est naturel de travailler avec descespae modules. La premiere
étape dans cette direction a été la construction desespke modules de courbes tropicales
rationnelles proposée daris [M2] et [GKM]. Dams [GKM], legteurs utilisent la notion
d’'un éventail tropical pour développer des outils quirpettent d’étudier des problemes
énumeératifs concernant des courbes rationnelles. ttedoisent des morphismes entre
éventails tropicaux et montrent le fait suivant : sousaiggs conditions, le nombre pondéré
d’antécédents d’'un point, pour un tel morphisme, ne dépes du point choisi a I'arrivée.
Apres avoir montré que les espaces de modules de coudggsalies rationnelles ont la
structure d’un éventail tropical, les auteurs de [GKM]isént ce résultat pour dénombrer
les courbes rationnelles passant par des points donnés.

Résultats

Dans la premiere partie de cette these, nous suivonsrbapp de[[GKM] et introduisons
des outils similaires pour aborder des problemes énatifieconcernant les courbes de genre
strictement positif. Dans la deuxieme partie, nous &abhs un nouveau théoreme de cor-
respondance. Les principaux résultats de la these soatileants.

Xiii
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e Nous proposons des définitions d’espaces d’orbites (tanp) et d’espaces d’orbites
locaux (tropicaux) (une tentative de définition d'uohamp tropicat).

e Nous introduisons des morphismes entre espaces d’orbibescaux) et espaces d’or-
bites locaux (tropicaux).

e Pour un morphisme d’espaces d’orbites (locaux) tropicaoMs montrons que le nom-
bre d’antécédents d’'un point dans I'image, comptés s poids, ne dépend pas du
point choisi.

e Nous équipons les espaces de modules de courbes troplaatesstructure d’espace
d’orbites local tropical.

e Dans le cas particulier des espaces de modules de courpestes elliptiques, nous
equipons aussi les espaces de modules d’une structupadéaed’orbites tropical.

e En utilisant nos résultats sur les espaces d’orbites lotrapicaux, nous donnons une
preuve plus conceptuelle que les auteurd_del[KM] du faitesivLe nombre pondéré
de courbes tropicales planes de degré et genre donnéssgerg par le bon nombre
de points en position générale ddisest independant du choix de la configuration de
ces points.

e De la méme maniére, nous montrons que le nombre pon@étéutbes tropicales de
degré et genre donnés daRs qui passent par le bon nombre de points en position
générale danR" et ayant un type général fixé dans I'espace de modules utbes
tropicales abstraites de genjeest indépendant du choix de la configuration de ces
points ainsi que du type.

e Dans le cas de courbes tropicales elliptiques planes dé degous prouvons que le
nombre pondéré de ces courbes qui passent par le bon noalp@ints en position
générale et ayant ujrinvariant fixé est indépendant du choix d’une configumaties
points et du choix dy-invariant, et ce, a nouveau, a l'aide de nos résultatdesu
espaces d’orbites tropicaux.

e Nous montrons une correspondance entre les courbes tiepaliptiques planes de
degréd ayant un grog-invariant;j (qui satisfont des contraintes données par des points)
et les courbes non archimédiennes elliptiques planes gi& deayant unj-invariant
fixé de valuatiory (satisfaisant les contraintes correspondantes).

Les chapitreBl1 & 2 sont un rappel des définitions et necoomnt pas de nouveaux résultats.
Les chapitreEI] 4] &] 6 &t 7 sont basés/sur [H]. Les nouvésuitats dans le chapilte 8 sont
la propositiod.8.34, le theorerhe 8145 et la conjediurd.8.5

Motivation

Les connexions avec la géométrie algébrique énumérfurnissent une motivation impor-
tante pour le développement de la géomeétrie tropicate fdlation entre la géomeétrie tropi-
cale et lagéométrie complexe, conjecturée en 2000 p&ioMisevich, a été précisée grace au
théoreme de correspondance de G. Mikhalkin dans [M1]siAdans chaque cas ou une telle
connexion est établie, il suffit de denombrer les courbmstales pour connaitre le nombre
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d’objets algébriques correspondants. Par conséquegédmeétrie tropicale devient un puis-
sant outil pour la géométrie Enumérative. En géomé&tigébrique, on utilise les espaces de
modules pour effectuer un denombremédttant donné la relation conjecturée par M. Kont-
sevich, il serait raisonnable de construire des espace®dales en géométrie tropicale. En
géomeétrie algébrique, on a besoin, dans de nombreuxieda,notion de champ pour con-
struire des espaces de modules. Dit simplement, un chanhg ggotient d’'un schéma par
une action de groupe. Dans cette these, nous voulons fagr¢éentative de définition d’'un
<champ tropicat. Puisque cette définition n’est qu’'une premiere approcbes appellerons
ces objets des espaces d'orbites (locaux) tropicaux (awbdes appeler des champs tropi-
caux). La définition d’'un espace d’orbites tropical e&deenombreux problémes techniques.
Elle est donc utile pour se donner une premiere idée dddepres que I'on voudrait traiter
avec un<champ tropicat. Néanmoins, il semble que cette définition ne soit passsufft
ment générale pour les problemes que nous aimerionga@bdin outre, le prix a payer pour
la simplicité est la perte de la finitude. Par conséquesisrdonnons la définition d’espace
d’orbites local tropical qui est plus technique mais pluprapriée dans notre cas. Pour il-
lustrer I'utilité de la définition, nous équipons les asps de modules de courbes tropicales
de la structure d’espace d’orbites local tropical. Noubsatns celle-ci pour montrer que le
nombre de courbes tropicales qui passent par des poinssifexéépend pas de leurs posi-
tions.

Comme mentionné ci-dessus, une des motivations pourdm@gie tropicale provient de
théoremes de correspondances. C’est pourquoi on a ud gr&@rét a étendre les cas ou
une correspondance est établie. On a ainsi I'espoir dhibteme meilleure compréhension
d’objets algébrigues et un moyen plus efficace pour lesahmer (voir par exemple I'algo-
rithme de Mikhalkin dans [M1]). Notre objectif est d’élar¢e théoréme de correspondance
au cas des courbes non archimédiennes elliptiques doatdation duj-invariant est suff-
isamment grande.

Résum é des chapitres

Cette these contient huit chapitres qui peuvent étresés/en quatre parties. Les chapifdes 1
et[@ sont essentiels pour les sept premiers chapitres. lagstad B[U €fl5 forment un tout,
ainsi que les chapitré$ 6[8t 7. Le chaplire 8 peut étre largepent.

e Chapitre 1: Polyhedral complexek (complexes polyédraux). Nous commencons
ce chapitre par la définition générale de cbnes qui sestsdus-ensembles non vides
d’'un R-espace vectoriel de dimension finie décrits par un nombredfegalités et
d’inégalités larges ou strictes, linéaires a coeffitseentiers. Une union de ces cdnes
qui satisfait certaines propriétés est@wentail gréral. Nous équipons chaque cone
de dimension maximal dans I'éventail d'un nombre ratidrivaptisépoids Si ces
poids conjointement avec les cones remplissent une gertandition (la condition
d’équilibre) nous appelons cet éventail, @ventail tropical @réral. Une variété trop-
icale est localement décrite par de tels objets (en péigicchaque courbe tropicale
est localement un éventail de dimensign Ensuite, nous définissons Ipslyedres
gérérauxqui sont des sous-ensembles non vides dRuespace vectoriel de dimen-
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sion finie décrits par un nombre fini d’égalités et d’iaétgs larges ou strictes, affines
et a coefficients entiers. Lemplexes poBdrauxsont des réunions certaines de
polyedres (localement un complexe polyédral ressemhbleéventail. C’est pourquoi,
sous de bonnes conditions, nous pouvons lui associer dds)pdlous terminons le
chapitre par la définition de morphismes entre complexggegoaux.

e Chapitre 2: Moduli spaces$ (espaces de modules). Dans ce chapitre, nous définissons
les espaces de modules de courbes tropicales. Pour cetantrmaluisons la définition
de courbes tropicales abstraitesnarquées et de courbes tropicales paraméttées
marquées étiguetées. Comme en géomeétrie algébnimeecourbe tropicale possede
un genre. Une&ourbe tropicale abstraite-marqieede genrey est un couplel’, §)
ouT est un graphe connexe dont le premier nombre de Betti ebtiggat ayantn
arétes marquées chacune de ces arétes étant rekaetaraent un sommet de valence
1 (nous considérons les courbes a isomorphisme preshy¢eleqgraphe privé des ses
sommets de valencesoit muni de la métrique de longuedisoit complet. Chaque
aréte reliant deux sommets de valence strictement sipéral a une longueur définie
par la métrique. Ainsi, une courbe tropicale abstraitearquée peut étre codée par ces
longueurs, conférant ainsi une structure polyédralespace de modules de courbes
tropicales abstraites-marquées. Ensuite, nous considérons le cas particudisr
courbes de genre Le graphe sous-jacent d’'une courbe tropicale abstraitarquées
de genrel contient exactement un cycle simple nous appelons sa longtiavariant
tropical. Unecourbe tropicale param@tréen-marqleeétiqueéeest une courbe tropi-
cale abstraite-marquée équipée d’une application du graphe priveedesssmmets de
valencel dansR" satisfaisant de bonnes conditions.

e Chapitre 3: Local orbit spaces (espaces d’orbites locaux). Dans la premiére partie,
nous introduisons les espaces d’orbites locaux tropidagesespaces d’orbites locaux
sont des complexes polyédraux finis dans lesquels nousfidea certains polyedres.
Ces identifications sont données par des isomorphismesagg sous-ensembles des
complexes polyédraux. Pour des raisons techniques.efebke des isomorphismes
doit satisfaire certaines propriétés. Si le complexg/@dial est équipé de poids qui
coincident sur les polyedres identifies, I'espace dtesblocal hérite de la structure
de poids. Le mot tropical se réféere de nouveau a une dondiféquilibre que les
espaces d’orbites locaux conjointement avec les poidssdoremplir. Apres avoir
montré que la condition d’équilibre pour I'espace d'¢elsilocaux et celle pour les
complexes polyédraux sont équivalentes, nous commnmarigodeuxieme partie par la
définition de morphisme entre espaces d’orbites locayidanix. Ces morphismes
sont définis comme des morphismes entre les complexesgralyx sous-jacents qui
respectent les propriétés de 'ensemble des isomor@sigles propriétés nous avons
a cause des raisons techniques). lls nous permettentfithr dlBnage d’'un espace
d’orbites local tropical. Sous certaines conditions suimd&ge, on peut prouver que
le nombre d’antécédents d’un point général dans I'espanage (comptés avec mul-
tiplicites donnent par poids) est indépendant du poiatditaire[3.41). Enfin, nous
définissons les fonctions rationnelles sur les espacebités locaux tropicaux et les
diviseurs correspondants.
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e Chapitre 4: [One-dimensional local orbit spacds (espaces d’orbites locaux de di-
mensionl). Pour une meilleure compréhension de I'espace d’orbiesux défini au
chapitrd B, nous étudions plus précisément le cas derlardiionl. Le résultat princi-
pal de ce chapitre est un théoréme concernant la strucicate d’'un espace d’orbites
local. Dans ce chapitre, nous traitons aussi les espacdstd®locaux non-Hausdorff
dans le cas unidimensionnel, cas que nous laisserons eé&os’les autres chapitres
(d’&tre non-Hausdorff).

e Chapitre 5: Moduli spaces for curves of arbifrary genus (espace de modules de
courbes de genre quelconque). Dans la premiere parties, @guipons de la struc-
ture d’espaces d’orbites locaux I'espace de modules ddesuropicales abstraites
marquées de genreayant exactement sommets de valende telles que les graphes
sous-jacents a ces courbes n'aient pas de sommet bivamrhme mentionné ci-
dessus, nous pouvons munir celui-ci d’une structure moglé. Si I'on oublie la
métrique, les graphes sous-jacents de deux courbesdtepiabstraites-marquées
pouvant étre differents, I'encodage par les longueussatétes n’en donne pas une
description globale. Ainsi, au lieu considérer des longsel’arétes bornées, nous
prenons les distances entre tearétes marquées. Puisque chaque courbe est munie de
ces arétes, ce choix semble raisonnable. Cette idéeuwiketee pour les courbes trop-
icales abstraitea-marquées dans [GKM]. Malheureusement, la distance eletns
arétes marquées n’est pas bien définie pour les courbgsrie strictement positif.
Du fait de la présence de cycles, il 'y a pas unicité du dhamtre deux points. Pour
s’acquitter de ce probleme, nous coupons chaque cycle poiahtel, que la courbe
reste connexe et nous insérons une nouvelle aréte neegakacune des deux nou-
velles extrémités introduites. Ainsi, toutes les dise@mentre des arétes marquées sont
bien définiesEtant donné gue nous avons fait des choix non-canoniqoas,devons
nous en débarrasser, se qui revient a identifier des coAEsi, nous nous retrou-
vons avec un espace d'orbites local tropical homéomogpliespace de modules.
Dans la deuxieme partie, nous construisons un espace delesade courbes tropi-
cales paramétrées;marquées et étiquetées de gemr@uisque nous voulons utiliser
I'espace de modules de courbes abstraites, nous avons litsocoder une applica-
tion dansR”. Nous nous restreignons au seul cas ou la direction déssargarquées
est fixée. Il suffit donc de préciser la position d’un poixefpour avoir toutes les
informations nécessaires pour définir une applicaties (lirections des arétes sont
fixées et les distances entre des arétes marquées sawEdi@ies, donc I'application
est entierement déterminée par la position d’'un poD&ns notre construction des es-
paces de modules de courbes abstraites, nous avons faibupe dans chaque cycle
et inséré deux nouvelles arétes. Pour &tre slr quenagas des cycles coupés soient
de nouveau des cycles, nous utilisons des fonctions ral@sndans la définition des
espaces de modules. Dans la derniere partie, nous dengqgdera courbe passe
par des points donnés et qu’elle répresente un point fxBedpace de modules de
courbes tropicales abstraitéamarquées de genrg Grace a la structure d’espace
d’orbites local, nous montrons que le nombre (compté aveadltiplicité définie dans
le corollaire[3.41l) de courbes tropicales paramétrésmrquées et étiquetés de genre
donné, dont la direction des extrémités marquées esié@ln remplissant en outre les
conditions mentionnées, ne dépendent pas du choix d'angguration de points si
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celles-ci restent générales.

e Chapitre 6: (espaces d’orbites). Ce chapitre est relativement sirailai
au chapitrél3. Dans la premiére partie, nous définisseresieaces d’orbites tropicaux
et dans la deuxieme partie, les morphismes entre ces ofjeteme dans le chapitre
[3, les espaces d’orbites tropicaux sont des complexes@@yx dont nous identifions
certains polyedres a l'aide d’'isomorphismes. Toutefo@us relachons ici les condi-
tions sur le complexe polyédral et nous renforgons la tmmdsur I'ensemble des iso-
morphismes. Plus précisément, nous autorisons le complayédral étre infini, mais
demandons a I'ensemble des isomorphismes d’avoir unetsteude groupeEtant
donné que les conditions techniques sur I'ensemble desoigzhismes introduites au
chapitrdB sont satisfaites pour un groupe, nous pouvorgifiencertains problémes.
Malheureusement, le prix a payer est d’avoir un complexgéuaival infini. Cela est di
au fait qu’il serait trop restrictif dans notre contexte adeconsidérer que des groupes
finis. En raison des similitudes, nous pouvons développer les espaces d’orbites la
méme théorie que pour les espaces d’orbites locaux.

e Chapitre 7: Moduli spaces of elliptic fropical curves (espaces de modules de cour-
bes tropicales elliptiques). Dans la premiere partie neqisipons d’une structure
d’espace d’orbites local I'espace de modules de courbegcti@s abstraites-mar-
guées de genre ayant exactement sommets de valenceet telles que les graphes
sous-jacents n'aient pas de sommet bivalent. Comme dahapeties nous coupons
les cycles de chaque courbe. Puisque nous sommes dans wartoadipr du chapitre
B, la plupart des calculs sont similaires, mais plus facileans la deuxieme partie,
nous construisons un espace de modules de courbes tregpeatanétrées-marquées
et étiguetées dari®” a I'aide de fonctions rationnelles. Nous terminons cedii@ par
un calcul de poids dans le cas= 2. Dans ce cas, M. Kerber et H. Markwig ont déja
construit les espaces de modules comme des complexesdpaiyxéavec des poids
[KM]. Nous montrons que les poids définis dans notre corsitn sont les mémes,
excepté dans le cas ou I'image du cycle de la courbe estndendion nulle. Dans ce
cas, nos poids different de ceux de M. Kerber et H. Markwiq dE&n particulier, les
espaces de modules que nous avons construit sont regsctiddns la troisieme partie
de ce chapitre, nous montrons que le nombre de courbesdtepielliptiques planes
de degrél dont le j-invariant est fixé et qui passent par une configuration derde
points ne dépend pas du choix d’une configuration géeéral

e Chapitre 8: [Correspondence theorems (théoremes de correspondance). Puisque
nous voulons démontrer un théoreme de correspondaaus,rappelons dans la pre-
miere partie quelques-uns d’entre eux. Le théorEmd 8&0ontré par I. Tyomkin,
premier theoreme de correspondance pour les courbesalies dont lg-invariant est
donné, est particulierement lié a notre travail. Danghéoréme de correspondance,
la multiplicité d’une courbe tropicale est le nombre de rbms algébriques qui lui
correspondent. En rappelant quelques theéoremes, neesvolns que ces multiplicités
varient d’'un probleme a l'autre. Nous terminons cetteipagn montrant que I'on
peut exprimer les multiplicités du théoreine 8.30 de raniropicale. Ces poids sont
les mémes que ceux utilisés par M. Kerber et H. Markwigp(regue ceux que nous
avons calculés). Dans la deuxieme partie nous montromsaimespondance entre les
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courbes non archimédiennes elliptiques dont la valeui-shwariant est treés grande et
dont les cycles tropicaux sont les images d’'une courbedabpielliptique paramétrée
ayant un grand-invariant tropical. Pour cela, nous utilisons les muitipés de M.
Kerber et H. Markwig. Etant donné que I. Tyomkin utilise les mémes multipésit’
nous conjecturons que I'on peut utiliser ces multiplisi&ns chaque cas (par exemple
pas seulement pour ykinvariant tres grande).

Mots cl és

Géométrie tropicale, courbes tropicales, géometmigmérative, graphe métrique, espaces de
modules, courbes elliptiquegjnvariant.
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1 Polyhedral complexes

In this chapter we give the definitions of polyhedral compkand morphisms between them.
These objects are the building blocks for orbit spaces aral twbit spaces. In contrast to the
definitions given in tropical geometry so far, we take a maeeagal definition of polyhedra
and allow them to be open. The purpose of the definition is tarpaterize tropical curves
with genus greater than zero. Since we are interested insgeowrves we consider curves
with positive cycle lengths. Therefore some of the polyheasfrthe parameterizing space of
those curves need to be open. In this part we denote a finiggigrgted free abelian group
by A and the corresponding real vector space; R by V. So we can consideY as a lattice

in V. The dual lattice in the vector spate is denoted by\".

Definition 1.1 (General and closed coné) general cone in V' is a non-empty subset C
V' that can be described by finitely many linear integral edieali inequalities and strict
inequalities, i.e. a set of the form

0= {37 S V|f1(£C) =0,.. '7f7“(x> =0, fTJrl(x) 2>0,.. '7fr+s(x> >0,

fr+s+1('r)>07"'7fN(x>>0} (*)

for some linear formd, ..., fv € AY. We denote by/, the smallest linear subspacel6f

containings and byA,, the latticel, N A. We define thelimension of ¢ to be the dimension
of V,. We callo aclosed conéf it has a presentatiof) with no strict inequalities (i.e. if
N =r+5s).

Definition 1.2 (Face) A face (or subcong of o is a general cone C ¢ which can be
obtained fromr by changing some of the non-strict inequalitie$: to equalities.

Definition 1.3 (Fan and general fanA fan in V' is a finite setX of closed cones i such
that

(a) each face of a cone X is also a cone irX;
(b) the intersection of any two cones.is a face of each of them.

A general fanin V is a finite setX of general cones i’ satisfying the following prop-
erty: there exists a fai and a subseR C X such thatX = {7\ U| 7 € X}, where
U= U,cro. We put| X| = Usex 0. A (general) fan is calleghure-dimensionaif all
its inclusion-maximal cones are of the same dimension. ilvdase we call the highest di-
mensional conefacets The set ofn-dimensional cones of a (general) fanis denoted by
X,
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Construction1.4 (Normal vector) If () # 7, o are cones i/ andr is a face ofs such
thatdim7 = dimo — 1, then there is a non-zero linear fomme A", which is zero onr
and positive oro\7. Theng induces an isomorphisi, /V, = R. There exists a unique
generaton,,,. € A,/A;, lying in the same half-line as/V; and we call it the primitive
normal vectorof ¢ relative tor. In the following we writer < ¢ if 7 is a face ofs and
T < o If 7is a proper face of.

Definition 1.5 (General weighted and general tropical faA)general weighted fafX, wx)
in V is a pure-dimensional general fah of dimension: with a mapwy : X — Q. The
numbersux (o) are calledveightsof the general cones € X ™. By abuse of notation we
also writew for the map andX for the weighted fan.

A general tropical farin V' is a weighted far{ X, wx) fulfilling the balancing condition

D wx(0) Uy =0 €V/V;

o>T
for anyr ¢ X (dimX=1)

Definition 1.6 (Open fan) Let F be a general fan iR and0 € U C R"™ an open subset.
ThesetF' = FNU = {oc NUlo € F}is called amopen fanin R™. As in the case of fans,
puﬂF‘ =Uper o’

If F'is a general weighted fan, we cé&llaweighted open fan

Remarkl.7. Since0 € U andU is open,F is determined by

Definition 1.8 (General polyhedron)A general polyhedrors a non-empty set C R™ such
that there exists a rational polyhedrérand a unioru of faces ofé such thato = &\u.
(This definition is equivalent to saying that a general petion has the following form
{$ S Rn|f1(1‘) =Py fr(x) = DPr; fr+1(x) > Prity - fr+8(x) > Pr+s; fr—i—s—i—l(x) >
Dristi,-- -, [n(x) > py} for some linear formgy, ..., fy € Z" and numberg,, ..., py €
R.)

Definition 1.9 (General polyhedral precomplex) (general) polyhedral precomples a
topological spaceX | and a seX of subsets ofX | equipped with embeddings, : ¢ — R™
for all o € X such that
(a) every imager, (o), o € X is a general polyhedron, not contained in a proper affine
subspace aR",

(b) X is closed under taking intersections, ien ¢’ € X is a face ofo and ofo’ for any
0,0’ € X suchthab no’ # 0,

(c) for every paiw, o’ € X the compositionp, o' is integer affine-linear op, (cNa’),

d) |X| = U 0 (0, (0)°), wherep, (o)° denotes the interior gf, (o) in R"~,
ceX

We call the open set, (¢, (c)°) therelative interiorof o and denote it by ™.

Definition 1.10(General polyhedral complex}\ (general) polyhedral complég a (general)
polyhedral precomplexX, | X|, {¢,|c € X}) such that for every € X we are given an
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open fanF,, (denoted as well by'X to underline that it belongs to the compl&x) in some
R¥- and a homeomorphism

O, : 5, = U (U,)N — |Fa|
o'eX,0' Do
satisfying:

(a) forallo’ € X, 0’ O oonehasb,(c'NS,) € F, andd, is compatible with th&-linear
structure onv’, i.e. ®, o ¢! andy,, o ®, ! are integer affine linear op,. (o' N S,),
resp.®,(c’' NS,),

(b) forevery paiw, 7 € X, thereis an integer affine linear map , such that the following
diagram commutes:

Sy NS, — s ® (S, NS,).

~

[0} ~
"l Agr

®,(S,NS,)

For simplicity we usually drop the embeddings or the mapsp,, in the notation and denote
the polyhedral complexX, | X|, {¢,|c € X},{®.|7 € X}) by (X, |X]|,{¢,|lc € X}) or
by (X, |X|,{¢}, {®.|7 € X}) or by (X, |X]) or just by X if no confusion can occur. The
subsetss € X are called thegeneral polyhedraor faces of(X, |X|). The dimensionof
(X, | X]) is the maximum of the dimensions of its general polyhedracsg X, | X|) pure-
dimensionaif all its inclusion-maximal general polyhedra are of theneadimension. We
denote byX ™ the set of polyhedra itX, | X|) of dimensiom. Letr,o € X. Asin the case
of fans we writer < o (or7 < o) if 7 C o (or 7 C o, respectively). By abuse of notation
we identify o with ¢, (o).

A (general) polyhedral comple§X, | X|) of pure dimensiom together with a mapx :
X™ — Q is calledweighted polyhedral complesf dimensiomn, andwx (o) is called the
weightof the polyhedronr € X™, if all F, are weighted open fans and

o wx(0') =wp, (P,(c' N S,)) for everyo’ € (X)™ with o’ D o,

The empty complef is a weighted polyhedral complex of every dimension((X, |X]),
wy) is a weighted polyhedral complex of dimensierthen put

X* = {r € X|r C o for somer € X" withwx (o) #0},|X* = | J 7 C|X].

TEX*

Note that((X™, |X*|),wX|(X*)<n)) is again a weighted polyhedral complex of dimension
This complex is called thaon-zero parof ((X, | X|),wx). We call a weighted polyhedral
complex((X, |X|),wx) reducedf ((X,|X|),wx) = (X*,|X*|),wx+). Since all polyhedral
complexes considered are general we skip the word generalrfow on.

Examplel.11 Figure[1.1 represents a weighted polyhedral complex tegettih the maps
., and figurd LR represents the same complex together witm#éps®, and its weights
(we only label weights non-equal to one).
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o e o,/ o
--——e YA -~ -

Figure 1.1: A weighted polyhedral complex together withtiegs.p,, .
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Figure 1.2: A weighted polyhedral complex together with riegps®,, .

