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Preface

Tropical geometry

Tropical geometry is a relatively new mathematical domain.The roots of tropical geometry
go back to the seventies (see [Be] and [BG]), but only ten years ago it became a subject on
its own. Tropical geometry has applications in several branches of mathematics such as enu-
merative geometry (e.g. [IKS], [M1]), symplectic geometry(e.g. [A]), number theory (e.g.
[G]) and combinatorics (e.g. [J]). A powerful tool in enumerative geometry are the so-called
correspondence theorems. These theorems establish an important correspondence between
complex algebraic curves satisfying certain constraints and tropical analogs of these curves.
One of the first results concerning correspondence theoremswas achieved by G. Mikhalkin
(see [M1]). This theorem was proved again in slightly different form in [N], [NS], [Sh], [ST],
[T]. These results initiated the study of enumerative problems in tropical geometry (see for
example [GM1], [GM2], [GM3]). Dealing with counting problems, it is naturally to work
with moduli spaces. The first step in this direction was the construction of the moduli spaces
of rational curves given in [M2] and [GKM]. In [GKM] the authors developed some tools
to deal with enumerative problems for rational curves, using the notion of tropical fan. They
introduced morphisms between tropical fans and showed that, under certain conditions, the
weighted number of preimages of a point in the target of such amorphism does not depend
on the chosen point. After showing that the moduli spaces of rational tropical curves have
the structure of a tropical fan, they used this result to count rational curves passing through
given points.

Results

In the first part of this thesis we follow the approach of [GKM]and introduce similar tools for
enumerative problems concerning curves of positive genus.In the second part we establish a
new correspondence theorem. The main results of this thesisare as follows.

• We develop the definitions of (tropical) orbit spaces and (tropical) local orbit spaces
which are counterparts of a stack in algebraic geometry.

• We introduce morphisms between (tropical) orbit spaces and(tropical) local orbit
spaces.
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Preface

• For tropical (local) orbit spaces we show that the weighted number of preimages of a
point in the target of such a morphism does not depend on the chosen point.

• We equip the moduli spaces of tropical curves with the structure of a tropical local
orbit space.

• For the special case of moduli spaces of elliptic tropical curves we equip the moduli
spaces as well with the structure of a tropical orbit space.

• Using our results on tropical local orbit spaces, we give a more conceptual proof than
the authors of [KM] of the fact that the weighted number of plane tropical curves of
a given degree and genus which pass through the right number of points in general
position inR2 is independent of the choice of a configuration of points.

• In the same way we prove that the weighted number of tropical curves of given degree
and genus inRr which pass through the right number of points inRr and which repre-
sent a fixed point in the moduli space of abstract genusg tropical curves is independent
of the choice of a configuration of points in general position.

• In the case of plane elliptic tropical curves of degreed we prove the independence of
the choice of a configuration of points and the choice of a type(which is thej-invariant
in this case) as well by using our results on tropical orbit spaces.

• We prove a correspondence between plane tropical cycles (ofelliptic curves with big
j-invariant satisfying point constraints) and elliptic plane algebraic curves (satisfying
corresponding constraints).

The chapters 1 and 2 recall definitions and do not contain new results. The chapters 3, 4, 5, 6
and 7 are based on [H]. New results in chapter 8 are proposition 8.34, theorem 8.45 and the
conjecture 8.50.

Motivation

A relationship between tropical geometry and complex geometry was conjectured in 2000
by M. Kontsevich and was made precise by the so-called correspondence theorem by G.
Mikhalkin in [M1]. In the cases where such a connection is established, it suffices to count
tropical curves to get the number of corresponding algebraic objects. Therefore tropical
geometry became a powerful tool for enumerative geometry. In algebraic geometry one uses
moduli spaces in enumerative problems. Because of the mentioned relation, it would be
reasonable to construct moduli spaces in tropical geometryas well. For the construction of
moduli spaces in algebraic geometry one needs, in many cases, the notion of a stack. Put
simply, a stack is the quotient of a scheme by a group action. In this thesis we want to
make an attempt for the definition of a “tropical stack”. Since it is a first approach, we call
these objects tropical (local) orbit spaces (instead of calling them stacks). The definition of a
tropical orbit space avoids many technical problems. Therefore it is a useful definition to get
a first impression on the problems one wants to handle with a “tropical stack”. Nevertheless
it seems to be not general enough for the problems we want to deal with. Furthermore the
price we have to pay for the simplicity is loosing finiteness.Because of this, we give the
definition of a tropical local orbit space which is more technical but more appropriate for our
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purposes. To show the usefulness of our definition, we equip the moduli spaces of tropical
curves with the structure of a tropical local orbit space anduse this structure to show that the
weighted number of tropical curves through given points does not depend on the position of
points.

As mentioned above, one motivation for tropical geometry are the correspondence theorems.
Therefore, it is of great interest to enlarge the number of cases where a correspondence is
established. The hope is to understand better the algebraicobjects and to get a more efficient
way to count them (see for example Mikhalkin’s lattice path algorithm in [M1]). Our goal is
to enlarge the correspondence theorem to the case of elliptic non-Archimedean curves with
a j-invariant of sufficiently big valuation.

Chapter synopsis

This thesis contains eight chapters, which can be divided into four parts. Chapters 1 and 2 are
essential for the first seven chapters. Chapters 3, 4 and 5 belong together as well as chapters
6 and 7. Chapter 8 can be read separately.

• Chapter 1: Polyhedral complexes
We start the chapter by defining general cones, which are non-empty subsets of a finite-
dimensionalR-vector space and are described by finitely many linear integral equal-
ities, inequalities and strict inequalities. A union of these cones, which satisfy some
properties, is ageneral fan. We equip each top-dimensional cone in the fan with a
number inQ calledweight. If these weights together with the cones fulfill a certain
condition (the balancing condition) we call the fan ageneral tropical fan. These ob-
jects are the local building blocks of tropical varieties (in particular each tropical curve
is locally a one-dimensional fan). After this, we define ageneral polyhedron, which is
a non-empty subset of a finite-dimensionalR-vector space and is described by finitely
many affine linear integral equalities, inequalities and strict inequalities.Polyhedral
complexesare certain unions of general polyhedra (locally a polyhedral complex looks
like a fan thus, we can define weights for the top-dimensionalcones and consider the
balancing condition). We end the chapter by defining morphisms between polyhedral
complexes.

• Chapter 2: Moduli spaces
In this chapter we define moduli spaces of tropical curves. For this we give a defini-
tion ofn-marked abstract tropical curves and parameterized labeled n-marked tropical
curves. As in algebraic geometry we can define the genus of a curve. Ann-marked
abstract tropical curveof genusg is a connected graph with first Betti number equal
to g andn labeled edges connected to exactly one one-valent vertex (we consider the
curves up to isomorphism) such that the graph without one-valent vertices has a com-
plete metric. Each edge connecting two vertices of valence greater than one has a
length defined by the metric. Thus ann-marked abstract tropical curve can be en-
coded by these lengths, which give as well a polyhedral structure to the moduli spaces
of n-marked abstract tropical curves. After doing this we consider the special case
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of genus one. The underlying graph of ann-marked abstract tropical curve of genus
one contains exactly one simple cycle and we call its lengthtropical j-invariant. Pa-
rameterized labeledn-marked tropical curvesaren-marked abstract tropical curves
together with a map from the graph without one-valent vertices to someRr fulfilling
some conditions.

• Chapter 3: Local orbit spaces
In the first section we introduce tropical local orbit spaces. Local orbit spacesare
finite polyhedral complexes in which we identify certain polyhedra with each other.
These identifications are done with the help of isomorphismsbetween subsets of the
polyhedral complexes. For technical reasons the set of isomorphisms has to fulfill
some properties. If the polyhedral complex was equipped with weights which are the
same for identified polyhedra, we can equip the local orbit space with weights as well.
The word tropical refers again to a balancing condition which the local orbit space
with weights has to fulfill. After showing that the balancingcondition of the local orbit
space and of the underlying polyhedral complex are equivalent we start the second
section by defining morphisms between tropical orbit spaces. These morphisms are
defined to be morphisms of the underlying polyhedral complexes which respect the
properties of the set of isomorphisms (the properties whichwe have because of the
technical reasons). The morphisms allow us to define the image of a tropical local
orbit space. Under some conditions on the image we can prove that the number of
preimages of a general point in the target space (counted with certain multiplicities)
is independent of the chosen point (corollary 3.41). Afterwards, we define rational
functions on tropical local orbit spaces and the corresponding divisors.

• Chapter 4: One-dimensional local orbit spaces
For a better understanding of the local orbit spaces defined in chapter 3 we study the
one-dimensional case more explicitly. The main result of this chapter is a theorem
concerning the local structure of a local orbit space. In this chapter we treat as well
non-Hausdorff local orbit spaces in the one-dimensional case which we avoid in the
other chapters (the non-Hausdorffness).

• Chapter 5: Moduli spaces for curves of arbitrary genus
In the first section we equip the moduli spaces ofn-marked abstract tropical curves
of genusg and exactlyn one-valent vertices such that the underlying graph has no
two-valent vertices with the structure of local orbit space. As mentioned above we can
equip the moduli spaces with a polyhedral structure. The underlying graph (forgetting
the metric) of twon-marked abstract tropical curves might be different. The encod-
ing of the curve by the lengths of the bounded edges does not give a useful global
description, since the cones encoding all curves with the same underlying graph are
spanned by unit vectors (one vector for each edge). Therefore, we do not get a tropical
structure with this description. Thus, instead of the lengths of the bounded edges we
take the distances between then markings. To get a global description of a moduli
space it seems reasonable to take these distances. This ideawas used forn-marked
abstract rational tropical curves in [GKM]. Unfortunately, the distance between two
markings for curves of higher genus is not well-defined; because of the cycles, there
is no unique path from one point to the other. To get rid of thisproblem, we cut each
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cycle at one point such that the curve stays connected and insert a new marked edge
at each endpoint of the cut. Now, all distances between markings are well-defined (we
are in a case similar to the case of rational curves). Since wemade non-canonical
choices, we take all possibilities for such a cut and we get rid of the choices by an
identification of cones. Thus, we end up with a tropical localorbit space which turns
out to be homeomorphic to the moduli space. In section2 we construct moduli spaces
of parameterized labeledn-marked tropical curves of genusg in Rr. A parameterized
tropical curve is an abstract tropical curve with a map toRr where the map satisfies
certain properties (in particular it is affine on each edge).Using moduli spaces of ab-
stract curves we only need to encode the map. We consider onlycurves with fixed
directions of the marked edges and therefore it is enough to encode the position of one
fixed point to have all information needed for a map (the directions of the edges are
fixed and the distances of two points are already encoded, thus the map is fixed by the
position of one point). In our construction of the moduli spaces of abstract curves we
made a cut on each cycle and inserted two new edges. To make sure that the images of
the cut cycles are cycles again we use rational functions forthe definition of the moduli
spaces we are interested in. In the last section we introducethe condition that a curve
passes through given points and the condition that a curve represent a fixed point in the
moduli space of0-marked abstract tropical curves of genusg. Using the structure of a
local orbit space we show that the number of parameterized labeledn-marked tropical
curves of given genus and given direction of marked ends counted with the multiplic-
ity defined by corollary 3.41 fulfilling the mentioned conditions does not depend on a
general choice of a configuration of points.

• Chapter 6: Orbit spaces
This chapter is relatively similar to chapter 3. In the first section we define tropical
orbit spaces and in the second section we define morphisms between these objects. As
for tropical local orbit spaces we define tropical orbit spaces to be polyhedral com-
plexes in which we identify polyhedra by using isomorphisms. The difference in this
construction is that we weaken the conditions on the polyhedral complex and tighten
the condition on the set of isomorphisms. This time we allow the polyhedral complex
to be infinite but we ask the set of isomorphisms to be a group. Since the conditions
of the set of isomorphisms in chapter 3 are technical but satisfied if the set is a group,
we can simplify some problems. Unfortunately, the price we have to pay for this is an
infinite polyhedral complex. This is due to the fact that it would be too restrictive for
our problems to consider only finite groups. Because of the similarities we can develop
the same theory for orbit spaces as for local orbit spaces.

• Chapter 7: Moduli spaces of elliptic tropical curves
In the first section we equip the moduli spaces ofn-marked abstract tropical curves
of genus1 and exactlyn one-valent vertices such that the underlying graph has no
two-valent vertices with the structure of local orbit space. As in chapter 5 we cut the
cycle of the genus-one curve. Since this case is a special case of chapter 5 most of the
calculations are similar to those in that chapter but easier. In the second section we
build moduli spaces of parameterized labeledn-marked elliptic tropical curves inRr

using rational functions. We end the section with a calculation of weights in the case
r = 2. In this case M. Kerber and H. Markwig have already constructed the moduli
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spaces as weighted polyhedral complex [KM]. It turns out that the weights defined by
our construction are the same except for the case when the image of the cycle of the
curve is zero-dimensional. If the cycle is zero-dimensional our weights differ from the
weights of M. Kerber and H. Markwig by1

2
. In particular, it follows that the moduli

spaces we constructed are reducible. In the third section ofthis chapter we show that
the number of plane elliptic tropical curves of degreed with fixed j-invariant which
pass through a given configuration of points does not depend on a general choice of
the configuration.

• Chapter 8: Correspondence theorems
Since we want to prove a correspondence theorem we recall some correspondence the-
orems in the first section. Especially theorem 8.30 by I. Tyomkin, which is the first
one stating a correspondence for elliptic curves with givenj-invariant, is related to our
work. For a correspondence theorem, the multiplicity of a tropical curve is the number
of algebraic curves corresponding to it. By recalling some correspondence theorems,
we observe that the multiplicity of a curve depends in particular on the problem. We
end the section by proving a statement which expresses the multiplicities of theorem
8.30 in a tropical way. These multiplicities agree with those defined by M. Kerber and
H. Markwig (resp., calculated in the thesis). In the second section we prove a corre-
spondence between elliptic non-Archimedean curves which have a givenj-invariant
with big valuation and tropical cycles which are the images of parameterized elliptic
tropical curves with big tropicalj-invariant. The multiplicities we are using for this
are those defined by M. Kerber and H. Markwig. Since I. Tyomkinuses the same mul-
tiplicities we conjecture that the multiplicities of M. Kerber and H. Markwig are the
right ones in each case.

Keywords

Tropical geometry, tropical curves, enumerative geometry, metric graphs, moduli spaces,
elliptic curves,j-invariant.
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Introduction en français

Géométrie tropicale

La géométrie tropicale est un domaine relativement nouveau des mathématiques. Ses débuts
remontent aux années soixante-dix (voir [Be] et [BG]), mais il y a seulement dix ans qu’elle
est devenue un sujet à part entière. La géométrie tropicale a des applications dans plusieurs
branches des mathématiques comme la géométrie énumérative (cf. [IKS], [M1]), la géomé-
trie symplectique (voir, par exemple [A]), la théorie des nombres (voir, par exemple [G]) et la
combinatoire (cf. [J]). Les théorèmes de correspondancesont un outil puissant en géométrie
énumérative. Ces théorèmes établissent une correspondance importante entre les courbes
algébriques complexes qui satisfont certaines contraintes et leurs analogues tropicaux. Un
des premiers résultats concernant les théorèmes de correspondance est du à G. Mikhalkin
(voir [M1]). Ce théorème a été redémontré dans une forme légèrement différente dans [N]
[NS], [Sh], [ST], [T]). Ces résultats sont à l’origine de l’étude de problèmes en géométrie
tropicale énumérative (voir par exemple [GM1], [GM2], [GM3]). Face à des problèmes
de dénombrement, il est naturel de travailler avec des espaces de modules. La première
étape dans cette direction a été la construction des espaces de modules de courbes tropicales
rationnelles proposée dans [M2] et [GKM]. Dans [GKM], les auteurs utilisent la notion
d’un éventail tropical pour développer des outils qui permettent d’étudier des problèmes
énumératifs concernant des courbes rationnelles. Ils introduisent des morphismes entre
éventails tropicaux et montrent le fait suivant : sous certaines conditions, le nombre pondéré
d’antécédents d’un point, pour un tel morphisme, ne dépend pas du point choisi à l’arrivée.
Après avoir montré que les espaces de modules de courbes tropicales rationnelles ont la
structure d’un éventail tropical, les auteurs de [GKM] utilisent ce résultat pour dénombrer
les courbes rationnelles passant par des points donnés.

Résultats

Dans la première partie de cette thèse, nous suivons l’approche de [GKM] et introduisons
des outils similaires pour aborder des problèmes énumératifs concernant les courbes de genre
strictement positif. Dans la deuxième partie, nous établissons un nouveau théorème de cor-
respondance. Les principaux résultats de la thèse sont les suivants.
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• Nous proposons des définitions d’espaces d’orbites (tropicaux) et d’espaces d’orbites
locaux (tropicaux) (une tentative de définition d’un≪champ tropical≫).

• Nous introduisons des morphismes entre espaces d’orbites (tropicaux) et espaces d’or-
bites locaux (tropicaux).

• Pour un morphisme d’espaces d’orbites (locaux) tropicaux,nous montrons que le nom-
bre d’antécédents d’un point dans l’image, comptés avecleurs poids, ne dépend pas du
point choisi.

• Nous équipons les espaces de modules de courbes tropicalesd’une structure d’espace
d’orbites local tropical.

• Dans le cas particulier des espaces de modules de courbes tropicales elliptiques, nous
équipons aussi les espaces de modules d’une structure d’espace d’orbites tropical.

• En utilisant nos résultats sur les espaces d’orbites locaux tropicaux, nous donnons une
preuve plus conceptuelle que les auteurs de [KM] du fait suivant. Le nombre pondéré
de courbes tropicales planes de degré et genre donnés qui passent par le bon nombre
de points en position générale dansR2 est indépendant du choix de la configuration de
ces points.

• De la même manière, nous montrons que le nombre pondéré de courbes tropicales de
degré et genre donnés dansRr qui passent par le bon nombre de points en position
générale dansRr et ayant un type général fixé dans l’espace de modules de courbes
tropicales abstraites de genreg est indépendant du choix de la configuration de ces
points ainsi que du type.

• Dans le cas de courbes tropicales elliptiques planes de degré d, nous prouvons que le
nombre pondéré de ces courbes qui passent par le bon nombrede points en position
générale et ayant unj-invariant fixé est indépendant du choix d’une configuration des
points et du choix duj-invariant, et ce, à nouveau, à l’aide de nos résultats sur les
espaces d’orbites tropicaux.

• Nous montrons une correspondance entre les courbes tropicales elliptiques planes de
degréd ayant un grosj-invariantj (qui satisfont des contraintes données par des points)
et les courbes non archimédiennes elliptiques planes de degréd ayant unj-invariant
fixé de valuationj (satisfaisant les contraintes correspondantes).

Les chapitres 1 et 2 sont un rappel des définitions et ne contiennent pas de nouveaux résultats.
Les chapitres 3, 4, 5, 6 et 7 sont basés sur [H]. Les nouveaux résultats dans le chapitre 8 sont
la proposition 8.34, le théorème 8.45 et la conjecture 8.50.

Motivation

Les connexions avec la géométrie algébrique énumérative fournissent une motivation impor-
tante pour le développement de la géométrie tropicale. Une relation entre la géométrie tropi-
cale et la géométrie complexe, conjecturée en 2000 par M.Kontsevich, a été précisée grâce au
théorème de correspondance de G. Mikhalkin dans [M1]. Ainsi, dans chaque cas où une telle
connexion est établie, il suffit de dénombrer les courbes tropicales pour connaı̂tre le nombre
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d’objets algébriques correspondants. Par conséquent, la géométrie tropicale devient un puis-
sant outil pour la géométrie énumérative. En géométrie algébrique, on utilise les espaces de
modules pour effectuer un dénombrement.Étant donné la relation conjecturée par M. Kont-
sevich, il serait raisonnable de construire des espaces de modules en géométrie tropicale. En
géométrie algébrique, on a besoin, dans de nombreux cas,de la notion de champ pour con-
struire des espaces de modules. Dit simplement, un champ estle quotient d’un schéma par
une action de groupe. Dans cette thèse, nous voulons faire une tentative de définition d’un
≪champ tropical≫. Puisque cette définition n’est qu’une première approche, nous appellerons
ces objets des espaces d’orbites (locaux) tropicaux (au lieu de les appeler des champs tropi-
caux). La définition d’un espace d’orbites tropical évitede nombreux problèmes techniques.
Elle est donc utile pour se donner une première idée des problèmes que l’on voudrait traiter
avec un≪champ tropical≫. Néanmoins, il semble que cette définition ne soit pas suffisam-
ment générale pour les problèmes que nous aimerions aborder. En outre, le prix à payer pour
la simplicité est la perte de la finitude. Par conséquent, nous donnons la définition d’espace
d’orbites local tropical qui est plus technique mais plus appropriée dans notre cas. Pour il-
lustrer l’utilité de la définition, nous équipons les espaces de modules de courbes tropicales
de la structure d’espace d’orbites local tropical. Nous utilisons celle-ci pour montrer que le
nombre de courbes tropicales qui passent par des points fixés ne dépend pas de leurs posi-
tions.

Comme mentionné ci-dessus, une des motivations pour la géométrie tropicale provient de
théorèmes de correspondances. C’est pourquoi on a un grand intérêt à étendre les cas où
une correspondance est établie. On a ainsi l’espoir d’obtenir une meilleure compréhension
d’objets algébriques et un moyen plus efficace pour les dénombrer (voir par exemple l’algo-
rithme de Mikhalkin dans [M1]). Notre objectif est d’élargir le théorème de correspondance
au cas des courbes non archimédiennes elliptiques dont la valuation duj-invariant est suff-
isamment grande.

Résum é des chapitres

Cette thèse contient huit chapitres qui peuvent être divisés en quatre parties. Les chapitres 1
et 2 sont essentiels pour les sept premiers chapitres. Les chapitres 3, 4 et 5 forment un tout,
ainsi que les chapitres 6 et 7. Le chapitre 8 peut être lu séparément.

• Chapitre 1: Polyhedral complexes (complexes polyédraux). Nous commençons
ce chapitre par la définition générale de cônes qui sont des sous-ensembles non vides
d’un R-espace vectoriel de dimension finie décrits par un nombre fini d’égalités et
d’inégalités larges ou strictes, linéaires à coefficients entiers. Une union de ces cônes
qui satisfait certaines propriétés est unéventail ǵeńeral. Nous équipons chaque cône
de dimension maximal dans l’éventail d’un nombre rationnel baptisépoids. Si ces
poids conjointement avec les cônes remplissent une certaine condition (la condition
d’équilibre) nous appelons cet éventail, unéventail tropical ǵeńeral. Une variété trop-
icale est localement décrite par de tels objets (en particulier chaque courbe tropicale
est localement un éventail de dimension1). Ensuite, nous définissons lespolyèdres
géńerauxqui sont des sous-ensembles non vides d’unR-espace vectoriel de dimen-
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sion finie décrits par un nombre fini d’égalités et d’inégalités larges ou strictes, affines
et a coefficients entiers. Lescomplexes polýedrauxsont des réunions certaines de
polyèdres (localement un complexe polyédral ressemble `a un éventail. C’est pourquoi,
sous de bonnes conditions, nous pouvons lui associer des poids). Nous terminons le
chapitre par la définition de morphismes entre complexes polyédraux.

• Chapitre 2: Moduli spaces (espaces de modules). Dans ce chapitre, nous définissons
les espaces de modules de courbes tropicales. Pour cela, nous introduisons la définition
de courbes tropicales abstraitesn-marquées et de courbes tropicales paramétréesn-
marquées étiquetées. Comme en géométrie algébrique, une courbe tropicale possède
un genre. Unecourbe tropicale abstraiten-marqúeede genreg est un couple(Γ, δ)
où Γ est un graphe connexe dont le premier nombre de Betti est égal à g et ayantn
arêtes marquées chacune de ces arêtes étant reliée à exactement un sommet de valence
1 (nous considérons les courbes à isomorphisme près) tel que le graphe privé des ses
sommets de valence1 soit muni de la métrique de longueurδ soit complet. Chaque
arête reliant deux sommets de valence strictement supérieure à1 a une longueur définie
par la métrique. Ainsi, une courbe tropicale abstraiten-marquée peut être codée par ces
longueurs, conférant ainsi une structure polyédrale à l’espace de modules de courbes
tropicales abstraitesn-marquées. Ensuite, nous considérons le cas particulierdes
courbes de genre1. Le graphe sous-jacent d’une courbe tropicale abstraiten-marquées
de genre1 contient exactement un cycle simple nous appelons sa longueur j-invariant
tropical. Unecourbe tropicale paraḿetréen-marqúeeétiquet́eeest une courbe tropi-
cale abstraiten-marquée équipée d’une application du graphe privé de ses sommets de
valence1 dansRr satisfaisant de bonnes conditions.

• Chapitre 3: Local orbit spaces (espaces d’orbites locaux). Dans la première partie,
nous introduisons les espaces d’orbites locaux tropicaux.Lesespaces d’orbites locaux
sont des complexes polyédraux finis dans lesquels nous identifions certains polyèdres.
Ces identifications sont données par des isomorphismes entre des sous-ensembles des
complexes polyédraux. Pour des raisons techniques, l’ensemble des isomorphismes
doit satisfaire certaines propriétés. Si le complexe polyédral est équipé de poids qui
coı̈ncident sur les polyèdres identifiés, l’espace d’orbites local hérite de la structure
de poids. Le mot tropical se réfère de nouveau à une condition d’équilibre que les
espaces d’orbites locaux conjointement avec les poids doivent remplir. Après avoir
montré que la condition d’équilibre pour l’espace d’orbites locaux et celle pour les
complexes polyédraux sont équivalentes, nous commençons la deuxième partie par la
définition de morphisme entre espaces d’orbites locaux tropicaux. Ces morphismes
sont définis comme des morphismes entre les complexes poly´edraux sous-jacents qui
respectent les propriétés de l’ensemble des isomorphismes (les propriétés nous avons
à cause des raisons techniques). Ils nous permettent de définir l’image d’un espace
d’orbites local tropical. Sous certaines conditions sur l’image, on peut prouver que
le nombre d’antécédents d’un point général dans l’espace image (comptés avec mul-
tiplicités donnent par poids) est indépendant du point (corollaire 3.41). Enfin, nous
définissons les fonctions rationnelles sur les espaces d’orbites locaux tropicaux et les
diviseurs correspondants.
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• Chapitre 4: One-dimensional local orbit spaces (espaces d’orbites locaux de di-
mension1). Pour une meilleure compréhension de l’espace d’orbiteslocaux défini au
chapitre 3, nous étudions plus précisément le cas de la dimension1. Le résultat princi-
pal de ce chapitre est un théorème concernant la structurelocale d’un espace d’orbites
local. Dans ce chapitre, nous traitons aussi les espaces d’orbites locaux non-Hausdorff
dans le cas unidimensionnel, cas que nous laisserons de cot´e dans les autres chapitres
(d’être non-Hausdorff).