Definition 1.12 (Subcomplex and refinementlet (X, |X|, {¢,]c € X}) and (Y, |V,
{¢-|T € Y'}) be two polyhedral complexes. We c&llasubcomplexf Y if

@) |X] < [Y],
(b) for everyo in X there exists a € Y witho C 7,

(c) for a paire andr from (b) the maps, o ¢! andi, o ¢! are integer affine linear on
U, (0), resp.py (o).

We write (X, | X|) < (Y, |Y]) in this case, and define amafy y : X — Y that maps a cone
in X to the inclusion-minimal cone il containing it.
We call a polyhedral complexX, | X |) arefinemenbf (Y, |V

@ (X, [X]) <\, [Y])
(b) [X] = [Y]|

), if

We call a weighted polyhedral compléX, | X|) a refinement of a weighted polyhedral com-
plex (Y, |Y]) if in addition the following condition holds:

o wx(0) = wy(Cx-y-(0)) forall g € (X*)dimX),

Definition 1.13 (Morphism of (general) polyhedral complexegkt X andY be two (gen-
eral) polyhedral complexes. Aorphism of (general) polyhedral complexges X — Y

is a continuous mag : | X| — |Y| with the following properties: there exist refinements
(X" | X' {p}, {P,|lc € X'}) and (Y7, |Y'], {v},{V,|7 € Y') of X andY’, respectively,
such that

(a) for every general polyhedran € X’ there exists a general polyhedrénc Y’ with
flo) Co,
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(b) for every pait, & from[(@) the maplz o fo® ! : |[FX'| — |FY'| induces a morphism
of fans X" — FY", whereFX" andFY" are the general fans given in definitionl1.6 (a
morphism of fans is @&-linear map, see¢ [GKM] definition 2.22).

A morphism ofweighted polyhedral complexesa morphism of polyhedral complexes (i.e.
there are no conditions on the weights)Xif= Y and if there exists a morphisgn: X — X
suchthayyo f = f o g = idx we call f anautomorphisnof X .
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2 Moduli spaces

In this chapter we give the definition of the moduli spaces vilé equip later on with a
structure of a (local) orbit space.

2.1 Moduli space of n-marked tropical curves

Definition 2.1 (n-marked abstract tropical curveshn abstract tropical curves a pair (',

§) such thatl" is a connected graph, adtd= T'\ {1-valent vertices has a complete inner
metricé (i.e. the edges adjacent to two verticed'care isometric to a segment, the edges
adjacent to one vertex df are isometric to a ray or a loop and the edges adjacent to no
vertex ofI" are isometric to a line). The edges adjacent to at leastl eradent vertex ofl’

are calledunboundegthe other edges are calledunded The unbounded edges have length
infinity. The bounded edges have a finite positive length skuaplicity we denote an abstract
tropical curve byI". An n-marked abstract tropical curvis a tuple (', x4, ..., z,,) formed by

an abstract tropical curdéand distinctrays, ..., z,, of I'. Two such marked tropical curves
(I',x1,...,z,) and [, 24, ..., 7,,) are calledsomorphic(and will from now on be identified)

if there exists an isometry frori to I', mappingz; to 7;,¢ = 1,...,n (i.e._after choosing
orientations on the edges bfandT’, there exists a homeomorphidm— I" identifying x;
andz; and such that the edgeslofire mapped to edges bBiby an affine map of slop&1.).

The unbounded edges are calledvesas well.

Remark2.2 We can parameterize each edfeof a curvel’ by an intervall0, ((E)] for
bounded edges and iy, o) or (—oo, oo) for unbounded edges, whelg) is the length of
the edge (for the choice of the direction in the bounded caselwose which vertex of
is parameterized b§). Such a parameterization is callednonical We do not distinguish
between the unbounded edgeand the vertex of valence strictly greater tHaadjacent to it
and call the vertex alse;. Since different edges can be adjacent to the same vertextexv
can have several labels.

Definition 2.3 (Genus) We define thegenusg of an abstract tropical curv@’, §) to be the
first Betti numbe, (I") of I'.

Definition 2.4 (Combinatorial type) Thecombinatorial typef an abstract tropical curvé'(
§) is the (combinatorial) graph.

Definition 2.5 (Contraction) Let T be a connected graph. The procedure of removing an
edgee € I" and identifying the endpoints efis calledcontraction
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Definition 2.6. It is not difficult to see that for a combinatorial typethe set of all curves
given by definitiorZIL with the combinatorial tygeor the combinatorial types one gets
by contracting bounded edgeslotan be embedded in a suitafi®& by the lengths of the
bounded edges and therefore this set of curves has a topalsgiucture (this subset &f"

is calledcombinatorial cong Note, that for combinatorial types with symmetries weetak
set of curves (in the beginning of this definitiom}marked abstract tropical curves with an
ordering of the bounded edges. Afterwards we take a conhectespace of this set which
contains exactly one representative of eaemarked abstract tropical curve. Thus, the set
of all n-marked abstract tropical curves of genuwith this induced topological structure
on each combinatorial cone (the cones are glued togetheg éaes representing the same
curves) is a topological space.

Example2.7. We consider &-marked tropical curverl, §) with edge lengths andb (see on
the left hand side of figuled.1). The combinatorial cone p@tarizing all curves with the
combinatorial typd or with the combinatorial type one gets by contraction$ @ drawn
on the right hand side of figute2.1.

T3
X
a b b
Xy
T2 Ts a

Figure 2.1: A5-marked abstract tropical curve and its combinatorial cone

Definition 2.8 (abstractM, ,,). The spaceM,, ,, is defined to be the topological space of all
n-marked abstract tropical curves (modulo isomorphismhwie following properties:

(a) each curve has exactlyleaves,
(b) the curves have no vertices of valerzcand
(c) the genus of each curvegs

The topology of this space is the one defined by its combirstoones. We call the space
M, , amoduli space

Example2.9. The moduli space of-marked abstract tropical curves of genusnd the
curves corresponding to the faces are given in the followioture:
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The left cone parameterizes the curves where the two edgles ofcle have the same length.
The appearance of this cone is due to the fact that the cuoressponding to the curve on
the lower left side are the same if we swap the lengths of tleebiwunded edges. Thus, the
left cone is in the boundary of the second cone from left.

Let (T, §) be a curve of genus 1. As a tropical counterpart of thevariant, we take the
length of the cycle as it was suggestediin [M3]] [V] ahd [KM].oMations for this choice
can be found, for example, ih [KMM1], [IKMM2] and [Sp2].

Definition 2.10 (j-invariant). For ann-marked curva’ of genusl, the sum of the lengths of
all edges forming the simple cycle is called {havariantof I'.

2.2 Moduli space of parameterized labeled n-marked
tropical curves

Definition 2.11 (Tropical M}*>(R", A)). A parameterized labeled-marked tropical curve
of genusg in R" is a tuple(T', 1, ...,zn, k), whereN > n is an integer(T", 21, ..., zx)
is an abstractV-marked tropical curve of genus andh : I' — R” is a continuous map
satisfying the following conditions.

(a) On each edg# of I' the maph is of the formh(t) = a + t - v for somea € R" and
v € Z". The integral vectov occurring in this equation if we pick faf' the canonical
parameterization starting &t € 0F is denotedy(£, V') and is called thelirection of
E (atV). If E'is an unbounded edge amdis its only boundary point we write( £')
instead ofv(E, V') for simplicity.

(b) For every verteX” of I' we have thdalancing condition

> w(EV)=0.
E|VEIE
(c) v(z;) =0fori =1,...,n (i.e. each of the first leaves is contracted by), whereas
v(z;) # 0fori > n (i.e. the remainingV — n ends are “non-contracted ends”).
Two parameterized labeledmarked tropical curvefl’, z1, ..., zy, h) and(f“,:f:l, o IN,
h)inR" are called isomorphic (and will from now on be identifiedhiéte is an isomorphism
o:(Dzy,...,zn) — (I, 21, ..., Zx) Of the underlying abstract curves such thaty = h.

Letm = N — n. The degreeof a parameterized labeledmarked tropical curvd” of
genusg as above is defined to be thetuple A = (v(z,41),...,v(zN)) € (Z"\{0})™ of
directions of its non-contracted ends. Tdwnbinatorial typeof I' is given by the data of the
combinatorial type of the underlying abstract marked wapturve(T', x4, . . ., ) together
with the directions of all its (bounded and unbounded) ed§esm now on, the numbey
will always be related ta andA by N = n + #A and thus will denote the total number of
(contracted or non-contracted) ends oframarked curve of genugin R” of degreeA.

Fix a combinatorial typd" of a parameterized labeledmarked tropical curve with > 0.
The set of curves with combinatorial ty@e or with the combinatorial type one gets by
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Ty

\ --
fs ’

fa Jo -

X
X2

Figure 2.2: A parameterized tropical curve.

contractions ofl" can be embedded in a suitalié by the lengths of all bounded edges
together with the poink(z;). As in the case of abstract tropical curves this gives a tupol
on the set of parameterized labelednarked tropical curves of genysn R".

The space (of the isomorphism classes) of all parametdabetedn-marked tropical curves
of genusg and of a given degred in R", such that all vertices have valence at |easill
be denotedﬁ_{f}ﬁ(l&r, A) and will be callednoduli spaceLet (e, ..., e,) be the canonical
basis ofR". For the special choice

A=(—€g,.cc,—€0 yovuy —Cpyern,—Cp)

with eg = —e; — - -+ — e, and where each; occurs exactlyl times, we will also denote this
space byM > (R", d) and say that these curves have degtee

We now consider an example of a parameterized labeledrked tropical curve and use the
notation of the previous definition.

Example2.12 Let X be the polyhedral complex given by four bounded edgesft, f3, f1)
forming a cycle and four rayse(, x2, x3, x4) attached to the four meeting points of two of
them, such thaf;_;, f; andz; meet at one point for € {2, ..., 4} (and therefore, f, and

z; meet at one point) which we call for i € {1,...,4}. Say the vectors(z1) = (1),
v(ze) = (1)), vlas) = (1), vlza) = (1), U(H) =

( 3) =2 andl(fg) = l(f4) = 1. We
puth(p:) = (), h(p2) = (2 ) h(ps) = (3) andh(ps) = (}) and get a parameterized tropical
curve(X, zy, ..., aq, h) € MERR?, ((Z1), (1), (D), (51)). Apicture of (X, a1, ..., 24, h)

is given in figurdZR.

10



3 Local orbit spaces

The purpose of this chapter is to define local orbit spaces@edtablish some properties
for them. In the first part we define local orbit spaces and endtcond part we introduce
morphisms between them. After this we prove our main resultrbpical local orbit spaces
(see corollary3.41).

3.1 Tropical local orbit space

Definition 3.1 (Local orbit space)Let X be a finite polyhedral complex ar@ a finite set
of isomorphismg : U, — V, between open polyhedral subcomplekgsindV, of X (open
in X), such that the following conditions hold:

(a) the identity morphism oKX is in G,
(b) gt € Gforallg € G,

(c) forall F = {fi,...,f.} C G, g € G with g (|U},
there existsf = {hy,...,h,} C G with |F| = |H| such that/,, > ¢~ (|U},
hilg=vquy, )y = fi 0 glg=1quy,) for L <@ <,

(d) for all g € G the maximal subsdt C U, with g|; = id |y is closed inX.

)£ O, foralll < i <n
) and

We denote the induced maps on the topological spegeby g as well. We identify points

of | X'| which are identified by elements 6f and denote the topological space one gets by
these identifications byX/G|. The conditionga) to (c¢) define an equivalence relation of
polyhedra. For a polyhedran € U, with g € G let us denote by y/. the image ofo| in

| X/G|. By 5! \we denote the closure &f c | X/G|in | X/G|. We put[o] = a';j/g‘ C
|X/G| and call it a class. After refinement we can assume that fof @l G and for all
o € U, we have that™ € X is a polyhedron. Ley € G ando € U,. We call the set
{r € X, [r] = [o]} orbit of X. The set of orbits o’ together withG is called aocal orbit
spaceand is denoted by /G. Sometimes we denote the mapby ¢y to show thaty is an

isomorphism between two polyhedral subcomplexeX of

Remark3.2 The conditions on the sét are fulfilled if G is a group.

Example3.3. Figure[3.1 shows the polyhedral compl&x= {R<y x R>¢,0 x R.g, R>¢ X
R-o} and the topological space of the local orbit spataz = ({{R<p x R5p,R>g X
R-o},{0 x Roo}},G). The set of isomorphism& consists of the identity, the map :
Rop x Rog — R, (V) — () andg™".

11
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X X/G

Figure 3.1: A polyhedral complex and a local orbit space.

Lemma 3.4.Let X /G be alocal orbit space and l&f be a subcomplex of. Foranyg € G
the topological spacé/,| N |Y| has a canonical structure of an open polyhedral complex,
suchthatg : |U,| N Y| — |V,], x — g(z) defines a morphism of polyhedral complexes.

Proof. By definition there exist refinementsand.S of U, and ofV,, respectively, such that
conditions(a) and (b) of definition[I.IB hold. Sincé&” is a subcomplex o one gets that
RNY (the set of polyhedra given by the intersection of a polybedif R and a polyhedron
of Y which is non-empty) is a subcomplex &fand ofY. For eachv € RNY we have a
o' € Uywith o C ¢’. Thus,g(o) = g(o) C g(o’) C ¢ € S and conditiona) of definition
[LI3 holds forg. Since| FE™Y| C |FE|, condition(b) of a morphism holds as well. O

Definition 3.5 (Stabilizer, G, —orbit of ¢). For X andG as above and,oc € X we call
G, = {9 € G|t C U,withg(x) = z foranyz € 7} the stabilizerof . We define

Xo/r ={g(0°)|g € G-} to be theG . —orbit of o.

Lemma 3.6. Let X/G be a local orbit space and take o’ € X with [0] = [¢']. One has
|Gol = 1Gorl.

Proof. By symmetry it suffices to show that/,.| < |G,|. Let{fi,...,f.} = Go. By
assumption we havig] = [¢']. Thus, there exists @ € G with g(¢°) = ¢’. By condition
(c) of definition[3.1 there existy, ..., h, € G with h;|,c = fi 0 gl,c for1 < i < n. By
(b) of definition[3:1 there exists; ' for 1 < i < n. Again by condition(c) of definition[3:1
there arek,, ..., k, € G such thatk;|,c = h; ' o g|,o for 1 < i < n. Sinceh; ' o g|,o =
g o ftogle =id |, and since the maximal subset®fwherek; is the identity is closed
we havelG, | < |G, | by (c) of definition[3.1. ]

Definition 3.7 (Weighted local orbit space) et (X, wx) be a weighted polyhedral complex
of pure dimensiom, and X /G a local orbit space. If

e for anyg € G and for anyr € X™ with 0° C |U, |, one hasvy (o) = wx (g(a°)>,

we call X/G a weighted local orbit spaceThe classe$s] C |X/G| are calledweighted
classes

The weight function on the weighted classesofG is denoted bylw] and defined by
w]([o]) = w(0)/|G,|, forall [o] € X/G.

Lemma 3.8. For a weighted local orbit spac& /G of dimensionn ando, 7 € X with7 < o
anddim(7) + 1 = dim(¢) = m, one hag X,/.| - |G,| = |G-|.

12
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Proof. For eachv’ € X,,/, there exists @ € G, with o = g(¢”°). Put{fi,... o} = G,
with |G, | = n. By (c) of definition[3.] we have: different elements ofs mappingo to o'
By injectivity of the morphisms of7 those elements have to be different for each element
of X, ,, and thereforeX, ;| - |G,| < |G|. For eachy in G, there exists @’ € X, ,, with

g(o”) = o. LetT C G, be the set of all elementse G, with g(¢’°) = o. Since for each
g in G there exists @ € X,/ with g(6°) = o it suffices to show thatl’| < n. But for
an arbitraryg € T it follows that f o g7!|,c = id |,.. Thus, by(c) of definition[3Z1 one has

IT| < n. O

Definition 3.9. Let X/G be a local orbit space and be a subcomplex ok. We denote
the set{g|y|nu,ing-1(v,Inv)), Suchthay € G} by G|y and consider them as isomorphisms
between open polyhedral subcomplexe¥ ofor an elemenj € G we denote the restriction
to |Y|N|U,|Ng  (|V,|N]Y]) by gy. (Remark: forg # h € G we distinguish as well between

gy andhy even ifg|yinu,ing-1(v, Iny)) = Py inwsnn-1(vinyp-)

Corollary 3.10 (of lemma[3:}) Take the same notation as in the previous definition. The
topological spacesy’| N Uy N g~ (IVy| N [Y]) and gy ([Y] 1 |Ug| N g™ (|Vy| N [Y])) have

a canonical polyhedral structure such that the mapfrom |Y'| N |U,| N g (|V,| N |Y]) to

gy (YN U, ng |V, N |Y])) is an isomorphism of polyhedral complexes.

Proof. By lemme33|U,|N|Y| and|V,| N|Y| are canonically polyhedral complexes. Thus,
Y| N |U,| N g~ (|V,| N]Y]) is an intersection of two polyhedral complexes and theeefor
polyhedral complex as well. Singeis an isomorphism, the restriction gfto a subset and
the restriction of the image @fto the image of this subset gives an isomorphism. [

Remark3.11 By corollary[3.ID the sef|y is a set of isomorphisms.

Lemma 3.12. Let X/G be a local orbit space and lét be a subcomplex oX, thenG|y
fulfills all conditions from definition311.

Proof. The restriction of the identity is the identity as well, tHu$ holds. Since the topology
of Y is the subspace topology, conditio#) holds as well. Furthermorép) holds since
Uy = (971 v (V) for everyg € G. Condition(c) holds by the definition of7|y-. O

gy

Definition 3.13(Local suborbit space)Let X/G be a local orbit space. A local orbit space
Y/H is called alocal suborbit spaceof X/G (notation: Y/H C X/G)if Y < X and

H = @y (as sets). In this case we denote(byx : Y — X the map which sends a general
polyhedrons € Y to the (unique) inclusion-minimal general polyhedronthat contains
o. Note that for a local suborbit spaé& H C X /G we obviously haveY| C |X| and
dimCy x (o) > dimo forallo € Y. Let X/G be a weighted local orbit space of dimension
nand letY/H C X/G be alocal suborbit space.df (o) = wx(Cy x (o)) forallo € Y,
we write as wellux (o) for wy (o).

Example3.14 The upper part of figure—3.2 presents an example of the lo¢al space
(—1,1) as local suborbit space Bf. The lower part of the figure presents the same polyhedral
complexes as local orbit spaces, but we take as set of is¢nisanpG the mapg : v — —=z

and the identity 4 is defined on(—1, 1) and onR).

13
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(—1;1)/G R/G

Figure 3.2: Two local suborbit spaces.

Definition 3.15(Refinement)Let ((Y, |Y]), wy)/H and((X, | X|),wx) /G be two weighted
local orbit spaces. We callY, |Y|),wy)/H arefinemenof ((X, |X]),wx)/G, if

@ (Y, [Y]),wy)/H C (X, [ X]), wx)/G,

(b) [Y*| = [X7,

() wy(0) = wx(Cyx(0)) forall o € (Y*)dmd),
(d) eachr € Y is closed in/ X|.

We say that two weighted local orbit spadgs, | X|),wx)/G and ((Y,|Y]),wy)/H are
equivalent (notation((X, | X|),wx)/G = (Y, |Y|),wy)/H) if they have a common refine-
ment.

Remark3.16 Let X/G andY/H be two local orbit spaces. ¥/ H is a refinement oKX /G
then for allg € G the complexU,, . is a refinement of/, and H = G.

Definition 3.17 (Tropical local orbit space)Let (X, wy) /G be a weighted local orbit space.
If for any 7 € XY, one has}_ J([0))(uo/r) € Vi, thenX/G is called a

tropical local orbit space

1
™~ T |W
o>T \X(,/T\[ X

Proposition 3.18. The balancing condition for weighted local orbit spa¢és/ G, wx ) holds
if and only if the balancing condition of the underlying wtigd compleX.X, wx) holds.

Proof. Let (X/G,wx) be a weighted local orbit space.

7 = 7. By assumption the balancing condition of the weighted llazhit space holds.
Thus, for everyr € X of codimension one we haje _ m[wx]([a]) “Ugsr =t € V.
To verify the balancing condition we have to check it for thadF,, (see definitio1.710) of
X. We denote the cones of this fan by the same letters as foothplex. By conditionb)
of definition[I.IB the elements 6f are linear on these fans. Thus, we get

Gt = gl

geGr
- Z Z|XU/T )'UU/T)
geGr  o>T

= 22w

geG, O'>T‘ U/T

= Z |G| - [wx]([o]) - Ug/r

o>T

= wa(a) “Ug/r

o>T

[o]) - g(uo/r)

14
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”? < 7 Putn = dim(X). For anyr € X~V one hasy_, awx(0) vy =t €V,
because the balancing condition holds far, wx ). Thus, we have

1
;m[w)(]([a])'vo/‘r =
> el e =

o>T

1
Z mwx(a) Ve = tEV;

o>T

O

Definition 3.19 (Reduced weighted local orbit spacekpt (X/G,w) be a weighted local

orbit space. Since the weight of a polyhedroplays the role of the multiplicity of points

in o™, the weight zero stands for multiplicity zero. Since theslylpedra do not contribute

to the balancing condition we can delete them without chamdgine balancing condition.

Therefore, if we use weighted local orbit spaces we diremblysider the non-zero part of
them (see definition-1.10). Weighted local orbit spacesauthveight-zero facets are called
reduced

Observation3.20 Let X'/G’ and X" /G" be local orbit spaces, theki/G = (X' x X")/
(G" x G"), given by the product of the sets, is a local orbit space ak wel

If X'/G' and X" /G" are weighted local orbit spaces of dimensioandm, then we make
X/G into a weighted local orbit space by (o’ x ¢") = wx:(0') - wx»(c") for o' € X'
ando” € X"(m),

If X'/G’andX"”/G" are tropical local orbit spaces, th&n G is a tropical local orbit space as
well, since a codimensionhface of X is the product of a codimensidrand a codimension
face. Thus, the balancing condition around a codimenisfane is the same as the balancing
condition around the corresponding codimensidace inX’/G’ (resp.X"”/G").

3.2 Morphisms of local orbit spaces

Now we have a first understanding of local orbit spaces andamegove the definition of
morphisms between them. For a detailed investigation ordomensional local orbit spaces
see chaptdd4.

The definition of morphisms should respect the structurdefset of isomorphisms (con-
ditions (a)-(d) of definition[3.1) and the local fan structure of the localibspaces (propo-
sition[3.I8). The necessary conditions for this &g to (f) in the following definition.
Furthermore, we want to define images of pure-dimensioreal lorbit spaces. Only the
codimension-one and codimension-zero strata are impofdarthe balancing condition.
Thus, we add a further condition which ensures that the mempls "well-behaved” in
codimension smaller tha Since this conditior{g) is not as easy to understand as the
others we will consider an example regarding this propdisr ghe definition.

15



Chapter 3: Local orbit spaces

Definition 3.21 (Morphism of local orbit spaces) et (X, |X|,{¢},{®,|c € X})/G and
(Y, Y], {¢}, {V.|7 € Y)/H be two local orbit spaces and put= dim(X). A morphism
of local orbit spaces: : X/G — Y/H is a pair(e;, ey) consisting of a continuous map
e; : | X| — Y| and a map, : G — H with the following properties:

(@) ex(idg) = idy
(b) ex(g7") = ea(g)”!
(c) if A fulfills condition (c) of definitior 311 for elements g € G (here we havéF’| = 1),
then
e2(h)les(g=1quy1y) = €2(f) © ea(9)lergqu )

(d) there exists a refinement’ of X such that for every general polyhedrere X' there
exists a general polyhedrene Y with e; (o) C 7,

(e) for every pait, & from[(d) there exist'X and Y such that the mag; o e, o ;! :
|FX| — |FY|induces a morphism of fari§X — F2 (a morphism of fans is &-linear
map, see |GKM] definition 2.22), Wheﬁg" andﬁgy are suitable weighted general fans
associated t@;* andFY , respectively (cf. definitioh116),

() e1(g(x)) = ea(g)(e1(z)) forall g € G andx € U,.
If X is pure-dimensional we ask a morphism to fulfill the follogyicondition as well:

(9) Leteé; be the induced map fromX/G| to |Y/H|. After a refinement ofX’ from
condition(d) one has that for any, ¢ € X, with dim(é;([¢]) N é([¢])) = n one has
dim(é ([o])\e1([0])) < dim(é:([0]))—2 anddim(és([0])\é:([0])) < dim(é ([a]))—2.

A morphism of weighted local orbit spacissa morphism of local orbit spaces (i.e. there are
no conditions on the weights).

We consider an example to understand conditipnn the previous definition. Sincgy) is
a condition only on the polyhedra we take trivial isomorphsets (i.,eG = H = {id}).

Example3.22 Let X (= X/{id}) be the disjoint union of the con¥, = {(z,y) € R?|y >
0} and the coneX, = R? (we label the directions by andz) and letY” (= Y/{id}) be R?
(labeled by’ andy’). The mape : X — Y is given by the identity map of the codé and
R? to R? such thate(z) = e(w) = 2/, ande(y) = e(z) = ¢/ (see figuré=313). It is easy to
see that the conditior(a) to (f) are fulfilled. LetX, be any refinement dk* and letC' be a
2-dimensional subcone of; such that the border @f contains a segmeiitof the z—axis.
Sincedim(e~!(e(C)) N X3) = 2, bute™!(e(1)) N X, = 0, there exists &-dimensional cone
in X, contradicting(g) together withC' (there must be a cone containing a part/adnd
elements with) > 0). Thus the ma is not a morphism.

Remark3.23 The problem we are handling in ca&g is, that we would like to have the
image to be a local suborbit space. In particular conditigrof definition[I.9 should hold.

The next two propositions provide a better understandirgpatlition(g). In particular, the
second proposition gives a criterion for the failurg @f.

Proposition 3.24. Let X/G andY/H be local orbit spaces and’/G be of pure dimension
n. Lete be a morphism fronk'/G to Y/H and X’ a refinement fronfg) in definition[3Z1.
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Figure 3.3: A map, but not a morphism between two local ofdices.

For every refinemenk” of X’ there exists a refinemefit of X” such that(g) holds foriV
as well.