• Chapitre 5: Moduli spaces for curves of arbitrary genus (espace de modules de
courbes de genre quelconque). Dans la première partie, nous équipons de la struc-
ture d’espaces d’orbites locaux l’espace de modules de courbes tropicales abstraitesn-
marquées de genreg ayant exactementn sommets de valence1, telles que les graphes
sous-jacents à ces courbes n’aient pas de sommet bivalent.Comme mentionné ci-
dessus, nous pouvons munir celui-ci d’une structure polyédrale. Si l’on oublie la
métrique, les graphes sous-jacents de deux courbes tropicales abstraitesn-marquées
pouvant être différents, l’encodage par les longueurs des arêtes n’en donne pas une
description globale. Ainsi, au lieu considérer des longueurs d’arêtes bornées, nous
prenons les distances entre lesn arêtes marquées. Puisque chaque courbe est munie de
ces arêtes, ce choix semble raisonnable. Cette idée a ét´e utilisée pour les courbes trop-
icales abstraitesn-marquées dans [GKM]. Malheureusement, la distance entredeux
arêtes marquées n’est pas bien définie pour les courbes degenre strictement positif.
Du fait de la présence de cycles, il n’y a pas unicité du chemin entre deux points. Pour
s’acquitter de ce problème, nous coupons chaque cycle en unpoint tel, que la courbe
reste connexe et nous insérons une nouvelle arête marquée à chacune des deux nou-
velles extrémités introduites. Ainsi, toutes les distances entre des arêtes marquées sont
bien définies.́Etant donné que nous avons fait des choix non-canoniques, nous devons
nous en débarrasser, se qui revient à identifier des cônes. Ainsi, nous nous retrou-
vons avec un espace d’orbites local tropical homéomorphe `a l’espace de modules.
Dans la deuxième partie, nous construisons un espace de modules de courbes tropi-
cales paramétrées,n-marquées et étiquetées de genreg. Puisque nous voulons utiliser
l’espace de modules de courbes abstraites, nous avons besoin d’encoder une applica-
tion dansRr. Nous nous restreignons au seul cas où la direction des arêtes marquées
est fixée. Il suffit donc de préciser la position d’un point fixe pour avoir toutes les
informations nécessaires pour définir une application (les directions des arêtes sont
fixées et les distances entre des arêtes marquées sont déjà définies, donc l’application
est entièrement déterminée par la position d’un point).Dans notre construction des es-
paces de modules de courbes abstraites, nous avons fait une coupe dans chaque cycle
et inséré deux nouvelles arêtes. Pour être sûr que les images des cycles coupés soient
de nouveau des cycles, nous utilisons des fonctions rationnelles dans la définition des
espaces de modules. Dans la dernière partie, nous demandons que la courbe passe
par des points donnés et qu’elle répresente un point fixé de l’espace de modules de
courbes tropicales abstraites0-marquées de genreg. Grâce à la structure d’espace
d’orbites local, nous montrons que le nombre (compté avec la multiplicité définie dans
le corollaire 3.41) de courbes tropicales paramétréesn-marquées et étiquetés de genre
donné, dont la direction des extrémités marquées est donnée, remplissant en outre les
conditions mentionnées, ne dépendent pas du choix d’une configuration de points si
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celles-ci restent générales.

• Chapitre 6: Orbit spaces (espaces d’orbites). Ce chapitre est relativement similaire
au chapitre 3. Dans la première partie, nous définissons les espaces d’orbites tropicaux
et dans la deuxième partie, les morphismes entre ces objets. Comme dans le chapitre
3, les espaces d’orbites tropicaux sont des complexes poly´edraux dont nous identifions
certains polyèdres à l’aide d’isomorphismes. Toutefois, nous relâchons ici les condi-
tions sur le complexe polyédral et nous renforçons la condition sur l’ensemble des iso-
morphismes. Plus précisément, nous autorisons le complexe polyédral être infini, mais
demandons à l’ensemble des isomorphismes d’avoir une structure de groupe.Étant
donné que les conditions techniques sur l’ensemble des isomorphismes introduites au
chapitre 3 sont satisfaites pour un groupe, nous pouvons simplifier certains problèmes.
Malheureusement, le prix à payer est d’avoir un complexe polyédral infini. Cela est dû
au fait qu’il serait trop restrictif dans notre contexte de ne considérer que des groupes
finis. En raison des similitudes, nous pouvons développer pour les espaces d’orbites la
même théorie que pour les espaces d’orbites locaux.

• Chapitre 7: Moduli spaces of elliptic tropical curves (espaces de modules de cour-
bes tropicales elliptiques). Dans la première partie nouséquipons d’une structure
d’espace d’orbites local l’espace de modules de courbes tropicales abstraitesn-mar-
quées de genre1 ayant exactementn sommets de valence1 et telles que les graphes
sous-jacents n’aient pas de sommet bivalent. Comme dans le chapitre 5 nous coupons
les cycles de chaque courbe. Puisque nous sommes dans un cas particulier du chapitre
5, la plupart des calculs sont similaires, mais plus faciles. Dans la deuxième partie,
nous construisons un espace de modules de courbes tropicales paramétréesn-marquées
et étiquetées dansRr à l’aide de fonctions rationnelles. Nous terminons cette partie par
un calcul de poids dans le casr = 2. Dans ce cas, M. Kerber et H. Markwig ont déjà
construit les espaces de modules comme des complexes polyédraux avec des poids
[KM]. Nous montrons que les poids définis dans notre construction sont les mêmes,
excepté dans le cas où l’image du cycle de la courbe est de dimension nulle. Dans ce
cas, nos poids diffèrent de ceux de M. Kerber et H. Markwig de1

2
. En particulier, les

espaces de modules que nous avons construit sont réductibles. Dans la troisième partie
de ce chapitre, nous montrons que le nombre de courbes tropicales elliptiques planes
de degréd dont lej-invariant est fixé et qui passent par une configuration donnée de
points ne dépend pas du choix d’une configuration générale.

• Chapitre 8: Correspondence theorems (théorèmes de correspondance). Puisque
nous voulons démontrer un théorème de correspondance, nous rappelons dans la pre-
mière partie quelques-uns d’entre eux. Le théorème 8.30démontré par I. Tyomkin,
premier théorème de correspondance pour les courbes elliptiques dont lej-invariant est
donné, est particulièrement lié à notre travail. Dans un théorème de correspondance,
la multiplicité d’une courbe tropicale est le nombre de courbes algébriques qui lui
correspondent. En rappelant quelques théorèmes, nous observons que ces multiplicités
varient d’un problème à l’autre. Nous terminons cette partie en montrant que l’on
peut exprimer les multiplicités du théorème 8.30 de manière tropicale. Ces poids sont
les mêmes que ceux utilisés par M. Kerber et H. Markwig (resp., que ceux que nous
avons calculés). Dans la deuxième partie nous montrons une correspondance entre les

xviii



Preface

courbes non archimédiennes elliptiques dont la valeur duj-invariant est très grande et
dont les cycles tropicaux sont les images d’une courbe tropicale elliptique paramétrée
ayant un grandj-invariant tropical. Pour cela, nous utilisons les multiplicités de M.
Kerber et H. Markwig. Étant donné que I. Tyomkin utilise les mêmes multiplicit´es
nous conjecturons que l’on peut utiliser ces multiplicités dans chaque cas (par exemple
pas seulement pour unj-invariant très grande).

Mots cl és

Géométrie tropicale, courbes tropicales, géométrie ´enumérative, graphe métrique, espaces de
modules, courbes elliptiques,j-invariant.
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1 Polyhedral complexes

In this chapter we give the definitions of polyhedral complexes and morphisms between them.
These objects are the building blocks for orbit spaces and local orbit spaces. In contrast to the
definitions given in tropical geometry so far, we take a more general definition of polyhedra
and allow them to be open. The purpose of the definition is to parameterize tropical curves
with genus greater than zero. Since we are interested in genus g curves we consider curves
with positive cycle lengths. Therefore some of the polyhedra of the parameterizing space of
those curves need to be open. In this part we denote a finitely generated free abelian group
by Λ and the corresponding real vector spaceΛ⊗Z R byV . So we can considerΛ as a lattice
in V . The dual lattice in the vector spaceV ∨ is denoted byΛ∨.

Definition 1.1 (General and closed cone). A general cone in V is a non-empty subsetσ ⊆
V that can be described by finitely many linear integral equalities, inequalities and strict
inequalities, i.e. a set of the form

σ = {x ∈ V |f1(x) = 0, . . . , fr(x) = 0, fr+1(x) ≥ 0, . . . , fr+s(x) ≥ 0,

fr+s+1(x) > 0, . . . , fN(x) > 0} (∗)

for some linear formsf1, . . . , fN ∈ Λ∨. We denote byVσ the smallest linear subspace ofV
containingσ and byΛσ the latticeVσ∩Λ. We define thedimension of σ to be the dimension
of Vσ. We callσ a closed coneif it has a presentation(∗) with no strict inequalities (i.e. if
N = r + s).

Definition 1.2 (Face). A face (or subcone) of σ is a general coneτ ⊂ σ which can be
obtained fromσ by changing some of the non-strict inequalities in(∗) to equalities.

Definition 1.3 (Fan and general fan). A fan in V is a finite setX of closed cones inV such
that

(a) each face of a cone inX is also a cone inX;

(b) the intersection of any two cones inX is a face of each of them.

A general fanin V is a finite setX̃ of general cones inV satisfying the following prop-
erty: there exists a fanX and a subsetR ⊂ X such thatX̃ = {τ \ U | τ ∈ X}, where
U =

⋃
σ∈R σ. We put |X̃| =

⋃
σ̃∈X̃ σ̃. A (general) fan is calledpure-dimensionalif all

its inclusion-maximal cones are of the same dimension. In this case we call the highest di-
mensional conesfacets. The set ofn-dimensional cones of a (general) fanX is denoted by
X(n).
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Chapter 1: Polyhedral complexes

Construction1.4 (Normal vector). If ∅ 6= τ, σ are cones inV and τ is a face ofσ such
that dim τ = dim σ − 1, then there is a non-zero linear formg ∈ Λ∨, which is zero onτ
and positive onσ\τ . Theng induces an isomorphismVσ/Vτ

∼= R. There exists a unique
generatoruσ/τ ∈ Λσ/Λτ , lying in the same half-line asσ/Vτ and we call it the primitive
normal vectorof σ relative toτ . In the following we writeτ ≤ σ if τ is a face ofσ and
τ < σ if τ is a proper face ofσ.

Definition 1.5 (General weighted and general tropical fan). A general weighted fan(X,ωX)
in V is a pure-dimensional general fanX of dimensionn with a mapωX : X(n) → Q. The
numbersωX (σ) are calledweightsof the general conesσ ∈ X(n). By abuse of notation we
also writeω for the map andX for the weighted fan.
A general tropical fanin V is a weighted fan(X,ωX) fulfilling the balancing condition

∑

σ>τ

ωX (σ) · uσ/τ = 0 ∈ V/Vτ

for anyτ ∈ X(dimX−1).

Definition 1.6 (Open fan). Let F̃ be a general fan inRn and0 ∈ U ⊆ Rn an open subset.
The setF = F̃ ∩ U = {σ ∩ U |σ ∈ F̃} is called anopen fanin Rn. As in the case of fans,
put |F | =

⋃
σ′∈F σ

′.

If F̃ is a general weighted fan, we callF aweighted open fan.

Remark1.7. Since0 ∈ U andU is open,F̃ is determined byF .

Definition 1.8 (General polyhedron). A general polyhedronis a non-empty setσ ⊂ Rn such
that there exists a rational polyhedronσ̃ and a unionu of faces ofσ̃ such thatσ = σ̃\u.
(This definition is equivalent to saying that a general polyhedron has the following form
{x ∈ Rn|f1(x) = p1, . . . , fr(x) = pr, fr+1(x) ≥ pr+1, . . . , fr+s(x) ≥ pr+s, fr+s+1(x) >
pr+s+1, . . . , fN (x) > pN} for some linear formsf1, . . . , fN ∈ Zn and numbersp1, . . . , pN ∈
R.)

Definition 1.9 (General polyhedral precomplex). A (general) polyhedral precomplexis a
topological space|X| and a setX of subsets of|X| equipped with embeddingsϕσ : σ → Rnσ

for all σ ∈ X such that

(a) every imageϕσ(σ), σ ∈ X is a general polyhedron, not contained in a proper affine
subspace ofRnσ ,

(b) X is closed under taking intersections, i.e.σ ∩ σ′ ∈ X is a face ofσ and ofσ′ for any
σ, σ′ ∈ X such thatσ ∩ σ′ 6= ∅,

(c) for every pairσ, σ′ ∈ X the compositionϕσ◦ϕ
−1
σ′ is integer affine-linear onϕσ′(σ∩σ′),

(d) |X| =
.⋃

σ∈X

ϕ−1
σ (ϕσ(σ)◦), whereϕσ(σ)◦ denotes the interior ofϕσ(σ) in Rnσ .

We call the open setϕ−1
σ (ϕσ(σ)◦) therelative interiorof σ and denote it byσri.

Definition 1.10(General polyhedral complex). A (general) polyhedral complexis a (general)
polyhedral precomplex(X, |X|, {ϕσ|σ ∈ X}) such that for everyσ ∈ X we are given an

2



Chapter 1: Polyhedral complexes

open fanFσ (denoted as well byFX
σ to underline that it belongs to the complexX ) in some

RNσ and a homeomorphism

Φσ : Sσ =
⋃

σ′∈X,σ′⊇σ

(σ′)ri ∼
−→ |Fσ|

satisfying:

(a) for allσ′ ∈ X, σ′ ⊇ σ one hasΦσ(σ′∩Sσ) ∈ Fσ andΦσ is compatible with theZ-linear
structure onσ′, i.e. Φσ ◦ ϕ−1

σ′ andϕσ′ ◦ Φ−1
σ are integer affine linear onϕσ′(σ′ ∩ Sσ),

resp.Φσ(σ′ ∩ Sσ),

(b) for every pairσ, τ ∈ X, there is an integer affine linear mapAσ,τ such that the following
diagram commutes:

Sσ ∩ Sτ

∼Φσ

��

∼
Φτ

// Φτ (Sσ ∩ Sτ )

Φσ(Sσ ∩ Sτ )

Aσ,τ

66
n

n
n

n
n

n
n

n
n

n
n

n

.

For simplicity we usually drop the embeddingsϕσ or the mapsΦσ in the notation and denote
the polyhedral complex(X, |X|, {ϕσ|σ ∈ X}, {Φτ |τ ∈ X}) by (X, |X|, {ϕσ|σ ∈ X}) or
by (X, |X|, {ϕ}, {Φτ |τ ∈ X}) or by (X, |X|) or just byX if no confusion can occur. The
subsetsσ ∈ X are called thegeneral polyhedraor faces of(X, |X|). The dimensionof
(X, |X|) is the maximum of the dimensions of its general polyhedra. Wecall (X, |X|) pure-
dimensionalif all its inclusion-maximal general polyhedra are of the same dimension. We
denote byX(n) the set of polyhedra in(X, |X|) of dimensionn. Let τ, σ ∈ X. As in the case
of fans we writeτ ≤ σ (or τ < σ) if τ ⊆ σ (or τ ( σ, respectively). By abuse of notation
we identifyσ with ϕσ(σ).

A (general) polyhedral complex(X, |X|) of pure dimensionn together with a mapωX :
X(n) → Q is calledweighted polyhedral complexof dimensionn, andωX(σ) is called the
weightof the polyhedronσ ∈ X(n), if all Fσ are weighted open fans and

• ωX(σ′) = ωFσ(Φσ(σ′ ∩ Sσ)) for everyσ′ ∈ (X)(n) with σ′ ⊇ σ,

The empty complex∅ is a weighted polyhedral complex of every dimension. If((X, |X|),
ωX) is a weighted polyhedral complex of dimensionn, then put

X∗ = {τ ∈ X|τ ⊆ σ for someσ ∈ X(n) with ωX(σ) 6= 0}, |X∗| =
⋃

τ∈X∗

τ ⊆ |X|.

Note that
(
(X∗, |X∗|), ωX |(X∗)(n)

)
is again a weighted polyhedral complex of dimensionn.

This complex is called thenon-zero partof ((X, |X|), ωX). We call a weighted polyhedral
complex((X, |X|), ωX) reducedif ((X, |X|), ωX) = ((X∗, |X∗|), ωX∗). Since all polyhedral
complexes considered are general we skip the word general from now on.

Example1.11. Figure 1.1 represents a weighted polyhedral complex together with the maps
ϕσ, and figure 1.2 represents the same complex together with themapsΦσ and its weights
(we only label weights non-equal to one).

3



Chapter 1: Polyhedral complexes

Figure 1.1: A weighted polyhedral complex together with themapsϕσ.

2

2

2

Figure 1.2: A weighted polyhedral complex together with themapsΦσ.

Definition 1.12 (Subcomplex and refinement). Let (X, |X|, {ϕσ|σ ∈ X}) and (Y, |Y |,
{ψτ |τ ∈ Y }) be two polyhedral complexes. We callX asubcomplexof Y if

(a) |X| ⊆ |Y |,

(b) for everyσ in X there exists aτ ∈ Y with σ ⊆ τ ,

(c) for a pairσ andτ from (b) the mapsϕσ ◦ ψ
−1
τ andψτ ◦ϕ

−1
σ are integer affine linear on

ψτ (σ), resp.ϕσ(σ).

We write(X, |X|) < (Y, |Y |) in this case, and define a mapCX,Y : X → Y that maps a cone
in X to the inclusion-minimal cone inY containing it.
We call a polyhedral complex(X, |X|) a refinementof (Y, |Y |), if

(a) (X, |X|) < (Y, |Y |)

(b) |X| = |Y |

We call a weighted polyhedral complex(X, |X|) a refinement of a weighted polyhedral com-
plex (Y, |Y |) if in addition the following condition holds:

• ωX(σ) = ωY (CX∗,Y ∗(σ)) for all σ ∈ (X∗)(dim(X)).

Definition 1.13 (Morphism of (general) polyhedral complexes). LetX andY be two (gen-
eral) polyhedral complexes. Amorphism of (general) polyhedral complexesf : X → Y
is a continuous mapf : |X| → |Y | with the following properties: there exist refinements
(X ′, |X ′|, {ϕ}, {Φσ|σ ∈ X ′}) and (Y ′, |Y ′|, {ψ}, {Ψτ |τ ∈ Y ′) of X andY , respectively,
such that

(a) for every general polyhedronσ ∈ X ′ there exists a general polyhedronσ̃ ∈ Y ′ with
f(σ) ⊆ σ̃,
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Chapter 1: Polyhedral complexes

(b) for every pairσ, σ̃ from (a) the mapΨeσ ◦ f ◦Φ−1
σ : |FX′

σ | → |F Y ′

eσ | induces a morphism
of fansF̃X′

σ → F̃ Y ′

eσ , whereF̃X′

σ andF̃ Y ′

eσ are the general fans given in definition 1.6 (a
morphism of fans is aZ-linear map, see [GKM] definition 2.22).

A morphism ofweighted polyhedral complexesis a morphism of polyhedral complexes (i.e.
there are no conditions on the weights). IfX = Y and if there exists a morphismg : X → X
such thatg ◦ f = f ◦ g = idX we callf anautomorphismof X.
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2 Moduli spaces

In this chapter we give the definition of the moduli spaces we will equip later on with a
structure of a (local) orbit space.

2.1 Moduli space of n-marked tropical curves

Definition 2.1 (n-marked abstract tropical curves). An abstract tropical curveis a pair (Γ,
δ) such thatΓ is a connected graph, andΓ = Γ\ {1-valent vertices} has a complete inner
metric δ (i.e. the edges adjacent to two vertices ofΓ are isometric to a segment, the edges
adjacent to one vertex ofΓ are isometric to a ray or a loop and the edges adjacent to no
vertex ofΓ are isometric to a line). The edges adjacent to at least one1-valent vertex ofΓ
are calledunbounded, the other edges are calledbounded. The unbounded edges have length
infinity. The bounded edges have a finite positive length. Forsimplicity we denote an abstract
tropical curve byΓ. An n-marked abstract tropical curveis a tuple (Γ, x1, ..., xn) formed by
an abstract tropical curveΓ and distinct raysx1, ..., xn of Γ. Two such marked tropical curves
(Γ, x1, ..., xn) and (̃Γ, x̃1, ..., x̃n) are calledisomorphic(and will from now on be identified)
if there exists an isometry fromΓ to Γ̃, mappingxi to x̃i, i = 1, ..., n (i.e. after choosing
orientations on the edges ofΓ andΓ̃, there exists a homeomorphismΓ → Γ̃ identifying xi

andx̃i and such that the edges ofΓ are mapped to edges ofΓ̃ by an affine map of slope±1.).

The unbounded edges are calledleavesas well.

Remark2.2. We can parameterize each edgeE of a curveΓ by an interval[0, l(E)] for
bounded edges and by[0,∞) or (−∞,∞) for unbounded edges, wherel(E) is the length of
the edge (for the choice of the direction in the bounded case we choose which vertex ofE
is parameterized by0). Such a parameterization is calledcanonical. We do not distinguish
between the unbounded edgexi and the vertex of valence strictly greater than1 adjacent to it
and call the vertex alsoxi. Since different edges can be adjacent to the same vertex, a vertex
can have several labels.

Definition 2.3 (Genus). We define thegenusg of an abstract tropical curve(Γ, δ) to be the
first Betti numberb1(Γ) of Γ.

Definition 2.4 (Combinatorial type). Thecombinatorial typeof an abstract tropical curve (Γ,
δ) is the (combinatorial) graphΓ.

Definition 2.5 (Contraction). Let Γ be a connected graph. The procedure of removing an
edgee ∈ Γ and identifying the endpoints ofe is calledcontraction.

7



Chapter 2: Moduli spaces

Definition 2.6. It is not difficult to see that for a combinatorial typeΓ the set of all curves
given by definition 2.1 with the combinatorial typeΓ or the combinatorial types one gets
by contracting bounded edges ofΓ can be embedded in a suitableRm by the lengths of the
bounded edges and therefore this set of curves has a topological structure (this subset ofRm

is calledcombinatorial cone). Note, that for combinatorial types with symmetries we take as
set of curves (in the beginning of this definition),n-marked abstract tropical curves with an
ordering of the bounded edges. Afterwards we take a connected subspace of this set which
contains exactly one representative of eachn-marked abstract tropical curve. Thus, the set
of all n-marked abstract tropical curves of genusg with this induced topological structure
on each combinatorial cone (the cones are glued together along faces representing the same
curves) is a topological space.

Example2.7. We consider a5-marked tropical curve(Γ, δ) with edge lengthsa andb (see on
the left hand side of figure 2.1). The combinatorial cone parameterizing all curves with the
combinatorial typeΓ or with the combinatorial type one gets by contractions ofΓ is drawn
on the right hand side of figure 2.1.

x1

x2

a b

x3

x4

x5
a

b

Figure 2.1: A5-marked abstract tropical curve and its combinatorial cone.

Definition 2.8 (abstractMg,n). The spaceMg,n is defined to be the topological space of all
n-marked abstract tropical curves (modulo isomorphism) with the following properties:

(a) each curve has exactlyn leaves,

(b) the curves have no vertices of valence2, and

(c) the genus of each curve isg.

The topology of this space is the one defined by its combinatorial cones. We call the space
Mg,n amoduli space.

Example2.9. The moduli space of2-marked abstract tropical curves of genus1 and the
curves corresponding to the faces are given in the followingpicture:

x2

x1

x1

x2

x2

x2

x1

x1
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Chapter 2: Moduli spaces

The left cone parameterizes the curves where the two edges ofthe cycle have the same length.
The appearance of this cone is due to the fact that the curves corresponding to the curve on
the lower left side are the same if we swap the lengths of the two bounded edges. Thus, the
left cone is in the boundary of the second cone from left.

Let (Γ, δ) be a curve of genus 1. As a tropical counterpart of thej-invariant, we take the
length of the cycle as it was suggested in [M3], [V] and [KM]. Motivations for this choice
can be found, for example, in [KMM1], [KMM2] and [Sp2].

Definition 2.10 (j-invariant). For ann-marked curveΓ of genus1, the sum of the lengths of
all edges forming the simple cycle is called thej-invariant of Γ.

2.2 Moduli space of parameterized labeled n-marked
tropical curves

Definition 2.11 (TropicalM̃lab
g,n(R

r,∆)). A parameterized labeledn-marked tropical curve
of genusg in Rr is a tuple(Γ, x1, . . . , xN , h), whereN ≥ n is an integer,(Γ, x1, . . . , xN )
is an abstractN-marked tropical curve of genusg, andh : Γ → Rr is a continuous map
satisfying the following conditions.

(a) On each edgeE of Γ the maph is of the formh(t) = a + t · v for somea ∈ Rr and
v ∈ Zr. The integral vectorv occurring in this equation if we pick forE the canonical
parameterization starting atV ∈ ∂E is denotedv(E, V ) and is called thedirectionof
E (at V ). If E is an unbounded edge andV is its only boundary point we writev(E)
instead ofv(E, V ) for simplicity.

(b) For every vertexV of Γ we have thebalancing condition
∑

E|V ∈∂E

v(E, V ) = 0.

(c) v(xi) = 0 for i = 1, . . . , n (i.e. each of the firstn leaves is contracted byh), whereas
v(xi) 6= 0 for i > n (i.e. the remainingN − n ends are “non-contracted ends”).

Two parameterized labeledn-marked tropical curves(Γ, x1, . . . , xN , h) and(Γ̃, x̃1, . . . , x̃N ,
h̃) in Rr are called isomorphic (and will from now on be identified) if there is an isomorphism
ϕ : (Γ, x1, . . . , xN) → (Γ̃, x̃1, . . . , x̃N ) of the underlying abstract curves such thath̃ ◦ϕ = h.

Let m = N − n. The degreeof a parameterized labeledn-marked tropical curveΓ of
genusg as above is defined to be them-tuple∆ = (v(xn+1), . . . , v(xN)) ∈ (Zr\{0})m of
directions of its non-contracted ends. Thecombinatorial typeof Γ is given by the data of the
combinatorial type of the underlying abstract marked tropical curve(Γ, x1, . . . , xN ) together
with the directions of all its (bounded and unbounded) edges. From now on, the numberN
will always be related ton and∆ byN = n + #∆ and thus will denote the total number of
(contracted or non-contracted) ends of ann-marked curve of genusg in Rr of degree∆.

Fix a combinatorial typeT of a parameterized labeledn-marked tropical curve withn > 0.
The set of curves with combinatorial typeT or with the combinatorial type one gets by

9
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x1
x2

x3

x4

h
f3

f4

f1

f2

Figure 2.2: A parameterized tropical curve.

contractions ofT can be embedded in a suitableRb by the lengths of all bounded edges
together with the pointh(x1). As in the case of abstract tropical curves this gives a topology
on the set of parameterized labeledn-marked tropical curves of genusg in Rr.

The space (of the isomorphism classes) of all parameterizedlabeledn-marked tropical curves
of genusg and of a given degree∆ in Rr, such that all vertices have valence at least3 will
be denoted̃Mlab

g,n(R
r,∆) and will be calledmoduli space. Let (e1, . . . , er) be the canonical

basis ofRr. For the special choice

∆ = (−e0, . . . ,−e0 , . . . , −er, . . . ,−er)

with e0 = −e1 − · · · − er and where eachei occurs exactlyd times, we will also denote this
space byM̃lab

g,n(R
r, d) and say that these curves have degreed.

We now consider an example of a parameterized labeled4-marked tropical curve and use the
notation of the previous definition.

Example2.12. LetX be the polyhedral complex given by four bounded edges (f1, f2, f3, f4)
forming a cycle and four rays (x1, x2, x3, x4) attached to the four meeting points of two of
them, such thatfi−1, fi andxi meet at one point fori ∈ {2, . . . , 4} (and thereforef1, f4 and
x1 meet at one point) which we callpi for i ∈ {1, . . . , 4}. Say the vectorsv(x1) =

(
−1
−1

)
,

v(x2) =
(

1
−1

)
, v(x3) =

(
1
1

)
, v(x4) =

(
−1
1

)
, l(f1) = l(f3) = 2 andl(f2) = l(f4) = 1. We

puth(p1) =
(
0
0

)
, h(p2) =

(
2
0

)
, h(p3) =

(
2
1

)
andh(p4) =

(
0
1

)
and get a parameterized tropical

curve(X, x1, . . . , x4, h) ∈ M̃lab
1,0(R

2, (
(
−1
−1

)
,
(

1
−1

)
,
(
1
1

)
,
(
−1
1

)
)). A picture of(X, x1, . . . , x4, h)

is given in figure 2.2.
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3 Local orbit spaces

The purpose of this chapter is to define local orbit spaces andto establish some properties
for them. In the first part we define local orbit spaces and in the second part we introduce
morphisms between them. After this we prove our main result for tropical local orbit spaces
(see corollary 3.41).