Proof. By refining X” we can assume that for all6 € X" with dim(é;([o]) Né([a])) =n
one hasdim(é,([¢])\é1([5])) < n — 1 anddim(é,([5])\é1([¢])) < n — 1. We putr =
é1([o])\éi1([a]). Let o’ (resp. ¢’) be the polyhedron fronX” which containss (resp. ).
Sincee; is a linear map on the interior of the polyhedra (see definB&1 (¢)) and it is
continuous everywhere, cannot be iré; ([¢']). Sinces’ D o we have thag, ([¢’]) contains
7 and thereforelim 7 < n — 2. Thus,g¢ holds for the above mentioned refinementdf as
well. O

Proposition 3.25. Let X /G be a puren-dimensional local orbit space and/H be a local
orbit space of arbitrary dimension. Letbe a map fromX/G to Y/ H fulfilling conditions
(a) to (f) of definition[32IL. Then is a morphism iff for every refinement &f (X’ as in
condition(d)) and anyos, 5 € X'™ the following holds:dim (&, ([5])\é1([c])) < n — 2 or

dim(é ([o])\e1([o])) = n.

Proof. 7 < 7: After refinement we can assume thhin(é; ([6])\é1([0])) = n does not
occur and thusgg) is fulfilled.

” = 7. Let Z be the refinement ofg). Assume, that there exist & € X' such that
dim(é;([g])\é1([e])) = n — 1. In this case the intersection has to/belimensional. Take

a common refinemenk” of X’ and Z. Then by propositiofi-3.24 one has a refinement
W of X" fulfilling g. Let s’ be a polyhedron of¥’ ™ such thats’] contains an(n — 1)-
dimensional part o€, ([5])\é1([c]). SinceW is a refinement ofX’ as well, there exists at
least one polyhedron’ C o with dim(&,([']) N &,([0"])) = n. We havez ([0']) C &([o])
anddim(é; ([0'])\é1([e])) = n — 1. Thus, we get a contradiction and our assumption has to
be false. O

17



Chapter 3: Local orbit spaces

Example3.26 Let us reconsider example_3122. If we subdivikig along thew—axis, the
resulting subdivision ofX does not fulfill the condition of the previous propositiorddiy)
does not hold.

Lemma 3.27.Let X/G, Y'/H" andY”/H" be local orbit spaces and : X/G — Y'/H'
ande” : X/G — Y"/H" be morphisms. Then: X/G — (Y’ xY")/(H' x H"), given by
er: [X] = Y/ x Y7 ey(x) = (;(2), ¢f(x) andey : G — H' x H",es(f) = (e4(f), e4(f),
is a map fulfilling conditionga) till (f) of definitior32IL.

Proof. Since the operations, ande, are defined coordinate-wise the lemma follows from
the definition ofe’ ande”. O

Our next goal is to define an image local orbit space. In pagrdt should be a local orbit
space. To make sure that the conditions of a polyhedral comgule fulfiled we need a
technical construction.

Definition 3.28. Let X/G andY/H be two local orbit spaces, IeX/G be pure byn-
dimensional, and let be a morphism oX /G to Y/ H. Put

u(e) = {lim & (z,)|(z,)nen C [o] is @ Cauchy sequence withm (z,,) ¢ | X/G]|

n—oo

but lim &(z,) € |[Y/H|,o € X ande is injective ono}.

We denote the natural map froo¥ | to | X/G| by Mod¢ and putu, = Mod ;' (u(e)).

Remark3.29 Locally X/G is a general fan. To make it into a fan we have to add some lower
dimensional faces of some polyhedra. Since a morphism from X/G to Y/ H is linear

on polyhedra one could define the imageradn the level of fans. If the image of has a
meaning inY/H, then it is a polyhedron’. The setu(e) is the union of the images of all
thoser’s.

The following proposition gives a useful characterizatidm(e).

Proposition 3.30. Take the notation of the previous definition and assumeXhatalready
refined to fulfill condition(d) of definition[3.2IL. LetX; be the union of all polyhedra in
X ™ such that; is injective ono. Then

ue) = | &) "\ (o).

oeXt

Proof. For eachr € u(e) we find a sequence ij#] such that the images convergextdut
the sequence does not convergeXinG and hence not ifg]. By condition(d) we have
thaté, is an injective linear map ofr| and thuse ¢ é,(]o]). Therefore, the point is in

Usex, @(loD\er([o])-

Now letz € (J,cx, €1([c])\éi([o]). Sincex is in the closure of the image of a closed et
there exists a sequentg, ).y C €;(7") converging tor. Consider a sequenc¢e,, ) ey With

x; a preimage ofy;. SinceX contains only finitely many polyhedra, one has a polyhedron

o' € X™ such that infinitely many; are inMod(¢”). By changing to this subsequence we
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can assume thdt,, ),y C Modg(o’) C [0']. Each polyhedral complex consists of finitely
many polyhedra, thus, conditidid) of definition[I.® ensures that infinitely many elements
of (x,,)nen lie in the interior of the same polyhedrdiod(7), 7 € X. By condition(e) of
definition[3:21 morphisms are linear maps in the interioraf/pedra. Thusg, is injective
and(z,).en CcoOnverges. Sinc& N [o'] is closed|z, ),en does not converge i /G and thus

x € ule). O

Construction3.31 From now on we consider only Hausdorff local orbit space®ifstated
otherwise. As in the case of orbit spaces (constru¢fion)&26can define the image local
orbit space. LefX /G be a purelyr-dimensional local orbit space, and ¥t H be any local
orbit space. For any morphisen X/G — Y/H we make the following construction: Take
a refinement of{ such that conditiorid) of definition[3:21 holds and define

Z = {Modj (¢,([0])), o is contained in a polyhedrahof X ™ ande is injective ons}

By intersections of the polyhedra ifiwith the polyhedra i’ we get a set of polyhed&'.
Now we have to modifyZ’ to make it into a polyhedral complex. Therefore, the non-gmp
intersection of two polyhedra has to be a face of each of théon.this we modify the set
and take

Z ={o\ue| o € Z',0\u. # 0}.

We will see that the sét is (after refinement) a polyhedral complex, and therefofeH | )
is a local orbit space. If moreovef/G is a weighted local orbit space, we turp)X/G) into

a weighted local orbit space. After choosing a refinemenif@nd}” such tha“el(a)y isa
polyhedron inY for eachs € X, we set

we(x/c)(0") = > wx () - [Afr/E1(Ag))]
(01elX/G " er ()=l

for anyo’ € (2)™ (for A, see definitiof Il and remark thaf is a polyhedron as well).
Since the weights are defined by their classes, the conditiche weights is fulfilled. We
call Z/H the image ot.

Lemma 3.32. Let us use the notation of the previous construction. Thar eefinement,
the set” is a polyhedral complex.

Proof. By conditions(d) and(e) of definition[3.Z1 the images of polyhedra are polyhedra.
Since 7 is a subset of”, the conditions on the embeddings and the homomorphisras (se
definition[I.9 and definition_1.10) are fulfilled. Thus, weyhhve to provea) of definition

[I3. Leto,0’ € Z such that) # 7 = o N o’ and putk = dim 7. After a refinement,
the polyhedrar ando’ have ak—dimensional face containing Assume that ando’ are
these faces and thus, they are/tf) already. We can take a refinement to det ((o\o”’) U
(0'\o)) < k. Assume thato\o’) U (¢'\o) # 0. Without loss of generality we can take

yeo\o. ()

By the definition ofZ, there existy and¢’ in X such thate is injective ons andé’,
é1([a]) 2 Mody (o), é1([6']) 2 Modg(0’) andMody (y) ¢ é1([6"]) (sinceY/H is defined
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Figure 3.4: A morphism between two local orbit spaces.

by gluing, the subsets can be strict). L@f),en € Mody(c')\ Mody(y) be a sequence
which converges tdlody(y). Sincek > 0 andMody(o’) is connected such a sequence
exists. By conditiorie) of definition[3.Z1 (morphism of fans are linear) there exastenver-
gent sequencer, ),y C [07] such thag, (z;) = y; for all i € N. SinceMody (y) ¢ é:([6'])

the sequencér,, ),y does not converge i /G. This is due to the facts thét'] is closed in
X/G ande, is continuous. Thudlody(y) € u(e), y € u. andy ¢ Z in contradiction tq(x).
Therefore(o\o’) U (¢/\o) = () and the non-empty intersection of two polyhedra is a face of
both. O

Example3.33 Let X (= X/{id}) be the disjoint union of the cong&;, = {(z,y) € R?|y >

0} and of X, = R? (we label the axes by andz) and letY (= Y/{id}) beR? (labeled by
2,y andw’). The mape : X — Y is defined by the projection of; and X, to R? such,
thatz is mapped tar’, y andz to ¢y andw to w’ (see figurd_3]4). It is easy to see that the
conditions(a) to ( f) are fulfilled. SinceX; and.X, are the only cones and the intersection of
the image is one-dimensional conditigy) is fulfilled. The origin is not part of’;, and there
exists a sequence converging to the origin. Since the iméitgssequence converges to the
origin in Y the setu, contains the origin. With propositidn 3130 we obtain= x’—axis and
thus the origin is the only point of the image undemhich lies inu..

Proposition 3.34. Let X/G be ann-dimensional tropical local orbit spacé;/H a local
orbit space, and : X/G — Y/H a morphism. Thena(X/G) is ann-dimensional tropical
local orbit space (provided that{ X'/ ) is not empty).

Proof. Due to the construction df in constructiofi:3.31 the image local orbit space is a pure-
dimensional local orbit space. By proposition-3.18 the hailag condition can be checked
by proving the balancing condition for the polyhedral coexplCondition(e) of definition
3.2 tells us that for the open fans defined by the homeomamsid,, of definition[1.10, the
morphism is a morphism of fans. Let € ¢(X/G)™Y be a face around which we have to
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Figure 3.5: Problems which motivate the definition of mospins.

check the balancing condition. First we need that for eaamsandux (o) - A, /€1 (A[5))]

in the weight of a face”’ > 7/,0’ € e(X/G) there exist ar € X~ with 7 < ¢ and
é1([r]) € [r']. If such a facer does not existy’ ¢ ¢(X/G) by the construction ofi. which

is a contradiction and thus exists. From this we can conclude that the weighted facets
aroundr’ are the union of images of fan morphisms, where all image dangin7’. Since

X /G is Hausdorff the fans are disjoint after identification withor equal. Since the image
polyhedral complex is built out of these fans it suffices toverthe proposition for fans. The
balancing condition has to be checked around each codioreh$ace (equivalent to this is
verifying the balancing condition on the star around theeja Since this (the star fan) is a
closed fan (or a fan in the sense lof [GKM]) we can apply prapmsR.25 of [GKM] and we

are done. O

Remark3.35 The two problems we handle with in the previous proof (andciwhiherefore
motivate the definition) are shown in figurel3.5. The map iezse is given by a projection
to R and all weights on the source areOn the left hand side of the picture we take for
the union of a tropical curve with an open ray and ¢othe trivial set{idx}. This is not a
morphism sincég) is not fulfilled.

On the right hand sid& is a union of two copies oR and the set7 is the set given by
the identification of the strict positive part of these capi&hereforeX /G is not Hausdorff
and applying the constructién 3131 word by word for non-Himu spaces would lead to a
non-balanced image of a tropical local orbit space.

Definition 3.36 (Irreducible tropical local orbit space)et X/G be a non-empty tropical
local orbit space of pure dimensian We call. X /G irreducibleif for any non-empty tropical

local orbit spac&’/H C X/G with dim(Y/H) = n the following holds: if there exists a
refinementX /G of X/G such that

forallo € Y™ one has @' € X™ with dim(c’\o) < n — 2 *)

thendim(| X |\|Y]) < n — 2. We call X/G strongly irreducibleif X/G is irreducible and
each weighted open faf, of X /G (see definitiofi 1.70) is irreducible as a tropical local brbi
space (the set of isomorphisms is trivial and the balancorglition holds by proposition

B.18).

Proposition 3.37. A tropical local orbit spaceX /G of dimensiom is irreducible if and only
if for any tropical local orbit spac&”/H C X/G,Y # () such thadim(Y/H) = n andY is
closed inX, one hagY'| = | X|.
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Proof. We start with an irreducible local orbit space and take aitapocal suborbit space
Y/H C X/G with the given properties. The polyhedral compléxs closed inX and thus
o'\o = ) in the definition above. Therefore we havien(|X|\|Y|) < n — 2 and sinceY’
is closed inX, one hagX| = |Y| (here we need the assumption tlais pure-dimensional
and thus every point lies in ardimensional polyhedron).

Assume, thatX /G has the properties as stated in the if part of the propositietY/H C
X/G be atropical local suborbit space of dimensiosuch that for every € Y™ one has a
o' € X™ with dim(c"\o) < n—2. Since the closure of eaehin Y™ is ¢’ (ando’ is closed
in the topology ofX) the polyhedral compleX is the union of ther’ in X. The local orbit
spaceY’/H is weighted and therefore we can makéG|s- to a weighted local orbit space
by taking the same weights. Since we only added faces of dilmen — 2 or smaller, the
balancing condition holds for' /G/|3 as well. By the proposition, we gét'| = |X|. Thus
we havedim(|X|\|Y]) < n — 2. O

Remark3.38 In the case of closed fans (fans considered_in [GKM]) our d&dim of irre-
ducibility is equivalent to definition 2.16 ih |[GKM].

Proposition 3.39. Let us takeX/G andY/H as in the definition of irreducibility in-3.36.
Then, there exists a € Q\{0} such thatvy (c) = A -wx(7) forall o € Y.

Proof. As in the proof of propositioh3.837 we can take the closur&’ ¢t/ and make it
into a tropical local orbit space withy-(7) = wy(co) for all o € Y. Thus, assume right
away thaty” is closed inX. By propositior73.37, one hd¥| = | X|. Takeo € Y™ such
that |wy (¢) /wx (o)| is minimal and put\ = wy (0)/wx (o). Since the balancing condition
is linear in the weights, we get that the weighted local aspace(Y/H,wy — A - wy) is a
tropical local orbit space as well. Since the polyhedrasiremoved from the new local orbit
space (see constructibn3.19)must be empty due to propositibn3.37 and= \-wy. O

Proposition 3.40. Let X /G be a tropical local orbit space of dimensionY/H a strongly
irreducible tropical local orbit space of dimensienas well, and: a morphism fromX'/G to
Y/H. In the notation of constructidn-3.31 the polyhedral com@é\ Z has dimension less
than or equal ton — 2.

Proof. Take the notation of constructién 3131 and propos[iionl3&Bume thadlim (Z'\ 7)
=n — 1. SinceZ'\Z C u,, there exists (by propositidn_31368) € X; with dim((é;([o])
\é1([e]))N(Z'\Z)) = n—1. Letr be an(n— 1)-dimensional polyhedron dflod ;' (¢, ([o])
\é1([o])) N (Z'\Z)). SinceY/H is strongly irreducible, the open fan arounds irre-
ducible as well. Furthermorg’\Z containst. Thus, after a refinement, there exist an
(n — 1)-dimensional subpolyhedrati C 7 ando’ € X ™ such that; is injective ono’ and
Mody (7") C é;(Modg(0”)). By (e) of definition[3.Z1, the morphisminduces a morphism
of fans. By the balancing condition and since the open fanrata is irreducible, there
exists a polyhedroa € X with é,([6]) D Modg(7") anddim(é; ([¢]) N é;1([o])) = n. This

is a contradiction tdg) in definition[3.21 and we are done. O

Corollary 3.41. Let X/G andY/H be tropical local orbit spaces of the same dimension
inV = A®RandV’ = A’ ® R, respectively, and let : X/G — Y/H be a morphism.

Assume thaY’/ H is strongly irreducible andlim(|Y/H|\é(|X/G|)) < n — 2. Then there

is a local orbit spacé’,/ H|y, in V' of dimension smaller than with |Yy| C |Y'| such that
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(@) each point) € |Y]\|Yo] lies in the interior of a polyhedrony, € Y of dimensiom;

(b) each pointP € e, (|Y|\|Yo]) lies in the interior of a polyhedron, € X of dimension
n,

(c) for@ € |Y|\|Yo| the sum

Z mult(p) e

[P],Pe|X|:é1([P])=[Q]
does not depend af}, where the multiplicitynult ) e of e at [P] is defined to be

QJX(O'p)

wy(aé)

mult(p) e =

. |A/[0’Q}/él (A[JP} ) |

Proof. Consider the tropical local orbit spaeéX/G). Sincedim(|Y/H|\é (| X/G])) <
n—2 by assumption we can take a refinemer(ﬂ‘dbd,}l(él(\X/G|))/H|M0d;Il & (x/G)) WY)
fulfilling condition (x) of definition[3:36. Thugx) holds also for the polyhedra i’ (see
constructior3.31). By propositidn_3]40 the conditie holds fore(X/G) as well. This
means that we can refing X/G) andY/H such thate(X/G) fulfills condition (x) (note
that the roles ofX andY are changed in the definition). From now on we work with these
refinements. Sinc¥/ H is irreducible we can apply propositibn 3139 and&’/G) = \-Y/H

for some\ € Q\{0}. Let Y, be the polyhedral complex defined by the union of polyhedra
of Y of dimension less than. Then[(d) and (Ib) hold because of the way we construred
Each@ € |Y|\|Yy| lies in the interior of a unique-dimensional polyhedroa’. By the 1:1
correspondence between poifld € ¢&;'([Q]) andn-dimensional classdg] with o in X
which fulfill [e;(|o|)] = [¢'] we can conclude that

wx (o) N
Z mult[p] e = Z N . |A/[J/]/61(AM)|
— wy (o)
[P],PE|X -er([P])=[Q] [0]€|X/G™]:[ex(0)]=[0"]
wex/a)(0)
wy(O'l)
does not depend af. O

To see why we need the assumption tHat{ is strongly irreducible in the preceding corol-
lary (and not just irreducible), we consider an example.

Example3.42 Let us take as setS and H the sets consisting only of the identity element.
Let X be the disjoint union of two polyhedral complex&s and X5, whereX; is an open
interval andX, is a tropical curve iRR? (see figuré_316). The edds, (resp.,Es) is an edge
with direction vector(0, 1,1) (resp.,(—1, —1, —1)). The other edges oX, lie in the plane

as drawn in the figure. The compléxis a tropical curve irR? as in the figure. The map

e betweenX andY is given as projection t&?* with e(E;) = F;. If we choose the weights
wx, = 2,wx, = 1 andwy = 1 we have a morphism between tropical local orbit spaces, but
the sum of preimages is different for points F; andy € Y\ F}.
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E1 I Y o
/A

X4

Figure 3.6: A morphism between two local orbit spaces, wh#rie assumptions of corol-
lary[3:41 are fulfilled except for” being strongly irreducible.

Definition 3.43 (Rational function) Let Y/G be a tropical local orbit space. We define
a rational functiony on Y/G to be a continuous functiop : |Y| — R such that there
exists a refinemen(t( (X, | X|, {m, }rex),wx), {Ms}sex) Of Y which fulfills the following
conditions: for each face € X the mappom_ ' is locally integer affine-linear andog|,;, =
¢lu,, forall g € G. (Remark: by refinements we can directly assume ¢hiataffine linear
on each polyhedron.)

Definition 3.44(Local orbit space divisor)Let X /G be a tropical local orbit space of dimen-
sionk, and¢ a rational function onX/G. We define a divisor of to bediv(¢) = ¢ - X/G

= (U=, XD wy)] /G, wherew, is as follows:

P Y bl —or( X eo)

pex () o/t
T<0 70

Proposition 3.45. The divisory - X/G is a tropical local orbit space.

Proof. By definition, the ma is a rational function on the tropical local orbit space{id }.

In particular it fulfills the definition of rational functiangiven in definition 6.1 of[[AR]
except for X being a closed polyhedral complex. Nevertheless, the bagrcondition
around a codimensiohface of X is the same as the condition around the closure of the
involving polyhedra. Therefore we can apply constructighd [AR] and¢ - X is balanced.
We only need to show that the weights for identified facetdfa@esame. This is clear since
the elements of; are defined on open sets and therefore the weights are thd@ame’

¢ - X/G with [o] = [0']. ]

Proposition 3.46. Let ¢; and ¢, be two rational functions on the tropical local orbit space
X/G. Thene, - (¢2- X/G) = ¢o - (1 - X/G).

Proof. As in the previous proof, the statement follows from the pelgral case. The corre-
sponding result is proposition 6.7 in_[AR]. O
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4 One-dimensional local orbit
spaces

To get a better understanding of the definition of a localt®pace given in chaptét 3, we
study the one-dimensional case.

Let X/G be a pure by one-dimensional local orbit space. After a refere we can assume
that all polyhedra inX are of one of the following two forms. Either a polyhedronXn
is a closed interval or a half open (and half closed) inter\fdde half open interval can be
bounded or unbounded. Around a zero-dimensional face @benension one faces) the
polyhedral structure is given by fans.

Each elemeny of G gives a morphism of a union of intervals jX | to another union of
intervals such that the fan structureXfis respected.

Exampled.1 Let X be the disjoint union of
X, = {(z,y) € R?*| max{0, z, y} is attained at least twice and| < 1, |y| < 1}

and
X, = {(z,y) € R*| max{0, —=, y} is attained at least twice and| < 2}.

The isomorphisms of polyhedral complexes for the(sét definition[3.1 are

g Alzy) € Xillz] <0} = {(z,y) € Xo|lz| > 1} : (z,y) — 2+ z,y),
g2 = {lw,y) € Xollx| <0} — {(z,y) € Xalz| <0} : (2,y) = (=2 - 2,2 —y)

together withy; * andidx (note thaty, ! = g,). A picture of X and|X /G| is shown in figure
1.

Since we glue along open sets, the spac&=| may be non-Hausdorff.
Example4.2. Let X be the disjoint union oX; = R and X, = R. We put

G={idx,g:{x >0z X;} = {z>00r€ Xs} x> 2,9}
The resulting local orbit space is non-Hausdorff (see figluzg.

Proposition 4.3. A one-dimensional local orbit space€ is aT; space such that there exists
a collectionP C |X/G| of finitely many points withX /G|\ P Hausdorff.
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X
X/G
—
X Xy Modg

Figure 4.1: The polyhedral complex and the topological spafca one-dimensional local

orbit space.
X1
. e — X/G
X - o

X

Figure 4.2: A local orbit space which is not Hausdorff.

Proof. Local orbit spaces are topological spaces defined by gluibgmaces oR™. Thus,
each finite set of points is closed and theref@ieholds. PutP = {p € |X/G|lp €
Mod, (U,\U,) for g € G}. The number of elements ¢t is finite andU,, is a finite union of
intervals, thus the number of elements/ofs finite. Letz’,y € | X/G|\P be two distinct
points, and letr, y € X be two arbitrary preimages of them unddnd.. By definition of
P, the pointsz andy lie either in the open set$, or in the interior ofX\U, for all g € G.
Let W, (resp.W,) be the intersection of all set§, and(X\Uy)°, f,g € G with z € U, and
xz € (X\Uy)° (resp.y € U, andy € (X\Uy)°). For eacty € G with W, C U, andW, C V
there exist open setd’? C W, andW/ C V, withz € W2,y € W2 andW7NnW/J =
becauseX is Hausdorff. The seft is finite and thus the intersection of &Y and alliV¢ are
open. Furthermor®lodq () W7) NMode(M W) = 0 and thug X//G|\ P is Hausdorff. [

Definition 4.4 (Non-Hausdorff pair, Non-Hausdorff point).et X /G be a local orbit space.
We call a paif{z, y} with =, y € | X/G| non-Hausdorfif for all open setsV,, W, C | X/G]
with z € W, andy € W, one hadV, N W, # (. We call a point: € |X/G| non-Hausdorff
if there exists a poing € | X/G| such thaf{ z, y} is a non-Hausdorff pair.

Definition 4.5 (Non-Hausdorff fan) Let X be a finite set of half open intervals of finite

length. Takek € N with £ > 1 and letYy,...,Y; be (not necessarily different) subsets of
X such that identifying the elements Bffor all i € {1,..., &k} gives a single element (this

condition assures connectedness of the resulting space)edeh: < {1,...,k} we take

a point P; and insert it at the open end of all intervalsYn The resulting space is called

Non-Hausdorff far{see figuré&413).

Remark4.6. A Non-Hausdorff fan is a topological space we get by takinge-dimensional
fan X, intersectX with a closed neighborhood at the origin, remove the origohglue back
at least two points connecting some of the edges, such thatsult is connected.
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Figure 4.3: A non-Hausdorff fan.

Proposition 4.7. Let X/G be a one-dimensional local orbit space. LetC |X/G| be an
inclusion maximal set with at lea8telements, such that for all, y € P there exists a chain
xr = x1,...,2, =y With {z;, z;,1 } non-Hausdorff for alli € {1,...n}, and letVy be a
sufficiently small closed neighborhood Bf Then, the spac&p\ P is Hausdorff and/p is
homeomorphic to a non-Hausdorff fan.

Proof. Since the interior of thé/, is Hausdorff only the boundary points of the images of
U, can be non-Hausdorff. Sing& is finite andP is inclusion maximal, we can takép
sufficiently small such that all points which are elements @fon-Hausdorff pair lie inP.
ThusVp\ P is Hausdorff. By taking possibly a smaller set we can asstnaiethe border of
the images of all set§,, for g € G intersected with/p are inModq(P). Since we glue the
setX alongU, one has thaV» is a non-Hausdorff fan. O

By the previous proposition we know how the one dimensiooedl orbit spaces look like
in the neighborhood of non-Hausdorff pairs. Thus, we nowsaer the neighborhoods of
points which do not belong to non-Hausdorff pairs.

Proposition 4.8. Let X/G be a one-dimensional local orbit space and |X /G| such that
x does not belong to a paifz,y} C |X/G| which is non-Hausdorff. Then, there exists a
closed neighborhootl, C | X /G| of = with U, homeomorphic to the closure of an open fan
in R? with 2 mapped to the origin under this homeomorphism (in partictlais Hausdorff).

Proof. For the proof of the proposition we take a preimage of X and see hows changes
this preimage. Let’ € X be a preimage of underMod. By the definition of a polyhedral
complex (see definitiof_IL1L0) there exists an openfaa U,, C X. Sinced is finite, we
can assume thaf, N U, is a union of interiors of faces @f,.. Letg € G be an isomorphism
with 2/ € U,. Sincel, andV, are open the fans,. andg(U,.) are isomorphic to each other
by the isomorphisrmgz,. Therefore, by identifying vig, we keep a closure of an open fan.
Thus, we now consider elemenjsc G such thatr’ ¢ U,. Sincex does not belong to a
non-Hausdorff pair, eithdy,. stays the same after gluing aloggr ¢ identifies faces of/,.

In the latter case, the space one gets by identification alesigtill homeomorphic to a fan.
Thus we can take the closutg of a subset oModG(Ux/) which fulfills the conditions. [

Remarkd.9. The spaceX is a metric space. Thus, by gluing aloGgve get a pseudometric
on|X/G|induced by the metric oX. Therefore we can speak about ball$¥yG|.

Lemma 4.10.Let X /G be a one-dimensional local orbit space and& P from proposition
4. Then we can take fdrp a set of the formB.(z) C |X/G|, where B.(x) is the ball
aroundz of radiuse.
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Proof. All non-Hausdorff pairs have pseudo-distance zero. Thiscan take a small ball
B(z) for Vp. O

Lemma 4.11. Let X/G be a one-dimensional local orbit space ande |X/G| be as in

propositiorf4.B. Then, one can take 1éy a set of the fornB.(z) C | X/G].

Proof. For U, as in the proposition 4.8 we can intersect this set with aldvadll B.(z). The
resulting set fulfills the lemma. O

Theorem 4.12.Let X/G be a one-dimensional local orbit spacea vertex ofl X/G| and
e € R sufficiently small. The neighborhodsl () is of one of the following two forms:

(a) a non-Hausdorff fan and. () contains exactlyP| different points which belong to a
non-Hausdorff set, wher® as in propositiofi.4]7.

(b) an open fan.
Proof. Follows from the previous lemmata. 0

To understand the Hausdorff restriction in chajbler 3 we idemsa proposition regarding
Hausdorffness.

Proposition 4.13. Let X/G be a one-dimensional local orbit space. The local orbit gpac
| X' /G| is Hausdorff if the quotient map: X — X/G is a morphism.

Proof. Assume thatX /G| is not Hausdorff. By theoremn 4112 there exist an element
|X/G| and a real number > 0 such thatB.(z) is a non-Hausdorff fan. Thus, there exist
a half open interval in definition’4.5 at which we insert atsteavo points. This interval is
constructed by identifying two closed intervalss in X except for one endpoint. Therefore
one haslim(é; (o) Né;(c)) = 1 and|é (0)\é1(d)] = 1. By propositiol3.25¢ is not a
morphism. O
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5 Moduli spaces for curves of
arbitrary genus

In this chapter we show that the moduli spaces of tropicalesiof genug have a structure
of tropical local orbit space. We use this structure to provefacts. First we show, that the
weighted number of tropical curves of degrdeand genug in R”, which pass through the
right number of points and which are mapped to a given poititermoduli space of genys
curves with no unbounded ends, is independent of the chofgasints. Secondly we show
that the number of curves of degréeand genug in R? passing through the right number
of points is independent of the position of the points. Thaptér is divided in three parts. In
the first (resp., the second) section we equip the moduliesphabstract tropical curves of
fixed genus (resp., the parameterized tropical curves al fpezus and degree RY) with a
structure of tropical local orbit space. In the last part wavp the two statements mentioned
above.

5.1 Moduli spaces of abstract tropical curves

Construction5.1 We construct a map from\1,,, to a tropical local orbit space in the fol-
lowing way. For each curvé' € M, let P, = {a4,...,a,} be an arbitrary collection of g
points of C' such thatC'\ P, is a tree. We define a new cur¢éwhich we get by cutting”
along P, and inserting two leaved; = z,, 5,1 andB; = z,; at the resulting endpoints of
each cutw;. This curve is an{n + 2¢g) marked curve (of genu®) with up to2g two-valent
vertices (at the endd; and B; fori € {1,---¢}). In the case we choose a markiagto
be at a3-valent or higher valent vertex, either the vertex adjatent; or to B; has valence
greater than two.

In order to embed\1, ,, into a tropical local orbit space such that the underlyinlylpedral

complex lies inR("%") we need a map. Since the target of this map will be a tropicalllo
orbit space, let us construct a polyhedral comptgy, and the set of isomorphisnds, ,, we
need for it.

Notation5.2 Forb € R* we denote by, 0 < ¢ < t, the:th entry ofb.

Let 7 be the set of all subsets C {1,...,n + 2¢} with |S| = 2. For the construction
we need the vector spadé,, which is isomorphic taR(">*)="¢ and which is given by
Vy = RUYY) /(@9 (R)+ < 24, ..., 2, >), where

29



Chapter 5: Moduli spaces for curves of arbitrary genus

Ao p As
/ Bs
By

Figure 5.1: Construction of @marked curve of genusfrom a0-marked genus-curve.

o R* — R, R(YY
b — (b, 0) = b [ (bl + bj){i,j}ETa
andz € R("2") 1€ {1,---, g} is a vector such that

1 if(i=n+2l—1orj=n+20l—1)andi #n+ 2l # j,
(z1);;, =94 —1 if(i=n+2lorj=n+2l)andi #n+2l—1#j
0  otherwise.

Let us now recall the definition of the tropical Grassmar@an..», from [SS]. PutZ[p| =
Zpir..ag), (1 <3 < iy < ... < ig < n)and letl,, be the homogeneous ideal Zip|
which consists of the algebraic relations amongdhe d-minors of anyn x n matrix. The
tropicalization of the ideal, 12, (see the first pages di [SS]), is the tropical Grassmanian
Gant2g- By theorem 2.5.1 of [Sp1] this is a tropical fan. We defineftiiowing subset of
Vyn. PUL

D, 4 Rr+29 R(Mfg)
b — (b +bj)igrer

It is known thatG, .2, contains the linear spacg, ,(R""%) (see [SS]). We denote by
e1,. .., ent2y the canonical basis @29 and we subdivide the cones 6f ..o, along the
hyperplane< @, ,(¢;),z >= 0,1 <1 < n+ 2g. The fanGs 9,/ P, ,(R""29) is simplicial
by theorem 4.2[SS]. Since, ,(R""29) is the lineality space df, .2, we have tha@s ,, .,

is a simplicial fan as well. Thus, each pointf a cones has a unique representatidnz; - v;

as linear combination of the minimdl—vectorsv; contained in the one-dimensional faces
of 0. Sinced,, ,(R""9) is the lineality space of, .2, there exists a cone’ with o C ¢’
such that one of those vectorsof o’ is @, 4(e;) or —®,, ,(ex) andk < n + 2g (for o it
might be that for somé < n + 2¢ neither®,, ,(e;) nor —®,, ,(e;) is in . In the definition
which follows we need’ to have a well-defined, (z)). Without loss of generality assume
that we ordered the vectors such that = k for i < n + 2g. We defineP;(z) to be the
projection ofz to the line®,, ,(R - e;) given by P (z) = z;, (resp.,—zy) for v, = &, 4(ex)
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Chapter 5: Moduli spaces for curves of arbitrary genus

(resp.,vxy = —@, 4(ex)). Then we put

Xgn = {re g2,n+29|Pn+2i71<x) + Ppioi(z) > 0,Vie {1,...,9}}/
(DI(R")+ < 2z1,...,24>). (5.1)

To describe a polyhedral structure &1 ,,, we take the cones i . »,, intersect them with
{x € Gonyogl Potoi1(z) + Pryoi(x) > 0,Vi € {1,...,g}} and project them td, ,,. The set
(P4 (R™)+ < z1,...,z, >) is the remaining lineality space 6% 2,

Example5.3. We consider the spack; ;. The Grassmaniag, ; is the spac&®?. The set
{x € Go3|P2(x) + Ps(x) > 0} is equal to the seft®; 1 ({(z1, 24, 25) € R*|zsa+25 > 0})}.
After dividing out the lineality spaceé®;(R)+ < (1,—1,0)" >) we get a ray without the
initial point.

Definition 5.4. Let (C,xy,...,2,) € My, and let(C,z1, ..., Zn, Tpi1s .- -, Tnizg) DE @
curve obtained by cutting'. We define

distp(C) = (distr (25, ;)i yer € R,

wheredistr(z;, z;) is the distance betweer) andz; (that is the sum of the lengths of all
edges in the unique path from to ;) in C. Setx, 21 = A; andzx, o, = B;, for all

i € {1,...¢g}. The symbol indicates that we consider the distancesrefi{farked abstract
or parameterized labeledmarked) tropical curves.

Lemma5.5. Let C' be a curve which we obtain by cutting a cur@e € M,,. Then
dlStI‘(C) € {.CC € gg7n+2g‘Pn+2i,1($C) + PnJrQZ'(.r) > O,VZ € {1, Ce ,g}}

Proof. Puty = distp(C'). Since each cycle has a positive length the pgities in the
interior of a cone spanned either By, (e, 12;—1) Or by @, ,(e,,42;) foralli € {1,...,¢g}.
Furthermore all edges have a positive length and thhudpes not lie in a cone spanned
by —@n,g(en+2i_1) or by _an,g(en—i—Qi)a and the ConditiorPn+2i_1(y) + PTH_QZ(y) > 0, Vi €
{1,..., g} isfulfilled. We only have to show thatc G, ,,.»,. Theorem 3.4 of|SS] states that
the fanGs .12,/ @, o(R"%) is equal to the spacé, . 2,. The curveC' does correspond

to a point inM, 42, since the only two-valent vertices are at the engs,, ..., z,42,.
These lengths are encodeddn ,(R"*%) and thereforey| € R("%”) /P, 4 (R™29) lies in
M pi2g- ThUSy € G pyiay. ]

The set?, , is a set of morphisms induced by the foIIowi(‘@*fg) square matrices.

Foralls € {1,...,¢}, put

1if ({i,7},{k,1}) = {m,n+2s — 1}, {m,n + 2s}),
or ({i,j},{k,1}) = {m,n+2s},{m,n+2s — 1}),

(£s) iy ey = or{i,j} ={k,l} andi,j ¢ {n +2s — 1,n + 2s},
orif {i,j} ={n+2s—1,n+2s} = {k, 1},
0 otherwise.
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Foralls € {2,...,¢}, put

(1 if ({4,5},{k,1}) = ({m,n+2s—1},{m,n+1}),
n+2#m+#n+2s,

or ({i,7},{k,1}) = {m,n+ 1}, {m,n+2s — 1}),
n+2#m+#n+2s,

or ({i,j},{k,1}) = {m,n+ 2}, {m,n + 2s}),

) B n+1#m#n+2s—1,

( 5/(1,3)(k,d) — or ({Zvj}v {kvl}) = ({m7n+ 23}7 {m7n+ 2})7
n+1#m#n+2s—1,

or{i,j} ={k,l}andi,j ¢ {n+1,n+2,n+2s—1,n+ 2s},
or ({i,j},{k,1}) = ({n+2s—1,n+2s},{n+1,n+2}),
orif ({i,j},{k,1})=({n+1,n+2},{n+2s—1,n+ 2s})
| 0 otherwise.

Foralls € {1,---,g}andp € {1,--- ,n+2g}\{n+2s — 1,n + 2s}, put

(1 if {i,5} = {k, 1},
or({i,7}, {k,1}) = {{p,n+2s},{n+2s — 1,n + 2s}),
or ({i,j}, {k.1}) = ({p, 5}, {d,n+ 25 = 1}), j # n+ 2,
or ({1, 7}, {k, 1}) = ({p, 5}, {p,n + 2s}), j # n + 2s,
aey o] oridh kD = ([ gk o+ 2 Lt 2s)),
P/ (i,5), (k1) n+2s—1%#j#n+2s,
-1 if ({¢, 5}, {k,1}) = {p,n+ 25 — 1}, {n+2s — 1,n + 2s}),
or ({i, jh Ak 1) = ({pr g}, Uom +253), j £ +25— 1,
or ({i, j},{k, 1}) = ({p, j} Ap,n+2s = 1}), j # n+2s — 1,
0  otherwise.

\

Before going on with our construction, let us understandigfemed matrices by the follow-
ing observation and propositions.

Observatiorb.6. The main idea in our definition comes from the rational case [&KN]).
After cutting the curve we get a new curve without cycles. §he distance between any
two points in the new curve is well-defined. Then, as in theonatl case we have to mod
out the image ofbY. In addition, we have to get rid of all the choices we maderduthe
construction of thel; andB; for 1 < i < g. These choices can be expressed by the following
four operations.

(&) The shift of the point; on one edge of the cycle (which corresponds to the addition of
an element ok z; >).

(b) Interchangingd,; and B;, which corresponds to the matrix

(c) Interchanging; anda;, which corresponds t; (interchanging:; anda; can be done
by a product of matrice$;,l € {1,...g}).

(d) The pointa; jumps over the vertex adjacent to an unbounded gdg&he matrix
corresponding to this operation is eithef or (A/!)~! depending on the position of
A; and B;. If the pointa; jJumps over a bounded edde, the matrix corresponding
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to this operation is the product of all matriceM;)il wherep is connected with®
by edges not intersecting the cycle. (If we want to changecthe; of the curve in
figure[51 from the upper edge to the right edge we have to apfly M to the
corresponding point in the parameter space).

Proposition5.7. Let us fixn, g ands in N, with s < g. The group< M;|p € {1,--- ,n +
2g3\{n + 2s — 1,n + 2s} > is commutative.

Proof. To prove the commutativity, it is enough to show that any twoeyators of the group
commute. Denote by, p’ two different elements of1, - -- ,n + 2¢g}\{n + 2s — 1,n + 2s},
by A (resp.,B) the element. + 2s — 1 (resp.,n + 2s), and byo ando’ arbitrary elements of
{1,---,n+2g}\{n+2s—1,n+2s,p,p'}. Denote by, ,, the coordinates ir("2). The
matricesM,; and M, are defined in the following way.

The matrixM; is given by

/

T Tpo LpA TpB Tp,o Lp,A Lp B Loo TLoA LoB TAB

—1

bS]

o
—_
o
—_
|
—_
o
o

0 1 .T}p,p/

I
—_

I
—_
—

Tp,o
Tp,A
Tp,B
Ty 0
Ty A
Ty B
Lo,o

I
—_

Lo, A
Lo,B
TAB

s Nien M es M s M s B en B s i an B an W e N = SN
DO OO0 OO
DO OO OO O O
DO OO0~ O
DO DD OO R OOO
DO OO R OO OO
DO OO OO OO0
OO OO0 OO0
OO H OO O -
O OO O OO
_— o OO o O o

and the matrix\Z, by

/

T Tpo LpA TpB Tp,o Lp,A Lp B Loo TLoA LoB TAB

b,p

1 0o 1 -1 0 -1 1 0 0 0 1 Tp
0 1 0 0 0 0 0 0 0 0 0 Tp.o
0 0 1 0 0 0 0 0 0 0 0 Tp A
0 0 0 1 0 0 0 0 0 0 0 Tp.B
0 0 0 0 1 -1 1 0 1 -1 1 Tyl o
0 0 0 0 0 1 0 0 0 0 -1 Ty A
0 0 0 0 0 0 1 0 0 0 1 Ty B
0 0 0 0 0 0 0 1 0 0 0 Toof
0 0 0 0 0 0 0 0 1 0 0 To A
0 0 0 0 0 0 0 0 0 1 0 To.B
0 0 0 0 0 0 0 0 0 0 1 TAB

SinceM, - M, = M, - My, the group under consideration is commutative. O
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Proposition5.8. With the above notatiord/; acts as identity on the elementg @, (R" )+ <
21,...,24 >). The matrixT; interchanges:; and z, and is the identity or{®? (R")+ <
oy By >). The matrix/, acts as identity ofi®? (R")+ < z1,. ..,zAS,...,zg >),
and one hasI (zs) = —2Zs.

Proof. The statement fok/; can be proved using the presentationlgf given in the previ-
ous proof. Sincd, andT} only interchange entries of the vectors, one can conclualethie
proposition holds. O

The setH =< T, I,, M} > is alinear group and sindg - M - I, - M =T} = I? = Id the

elements o areZ-invertible. Thus, they define isomorphismsRh 2 ). By proposition
they define morphisms drj, ,, as well. Now we take the subset of matrides= H

for which there exists a non-empty open polyhedral subceriplof X, such that for all

x € U, the vectors: andh(z) are the distance vectors of curves resulting from cuts of the
same curve, and we denote this sethyWe label the set of induced morphisms (foe G
andU from above we have a morphism frothto 2(U7)) by G. (Remark: for eacl there

are many different choices ¢f]|.) This set has the following (partial) ordek; < h, if

|Un,| C |Us,| and h2||Uh1| = hy (U, is defined in31). Letd,, be the set of maximal

elements of7 with respect to this order. The elements we need are the risonglinduced

by {Ts, I,, M, } together with the elements 6f, ,, such that conditionéa), (b), (c) and(d)

of definition[3 hold. Note, that the morphisms are inducgdnatrices and therefore the
conditions for the set of isomorphisms in definitlonl3.1 carfudfilled by elements ofy, ..

We denote this set bg/,,, and want to use it as set of isomorphisms for the construction
of a local orbit space. Therefore, we have to show g} is finite. TakeX,, with the
polyhedral structure mentioned above. First we need to sti@atvonly finitely many points

in X, ,, represent the same cur¢e Each of they cuts has to be at a different edge©f
Thus, the number of possibilities we have for the choice orclwledges we cut is finite.
The position of a cut; on an edge is divided out by the vectos;. Thus we have at most
two possibilities to inserfl; and B; on £ to get a different representative of the same curve.
Therefore, the number of points representing finite and bounded by the numb(é?') -29,

with | E| the number of edges i@. If h € G, is defined o € o, 0 € X, thenU;, D o°,
becausé is linear andU, is open. Since the number of cones is finite and the number of
represents is bounded we get, that, is finite.

Lemma5.9. LetQ andC’ be two curves resulting from two different cuts of a cufizeThe
images ofC' andC” in X, ,, are identified by elements 6f, ,,.

Proof. During the proof we will denote bﬁ (resp. C") the curve and the corresponding
pointin X, , given by the distances. Sin€éand(” are results of cuts of the same cue
there ems‘a,y e {1,...,g} such that the path from, to B; in C' and the patt’; to B} in

C’ contain an edgé (resp.,S’) coming from the same edgéin C. First of all we can use
the matrices; and7; for the curveC’ to assume = j. Let K be the set of marked points
adjacent to the (unique) path frof) to the middle ofS. The curve[ [, M; - (C") comes
from a cut witha, on E (for this we need propositidn.7). Without loss of gengyalie can
directly assume that; € E. Similarly, we can also assume thate E. By applying/; if
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necessary we can further assume-= a;. Denote byl the curve we get by cutting’ ata;

and inserting new edges$; and B; at the new ends. Since the cun@sand(’ are results of

cuts of the same genug-— 1) curve, we can repeat our arguments and show that the images
are the same under elementgdf,,. O

Remark5.10 Let o be a facet ofX, ,, where a point in the interior corresponds to a curve
which has exactly loops (a loop is an edge forming a cycle). The&gt, contains at least
2" elements which are the identity on (If A; andB; be on one of those loops for< i < r,
then we get thaf; is the identity ono. Since the group generated ¥y, ..., .} has2"
elements the statement follows.)

Remark5.11 For a better understanding, we describe the morphisms éfgm Let C be

a curve of genug with n marked ends, and let us orient each edgé'ofLet « anda’ be
two cuts ofC as stated above (cuttingcycles). By contracting all edges fro@ except for
those cut by eithes or «’ (and not by both) we get a new cur¢eé Each suctC, together
with the position ofz anda’ on C, the information which; and A’ lie on the same edge and
whether their orientation agrees, describes and is dmb[jbiquely by an element @f, ,

if n or g are greater than one. We begin by defining a morphisorresponding to this data.
Let A; and A be cuts on the same edge. Usifigand/; first define a matrix which swaps
A; and A4; such that4; lies on the same edge a4 and such thatl; and A’ have the same
orientation on the edge. Following the idea from lenima 5.%hen multiply this matrix
by the matrix which identifies the cur¢e cut by the changed with the curveC' cut by«'.

As sourcel, of the corresponding morphism we take all points which gpoad to curves
containing the edges @f and the unchanged cut(where the cuts of are on edges af as
well; for this remember that we probably removed edges wiidnas cuts at the same edge).
The targetV/, (see definition_3]1) are all points which correspond to a €wantaining the
edges ofC' and the cut’. By commutativity (see propositidn5.¢)is well defined for all
those points (the producﬁpeK M;‘ in the proof of lemm#&15]9 are defined if the elements
of K are all marked ends of one component of the curve cutaatd A; or equivalently if
the curve contains the edges(j. FurthermoreJ, is open since we take all points where
the edges o€ are positive. Finally the set of points wheyés the identity is closed since
being the identity is a closed condition and simcehanges positions of cuts and therefore
can not be the identity for elements where one of the edgéstiEficomes). We take the set
of morphisms such that definitidn8.1 is fulfilled and the niesms we constructed fulfill
this definition. Thus, it remains to show that the above qoietibn is one-to-one. Since the
elements ot/; andV; correspond to cut curves we can constitict: anda’ for an element

[ € G,,. Forn or g greater than one there exist curves with at least two bousdgds
for each cycle (foy = 1 andn < 1 we havel; = id andid = M} if n = 1)). Thus the
construction is unique. If a cycle contains only one edgetientation makes no difference.
In particular, if A; lies on this cycle one getls = id for this point.

To illustrate the construction of the previous remark westder the matrix\/; .

Example5.12 Each point corresponding to a cut curve which contain theegdtpown on
the left hand side of figule 8.2 are mapped undérto a point corresponding to a curve with
the edges shown on the right hand side of figure 5.2.

Lemma&5.13 The setG,,, described above fulfills all conditions of definitianl3.1.
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Al Bl

X X

B
Aj

Figure 5.2: A curve cut two times at neighboring edges.

Proof. The elements ofy,, are restrictions of group elements such that the source and
the image are inX,,. Thus, conditionga) and (b) are satisfied. Ley € G, and let
F=A{fi,....fa} C Gyn, g € Gy, with g7 (|U;,]) # 0, forall 1 < i < n. We have to
show that there exists = {h,...,h,} C G, , with|F| = |H| suchthal,, > ¢~ '(|Uy,|)
andh;[g-1qu,. ) = fi © glg-1(u,,) for 1 < < n. Since by construction dof, , there exists
always an element; with hi|gfl(|Ufi|) = f;o g|gfl(‘UfiD it suffices to prove the case where
Vo Uy, = VyN Uy and fi o glg-1u, ) = fi© glg-1quy,) for 1 <o < n (we have to show
that differentf; lead to differenth;; if one of those equations does not hold, then either the
domain or the image df; differs from the domain orimage @f). The seti, ,, is induced by
matrices, thug and f; correspond to matrices and F;. We defineh; to be the isomorphism
defined by the matrid{; = F; o G. Since all matrices are elements of a groupfgllare
different for differentl < i < n. Thus, by definition alh; are different and thereforg)
holds. Conditiond) holds since we tak&), as big as possible. O

Let us makeX, ,,/G, ,, into a weighted local orbit space by setting all weightsip, to be
1.

Definition5.14 With the notations as before we put

S: My, — Xgn/Ggn

(Cyxqy...,x,) — [(distp(C)]
whereC is a curve we get by cutting.
Remarks.15 By lemmatd 56 and 3.9 the mapis well defined.

Proposition5.16 Let X, ,,G,, and M, , be as above. Thefi : M,,, — X,,,/G,.,
(C, 1, ..., 2,) — [(distr(z;, 25)) ] j3e7 IS @ homeomorphism.

Proof. The mapS is defined by taking the distances of marked points, thusaitisntinuous
map. Since the metric oM, ,, is given by the lengths of edges, the méps open and
closed. Thus it remains to show thais bijective.

Let us first prove the injectivity of. For this we take” andC'in M,,,, with S(C') = S(C).

By definition the curves io\,, ,, are uniquely defined by the lengths of their bounded edges.
Therefore, the curves are uniquely defined if we fix the lesgftthe edges of the cut curve
(but not the other way round). Thus, the curve is uniquelyngefiby fixing its image in
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Gant24- SiNceG,, , only identifies elements which come from the same curve weatancut
curvesC’ of C' (resp.C” of C) such thatlist(C”) = distp(C") in X,,.. Thus the difference
of the two elements has to be ¥ (R")+ < z,...,%, >. All curves which differ by
elements ok z,..., 2, > come from the same curve by moving theoints{a,, ..., a,}.
The elements of¢ (R™) only insert a new length at the marked edds, ..., z,}. Thus,
one hag” = C.

To prove the surjectivity note thatt, .2, is homeomorphic t@s .9,/ ®, ,(R""29). Let

r € X,,/Gyn. We take a representativieof x in X, and denote its image X,/
®,, ,(R"*29) by [z]. By the mentioned homeomorphism we can construct a uniqoe cu
C' € My, Which is identified with[z]. Now we connect the poinfs],,, 1 and[x],, o

fori € {1,...,g} with an edge:; of lengthz,, 1 2; 1 ni2i-1 — [Z]ni2i-1.n+2; @nd remove the
edgegz|,42,—1 and|z],4-. The resulting curve belongs 01, ,, and is mapped te under
S. ThusS is surjective. O

Proposition5.17. The weighted local orbit spac¥, ,,/G, , is a tropical local orbit space.

Proof. By propositior 3,18 the balancing condition is clear, sigg. -, is a balanced fan.
L]

Example5.18 We consider the moduli spacet; ». To compare it with the construction of
an orbit space see remarkl7.6. The polyhedral complex undgthe moduli space consists
of the following cones (the entries of the vectors dfe,, z»), d(x1, A), d(x1, B), d(x2, A),
d(xq, B), d(A, B)).