3.1 Tropical local orbit space

Definition 3.1 (Local orbit space). Let X be a finite polyhedral complex andG a finite set
of isomorphismsg : Ug → Vg between open polyhedral subcomplexesUg andVg ofX (open
in X), such that the following conditions hold:

(a) the identity morphism ofX is inG,

(b) g−1 ∈ G for all g ∈ G,

(c) for all F = {f1, . . . , fn} ⊂ G, g ∈ G with g−1(|Ufi
|) 6= ∅, for all 1 ≤ i ≤ n

there existsH = {h1, . . . , hn} ⊂ G with |F | = |H| such thatUhi
⊃ g−1(|Ufi

|) and
hi|g−1(|Ufi

|) = fi ◦ g|g−1(|Ufi
|) for 1 ≤ i ≤ n,

(d) for all g ∈ G the maximal subsetU ⊂ Ug with g|U = id |U is closed inX.

We denote the induced maps on the topological space|Ug| by g as well. We identify points
of |X| which are identified by elements ofG and denote the topological space one gets by
these identifications by|X/G|. The conditions(a) to (c) define an equivalence relation of
polyhedra. For a polyhedronσ ∈ Ug with g ∈ G let us denote byσX/G the image of|σ| in

|X/G|. By S
|X/G|

we denote the closure ofS ⊂ |X/G| in |X/G|. We put[σ] = σ
|X/G|
X/G ⊂

|X/G| and call it a class. After refinement we can assume that for allg ∈ G and for all
σ ∈ Ug we have thatσX ∈ X is a polyhedron. Letg ∈ G andσ ∈ Ug. We call the set
{τ ∈ X, [τ ] = [σ]} orbit of X. The set of orbits ofX together withG is called alocal orbit
spaceand is denoted byX/G. Sometimes we denote the mapsg by gX to show thatg is an
isomorphism between two polyhedral subcomplexes ofX.

Remark3.2. The conditions on the setG are fulfilled ifG is a group.

Example3.3. Figure 3.1 shows the polyhedral complexX = {R≤0 × R>0, 0 × R>0,R≥0 ×
R>0} and the topological space of the local orbit spaceX/G = ({{R≤0 × R>0,R≥0 ×
R>0}, {0 × R>0}}, G). The set of isomorphismsG consists of the identity, the mapg :
R<0 × R>0 → R2

>0,
(

x
y

)
7→
(

y
−x

)
andg−1.

11



Chapter 3: Local orbit spaces

x

X X/G
y

Figure 3.1: A polyhedral complex and a local orbit space.

Lemma 3.4. LetX/G be a local orbit space and letY be a subcomplex ofX. For anyg ∈ G
the topological space|Ug| ∩ |Y | has a canonical structure of an open polyhedral complex,
such that̃g : |Ug| ∩ |Y | → |Vg|, x 7→ g(x) defines a morphism of polyhedral complexes.

Proof. By definition there exist refinementsR andS of Ug and ofVg, respectively, such that
conditions(a) and(b) of definition 1.13 hold. SinceY is a subcomplex ofX one gets that
R∩ Y (the set of polyhedra given by the intersection of a polyhedron ofR and a polyhedron
of Y which is non-empty) is a subcomplex ofR and ofY . For eachσ ∈ R ∩ Y we have a
σ′ ∈ Ug with σ ⊂ σ′. Thus,g̃(σ) = g(σ) ⊆ g(σ′) ⊆ σ̃ ∈ S and condition(a) of definition
1.13 holds for̃g. Since|FR∩Y

σ | ⊆ |FR
σ′ |, condition(b) of a morphism holds as well.

Definition 3.5 (Stabilizer,Gτ−orbit of σ). For X andG as above andτ, σ ∈ X we call
Gτ = {g ∈ G|τ ⊂ Ug with g(x) = x for anyx ∈ τ} the stabilizer of τ . We define
Xσ/τ = {g(σ◦)|g ∈ Gτ} to be theGτ−orbit of σ.

Lemma 3.6. LetX/G be a local orbit space and takeσ, σ′ ∈ X with [σ] = [σ′]. One has
|Gσ| = |Gσ′ |.

Proof. By symmetry it suffices to show that|Gσ′ | ≤ |Gσ|. Let {f1, . . . , fn} = Gσ′ . By
assumption we have[σ] = [σ′]. Thus, there exists ag ∈ G with g(σ◦) = σ′. By condition
(c) of definition 3.1 there existh1, . . . , hn ∈ G with hi|σ◦ = fi ◦ g|σ◦ for 1 ≤ i ≤ n. By
(b) of definition 3.1 there existsh−1

i for 1 ≤ i ≤ n. Again by condition(c) of definition 3.1
there arek1, . . . , kn ∈ G such thatki|σ◦ = h−1

i ◦ g|σ◦ for 1 ≤ i ≤ n. Sinceh−1
i ◦ g|σ◦ =

g−1 ◦ f−1
i ◦ g|σ◦ = id |σ◦ and since the maximal subset ofX whereki is the identity is closed

we have|Gσ′ | ≤ |Gσ| by (c) of definition 3.1.

Definition 3.7 (Weighted local orbit space). Let (X,ωX) be a weighted polyhedral complex
of pure dimensionn, andX/G a local orbit space. If

• for anyg ∈ G and for anyσ ∈ X(n) with σ◦ ⊆ |Ug|, one hasωX (σ) = ωX

(
g(σ◦)

)
,

we callX/G a weighted local orbit space. The classes[σ] ⊂ |X/G| are calledweighted
classes.

The weight function on the weighted classes ofX/G is denoted by[ω] and defined by
[ω]([σ]) = ω(σ)/|Gσ|, for all [σ] ∈ X/G.

Lemma 3.8.For a weighted local orbit spaceX/G of dimensionm andσ, τ ∈ X with τ < σ
anddim(τ) + 1 = dim(σ) = m, one has|Xσ/τ | · |Gσ| = |Gτ |.

12
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Proof. For eachσ′ ∈ Xσ/τ there exists ag ∈ Gτ with σ = g(σ′◦). Put{f1, . . . fn} = Gσ

with |Gσ| = n. By (c) of definition 3.1 we haven different elements ofG mappingσ to σ′.
By injectivity of the morphisms ofG those elements have to be different for each element
of Xσ/τ and therefore|Xσ/τ | · |Gσ| ≤ |Gτ |. For eachg in Gτ there exists aσ′ ∈ Xσ/τ with
g(σ′◦) = σ. Let T ⊂ Gτ be the set of all elementsg ∈ Gτ with g(σ′◦) = σ. Since for each
g in Gτ there exists ãσ ∈ Xσ/τ with g(σ̃◦) = σ it suffices to show that|T | ≤ n. But for
an arbitraryg ∈ T it follows thatf ◦ g−1|σ◦ = id |σ◦. Thus, by(c) of definition 3.1 one has
|T | ≤ n.

Definition 3.9. Let X/G be a local orbit space andY be a subcomplex ofX. We denote
the set{g||Y |∩|Ug|∩g−1(|Vg |∩|Y |), such thatg ∈ G} byG|Y and consider them as isomorphisms
between open polyhedral subcomplexes ofY . For an elementg ∈ Gwe denote the restriction
to |Y |∩|Ug|∩g

−1(|Vg|∩|Y |) by gY . (Remark: forg 6= h ∈ Gwe distinguish as well between
gY andhY even ifg||Y |∩|Ug|∩g−1(|Vg |∩|Y |) = h||Y |∩|Uh|∩h−1(|Vh|∩|Y |).)

Corollary 3.10 (of lemma 3.4). Take the same notation as in the previous definition. The
topological spaces|Y | ∩ |Ug| ∩ g

−1(|Vg| ∩ |Y |) andgY (|Y | ∩ |Ug| ∩ g
−1(|Vg| ∩ |Y |)) have

a canonical polyhedral structure such that the mapgY from |Y | ∩ |Ug| ∩ g
−1(|Vg| ∩ |Y |) to

gY (|Y | ∩ |Ug| ∩ g
−1(|Vg| ∩ |Y |)) is an isomorphism of polyhedral complexes.

Proof. By lemma 3.4,|Ug| ∩ |Y | and|Vg| ∩ |Y | are canonically polyhedral complexes. Thus,
|Y | ∩ |Ug| ∩ g

−1(|Vg| ∩ |Y |) is an intersection of two polyhedral complexes and therefore a
polyhedral complex as well. Sinceg is an isomorphism, the restriction ofg to a subset and
the restriction of the image ofg to the image of this subset gives an isomorphism.

Remark3.11. By corollary 3.10 the setG|Y is a set of isomorphisms.

Lemma 3.12. LetX/G be a local orbit space and letY be a subcomplex ofX, thenG|Y
fulfills all conditions from definition 3.1.

Proof. The restriction of the identity is the identity as well, thus(a) holds. Since the topology
of Y is the subspace topology, condition(d) holds as well. Furthermore,(b) holds since
UgY

= (g−1)Y (VgY
) for everyg ∈ G. Condition(c) holds by the definition ofG|Y .

Definition 3.13 (Local suborbit space). LetX/G be a local orbit space. A local orbit space
Y/H is called alocal suborbit spaceof X/G (notation: Y/H ⊂ X/G) if Y < X and
H = G|Y (as sets). In this case we denote byCY,X : Y → X the map which sends a general
polyhedronσ ∈ Y to the (unique) inclusion-minimal general polyhedron ofX that contains
σ. Note that for a local suborbit spaceY/H ⊂ X/G we obviously have|Y | ⊂ |X| and
dimCY,X(σ) ≥ dim σ for all σ ∈ Y . LetX/G be a weighted local orbit space of dimension
n and letY/H ⊂ X/G be a local suborbit space. IfωY (σ) = ωX(CY,X(σ)) for all σ ∈ Y (n),
we write as wellωX(σ) for ωY (σ).

Example3.14. The upper part of figure 3.2 presents an example of the local orbit space
(−1, 1) as local suborbit space ofR. The lower part of the figure presents the same polyhedral
complexes as local orbit spaces, but we take as set of isomorphismsG the mapg : x 7→ −x
and the identity (g is defined on(−1, 1) and onR).
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(−1; 1) R
⊂

⊂
(−1; 1)/G R/G

Figure 3.2: Two local suborbit spaces.

Definition 3.15(Refinement). Let ((Y, |Y |), ωY )/H and((X, |X|), ωX) /G be two weighted
local orbit spaces. We call((Y, |Y |), ωY )/H a refinementof ((X, |X|), ωX)/G, if

(a) ((Y, |Y |), ωY )/H ⊂ ((X, |X|), ωX)/G,

(b) |Y ∗| = |X∗|,

(c) ωY (σ) = ωX(CY,X(σ)) for all σ ∈ (Y ∗)(dim(Y )),

(d) eachσ ∈ Y is closed in|X|.

We say that two weighted local orbit spaces((X, |X|), ωX)/G and ((Y, |Y |), ωY )/H are
equivalent (notation:((X, |X|), ωX)/G ∼= ((Y, |Y |), ωY )/H) if they have a common refine-
ment.

Remark3.16. LetX/G andY/H be two local orbit spaces. IfY/H is a refinement ofX/G
then for allg ∈ G the complexU(gY ) is a refinement ofUg andH = G.

Definition 3.17(Tropical local orbit space). Let (X,ωX) /G be a weighted local orbit space.
If for any τ ∈ X(n−1), one has

∑
σ>τ

1
|Xσ/τ |

[ωX ]([σ])(uσ/τ ) ∈ Vτ , thenX/G is called a
tropical local orbit space.

Proposition 3.18.The balancing condition for weighted local orbit spaces(X/G, ωX) holds
if and only if the balancing condition of the underlying weighted complex(X,ωX) holds.

Proof. Let (X/G, ωX) be a weighted local orbit space.
” ⇒ ”: By assumption the balancing condition of the weighted local orbit space holds.
Thus, for everyτ ∈ X of codimension one we have

∑
σ>τ

1
|Xσ/τ |

[ωX ]([σ]) · uσ/τ = t ∈ Vτ .

To verify the balancing condition we have to check it for the fansFσ (see definition 1.10) of
X. We denote the cones of this fan by the same letters as for the complex. By condition(b)
of definition 1.13 the elements ofG are linear on these fans. Thus, we get

|Gτ | · t =
∑

g∈Gτ

g(t)

=
∑

g∈Gτ

g(
∑

σ>τ

1

|Xσ/τ |
[ωX ]([σ]) · uσ/τ )

=
∑

g∈Gτ

∑

σ>τ

1

|Xσ/τ |
[ωX ]([σ]) · g(uσ/τ)

=
∑

σ>τ

|Gσ| · [ωX ]([σ]) · uσ/τ

=
∑

σ>τ

ωX(σ) · uσ/τ .
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” ⇐ ” Putn = dim(X). For anyτ ∈ X(n−1) one has
∑

σ>τ
1

|Gτ |
ωX(σ) · vσ/τ = t ∈ Vτ ,

because the balancing condition holds for(X,ωX). Thus, we have

∑

σ>τ

1

|Xσ/τ |
[ωX ]([σ]) · vσ/τ =

∑

σ>τ

|Gσ|

|Gτ |
[ωX ]([σ]) · vσ/τ =

∑

σ>τ

1

|Gτ |
ωX(σ) · vσ/τ = t ∈ Vτ

Definition 3.19 (Reduced weighted local orbit spaces). Let (X/G, ω) be a weighted local
orbit space. Since the weight of a polyhedronσ plays the role of the multiplicity of points
in σri, the weight zero stands for multiplicity zero. Since these polyhedra do not contribute
to the balancing condition we can delete them without changing the balancing condition.
Therefore, if we use weighted local orbit spaces we directlyconsider the non-zero part of
them (see definition 1.10). Weighted local orbit spaces without weight-zero facets are called
reduced.

Observation3.20. Let X ′/G′ andX ′′/G′′ be local orbit spaces, thenX/G = (X ′ × X ′′)/
(G′ ×G′′), given by the product of the sets, is a local orbit space as well.
If X ′/G′ andX ′′/G′′ are weighted local orbit spaces of dimensionn andm, then we make
X/G into a weighted local orbit space byωX(σ′ × σ′′) = ωX′(σ′) · ωX′′(σ′′) for σ′ ∈ X ′(n)

andσ′′ ∈ X ′′(m).
If X ′/G′ andX ′′/G′′ are tropical local orbit spaces, thenX/G is a tropical local orbit space as
well, since a codimension1 face ofX is the product of a codimension0 and a codimension1
face. Thus, the balancing condition around a codimension1 face is the same as the balancing
condition around the corresponding codimension1 face inX ′/G′ (resp.X ′′/G′′).

3.2 Morphisms of local orbit spaces

Now we have a first understanding of local orbit spaces and we can give the definition of
morphisms between them. For a detailed investigation on onedimensional local orbit spaces
see chapter 4.

The definition of morphisms should respect the structure of the set of isomorphisms (con-
ditions(a)-(d) of definition 3.1) and the local fan structure of the local orbit spaces (propo-
sition 3.18). The necessary conditions for this are(a) to (f) in the following definition.
Furthermore, we want to define images of pure-dimensional local orbit spaces. Only the
codimension-one and codimension-zero strata are important for the balancing condition.
Thus, we add a further condition which ensures that the morphism is ”well-behaved” in
codimension smaller than2. Since this condition(g) is not as easy to understand as the
others we will consider an example regarding this property after the definition.
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Definition 3.21 (Morphism of local orbit spaces). Let (X, |X|, {ϕ}, {Φσ|σ ∈ X})/G and
(Y, |Y |, {ψ}, {Ψτ |τ ∈ Y )/H be two local orbit spaces and putn = dim(X). A morphism
of local orbit spacese : X/G 7→ Y/H is a pair(e1, e2) consisting of a continuous map
e1 : |X| → |Y | and a mape2 : G→ H with the following properties:

(a) e2(idG) = idH

(b) e2(g−1) = e2(g)
−1

(c) if h fulfills condition (c) of definition 3.1 for elementsf, g ∈ G (here we have|F | = 1),
then

e2(h)|e1(g−1(|Uf |)) = e2(f) ◦ e2(g)|e1(g−1(|Uf |))

(d) there exists a refinementX ′ of X such that for every general polyhedronσ ∈ X ′ there
exists a general polyhedroñσ ∈ Y with e1(σ) ⊆ σ̃,

(e) for every pairσ, σ̃ from (d) there exist̃FX
σ andF̃ Y

eσ such that the mapΨeσ ◦ e1 ◦ Φ−1
σ :

|FX
σ | → |F Y

eσ | induces a morphism of fans̃FX
σ → F̃ Y

eσ (a morphism of fans is aZ-linear
map, see [GKM] definition 2.22), wherẽFX

σ andF̃ Y
eσ are suitable weighted general fans

associated toFX
σ andF Y

eσ , respectively (cf. definition 1.6),

(f) e1(g(x)) = e2(g)(e1(x)) for all g ∈ G andx ∈ Ug.

If X is pure-dimensional we ask a morphism to fulfill the following condition as well:

(g) Let ẽ1 be the induced map from|X/G| to |Y/H|. After a refinement ofX ′ from
condition(d) one has that for anyσ, σ̃ ∈ X, with dim(ẽ1([σ]) ∩ ẽ1([σ̃])) = n one has
dim(ẽ1([σ])\ẽ1([σ̃])) ≤ dim(ẽ1([σ]))−2 anddim(ẽ1([σ̃])\ẽ1([σ])) ≤ dim(ẽ1([σ̃]))−2.

A morphism of weighted local orbit spacesis a morphism of local orbit spaces (i.e. there are
no conditions on the weights).

We consider an example to understand condition(g) in the previous definition. Since(g) is
a condition only on the polyhedra we take trivial isomorphism sets (i.e.G = H = {id}).

Example3.22. LetX (= X/{id}) be the disjoint union of the coneX1 = {(x, y) ∈ R2|y >
0} and the coneX2 = R2 (we label the directions byw andz) and letY (= Y/{id}) beR2

(labeled byx′ andy′). The mape : X → Y is given by the identity map of the coneX1 and
R2 to R2 such thate(x) = e(w) = x′, ande(y) = e(z) = y′ (see figure 3.3). It is easy to
see that the conditions(a) to (f) are fulfilled. LetX2 be any refinement ofR2 and letC be a
2-dimensional subcone ofX1 such that the border ofC contains a segmentI of thex−axis.
Sincedim(e−1(e(C)) ∩X2) = 2, bute−1(e(I))∩X2 = ∅, there exists a2-dimensional cone
in X2 contradicting(g) together withC (there must be a cone containing a part ofI and
elements withy′ > 0). Thus the mape is not a morphism.

Remark3.23. The problem we are handling in case(g) is, that we would like to have the
image to be a local suborbit space. In particular condition(b) of definition 1.9 should hold.

The next two propositions provide a better understanding ofcondition(g). In particular, the
second proposition gives a criterion for the failure of(g).

Proposition 3.24. LetX/G andY/H be local orbit spaces andX/G be of pure dimension
n. Let e be a morphism fromX/G to Y/H andX ′ a refinement from(g) in definition 3.21.
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Figure 3.3: A map, but not a morphism between two local orbit spaces.

For every refinementX ′′ ofX ′ there exists a refinementW ofX ′′ such that(g) holds forW
as well.

Proof. By refiningX ′′ we can assume that for allσ, σ̃ ∈ X ′′ with dim(ẽ1([σ])∩ ẽ1([σ̃])) = n
one hasdim(ẽ1([σ])\ẽ1([σ̃])) ≤ n − 1 anddim(ẽ1([σ̃])\ẽ1([σ])) ≤ n − 1. We putτ =
ẽ1([σ])\ẽ1([σ̃]). Let σ′ (resp. σ̃′) be the polyhedron fromX ′ which containsσ (resp. σ̃).
Sincee1 is a linear map on the interior of the polyhedra (see definition 3.21(e)) and it is
continuous everywhere,τ cannot be iñe1([σ̃′]). Sinceσ′ ⊃ σ we have that̃e1([σ′]) contains
τ and thereforedim τ ≤ n − 2. Thus,g holds for the above mentioned refinement ofX ′′ as
well.

Proposition 3.25. LetX/G be a puren-dimensional local orbit space andY/H be a local
orbit space of arbitrary dimension. Lete be a map fromX/G to Y/H fulfilling conditions
(a) to (f) of definition 3.21. Thene is a morphism iff for every refinement ofX ′ (X ′ as in
condition(d)) and anyσ, σ̃ ∈ X ′(n) the following holds:dim(ẽ1([σ̃])\ẽ1([σ])) ≤ n − 2 or
dim(ẽ1([σ̃])\ẽ1([σ])) = n.

Proof. ” ⇐ ”: After refinement we can assume thatdim(ẽ1([σ̃])\ẽ1([σ])) = n does not
occur and thus(g) is fulfilled.

” ⇒ ”: Let Z be the refinement of(g). Assume, that there existσ, σ̃ ∈ X ′(n) such that
dim(ẽ1([σ̃])\ẽ1([σ])) = n − 1. In this case the intersection has to ben-dimensional. Take
a common refinementX ′′ of X ′ andZ. Then by proposition 3.24 one has a refinement
W of X ′′ fulfilling g. Let σ̃′ be a polyhedron ofW (n) such that[σ̃′] contains an(n − 1)-
dimensional part of̃e1([σ̃])\ẽ1([σ]). SinceW is a refinement ofX ′ as well, there exists at
least one polyhedronσ′ ⊂ σ with dim(ẽ1([σ̃

′]) ∩ ẽ1([σ
′])) = n. We havẽe1([σ′]) ⊂ ẽ1([σ])

anddim(ẽ1([σ̃
′])\ẽ1([σ])) = n− 1. Thus, we get a contradiction and our assumption has to

be false.
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Example3.26. Let us reconsider example 3.22. If we subdivideX2 along thew−axis, the
resulting subdivision ofX does not fulfill the condition of the previous proposition and (g)
does not hold.

Lemma 3.27. LetX/G, Y ′/H ′ andY ′′/H ′′ be local orbit spaces ande′ : X/G → Y ′/H ′

ande′′ : X/G → Y ′′/H ′′ be morphisms. Thene : X/G→ (Y ′ × Y ′′)/(H ′ ×H ′′), given by
e1 : |X| → |Y ′×Y ′′|, e1(x) = (e′1(x), e

′′
1(x)) ande2 : G→ H ′×H ′′, e2(f) = (e′2(f), e′′2(f),

is a map fulfilling conditions(a) till (f) of definition 3.21.

Proof. Since the operationse1 ande2 are defined coordinate-wise the lemma follows from
the definition ofe′ ande′′.

Our next goal is to define an image local orbit space. In particular it should be a local orbit
space. To make sure that the conditions of a polyhedral complex are fulfilled we need a
technical construction.

Definition 3.28. Let X/G and Y/H be two local orbit spaces, letX/G be pure byn-
dimensional, and lete be a morphism ofX/G to Y/H. Put

u(e) = { lim
n→∞

ẽ1(xn)|(xn)n∈N ⊂ [σ] is a Cauchy sequence withlim
n→∞

(xn) /∈ |X/G|

but lim
n→∞

ẽ1(xn) ∈ |Y/H| , σ ∈ X(n) ande is injective onσ}.

We denote the natural map from|X| to |X/G| by ModG and putue = Mod−1
H (u(e)).

Remark3.29. LocallyX/G is a general fan. To make it into a fan we have to add some lower
dimensional facesτ of some polyhedraσ. Since a morphisme from X/G to Y/H is linear
on polyhedra one could define the image ofτ on the level of fans. If the image ofτ has a
meaning inY/H, then it is a polyhedronτ ′. The setu(e) is the union of the images of all
thoseτ ’s.

The following proposition gives a useful characterizationof u(e).

Proposition 3.30.Take the notation of the previous definition and assume thatX is already
refined to fulfill condition(d) of definition 3.21. LetXI be the union of all polyhedraσ in
X(n) such thate1 is injective onσ. Then

u(e) =
⋃

σ∈XI

ẽ1([σ])
Y/H

\ẽ1([σ]).

Proof. For eachx ∈ u(e) we find a sequence in[σ] such that the images converge tox but
the sequence does not converge inX/G and hence not in[σ]. By condition(d) we have
that ẽ1 is an injective linear map on[σ] and thusx /∈ ẽ1([σ]). Therefore, the pointx is in⋃

σ∈XI
ẽ1([σ])\ẽ1([σ]).

Now letx ∈
⋃

σ∈XI
ẽ1([σ])\ẽ1([σ]). Sincex is in the closure of the image of a closed setT

there exists a sequence(yn)n∈N ⊂ ẽ1(T ) converging tox. Consider a sequence(xn)n∈N with
xi a preimage ofyi. SinceX contains only finitely many polyhedra, one has a polyhedron
σ′ ∈ X(n) such that infinitely manyxi are inModG(σ′). By changing to this subsequence we
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can assume that(xn)n∈N ⊂ ModG(σ′) ⊂ [σ′]. Each polyhedral complex consists of finitely
many polyhedra, thus, condition(d) of definition 1.9 ensures that infinitely many elements
of (xn)n∈N lie in the interior of the same polyhedronModG(τ), τ ∈ X. By condition(e) of
definition 3.21 morphisms are linear maps in the interior of polyhedra. Thus,e1 is injective
and(xn)n∈N converges. SinceT ∩ [σ′] is closed,(xn)n∈N does not converge inX/G and thus
x ∈ u(e).

Construction3.31. From now on we consider only Hausdorff local orbit spaces if not stated
otherwise. As in the case of orbit spaces (construction 6.26) we can define the image local
orbit space. LetX/G be a purelyn-dimensional local orbit space, and letY/H be any local
orbit space. For any morphisme : X/G → Y/H we make the following construction: Take
a refinement ofX such that condition(d) of definition 3.21 holds and define

Z̃ = {Mod−1
H (ẽ1([σ])) , σ is contained in a polyhedroñσ of X(n) ande is injective onσ̃}

By intersections of the polyhedra iñZ with the polyhedra inY we get a set of polyhedraZ ′.
Now we have to modifyZ ′ to make it into a polyhedral complex. Therefore, the non-empty
intersection of two polyhedra has to be a face of each of them.For this we modify the set
and take

Z = {σ\ue| σ ∈ Z ′, σ\ue 6= ∅}.

We will see that the setZ is (after refinement) a polyhedral complex, and thereforeZ/(H|Z)
is a local orbit space. If moreoverX/G is a weighted local orbit space, we turne(X/G) into

a weighted local orbit space. After choosing a refinement forX andY such thate1(σ)
Y

is a
polyhedron inY for eachσ ∈ X, we set

ωe(X/G)(σ
′) =

∑

[σ]∈|X/G(n)|:[e1(σ)]=[σ′]

ωX(σ) · |Λ′
[σ′]/ẽ1(Λ[σ])|

for anyσ′ ∈ (Z)(n) (for Λ[σ] see definition 1.1 and remark that[σ] is a polyhedron as well).
Since the weights are defined by their classes, the conditionon the weights is fulfilled. We
callZ/H the image ofe.

Lemma 3.32. Let us use the notation of the previous construction. Then, after refinement,
the setZ is a polyhedral complex.