1 1 1
1 0 1
1 1 1
Cy={a- 5 +5b- ] la,b € Rsg,a > 0},Cy ={a- 5 la > 0},
0 0 0
2 1 2
1 0 0
1 1 1
1 0 0
Cg—{a 9 +b- 1 |a,b€R20,a+b>0},C4:{b- 1 |b>0},
0 0 0
2 1 1
0 0 1
1 1 2
1 0 0
C5Z{Cl 1 +b- 1 ‘CL,Z)EREQ,()>O},C6:{CL' 1 |CL>O},
1 0 1
0 1 2
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X1’2 C Cl\‘€3/ """""""""" 1

\ Cs

Figure 5.3: The polyhedral complex and the topological s\ 5.

1 1
2 1
0 0
C7Z{CL' 1 +b- 0 |a,b€R20,a>0},

1 1
2 1

1 0

2 1

0 0

Cs =A{a- 1 +5b- 1 la,b € Rsg,a+b> 0},
1 0
2 1

Since the space}(R?)+ < z; > which we mod out is three-dimensional the actual picture
is three-dimensional. A picture of the polyhedral compkegiven in figurd 513. The set of
morphisms in the tropical local orbit space identifies theesg’, andCy as well as the cones
C1, Cs, C7 andCg. Thus the topological space underlying the tropical lochkitspace is the
same as the union of the con€g, C3, C; andCs5 (in figure[5.3 one can see the topological
space of the quotient).
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5.2 Moduli spaces of parameterized tropical curves

PutX®h . = X, nxR"xZ] x...xZ}, whereZ!, i € {1,..., g} denotes a copy & (for
the connection betweenand N see chaptdr 2X, v is defined in equation5.1). We define
G 1o be as set in bijection withy, y. For eachf e G}, we denote the corresponding
element inG, v by f*, and we put/; = Up- x R" x Zj x ... x Z;. Now we want to define

a map for eaclf € ijb Sincef is induced by a matrlx it suffices to define operations on
the generators aoff, mentioned aboveH is defined after the proof of propositibnb.8). We

then take the operation defined by the product. We denotepération on the component

Z7 x ... x 77 by ty and define it forv', ..., v9) € Z] x ... x Z; as follows:
1 i—1 i i+l 1 i-1 il
Lo, o070t o oo 0d) = (v, .0 =t ot L 0d)
1,2 i—1 i i+l P2 i—1 1 i+l
Ti(v v, o0 oo ) = (et ot e ot L uY)
Qg1 i—1 i i+l 1 i—1 i i+1
My(v, .00 0 ) = (v u T = o(g), 0t )

(v(x,) is the direction ofz,, see chaptelll2)Letr,b,v,...,v9) € X2, . then we put

flz,bol, o v9) = (f*(x),b, ty(v!, ..., 09)). As topologyo Xleb . .. We take the product
topology of X, n, of theZ] and ofR", where we considéet] Wlth the discrete topology and
R" with the standard Euclidean topology. Since we need a fieit®fspolyhedra we refine
Xlab | to be the subset oKy x R" x Z] x ... x Z] given by |(v)),| < 3=, 4 |v,| for
1<1<g,1<s<r.

Remark5.19 The pointb is the image ofr; underh in R”, i.e. b = h(x;) (see definition

Z17).

In the case of rational curves it was possible to define theuthegdace of stable maps to be
the product ofR” and the moduli space of abstract curves (see [GKM]). In tise cd higher
genus this is not any longer possible. The cycles cause tidgmn (see chaptél 7). Take a
curveC' and cut it atg points as above. We want to map the abstract tropical curderun
h in R". Therefore, we have to fix a direction vectorZsi for each cut (the directions of
the vectors atd; and B; are opposite each other). Now we can define the image under
the cut curve. Unfortunately the image of the cut cycle donesd to be a cycle, since we
allowed arbitrary lengths for the edges. To ensure themipsf the cycles we take rational
functions. These functions are given in the following prsigon.

Proposition 5.20.Forall 0 < i < r, 1 < d < g, we have a function

d . lab
gl X, R
N

1 .
(a,b,v',... v9) max{j: Z Ak, N+2d} — a{k,N+2d—1}) v (1)
k=2

g

+ E (a{N+2k71,N+2d} — Q{N+4+2k—1,N+2d—1}
k=1

—a{Nt2k,N+2d) T AN12kN+2d-1}) - 0" (D))}

which is rational ¢ = [af12}, - - ., G{ni29-1,N42¢}) @ND WE pULL,,, ,, = 0 @Nduy, = v(x)).
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Chapter 5: Moduli spaces for curves of arbitrary genus

Proof. The only thing we have to do is to show that is well defined. Thus, we have to
show thatp{([z, b, v]) = ¢f([z + s +t,b,]), for all [,b,0] € X;akm, S €< 51,..., 85 >

andt € ®¢(R"). Note, thatpd([z, b, v]) = ¢¢([z + s,b,v]), becaus&_r_, v (i) = 0 and

(a{N+2k—1,N+2d} — Q{N4+2k—1,N+2d—1} —Q{N+2k,N+2d} T a{N+2k,N+2d—1}) =0

for each vecton in < sy, ..., s, >. Furthermore we have

(&{k,N+2d} - a{k,N+2d71}) Uk(l) = Q{N+2k—1,N+2d} = Q{N4+2k—1,N+2d—1} =

= Q{N+2k,N+2d} = O{N+2k,N+2d—1} = 0

for all a € ®9(R™). Thus,é([z,b,v]) = ¢¥([z + s +t,b,0]) for all [z,b,0] € X2,

s €< s1,...,5, >andt € ®(R"). O

Remarks.21 Letz € X'2P , . The value?(z) is equal tanax{+((ev 4, )i(z)—(evp,)i(z))}

g,n, A"
whereev 4, () (resp.ede( )) are the positions ofi; and B, in R" (see proposition 5.23).

Now we want to show thaft[5_, [];_, ¢f - (X125 . /G'2%)) is well defined. For this we have

to show thaf[ [%_, ¢¢ - (Uy) = Hg L & - (h(Uy)).

Proposition 5.22.Foralli € {1...r},z € X*> | ‘andh € G} one had[)_, ¢¢- (Uy) =
[T5=, & - ((Uw)).

Proof. Since the elements «ifl“?\, act as matrices on the componeéq, we can, instead of
proving the proposmon show thatfor dlle Handz € V =V,, x R" x Zj x ---Z; one
has[9_, ¢¢ - (V) = [I%2, &% - (f(V)) (f and¢¢ are defined canonically oW, becausg”
is a matrix onV/, ,, and thep? are as well rational maps dn). Since the matrices, 75, M;
generated, it suffices to prove it for these matrices.

Thus, let us see how these matrices change the result([Ru;, . . ., a(n129—1,N+2g}): O,
vl ..., v9) = z. First, we consider the matrik andd # s:
¢§l([s([a{1,2}7 e 7a{N+29—1,N+29}]7 bv',. .., v9))
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N
1 ,
= - max {:I:§ < E (a{k,N+2d} - a{k,N+2d71}) ur (i)

k=2
g
+ Z (a{N+2k71,N+2d} — Q{N+2k—1,N+2d—1}
k=1k#s
k .
—Q{N+2k,N+2d} T a{N+2k,N+2d—1}) 0" (1)

+ (a{N+2371,N+2d71} — Q{N+2s—1,N+2d}

—Q{N+2s,N+2d—1} + CL{N+2s,N+2d}) : (—Us(i))> }

N

1 1 )
= 5 max {i§ <Z (age,N+2ay — agent2d-13) Vi(2)

k=2

g
+ E (CL{N+2k71,N+2d} — Q{N+2k—1,N+2d—1}
k=1

—Q{N+2k,N+2d} + a{N+2k,N+2d—1}) Uk(l)) }

= (25?([&{1,2}7 oy AYN429—1,N+2g}]» D; Ul, co ).

Ford = s itis the same as the genugase, considered in chapfér 7.

Now we consider the matriX,. For1 # d # s only the order in the second big sum¢f
changes which does not effect the result. Furtijeand¢; are interchanged biy,. Since the
intersection of a product of rational functions does notestepon the order (see proposition
BIQ)1 one getﬂg:1 gbf ) (V) = 2:1 ngl ) (TS(V)).

At last consider the matrix/;. The calculations foN +2d — 1 # p # N + 2d are the same
as for genud. Thus, as in chapté&l 7 we get the equality

(b?(M;([a{l,Q}’ ces ,CL{N+29—17N+29}], b, Ul, o v)
— (bf([a{m}, e ,CL{N+29_17N+29}], b, Ul, . 7’Ug) = 0

It remains to show the cas@§+ 2d — 1 = p or N + 2d = p. Since the product is invariant
under/,; we only considetN + 2d — 1 = p. We put

d g
Z = Z (a{k,NJr?d} - a{k,N+2d—1}) Uk(l) + Z (a{N+2k71,N+2d}

N
i k=2 k=1

k; .
—Q{N+2k—1,N+2d—1} — Q{N+2k N+2d} T a{N+2k,N+2d71}) - v"(i)

and get

Qb?(M;([a{l,z}’ ces ,CL{N+29—17N+29}], b, Ul, o v)

- ¢?([a{1,2}7 ooy A{N42g—1,N+2g} ), D, vl 09)

41



Chapter 5: Moduli spaces for curves of arbitrary genus

N
=2

1 1
= 5 max {ié <XZ: + kz: —(@gk,N425—1} T ON+2d—1,N+25} T O{N25—1,N+25}

—Q (s, N+25} — Q{N+2d—1,N+25—1}) * Uk (d)

+ Z (_(a{N+2k—1,N+25—1} + Q{N+2d—1,N+2s} T Q{N+25—1,N+2s}
k=1,d#k+s

—O{N42k—1,N+25} — Q{N+2d—1,N+25—1}) T Q{N42k,N+25—1} T A{N42d—1,N+2s}
+CL{N+25—1,N+25} — Q{N42k,N4+2s} — CL{N+2d—1,N+25—1}) : Uk(i))

+2 (A(N2d,N 1251} + Q{N+2d—1,N+25} T QN+25—1,N+25}

—{Nt2d,N+25} — O{N+2d—1,N+25-1}) - (V(7))

(CL{N+25—1 N+2d} — O{N+2s5—1 N+2d 1}

—Q{N+2s,N+2d} T Q{N+2s N+2d— 1}

- (—v'(®)
+2a({N+25-1,N+25} * ( ) } % {i% Z}

o) )

The last expression is equalador []4_, ¢¢ for the following reason. Since the intersection
of a product does not depend on the order (see propoEifi@) & can first intersect with
¢s. For points in this intersection the supj; is equal to) and we are done. 0

Now we can define the tropical local orbit space we are intedes by constructing the
tropical local orbit space cut out by the rational functigns

lab r d lab lab
Mgntrop HHgb XgnAr Gg,N)'

d=1 1=1

The set of cones oM@, _ (R", A) is denoted b 2 A The rational functions assure

that A* and B’ are mapped to the same point foral {1,...g}.

5.3 The number of curves is independent of the
position of points
In this section we use corollafy_3141 to prove that the nundferertain tropical curves

passing through given points is independent of the posdfgroints. Therefore we have to
define a map fulfilling the requirement of corolldry 3.41.

Proposition 5.23.For j = 1,...,n the map

lab r
XgnAr - R

(F, T1,...oN,h) — h(z;)
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Chapter 5: Moduli spaces for curves of arbitrary genus

is invariant under the sef, .

Proof. The mapev; is given by

N g
1
evj(r) = b+ B <Z (ary — agry) vet Z (e, N+2t-1)
k=2 k=1
—Q(Nt2k-1,} — Q{1 N+2k} + A N+2k}) ¢ (Uk)> : (5.2)

Since I, and T only change the order of the sum, we only have to prove inmaedor
M;. The maps are defined for the curves cut alang ..a,. Thus, let us take a point
C e X';‘EL A, Which represents a curve with cuts at each cycle and provefteavaluation
maps are invariant for those (i.ev;(C') = ev;(M,;(C))). We can treat such a curve as a
genusl curve cut atu,. For this case the equation is the same as the equation fasgen

curves in chaptdn 7 wittV + 2(¢g — 1) ends and thus the proposition follows. O

Definition 5.24 (Evaluation map)Forj = 1,...,n the map

ev, : M® (R",A) — R"

g,n,trop

(Cyzq,...2n,h) — h(x;)

is called thej-th evaluation magnote that this is well-defined for the contracted ends since
for them~h(z,) is a point inR").

Proposition 5.25. With the tropical local orbit space structure given aboves evaluation
mapsev; : M};gtrop(Rr, A) — R" are morphisms of local orbit spaceR'(is equipped with
the trivial local orbit space structure).

Proof. We have to show that far= ev; the conditions in definition 3. 21 are fulfilled,(= e
ande, the constant map). The conditio(ts - (c¢) are clear, since, is a constant map. The
mape; is continuous and conditiorig) and(g) follows, because the image of each cone is
the wholeR". Furthermore(e) is the same as in the case of fans treate@ in [GKM]. Finally,
propositior 5.213 provesf) and we are done. O

Definition 5.26 (Forgetful map) Letn > 1 andg > 0. We define theforgetful map
ftn + My — M, to be the projection given by, — V;, (projection to the las{®)

coordinates). The induced forgetful map.efh (R, A) to M, is denoted byfty as
well.

Proposition 5.27. The mapft, : Mlgajgtrop(Rr, A) — M, is a morphism of tropical local
orbit spaces.

Proof. It follows from the fact thatft,, is a projection, respecting the polyhedral structure.
]

Proposition 5.28. The mape = evy x - - X evy, X fty : M (D(R7, A) — R™ x M, is
a morphism of local orbit spaces.
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Proof. By proposition§ 5.25 and 5.P7 the evaluation maps and thyefod maps are mor-
phisms. By lemm&3.27 the conditioadill f of definition[3.21 are fulfilled. We only have
to show that conditiory is fulfilled as well. By definitioné ([5])\é:1([c]) C u(e). Thus,
the points iné; ([c])\é:1([o]) are only in the boundary of non-closed faces (see propasitio
[3:30). The points in the boundary of non-closed faces arpairs for which cycle-lengths
are zero. Since these points do not lieliy, , one has that; ([5])\é;([o]) is empty and thus
conditiong holds. O

If we fix a degreeA and a genug > 0 and count tropical curves IR"” we want to count a
finite (non-zero) number of curves (i.e. the space of theidensd curves passing through
given points should beé-dimensional). Thus, we have to take the right numbef markings
such thatMp> | (R”, A) andR™ x M, , have the same dimension. The dimension of

ij'g,tmp(Rr, A) is given by the number of inner edges (each inner edge hagyth)gnius
r (position of h(z;)) minusrg (because of theg rational functions). The dimension of
R™ x My oisrn+ 3g — 3 (resp.rn + 1) for g > 1 (resp.g = 1). Thus,n has to satisfy the

following equality:

#A+n+39g—-3+r—rg=rn+3g—3 & r+n+#A—-rg=rn
#A+n+tr—r=m+1 & #A-1=(r—1)n,forg=1)

Theorem 5.29.Let r > 2, let A be the degree of a genuys > 0 tropical curve inR",
and letn € Z-.q with g + n > 2 be such that + n + #A — rg = rn for g > 1 (resp.,
#A — 1 = (r — 1)nfor g = 1). The number of parameterized labeledanarked tropical
curves of genus with fixed typel" € M, , which pass through points in general position
in R", counted with the multiplicities of corollafy"311, is immEndent of the choice of the
configuration of points and the choicebf

Proof. The mapev; x ... xev, x fty is by propositiof’5.28 a morphism between local orbit
spaces. By definition the domain and the target space are shiine dimension. The space
R™ x M, is strongly irreducible since all codimensiarfaces of M, are attached to
three codimension-faces andM,  is irreducible. The morphism is surjective because of
the balancing condition. Thus we can apply corollaryB.4debthe statement. O

Let us fix the notation as above. To have a finite count of gedarves passing through
points,n has to fulfill the following equality:

#A+n+3g—3+r—rg=mm & #A+(1—-g)(r—3)=—1)n.

Theorem 5.30(Theorem 1 in[[M1], Theorem 4.8 ih [GM1]Let A be the degree of a genus
g > O tropical curve inR? and letn € Z-, be such thatA + g — 1 = n. The number of pa-
rameterized labeled-marked tropical curves of genyqcounted with multiplicities) which
pass through points in general position ifiR? is independent of the choice of the configu-
ration of points (the multiplicity of a curve is defined to be tweight of the corresponding
cone inM?> " (R?, A)).

g,n,trop
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Proof. By proposition[5.25 the evaluation maps are morphisms amin@[3.2V implies
that conditionsu till f of definition[3.21 are fulfilled for the map = ev; x--- X ev,, :

M op(R?,A) — R, By dimensional reasons the imageis-dimensional. Thus, to
apply corollaryC3.41 we have to show that conditipaf definition[3:Z1 holds foe and that
dim (R*™\é&; (M) op(R?, A)])) < 2n — 2. The tropical local orbit spadg*" (we put all

weights to be one) is irreducible and thus it suffices to shtwat torc € X , , one has

dim(é ([o])\é1([o])) < 2n—2 (the image is a tropical fan. ffim(é; ([c])\é:1([0])) < 2n—2,
then by irreducibilitydim (R*™\é, (M2~ (R2, A)])) < 2n — 2 holds as well. Further-

g,n,trop

moreé; ([o])\é:1([o]) contains the sets ify) of definition[3:Z1 which must have dimension
less than or equal tdn — 2). The map is linear on each cone. Therefore, a poinan
only be iné;([o])\é1([o]) if there exists a Cauchy sequengg),en C M, (R? A)
with lim, oo z; ¢ M@ (R? A) andlim; .. & (z;) = 2. Thus, we have to study the
case where we diminish the cycle length to zero. Thus let usider a sequendg’;);cn

of curves through arbitrary points where we move the poimtshirink the cycle to a point
p. These curves are represented by points in the moduli spai?%trop(RQ,A). Since

M L op(R?, A) consists of finitely many cone&(;);cn contains a subsequence which lies

in the interior of one cone. Eitherdim(o) = 2n or dim(é;([o])\é1([o])) < 2n — 2'is
fulfilled. Assume that the cone is of dimensior2n. Thus, the cycle of each such curve
(C,h,z1,...,2,) has to be seen in the imagéC'). For the sake of contradiction, assume
that dim(é;([o])\ é1([¢])) = 2n — 1. Then no marked point can be on the cycle we are
shrinking, because this would lead to a codimengitace. The edges adjacentiitnave the
same direction as the edges which have been adjacent torihkisg cycle before. Thus,
the dual polytope op in the limit curve has an interior lattice point and we caremsgain

a cycle atp. All curves we get by inserting a small cyclezabre mapped to the same point
undere;. Hence, the map is not injective on the face with the shriglaycle (which is a
contradiction talim(é; ([¢])\é1([¢])) = 2n — 1) and we are done. O

Remark5.31 In the previous proof we need the assumptioa: 2 since we use the dual
polytope in our argumentation. Fer> 2 the tropical curve is not a hypersurface and thus
the proof does not work in this case.

Example5.32 Let us consider two examples to see why we need the assumptiof in
the proof of theorerfi 5.30. Figufeb.4 shows a curv®nand shrinking of the cycle of

Figure 5.4: A curve irR? where we shrink the cycle length o

this curve. The right hand side represents the limit curnaapossibility to insert again a
cycle. All curves with a cycle congruent to the dashed onelthg same image under the
evaluation map.

Figure[5.b shows a curve IR where we shrink again the cycle to a point The directions
of the curve arer; = (—4,1,—1),2o = (1,-2,0),2z3 = (2,1,—1),z4 = (1,0,2). Fixing
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one more direction determines all directions (becauseeb#iancing condition). Thus, let
us choose the direction éf to be(—2, 1, 0). The continuous lines lie in they-plane and the
others do not. It is impossible to insert a cycleFasimilar to the case in figuie 5.4 (without
movingz; up tox, in R3).

X2

Figure 5.5: A curve irR? where we shrink the cycle length o
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6 Orbit spaces

In chaptefB we gave the definition of a tropical local orbaespX /G. The main disadvan-
tage of this definition is tha¥ is not a group. Because of this we had to solve many technical
problems. In this chapter we will change the definition of@larbit space into a definition

of an orbit space by requiring th&ét is a group. The great disadvantage of doing this is,
that we no longer can assume tiéator GG are finite. This is due to the fact that we want to
give moduli spaces of elliptic curves the structure of ospiéce. In our construction (which
seems to be natural, see chapier 7), the comfglexd the groug- are infinite. Nevertheless

in the cases where we can deal with infinity the calculatioreseasier than for local orbit
spaces because of the group structure.

In the first part of this chapter we introduce the notion optcal orbit space. Orbit spaces are
polyhedral complexes with a group acting on them. The wargital refers as usual to the
appearance of a balancing condition which a priori dependfi® group. Nevertheless, we
will see that the balancing condition of the tropical orlpiase can be checked by considering
only the polyhedral complex. After this we introduce mogwhs of orbit spaces in the second
part, and prove a fact concerning those morphisms (seelagyr@.Z9). One can use this
corollary as a tool for proving tropical enumerative staets.

6.1 Tropical orbit space

Definition 6.1 (Orbit space) Let X be a polyhedral complex an@ a group acting on.X |
such that eacly € G induces an automorphism oxi. We denote the induced map of an
elementy € G on X by ¢(.) and the induced homeomorphism [o%)| by ¢{.}. We denote
by X /G the set ofG—orbits of X and callX/G anorbit space

Remark6.2 The topological spaceX/G| = |X|/G of an orbit spaceX /G is Hausdorff
sinced is a group.
Example6.3. The following example shows the schematic picture of thelogical space

of an orbit space with trivial group’ and the open fans,, for all 0. The groupG is trivial
and thus the orbit space is the same as the polyhedral coifigleX = X/G).
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Chapter 6: Orbit spaces

Take forG the group with two elements, consisting of the identity amelmap which maps
the upper half circle to the lower half circle and vice verad ahich let the ray fixed. The
picture of| X'|/G is as follows:

Definition 6.4 (Weighted orbit space)Let (X,wx) be a weighted polyhedral complex of
dimensiom, andG a group acting oX . If X/G is an orbit space such that

e foranyg € G and for anyr € X™, one hasvx (¢) = wyx (g(0)),

we call X/G a weighted orbit space The classe$r] € X/, for o € X™, are called
weighted classes

Definition 6.5 (Stabilizer,GG,—orbit of 7). Let X andG be as above and o € X. We call
Gr = {g € G|g{x} = v foranyz € 7} thestabilizerof 7. We defineX,,, = {g(o)|g €
G} to be theG . —orbit of 0. By |G| (resp.,| X,/,|) we denote the number of elements in
G- (resp..X,/-).

The weight function on the weighted classesX0fG is denoted bylw] and defined by
[w]([o]) = w(0)/|G,], forallo € X,

Remark6.6. We could define a weighted orbit space as well by giving anteflmce and a
weight for each class instead of defining the weights of thé space by the weights of the
complex and the group action.

Definition 6.7 (Suborbit space)Let X /G be an orbit space. An orbit spatg H is called
a suborbit spacef X /G (notation:Y/H C X/G) if each general polyhedron af is con-
tained in a general polyhedron &f, G = H and each element @f acts on the faces &f in
the same way as foX (i.e. forallg € G, 0 € Y we havegy|{z} = g;x/{z} forz € 0). In
this case we denote ltyy x : Y — X the map which sends a general polyhedsos Y to
the (unique) inclusion-minimal general polyhedronothat containg. Note that for a sub-
orbit spaceY’/H = Y/G C X/G we obviously haveY'| C |X| anddim Cy x (o) > dimo
foralloc €Y.

Definition 6.8 (Refinement) Let ((Y, |Y]), wy)/G and((X, | X|), wx) /G be two weighted
orbit spaces. We callY, |Y]),wy)/G arefinemendf ((X, | X|),wx)/G, if

@) (Y, [Y]),wy)/G C (X, | X]),wx)/G,

(0) [Y*[ = [X~],

() wy (o) = wx(Cy.x(0)) forall o € (Y*)Wdim®),

(d) eachr € Y is closed in X|.

We say that two weighted orbit spade¢s(, | X|),wx)/G and((Y, |Y|),wy)/G are equivalent
(notation:((X, | X|),wx)/G = ((Y,|Y]),wy)/G) if they have a common refinement.
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Definition 6.9 (Tropical orbit space)Let (X, wx) /G be a weighted orbit space of dimension
n with finitely many different classes an@,| < oo for anys € X ™. If foranyr ¢ X1
there exists\,;; > 0 foranyo > 7suchthaty,,  ;.x As/r = landd . A;r
lwx]([o])us,r € V;, thenX /G is called aropical orbit space (Remark: one hag{c > 7}

< oo sincesS; in definitionCLID is homeomorphic to an open fan.)

Remark6.1Q For a finite group’ the definitions of tropical orbit space and tropical local
orbit space do agree.

Proposition 6.11. Let (X, wx) be a general weighted fan i andG C GI(V') such that
X /G is aweighted orbit spaceé{is finite sincg X, wx ) is finite). Then( X, wx) is a general
tropical fan if and only ifX/G is a tropical orbit space.

Proof. ” = ”: Putn = dim(X) and letr € X"~V ando > 7. Then we define\,,,

e i %o~ The setsY/G and( are finite thusX is finite. In

particular, for anyr € X™~1 one has#{a > 7} < co. Foranyo > 7 one has\,/, > 0
and) ;. ..y . As/r = 1. Furthermore,
>T,66Xs5)r

Z‘ UO'/T_tE‘/;'7

o>T

becausé X, wy) is a tropical fan. Thus, we have

(<
Y el -t = 3 pon(c) s =t V-

o>T o>T

” < ”: Let X/G be atropical orbit space. Thus, there exists with o > 7 andr € X~V
such that

Z)\J/T wX CUg/r = teV,.

o>T

Therefore, because of the linearity ok G, we get:

Gt = 3 glt)

geGr

= 3 o Aosrlion(fo]) o)

geGr o>T

= 33 Aagelxl(io) - gluosr)

geGr o>T

= Z |Gl - [wx]([o]) - uo/r

o>T

= wa(a) “Ug/r

o>T
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Example6.12 The following picture is an example of a tropical fahand a tropical orbit
spaceX /G with this fan as underlying polyhedral complex. L€tbe the standard tropical
line with its vertex at the origin, the directior(s _01 ) , < _01 ) and( i ) and all the
weights are equal to one. The groGpconsists of two elements and is generated by the

matrix( (1] é )
X / y

The balancing condition for the fan is

(o) (5) ()= ()

and for the orbit space

L) () (D)= (8),

where the first tw@1/2)’s come from the splitting of (see definitiol.819), and the thitd2
comes from the invariance of the last vector under

Corollary 6.13 (of propositiori6.1IL) The balancing condition for tropical orbit spaces holds
if and only if the balancing condition of the underlying waigd complex holds.

Proof. For tropical orbit spaces with infinite group there are only finitely many facets
around a codimi-face. Thus, as in the proof of proposition 8.11 the balancongdition can
be checked on the polyhedral complex as well (without gratjpa). O

Example6.14 To show that there are tropical orbit spaces which do not doone a tropical
fan we consider the following orbit space. Lat| be the topological spadéz, y) € R?|y >
0}, and letX be the set of cones spanned by the vectjsand (*1') for = € Z. If we
define all weights to be one ard =< ( L

spaceX/G:

! ) >, we get the following tropical orbit

0 1

XiG

It can easily be seen, thaf/G is a tropical orbit space (see definitibnl6.9), whiehas
infinitely many cones and thus it can not be a tropical fan.
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Definition 6.15 (Global orbit space)Let F' be a finite set of orbit spaces and Iletbe a set
of isomorphisms of polyhedral complexes fulfilling the tmlling properties. Each element
gx/c,y/u € Eislabeled by a paiX/G,Y/H € F suchthayx,q,y/m : X' — Y with X’ C
X, Y’ C Y subcomplexes, is an isomorphism. Furthermore, for gaehGG ando C | X’|
suchthay(o) C |X'| there exists & € H suchthayx,qy/u(9(0)) = h(9x/cy/u(o)). We
call the pair(F, F') aglobal orbit space

Remark6.16 The global orbit space is a topological space which locallgn orbit space.
In the same way one could define a weighted global and latetropizal global orbit space.
For weighted global orbit spaces one would need the comditiat the weights of the glued
cones coincide.

6.2 Morphisms of orbit spaces

After becoming more familiar with the notion of orbit spases now introduce morphisms
between them.

Definition 6.17(Morphism of orbit spaces) et (X, | X|, {¢}, {®,|c € X})/ Gand(Y, |Y|,
{v}, {V,|T € Y) /H be two orbit spaces. Morphism of orbit spaces : X/G — Y/H
is a pair(fi, f) consisting of a continuous mafy : |X| — |Y| and a group morphism
f2 : G — H with the following properties:

(a) for every general polyhedran € X there exists a general polyhedréenc Y with
filo) C o,

(b) for every paifo, o from[(@) the maplz o f, o @' : |FX| — |FY | induces a morphism
of fansFX — FY , whereFX and Y are the weighted general fans associateflYo
andFY', respectively (cf. definitioh116),

(c) there exists a refinement &f such that for anyr, & € X with dim(f;(o) Nf1(5))
= dim(f1(0)) = dim(f1(7)), one hasfi (o) = f1(7),
(d) fi(g(o)) = f2(9)(fi(0)) forall g € G ando € X.

A morphism ofweighted orbit spacels a morphism of orbit spaces (i.e. there are no condi-
tions on the weights).

Remark6.18 The conditions(a) and (b) of definition[61¥ are equivalent tf, being a
morphism of general polyhedral complexes.

Remark6.19 For G being a finite group the concepts of tropical local orbit §saand
tropical orbit spaces are the same. Nevertheless the daisf morphisms of those objects
do not agree. This is due to the fact that we use orbit spadesabeasier problems than the
problems we deal with by using local orbit spaces. In paldicwe do not need morphisms
from open cones to closed cones as in the case of local odaiescf. theorefin 5.B0). Thus,
we can ask for conditiofr) instead of conditiorig) in definition[3.Z1.

Explanation6.2Q The motivation for asking a morphism to fulfill conditiofs), (b) and(d)
is clear, but to ask for conditiofr) is not. Thus, we consider an example where condition
(¢) is not fulfilled.
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Let us consider the map, given by the projection of two intervals on a third one (dee t
following picture). We takes and H to be trivial, thusX/G = X andY/H =Y, whereX
is the disjoint union of two open intervals of different leh@ndY” is one open interval with
the same length as the longest intervakaf

N
J

m

X
L1
Y

After any possible refinement, the faeetwhich is the most left in the upper interval &f,
is open on the left side, but will be mapped on a left closedtfacWe calls the intersection
of the preimage of with the longestinterval ok . Thenf; (o) N f1(¢) is a line segment as
well as f; (o) and f,(¢), but the images are not the same which contradigtsThe reason
is thato is a half open interval but is a closed interval. Thug is not a morphism.

Example6.21 If we take the tropical orbit space/G from exampl€6.12, then the canonical
map to the diagonal line iR? is a morphism of orbit spaces. But the homeomorphism which
goes in the opposite direction is not a morphism, becausdlyoat the origin it cannot be
expressed by a linear map.

Remark6.22 The reason we ask conditidn) to be fulfilled is to define images of the poly-
hedra later on. Thus, after refinement, each polyhedronldmoap to one polyhedron and
the image of the polyhedral complex should be a polyhedradptex as well. In particu-
lar condition(b) of definition[1.9 has to be fulfilled. Therefore, images ofyhadra of the
same dimension should intersect in lower dimension or shbelequal. In other wordg;)
ensuregb) in definition[L.9.

To get more familiar with the definition of a morphism we prakie following proposition.

Proposition 6.23.Let X/G and Y'!/H' Y?/H? be orbit spaces ang', f? be two mor-
phisms,f! : X/G — Y!'/H"and f? : X/G — Y?/H? Assume that for each refinement
X! of X there exists a refinemeni? of X! such that conditioric) of definition&.1F is ful-
filled for f! and f2. Thenf : X/G — Y'/H' x Y2/H?, f([z]) — (f'([z]), f*([z])) is a
morphism.

Proof. Conditions(a), (b) and(d) of definition[&. 1Y hold since they follow from the condi-
tions of f! and f2. Thus it remains to prove conditiqa). Assume thafc) does not hold.
In this case there exist, ¢ € X with dim(f;(0) Nfi1(6)) = dim(f1(0)) = dim(f1(5))
such thatf,(c) # fi(5). After refinement ofX' we can assume that s € X with
|fi(e)\f1(6)| = 1 and f is injective ono and&. Therefore eitherf! or f2 is injective
on o andga (if not, thendim(f1(c) N f1(¢)) = 0). Without loss of generality we can as-
sume thatf! is injective. One hadim(f](c) Nf{(5)) = dim(f}(c)) = dim(f](5)), but
|fi(e)\fi(5)] = 1. Sincef! is continuous, every refinement? of X' containss anda
with dim(f{ (o) Nfi(5)) = dim(f{(e)) = dim(f{(5)), but|fi(c)\f{(5)| = 1. Thisis a
contradiction to our assumption, afg holds. O
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To see, why the assumption of the existence of a refinediérfor each refinemenk* of
X is necessary we consider the following example.

Example6.24 Let X be the disjoint union of a copy d&? (which will be denoted byX;)
and a copy ofR? where we remove the diagonglr, y) € R?|xz = y} (we denote byX, the
spaceR?\{(z,y) € R?|x = y}). For the image complexes we také = R andY? = R.
The groups are defined to be the groups which contain onlyrithaltelement. We define
the mapf! : X — Y'! to be the orthogonal projection 6f; and X, onto thez-axes, and
we definef? : X — Y2 to be the projection onto thgaxes. Each of the three conesX,
{(z,y) € Xslr < y} and{(z,y) € X3|x > y} are mapped surjectively 6! andY?, thus
(¢) holds for this refinement. The produgt x f? is the identity onX; and X, and condition
(¢) can not hold since the diagonal is missingXn.

Remarlk6.25 This example shows that a product of morphisms is not neassanorphism
again.

Constructior6.26 As in the case of fans (construction 2.24 [GKM]) we can defireeitnage
orbit space. LeX /G be a purelyr-dimensional orbit space, and [gf H be any orbit space.
For any morphisny : X/G — Y/H consider the following set:

7Z = {f(0),0is contained in a coné of X ™ with f injective ong}

Note, thatZ is in general not a polyhedral complex. Sinces a polyhedral complex, it
satisfies all conditions of definitidn1.9 and definition 1 ed@ept possiblyb) and(d) of
definition[I.® (since there might be overlaps of some regio@sndition(b) is fulfilled by
condition (¢) of definition[€1¥. Furthermore, we can choose a proper mefme (which
satisfiesd) of definition[L®) to turnZ into a polyhedral complex. We denote the weighted
polyhedral complex defined by all representatives of alstago| with o € Z by H(Z). By
condition(a) in definition[&.1Y the group action éf on H(Z) is well defined. Thus, we get
an orbit spacé? (Z)/H, which will be theimage orbit spacg (X/G).

If moreoverX/G is a weighted orbit space, we tufit.X/G) into a weighted orbit space.
After choosing a refinement fox andY” such thatf (o) is a cone inY” for eacho € X, we

set
Wr(x/Q) (o) = Z wx (o) - |Alcr/]/f(A[U})‘
[0]€X/G™):[f(0)]=]0"]

foranyo’ € (H(Z))™.

Proposition 6.27. Let X /G be ann-dimensional tropical orbit spacé;/H an orbit space,
andf : X/G — Y/H a morphism. Therf(X/G) is ann-dimensional tropical orbit space
(provided thatf (X /G) is not empty).

Proof. By construction,f(X/G) is ann-dimensional weighted orbit space. It remains to
show the balancing condition. The proof works in the sameagdpr fans in[GKM] (notice
that by corollarf 6.113 the balancing condition can be chdeti¢hout taking into account the
group operation). O

Definition 6.28 (Irreducible tropical orbit space) et X/G be a tropical orbit space of di-
mensionn. We call X/G irreducibleif for any refinementX /G of X/G and anyY /G C
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X/G,Y # @ with dim(Y/G) = n the following holds: if for allc € Y™ one hasr € X,
thenY and X are equal. (The equality holds on the level of orbit spadesyteights can be
different. In the case of different weights one has= X - wy for A € Q # 0.) Equivalent
to this definition is to say thak /G is irreducible, if for any Y/G C X/G,Y # 0 with
dim(Y/G) = nand|Y|is closed in X| one hag” = X.

Corollary 6.29 (of propositioi6.2I7) Let X /G andY/ H be tropical orbit spaces of the same
dimensiom inV = A®@RandV’ = A’ ® R, respectively, and lef : X/G — Y/H be a
morphism. Assume that/ H is irreducible andf (| X/G|) = |Y/H| (as topological spaces).
Then there is an orbit spad/H C Y/H of dimension smaller than with |Y,| C |Y| such
that

(@) each point) € [Y']\|Yg| lies in the interior of a cone, € Y of dimensiom;
(b) each point? € f~!(|Y|\|Yy]|) lies in the interior of a coner € X of dimensiom;
(c) for@ € |Y|\|Yo| the sum

Z mult(p) f

[Pl,Pe|X[:f([P)=[Q]

does not depend a3, where the multiplicitynult p) f of f at [P] is defined to be

WX/G(UP)

e f = (an)

: ‘A,[ob}/f(A[oP})"

Proof. If we can show thatf (X/G) = A(Y/H) (i.e. the image ofX/G is Y/G and the
weights differ by the multiplication ok € Q) the proof works as i [GKM] for fans.

By assumption we have, thit| X/G|) = |Y/H]|, as topological spaces. Further, by propo-
sition[6.2T,f(X/G) is a tropical orbit space. Because of irreducibility we h@v& /G) =
AY/H as tropical orbit spaces. O

In contrast to the case of fans we need in corollaryl6.29 theraptionf (| X/G|) = |Y/H]|.
This is due to the fact, that we use non-closed polyhedrautsee what happens if we do
not assume the above equality.

Example6.3Q Let G be the trivial group anX' C R andY C R be open intervals of weight
onewithX G Y. Let f : X — Y be the inclusion.

X

Y
/

m

Y if

Y e
7 N

Then, all conditions of corollafy .29 but the equalfty{ X/G|) = |Y/H| are fulfilled and
the statement of the corollary does not hold.

Remarlk6.31 Instead of assumingl(| X/G|) = |Y/H|in corollaryl6.29, it suffices to assume
that f(|X/G|) is closed inY/H|.
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Definition 6.32 (Rational function) Let Y/G be a tropical orbit space. We defineaional
functiony onY/G to be a continuous functiop : |Y| — R such that there exists a refine-
ment(((X, | X1, {mos}oex), wx), {M, },ex) Of Y fulfilling that for each facer € X the map
¢ om;!is locally integer affine-linear (i.e. by refinements we caswane that o m ;! is
affine linear on each general coneYof. Furthermore, we demand thato g = ¢, for all

g €G.

Definition 6.33 (Orbit space divisor)Let X/G be a tropical orbit space, angla rational
function onX/G. We define a divisor op to bediv(¢) = ¢- X/G = [(UIZ', XD, wy)] /G,
wherew, is given as follows:

W¢ZX(k_1) — Q’
T = Z ¢J(A0/TW(U)UU/T)_¢T( Z )‘U/TW(U)UU/T>

ocex (k) oceXx (k)
T<Oo T<o

(the )\, are described in definitidn§.9).

Remark6.34 The following two statements can be proved analogouslyg@tbof of propo-
sition[6.11.

1 The definition above is independent of the chosgn(i.e. if we have different sets
of \’s fulfilling the definition of a tropical orbit space, the @or will be the same for
both sets of\’s).

2 Since|X,/,| - |G,| = |G| we have thalG.| < oo and thusp - X//G is a tropical orbit
space.
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/ Moduli spaces of elliptic tropical
curves

In this chapter we show that the moduli spaces of tropicalesiof genud with j-invariant
greater thar) have a structure of tropical (non-local) orbit space. Wethgestructure to
prove the known fact that the weighted number of plane &lipbpical curves of degreé
with fixed j-invariant which pass through/ — 1 points in general position iR? is indepen-
dent of the choice of a configuration of points. The chaptesisis of three parts. In the
first part we equip the moduli space of abstract tropical esisf genud with a structure of
tropical orbit space. In the second part we do the same fantiauli space of parameterized
tropical curves of genus. In the last section we use corolldry 8.29 to show the meation
independence of the point configuration.

As mentioned before, a difference between local orbit space orbit spaces lies in the set
of isomorphisms (see chapfér 3 and chafter 6). In chaptee Sdts of isomorphisms we

used for the construction of the moduli spaces are induceddiyices. This time we take as

sets of isomorphisms the groups generated by these matdoésrtunately, this groups are

infinite and thus it is much more difficult to handle the setssofmorphisms and we have to
restrict ourselves to the case of elliptic curves.

7.1 Moduli spaces of abstract tropical curves of
genus 1

We construct a map fromv1, ,, to a tropical orbit space in the following way. For each curve
C € M, leta be an arbitrary point of the cycle 6. We define a new curv€ which we
get by cuttingC' alonga and inserting two leaved = z,,, and B = x,,,- at the resulting
endpoints (if we cut along a vertex we have to decide if theesdgljacent to the vertex which
are not in the cycle are adjacent4oor to B). This curve is am + 2 marked curve (of genus
0) with up to2 two-valent vertices (at the endsandB).

By 7 we denote the set of all subsetsC {1,...,n + 2} with |S| = 2. In order to embed
M, ,, into a quotient oR("2") we consider the following map:

diStn : Ml,n — Vn/Gn

(C, L1y ... ,$n) — [(distr(ﬂfi, .Tj)){@j}g]’]
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X2 T2

X1 |

Figure 7.1: Construction of am+ 2-marked curve from an-marked genus-curve.

whereV,, G,, anddistr(z;,z;) are defined as follows. We denote Bistr(z;,z;) the
distance between; andz; (that is the sum of the lengths of all edges in the unique path f
z; toz;) in C, wherex, ., = Aandz,» = B.

The vector spac¥, is isomorphic taR("2) " and is given by, = R(ngz)/(CI)}l(R"H <
s >) (Recall®! from constructio5l1) where

s € R("3") is a vector such that

—1 ifi=n+4+20rj=n+2andi #n+1#j,

1 ifi=n+4+lorj=n+landi#n+2+#j,
Sij =
0 otherwise.

The groupG,, is generated by the matrixand the matrices/,, p € {1, ..., n}, where

Lif ({o, 5}, {k,1}) = {m,n+ 1}, {m,n+2}), m <n,
or ({i,7},{k,1}) = {m,n+2},{m,n+1}), m <n,

L gy, ey = or{i,j} ={k, I} andi,j & {n+1,n + 2},
orif {i,j} = {n+1,n + 2} = {k,1},
0 otherwise.

(In particular/(; ;) ) = id for i, j, k, I < nandl;,11),6nr2) = < (1J (1) ))

(1 if {i.j) = {k1}

or({z,j},{k, 1}) = ({p,n + 2}, {n + 1,n +2}),
or({t, 1, {k, 1}) = ({p, s}, {7,n +1}), 3 #n + 2,
or ({é, 7}, {k, 1}) = ({p, 1 {psn +2}), T #n+2,
Moo or ({i; 3 {k, 1}) = ({p, j}, {n + Lin +2}),
pi{&g), (kd) n+l#j#n+2,

-1 if ({s,5},{k,1}) = {p,n+1},{n+1,n+2}),
or ({i,5}, {k,1}) = ({p, i}, {j,n+2}), 5 #n+1,
or ({4, j},{k,1}) = ({p, 5} {p,n + 1}), j #n+ 1,
0 otherwise.

\

(M, written as a matrix can be found in the proof of proposifiohfer s = 1.)

The orbits of all elements of ®!(R") > underG,, are trivial, M, (s) = s andI(s) = —s.
ThusV, /G, is well defined. By the following lemma, the mdpst,, is also well defined.
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Lemma 7.1. Let C and C‘*~ be two curves resulting from two different cuts of a cufe
Then, the images @f andC* are the same iV,,/G,,.

Proof. Let us fix an orientatior of the simple cycle inC' and letdist(C') and dist(C*)
be the images undelisty of C andC*. The orientatioro induces an orientation of the
edges connecting and B of C' andC*. By applying the mag to dist(C) andd1st(0*) if
necessary we can assume that the induced orientation goesifto 5. Denote bya, A, B
(resp.a*, A*, B*) the cut and the inserted edges correspondlng to olirgesp. C*). We
denote byd the distance of3 to A* in the curve cut at anda*. Let L be the subset of

marked points of the component containiBgl*. Then the foIIowing equality holds:

dist C* H M, - dist(C) +d - s.

peEL

O

Remark7.2 The mainidea in our definition comes from the rational case [EKM]). After
cutting the curve we get a new curve without cycles. Thusdisance of two points in the
new curve is well defined. Then, as in the rational case we tean®d out the image ob} .
In addition we have to get rid of all the choices we made dutfiregconstruction of a rational
curve. These choices can be expressed by the following tpeetions.

(a) The shift of the poiné on one edge of the cycle (which corresponds to the addition of
an element ok s >).

(b) Interchangingd and B, which corresponds to the matrix

(c) The pointa jumps over the vertex adjacent to an unbounded eddgeéhe matrix cor-
responding to this operation ig,. If the pointa jumps over a bounded edde the
matrix corresponding to this operation is the product ofnaditrices)M; with 7 con-
nected withE' by edges not intersecting the cycle.

To get a polyhedral complex we put

v,:V, — V,/G,

and
X, = U, Ydist,(Mi,)).

Remark?7.3. Let X, , be as in constructidn3.1. Theq, = ¥, 1 (V,,(X1.,)).

As general polyhedrons we take the cones induced by the oatabial cones inM, ,,,
defined in Remark and definitign2.6. Thus, is a group acting otX,, and we can consider
the quotient topology on the orbit spadg, /G,, (see definitiori.6]1). To have a weighted
orbit space we choose all weights to be equal to one. To shawttie spaced1, ,, have a
structure of tropical orbit space, we have to show thét,, and X, /G, are homeomorphic
and thatX,, /G, fulfills the balancing condition.

Proposition 7.4. Let X,,, G,, and M, ,, be as above. Thef : M,,, — X,,/G,, (C, z1,
- Tp) V= [(distp(z4, ;)] i, j3e7 IS @ homeomorphism.
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Proof. Surjectivity is clear from the definition, artlis a continuous closed map. Thus, itre-
mains to show that is injective. To show this, we prove that out of each repreges of an
elementz] in the target we can construct some numbers which are thefeauralérepresen-
tatives of[z]. If these numbers determine a unique preimage, the injgctollows. For this
we take the following numbejiand the set; , which are independent of the representative:

J = Tni10+2 = length of the cycle,
di = (Tipy1+ Ting2 — j)/2 = distance from to the cycle (not well-defined modl! (R")),

dik = {(@int1 + Tiny2) — di — di. = jl, § = [(Tins1 + Trni2) — di — dy — j|} = distances
of s andk on the cycle.

If there are marked edgés ...i, with d,_ ;, equals{0, j} forall 1 < s,¢ < r, then we have

to determine the distances these edges have one to each Btiteisince these distances
do not depend on the cycle, the edgesXin encoding these distances are invariant under
G,. Thus, we can reconstruct these distances, by considér@ngyojection (not necessarily
orthogonal) ofz] to the fixed part of the cone (and thus the fixed part of eacleseptative)

in which [z] lies. The same can be done for two edges, which have distance zero from
each other to determine their distance to the cycle. Thudjsthnces are given, injectivity
follows and we are done. O

Proposition 7.5. The weighted orbit spac¥,, /G, is a tropical orbit space.

Proof. To show the balancing condition we have to consider the cddiones and the facets
adjacent to them. If there is more than one vertex on the @faecurve corresponding to a
point on a codimensioh face F', then either the stabilizers of the adjacent facets aralriv
and we are in the same case as for.Hg,,, or the cycle of each curve in the fageconsists
of two edges of the same length. In the second case there artdyeixvo facets adjacent to
F which are opposite to each other. Since the stabilizersriaral the balancing condition
holds. If there is only one vertex on the cycle of a curve gpomding to a point irf’, then
the stabilizer off" is {I, 1}, the identity and (see above). The curves corresponding to the
points in the interior of the codimface have exactly onévalent vertex. This vertex can be
adjacent to the cycle or not. Let us consider these two cagesately. The second case is
trivial (the stabilizers are the same for all three facetsthae balancing condition is the same
as forM, ), thus assume, that thevalent vertex is at the cycle. Qualitatively, the codim-
face, which we calf, corresponds to a curve as in the following picture:

A 1
B )

Figure 7.2: A tropical curve with 4-valent vertex.

By assumption, there is only one vertex on the cycle. We oahsier the case with two
endsz; andz,, because if we have a tree insteadrpthe calculation is the same for each
leaf of the tree. To verify the balancing condition for trogli orbit spaces given in definition
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[6.9, we have to consider the three facets around the#fatet o, (resp.o,) belong to the
insertion of the edge with andzx; (resp.A andz,) on the same side. Thes, ando; lie in
the same7 -orbit. Thus, if we use the same notation as in the picture etdlee following
condition:

there exists\;, /-, Ao, /r > 0, A5y /r + Asy/r = 1 such that

d(.Tl,.TQ) 1 1 0
d(zy, A) 0 1 1
d(z1, B) 1 0 1
d(zq, A) ' Aor B Al B ) | €V
d(z2, B) 0 1 1
d(A, B) 1 1 0

This condition is fulfilled for\,, ,, = A,/ = % Thus we have indeed a tropical orbit
space. ]

Remark7.6. In exampldZD we have seen the topological picture of theuthepgaceM ».
Unfortunately it is difficult to give a picture of the corresmling polyhedral complex since
X5 has infinitely many cones. Here is a description of it. Letwbetor entries be labeled as
in the previous proof, and l&t,, Cs, C5, C4 be the cones corresponding to the four different
combinatorial cones in the picture of example 2.9, whgyeés the left,C, the second left,
(5 the third left andC', the right combinatorial type. The group and representstoighe
conesCy, Cy, (5, Cy (labeled by the same name) are the following:

100000 11 -1 -1 1 1
001000 01 0 0 0 1
G_<010000 00100—1>
0ooo0010f oo o 10 0 |/)
000100 00 0 0 1 0
000001 00 0 0 0 1
1 1 0
1 1 1
1 1 0
Cr={a- 5 |b> 0}, Cy={a- 5 +5b- 1 la,b € Rsg,a+b > 0},
0 0 0
2 2 1
0 0 0
1 1 1
0 1 0
C3:{b 1 |b>0}, C4:{Cl' 1 +b- 1 ‘CL,bERzo,b>O}.
0 1 0
1 0 1

All other cones of the underlying polyhedral complex areegiby ¢{C;} for ¢ € G and
i€{1,2,3,4}.
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Chapter 7: Moduli spaces of elliptic tropical curves

7.2 Moduli spaces of parameterized tropical curves
of genus 1

Now we define a tropical orbit space corresponding to therpatarized genus tropical
curves inR".

In the case of rational tropical curves we can simply &@2(]12{7“, A) = M§R xR" because
to build the moduli spaces of rational tropical curve®init suffices to fix the coordinate of
one of the marked ends (for exampig. For the case of gendscurves the situation is more
complicated. If we fix the combinatorial type of the curves tlycle imposes some conditions
on the lengths. In order to get a closed cycle in the imageditteetion vectors of the cycle
edges multiplied by their lengths have to sum up to zero.hfeunore, we have to get rid of
cells which are of higher dimension than expected. We wdltbat these operations (closing
of the cycle and getting rid of higher dimensional cells) banexpressed by some rational
functions.

LetV,?R . = Vv x R” x Z". We defineG;" to beG y, acting onVy asG v before, orb € R”

n

(that is the image af,) as identity and om € Z" (the direction of the edgd) as follows:
I(v) = —v, M, (v) = v —v(p).