Proof. By conditions(d) and(e) of definition 3.21 the images of polyhedra are polyhedra.
SinceZ is a subset ofY , the conditions on the embeddings and the homomorphisms (see
definition 1.9 and definition 1.10) are fulfilled. Thus, we only have to prove(a) of definition
1.9. Letσ, σ′ ∈ Z such that∅ 6= τ = σ ∩ σ′ and putk = dim τ . After a refinement,
the polyhedraσ andσ′ have ak−dimensional face containingτ . Assume thatσ andσ′ are
these faces and thus, they are inZ(k) already. We can take a refinement to getdim((σ\σ′) ∪
(σ′\σ)) < k. Assume that(σ\σ′) ∪ (σ′\σ) 6= ∅. Without loss of generality we can take

y ∈ σ\σ′. (∗)

By the definition ofZ̃, there exist̃σ and σ̃′ in X(n) such thate is injective onσ̃ and σ̃′,
ẽ1([σ̃]) ⊇ ModH(σ), ẽ1([σ̃′]) ⊇ ModH(σ′) andModH(y) /∈ ẽ1([σ̃

′]) (sinceY/H is defined
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Figure 3.4: A morphism between two local orbit spaces.

by gluing, the subsets can be strict). Let(yn)n∈N ⊂ ModH(σ′)\ModH(y) be a sequence
which converges toModH(y). Sincek > 0 andModH(σ′) is connected such a sequence
exists. By condition(e) of definition 3.21 (morphism of fans are linear) there existsa conver-
gent sequence(xn)n∈N ⊂ [σ̃′] such that̃e1(xi) = yi for all i ∈ N. SinceModH(y) /∈ ẽ1([σ̃

′])
the sequence(xn)n∈N does not converge inX/G. This is due to the facts that[σ̃′] is closed in
X/G andẽ1 is continuous. ThusModH(y) ∈ u(e), y ∈ ue andy /∈ Z in contradiction to(∗).
Therefore(σ\σ′) ∪ (σ′\σ) = ∅ and the non-empty intersection of two polyhedra is a face of
both.

Example3.33. LetX (= X/{id}) be the disjoint union of the coneX1 = {(x, y) ∈ R2|y >
0} and ofX2 = R2 (we label the axes byw andz) and letY (= Y/{id}) beR3 (labeled by
x′, y′ andw′). The mape : X → Y is defined by the projection ofX1 andX2 to R3 such,
thatx is mapped tox′, y andz to y′ andw to w′ (see figure 3.4). It is easy to see that the
conditions(a) to (f) are fulfilled. SinceX1 andX2 are the only cones and the intersection of
the image is one-dimensional condition(g) is fulfilled. The origin is not part ofX1, and there
exists a sequence converging to the origin. Since the image of this sequence converges to the
origin in Y the setue contains the origin. With proposition 3.30 we obtainue = x′−axis and
thus the origin is the only point of the image underẽ1 which lies inue.

Proposition 3.34. Let X/G be ann-dimensional tropical local orbit space,Y/H a local
orbit space, ande : X/G → Y/H a morphism. Thene(X/G) is ann-dimensional tropical
local orbit space (provided thate(X/G) is not empty).

Proof. Due to the construction of̃Z in construction 3.31 the image local orbit space is a pure-
dimensional local orbit space. By proposition 3.18 the balancing condition can be checked
by proving the balancing condition for the polyhedral complex. Condition(e) of definition
3.21 tells us that for the open fans defined by the homeomorphismsΦσ of definition 1.10, the
morphism is a morphism of fans. Letτ ′ ∈ e(X/G)(n−1) be a face around which we have to
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Figure 3.5: Problems which motivate the definition of morphisms.

check the balancing condition. First we need that for each summandωX(σ) · |Λ′
[σ′]/ẽ1(Λ[σ])|

in the weight of a faceσ′ > τ ′, σ′ ∈ e(X/G) there exist aτ ∈ X(n−1) with τ < σ and
ẽ1([τ ]) ⊂ [τ ′]. If such a faceτ does not exist,τ ′ /∈ e(X/G) by the construction ofue which
is a contradiction and thusτ exists. From this we can conclude that the weighted facets
aroundτ ′ are the union of images of fan morphisms, where all image fanscontainτ ′. Since
X/G is Hausdorff the fans are disjoint after identification withG or equal. Since the image
polyhedral complex is built out of these fans it suffices to prove the proposition for fans. The
balancing condition has to be checked around each codimension1 face (equivalent to this is
verifying the balancing condition on the star around this face). Since this (the star fan) is a
closed fan (or a fan in the sense of [GKM]) we can apply proposition 2.25 of [GKM] and we
are done.

Remark3.35. The two problems we handle with in the previous proof (and which therefore
motivate the definition) are shown in figure 3.5. The map in each case is given by a projection
to R and all weights on the source are1. On the left hand side of the picture we take forX
the union of a tropical curve with an open ray and forG the trivial set{idX}. This is not a
morphism since(g) is not fulfilled.
On the right hand sideX is a union of two copies ofR and the setG is the set given by
the identification of the strict positive part of these copies. ThereforeX/G is not Hausdorff
and applying the construction 3.31 word by word for non-Hausdorff spaces would lead to a
non-balanced image of a tropical local orbit space.

Definition 3.36 (Irreducible tropical local orbit space). Let X/G be a non-empty tropical
local orbit space of pure dimensionn. We callX/G irreducibleif for any non-empty tropical
local orbit spaceY/H ⊂ X/G with dim(Y/H) = n the following holds: if there exists a
refinementX̃/G of X/G such that

for all σ ∈ Y (n) one has aσ′ ∈ X̃(n) with dim(σ′\σ) ≤ n− 2 (*)

thendim(|X̃|\|Y |) ≤ n − 2. We callX/G strongly irreducibleif X/G is irreducible and
each weighted open fanFσ ofX/G (see definition 1.10) is irreducible as a tropical local orbit
space (the set of isomorphisms is trivial and the balancing condition holds by proposition
3.18).

Proposition 3.37.A tropical local orbit spaceX/G of dimensionn is irreducible if and only
if for any tropical local orbit spaceY/H ⊂ X/G, Y 6= ∅ such thatdim(Y/H) = n andY is
closed inX, one has|Y | = |X|.
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Proof. We start with an irreducible local orbit space and take a tropical local suborbit space
Y/H ⊂ X/G with the given properties. The polyhedral complexY is closed inX and thus
σ′\σ = ∅ in the definition above. Therefore we havedim(|X̃|\|Y |) ≤ n − 2 and sinceY
is closed inX, one has|X| = |Y | (here we need the assumption thatY is pure-dimensional
and thus every point lies in ann-dimensional polyhedron).
Assume, thatX/G has the properties as stated in the if part of the proposition. Let Y/H ⊂
X/G be a tropical local suborbit space of dimensionn such that for everyσ ∈ Y (n) one has a
σ′ ∈ X̃(n) with dim(σ′\σ) ≤ n−2. Since the closure of eachσ in Y (n) is σ′ (andσ′ is closed
in the topology ofX) the polyhedral complexY is the union of theσ′ in X. The local orbit
spaceY/H is weighted and therefore we can makeY /G|Y to a weighted local orbit space
by taking the same weights. Since we only added faces of dimensionn − 2 or smaller, the
balancing condition holds forY /G|Y as well. By the proposition, we get|Y | = |X|. Thus
we havedim(|X̃|\|Y |) ≤ n− 2.

Remark3.38. In the case of closed fans (fans considered in [GKM]) our definition of irre-
ducibility is equivalent to definition 2.16 in [GKM].

Proposition 3.39. Let us takeX/G andY/H as in the definition of irreducibility in 3.36.
Then, there exists aλ ∈ Q\{0} such thatωY (σ) = λ · ωX(σ) for all σ ∈ Y .

Proof. As in the proof of proposition 3.37 we can take the closure ofY/H and make it
into a tropical local orbit space withωY (σ) = ωY (σ) for all σ ∈ Y . Thus, assume right
away thatY is closed inX. By proposition 3.37, one has|Y | = |X|. Takeσ ∈ Y (n) such
that |ωY (σ)/ωX(σ)| is minimal and putλ = ωY (σ)/ωX(σ). Since the balancing condition
is linear in the weights, we get that the weighted local orbitspace(Y/H, ωY − λ · ωX) is a
tropical local orbit space as well. Since the polyhedronσ is removed from the new local orbit
space (see construction 3.19),Y must be empty due to proposition 3.37 andωY = λ·ωX .

Proposition 3.40. LetX/G be a tropical local orbit space of dimensionn, Y/H a strongly
irreducible tropical local orbit space of dimensionn as well, ande a morphism fromX/G to
Y/H. In the notation of construction 3.31 the polyhedral complex Z ′\Z has dimension less
than or equal ton− 2.

Proof. Take the notation of construction 3.31 and proposition 3.30. Assume thatdim (Z ′\Z)
= n − 1. SinceZ ′\Z ⊂ ue, there exists (by proposition 3.30)σ ∈ XI with dim((ẽ1([σ])
\ẽ1([σ]))∩(Z ′\Z)) = n−1. Let τ be an(n−1)-dimensional polyhedron ofMod−1

H ((ẽ1([σ])
\ẽ1([σ])) ∩ (Z ′\Z)). SinceY/H is strongly irreducible, the open fan aroundτ is irre-
ducible as well. FurthermoreZ ′\Z containsτ . Thus, after a refinement, there exist an
(n− 1)-dimensional subpolyhedronτ ′ ⊂ τ andσ′ ∈ X(n) such thate1 is injective onσ′ and
ModH(τ ′) ⊂ ẽ1(ModG(σ′)). By (e) of definition 3.21, the morphisme induces a morphism
of fans. By the balancing condition and since the open fan around τ is irreducible, there
exists a polyhedroñσ ∈ X with ẽ1([σ̃]) ⊃ ModH(τ ′) anddim(ẽ1([σ̃]) ∩ ẽ1([σ])) = n. This
is a contradiction to(g) in definition 3.21 and we are done.

Corollary 3.41. LetX/G andY/H be tropical local orbit spaces of the same dimensionn
in V = Λ ⊗ R andV ′ = Λ′ ⊗ R, respectively, and lete : X/G → Y/H be a morphism.
Assume thatY/H is strongly irreducible anddim(|Y/H|\ẽ1(|X/G|)) ≤ n − 2. Then there
is a local orbit spaceY0/H|Y0 in V ′ of dimension smaller thann with |Y0| ⊂ |Y | such that
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(a) each pointQ ∈ |Y |\|Y0| lies in the interior of a polyhedronσ′
Q ∈ Y of dimensionn;

(b) each pointP ∈ e−1
1 (|Y |\|Y0|) lies in the interior of a polyhedronσP ∈ X of dimension

n;

(c) forQ ∈ |Y |\|Y0| the sum

∑

[P ],P∈|X|:ẽ1([P ])=[Q]

mult[P ] e

does not depend onQ, where the multiplicitymult[P ] e of e at [P ] is defined to be

mult[P ] e =
ωX(σP )

ωY (σ′
Q)

· |Λ′
[σ′

Q]/ẽ1(Λ[σP ])|.

Proof. Consider the tropical local orbit spacee(X/G). Sincedim(|Y/H|\ẽ1(|X/G|)) ≤
n−2 by assumption we can take a refinement of(Mod−1

H (ẽ1(|X/G|))/H|Mod−1
H ẽ1(|X/G|), wY )

fulfilling condition (∗) of definition 3.36. Thus(∗) holds also for the polyhedra inZ ′ (see
construction 3.31). By proposition 3.40 the condition(∗) holds fore(X/G) as well. This
means that we can refinee(X/G) andY/H such thate(X/G) fulfills condition (∗) (note
that the roles ofX andY are changed in the definition). From now on we work with these
refinements. SinceY/H is irreducible we can apply proposition 3.39 ande(X/G) = λ ·Y/H
for someλ ∈ Q\{0}. Let Y0 be the polyhedral complex defined by the union of polyhedra
of Y of dimension less thann. Then (a) and (b) hold because of the way we constructedY0.
EachQ ∈ |Y |\|Y0| lies in the interior of a uniquen-dimensional polyhedronσ′. By the 1:1
correspondence between points[P ] ∈ ẽ−1

1 ([Q]) andn-dimensional classes[σ] with σ in X
which fulfill [e1(|σ|)] = [σ′] we can conclude that

∑

[P ],P∈|X|:e1([P ])=[Q]

mult[P ] e =
∑

[σ]∈|X/G(n)|:[e1(σ)]=[σ′]

ωX(σ)

ωY (σ′)
· |Λ′

[σ′]/ẽ1(Λ[σ])|

=
ωe(X/G)(σ

′)

ωY (σ′)
= λ

does not depend onQ.

To see why we need the assumption thatY/H is strongly irreducible in the preceding corol-
lary (and not just irreducible), we consider an example.

Example3.42. Let us take as setsG andH the sets consisting only of the identity element.
Let X be the disjoint union of two polyhedral complexesX1 andX2, whereX1 is an open
interval andX2 is a tropical curve inR3 (see figure 3.6). The edgeE2 (resp.,E3) is an edge
with direction vector(0, 1, 1) (resp.,(−1,−1,−1)). The other edges ofX2 lie in the plane
as drawn in the figure. The complexY is a tropical curve inR2 as in the figure. The map
e betweenX andY is given as projection toR2 with e(Ei) = Fi. If we choose the weights
ωX1 = 2, ωX2 = 1 andωY = 1 we have a morphism between tropical local orbit spaces, but
the sum of preimages is different for pointsx ∈ F1 andy ∈ Y \F1.
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Figure 3.6: A morphism between two local orbit spaces, whereall the assumptions of corol-
lary 3.41 are fulfilled except forY being strongly irreducible.

Definition 3.43 (Rational function). Let Y/G be a tropical local orbit space. We define
a rational functionϕ on Y/G to be a continuous functionϕ : |Y | → R such that there
exists a refinement(((X, |X|, {mσ}σ∈X), ωX), {Mσ}σ∈X) of Y which fulfills the following
conditions: for each faceσ ∈ X the mapϕ◦m−1

σ is locally integer affine-linear andϕ◦g|Ug =
ϕ|Ug , for all g ∈ G. (Remark: by refinements we can directly assume thatϕ is affine linear
on each polyhedron.)

Definition 3.44(Local orbit space divisor). LetX/G be a tropical local orbit space of dimen-
sionk, andφ a rational function onX/G. We define a divisor ofφ to bediv(φ) = φ ·X/G
= [(

⋃k−1
i=−1X

(i), ωφ)] /G, whereωφ is as follows:

ωφ : X(k−1) → Q,

τ 7→
∑

σ∈X(k)

τ<σ

φσ(
1

|Xσ/τ |
ω(σ)vσ/τ ) − φτ

( ∑

σ∈X(k)

τ<σ

1

|Xσ/τ |
ω(σ)vσ/τ

)

Proposition 3.45.The divisorφ ·X/G is a tropical local orbit space.

Proof. By definition, the mapφ is a rational function on the tropical local orbit spaceX/{id}.
In particular it fulfills the definition of rational functions given in definition 6.1 of [AR]
except forX being a closed polyhedral complex. Nevertheless, the balancing condition
around a codimension-1 face ofX is the same as the condition around the closure of the
involving polyhedra. Therefore we can apply construction 6.4 of [AR] andφ ·X is balanced.
We only need to show that the weights for identified facets arethe same. This is clear since
the elements ofG are defined on open sets and therefore the weights are the samefor σ, σ′ ∈
φ ·X/G with [σ] = [σ′].

Proposition 3.46. Let φ1 andφ2 be two rational functions on the tropical local orbit space
X/G. Thenφ1 · (φ2 ·X/G) = φ2 · (φ1 ·X/G).

Proof. As in the previous proof, the statement follows from the polyhedral case. The corre-
sponding result is proposition 6.7 in [AR].
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4 One-dimensional local orbit
spaces

To get a better understanding of the definition of a local orbit space given in chapter 3, we
study the one-dimensional case.

LetX/G be a pure by one-dimensional local orbit space. After a refinement we can assume
that all polyhedra inX are of one of the following two forms. Either a polyhedron inX
is a closed interval or a half open (and half closed) interval. The half open interval can be
bounded or unbounded. Around a zero-dimensional face (the codimension one faces) the
polyhedral structure is given by fans.
Each elementg of G gives a morphism of a union of intervals in|X| to another union of
intervals such that the fan structure ofX is respected.

Example4.1. LetX be the disjoint union of

X1 = {(x, y) ∈ R2|max{0, x, y} is attained at least twice and|x| < 1, |y| < 1}

and
X2 = {(x, y) ∈ R2|max{0,−x, y} is attained at least twice and|x| < 2}.

The isomorphisms of polyhedral complexes for the setG in definition 3.1 are

g1 : {(x, y) ∈ X1||x| < 0} → {(x, y) ∈ X2||x| > 1} : (x, y) 7→ (2 + x, y),

g2 : {(x, y) ∈ X2||x| < 0} → {(x, y) ∈ X2||x| < 0} : (x, y) 7→ (−2 − x, 2 − y)

together withg−1
1 andidX (note thatg−1

2 = g2). A picture ofX and|X/G| is shown in figure
4.1.

Since we glue along open sets, the space|X/G| may be non-Hausdorff.

Example4.2. LetX be the disjoint union ofX1 = R andX2 = R. We put

G = {idX , g : {x > 0|x ∈ X1} → {x > 0|x ∈ X2} : x 7→ x, g−1}.

The resulting local orbit space is non-Hausdorff (see figure4.2).

Proposition 4.3. A one-dimensional local orbit spaceX is aT1 space such that there exists
a collectionP ⊂ |X/G| of finitely many points with|X/G|\P Hausdorff.
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Chapter 4: One-dimensional local orbit spaces

X

ModG

X/G

X2 X1

Figure 4.1: The polyhedral complex and the topological space of a one-dimensional local
orbit space.

X1

X2

X

X/G

ModG

Figure 4.2: A local orbit space which is not Hausdorff.

Proof. Local orbit spaces are topological spaces defined by gluing subspaces ofRn. Thus,
each finite set of points is closed and thereforeT1 holds. PutP = {p ∈ |X/G||p ∈
Modg(Ug\Ug) for g ∈ G}. The number of elements ofG is finite andUg is a finite union of
intervals, thus the number of elements ofP is finite. Letx′, y′ ∈ |X/G|\P be two distinct
points, and letx, y ∈ X be two arbitrary preimages of them underModG. By definition of
P , the pointsx andy lie either in the open setsUg or in the interior ofX\Ug for all g ∈ G.
LetWx (resp.Wy) be the intersection of all setsUg and(X\Uf )

◦, f, g ∈ G with x ∈ Ug and
x ∈ (X\Uf)

◦ (resp.y ∈ Ug andy ∈ (X\Uf)
◦). For eachg ∈ G withWx ⊂ Ug andWy ⊂ Vg

there exist open setsW g
x ⊂ Wx andW g

y ⊂ Vg with x ∈ W g
x , y ∈ W g

y andW g
x ∩W g

y = ∅
becauseX is Hausdorff. The setG is finite and thus the intersection of allW g

x and allW g
y are

open. FurthermoreModG(
⋂
W g

x )∩ModG(
⋂
W g

y ) = ∅ and thus|X/G|\P is Hausdorff.

Definition 4.4 (Non-Hausdorff pair, Non-Hausdorff point). LetX/G be a local orbit space.
We call a pair{x, y} with x, y ∈ |X/G| non-Hausdorffif for all open setsWx,Wy ⊂ |X/G|
with x ∈ Wx andy ∈ Wy one hasWx ∩Wy 6= ∅. We call a pointx ∈ |X/G| non-Hausdorff
if there exists a pointy ∈ |X/G| such that{x, y} is a non-Hausdorff pair.

Definition 4.5 (Non-Hausdorff fan). Let X be a finite set of half open intervals of finite
length. Takek ∈ N with k > 1 and letY1, . . . , Yk be (not necessarily different) subsets of
X such that identifying the elements ofYi for all i ∈ {1, . . . , k} gives a single element (this
condition assures connectedness of the resulting space). For eachi ∈ {1, . . . , k} we take
a pointPi and insert it at the open end of all intervals inYi. The resulting space is called
Non-Hausdorff fan(see figure 4.3).

Remark4.6. A Non-Hausdorff fan is a topological space we get by taking a one-dimensional
fanX, intersectX with a closed neighborhood at the origin, remove the origin and glue back
at least two points connecting some of the edges, such that the result is connected.
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Y1

Y2

P1

P2

Figure 4.3: A non-Hausdorff fan.

Proposition 4.7. LetX/G be a one-dimensional local orbit space. LetP ⊂ |X/G| be an
inclusion maximal set with at least2 elements, such that for allx, y ∈ P there exists a chain
x = x1, . . . , xn = y with {xi, xi+1} non-Hausdorff for alli ∈ {1, . . . n}, and letVP be a
sufficiently small closed neighborhood ofP . Then, the spaceVP\P is Hausdorff andVP is
homeomorphic to a non-Hausdorff fan.

Proof. Since the interior of theUg is Hausdorff only the boundary points of the images of
Ug can be non-Hausdorff. SinceG is finite andP is inclusion maximal, we can takeVP

sufficiently small such that all points which are elements ofa non-Hausdorff pair lie inP .
ThusVP\P is Hausdorff. By taking possibly a smaller set we can assume that the border of
the images of all setsUg for g ∈ G intersected withVP are inModG(P ). Since we glue the
setX alongUg one has thatVP is a non-Hausdorff fan.

By the previous proposition we know how the one dimensional local orbit spaces look like
in the neighborhood of non-Hausdorff pairs. Thus, we now consider the neighborhoods of
points which do not belong to non-Hausdorff pairs.

Proposition 4.8. LetX/G be a one-dimensional local orbit space andx ∈ |X/G| such that
x does not belong to a pair{x, y} ⊂ |X/G| which is non-Hausdorff. Then, there exists a
closed neighborhoodUx ⊂ |X/G| of x withUx homeomorphic to the closure of an open fan
in R2 withxmapped to the origin under this homeomorphism (in particular Ux is Hausdorff).

Proof. For the proof of the proposition we take a preimage ofx inX and see howG changes
this preimage. Letx′ ∈ X be a preimage ofx underModG. By the definition of a polyhedral
complex (see definition 1.10) there exists an open fanx′ ∈ Ũx′ ⊂ X. SinceG is finite, we
can assume thatUg ∩ Ũx′ is a union of interiors of faces of̃Ux′ . Letg ∈ G be an isomorphism
with x′ ∈ Ug. SinceUg andVg are open the fans̃Ux′ andg(Ũx′) are isomorphic to each other
by the isomorphismg|Ũx′

. Therefore, by identifying viag, we keep a closure of an open fan.
Thus, we now consider elementsg ∈ G such thatx′ /∈ Ug. Sincex does not belong to a
non-Hausdorff pair, either̃Ux′ stays the same after gluing alongg or g identifies faces of̃Ux′ .
In the latter case, the space one gets by identification alongg is still homeomorphic to a fan.
Thus we can take the closureUx of a subset ofModG(Ũx′) which fulfills the conditions.

Remark4.9. The spaceX is a metric space. Thus, by gluing alongG we get a pseudometric
on |X/G| induced by the metric onX. Therefore we can speak about balls in|X/G|.

Lemma 4.10.LetX/G be a one-dimensional local orbit space andx ∈ P from proposition
4.7. Then we can take forVP a set of the formBǫ(x) ⊂ |X/G|, whereBǫ(x) is the ball
aroundx of radiusǫ.
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Chapter 4: One-dimensional local orbit spaces

Proof. All non-Hausdorff pairs have pseudo-distance zero. Thus, we can take a small ball
Bǫ(x) for VP .

Lemma 4.11. Let X/G be a one-dimensional local orbit space andx ∈ |X/G| be as in
proposition 4.8. Then, one can take forUx a set of the formBǫ(x) ⊂ |X/G|.

Proof. ForUx as in the proposition 4.8 we can intersect this set with a small ball Bǫ(x). The
resulting set fulfills the lemma.

Theorem 4.12.LetX/G be a one-dimensional local orbit space,x a vertex of|X/G| and
ǫ ∈ R>0 sufficiently small. The neighborhoodBǫ(x) is of one of the following two forms:

(a) a non-Hausdorff fan andBǫ(x) contains exactly|P | different points which belong to a
non-Hausdorff set, whereP as in proposition 4.7.

(b) an open fan.

Proof. Follows from the previous lemmata.

To understand the Hausdorff restriction in chapter 3 we consider a proposition regarding
Hausdorffness.

Proposition 4.13. LetX/G be a one-dimensional local orbit space. The local orbit space
|X/G| is Hausdorff if the quotient mape : X → X/G is a morphism.

Proof. Assume that|X/G| is not Hausdorff. By theorem 4.12 there exist an elementx ∈
|X/G| and a real numberǫ > 0 such thatBǫ(x) is a non-Hausdorff fan. Thus, there exist
a half open interval in definition 4.5 at which we insert at least two points. This interval is
constructed by identifying two closed intervalsσ, σ̃ in X except for one endpoint. Therefore
one hasdim(ẽ1(σ) ∩ ẽ1(σ̃)) = 1 and |ẽ1(σ)\ẽ1(σ̃)| = 1. By proposition 3.25,e is not a
morphism.
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5 Moduli spaces for curves of
arbitrary genus

In this chapter we show that the moduli spaces of tropical curves of genusg have a structure
of tropical local orbit space. We use this structure to provetwo facts. First we show, that the
weighted number of tropical curves of degree∆ and genusg in Rr, which pass through the
right number of points and which are mapped to a given point inthe moduli space of genusg
curves with no unbounded ends, is independent of the choicesof points. Secondly we show
that the number of curves of degree∆ and genusg in R2 passing through the right number
of points is independent of the position of the points. The chapter is divided in three parts. In
the first (resp., the second) section we equip the moduli space of abstract tropical curves of
fixed genus (resp., the parameterized tropical curves of fixed genus and degree inRr) with a
structure of tropical local orbit space. In the last part we prove the two statements mentioned
above.

5.1 Moduli spaces of abstract tropical curves

Construction5.1. We construct a map fromMg,n to a tropical local orbit space in the fol-
lowing way. For each curveC ∈ Mg,n let Pg = {a1, . . . , ag} be an arbitrary collection of g
points ofC such thatC\Pg is a tree. We define a new curvẽC which we get by cuttingC
alongPg and inserting two leavesAi = xn+2i−1 andBi = xn+2i at the resulting endpoints of
each cutai. This curve is an(n + 2g) marked curve (of genus0) with up to2g two-valent
vertices (at the endsAi andBi for i ∈ {1, · · · g}). In the case we choose a markingai to
be at a3-valent or higher valent vertex, either the vertex adjacenttoAi or toBi has valence
greater than two.
In order to embedMg,n into a tropical local orbit space such that the underlying polyhedral

complex lies inR(n+2g
2 ) we need a map. Since the target of this map will be a tropical local

orbit space, let us construct a polyhedral complexXg,n and the set of isomorphismsGg,n we
need for it.

Notation5.2. For b ∈ Rt we denote bybi, 0 < i ≤ t, theith entry ofb.

Let T be the set of all subsetsS ⊂ {1, . . . , n + 2g} with |S| = 2. For the construction

we need the vector spaceVg,n which is isomorphic toR(n+2g
2 )−n−g and which is given by

Vg,n = R(n+2g
2 )/(Φg

n(Rn)+ < z1, . . . , zg >), where
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Chapter 5: Moduli spaces for curves of arbitrary genus

A1

B1

A2B2 A3

B3

Figure 5.1: Construction of a6-marked curve of genus0 from a0-marked genus-3 curve.

Φg
n : Rn −→ Rn+2g −→ R(n+2g

2 )

b 7−→ (b, 0) = b̃ 7−→ (b̃i + b̃j){i,j}∈T ,

andzl ∈ R(n+2g
2 ), l ∈ {1, · · · , g} is a vector such that

(zl)i,j =





1 if (i = n+ 2l − 1 or j = n+ 2l − 1) andi 6= n+ 2l 6= j,
−1 if (i = n+ 2l or j = n + 2l) andi 6= n+ 2l − 1 6= j,
0 otherwise.

Let us now recall the definition of the tropical GrassmanianG2,n+2g from [SS]. PutZ[p] =
Z[pi1,...,id], (1 ≤ i1 < i2 < . . . < id ≤ n) and letId,n be the homogeneous ideal inZ[p]
which consists of the algebraic relations among thed × d-minors of anyn × n matrix. The
tropicalization of the idealI2,n+2g (see the first pages of [SS]), is the tropical Grassmanian
G2,n+2g. By theorem 2.5.1 of [Sp1] this is a tropical fan. We define thefollowing subset of
Vg,n. Put

Φn,g : Rn+2g −→ R(n+2g
2 )

b 7−→ (bi + bj){i,j}∈T .

It is known thatG2,n+2g contains the linear spaceΦn,g(Rn+2g) (see [SS]). We denote by
e1, . . . , en+2g the canonical basis ofRn+2g and we subdivide the cones ofG2,n+2g along the
hyperplane< Φn,g(ei), x >= 0, 1 ≤ 1 ≤ n + 2g. The fanG2,n+2g/Φn,g(Rn+2g) is simplicial
by theorem 4.2 [SS]. SinceΦn,g(Rn+2g) is the lineality space ofG2,n+2g we have thatG2,n+2g

is a simplicial fan as well. Thus, each pointx of a coneσ has a unique representation
∑
xi ·vi

as linear combination of the minimalZ−vectorsvi contained in the one-dimensional faces
of σ. SinceΦn,g(Rn+2g) is the lineality space ofG2,n+2g there exists a coneσ′ with σ ⊂ σ′

such that one of those vectorsvi of σ′ is Φn,g(ek) or −Φn,g(ek) andk ≤ n + 2g (for σ it
might be that for somek ≤ n + 2g neitherΦn,g(ek) nor−Φn,g(ek) is in σ. In the definition
which follows we needσ′ to have a well-definedPk(x)). Without loss of generality assume
that we ordered the vectorsvi such thati = k for i ≤ n + 2g. We definePk(x) to be the
projection ofx to the lineΦn,g(R · ek) given byPk(x) = xk (resp.,−xk) for vk = Φn,g(ek)
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Chapter 5: Moduli spaces for curves of arbitrary genus

(resp.,vk = −Φn,g(ek)). Then we put

Xg,n = {x ∈ G2,n+2g|Pn+2i−1(x) + Pn+2i(x) > 0, ∀i ∈ {1, . . . , g}}/

(Φg
n(Rn)+ < z1, . . . , zg >). (5.1)

To describe a polyhedral structure onXg,n, we take the cones inG2,n+2g, intersect them with
{x ∈ G2,n+2g|Pn+2i−1(x)+Pn+2i(x) > 0, ∀i ∈ {1, . . . , g}} and project them toVg,n. The set
(Φg

n(Rn)+ < z1, . . . , zg >) is the remaining lineality space ofG2,n+2g.

Example5.3. We consider the spaceX1,1. The GrassmanianG2,3 is the spaceR3. The set
{x ∈ G2,3|P2(x)+P3(x) > 0} is equal to the set{Φ1,1({(x1, xA, xB) ∈ R3|xA +xB > 0})}.
After dividing out the lineality space(Φ1

1(R)+ < (1,−1, 0)t >) we get a ray without the
initial point.

Definition 5.4. Let (C, x1, . . . , xn) ∈ Mg,n and let(C̃, x1, . . . , xn, xn+1, . . . , xn+2g) be a
curve obtained by cuttingC. We define

distΓ(C̃) = (distΓ(xi, xj)){i,j}∈T ∈ R(n+2g
2 ),

wheredistΓ(xi, xj) is the distance betweenxi andxj (that is the sum of the lengths of all
edges in the unique path fromxi to xj) in C̃. Setxn+2i−1 = Ai andxn+2i = Bi, for all
i ∈ {1, . . . g}. The symbolΓ indicates that we consider the distances of (n-marked abstract
or parameterized labeledn-marked) tropical curves.

Lemma5.5. Let C̃ be a curve which we obtain by cutting a curveC ∈ Mg,n. Then
distΓ(C̃) ∈ {x ∈ G2,n+2g|Pn+2i−1(x) + Pn+2i(x) > 0, ∀i ∈ {1, . . . , g}}.

Proof. Put y = distΓ(C̃). Since each cycle has a positive length the pointy lies in the
interior of a cone spanned either byΦn,g(en+2i−1) or by Φn,g(en+2i) for all i ∈ {1, . . . , g}.
Furthermore all edges have a positive length and thus,y does not lie in a cone spanned
by −Φn,g(en+2i−1) or by−Φn,g(en+2i), and the conditionPn+2i−1(y) + Pn+2i(y) > 0, ∀i ∈
{1, . . . , g} is fulfilled. We only have to show thaty ∈ G2,n+2g. Theorem 3.4 of [SS] states that
the fanG2,n+2g/Φn,g(Rn+2g) is equal to the spaceM0,n+2g. The curveC̃ does correspond
to a point inM0,n+2g since the only two-valent vertices are at the endsxn+1, . . . , xn+2g.

These lengths are encoded inΦn,g(Rn+2g) and therefore[y] ∈ R(n+2g
2 )/Φn,g(Rn+2g) lies in

M0,n+2g. Thusy ∈ G2,n+2g.

The setGg,n is a set of morphisms induced by the following
(

n+2g
2

)
square matrices.

For alls ∈ {1, . . . , g}, put

(Is)(i,j),(k,l) =





1 if ({i, j}, {k, l}) = ({m,n+ 2s− 1}, {m,n+ 2s}),
or ({i, j}, {k, l}) = ({m,n+ 2s}, {m,n+ 2s− 1}),
or {i, j} = {k, l} andi, j /∈ {n+ 2s− 1, n+ 2s},
or if {i, j} = {n+ 2s− 1, n+ 2s} = {k, l},

0 otherwise.
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For alls ∈ {2, . . . , g}, put

(Ts)(i,j)(k,l) =





1 if ({i, j}, {k, l}) = ({m,n+ 2s− 1}, {m,n+ 1}),
n+ 2 6= m 6= n+ 2s,
or ({i, j}, {k, l}) = ({m,n+ 1}, {m,n+ 2s− 1}),
n+ 2 6= m 6= n+ 2s,
or ({i, j}, {k, l}) = ({m,n+ 2}, {m,n+ 2s}),
n+ 1 6= m 6= n+ 2s− 1,
or ({i, j}, {k, l}) = ({m,n+ 2s}, {m,n+ 2}),
n+ 1 6= m 6= n+ 2s− 1,
or {i, j} = {k, l} andi, j /∈ {n+ 1, n+ 2, n+ 2s− 1, n+ 2s},
or ({i, j}, {k, l}) = ({n+ 2s− 1, n+ 2s}, {n+ 1, n+ 2}),
or if ({i, j}, {k, l}) = ({n+ 1, n+ 2}, {n+ 2s− 1, n+ 2s})

0 otherwise.

For alls ∈ {1, · · · , g} andp ∈ {1, · · · , n+ 2g}\{n+ 2s− 1, n+ 2s}, put

(Ms
p )

(i,j),(k,l)
=





1 if {i, j} = {k, l},
or ({i, j}, {k, l}) = ({p, n+ 2s}, {n+ 2s− 1, n+ 2s}),
or ({i, j}, {k, l}) = ({p, j}, {j, n+ 2s− 1}), j 6= n + 2s,
or ({i, j}, {k, l}) = ({p, j}, {p, n+ 2s}), j 6= n + 2s,
or ({i, j}, {k, l}) = ({p, j}, {n+ 2s− 1, n+ 2s}),
n + 2s− 1 6= j 6= n + 2s,

−1 if ({i, j}, {k, l}) = ({p, n+ 2s− 1}, {n+ 2s− 1, n+ 2s}),
or ({i, j}, {k, l}) = ({p, j}, {j, n+ 2s}), j 6= n+ 2s− 1,
or ({i, j}, {k, l}) = ({p, j}, {p, n+ 2s− 1}), j 6= n+ 2s− 1,

0 otherwise.

Before going on with our construction, let us understand thedefined matrices by the follow-
ing observation and propositions.

Observation5.6. The main idea in our definition comes from the rational case (see [GKM]).
After cutting the curve we get a new curve without cycles. Thus, the distance between any
two points in the new curve is well-defined. Then, as in the rational case we have to mod
out the image ofΦg

n. In addition, we have to get rid of all the choices we made during the
construction of theAi andBi for 1 ≤ i ≤ g. These choices can be expressed by the following
four operations.

(a) The shift of the pointai on one edge of the cycle (which corresponds to the addition of
an element of< zi >).

(b) InterchangingAi andBi, which corresponds to the matrixIi.

(c) Interchangingai anda1, which corresponds toTi (interchangingai andaj can be done
by a product of matricesTl, l ∈ {1, . . . g}).

(d) The pointai jumps over the vertex adjacent to an unbounded edgep. The matrix
corresponding to this operation is eitherM i

p or (M i
p)

−1 depending on the position of
Ai andBi. If the pointai jumps over a bounded edgeE, the matrix corresponding
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to this operation is the product of all matrices(M i
p)

±1 wherep is connected withE
by edges not intersecting the cycle. (If we want to change thecut a3 of the curve in
figure 5.1 from the upper edge to the right edge we have to applyM3

1 · M3
4 to the

corresponding point in the parameter space).

Proposition5.7. Let us fixn, g ands in N, with s ≤ g. The group< Ms
p |p ∈ {1, · · · , n +

2g}\{n+ 2s− 1, n+ 2s} > is commutative.

Proof. To prove the commutativity, it is enough to show that any two generators of the group
commute. Denote byp, p′ two different elements of{1, · · · , n+ 2g}\{n+ 2s− 1, n+ 2s},
byA (resp.,B) the elementn+ 2s− 1 (resp.,n+ 2s), and byo ando′ arbitrary elements of

{1, · · · , n+ 2g}\{n+ 2s− 1, n+ 2s, p, p′}. Denote byxl,m the coordinates inR(n+2g
2 ). The

matricesMs
p andMs

p′ are defined in the following way.

The matrixMs
p is given by

xp,p′ xp,o xp,A xp,B xp′,o xp′,A xp′,B xo,o′ xo,A xo,B xA,B



1 0 −1 1 0 1 −1 0 0 0 1



xp,p′

0 1 −1 1 0 0 0 0 1 −1 1 xp,o

0 0 1 0 0 0 0 0 0 0 −1 xp,A

0 0 0 1 0 0 0 0 0 0 1 xp,B

0 0 0 0 1 0 0 0 0 0 0 xp′,o

0 0 0 0 0 1 0 0 0 0 0 xp′,A

0 0 0 0 0 0 1 0 0 0 0 xp′,B

0 0 0 0 0 0 0 1 0 0 0 xo,o′

0 0 0 0 0 0 0 0 1 0 0 xo,A

0 0 0 0 0 0 0 0 0 1 0 xo,B

0 0 0 0 0 0 0 0 0 0 1 xA,B

and the matrixMs
p′ by

xp,p′ xp,o xp,A xp,B xp′,o xp′,A xp′,B xo,o′ xo,A xo,B xA,B



1 0 1 −1 0 −1 1 0 0 0 1



xp,p′

0 1 0 0 0 0 0 0 0 0 0 xp,o

0 0 1 0 0 0 0 0 0 0 0 xp,A

0 0 0 1 0 0 0 0 0 0 0 xp,B

0 0 0 0 1 −1 1 0 1 −1 1 xp′,o

0 0 0 0 0 1 0 0 0 0 −1 xp′,A

0 0 0 0 0 0 1 0 0 0 1 xp′,B

0 0 0 0 0 0 0 1 0 0 0 xo,o′

0 0 0 0 0 0 0 0 1 0 0 xo,A

0 0 0 0 0 0 0 0 0 1 0 xo,B

0 0 0 0 0 0 0 0 0 0 1 xA,B

SinceMs
p ·Ms

p′ = Ms
p′ ·M

s
p , the group under consideration is commutative.
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Proposition5.8. With the above notation,Ms
p acts as identity on the elements of(Φg

n(Rn)+ <
z1, . . . , zg >). The matrixTs interchangesz1 and zs and is the identity on(Φg

n(Rn)+ <

z2, . . . ,
∧
zs, . . . , zg >). The matrixIs acts as identity on(Φg

n(Rn)+ < z1, . . . ,
∧
zs, . . . , zg >),

and one hasIs(zs) = −zs.

Proof. The statement forMs
p can be proved using the presentation ofMs

p given in the previ-
ous proof. SinceIs andTs only interchange entries of the vectors, one can conclude that the
proposition holds.

The setH =< Ts, Is,M
s
p > is a linear group and sinceIs ·Ms

p · Is ·M
s
p = T 2

s = I2
s = Id the

elements ofH areZ-invertible. Thus, they define isomorphisms onR(n+2g
2 ). By proposition

5.8 they define morphisms onVg,n as well. Now we take the subset of matricesh ∈ H
for which there exists a non-empty open polyhedral subcomplex Ũ of Xg,n such that for all
x ∈ Ũ , the vectorsx andh(x) are the distance vectors of curves resulting from cuts of the
same curve, and we denote this set byG. We label the set of induced morphisms (forh ∈ G
andŨ from above we have a morphism from̃U to h(Ũ)) by G̃. (Remark: for eachh there
are many different choices of|Ũ |.) This set has the following (partial) order:h1 ≤ h2 if
|Uh1| ⊂ |Uh2 | andh2||Uh1

| = h1 (Uh is defined in 3.1). LetG̃g,n be the set of maximal

elements ofG̃ with respect to this order. The elements we need are the morphisms induced
by {Ts, Is,M

s
p} together with the elements of̃Gg,n such that conditions(a), (b), (c) and(d)

of definition 3.1 hold. Note, that the morphisms are induced by matrices and therefore the
conditions for the set of isomorphisms in definition 3.1 can be fulfilled by elements of̃Gg,n.
We denote this set byGg,n and want to use it as set of isomorphisms for the construction
of a local orbit space. Therefore, we have to show thatGg,n is finite. TakeXg,n with the
polyhedral structure mentioned above. First we need to show, that only finitely many points
in Xg,n represent the same curveC. Each of theg cuts has to be at a different edge ofC.
Thus, the number of possibilities we have for the choice on which edges we cut is finite.
The position of a cutai on an edgeE is divided out by the vectorsi. Thus we have at most
two possibilities to insertAi andBi onE to get a different representative of the same curve.
Therefore, the number of points representingC is finite and bounded by the number

(
|E|
g

)
·2g,

with |E| the number of edges inC. If h ∈ Gg,n is defined onx ∈ σ, σ ∈ Xg,n, thenUh ⊃ σ◦,
becauseh is linear andUh is open. Since the number of cones is finite and the number of
represents is bounded we get, thatGg,n is finite.

Lemma5.9. Let C̃ andC̃ ′ be two curves resulting from two different cuts of a curveC. The
images ofC̃ andC̃ ′ in Xg,n are identified by elements ofGg,n.

Proof. During the proof we will denote bỹC (resp. C̃ ′) the curve and the corresponding
point inXg,n given by the distances. SincẽC andC̃ ′ are results of cuts of the same curveC,
there existi, j ∈ {1, . . . , g} such that the path fromAi to Bi in C̃ and the pathA′

j to B′
j in

C̃ ′ contain an edgeS (resp.,S ′) coming from the same edgeE in C. First of all we can use
the matricesTi andTj for the curveC̃ ′ to assumei = j. LetK be the set of marked points
adjacent to the (unique) path fromBi to the middle ofS. The curve

∏
p∈K M i

p · (C̃
′) comes

from a cut witha′i onE (for this we need proposition 5.7). Without loss of generality we can
directly assume thata′i ∈ E. Similarly, we can also assume thatai ∈ E. By applyingIi if
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necessary we can further assumeai = a′i. Denote byW the curve we get by cuttingC at ai

and inserting new edgesAi andBi at the new ends. Since the curvesC̃ andC̃ ′ are results of
cuts of the same genus-(g− 1) curve, we can repeat our arguments and show that the images
are the same under elements ofGg,n.

Remark5.10. Let σ be a facet ofXg,n where a point in the interior corresponds to a curve
which has exactlyr loops (a loop is an edge forming a cycle). The setGg,n contains at least
2r elements which are the identity onσ. (If Ai andBi be on one of those loops for1 ≤ i ≤ r,
then we get thatIi is the identity onσ. Since the group generated by{I1, . . . , Ir} has2r

elements the statement follows.)

Remark5.11. For a better understanding, we describe the morphisms fromGg,n. Let C be
a curve of genusg with n marked ends, and let us orient each edge ofC. Let a anda′ be
two cuts ofC as stated above (cuttingg cycles). By contracting all edges fromC except for
those cut by eithera or a′ (and not by both) we get a new curvẽC. Each suchC̃, together
with the position ofa anda′ on C̃, the information whichAi andA′

j lie on the same edge and
whether their orientation agrees, describes and is described uniquely by an element ofGg,n

if n or g are greater than one. We begin by defining a morphismg corresponding to this data.
Let Ai andA′

j be cuts on the same edge. UsingTs andIs first define a matrix which swaps
Ai andAj such thatAj lies on the same edge asA′

j and such thatAj andA′
j have the same

orientation on the edge. Following the idea from lemma 5.9 wethen multiply this matrix
by the matrix which identifies the curveC cut by the changeda with the curveC cut bya′.
As sourceUg of the corresponding morphism we take all points which correspond to curves
containing the edges of̃C and the unchanged cuta (where the cuts ofa are on edges of̃C as
well; for this remember that we probably removed edges wherea′ has cuts at the same edge).
The targetVg (see definition 3.1) are all points which correspond to a curve containing the
edges ofC̃ and the cuta′. By commutativity (see proposition 5.7)g is well defined for all
those points (the products

∏
p∈K M i

p in the proof of lemma 5.9 are defined if the elements
of K are all marked ends of one component of the curve cut ata andA′

i or equivalently if
the curve contains the edges ofC̃). FurthermoreUg is open since we take all points where
the edges of̃C are positive. Finally the set of points whereg is the identity is closed since
being the identity is a closed condition and sinceg changes positions of cuts and therefore
can not be the identity for elements where one of the edges ofC̃ becomes0. We take the set
of morphisms such that definition 3.1 is fulfilled and the morphisms we constructed fulfill
this definition. Thus, it remains to show that the above construction is one-to-one. Since the
elements ofUf andVf correspond to cut curves we can constructC, a anda′ for an element
f ∈ Gg,n. For n or g greater than one there exist curves with at least two boundededges
for each cycle (forg = 1 andn ≤ 1 we haveI1 = id and id = M1

1 if n = 1)). Thus the
construction is unique. If a cycle contains only one edge theorientation makes no difference.
In particular, ifAi lies on this cycle one getsIs = id for this point.

To illustrate the construction of the previous remark we consider the matrixM1
1 .

Example5.12. Each point corresponding to a cut curve which contain the edges shown on
the left hand side of figure 5.2 are mapped underM1

1 to a point corresponding to a curve with
the edges shown on the right hand side of figure 5.2.

Lemma5.13. The setGg,n described above fulfills all conditions of definition 3.1.
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B1

A1

x1

A1 B1
x1

Figure 5.2: A curve cut two times at neighboring edges.

Proof. The elements ofGg,n are restrictions of group elements such that the source and
the image are inXg,n. Thus, conditions(a) and (b) are satisfied. Letg ∈ Gg,n and let
F = {f1, . . . , fn} ⊂ Gg,n, g ∈ Gg,n with g−1(|Ufi

|) 6= ∅, for all 1 ≤ i ≤ n. We have to
show that there exists aH = {h1, . . . , hn} ⊂ Gg,n with |F | = |H| such thatUhi

⊃ g−1(|Ufi
|)

andhi|g−1(|Ufi
|) = fi ◦ g|g−1(|Ufi

|) for 1 ≤ i ≤ n. Since by construction ofGg,n there exists
always an elementhi with hi|g−1(|Ufi

|) = fi ◦ g|g−1(|Ufi
|) it suffices to prove the case where

Vg ∩ Uf1 = Vg ∩ Ufi
andf1 ◦ g|g−1(|Uf1

|) = fi ◦ g|g−1(|Ufi
|) for 1 ≤ i ≤ n (we have to show

that differentfi lead to differenthi; if one of those equations does not hold, then either the
domain or the image ofhi differs from the domain or image ofh1). The setGg,n is induced by
matrices, thusg andfi correspond to matricesG andFi. We definehi to be the isomorphism
defined by the matrixHi = Fi ◦ G. Since all matrices are elements of a group allHi are
different for different1 ≤ i ≤ n. Thus, by definition allhi are different and therefore(c)
holds. Condition(d) holds since we takeUg as big as possible.

Let us makeXg,n/Gg,n into a weighted local orbit space by setting all weights inXg,n to be
1.

Definition5.14. With the notations as before we put

S : Mg,n −→ Xg,n/Gg,n

(C, x1, . . . , xn) 7−→ [(distΓ(C̃)]

whereC̃ is a curve we get by cuttingC.

Remark5.15. By lemmata 5.5 and 5.9 the mapS is well defined.

Proposition5.16. LetXg,n, Gg,n andMg,n be as above. ThenS : Mg,n −→ Xg,n/Gg,n,
(C, x1, . . . , xn) 7−→ [(distΓ(xi, xj))]{i,j}∈T is a homeomorphism.

Proof. The mapS is defined by taking the distances of marked points, thus it isa continuous
map. Since the metric onMg,n is given by the lengths of edges, the mapS is open and
closed. Thus it remains to show thatS is bijective.
Let us first prove the injectivity ofS. For this we takeC andC̃ in Mg,n with S(C) = S(C̃).
By definition the curves inMg,n are uniquely defined by the lengths of their bounded edges.
Therefore, the curves are uniquely defined if we fix the lengths of the edges of the cut curve
(but not the other way round). Thus, the curve is uniquely defined by fixing its image in
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G2,n+2g. SinceGg,n only identifies elements which come from the same curve we cantake cut
curvesC ′ of C (resp.C̃ ′ of C̃) such thatdistΓ(C ′) = distΓ(C̃ ′) in Xg,n. Thus the difference
of the two elements has to be inΦg

n(Rn)+ < z1, . . . , zg >. All curves which differ by
elements of< z1, . . . , zg > come from the same curve by moving theg points{a1, . . . , ag}.
The elements ofΦg

n(Rn) only insert a new length at the marked ends{x1, . . . , xn}. Thus,
one hasC = C̃.
To prove the surjectivity note thatM0,n+2g is homeomorphic toG2,n+2g/Φn,g(Rn+2g). Let
x ∈ Xg,n/Gg,n. We take a representativẽx of x in Xg,n and denote its image inXg,n/
Φn,g(Rn+2g) by [x]. By the mentioned homeomorphism we can construct a unique curve
C̃ ∈ M0,n+2g which is identified with[x]. Now we connect the points[x]n+2i−1 and[x]n+2i

for i ∈ {1, . . . , g} with an edgeei of lengthxn+2i−1,n+2i−1 − [x]n+2i−1,n+2i and remove the
edges[x]n+2i−1 and[x]n+2i. The resulting curve belongs toMg,n and is mapped tox under
S. ThusS is surjective.

Proposition5.17. The weighted local orbit spaceXg,n/Gg,n is a tropical local orbit space.

Proof. By proposition 3.18 the balancing condition is clear, sinceG2,n+2g is a balanced fan.

Example5.18. We consider the moduli spaceM1,2. To compare it with the construction of
an orbit space see remark 7.6. The polyhedral complex underlying the moduli space consists
of the following cones (the entries of the vectors ared(x1, x2), d(x1, A), d(x1, B), d(x2, A),
d(x2, B), d(A,B)).

C1 = {a ·




1
1
1
2
0
2




+ b ·




1
0
1
1
0
1




|a, b ∈ R≥0, a > 0}, C2 = {a ·




1
1
1
2
0
2




|a > 0},

C3 = {a ·




1
1
1
2
0
2




+ b ·




0
1
0
1
0
1




|a, b ∈ R≥0, a+ b > 0}, C4 = {b ·




0
1
0
1
0
1




|b > 0},

C5 = {a ·




0
1
1
1
1
0




+ b ·




0
1
0
1
0
1




|a, b ∈ R≥0, b > 0}, C6 = {a ·




1
2
0
1
1
2




|a > 0},
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x2

x1

x1

x2

x2

x2

x1

x1

C4

C5

C8

C1 C3

C7

C2

C6

X1,2/G1,2

X1,2

Figure 5.3: The polyhedral complex and the topological space ofM1,2.

C7 = {a ·




1
2
0
1
1
2




+ b ·




1
1
0
0
1
1




|a, b ∈ R≥0, a > 0},

C8 = {a ·




1
2
0
1
1
2




+ b ·




0
1
0
1
0
1




|a, b ∈ R≥0, a+ b > 0},

Since the spaceΦ1
2(R

2)+ < z1 > which we mod out is three-dimensional the actual picture
is three-dimensional. A picture of the polyhedral complex is given in figure 5.3. The set of
morphisms in the tropical local orbit space identifies the conesC2 andC6 as well as the cones
C1, C3, C7 andC8. Thus the topological space underlying the tropical local orbit space is the
same as the union of the conesC2, C3, C4 andC5 (in figure 5.3 one can see the topological
space of the quotient).
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5.2 Moduli spaces of parameterized tropical curves

PutX̃ lab
g,n,∆,r = Xg,N ×Rr×Zr

1×. . .×Zr
g, whereZr

i , i ∈ {1, . . . , g} denotes a copy ofZr (for
the connection betweenn andN see chapter 2,Xg,N is defined in equation 5.1). We define
Glab

g,N to be as set in bijection withGg,N . For eachf ∈ Glab
g,N , we denote the corresponding

element inGg,N by f ∗, and we putUf = Uf∗ × Rr × Zr
1 × . . .× Zr

g. Now we want to define
a map for eachf ∈ Glab

g,N . Sincef is induced by a matrix, it suffices to define operations on
the generators ofH, mentioned above (H is defined after the proof of proposition 5.8). We
then take the operation defined by the product. We denote the operation on the component
Zr

1 × . . .× Zr
g by tf and define it for(v1, . . . , vg) ∈ Zr

1 × . . .× Zr
g as follows:

Ii(v
1, . . . , vi−1, vi, vi+1, . . . , vg) = (v1, . . . , vi−1,−vi, vi+1, . . . , vg)

Ti(v
1, v2, . . . , vi−1, vi, vi+1, . . . , vg) = (vi, v2 . . . , vi−1, v1, vi+1, . . . , vg)

M i
p(v

1, . . . , vi−1, vi, vi+1, . . . , vg) = (v1, . . . , vi−1, vi − v(xp), v
i+1, . . . , vg)

(v(xp) is the direction ofxp, see chapter 2)Let(x, b, v1, . . . , vg) ∈ X̃ lab
g,n,∆,r, then we put

f(x, b, v1, . . . , vg) = (f ∗(x), b, tf (v
1, . . . , vg)). As topology onX̃ lab

g,n,∆,r, we take the product
topology ofXg,N , of theZr

i and ofRr, where we considerZr
i with the discrete topology and

Rr with the standard Euclidean topology. Since we need a finite set of polyhedra we refine
X̃ lab

g,n,∆,r to be the subset ofXN × Rr × Zr
1 × . . . × Zr

g given by |(vi)s| ≤
∑

v∈∆ |vs| for
1 ≤ i ≤ g, 1 ≤ s ≤ r.

Remark5.19. The pointb is the image ofx1 underh in Rr, i.e. b = h(x1) (see definition
2.11).

In the case of rational curves it was possible to define the moduli space of stable maps to be
the product ofRr and the moduli space of abstract curves (see [GKM]). In the case of higher
genus this is not any longer possible. The cycles cause the problem (see chapter 7). Take a
curveC and cut it atg points as above. We want to map the abstract tropical curve under
h in Rr. Therefore, we have to fix a direction vector inZr for each cut (the directions of
the vectors atAi andBi are opposite each other). Now we can define the image underh of
the cut curve. Unfortunately the image of the cut cycle do notneed to be a cycle, since we
allowed arbitrary lengths for the edges. To ensure the closing of the cycles we take rational
functions. These functions are given in the following proposition.