As topology onv;?gr, we take the product topology &fy, Z" andR", where we consider
7" with the discrete topology anl” with the standard Euclidean topology. We defijeto
be the subset di” given by|v,| < > A |ws|, and put
\I]n,A ro- Vrlag ,r - Viag T‘/GN
and 3

Xoar = Von, ([Xy x R™ x Z}]).
The purpose of the rational functions in the next proposition is to make sure that tke
coordinate ofA is mapped to théth coordinate ofB.
Proposition 7.7. For all 0 < 7 < r, we have a function

¢i : Xijz,r - R
N
1 1 )
(a2}, .- agn41,N42), 0, 0) — = max{j: 5 Z a{Lk} — a{k,NH}) v (1)
k=2

+ (aqn+2) — agvsrny) (—o(i))
+(ag,n+13)v(2))
1 N
—50Q_ (ape — agnz) - v(i)
k=2
+ (a{LNH} - a{N+1,N+2}) v(1)
+Hapntzy) - (=0(0))))}
which is rational and invariant unde&" (v(i) = i-th coordinate ofv, v, = v(x}), see
definitionZI1).
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Chapter 7: Moduli spaces of elliptic tropical curves

Remark7.8. The mapsp; defined in proposition 717 are given %ynax {ev(A); — ev(B);,
ev(B); —ev(A);} (see proposition7.13).

Proof of propositiof 717 We have to show, that; is invariant under the addition of(s, 0, 0)
(we identify (s, 0,0) with s) for ¢ € R and the actions of andM,,. Letz € X} . and

For ¢ € R, the value ofc - s + = undere; is d + 3.1, (—c) - v.(i). The second part

(Eff:z (—c) - vg(7)) is 0 due to the balancing condition, thus the valuec@ndc - s + z is
the same as before.

For I we get the same, because

¢i(1(a{1,2}7 <+ oy O{N41,N+2}, b,v))

1 1 &

= 2 max{:l:(2(; (a{l,k} — a{k7N+2}) Uk(l)

+ ( 1 N+1} — Q{N 11, N+2}) (—(=v(4))) + (aq,n+2y) - —v(7))

1
——(Z (agey — agen+1y) vi(d)

(a{1 N+2} — A{N+41, N+2}) (—v(i)) + (a{l,NJrl}) (=(=v(@))))}

1 N

= —- max{ﬂ:(—(§( (a{l,k} - a{k,NH}) Uk(l)
k=2

(\V]

+

DN | =

+ (aqnr2y — agverngoy) (—0(i) + (ap,nay) - v(0))
—%(Z (@) — agen+2y) vi(d)

+ (a{l N1} — aqns1n+2y) 0(0) 4 (agney) - (—0())))}
= ¢z(a{1,2}, <oy AINF1,N 42} b, U)-

It remains to show the invariance with respeciifg. Let us consider first the cape# 1.
We get:
1
d+ 4 (((a{l,NJrl} + agp,N+2) + Q{N41,N42) — Q1 N+2) — G{pN+1))
+(agnrivy)) - vp(@) + (apvi2y — agvyntey) (0p(0) + (e nry)
(=0p(1)) = ((agn41y + G t2y + AV LN 12y — AN 12y — Gp.N11))
_(a{N+1,N+2})) ‘Up(i) + (a{1,N+1} - a{N+1,N+2}) (Up(i)) - (a{l,N+2}) : (Up(i)))
=d.

In the case = 1, we have:

N
1 .
d=+ Z( E (ak,N+1 + a1, N+2 + Q{N+1,N+2} — Ofk N+2} — a{l,N+1}) : Uk(l)+
k=2
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Chapter 7: Moduli spaces of elliptic tropical curves

(ant1,n+2) - (=0(i) + (any1n42) - (—v(4))

N
— Z(%,NH + a1, N 42 + QN1 N+2) — O N+2) — QN1 )) - Ok(1)—
k=2

(—ans1,n42) - (0(2) = (ans1,n42) - (—0(i))) = d.
Thus,¢; is invariant. O

Remark7.9. We multiply the function by, because locally the condition that the cycle closes

leads to the functiomax {(% Z]kVZQ (a{Lk} —a{k,NH}) Uk(l) + ((1,{1’]\[_,_2} —a{N+17N+2})
(—v(7)) +(aq,n4+13) -v(i),0}. We changed the function slightly because of the symmetry
we need for the orbit space structure.

Now we can define the tropical orbit space we are interestég constructing the tropical
orbit space cut out by the rational functions

M p(RTA) = ¢y g (X8 /GRP), see definitio6.33

1,n,trop

The set of cones of1'® ,  (R", A) is denoted byX*} . The rational functions assure that

A and B are mapped to the same point.
Example7.10 We consider the following map:

X1 X2

XT3 Tyq

To ensure thab, defined byh(zs) = (), h(z1) = d- (3), h(z2) = d- (}) + a- (}) and

h(zy) = c- (é) is the map of a tropical curvé'(xy, ..., x4, h) we needw = ¢ andb = d,
which is the case for elements 8> . (R", A) due to the fact that the direction vectors

multiplied by the lengths sum up to zero.

The rational functiong); define weights on the resulting facets on the divisor. Sihee t
stabilizers are finite, the divisor is a tropical orbit spasewell. Consider the case= 2.
The weights we get from the definition of the rational functare the following (afterwards
we consider one of the three cases more explicitly).

(a) The image of the cycle is two-dimensional.
The condition, that the cycle closes upRA is given by two independent linear equa-
tionsa; anda; on the lengths of the edges of the cycle (which is a subseedialinded
edges which we denote By}); thus, the weight is given by the index of the map:

(2)zwonz

a2
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Chapter 7: Moduli spaces of elliptic tropical curves

(b) The image of the cycle is one-dimensional.
Because of the chosen rational function, there has to beaumesélent vertex on the
cycle. Otherwise, the weight would be zero on the correspgnidce. Letn - v and
n-uWith w € Z?,m,n € Z, andged(n,m) = 1 be the direction vectors of the cycle.
If we denote byv € Z? the direction of another edge adjacent to 4healent vertex,
the weight i det(u, v)|. If n = m = 1 and no point lies on the cycle, the stabilizer of
the corresponding face consists of two elements. Thus, #ighivof the facet has to
be divided by2 in this case.

(c) Theimage of the cycle i&dimensional. Due to the rational function we get the weight
1 - |det(u,v)| if there is a5—valent vertex adjacent to the cycle,v are two of the
three non-cycle directions outgoing from the vertex. lfréhis no5—valent vertex the
weight would be zero by the definition of the rational funatio

Example7.11 Let us considef () more explicitly. First we show that ifaés no four-
valent vertex on the cycle, the weight(s The curve corresponds to a faéein Xifj'gg
which is contained in some facets. The points in those fametespond to curves. Since the
vertices are three-valent, all edges of the cycles in thigasuare in a one-dimensional affine
linear subspace dk?. Since we intersect by two rational functions the weight w&eig0
(let X be the star build by the faces containiAgn )N(ifj‘gg. The mapd, (resp.,®,) assures
that for all points ofd, (X)) (resp.,®,(X)) h(A) = h(B). Since rational functions commute,
we have that, is constant o, (X)). Thus, we consider the case where one of the vertices
has valence four (see upper figure in figlird 7.3) and denotedattiesponding facé’. The

A B

A A B / B
B B A A
Figure 7.3: The weight of a curve with one-dimensional cycle

lower pictures in this figure are the curves correspondirtfyédour facets inY}fj‘gQ which
containF. Letd be the direction vector of the left edge of the cycle and.leé as irf (§). For
simplicity assume that = (%1) Applying ®; on the left two facets in figurle_1.3 leads to a
face of weight gcd(uy, d1)| where®, ensures thatl; = B; on this face. One can calculate
that applying®, leads toF’ with dehﬂm - dy| times the weight ged(uy, dy)|. By
the balancing condition, one hadet(u, v)| = | det(u, d)| and we get the stated weight for
(in particular the length of the left cycle edge becoites

Remark7.12 The numbers calculated with the help of rational functioifedfrom those
stated in[[KM]. The difference lies [n{c). The weights prgpd in [KM] are% (| det(u, v)|—

1). Since both weights lead to a balanced complex, the unioheofeticets where the image
of the cycle iD-dimensional (together with its faces) is a tropical orpiise if we define all
weights to bel.
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7.3 Counting elliptic tropical curves with fixed
j-invariant

To achieve our goal of proving independency of the positibtne points, when one counts
certain elliptic tropical curves with fixegrinvariant, we want to use corollafy 6129. Thus,
we first give the definition of evaluation maps which are usdidipose the point conditions.

Proposition 7.13.Fori =1, ...,n the map
ev; : XlibA’r — R
(T, zy,...xn,h) — h(xy)

is invariant under the groug:2b.

Proof. The mapev; is given by

N
evi(z) = b+ 5 (Z (agi ey — aqriy) vk + (ap N1y — agvgry) ()
o

+ag,nr2y — agin+2}) - (—U)> : (7.1)

Recall thaty = h(z,). Itis invariant undes, because the value added $io the differences
A{1,N+1} —Q{N+1,i} anda{l,N+2} — Qi N+2} is 0.
The mapl/ changes only the order of the two last summands.

Thus, it remains to consider the maf),. We have three caseg:=1,p =i,1 # p # i. The
sum we get differs fron{{711) by the following expressionas€l # p # i:

1
5 (a{l,NH} + a{p N+2y + AON+1,N+2} — Q{1,N+2} — Qfp N+1}—

(a{i,N—f—l} + agp N+2} T A{N+1,N+2} — Ofi N+2} — CL{p,N+1})) - Up

1 1
+§ ((1{1,N+1} — a{N+1,i}) (—vp) + 5((1{1,N+2} — a{i,N—i—Q}) - (v,) = 0.

Casep = 1:

(a{k,NJrl} + ag N2} + QN+, N2} — Q{k, N+2} — a{l,NH}) C U+

N | —

D

N
k=2

1 1
2 (—agviint2y) - (0 —v1) + 9 (apne1)y = agnaniy) (—01)
1 1

+§ (a{N+1,N+2}) . (_U + Ul) + = (a{17N+2} — a{l'7N+2}) . (Ul) =0.

The last equation is true, because

(\V]

N

E (a1, N+2 + any1N+2 — 1 N+1)0 = 0,01 =0
k=2
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and the rest of the sum

>

k=2

1
(a{k,N+1} - a{k,N+2}) “ U+ 5 (_a{N+1,N+2}) - (v)

DO | —

+5 (agvinsgy) - (—U))

DO | —

is equal to
WA
5 <Z (@{1,k} - a{k,NJrl}) Vg + (CL{LN+2} —CL{N+1,N+2}) (—v)
k=

2
1 N
+(agniny) - “) T (5 (Z (a1, — agrn+23) Uk

k=2

+ (a{1,N+1} - a{N+1,N+2}) v+ (a{l,N+2}) . (—U)> )

which is 0 because of the rational function which we have used to cocisk )™} . (see
propositior ZT7).

Casep = 1:
1 N
5 Z - (a{k,NH} + agiN+y2} + O{N11,N+2} — Qf{k,N+2} — a{z’,NJrl}) - Ut
k=2
1 1
5 (a{N+1,N+2}) (v—uv) + 5 (a{1,N+1} — a{N-i—l,i}) (—v;i)
1 1
+§ (—agns1vey) - (0 +v) + B (agun423 — aginay) - (vi) = 0.
(Same reason as above.) O
Definition 7.14 (Evaluation map)For: = 1,...,n the map

evi : M (R,A) — R"

1,n,trop

(T, z1,...2xn,h) — h(x;)
is called the-th evaluation map

Proposition 7.15. With the tropical orbit space structure given above the eaabn maps
evi - MPh oo (R7, A) — R” are morphisms of orbit spaces (in the sense of definifiod 6.17
andR" equipped with the trivial orbit space structure).

Proof. Continuity is clear, thus we have to check conditians d in definition[&1¥. Condi-
tion a is clear sinceR” is the unique cone of the target space. Conditicsthe same as the
case of fans treated in [GKIM]. Conditianis clear since each cone is mapped to the whole
R" and the last condition follows from propositibn7.13. O
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Proposition 7.16. The mapf = evy X -+ X ev,, x j : My2(R7A) — R0™H is a
morphism of orbit spaces.

Proof. For each cone isMy™> (R", A) one has that the strict inequalities given in defini-
tion[I.] are coming from the limit of thginvariant to0. Therefore, conditiom of definition
is fulfilled. Thus, the statement follows from propmsifZ.I% and the fact thatis the

projection on the coordinat 4 z;. O

Theorem 7.17(Theorem 5.1,[[KM]) Letd > 1 andn = 3d — 1. Then the number of
parameterized labeled-marked tropical curves of genusand of degreel with fixed j-
invariant which pass through points in general position iiR? is independent of the choice
of the configuration of points (the multiplicity of a curvedsfined to be the weight of the
corresponding cone iM b (R?, d)).

Proof. Forn = 3d — 1 points M} (R? d) has the same dimension BS™ x R.,.

Since all open ends are mappedjtmvariant equab, surjectivity follows by the balancing
condition inR"™ x R. . Thus, propositioi 716 and corolldry 8.29 imply the thewre [J

When we construct the orbit space structure of the modutiespaparameterized curves we
need the componeft” for technical reasons. But, in fact, the directionf the edgeA is
unique for given lengths of the edges.

Proposition 7.18.Let (a19, . . ., ant1.n+2, b, v) bein M2 (R™ A). One has thata »,

1,n,trop

C . ang1 N2, boox) In MED (R A) if and only ifv = vx.

Proof. Assume tha{ai s, . .., ani1n+2,0,0%) € M) (R", A). The closing up of the

cycle is given by the equalities (compare with proposiiof) 7

WE

(a{l,k} - a{k,NH}) vg (i) + (a{l,N+2} - a{N+1,N+2}) (—v* (i) + (a{l,NH})U * (1))

=

=2
N
= (agry — agveay) (D) + (apvry — agvenvray) v () + (g ney) - (—vx (i)
k=2

Putw = v — v*. Since the equality holds faras well, we get
(CL{l,N+2} - CL{N+1,N+2}) (—w(i)) + (a1, ng1y)w(i))
= (aq,n4+1} — aqn+1n+2p) w(E) + (g noy) - (—w(i)

which is equivalent to
2a{N+17N+2}w(i) =0.

Since the cycle length is positive one hag) = 0 and therefore = vx. 0
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8 Correspondence theorems

In the previous parts of the thesis we introduced a theorloo#() orbit spaces and used this
theory to build moduli spaces of tropical curves. The aimanstructing moduli spaces is
to get a better understanding of the parameterized objBetdes studying a mathematical
domain for its own, it is always interesting to find connecidetween different domains.
This chapter gives a hint on a connection between certagbedic and tropical objects. In
particular, we are interested in the connection betwedptielllgebraic curves and elliptic
tropical curves.

We start the chapter by stating some known facts. For ourgsepthe correspondence
theorems are of great interest. These theorems providetibijs between algebraic curves
which satisfy certain properties and tropical curves wisatisfy corresponding properties
and are counted with multiplicities. (Corresponding prips mean for example that the
genus of the algebraic and the tropical curves are the saBiece G. Mikhalkin was the
first who discovered a correspondence theorem, we stateduf first and then give as well
some other results which we need for our work. In the secocitbsewe prove a new corre-
spondence theorem for elliptic curves with given pimvariant. In contrast to Mikhalkin’s
correspondence theorem, it is a correspondence betweesddrb tropical curves and al-
gebraic curves instead of parameterized tropical curvdsalgebraic curves. The first cor-
respondence theorem for elliptic curves with fixgethvariant was obtained by I. Tyomkin

[T].

8.1 Mikhalkin’s correspondence theorem

In correspondence theorems we associate to each troprea aumultiplicity. This multi-
plicity is the number of algebraic curves which correspand given tropical curve. In par-
ticular, the multiplicities depend on the problem. Therefave start this section by defining
a multiplicity we need.

In this chapter all parameterized tropical curves argin

Definition 8.1 (multiplicity of a vertex) Let (I', xy, ..., xy, h) be a parameterized tropical
curve and letC’ = 1(T"). For a3-valent vertexi/ of C' with |»~'(V')| = 1, denote bye,
ande, two different edges adjacent to (V). The multiplicity of C' at V' is defined to be
lv(e1, V) Av(eq, V)| (the area of the parallelogram spanned by the two veeteis V') and
v(eg, V).

Remark8.2 By the balancing condition the multiplicity of a verték in definition[8.1 is
independent of the choices ef ande,.
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Definition 8.3 (multiplicity of a curve) Let (I', xy,...,zy, h) be a parameterized tropical
curve and leC' = h(I"). We definemult(I") to be the product over the multiplicities of all
3-valent vertices of” from definition[8.1.

Example8.4 (multiplicity). Let C be the image shown in figufe 8.1 of a parameterized trop-
ical curve(T', x1, ..., z4). The multiplicity of vertexV; is 1 and the multiplicity ofl; is 3.
Thus,mult(I") = 3.

Figure 8.1: The image of a parameterized tropical curve.

A correspondence theorem provides a bijection betweeresushich satisfy given proper-
ties. In particular the number of tropical curves and the bemnof corresponding algebraic
curves do agree. In the following we define those numbers.

Definition 8.5. Let g € Nsg, and letA = (vy,...,vs) € (Z*\{0})* be the degree of a
parameterized tropical curve. For a configuration= {pi,...,ps:,-1} C R? of general
points we define the number§; (¢, A, P) to be the number of parameterized tropical
curves of degree\ and genus; passing throughP and counted with the multiplicity of
definition[83. (Remark: Each parameterized tropical cumv&/’ (g, A, P) has only3-

. trop
valent vertices.)

Remark8.6. A purely tropical proof of the fact that the numb ';gp(o, A, P) do not

depend onP is given in the proof of theorem 5.1 ih [GKM]. For arbitraryrges the inde-
pendence of follows from theoreni 8.19.

To define the algebraic numbers we first give the definitionhef degree of an algebraic
curve.

Definition 8.7 (complex degree)A complex algebraic curveZ C (C*)? is defined by a
Laurent polynomialf : (C*)* — C, f(z) = 3,4 a;x’, with A C Z? finite anda; € C* for

1 € A. The Newton polygon of is called thedegreeof Z. If the Newton polygon is the
convex hull of(0, 0), (d,0) and(0, d) we say thaff has degred.

Remark8.8. Our definition of degree is not standard, but it is chosen te@leacorrespon-
dence to the tropical degree.

ExampleB.9. Figure8.2 represents the Newton polygon of the complexbatge curve given
by the polynomialf = 22 — 422y + 32% + xy? — 2y — o + 4y® + 1in (C*)2.
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Zo,1

Z1,0
1

Figure 8.2: The Newton polygon ¢f = 22® — 422y + 322 + zy? — 22y — o + 41° + 1.

Definition 8.10 (Dual vectors) Let A = (vy,...,v,) be a multiset of vectors if?, where
Z* C R*is oriented. By thelual vectorsof A we mean the multisét], . .., v/) of vectors
in Z? where the angle between andv; is —7/2 (not/2) and the lattice lengths of and
v, are the same far < i < n.

Lemma and Definition 8.11. Let A be the degree of a parameterized tropical curve. The
dual vectors toA form a unique (up to translation) oriented cycle which ddseml convex
polygonD with vertices inZ?; we call D the Newton polygon dual ta.

Proof. By the balancing condition the dual vectors sum up to zerothedefore we can
construct a polygon out of them. Since we require the polygdre convex, it is unique up
to translation. O

Example8.12 Let (I',z4,..., 29, h) be a parameterized tropical curve andHér’) be the
figure shown irz813 (all weights arg. The Newton polygon dual to the degreelbfs the
same as shown in figure8.2.

Figure 8.3: A tropical curve of degree

Notation8.13 For the degreé\ of a parameterized tropical curve we denote the dual Newton
polygon byAV.

The goal is to have a correspondence between curves whisfysatme properties. Besides
the genus and the degree the property the curves have tbisuifilpass through given points.
In definition[8.% we defined the numbers of tropical curvesBang given properties. Thus,

we now define their algebraic counterparts.
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From now on assume that the tropical degree consists onlgroftjye vectors.

Definition 8.14. Let AV be a convex polygon with vertices #f. We define#AY = AV N
72,

Remark8.15 If the degree of a tropical curve consists only of primitivectors then#A
(see chaptdi2) is the same#4" for A being the degree of a tropical curve and fof
being its dual Newton polygon.

Definition 8.16. LetQ = (q1, - - -, g4av+4-1) C (C*)* be a configuration of points in general
position. We definéVi (g, AV, Q) to be the number of irreducible complex curves of genus
g and degreé\" passing throughy.

Those numbers a priori depend @ The following proposition is a useful fact and can be
found for example inJCH].

Proposition 8.17. Take the notation of definitidn 8116. For geneficthe numbersVi(g,
AV, Q) are finite and independent ¢f. Therefore we get invariant§™* (g, AV).

By now we defined the objects in algebraic and in tropical getoyrwe want to connect by

a correspondence. To state the correspondence it lacka@ugnection between the point
conditions in algebraic geometry and those in tropical getoyn For this we use the function
given in the following definition.

Definition 8.18 (Log). Let Log be the map from{C*)? to R? given byLog(z) = (log |71/,
log |z5|) for all z € (C*)2.

Theorem 8.19(Mikhalkin, [M1], theorem 1) For a generic configuratio® of n = #A +
g—1points we haveVi! (g, A, P) = N™(g, A). Furthermore, there exists a configuration
Q C (C*)? of #A + g — 1 points in general position such thabg(Q) = P and for a
parameterized tropical curv@’, =4, ..., xy, h) of genusy and degree\ passing through?

we havemult(T") distinct complex curves of gengsind degree\Y passing through). The
curves are distinct for differerit(I") and irreducible. (Recall: We assume that the degree of

the tropical curve consists of primitive vectors and thu& and#A" are equal.)

The notable fact stated in theorédm_8.19 can be used for cmuatgebraic curves. After
translating the algebraic problem into tropical geometrg can use for example lattice paths
(seelM1]) or floor diagrams (see [EM]) to count tropical cesv By the correspondence the
algebraic problem is solved as well.

Example8.20 There is one parameterized tropical curve of de@read genus), passing
through5 general points. This curve correspond to one algebraicegwvhich is the only
curve of degre@ passing through giveh points (see figure8.4).

Remark8.21 In fact, the proof by G. Mikhalkin of theorem 8119 containsaal the infor-
mation how to assign a tropical curve to an algebraic one. dltutated certain Hausdorff
limits of curves. For this one defines for- 1 the following map from(C*)? to (C*)?

_1 X 1y
Ht . (l‘,y) —> (|x’|10£§(t)—’ |y|log(t)_).
|| ||
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2

Ps3

b1 p2

Figure 8.4: The degreeand genu$ parameterized tropical curve passing through the points
P = {p17 s 7p5}'

Take the assumptions and notations from thedrem 8.19 ard>eb be sufficiently small.
For sufficiently bigt there aremult(I") algebraic curves mapped to thaeighborhood of
h(I") underLog o H,.

Besides the correspondence theorem found by G. Mikhalkiretare some other correspon-
dence theorems. To state one of them we change our base fiblkfield given in the next
definition.

Definition 8.22 (valuation) The field of locally convergent Puiseux series is by definitio
the field K of locally convergent power series which is a subfield §if_, C((t'/")) (i.e.
for Y, cpct” € Kwith ¢, € Cone hasy _p|c|t" < oo for sufficiently smallt). We
defineval : (K*)" — R”" to be the Cartesian product of the valuations : (K*) — R,

> ek Cit™™ = —ko/n, wherec, € C andc,, # 0. If Z is an algebraic curve ifx*> we
defineval(Z) to be the closure of the valuation gfn (K*).

Theorem 8.23(Mikhalkin, Shustin) LetK be the field of locally convergent Puiseux series,
and A be the degree of a plane tropical curve. Liétbe a set of£A + g — 1 = n generic
points inR? and letQ C (K*)? be a set of: different points in general position such that
val(Q) = P. For each plane parameterized tropical cur(l, z, . . ., z,,, h) of genusy and
degreeA passing throughP, there existmult(T") distinct plane algebraic curves iK? of
genusy and degree\", which pass througly and are mapped ta(I") underval.

A proof can be found in [Sh] (Theorem 3).

Particularly related to our work is a work done by I. TyomkiBince we need again some
preparations to quote the result we state the necessarytioetn

Definition 8.24 (special curves)Let (I', x4, ..., xy, h) be a parameterized tropical curve. If
I" has only vertices of valence three and if the lengths of alholed edges and the position of
all vertices are rational we call the parameterized trdgicevespecial By multiplying these
rational numbers by the least common multiple of the digsirall fractions we assume that
all vertices ofh(T") (resp., lengths of edges bj are inZ? (resp., inZ).

The aim of definitiof_8.24 is on one side to use the affine atrecof the edges for the
definition of a multiplicity. On the other side, if an elliptiropical curve is special, we have
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a correspondence between jtsvariant and thg-invariant of the corresponding algebraic
curves.

Definition 8.25. Let (I', x4, ..., xn, h) be a special curve, letbe an edge of', and letl” be
a vertex ofe. The lattice of the tangent space/dk) is denoted byV,. The lattice length of
v(e, V) in N, is denoted by(e).

Definition 8.26. Let (I', 21, ..., xy, h) be a special parameterizedmarked tropical curve

of genusl and fix an arbitrary orientation for each bounded edge suahttie cycle in

I' with this directions gives an oriented cycle. We denotelliythe set of vertices of,

by W™ the set of vertices adjacent tq, ... z,, by E° the set of bounded edges and we

put W/ = W\W". Definee(e,V) to be—1 (resp.,1, resp.,0) if V € W, e € E’ and

V is the initial point ofe (resp.,V is the end point ok, resp.,V is not a vertex of).