Proposition 5.20.For all 0 < i ≤ r, 1 < d ≤ g, we have a function

φd
i : X̃ lab

g,n,∆,r → R

(a, b, v1, . . . , vg) 7−→
1

2
· max{±

1

2
(

N∑

k=2

(
a{k,N+2d} − a{k,N+2d−1}

)
vk(i)

+

g∑

k=1

(
a{N+2k−1,N+2d} − a{N+2k−1,N+2d−1}

−a{N+2k,N+2d} + a{N+2k,N+2d−1}

)
· vk(i))}

which is rational (a = [a{1,2}, . . . , a{N+2g−1,N+2g}] and we putam,m = 0 andvk = v(xk)).
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Proof. The only thing we have to do is to show thatφd
i is well defined. Thus, we have to

show thatφd
i ([x, b, v]) = φd

i ([x + s + t, b, v]), for all [x, b, v] ∈ X̃ lab
g,n,∆,r, s ∈< s1, . . . , sg >

andt ∈ Φg
n(Rn). Note, thatφd

i ([x, b, v]) = φd
i ([x+ s, b, v]), because

∑N
k=2 vk(i) = 0 and

(
a{N+2k−1,N+2d} − a{N+2k−1,N+2d−1} −a{N+2k,N+2d} + a{N+2k,N+2d−1}

)
= 0

for each vectora in < s1, . . . , sg >. Furthermore we have

(
a{k,N+2d} − a{k,N+2d−1}

)
vk(i) = a{N+2k−1,N+2d} = a{N+2k−1,N+2d−1} =

= a{N+2k,N+2d} = a{N+2k,N+2d−1} = 0

for all a ∈ Φg
n(Rn). Thus,φd

i ([x, b, v]) = φd
i ([x + s + t, b, v]) for all [x, b, v] ∈ X̃ lab

g,n,∆,r,
s ∈< s1, . . . , sg > andt ∈ Φg

n(Rn).

Remark5.21. Letx ∈ X̃ lab
g,n,∆,r. The valueφd

i (x) is equal tomax{±((evAd
)i(x)−(evBd

)i(x))}
whereevAd

(x) (resp.evBd
(x)) are the positions ofAd andBd in Rr (see proposition 5.23).

Now we want to show that
∏g

d=1

∏r
i=1 φ

d
i · (X̃

lab
g,n,∆,r/G

lab
g,N) is well defined. For this we have

to show that
∏g

d=1 φ
d
i · (Uh) =

∏g
d=1 φ

d
i · (h(Uh)).

Proposition 5.22.For all i ∈ {1 . . . r}, x ∈ X̃ lab
g,n,∆,r andh ∈ Glab

g,N one has
∏g

d=1 φ
d
i ·(Uh) =∏g

d=1 φ
d
i · (h(Uh)).

Proof. Since the elements ofGlab
g,N act as matrices on the componentXN we can, instead of

proving the proposition, show that for allf ∈ H andx ∈ V = Vg,n × Rr × Zr
1 × · · ·Zr

g one
has

∏g
d=1 φ

d
i · (V ) =

∏g
d=1 φ

d
i · (f(V )) (f andφd

i are defined canonically onV , becausef
is a matrix onVg,n and theφd

i are as well rational maps onV ). Since the matricesIs, Ts,M
s
p

generateH, it suffices to prove it for these matrices.
Thus, let us see how these matrices change the result. Put([a{1,2}, . . . , a{N+2g−1,N+2g}], b,
v1, . . . , vg) = x. First, we consider the matrixIs andd 6= s:

φd
i (Is([a{1,2}, . . . , a{N+2g−1,N+2g}], b, v

1, . . . , vg))
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=
1

2
· max

{
±

1

2

(
N∑

k=2

(
a{k,N+2d} − a{k,N+2d−1}

)
vk(i)

+

g∑

k=1,k 6=s

(
a{N+2k−1,N+2d} − a{N+2k−1,N+2d−1}

−a{N+2k,N+2d} + a{N+2k,N+2d−1}

)
· vk(i)

+
(
a{N+2s−1,N+2d−1} − a{N+2s−1,N+2d}

−a{N+2s,N+2d−1} + a{N+2s,N+2d}

)
· (−vs(i))

)}

=
1

2
· max

{
±

1

2

(
N∑

k=2

(
a{k,N+2d} − a{k,N+2d−1}

)
vk(i)

+

g∑

k=1

(
a{N+2k−1,N+2d} − a{N+2k−1,N+2d−1}

−a{N+2k,N+2d} + a{N+2k,N+2d−1}

)
· vk(i)

)}

= φd
i ([a{1,2}, . . . , a{N+2g−1,N+2g}], b, v

1, . . . , vg).

Ford = s it is the same as the genus1 case, considered in chapter 7.

Now we consider the matrixTs. For1 6= d 6= s only the order in the second big sum ofφd
i

changes which does not effect the result. Furtherφ1
i andφs

i are interchanged byTs. Since the
intersection of a product of rational functions does not depend on the order (see proposition
3.46), one gets

∏g
d=1 φ

d
i · (V ) =

∏g
d=1 φ

d
i · (Ts(V )).

At last consider the matrixMs
p . The calculations forN +2d− 1 6= p 6= N +2d are the same

as for genus1. Thus, as in chapter 7 we get the equality

φd
i (M

s
p ([a{1,2}, . . . , a{N+2g−1,N+2g}], b, v

1, . . . , vg))

− φd
i ([a{1,2}, . . . , a{N+2g−1,N+2g}], b, v

1, . . . , vg) = 0.

It remains to show the casesN + 2d − 1 = p orN + 2d = p. Since the product is invariant
underId we only considerN + 2d− 1 = p. We put

d∑

i

=
N∑

k=2

(
a{k,N+2d} − a{k,N+2d−1}

)
vk(i) +

g∑

k=1

(
a{N+2k−1,N+2d}

−a{N+2k−1,N+2d−1} − a{N+2k,N+2d} + a{N+2k,N+2d−1}

)
· vk(i)

and get

φd
i (M

s
p ([a{1,2}, . . . , a{N+2g−1,N+2g}], b, v

1, . . . , vg))

− φd
i ([a{1,2}, . . . , a{N+2g−1,N+2g}], b, v

1, . . . , vg)
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=
1

2
· max

{
±

1

2

(
d∑

i

+
N∑

k=2

−(a{k,N+2s−1} + a{N+2d−1,N+2s} + a{N+2s−1,N+2s}

−a{k,N+2s} − a{N+2d−1,N+2s−1}

)
· vk(i)

+

g∑

k=1,d6=k 6=s

(
−(a{N+2k−1,N+2s−1} + a{N+2d−1,N+2s} + a{N+2s−1,N+2s}

−a{N+2k−1,N+2s} − a{N+2d−1,N+2s−1}) + a{N+2k,N+2s−1} + a{N+2d−1,N+2s}

+a{N+2s−1,N+2s} − a{N+2k,N+2s} − a{N+2d−1,N+2s−1}

)
· vk(i))

+2
(
a{N+2d,N+2s−1} + a{N+2d−1,N+2s} + a{N+2s−1,N+2s}

−a{N+2d,N+2s} − a{N+2d−1,N+2s−1}

)
· (vd(i))(

a{N+2s−1,N+2d} − a{N+2s−1,N+2d−1}

−a{N+2s,N+2d} + a{N+2s,N+2d−1}

)
· (−vd(i))

+2a{N+2s−1,N+2s} ·
(
vs(i) − vd(i)

)
)}

−
1

2
· max

{
±

1

2

d∑

i

}

=
1

2
· max

{
±

1

2

(
s∑

i

+

d∑

i

)}
−

1

2
· max

{
±

1

2

d∑

i

}
.

The last expression is equal to0 for
∏g

d=1 φ
d
i for the following reason. Since the intersection

of a product does not depend on the order (see proposition 3.46) we can first intersect with
φs. For points in this intersection the sum

∑s
i is equal to0 and we are done.

Now we can define the tropical local orbit space we are interested in by constructing the
tropical local orbit space cut out by the rational functionsφi:

Mlab
g,n,trop(R

r,∆) =

g∏

d=1

r∏

i=1

φd
i · (X̃

lab
g,n,∆,r/G

lab
g,N).

The set of cones ofMlab
g,n,trop(R

r,∆) is denoted byX lab
g,n,∆,r. The rational functions assure

thatAi andBi are mapped to the same point for alli ∈ {1, . . . g}.

5.3 The number of curves is independent of the
position of points

In this section we use corollary 3.41 to prove that the numberof certain tropical curves
passing through given points is independent of the positionof points. Therefore we have to
define a map fulfilling the requirement of corollary 3.41.

Proposition 5.23.For j = 1, . . . , n the map

evj : X lab
g,n,∆,r → Rr

(Γ, x1, . . . xN , h) 7−→ h(xj)

42



Chapter 5: Moduli spaces for curves of arbitrary genus

is invariant under the setGg,N .

Proof. The mapevj is given by

evj(x) = b+
1

2

(
N∑

k=2

(
a{1,k} − a{k,j}

)
vk+

g∑

k=1

(
a{1,N+2k−1}

−a{N+2k−1,j} − a{1,N+2k} + a{j,N+2k}

)
· (vk)

)
. (5.2)

SinceIs andTs only change the order of the sum, we only have to prove invariance for
Ms

p . The maps are defined for the curves cut alonga1, . . . ag. Thus, let us take a point
C ∈ X lab

g,n,∆,r which represents a curve with cuts at each cycle and prove that the evaluation
maps are invariant for those (i.e.evj(C) = evj(M

s
p (C))). We can treat such a curve as a

genus1 curve cut atas. For this case the equation is the same as the equation for genus1
curves in chapter 7 withN + 2(g − 1) ends and thus the proposition follows.

Definition 5.24 (Evaluation map). For j = 1, . . . , n the map

evj : Mlab
g,n,trop(R

r,∆) → Rr

(Γ, x1, . . . xN , h) 7−→ h(xj)

is called thej-th evaluation map(note that this is well-defined for the contracted ends since
for themh(xj) is a point inRr).

Proposition 5.25. With the tropical local orbit space structure given above, the evaluation
mapsevj : Mlab

g,n,trop(R
r,∆) → Rr are morphisms of local orbit spaces (Rr is equipped with

the trivial local orbit space structure).

Proof. We have to show that fore = evj the conditions in definition 3.21 are fulfilled (e1 = e
ande2 the constant map). The conditions(a) - (c) are clear, sincee2 is a constant map. The
mape1 is continuous and conditions(d) and(g) follows, because the image of each cone is
the wholeRr. Furthermore,(e) is the same as in the case of fans treated in [GKM]. Finally,
proposition 5.23 proves(f) and we are done.

Definition 5.26 (Forgetful map). Let n ≥ 1 and g > 0. We define theforgetful map
ftn : Mg,n → Mg,0 to be the projection given byVg,n → Vg,0 (projection to the last

(
2g
2

)

coordinates). The induced forgetful map ofMlab
g,n,trop(R

r,∆) to Mg,0 is denoted byftN as
well.

Proposition 5.27.The mapftn : Mlab
g,n,trop(R

r,∆) → Mg,0 is a morphism of tropical local
orbit spaces.

Proof. It follows from the fact thatftn is a projection, respecting the polyhedral structure.

Proposition 5.28.The mape = ev1 × · · · × evn ×ftN : Mlab
g,n,trop(R

r,∆) → Rrn ×Mg,0 is
a morphism of local orbit spaces.
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Proof. By propositions 5.25 and 5.27 the evaluation maps and the forgetful maps are mor-
phisms. By lemma 3.27 the conditionsa till f of definition 3.21 are fulfilled. We only have
to show that conditiong is fulfilled as well. By definition,̃e1([σ̃])\ẽ1([σ]) ⊂ u(e). Thus,
the points inẽ1([σ̃])\ẽ1([σ]) are only in the boundary of non-closed faces (see proposition
3.30). The points in the boundary of non-closed faces are thepoints for which cycle-lengths
are zero. Since these points do not lie inMg,0 one has that̃e1([σ̃])\ẽ1([σ]) is empty and thus
conditiong holds.

If we fix a degree∆ and a genusg > 0 and count tropical curves inRr we want to count a
finite (non-zero) number of curves (i.e. the space of the considered curves passing through
given points should be0-dimensional). Thus, we have to take the right numbern of markings
such thatMlab

g,n,trop(R
r,∆) andRrn × Mg,0 have the same dimension. The dimension of

Mlab
g,n,trop(R

r,∆) is given by the number of inner edges (each inner edge has a length) plus
r (position ofh(x1)) minus rg (because of therg rational functions). The dimension of
Rrn ×Mg,0 is rn+ 3g − 3 (resp.rn+ 1) for g > 1 (resp.g = 1). Thus,n has to satisfy the
following equality:

#∆ + n+ 3g − 3 + r − rg = rn+ 3g − 3 ⇔ r + n+ #∆ − rg = rn

(#∆ + n+ r − r = rn+ 1 ⇔ #∆ − 1 = (r − 1)n, for g = 1.)

Theorem 5.29. Let r ≥ 2, let ∆ be the degree of a genusg > 0 tropical curve inRr,
and letn ∈ Z>0 with g + n ≥ 2 be such thatr + n + #∆ − rg = rn for g > 1 (resp.,
#∆ − 1 = (r − 1)n for g = 1). The number of parameterized labeledn-marked tropical
curves of genusg with fixed typeT ∈ Mg,0 which pass throughn points in general position
in Rr, counted with the multiplicities of corollary 3.41, is independent of the choice of the
configuration of points and the choice ofT .

Proof. The mapev1 × . . .×evn ×ftN is by proposition 5.28 a morphism between local orbit
spaces. By definition the domain and the target space are of the same dimension. The space
Rrn × Mg,0 is strongly irreducible since all codimension-1 faces ofMg,0 are attached to
three codimension-0 faces andMg,0 is irreducible. The morphism is surjective because of
the balancing condition. Thus we can apply corollary 3.41 toget the statement.

Let us fix the notation as above. To have a finite count of certain curves passing throughn
points,n has to fulfill the following equality:

#∆ + n+ 3g − 3 + r − rg = rn ⇔ #∆ + (1 − g)(r− 3) = (r − 1)n.

Theorem 5.30(Theorem 1 in [M1], Theorem 4.8 in [GM1]). Let∆ be the degree of a genus
g > 0 tropical curve inR2 and letn ∈ Z>0 be such that#∆+ g−1 = n. The number of pa-
rameterized labeledn-marked tropical curves of genusg (counted with multiplicities) which
pass throughn points in general position inR2 is independent of the choice of the configu-
ration of points (the multiplicity of a curve is defined to be the weight of the corresponding
cone inMlab

g,n,trop(R
2,∆)).
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Proof. By proposition 5.25 the evaluation maps are morphisms and lemma 3.27 implies
that conditionsa till f of definition 3.21 are fulfilled for the mape = ev1 × · · · × evn :
Mlab

g,n,trop(R
2,∆) → R2n. By dimensional reasons the image is2n-dimensional. Thus, to

apply corollary 3.41 we have to show that conditiong of definition 3.21 holds fore and that
dim(R2n\ẽ1(|M

lab
g,n,trop(R

2,∆)|)) ≤ 2n − 2. The tropical local orbit spaceR2n (we put all
weights to be one) is irreducible and thus it suffices to show that forσ ∈ X lab

g,n,∆,2 one has

dim(ẽ1([σ])\ẽ1([σ])) ≤ 2n−2 (the image is a tropical fan. Ifdim(ẽ1([σ])\ẽ1([σ])) ≤ 2n−2,
then by irreducibilitydim(R2n\ẽ1(|M

lab
g,n,trop(R

2,∆)|)) ≤ 2n − 2 holds as well. Further-

moreẽ1([σ])\ẽ1([σ]) contains the sets in(g) of definition 3.21 which must have dimension
less than or equal to2n − 2). The map is linear on each cone. Therefore, a pointx can
only be in ẽ1([σ])\ẽ1([σ]) if there exists a Cauchy sequence(xi)i∈N ⊂ Mlab

g,n,trop(R
2,∆)

with limi→∞ xi /∈ Mlab
g,n,trop(R

2,∆) and limi→∞ ẽ1(xi) = x. Thus, we have to study the
case where we diminish the cycle length to zero. Thus let us consider a sequence(Ci)i∈N

of curves through arbitrary points where we move the points to shrink the cycle to a point
p. These curves are represented by points in the moduli spaceMlab

g,n,trop(R
2,∆). Since

Mlab
g,n,trop(R

2,∆) consists of finitely many cones,(Ci)i∈N contains a subsequence which lies

in the interior of one coneσ. Either dim(σ) = 2n or dim(ẽ1([σ])\ẽ1([σ])) ≤ 2n − 2 is
fulfilled. Assume that the coneσ is of dimension2n. Thus, the cycle of each such curve
(C, h, x1, . . . , xn) has to be seen in the imageh(C). For the sake of contradiction, assume
that dim(ẽ1([σ])\ ẽ1([σ])) = 2n − 1. Then no marked point can be on the cycle we are
shrinking, because this would lead to a codimension2 face. The edges adjacent top have the
same direction as the edges which have been adjacent to the shrinking cycle before. Thus,
the dual polytope ofp in the limit curve has an interior lattice point and we can insert again
a cycle atp. All curves we get by inserting a small cycle atp are mapped to the same point
undere1. Hence, the map is not injective on the face with the shrinking cycle (which is a
contradiction todim(ẽ1([σ])\ẽ1([σ])) = 2n− 1) and we are done.

Remark5.31. In the previous proof we need the assumptionr = 2 since we use the dual
polytope in our argumentation. Forr > 2 the tropical curve is not a hypersurface and thus
the proof does not work in this case.

Example5.32. Let us consider two examples to see why we need the assumptionr = 2 in
the proof of theorem 5.30. Figure 5.4 shows a curve inR2 and shrinking of the cycle of

Figure 5.4: A curve inR2 where we shrink the cycle length to0.

this curve. The right hand side represents the limit curve and a possibility to insert again a
cycle. All curves with a cycle congruent to the dashed one have the same image under the
evaluation map.

Figure 5.5 shows a curve inR3 where we shrink again the cycle to a pointP . The directions
of the curve arex1 = (−4, 1,−1), x2 = (1,−2, 0), x3 = (2, 1,−1), x4 = (1, 0, 2). Fixing
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Chapter 5: Moduli spaces for curves of arbitrary genus

one more direction determines all directions (because of the balancing condition). Thus, let
us choose the direction ofE to be(−2, 1, 0). The continuous lines lie in thexy-plane and the
others do not. It is impossible to insert a cycle atP similar to the case in figure 5.4 (without
movingx1 up tox4 in R3).

x1

x2

x3

x4

x1

x2

x4

x3

P

E

Figure 5.5: A curve inR3 where we shrink the cycle length to0.
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6 Orbit spaces

In chapter 3 we gave the definition of a tropical local orbit spaceX/G. The main disadvan-
tage of this definition is thatG is not a group. Because of this we had to solve many technical
problems. In this chapter we will change the definition of a local orbit space into a definition
of an orbit space by requiring thatG is a group. The great disadvantage of doing this is,
that we no longer can assume thatX orG are finite. This is due to the fact that we want to
give moduli spaces of elliptic curves the structure of orbitspace. In our construction (which
seems to be natural, see chapter 7), the complexX and the groupG are infinite. Nevertheless
in the cases where we can deal with infinity the calculations are easier than for local orbit
spaces because of the group structure.

In the first part of this chapter we introduce the notion of tropical orbit space. Orbit spaces are
polyhedral complexes with a group acting on them. The word tropical refers as usual to the
appearance of a balancing condition which a priori depends on the group. Nevertheless, we
will see that the balancing condition of the tropical orbit space can be checked by considering
only the polyhedral complex. After this we introduce morphisms of orbit spaces in the second
part, and prove a fact concerning those morphisms (see corollary 6.29). One can use this
corollary as a tool for proving tropical enumerative statements.

6.1 Tropical orbit space

Definition 6.1 (Orbit space). Let X be a polyhedral complex andG a group acting on|X|
such that eachg ∈ G induces an automorphism onX. We denote the induced map of an
elementg ∈ G onX by g(.) and the induced homeomorphism on|X| by g{.}. We denote
byX/G the set ofG−orbits ofX and callX/G anorbit space.

Remark6.2. The topological space|X/G| = |X|/G of an orbit spaceX/G is Hausdorff
sinceG is a group.
Example6.3. The following example shows the schematic picture of the topological space
of an orbit space with trivial groupG and the open fansFσ for all σ. The groupG is trivial
and thus the orbit space is the same as the polyhedral complex(i.e.X = X/G).
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Chapter 6: Orbit spaces

Take forG the group with two elements, consisting of the identity and the map which maps
the upper half circle to the lower half circle and vice versa and which let the ray fixed. The
picture of|X|/G is as follows:

Definition 6.4 (Weighted orbit space). Let (X,ωX) be a weighted polyhedral complex of
dimensionn, andG a group acting onX. If X/G is an orbit space such that

• for anyg ∈ G and for anyσ ∈ X(n), one hasωX (σ) = ωX (g(σ)),

we callX/G a weighted orbit space. The classes[σ] ∈ X/G, for σ ∈ X(n), are called
weighted classes.

Definition 6.5 (Stabilizer,Gτ−orbit of σ). LetX andG be as above andτ, σ ∈ X. We call
Gτ = {g ∈ G|g{x} = x for anyx ∈ τ} thestabilizerof τ . We defineXσ/τ = {g(σ)|g ∈
Gτ} to be theGτ−orbit of σ. By |Gτ | (resp.,|Xσ/τ |) we denote the number of elements in
Gτ (resp.,Xσ/τ ).

The weight function on the weighted classes ofX/G is denoted by[ω] and defined by
[ω]([σ]) = ω(σ)/|Gσ|, for all σ ∈ X(n).

Remark6.6. We could define a weighted orbit space as well by giving an orbit space and a
weight for each class instead of defining the weights of the orbit space by the weights of the
complex and the group action.

Definition 6.7 (Suborbit space). Let X/G be an orbit space. An orbit spaceY/H is called
a suborbit spaceof X/G (notation:Y/H ⊂ X/G) if each general polyhedron ofY is con-
tained in a general polyhedron ofX,G = H and each element ofG acts on the faces ofY in
the same way as forX (i.e. for allg ∈ G, σ ∈ Y we haveg|Y |{x} = g|X|{x} for x ∈ σ). In
this case we denote byCY,X : Y → X the map which sends a general polyhedronσ ∈ Y to
the (unique) inclusion-minimal general polyhedron ofX that containsσ. Note that for a sub-
orbit spaceY/H = Y/G ⊂ X/G we obviously have|Y | ⊂ |X| anddimCY,X(σ) ≥ dim σ
for all σ ∈ Y .

Definition 6.8 (Refinement). Let ((Y, |Y |), ωY )/G and((X, |X|), ωX) /G be two weighted
orbit spaces. We call((Y, |Y |), ωY )/G a refinementof ((X, |X|), ωX)/G, if

(a) ((Y, |Y |), ωY )/G ⊂ ((X, |X|), ωX)/G,

(b) |Y ∗| = |X∗|,

(c) ωY (σ) = ωX(CY,X(σ)) for all σ ∈ (Y ∗)(dim(Y )),

(d) eachσ ∈ Y is closed in|X|.

We say that two weighted orbit spaces((X, |X|), ωX)/G and((Y, |Y |), ωY )/G are equivalent
(notation:((X, |X|), ωX)/G ∼= ((Y, |Y |), ωY )/G) if they have a common refinement.
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Definition 6.9 (Tropical orbit space). Let (X,ωX) /G be a weighted orbit space of dimension
n with finitely many different classes and|Gσ| <∞ for anyσ ∈ X(n). If for any τ ∈ X(n−1)

there existsλσ/τ ≥ 0 for any σ > τ such that
∑

σ̃>τ,σ̃∈Xσ/τ
λσ̃/τ = 1 and

∑
σ>τ λσ/τ

[ωX ]([σ])uσ/τ ∈ Vτ , thenX/G is called atropical orbit space. (Remark: one has#{σ > τ}
<∞ sinceSτ in definition 1.10 is homeomorphic to an open fan.)

Remark6.10. For a finite groupG the definitions of tropical orbit space and tropical local
orbit space do agree.

Proposition 6.11. Let (X,ωX) be a general weighted fan inV andG ⊂ Gl(V ) such that
X/G is a weighted orbit space (G is finite since(X,ωX) is finite). Then(X,ωX) is a general
tropical fan if and only ifX/G is a tropical orbit space.

Proof. ” ⇒ ”: Put n = dim(X) and letτ ∈ X(n−1) andσ > τ . Then we defineλσ/τ

= |{g∈Gτ , such thatg(σ)=σ}|
|Gτ |

= |Gσ|
|Gτ |

= 1
|Xσ/τ |

. The setsX/G andG are finite thusX is finite. In

particular, for anyτ ∈ X(n−1) one has#{σ > τ} < ∞. For anyσ > τ one hasλσ/τ ≥ 0
and

∑
σ̃>τ,σ̃∈Xσ/τ

λσ̃/τ = 1. Furthermore,

∑

σ>τ

1

|Gτ |
ωX(σ) · vσ/τ = t ∈ Vτ ,

because(X,ωX) is a tropical fan. Thus, we have

∑

σ>τ

|Gσ|

|Gτ |
[ωX ]([σ]) · vσ/τ =

∑

σ>τ

1

|Gτ |
ωX(σ) · vσ/τ = t ∈ Vτ .

” ⇐ ”: LetX/G be a tropical orbit space. Thus, there existsλσ/τ with σ > τ andτ ∈ X(n−1)

such that ∑

σ>τ

λσ/τ [ωX ]([σ]) · uσ/τ = t ∈ Vτ .

Therefore, because of the linearity ofg ∈ Gτ , we get:

|Gτ | · t =
∑

g∈Gτ

g(t)

=
∑

g∈Gτ

g(
∑

σ>τ

λσ/τ [ωX ]([σ]) · uσ/τ )

=
∑

g∈Gτ

∑

σ>τ

λσ/τ [ωX ]([σ]) · g(uσ/τ )

=
∑

σ>τ

|Gσ| · [ωX ]([σ]) · uσ/τ

=
∑

σ>τ

ωX(σ) · uσ/τ .
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Example6.12. The following picture is an example of a tropical fanX and a tropical orbit
spaceX/G with this fan as underlying polyhedral complex. LetX be the standard tropical

line with its vertex at the origin, the directions

(
−1
0

)
,

(
0
−1

)
and

(
1
1

)
, and all the

weights are equal to one. The groupG consists of two elements and is generated by the

matrix

(
0 1
1 0

)
.

X X/G

The balancing condition for the fan is

(
−1
0

)
+

(
0
−1

)
+

(
1
1

)
=

(
0
0

)

and for the orbit space

1

2
·

(
−1
0

)
+

1

2
·

(
0
−1

)
+

1

2
·

(
1
1

)
=

(
0
0

)
,

where the first two(1/2)’s come from the splitting of1 (see definition 6.9), and the third1/2
comes from the invariance of the last vector underG.

Corollary 6.13 (of proposition 6.11). The balancing condition for tropical orbit spaces holds
if and only if the balancing condition of the underlying weighted complex holds.

Proof. For tropical orbit spaces with infinite groupG there are only finitely many facets
around a codim-1 face. Thus, as in the proof of proposition 6.11 the balancingcondition can
be checked on the polyhedral complex as well (without group action).