Let 3 be the group morphismy ey (K*)? & @eepe (V) @ K* — @ cpo(K*)? given by
e(e,V —l(e

B(yv) = @eep (zzlivz) and3(y.) = (** ()) (the labelsV” ande denote the entry in the
2

yes ' ©
direct sum forV € W ande € EY). Lzet {e1,...en} be the set of edges forming the
cycle. We putd : @yew (K*)? @ @eepp(N,) @ K* — K* with 6(yy) = 1, 6(y.) = e
(Ne @ K* = K*)if e € {ey,...e,} anddi(y.) = 1 otherwise. Furthermore, we define a map
id,, : @Vew(K*)Q @D Becpp (Ne) ® K" — Dvewn (K*)Q, given byldn(yv) =Yy forV e Wn
andid, (yv) = id,(ye) = L2 € (K*)? for V e W/, e € E'. Put

E = ﬁ X 4§ X ldn : @Vew(K*)z@@eeEb(F) (Ne) ®K* — @eeEb(F) (K*)z x K* x @VGW" (K*)2

and denote by< (I, P, j) the kernel ofE. We denote by, 6 andid,, as well theZ-linear
maps of the underlying latticeZ (C Z @ K* = K*).

The multiplicity of the tropical curves is the number of ddgaic curves corresponding to it.
To see how the multiplicity/K (T, P, 7)| is related to point conditions consider the following
remark.

Remark8.27. Let us use the notations of definitibn 8.26 and{let, ... ¢,} = Q C (K*)?
be a set of: points in general position such thatl(Q)) = P, for P = {h(z1),...h(x,)}.
Since E is a group morphism, the numbgk (T, P, j)| equals the number of preimages of
an element of the image. Thuss (I, P, j)| equals for example the number of preimages of

((1(K*)27 ey I(K*)Q)a 1, (ql, ey qn))
Before stating the theorem of Tyomkin we consider an example

Example8.28 Let ([, x4, ..., x5, h) be the parameterized tropical curve witfi’) shown in
figure[85 and equipped with the orientation such thas directed fromy; to V; ande, . . . e

form a clockwise oriented cycle; |6t = {(—2,—1); (1,1)}, letQ = {(t},t); (1/t,1/t)}

and let the degrea be ((“2), (1), (,)). The mapE from definition[82b is a map from

a 15-dimensional space to E-dimensional space. By abuse of notation we use the same
notation as in the previous definition for slightly diffetebjects - is the valug(K*)? as
before, buty. is the value inK? = N, ® K* instead of the value iV, ® K*). To count the

elements of the kernel df we can solve the following equations:

1 1
(i1 -1 (Yvi)2 —1 —1 -1

t2 'ygl - t'yel Tt (yV1>1 *Yes Tt (yV1)2 *Yeo

)
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L5

x3

Figure 8.5: An elliptic curve witth marked ends.

W -t w2t 0 (w2
Yes ’ Yes ’ (yVQ)l ’ (yV2>2 * Yey ’
(yvl)l (yv1)2
7:17 :Lye'ye'ye'ye =1
(yVS)l *Yes (yv3)2 ’ ’ ! ’

Since it can be calculated, that these equations have aeais@ution, the kernel contains
exactly one element.

Notation8.29 Let Z be an algebraic curve of genus one. We denotd bye j-invariant of
Z.

Theorem 8.30(Tyomkin, [T]], theorem 6.3)Let (I, z4, ..., z,, h) be a parameterized tropi-
cal curve of genus one and degréd_et P be a set o8d—1 generic points and lef) C (K*)?

be a set o8d — 1 points in general position such thail(Q)) = P. Let furtherj € R, be
the j-invariant of I'. (Recall: Thej-invariant is the sum of all lengths forming the cycle of
I.) If Tis special,P = {h(z1),...,h(z,)}, j(I') = jandJ € K with val(J) = j then there
exist| K (T, P, j)| elliptic algebraic curves of degreéand j-invariant.J in (K*)? which pass
through@ and are mapped ta(I") by val.

The next proposition gives a tropical interpretation &{T", P, j)|.

Definition 8.31. Take the assumptions and notations of theofeml 8.30. For gadche
{1,...,n} we can write

h(w:) = h(z1) + > le)ve

e€ER

for a subsef? ¢ E°(I") andv, a generator ofV, (see examplEZ8.83). For a fixed sub&et
and a fixed vector,, these equalities define the linear map

e~Vz‘ : R2 S R#Eb - RQ) (l‘, @eeEbye) = x4 Z YeVe-
ecR

We denote the produet; x ... x ev,, by ev.
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Remark8.32 The parameterized tropical cur¥ehas a cycle and thus the mags from
definition[8.31 do depend oR. Nevertheless we only need those maps to calculate the
absolute value of a determinant (proposifion 8.34) which vé independent of the choice

of R andw,. This is the reason why we denote the mapiyinstead of(¢v;) g . -

Example8.33 The evaluatior(z;) of the vertexz; of the parameterized tropical curve in
figure[8.®6 can be written as

h(zs) = h(z1) + (e @ +1(es) G) +1(es) @ +1(es) <‘11) 4 1(es) @ +1(eo) G)

/eg h(z;)

€5

|

€4

€3

Figure 8.6: Evaluation afs.

Proposition 8.34. Take the same assumptions and notations as in thdarein 8mumber
|K (T, P, j)| coincides with the absolute value of the determinant ofitiesal map

D=6vXjXa X ay: RFF#E  R6-2 4 R x R,

Recall: j is thej-invariant anda;, a, are the equations for the closing cycle at the end of
sectiof ZR. The spa@®**#£” encodes the position of the verfiéx= % (z;) and the lengths

of the bounded edges of the curve. (In particular the absokalue of the determinant is
independent of the choice &fin definition[8.31L.)

Proof. The mapD is a linear map. Thus, the absolute value of the determinfait is the
same as the numbers of elements of the cokernel of the map

- . b _
D':eVXJxalxa2:Z2+#E — 7572 x 7, x 72.

D’ 0

! Flvizo
( * fl=o ) = f (see below) and then to use row operations tofget After this we use
the tensor product to prove the statement.

The idea of the proof is to replace the matiiX with a matrix ( ) where

Let e; be an edge of the cycle. This cokernel is isomorphic to thecwk of the map

D' x f:Z7*E @ Gyep iy 22 — 2572 X L X TP X Beepm fer) L2
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where for eacls € E*\{e;} the image off in the coordinat&? is the sumd_,,_;; e(e, V)yv
with 3, € Z2,. The cokernel oD’ is isomorphic to the cokernel @' x f due to the fact, that
after fixing V; the mapf is a bijective map from the groupv cp (111 2% t0 Seepin (¢} Z°
(The inversef ! is defined recursively starting with vertices connectedwit by an edge
from I"\{e, }. Fore an edge connecting andV’ we definey,» = yy + €(e, V)y.. Since
I'\{e:} is connected antf, is fixed we can do this to defing!.) For eache € E°\{e,} we
now change th&?-component off. Let theZZ-component off beyy, — yy, . We change the
image by adding the product of the integer correspondingitoZ2+#£" and the direction
v(e, V;) of e pointing fromV; to V.. Sincef was bijective, the number of elements of the
cokernel stays the same after changing the rhapthis new mayy.

The mapD’ x f is a linear map and therefore it can be written as a matfix The maps

a; andas refer to the closing of the cycle and are given as a sum&@fV;)v, with v, € Z,
ande is an edge of the cycle. By adding the rowsZf in the matrix corresponding to the
mapD’ x f, to the rowsa;, a;) we can change the maps, a, to get the mag to @, ¢ » Z>
instead of a map; x a, x f to Z2 DecEd\{e1} Z2. Since these are linear row operations, the
determinant and the number of elements in the cokernel sit@ysame. So far we got the
map

€0 X § X B: T @yepn iy 22 — 2572 X L X ®oepn 22,

The image of a point iE2+#£" ®ven (v} Z* underey, bexy, + ., yev. (see definition
B31). Lete € R and let the mag at coordinateZ; be Tye — Tye £ yeve. By adding the
rows corresponding té with a suitable sign we can change the roqufto get the image

Ty, + Z Yeve £ (Tye — Tye).
ecR\{é}

After doing this for alle € R we get the sum

Ty, + Z :i:(x\/f — :CVke).
ecER

Since the edges ak build a path fromzy, to xy; this sum is equal tay,. Thus we can
change the evaluation maps to identity map%blfto Z%,l by row operations which do not
change the determinant and thus géi@— 2)-identity matrix. Therefore the cokernel of the
mapD has the same number of elements as the cokernel of the map

E|Z = ﬁ X 0 X ldn : @VeWZQ D @eeEb(F)Z — @eeEb(F)Zz X 7 X @Vewnzz.

Thus, it remains to show that the cokerdgbf E|; has the same number of elements as the
kernel K of E. The mapF|z is injective, thus we have the following exact sequence

E|z

0—-7Z" —7"—C —0,

for suitablem € N. The mapFE is F|; ® K*. Thus, by tensorizing witiK* we get the exact
sequence

0K —-7Z"K L 72"eK - CoK* — 0,
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where
Zm K* ~ *\ 2 * Av *\ 2 * *\2
X = @VEW(K ) &P @eeEb(F)Ne X K* = @eeEb(F) (K ) x K* x @Vewn(K ) .

SinceC'is finite C' ® K* is 0. Furthermorek” = Tor(K*, C'). Itis known thatTor commutes
with direct sums. Sincé€’ is an abelian group the problem reduces to the case whereZ,
andm = 1. Thus, it remains to show that, and X' = Tor(K*, C') from the exact sequences

0—-7Z37—7Z,—0,

and

0— K —K* LOIN K*— 0
with s € Ny, have the same number of elements. RuandZ, are isomorphic and thus the
proposition holds. O

Remark8.35 By remark 4.7 in[[KM] the numbers in propositibn 8134 are theng as the
multiplicities we calculated for those tropical curves maptell ¥ with the help of corollary

B.29.

8.2 Correspondence theorem for elliptic curves with
given j-invariant

After stating some known correspondence theorems, we nowtavéreat the case of elliptic
curves with fixedj-invariant. Therefore, let us do some preparation beforeaxgeable to
prove our results. For this, we start with a fact about algetzurves.

Theorem 8.36(Pandharipandé,[P]Let K be an algebraically closed field of characteristic
0. The numbeE(d, J) of irreducible nodal degreé K '-plane elliptic curves with-invariant

J which pass through fixegtl — 1 points in general position is independent of the choice of
the points. Furthermoref’(d, J) is independent of the choice éffor J # 0,1728, co. In

this casef(d, J) = (*,') N (0, d).

In the theorems we stated in the first section of this chapieigonsidered curves satisfying
some point conditions. To establish a correspondence itneasssary to have a corre-
spondence of the conditions as well. Since we considertiellippical curves with fixed
j-invariant we want to start with a fact about this invariant.

Theorem 8.37(Tyomkin, [1], (Theorem 2.32))Let(T", x4, . .., x,, h) be the special tropical
curve corresponding to an algebraic curdg(i.e. val(Z) = h(I), for further details se€ [T]).
If g(Z) = g(I') = 1, if his injective on the cycle and if is the algebraicj-invariant of Z
then the tropicalj-invariant of I" is equal toval(.J).

Corollary 8.38. Let (I, 24, ..., z,, h) be the special tropical curve corresponding to an al-
gebraic elliptic curveZ of degreed passing through gived — 1 = n points in general
position. Ifval(J) >> 0 (for J being thej-invariant of ), thenh(I") allows rational pa-
rameterizations of degreé
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Proof. SinceZ is of degreel, we can find a parameterization bfI") of degreed as well.
Therefore it remains to show thatl") allows a rational parameterization. In a parameteriza-
tion each point which is locally an intersection of two lires be resolved (see figurel8.7).
Take a parameterizatiai’, ) which has resolved all crossings of two lines (and therefore

Figure 8.7: Resolving a crossing of two lines.

all vertices ofl" are three-valent). Assume thiathas genud. By theoren{8.37 the cycle
length has to beal(/) if I has no contracted bounded edge. Let us first assumé' thas
a contracted bounded edgdi.e. h(e) is a point). By the balancing condition(I") has a
crossing ah(e) which is a contradiction since we resolved all crossingsusTt’, 4) has no
contracted bounded edge. Therefore the cycle length haswel(/). But this is a contra-
diction to proposition 5.1 in [GM3] (every elliptic tropitaurve of degreel with a very big
j-invariant and passing through tBé — 1 fixed points has a contracted bounded edgé).

Definition 8.39(tropical cycle) Let (T, 24, . . ., xy, h) be a parameterized tropical curve. We
call the imagé:(I") of a tropical curve &ropical cycle If the tropical cycle of a parameterized
tropical elliptic curve can not be parameterized by a rati@urve we call the tropical cycle
anelliptic cycle (for example figuré¢_818) andrational cycleotherwise (for example figure
B3).

Example8.40 The image of a special parameterized tropical curve of genaesdegrea,
and passing through givehpoints looks for example as is figure B.8. But, if we fix a big

N
Figure 8.8: Elliptic curve passing throughpoints.

j-invariant, the curve having thisinvariant has to look like in figurie8.9.

Remark8.41 D. Speyer gives in proposition 9.2 [Sp2] some conditionsgmvtie tropical-
ization of thej-invariant of an algebraic curve is the cycle length of tlopital curve. In
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R
_|_

s
ﬂ

Figure 8.9: The tropical cycle of an elliptic curve passihgotigh8 points and with given
big j-invariant (therefore the curve has a contracted edge).

particular he needs an injectivity condition to show thattfopicalization is the same as the
length of the loop. In example-8M0 this injectivity conditiis violated for figur€8]9. Thus,
the elliptic curve(T', z, . .., x9, h) with h(T") being the tropical cycle from figuie 8.9 has a
contracted edge at thlevalent vertex.

Definition 8.42 (Multiplicity of an elliptic tropical curve) Let Cr = (T, x4, ..., z,,h) be
an elliptic tropical curve irR?, let P be the corresponding point i, (R?, d) and let
f =evy x---xeuv, xj. Furthermore, puf = f as continuous map, but redefine the weights
of MfP  .(R% d) to bel (resp.,0) for curves with contracted cycle (resp., with the cycle
which is not contracted). We defineult;(Cr) to bemult(p; f — multip f (see corollary

£.29, end of section_4.2 and theorem¥.17).

Remark8.43 The multiplicity defined in the previous definition agreeshwthe multiplicity
of [KM] (see definition 3.5 and chapter 4 in_[KM]).

Definition 8.44. Let E\,,,(d, j, P) be the number of irreducible nodal degréglane elliptic
tropical curves with fixeg-invariant and passing througld — 1 points P counted with the
multiplicity from definition[8.42.

Now we can state a main result of this chapter, a correspaeddeorem for elliptic curves
with given j-invariant. Note, that it is a correspondence between¢edmycles and param-
eterized algebraic curves.

Theorem 8.45.Letd > 2 and let us fix as a ground field the fidkd For a generic configu-
ration P of 3d — 1 points, sufficiently big tropicaj-invariant j and J € K with val(J) = j
we haveFE,,(d, j, P) = E(d, J). Furthermore, let) C (K*)? be a configuration o8d — 1
points in general position withal(Q)) = P, andC be the tropical cyclé:(I") of a parame-
terized tropical curveT', x1, ..., 2341, h) Of genusl, degreed and j-invariant j such that
P = {h(x1),...,h(x34-1)}. Then, there exis([dgl) mult(C) (remember thaC' is rational
sincej is sufficiently big, thus the parameterizationos a rational parameterized tropical
curve of degreé is unique and by abuse of notation we writelt(C') for the multiplicity
of this curve) distinct algebraic curves of genusl, with j-invariant .J and degreel such
that Z passes througly. These curves are irreducible and the image of each of theases
underval is C.
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Before proving the theorem we quote some facts for Berkospates. For an introduction
to the theory of Berkovich spaces we recommend [Bal, [Be3Dr For a general study of
this theory we recommend [Bel] and [BeZ2].

Fact 8.46. Let k£ be a non-Archimedean field. There exists a funétosuch that for each
k-algebraic varietyX one can associate &analytic spaceX“" to it. This space is called
the Berkovichk-analytic space associated f0.

See for example section 1.4 [nl[D] (68.4.1 in [Bel] and2.6 in [Be2)).
To get a first idea of analytic spaces let us consider a remark.

Remarlk8.47. Let A" be the space of multiplicative seminormdidfry, . . ., 7,,] (in particular
eachz € K" defines a seminorm byf|, = |f(z)|, where|.| is the norm induced by the
valuation). The topology ofA" is defined to be the weakest topology such that the map
A" — Rsq @ |.|z — |fl| is continuous for allf € K[T1,...,T,]. An analytic function is a
local limit of rational functions. Denote b§ the sheaf of analytic functions on open subsets
U cC A"

A local model for ak-analytic space is a locally ringed spack, Ox) given by an open
setU C A" and a finite set of analytic functiong, ..., f, € O(U) such thatX = {z €
U|fz(l’) =0Vl<i< TL} andOX = (OU/ < fl, .. .,fn >)|X

Let £ = E(a,r) be a closed disk itk with centera € K and radiug- > 0. The function
defined byf = >7" | a;(T — a)" is mapped tanax;<;<, |o;|r" is a multiplicative norm.|g
onk([T]. Itis a fact, that the set of seminorms ®ns given by f — infpc¢ | f| 2, wheref is

a family of nested closed disks. Each pointAdf corresponds t& = E(a,0) = a (called
points of type(1)) or a closed disk withr € |K*| (type (2)) or a closed disk withr ¢ |K*|
(type (3)) or to a& with (.. £ = 0 (type (4)). The analytification functor from fatf 846
mapsk to Al

Fact 8.48(Fact 4.1.3 in[[Be3], proposition 3.4.6 und 3.4.7[in [Bellety : X — Y be a
morphism of schemes of finite type okeand lety® : X — Y " be the corresponding
morphism ofk-analytic spaces. The morphismis étale, smooth, separated, an open im-
mersion and an isomorphism if and onlyf* possesses the same property. Suppose that
is of finite type. Themn is a closed immersion, finite, and proper if and onlyif possesses
the same property.

Fact 8.49(Fact 4.1.4 in[[Be3], theorem 3.4.8 in [BellPne hasX is proper< | X is
compact.

Proof of theoreni8.45R. Pandharipande has shown tiatd, /) = (/') N"™(0,d) (see
[P]). By theoreni8.23 we know that the numbeé¥g; (0, d, P) and N (0, d) agree. Thus,
the first part of the theorentk,., (d, j, P) = E(d, J)) follows from the second part if we can
show that the set of tropical cycles of tropical curves ofigdan with j-invariant; and degree

d passing througlP is the same as the set of tropical cycles of rational curvetegfeed
passing througt¥. Each tropical cycle of a rational curve has at least one nodevertex of
multiplicity greater thari because > 2. For a node we can make the parameterized tropical
curve elliptic by inserting a contracted edge. Sinég very big we can choose the length of
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the contracted edge of this parameterized elliptic trdgiogave such that theg-invariant of
this curve isj. At a vertex of valence greater than one we can insert a cydength ; and
thus we get a curve which fulfill the requirement. Therefdénemains to show the second
part.

LetV,; be the Severi variety which is the closure (in the varietylofarves of degred) of
the reduced and irreducible plane elliptic nodal algebdaigreed curves. It is known that
Vi1 has dimensiod (see for example [HM]). Let” be the intersection o¥,; with the
codimensior8d — 1 subspace formed by the curves passing thraugBy [P] the curvel/ is
a branched cover @' by thej-invariant. The ramification points afe 1728, andoo. Since
V is a closed subset @ for someN, one gets that’ is proper.

SinceV is an algebraic variety faEi 846 applies and we can assatiatanalytic spacg*”

to V. Since the points oV can be identified with points df " (those points are the rigid
points of V") we can speak of” being a subset df *" (see for example proposition 2.1.15
[Bel]). Letr € V be a point parameterizing a rational curve andldie a neighborhood
of co in (P1)e". By J we denote as well the mdp — P! given by thej-invariant. Since
J* is continuous, there exists a neighborhdtdf r such that/** (W) C U (the topology
of (P')*" is induced by the valuation, see for example section 1.3 aj)[BAssume now
that'W is a closed subset df*" such that/** (W) N P! contains elements with arbitrary big
valuation (remark: By 2.1.15 of [BeT}! is dense in{?!)*"). SinceV is proper and therefore
Ve is compact by fadi8.49 we get thét contains a preimage af. By definition, this
preimage is a point o’ C V< (J* is finite and thus, the preimage ofl&a point is the
spectrum of &-algebra of finite dimension. Sindé€ is algebraically closed it follows that
the preimage lies ir’. For example see section 3.3 [n_[Bel] or for an idea of thi$ fac
see remark 2.1.4 [Ba]) and thus it corresponds to a ratiamaiec Thus, all curves which
have a sufficiently bigi-invariant are in a neighborhood of a rational curve. By [Cikhig
normalizationIl : V" — V near a rational curve is the union of(d — 1)(d — 2)/2
separated smooth sheets (in particifaf — V — P! is unramified at infinity). Thus, by
fact[848(1/"°)™ admits local isomorphisms (in the neighborhoodof! (r)) from each of
the (d — 1)(d — 2)/2 sheets td'. Lete be greaten. By the local isomorphisms, for each
j-invariant.J with sufficiently big valuation, there are exacfly— 1)(d — 2)/2 curves which
have distance (P! has a distance and each sheet is isomorphic to it) or smedier:f and
which havej-invariant.J.

Let C' be the tropical cyclé.(I") of a parameterized tropical cury€, 1, ..., x34_1,h) Of
genusl, degreel andj-invariant; such thatP? = {h(z;), ..., h(z34_1)}. The tropical cycle
C'is a rational cycle by corollafy 888 (' contains a cycle it has a contracted edge since
j >> 0 or see proposition 5.1 i [GM3]). By theordm 8.23 therearét(C') plane rational
algebraic curves of degrele passing througty and which have valuatiofi. Letr be one of
those rational curves. A local chdrtatr is Spec(K[zy, ..., zy]/I) for some ideal. Since
U — Rxg: |.|+ — |f] is continuous for allf € K[z, ...,zy] we can define distancesto
using f (d(r,s) = | f(x — r)|s). In particular we can defineneighborhoods of. (Remark:
For different choices of we get different neighborhoods.) In the following, a posin the
e-neighborhood of if it is in the e-neighborhood fof = x; for each0 < i < N (notice that
this is a neighborhood of). For; sufficiently big, we findd — 1)(d — 2) /2 elliptic algebraic
curves passing through) and with j-invariant.J such that each of these curves is inean
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neighborhood of. Lete be one of those elliptic curves. The distance of the coeffisief
the polynomials parameterized byande is less thare. Thus we get that the valuation of
the difference of the coefficientsal(r — e);, 0 < i < N) is much less thafi and therefore
the tropicalizations of the curvesande do agree. For each tropical cydéof a curve of
genusl, with j-invariantj and degree passing througt? we have(dgl) mult(C') distinct
algebraic curves of genus with j-invariant.J and degreel passing througld) and which
are mapped t6¢' underval.

O

Conjecture 8.50. Let us fix as a ground field the field. For a generic configuratior

of 3d — 1 points, sufficiently big tropicaj-invariant j and J € K with val(J) = j we
haveE,,.,(d, j, P) = E(d, J). LetS be the set of parameterized tropical curves which pass
through P, are of degreel, genusl and which haveg-invariant j. For each configuration

Q C (K*)? of 3d — 1 points in general position withal(Q)) = P one has that fot” being the
tropical cycleh(I") of a parameterized tropical curv@&', x4, . . ., z34_1, h) of genusl, degree

d andj-invariantj such thatP? = {h(z),..., h(x3s—1)} we have

Z mUItK,M((vala"'axnah))
(0, 21,.,n,h)ES,R(T)=C

distinct algebraic curves of genyswith j-invariant J and degreel passing througld). The
multiplicity multx », is the same as in_[KM]. The curves are irreducible and the imaf
these curves undenl is C.

Remark8.51 By proposition[8.34 the numbers stated in the conjediur@ &6 tropical
cycles of special parameterized tropical curves are the senn theorerin 8.80.

The numbers stated in conjecture 8.50 for tropical cyclegliiyfitic curves with big;-
invariant agree with those in theorém 8.45 by lemma 6.2 fildM][

These two remarks give a hint why the conjecture might be truthe proof of theorem 8.45
we used the Berkovich space to make small deformations adithe understanding of the
rational case. Our last remark gives a hint why a deformatiather cases might be helpful
as well.

Remark8.52 To see why a deformation could help to prove a correspondercexamine
the deformation of tropical curves. Since we are interegteithe deformation of the-
invariant we take a plane elliptic parameterized tropicalve C' of degreed and passing
through3d — 1 points in general position. Thus, the image of the curv®inhas to be
a rational tropical curve or an elliptic tropical curve. Fx-invariant; and consider the
case, in which the curve is rational. If we can deform theitalpcurves continuously we
can deform it by making thg-invariant bigger and bigger. As long as the image of the
curve stays rational it cannot change sincedtie- 1 points are in general position. Let us
consider the case where the image of the curve changes bgndefpthe j-invariant. In
this case the parameterization of the curve hdsvalent vertex. Therefore the two other
parameterizations have to be elliptic or the same ratiomadec Since we know the number
of algebraic curves mapped to the tropical cycle of an étlippbpical curve with sufficiently
big j-invariant or where the cycle is elliptic we can deduce theber of algebraic curves
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which are mapped to the cycle 6fby the balancing condition in the moduli space of elliptic
tropical curves of genusand degred.

We consider an example of a deformation of tropical curves.

ExampleB.53 Assume that a parameterized tropical cufVer, . . ., z,, k) has the tropical
cycle shown in figurE8.10. If we change th@variant continuously, the tropical cycle either

Figure 8.10: Rational cycle

stays the same or transforms to a tropical cycle similar¢mtie shown in figuie 8.1L1. Lgf

Figure 8.11: Elliptic cycle with changedinvariant.

be the value of thg-invariant where the tropical cycle changes, and assuméthtearopical
cycle shown in figur&8.10 does not change for biggvariants. Thus, the multiplicity of
the tropical cycle in figurEZ8.10 witlrinvariant smaller thar, has the same multiplicity as
the sum of the multiplicity of the tropical cycle in figure 8 With big j-invariant and of the
multiplicity of the tropical cycle in figur€8.11.
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