Example6.14. To show that there are tropical orbit spaces which do not comefrom a tropical
fan we consider the following orbit space. Let|X| be the topological space{(x, y) ∈ R2|y >
0}, and letX be the set of cones spanned by the vectors

(
x
1

)
and

(
x+1
1

)
for x ∈ Z. If we

define all weights to be one andG =<

(
1 1
0 1

)
>, we get the following tropical orbit

spaceX/G:

X X/G

It can easily be seen, thatX/G is a tropical orbit space (see definition 6.9), whileX has
infinitely many cones and thus it can not be a tropical fan.
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Definition 6.15 (Global orbit space). Let F be a finite set of orbit spaces and letE be a set
of isomorphisms of polyhedral complexes fulfilling the following properties. Each element
gX/G,Y/H ∈ E is labeled by a pairX/G, Y/H ∈ F such thatgX/G,Y/H : X ′ → Y ′ withX ′ ⊂
X, Y ′ ⊂ Y subcomplexes, is an isomorphism. Furthermore, for eachg ∈ G andσ ⊂ |X ′|
such thatg(σ) ⊂ |X ′| there exists ah ∈ H such thatgX/G,Y/H(g(σ)) = h(gX/G,Y/H(σ)). We
call the pair(F,E) aglobal orbit space.

Remark6.16. The global orbit space is a topological space which locally is an orbit space.
In the same way one could define a weighted global and later on atropical global orbit space.
For weighted global orbit spaces one would need the condition that the weights of the glued
cones coincide.

6.2 Morphisms of orbit spaces

After becoming more familiar with the notion of orbit spaceswe now introduce morphisms
between them.

Definition 6.17(Morphism of orbit spaces). Let (X, |X|, {ϕ}, {Φσ|σ ∈ X})/ G and(Y, |Y |,
{ψ}, {Ψτ |τ ∈ Y ) /H be two orbit spaces. Amorphism of orbit spacesf : X/G → Y/H
is a pair(f1, f2) consisting of a continuous mapf1 : |X| → |Y | and a group morphism
f2 : G→ H with the following properties:

(a) for every general polyhedronσ ∈ X there exists a general polyhedronσ̃ ∈ Y with
f1(σ) ⊆ σ̃,

(b) for every pairσ, σ̃ from (a) the mapΨeσ ◦ f1 ◦Φ−1
σ : |FX

σ | → |F Y
eσ | induces a morphism

of fansF̃X
σ → F̃ Y

eσ , whereF̃X
σ andF̃ Y

eσ are the weighted general fans associated toFX
σ

andF Y
eσ , respectively (cf. definition 1.6),

(c) there exists a refinement ofX such that for anyσ, σ̃ ∈ X with dim(f1(σ) ∩f1(σ̃))
= dim(f1(σ)) = dim(f1(σ̃)), one hasf1(σ) = f1(σ̃),

(d) f1(g(σ)) = f2(g)(f1(σ)) for all g ∈ G andσ ∈ X.

A morphism ofweighted orbit spacesis a morphism of orbit spaces (i.e. there are no condi-
tions on the weights).

Remark6.18. The conditions(a) and (b) of definition 6.17 are equivalent tof1 being a
morphism of general polyhedral complexes.

Remark6.19. For G being a finite group the concepts of tropical local orbit spaces and
tropical orbit spaces are the same. Nevertheless the definitions of morphisms of those objects
do not agree. This is due to the fact that we use orbit spaces totreat easier problems than the
problems we deal with by using local orbit spaces. In particular we do not need morphisms
from open cones to closed cones as in the case of local orbit spaces (cf. theorem 5.30). Thus,
we can ask for condition(c) instead of condition(g) in definition 3.21.

Explanation6.20. The motivation for asking a morphism to fulfill conditions(a), (b) and(d)
is clear, but to ask for condition(c) is not. Thus, we consider an example where condition
(c) is not fulfilled.
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Let us consider the mapf , given by the projection of two intervals on a third one (see the
following picture). We takeG andH to be trivial, thusX/G = X andY/H = Y , whereX
is the disjoint union of two open intervals of different length andY is one open interval with
the same length as the longest interval ofX.

f

Y

X

After any possible refinement, the facetσ, which is the most left in the upper interval ofX,
is open on the left side, but will be mapped on a left closed facetτ . We callσ̃ the intersection
of the preimage ofτ with the longest interval ofX . Thenf1(σ) ∩ f1(σ̃) is a line segment as
well asf1(σ) andf1(σ̃), but the images are not the same which contradicts(c). The reason
is thatσ is a half open interval but̃σ is a closed interval. Thusf is not a morphism.

Example6.21. If we take the tropical orbit spaceX/G from example 6.12, then the canonical
map to the diagonal line inR2 is a morphism of orbit spaces. But the homeomorphism which
goes in the opposite direction is not a morphism, because locally at the origin it cannot be
expressed by a linear map.

Remark6.22. The reason we ask condition(c) to be fulfilled is to define images of the poly-
hedra later on. Thus, after refinement, each polyhedron should map to one polyhedron and
the image of the polyhedral complex should be a polyhedral complex as well. In particu-
lar condition(b) of definition 1.9 has to be fulfilled. Therefore, images of polyhedra of the
same dimension should intersect in lower dimension or should be equal. In other words,(c)
ensures(b) in definition 1.9.

To get more familiar with the definition of a morphism we provethe following proposition.

Proposition 6.23. Let X/G and Y 1/H1, Y 2/H2 be orbit spaces andf 1, f 2 be two mor-
phisms,f 1 : X/G → Y 1/H1 andf 2 : X/G → Y 2/H2. Assume that for each refinement
X1 ofX there exists a refinementX2 ofX1 such that condition(c) of definition 6.17 is ful-
filled for f 1 andf 2. Thenf : X/G → Y 1/H1 × Y 2/H2, f([x]) 7→ (f 1([x]), f 2([x])) is a
morphism.

Proof. Conditions(a), (b) and(d) of definition 6.17 hold since they follow from the condi-
tions off 1 andf 2. Thus it remains to prove condition(c). Assume that(c) does not hold.
In this case there existσ, σ̃ ∈ X with dim(f1(σ) ∩f1(σ̃)) = dim(f1(σ)) = dim(f1(σ̃))
such thatf1(σ) 6= f1(σ̃). After refinement ofX1 we can assume thatσ, σ̃ ∈ X(1) with
|f1(σ)\f1(σ̃)| = 1 and f is injective onσ and σ̃. Therefore eitherf 1 or f 2 is injective
on σ and σ̃ (if not, thendim(f1(σ) ∩ f1(σ̃)) = 0). Without loss of generality we can as-
sume thatf 1 is injective. One hasdim(f 1

1 (σ) ∩f 1
1 (σ̃)) = dim(f 1

1 (σ)) = dim(f 1
1 (σ̃)), but

|f 1
1 (σ)\f 1

1 (σ̃)| = 1. Sincef 1 is continuous, every refinementX2 of X1 containsσ and σ̃
with dim(f 1

1 (σ) ∩f 1
1 (σ̃)) = dim(f 1

1 (σ)) = dim(f 1
1 (σ̃)), but |f 1

1 (σ)\f 1
1 (σ̃)| = 1. This is a

contradiction to our assumption, and(c) holds.
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To see, why the assumption of the existence of a refinementX2 for each refinementX1 of
X is necessary we consider the following example.

Example6.24. Let X be the disjoint union of a copy ofR2 (which will be denoted byX1)
and a copy ofR2 where we remove the diagonal{(x, y) ∈ R2|x = y} (we denote byX2 the
spaceR2\{(x, y) ∈ R2|x = y}). For the image complexes we takeY 1 = R andY 2 = R.
The groups are defined to be the groups which contain only the trivial element. We define
the mapf 1 : X → Y 1 to be the orthogonal projection ofX1 andX2 onto thex-axes, and
we definef 2 : X → Y 2 to be the projection onto they-axes. Each of the three cones ofX1,
{(x, y) ∈ X2|x < y} and{(x, y) ∈ X2|x > y} are mapped surjectively toY 1 andY 2, thus
(c) holds for this refinement. The productf 1×f 2 is the identity onX1 andX2 and condition
(c) can not hold since the diagonal is missing inX2.

Remark6.25. This example shows that a product of morphisms is not necessarily a morphism
again.

Construction6.26. As in the case of fans (construction 2.24 [GKM]) we can define the image
orbit space. LetX/G be a purelyn-dimensional orbit space, and letY/H be any orbit space.
For any morphismf : X/G→ Y/H consider the following set:

Z = {f(σ), σ is contained in a conẽσ of X(n) with f injective onσ̃}

Note, thatZ is in general not a polyhedral complex. SinceY is a polyhedral complex, it
satisfies all conditions of definition 1.9 and definition 1.10except possibly(b) and (d) of
definition 1.9 (since there might be overlaps of some regions). Condition(b) is fulfilled by
condition (c) of definition 6.17. Furthermore, we can choose a proper refinement (which
satisfies(d) of definition 1.9) to turnZ into a polyhedral complex. We denote the weighted
polyhedral complex defined by all representatives of all classes[σ] with σ ∈ Z byH(Z). By
condition(a) in definition 6.17 the group action ofH onH(Z) is well defined. Thus, we get
an orbit spaceH(Z)/H, which will be theimage orbit spacef(X/G).

If moreoverX/G is a weighted orbit space, we turnf(X/G) into a weighted orbit space.
After choosing a refinement forX andY such thatf(σ) is a cone inY for eachσ ∈ X, we
set

ωf(X/G)(σ
′) =

∑

[σ]∈X/G(n):[f(σ)]=[σ′]

ωX(σ) · |Λ′
[σ′]/f(Λ[σ])|

for anyσ′ ∈ (H(Z))(n).

Proposition 6.27. LetX/G be ann-dimensional tropical orbit space,Y/H an orbit space,
andf : X/G → Y/H a morphism. Thenf(X/G) is ann-dimensional tropical orbit space
(provided thatf(X/G) is not empty).

Proof. By construction,f(X/G) is ann-dimensional weighted orbit space. It remains to
show the balancing condition. The proof works in the same wayas for fans in [GKM] (notice
that by corollary 6.13 the balancing condition can be checked without taking into account the
group operation).

Definition 6.28 (Irreducible tropical orbit space). Let X/G be a tropical orbit space of di-
mensionn. We callX/G irreducible if for any refinementX̃/G of X/G and anyY/G ⊂
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X/G, Y 6= ∅ with dim(Y/G) = n the following holds: if for allσ ∈ Y (n) one hasσ ∈ X̃(n),
thenY andX̃ are equal. (The equality holds on the level of orbit spaces, the weights can be
different. In the case of different weights one hasωX = λ · ωY for λ ∈ Q 6= 0.) Equivalent
to this definition is to say thatX/G is irreducible, if for any Y/G ⊂ X/G, Y 6= ∅ with
dim(Y/G) = n and|Y | is closed in|X| one hasY = X.

Corollary 6.29 (of proposition 6.27). LetX/G andY/H be tropical orbit spaces of the same
dimensionn in V = Λ ⊗ R andV ′ = Λ′ ⊗ R, respectively, and letf : X/G → Y/H be a
morphism. Assume thatY/H is irreducible andf(|X/G|) = |Y/H| (as topological spaces).
Then there is an orbit spaceY0/H ⊂ Y/H of dimension smaller thann with |Y0| ⊂ |Y | such
that

(a) each pointQ ∈ |Y |\|Y0| lies in the interior of a coneσ′
Q ∈ Y of dimensionn;

(b) each pointP ∈ f−1(|Y |\|Y0|) lies in the interior of a coneσP ∈ X of dimensionn;

(c) forQ ∈ |Y |\|Y0| the sum
∑

[P ],P∈|X|:f([P ])=[Q]

mult[P ] f

does not depend onQ, where the multiplicitymult[P ] f of f at [P ] is defined to be

mult[P ] f :=
ωX/G(σP )

ωY/H(σ′
Q)

· |Λ′
[σ′

Q]/f(Λ[σP ])|.

Proof. If we can show thatf(X/G) = λ(Y/H) (i.e. the image ofX/G is Y/G and the
weights differ by the multiplication ofλ ∈ Q) the proof works as in [GKM] for fans.
By assumption we have, thatf(|X/G|) = |Y/H|, as topological spaces. Further, by propo-
sition 6.27,f(X/G) is a tropical orbit space. Because of irreducibility we havef(X/G) =
λY/H as tropical orbit spaces.

In contrast to the case of fans we need in corollary 6.29 the assumptionf(|X/G|) = |Y/H|.
This is due to the fact, that we use non-closed polyhedra. Letus see what happens if we do
not assume the above equality.

Example6.30. LetG be the trivial group andX ⊂ R andY ⊂ R be open intervals of weight
one withX $ Y . Let f : X →֒ Y be the inclusion.

f

Y

X

Then, all conditions of corollary 6.29 but the equalityf(|X/G|) = |Y/H| are fulfilled and
the statement of the corollary does not hold.

Remark6.31. Instead of assumingf(|X/G|) = |Y/H| in corollary 6.29, it suffices to assume
thatf(|X/G|) is closed in|Y/H|.
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Definition 6.32 (Rational function). Let Y/G be a tropical orbit space. We define arational
functionϕ onY/G to be a continuous functionϕ : |Y | → R such that there exists a refine-
ment(((X, |X|, {mσ}σ∈X), ωX), {Mσ}σ∈X) of Y fulfilling that for each faceσ ∈ X the map
ϕ ◦m−1

σ is locally integer affine-linear (i.e. by refinements we can assume thatϕ ◦ m−1
σ is

affine linear on each general cone ofY ). Furthermore, we demand thatϕ ◦ g = ϕ, for all
g ∈ G.

Definition 6.33 (Orbit space divisor). Let X/G be a tropical orbit space, andφ a rational
function onX/G. We define a divisor ofφ to bediv(φ) = φ ·X/G= [(

⋃k−1
i=−1X

(i), ωφ)] /G,
whereωφ is given as follows:

ωφ : X(k−1) → Q,

τ 7→
∑

σ∈X(k)

τ<σ

φσ(λσ/τω(σ)vσ/τ ) − φτ

( ∑

σ∈X(k)

τ<σ

λσ/τω(σ)vσ/τ

)

(theλσ/τ are described in definition 6.9).

Remark6.34. The following two statements can be proved analogously to the proof of propo-
sition 6.11.

1 The definition above is independent of the chosenλσ/τ (i.e. if we have different sets
of λ’s fulfilling the definition of a tropical orbit space, the divisor will be the same for
both sets ofλ’s).

2 Since|Xσ/τ | · |Gσ| = |Gτ | we have that|Gτ | <∞ and thusφ ·X/G is a tropical orbit
space.
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7 Moduli spaces of elliptic tropical
curves

In this chapter we show that the moduli spaces of tropical curves of genus1 with j-invariant
greater than0 have a structure of tropical (non-local) orbit space. We usethis structure to
prove the known fact that the weighted number of plane elliptic tropical curves of degreed
with fixed j-invariant which pass through3d− 1 points in general position inR2 is indepen-
dent of the choice of a configuration of points. The chapter consists of three parts. In the
first part we equip the moduli space of abstract tropical curves of genus1 with a structure of
tropical orbit space. In the second part we do the same for themoduli space of parameterized
tropical curves of genus1. In the last section we use corollary 6.29 to show the mentioned
independence of the point configuration.

As mentioned before, a difference between local orbit spaces and orbit spaces lies in the set
of isomorphisms (see chapter 3 and chapter 6). In chapter 5 the sets of isomorphisms we
used for the construction of the moduli spaces are induced bymatrices. This time we take as
sets of isomorphisms the groups generated by these matrices. Unfortunately, this groups are
infinite and thus it is much more difficult to handle the sets ofisomorphisms and we have to
restrict ourselves to the case of elliptic curves.

7.1 Moduli spaces of abstract tropical curves of
genus 1

We construct a map fromM1,n to a tropical orbit space in the following way. For each curve
C ∈ M1,n let a be an arbitrary point of the cycle ofC. We define a new curvẽC which we
get by cuttingC alonga and inserting two leavesA = xn+1 andB = xn+2 at the resulting
endpoints (if we cut along a vertex we have to decide if the edges adjacent to the vertex which
are not in the cycle are adjacent toA or toB). This curve is ann+2 marked curve (of genus
0) with up to2 two-valent vertices (at the endsA andB).

By T we denote the set of all subsetsS ⊂ {1, . . . , n + 2} with |S| = 2. In order to embed

M1,n into a quotient ofR(n+2
2 ) we consider the following map:

distn : M1,n −→ Vn/Gn

(C, x1, . . . , xn) 7−→ [(distΓ(xi, xj)){i,j}∈T ]
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x2 x2

x1 x1

A

B

Figure 7.1: Construction of ann+ 2-marked curve from ann-marked genus-1 curve.

whereVn, Gn, and distΓ(xi, xj) are defined as follows. We denote bydistΓ(xi, xj) the
distance betweenxi andxj (that is the sum of the lengths of all edges in the unique path from
xi to xj) in C̃, wherexn+1 = A andxn+2 = B.

The vector spaceVn is isomorphic toR(n+2
2 )−n−1 and is given byVn = R(n+2

2 )/(Φ1
n(Rn)+ <

s >) (RecallΦ1
n from construction 5.1) where

s ∈ R(n+2
2 ) is a vector such that

si,j =





1 if i = n+ 1 or j = n+ 1 andi 6= n + 2 6= j,
−1 if i = n+ 2 or j = n+ 2 andi 6= n + 1 6= j,
0 otherwise.

The groupGn is generated by the matrixI and the matricesMp, p ∈ {1, ..., n}, where

I(i,j),(k,l) =





1 if ({i, j}, {k, l}) = ({m,n+ 1}, {m,n+ 2}), m ≤ n,
or ({i, j}, {k, l}) = ({m,n+ 2}, {m,n+ 1}), m ≤ n,
or {i, j} = {k, l} andi, j /∈ {n+ 1, n+ 2},
or if {i, j} = {n+ 1, n+ 2} = {k, l},

0 otherwise.

(In particularI(i,j),(k,l) = id for i, j, k, l ≤ n andI(i,n+1),(i,n+2) =

(
0 1
1 0

)
)

Mp,(i,j),(k,l) =





1 if {i, j} = {k, l}
or ({i, j}, {k, l}) = ({p, n+ 2}, {n+ 1, n+ 2}),
or ({i, j}, {k, l}) = ({p, j}, {j, n+ 1}), j 6= n + 2,
or ({i, j}, {k, l}) = ({p, j}, {p, n+ 2}), j 6= n+ 2,
or ({i, j}, {k, l}) = ({p, j}, {n+ 1, n+ 2}),

n+ 1 6= j 6= n+ 2,
−1 if ({i, j}, {k, l}) = ({p, n+ 1}, {n+ 1, n+ 2}),

or ({i, j}, {k, l}) = ({p, j}, {j, n+ 2}), j 6= n + 1,
or ({i, j}, {k, l}) = ({p, j}, {p, n+ 1}), j 6= n+ 1,

0 otherwise.

(Mp written as a matrix can be found in the proof of proposition 5.7 for s = 1.)

The orbits of all elements of< Φ1
n(Rn) > underGn are trivial,Mp(s) = s andI(s) = −s.

ThusVn/Gn is well defined. By the following lemma, the mapdistn is also well defined.
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Lemma 7.1. Let C̃ and C̃∗ be two curves resulting from two different cuts of a curveC.
Then, the images of̃C andC̃∗ are the same inVn/Gn.

Proof. Let us fix an orientationo of the simple cycle inC and letdist(C̃) anddist(C̃∗)
be the images underdistΓ of C̃ and C̃∗. The orientationo induces an orientation of the
edges connectingA andB of C̃ andC̃∗. By applying the mapI to dist(C̃) anddist(C̃∗) if
necessary we can assume that the induced orientation goes fromA toB. Denote bỹa, Ã, B̃
(resp. ã∗, Ã∗, B̃∗) the cut and the inserted edges corresponding to curveC̃ (resp. C̃∗). We
denote byd the distance of̃B to Ã∗ in the curve cut at̃a and ã∗. Let L be the subset of

marked points of the component containingB̃Ã∗. Then the following equality holds:

dist(C̃∗) =
∏

p∈L

Mp · dist(C̃) + d · s.

Remark7.2. The main idea in our definition comes from the rational case (see [GKM]). After
cutting the curve we get a new curve without cycles. Thus, thedistance of two points in the
new curve is well defined. Then, as in the rational case we haveto mod out the image ofΦ1

n.
In addition we have to get rid of all the choices we made duringthe construction of a rational
curve. These choices can be expressed by the following threeoperations.

(a) The shift of the pointa on one edge of the cycle (which corresponds to the addition of
an element of< s >).

(b) InterchangingA andB, which corresponds to the matrixI.

(c) The pointa jumps over the vertex adjacent to an unbounded edgep. The matrix cor-
responding to this operation isMp. If the pointa jumps over a bounded edgeE, the
matrix corresponding to this operation is the product of allmatricesMi with i con-
nected withE by edges not intersecting the cycle.

To get a polyhedral complex we put

Ψn : Vn −→ Vn/Gn

x 7−→ [x]

and
Xn = Ψ−1

n (distn(M1,n)).

Remark7.3. LetX1,n be as in construction 5.1. ThenXn = Ψ−1
n (Ψn(X1,n)).

As general polyhedrons we take the cones induced by the combinatorial cones inM1,n,
defined in Remark and definition 2.6. Thus,Gn is a group acting onXn and we can consider
the quotient topology on the orbit spaceXn/Gn (see definition 6.1). To have a weighted
orbit space we choose all weights to be equal to one. To show that the spacesM1,n have a
structure of tropical orbit space, we have to show thatM1,n andXn/Gn are homeomorphic
and thatXn/Gn fulfills the balancing condition.

Proposition 7.4. LetXn, Gn andM1,n be as above. ThenS : M1,n −→ Xn/Gn, (C, x1,
. . . , xn) 7−→ [(distΓ(xi, xj))]{i,j}∈T is a homeomorphism.
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Proof. Surjectivity is clear from the definition, andS is a continuous closed map. Thus, it re-
mains to show thatS is injective. To show this, we prove that out of each representative of an
element[x] in the target we can construct some numbers which are the samefor all represen-
tatives of[x]. If these numbers determine a unique preimage, the injectivity follows. For this
we take the following numberj and the setdi,k which are independent of the representative:

j = xn+1,n+2 = length of the cycle,

di = (xi,n+1 + xi,n+2 − j)/2 = distance fromi to the cycle (not well-defined modΦ1
n(Rn)),

di,k = {|(xi,n+1 + xk,n+2)− di − dk − j|, j − |(xi,n+1 + xk,n+2)− di − dk − j|} = distances
of i andk on the cycle.

If there are marked edgesi1, ...ir with dis,it equals{0, j} for all 1 ≤ s, t ≤ r, then we have
to determine the distances these edges have one to each other. But, since these distances
do not depend on the cycle, the edges inXn encoding these distances are invariant under
Gn. Thus, we can reconstruct these distances, by considering the projection (not necessarily
orthogonal) of[x] to the fixed part of the cone (and thus the fixed part of each representative)
in which [x] lies. The same can be done for two edgesi1, i2 which have distance zero from
each other to determine their distance to the cycle. Thus, all distances are given, injectivity
follows and we are done.

Proposition 7.5. The weighted orbit spaceXn/Gn is a tropical orbit space.

Proof. To show the balancing condition we have to consider the codim-1 cones and the facets
adjacent to them. If there is more than one vertex on the cycleof a curve corresponding to a
point on a codimension1 faceF , then either the stabilizers of the adjacent facets are trivial
and we are in the same case as for theM0,n, or the cycle of each curve in the faceF consists
of two edges of the same length. In the second case there are exactly two facets adjacent to
F which are opposite to each other. Since the stabilizers are trivial the balancing condition
holds. If there is only one vertex on the cycle of a curve corresponding to a point inF , then
the stabilizer ofF is {I, 1}, the identity andI (see above). The curves corresponding to the
points in the interior of the codim-1 face have exactly one4-valent vertex. This vertex can be
adjacent to the cycle or not. Let us consider these two cases separately. The second case is
trivial (the stabilizers are the same for all three facets and the balancing condition is the same
as forM0,n), thus assume, that the4-valent vertex is at the cycle. Qualitatively, the codim-1
face, which we callτ , corresponds to a curve as in the following picture:

A

B x2

x1

Figure 7.2: A tropical curve with 4-valent vertex.

By assumption, there is only one vertex on the cycle. We only consider the case with two
endsx1 andx2, because if we have a tree instead ofxi the calculation is the same for each
leaf of the tree. To verify the balancing condition for tropical orbit spaces given in definition
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6.9, we have to consider the three facets around the faceτ . Let σ1 (resp.σ2) belong to the
insertion of the edge withA andx1 (resp.A andx2) on the same side. Then,σ1 andσ2 lie in
the sameGτ -orbit. Thus, if we use the same notation as in the picture we get the following
condition:
there existsλσ1/τ , λσ2/τ ≥ 0, λσ1/τ + λσ2/τ = 1 such that

d(x1, x2)
d(x1, A)
d(x1, B)
d(x2, A)
d(x2, B)
d(A,B)

, λσ1/τ ·




1
0
1
1
0
1




+ λσ2/τ ·




1
1
0
0
1
1




+
1

2
·




0
1
1
1
1
0




∈ Vτ .

This condition is fulfilled forλσ1/τ = λσ2/τ = 1
2
. Thus we have indeed a tropical orbit

space.

Remark7.6. In example 2.9 we have seen the topological picture of the moduli spaceM1,2.
Unfortunately it is difficult to give a picture of the corresponding polyhedral complex since
X2 has infinitely many cones. Here is a description of it. Let thevector entries be labeled as
in the previous proof, and letC1, C2, C3, C4 be the cones corresponding to the four different
combinatorial cones in the picture of example 2.9, whereC1 is the left,C2 the second left,
C3 the third left andC4 the right combinatorial type. The group and representatives of the
conesC1, C2, C3, C4 (labeled by the same name) are the following:

G =

〈




1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1



,




1 1 −1 −1 1 1
0 1 0 0 0 1
0 0 1 0 0 −1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




〉
,

C1 = {a ·




1
1
1
2
0
2




|b > 0}, C2 = {a ·




1
1
1
2
0
2




+ b ·




0
1
0
1
0
1




|a, b ∈ R≥0, a+ b > 0},

C3 = {b ·




0
1
0
1
0
1




|b > 0}, C4 = {a ·




0
1
1
1
1
0




+ b ·




0
1
0
1
0
1




|a, b ∈ R≥0, b > 0}.

All other cones of the underlying polyhedral complex are given byg{Ci} for g ∈ G and
i ∈ {1, 2, 3, 4}.
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Chapter 7: Moduli spaces of elliptic tropical curves

7.2 Moduli spaces of parameterized tropical curves
of genus 1

Now we define a tropical orbit space corresponding to the parameterized genus1 tropical
curves inRr.

In the case of rational tropical curves we can simply takeM̃lab
0,n(R

r,∆) = Mlab
0,N×Rr because

to build the moduli spaces of rational tropical curves inRr it suffices to fix the coordinate of
one of the marked ends (for examplex1). For the case of genus1 curves the situation is more
complicated. If we fix the combinatorial type of the curve, the cycle imposes some conditions
on the lengths. In order to get a closed cycle in the image, thedirection vectors of the cycle
edges multiplied by their lengths have to sum up to zero. Furthermore, we have to get rid of
cells which are of higher dimension than expected. We will see that these operations (closing
of the cycle and getting rid of higher dimensional cells) canbe expressed by some rational
functions.

Let V lab
n,∆,r = VN ×Rr ×Zr. We defineGlab

N to beGN , acting onVN asGN before, onb ∈ Rr

(that is the image ofx1) as identity and onv ∈ Zr (the direction of the edgeA) as follows:

I(v) = −v,Mp(v) = v − v(p).

As topology onV lab
n,∆,r, we take the product topology ofVN , Zr andRr, where we consider

Zr with the discrete topology andRr with the standard Euclidean topology. We defineZr
∆ to

be the subset ofZr given by|vs| ≤
∑

w∈∆ |ws|, and put

Ψn,∆,r : V lab
n,∆,r −→ V lab

n,∆,r/GN

x 7−→ [x]

and
X̃ lab

n,∆,r = Ψ−1
n,∆,r([XN × Rr × Zr

∆]).

The purpose of the rational functionsφi in the next proposition is to make sure that theith
coordinate ofA is mapped to theith coordinate ofB.

Proposition 7.7. For all 0 < i ≤ r, we have a function

φi : X̃ lab
n,∆,r → R

(a{1,2}, . . . , a{N+1,N+2}, b, v) 7−→
1

2
· max{±(

1

2
(

N∑

k=2

(
a{1,k} − a{k,N+1}

)
vk(i)

+
(
a{1,N+2} − a{N+1,N+2}

)
(−v(i))

+(a{1,N+1})v(i))

−
1

2
(

N∑

k=2

(
a{1,k} − a{k,N+2}

)
· vk(i)

+
(
a{1,N+1} − a{N+1,N+2}

)
v(i)

+(a{1,N+2}) · (−v(i))))}

which is rational and invariant underGlab
N (v(i) = i-th coordinate ofv, vk = v(xk), see

definition 2.11).
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Chapter 7: Moduli spaces of elliptic tropical curves

Remark7.8. The mapsφi defined in proposition 7.7 are given by1
2
max {ev(A)i − ev(B)i,

ev(B)i − ev(A)i} (see proposition 7.13).

Proof of proposition 7.7.We have to show, thatφi is invariant under the addition ofc·(s, 0, 0)
(we identify (s, 0, 0) with s) for c ∈ R and the actions ofI andMp. Let x ∈ X̃ lab

n,∆,r and
d = φi(x).

For c ∈ R, the value ofc · s + x underφi is d ±
∑N

k=2 (−c) · vk(i). The second part
(
∑N

k=2 (−c) · vk(i)) is 0 due to the balancing condition, thus the value ofx andc · s + x is
the same as before.

For I we get the same, because

φi(I(a{1,2}, . . . , a{N+1,N+2}, b, v))

=
1

2
· max{±(

1

2
(

N∑

k=2

(
a{1,k} − a{k,N+2}

)
vk(i)

+
(
a{1,N+1} − a{N+1,N+2}

)
(−(−v(i))) + (a{1,N+2}) · −v(i))

−
1

2
(

N∑

k=2

(
a{1,k} − a{k,N+1}

)
vk(i)

+
(
a{1,N+2} − a{N+1,N+2}

)
(−v(i)) + (a{1,N+1}) · (−(−v(i)))))}

=
1

2
· max{±(−(

1

2
(

N∑

k=2

(
a{1,k} − a{k,N+1}

)
vk(i)

+
(
a{1,N+2} − a{N+1,N+2}

)
(−v(i)) + (a{1,N+1}) · v(i))

−
1

2
(

N∑

k=2

(
a{1,k} − a{k,N+2}

)
vk(i)

+
(
a{1,N+1} − a{N+1,N+2}

)
v(i) + (a{1,N+2}) · (−v(i)))))}

= φi(a{1,2}, . . . , a{N+1,N+2}, b, v).

It remains to show the invariance with respect toMp. Let us consider first the casep 6= 1.
We get:

d±
1

4

((
(a{1,N+1} + a{p,N+2} + a{N+1,N+2} − a{1,N+2} − a{p,N+1})

+(a{N+1,N+2})
)
· vp(i) +

(
a{1,N+2} − a{N+1,N+2}

)
(vp(i)) + (a{1,N+1})

·(−vp(i)) −
(
(a{1,N+1} + a{p,N+2} + a{N+1,N+2} − a{1,N+2} − a{p,N+1})

−(a{N+1,N+2})
)
· vp(i) +

(
a{1,N+1} − a{N+1,N+2}

)
(vp(i)) − (a{1,N+2}) · (vp(i))

)

= d.

In the casep = 1, we have:

d±
1

4
(

N∑

k=2

(ak,N+1 + a1,N+2 + a{N+1,N+2} − a{k,N+2} − a{1,N+1}) · vk(i)+
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Chapter 7: Moduli spaces of elliptic tropical curves

(aN+1,N+2) · (−v(i)) + (aN+1,N+2) · (−v(i))

−
N∑

k=2

(ak,N+1 + a1,N+2 + a{N+1,N+2} − a{k,N+2} − a{1,N+1}) · vk(i)−

(−aN+1,N+2) · (v(i)) − (aN+1,N+2) · (−v(i))) = d.

Thus,φi is invariant.

Remark7.9. We multiply the function by1
2
, because locally the condition that the cycle closes

leads to the functionmax {(1
2

∑N
k=2

(
a{1,k} −a{k,N+1}

)
vk(i) +

(
a{1,N+2} −a{N+1,N+2}

)

(−v(i)) +(a{1,N+1}) ·v(i), 0}. We changed the function slightly because of the symmetry
we need for the orbit space structure.

Now we can define the tropical orbit space we are interested inby constructing the tropical
orbit space cut out by the rational functionsφi:

Mlab
1,n,trop(R

r,∆) = φ1 · · ·φr(X̃
lab
n,∆,r/G

lab
N ), see definition 6.33.

The set of cones ofMlab
1,n,trop(R

r,∆) is denoted byX lab
n,∆,r. The rational functions assure that

A andB are mapped to the same point.

Example7.10. We consider the following map:

x1
x2

x3 x4

x1

x3

h

a

b

c

d d

c

a

x2

x4

b

To ensure thath, defined byh(x3) =
(
0
0

)
, h(x1) = d ·

(
0
1

)
, h(x2) = d ·

(
0
1

)
+ a ·

(
1
0

)
and

h(x4) = c ·
(
1
0

)
, is the map of a tropical curve (Γ, x1, . . . , x4, h) we needa = c andb = d,

which is the case for elements ofMlab
1,n,trop(R

r,∆) due to the fact that the direction vectors
multiplied by the lengths sum up to zero.

The rational functionsφi define weights on the resulting facets on the divisor. Since the
stabilizers are finite, the divisor is a tropical orbit spaceas well. Consider the caser = 2.
The weights we get from the definition of the rational function are the following (afterwards
we consider one of the three cases more explicitly).

(a) The image of the cycle is two-dimensional.
The condition, that the cycle closes up inR2 is given by two independent linear equa-
tionsa1 anda2 on the lengths of the edges of the cycle (which is a subset of the bounded
edges which we denote byΓ1

0); thus, the weight is given by the index of the map:
(
a1

a2

)
: Z2+#Γ1

0 7→ Z2.
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Chapter 7: Moduli spaces of elliptic tropical curves

(b) The image of the cycle is one-dimensional.
Because of the chosen rational function, there has to be one four-valent vertex on the
cycle. Otherwise, the weight would be zero on the corresponding face. Letm · u and
n · u with u ∈ Z2, m, n ∈ Z, andgcd(n,m) = 1 be the direction vectors of the cycle.
If we denote byv ∈ Z2 the direction of another edge adjacent to the4-valent vertex,
the weight is| det(u, v)|. If n = m = 1 and no point lies on the cycle, the stabilizer of
the corresponding face consists of two elements. Thus, the weight of the facet has to
be divided by2 in this case.

(c) The image of the cycle is0-dimensional. Due to the rational function we get the weight
1
2
· | det(u, v)| if there is a5−valent vertex adjacent to the cycle,u, v are two of the

three non-cycle directions outgoing from the vertex. If there is no5−valent vertex the
weight would be zero by the definition of the rational function.

Example7.11. Let us consider (b) more explicitly. First we show that if there is no four-
valent vertex on the cycle, the weight is0. The curve corresponds to a faceF in X̃ lab

n,∆,2

which is contained in some facets. The points in those facetscorrespond to curves. Since the
vertices are three-valent, all edges of the cycles in this curves are in a one-dimensional affine
linear subspace ofR2. Since we intersect by two rational functions the weight we get is0
(letX be the star build by the faces containingF in X̃ lab

n,∆,2. The mapΦ1 (resp.,Φ2) assures
that for all points ofΦ1(X) (resp.,Φ2(X)) h(A) = h(B). Since rational functions commute,
we have thatΦ1 is constant onΦ2(X)). Thus, we consider the case where one of the vertices
has valence four (see upper figure in figure 7.3) and denote thecorresponding faceF . The

A

B

A

A A

A

B

B B

B

Figure 7.3: The weight of a curve with one-dimensional cycle.

lower pictures in this figure are the curves corresponding tothe four facets inX̃ lab
n,∆,2 which

containF . Letd be the direction vector of the left edge of the cycle and letu be as in (b). For
simplicity assume thatu =

(
u1

0

)
. Applying Φ1 on the left two facets in figure 7.3 leads to a

face of weight| gcd(u1, d1)| whereΦ1 ensures thatA1 = B1 on this face. One can calculate
that applyingΦ2 leads toF with weight | u1

gcd(u1,d1)
· d2| times the weight| gcd(u1, d1)|. By

the balancing condition, one has| det(u, v)| = | det(u, d)| and we get the stated weight for
(b) (in particular the length of the left cycle edge becomes0).

Remark7.12. The numbers calculated with the help of rational functions differ from those
stated in [KM]. The difference lies in (c). The weights proposed in [KM] are1

2
·(| det(u, v)|−

1). Since both weights lead to a balanced complex, the union of the facets where the image
of the cycle is0-dimensional (together with its faces) is a tropical orbit space if we define all
weights to be1

2
.
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7.3 Counting elliptic tropical curves with fixed
j-invariant

To achieve our goal of proving independency of the position of the points, when one counts
certain elliptic tropical curves with fixedj-invariant, we want to use corollary 6.29. Thus,
we first give the definition of evaluation maps which are used to impose the point conditions.

Proposition 7.13.For i = 1, . . . , n the map

evi : X lab
n,∆,r → Rr

(Γ, x1, . . . xN , h) 7−→ h(xi)

is invariant under the groupGlab
N .

Proof. The mapevi is given by

evi(x) = b+
1

2

(
N∑

k=2

(
a{1,k} − a{k,i}

)
vk +

(
a{1,N+1} − a{N+1,i}

)
(v)

+(a{1,N+2} − a{i,N+2}) · (−v)

)
. (7.1)

Recall thatb = h(x1). It is invariant unders, because the value added bys to the differences
a{1,N+1} −a{N+1,i} anda{1,N+2} − a{i,N+2} is 0.

The mapI changes only the order of the two last summands.

Thus, it remains to consider the mapMp. We have three cases:p = 1, p = i, 1 6= p 6= i. The
sum we get differs from (7.1) by the following expressions. Case1 6= p 6= i:

1

2

(
a{1,N+1} + a{p,N+2} + a{N+1,N+2} − a{1,N+2} − a{p,N+1}−

(a{i,N+1} + a{p,N+2} + a{N+1,N+2} − a{i,N+2} − a{p,N+1})
)
· vp

+
1

2

(
a{1,N+1} − a{N+1,i}

)
(−vp) +

1

2
(a{1,N+2} − a{i,N+2}) · (vp) = 0.

Casep = 1:

N∑

k=2

1

2

(
a{k,N+1} + a{1,N+2} + a{N+1,N+2} − a{k,N+2} − a{1,N+1}

)
· vk+

1

2

(
−a{N+1,N+2}

)
· (v − v1) +

1

2

(
a{1,N+1} − a{N+1,i}

)
(−v1)

+
1

2

(
a{N+1,N+2}

)
· (−v + v1) +

1

2

(
a{1,N+2} − a{i,N+2}

)
· (v1) = 0.

The last equation is true, because

N∑

k=2

(a1,N+2 + aN+1,N+2 − a1,N+1)vk = 0, v1 = 0
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and the rest of the sum
(

N∑

k=2

1

2

(
a{k,N+1} − a{k,N+2}

)
· vk +

1

2

(
−a{N+1,N+2}

)
· (v)

+
1

2

(
a{N+1,N+2}

)
· (−v)

)

is equal to

−
1

2

(
N∑

k=2

(
a{1,k} − a{k,N+1}

)
vk +

(
a{1,N+2} −a{N+1,N+2}

)
(−v)

+(a{1,N+1}) · v

)
+

(
1

2

(
N∑

k=2

(
a{1,k} − a{k,N+2}

)
vk

+
(
a{1,N+1} − a{N+1,N+2}

)
v + (a{1,N+2}) · (−v)

))

which is 0 because of the rational function which we have used to construct X lab
n,∆,r (see

proposition 7.7).

Casep = i:

1

2

N∑

k=2

−
(
a{k,N+1} + a{i,N+2} + a{N+1,N+2} − a{k,N+2} − a{i,N+1}

)
· vk+

1

2

(
a{N+1,N+2}

)
· (v − vi) +

1

2

(
a{1,N+1} − a{N+1,i}

)
(−vi)

+
1

2

(
−a{N+1,N+2}

)
· (−v + vi) +

1

2

(
a{1,N+2} − a{i,N+2}

)
· (vi) = 0.

(Same reason as above.)

Definition 7.14 (Evaluation map). For i = 1, . . . , n the map

evi : Mlab
1,n,trop(R

r,∆) → Rr

(Γ, x1, . . . xN , h) 7−→ h(xi)

is called thei-th evaluation map.

Proposition 7.15. With the tropical orbit space structure given above the evaluation maps
evi : Mlab

1,n,trop(R
r,∆) → Rr are morphisms of orbit spaces (in the sense of definition 6.17

andRr equipped with the trivial orbit space structure).

Proof. Continuity is clear, thus we have to check conditionsa− d in definition 6.17. Condi-
tion a is clear sinceRr is the unique cone of the target space. Conditionb is the same as the
case of fans treated in [GKM]. Conditionc is clear since each cone is mapped to the whole
Rr and the last condition follows from proposition 7.13.
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Proposition 7.16. The mapf = ev1 × · · · × evn × j : Mlab
1,n,trop(R

r,∆) → R(rn+1) is a
morphism of orbit spaces.

Proof. For each cone inMlab
1,n,trop(R

r,∆) one has that the strict inequalities given in defini-
tion 1.1 are coming from the limit of thej-invariant to0. Therefore, conditionc of definition
6.17 is fulfilled. Thus, the statement follows from proposition 7.15 and the fact thatj is the
projection on the coordinateR{A,B}.

Theorem 7.17(Theorem 5.1, [KM]). Let d ≥ 1 and n = 3d − 1. Then the number of
parameterized labeledn-marked tropical curves of genus1 and of degreed with fixed j-
invariant which pass throughn points in general position inR2 is independent of the choice
of the configuration of points (the multiplicity of a curve isdefined to be the weight of the
corresponding cone inMlab

1,n,trop(R
2, d)).

Proof. For n = 3d − 1 pointsMlab
1,n,trop(R

2, d) has the same dimension asR(rn) × R>0.
Since all open ends are mapped toj-invariant equal0, surjectivity follows by the balancing
condition inR(rn) × R>0. Thus, proposition 7.16 and corollary 6.29 imply the theorem.

When we construct the orbit space structure of the moduli space of parameterized curves we
need the componentZr for technical reasons. But, in fact, the directionv of the edgeA is
unique for given lengths of the edges.

Proposition 7.18.Let (a1,2, . . . , aN+1,N+2, b, v) be inMlab
1,n,trop(R

r,∆). One has that(a1,2,
. . . , aN+1,N+2, b, v∗) in Mlab

1,n,trop(R
r,∆) if and only ifv = v∗.

Proof. Assume that(a1,2, . . . , aN+1,N+2, b, v∗) ∈ Mlab
1,n,trop(R

r,∆). The closing up of the
cycle is given by the equalities (compare with proposition 7.7)

N∑

k=2

(
a{1,k} − a{k,N+1}

)
vk(i) +

(
a{1,N+2} − a{N+1,N+2}

)
(−v ∗ (i)) + (a{1,N+1})v ∗ (i))

=

N∑

k=2

(
a{1,k} − a{k,N+2}

)
·vk(i)+

(
a{1,N+1} − a{N+1,N+2}

)
v∗(i)+(a{1,N+2}) ·(−v∗(i))

Putw = v − v∗. Since the equality holds forv as well, we get

(
a{1,N+2} − a{N+1,N+2}

)
(−w(i)) + (a{1,N+1})w(i))

=
(
a{1,N+1} − a{N+1,N+2}

)
w(i) + (a{1,N+2}) · (−w(i))

which is equivalent to
2a{N+1,N+2}w(i) = 0.

Since the cycle length is positive one hasw(i) = 0 and thereforev = v∗.
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8 Correspondence theorems

In the previous parts of the thesis we introduced a theory of (local) orbit spaces and used this
theory to build moduli spaces of tropical curves. The aim in constructing moduli spaces is
to get a better understanding of the parameterized objects.Besides studying a mathematical
domain for its own, it is always interesting to find connections between different domains.
This chapter gives a hint on a connection between certain algebraic and tropical objects. In
particular, we are interested in the connection between elliptic algebraic curves and elliptic
tropical curves.
We start the chapter by stating some known facts. For our purpose, the correspondence
theorems are of great interest. These theorems provide bijections between algebraic curves
which satisfy certain properties and tropical curves whichsatisfy corresponding properties
and are counted with multiplicities. (Corresponding properties mean for example that the
genus of the algebraic and the tropical curves are the same.)Since G. Mikhalkin was the
first who discovered a correspondence theorem, we state his result first and then give as well
some other results which we need for our work. In the second section we prove a new corre-
spondence theorem for elliptic curves with given bigj-invariant. In contrast to Mikhalkin’s
correspondence theorem, it is a correspondence between embedded tropical curves and al-
gebraic curves instead of parameterized tropical curves and algebraic curves. The first cor-
respondence theorem for elliptic curves with fixedj-invariant was obtained by I. Tyomkin
[T].

8.1 Mikhalkin’s correspondence theorem

In correspondence theorems we associate to each tropical curve a multiplicity. This multi-
plicity is the number of algebraic curves which correspond to a given tropical curve. In par-
ticular, the multiplicities depend on the problem. Therefore, we start this section by defining
a multiplicity we need.

In this chapter all parameterized tropical curves are inR2.

Definition 8.1 (multiplicity of a vertex). Let (Γ, x1, . . . , xN , h) be a parameterized tropical
curve and letC = h(Γ). For a3-valent vertexV of C with |h−1(V )| = 1, denote bye1
ande2 two different edges adjacent toh−1(V ). Themultiplicity of C at V is defined to be
|v(e1, V ) ∧ v(e2, V )| (the area of the parallelogram spanned by the two vectorsv(e1, V ) and
v(e2, V )).

Remark8.2. By the balancing condition the multiplicity of a vertexV in definition 8.1 is
independent of the choices ofe1 ande2.
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Definition 8.3 (multiplicity of a curve). Let (Γ, x1, . . . , xN , h) be a parameterized tropical
curve and letC = h(Γ). We definemult(Γ) to be the product over the multiplicities of all
3-valent vertices ofC from definition 8.1.

Example8.4 (multiplicity). LetC be the image shown in figure 8.1 of a parameterized trop-
ical curve(Γ, x1, . . . , x4). The multiplicity of vertexV1 is 1 and the multiplicity ofV2 is 3.
Thus,mult(Γ) = 3.

V2

V1

v(e3, V2) =
(
−1
2

)
e3

e4
v(e1, V1) =

(
−1
0

)

e1
e2

v(e2, V1) =
(

0
−1

)

v(e4, V2) =
(

2
−1

)

Figure 8.1: The image of a parameterized tropical curve.

A correspondence theorem provides a bijection between curves which satisfy given proper-
ties. In particular the number of tropical curves and the number of corresponding algebraic
curves do agree. In the following we define those numbers.

Definition 8.5. Let g ∈ N≥0, and let∆ = (v1, . . . , vs) ∈ (Z2\{0})s be the degree of a
parameterized tropical curve. For a configurationP = {p1, . . . , ps+g−1} ⊂ R2 of general
points we define the numbersN irr

trop(g,∆, P ) to be the number of parameterized tropical
curves of degree∆ and genusg passing throughP and counted with the multiplicity of
definition 8.3. (Remark: Each parameterized tropical curvein N irr

trop(g,∆, P ) has only3-
valent vertices.)

Remark8.6. A purely tropical proof of the fact that the numbersN irr
trop(0, ∆, P ) do not

depend onP is given in the proof of theorem 5.1 in [GKM]. For arbitrary genus the inde-
pendence ofP follows from theorem 8.19.

To define the algebraic numbers we first give the definition of the degree of an algebraic
curve.

Definition 8.7 (complex degree). A complex algebraic curveZ ⊂ (C∗)2 is defined by a
Laurent polynomialf : (C∗)2 → C, f(x) =

∑
i∈A aix

i, with A ⊂ Z2 finite andai ∈ C∗ for
i ∈ A. The Newton polygon off is called thedegreeof Z. If the Newton polygon is the
convex hull of(0, 0), (d, 0) and(0, d) we say thatf has degreed.

Remark8.8. Our definition of degree is not standard, but it is chosen to have a correspon-
dence to the tropical degree.

Example8.9. Figure 8.2 represents the Newton polygon of the complex algebraic curve given
by the polynomialf = 2x3 − 4x2y + 3x2 + xy2 − 2xy − x+ 4y3 + 1 in (C∗)2.
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x1,0

x0,1

1

1

Figure 8.2: The Newton polygon off = 2x3 − 4x2y + 3x2 + xy2 − 2xy − x+ 4y3 + 1.

Definition 8.10 (Dual vectors). Let ∆ = (v1, . . . , vn) be a multiset of vectors inZ2, where
Z2 ⊂ R2 is oriented. By thedual vectorsof ∆ we mean the multiset(v′1, . . . , v

′
n) of vectors

in Z2 where the angle betweenvi andv′i is −π/2 (notπ/2) and the lattice lengths ofvi and
v′i are the same for1 ≤ i ≤ n.

Lemma and Definition 8.11. Let ∆ be the degree of a parameterized tropical curve. The
dual vectors to∆ form a unique (up to translation) oriented cycle which describe a convex
polygonD with vertices inZ2; we callD the Newton polygon dual to∆.

Proof. By the balancing condition the dual vectors sum up to zero andtherefore we can
construct a polygon out of them. Since we require the polygonto be convex, it is unique up
to translation.

Example8.12. Let (Γ, x1, . . . , x9, h) be a parameterized tropical curve and leth(Γ) be the
figure shown in 8.3 (all weights are1). The Newton polygon dual to the degree ofΓ is the
same as shown in figure 8.2.

Figure 8.3: A tropical curve of degree3.

Notation8.13. For the degree∆ of a parameterized tropical curve we denote the dual Newton
polygon by∆∨.

The goal is to have a correspondence between curves which satisfy some properties. Besides
the genus and the degree the property the curves have to fulfill is to pass through given points.
In definition 8.5 we defined the numbers of tropical curves satisfying given properties. Thus,
we now define their algebraic counterparts.
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From now on assume that the tropical degree consists only of primitive vectors.

Definition 8.14. Let ∆∨ be a convex polygon with vertices inZ2. We define#∆∨ = ∂∆∨ ∩
Z2.

Remark8.15. If the degree of a tropical curve consists only of primitive vectors then#∆
(see chapter 2) is the same as#∆∨ for ∆ being the degree of a tropical curve and for∆∨

being its dual Newton polygon.

Definition 8.16. LetQ = (q1, . . . , q#∆∨+g−1) ⊂ (C∗)2 be a configuration of points in general
position. We defineN irr(g,∆∨, Q) to be the number of irreducible complex curves of genus
g and degree∆∨ passing throughQ.

Those numbers a priori depend onQ. The following proposition is a useful fact and can be
found for example in [CH].

Proposition 8.17. Take the notation of definition 8.16. For genericQ the numbersN irr(g,
∆∨, Q) are finite and independent ofQ. Therefore we get invariantsN irr(g,∆∨).

By now we defined the objects in algebraic and in tropical geometry we want to connect by
a correspondence. To state the correspondence it lacks onlya connection between the point
conditions in algebraic geometry and those in tropical geometry. For this we use the function
given in the following definition.

Definition 8.18 (Log). Let Log be the map from(C∗)2 to R2 given byLog(x) = (log |x1|,
log |x2|) for all x ∈ (C∗)2.

Theorem 8.19(Mikhalkin, [M1], theorem 1). For a generic configurationP of n = #∆ +
g−1 points we haveN irr

trop(g,∆, P ) = N irr(g,∆∨). Furthermore, there exists a configuration
Q ⊂ (C∗)2 of #∆ + g − 1 points in general position such thatLog(Q) = P and for a
parameterized tropical curve(Γ, x1, . . . , xN , h) of genusg and degree∆ passing throughP
we havemult(Γ) distinct complex curves of genusg and degree∆∨ passing throughQ. The
curves are distinct for differenth(Γ) and irreducible. (Recall: We assume that the degree of
the tropical curve consists of primitive vectors and thus#∆ and#∆∨ are equal.)

The notable fact stated in theorem 8.19 can be used for counting algebraic curves. After
translating the algebraic problem into tropical geometry one can use for example lattice paths
(see [M1]) or floor diagrams (see [BM]) to count tropical curves. By the correspondence the
algebraic problem is solved as well.

Example8.20. There is one parameterized tropical curve of degree2 and genus0, passing
through5 general points. This curve correspond to one algebraic curve, which is the only
curve of degree2 passing through given5 points (see figure 8.4).

Remark8.21. In fact, the proof by G. Mikhalkin of theorem 8.19 contains aswell the infor-
mation how to assign a tropical curve to an algebraic one. He calculated certain Hausdorff
limits of curves. For this one defines fort > 1 the following map from(C∗)2 to (C∗)2

Ht : (x, y) 7→ (|x|
1

log(t)
x

|x|
, |y|

1
log(t)

y

|y|
).
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p1
p2

p4
p5

p3

Figure 8.4: The degree2 and genus0 parameterized tropical curve passing through the points
P = {p1, . . . , p5}.

Take the assumptions and notations from theorem 8.19 and letǫ > 0 be sufficiently small.
For sufficiently bigt there aremult(Γ) algebraic curves mapped to theǫ-neighborhood of
h(Γ) underLog ◦Ht.

Besides the correspondence theorem found by G. Mikhalkin there are some other correspon-
dence theorems. To state one of them we change our base field tothe field given in the next
definition.

Definition 8.22 (valuation). The field of locally convergent Puiseux series is by definition
the field K of locally convergent power series which is a subfield of

⋃∞
n=1 C((t1/n)) (i.e.

for
∑

r∈R crt
r ∈ K with cr ∈ C one has

∑
r∈R |cr|t

r < ∞ for sufficiently smallt). We
defineval : (K∗)n → Rn to be the Cartesian product of the valuationsval : (K∗) → R,∑∞

k=k0
ckt

k/n 7→ −k0/n, whereck ∈ C andck0 6= 0. If Z is an algebraic curve inK2 we
defineval(Z) to be the closure of the valuation ofZ ∩ (K∗)2.

Theorem 8.23(Mikhalkin, Shustin). LetK be the field of locally convergent Puiseux series,
and∆ be the degree of a plane tropical curve. LetP be a set of#∆ + g − 1 = n generic
points inR2 and letQ ⊂ (K∗)2 be a set ofn different points in general position such that
val(Q) = P . For each plane parameterized tropical curve(Γ, x1, . . . , xn, h) of genusg and
degree∆ passing throughP , there existmult(Γ) distinct plane algebraic curves inK2 of
genusg and degree∆∨, which pass throughQ and are mapped toh(Γ) underval.

A proof can be found in [Sh] (Theorem 3).

Particularly related to our work is a work done by I. Tyomkin.Since we need again some
preparations to quote the result we state the necessary definitions.

Definition 8.24(special curves). Let (Γ, x1, . . . , xN , h) be a parameterized tropical curve. If
Γ has only vertices of valence three and if the lengths of all bounded edges and the position of
all vertices are rational we call the parameterized tropical curvespecial. By multiplying these
rational numbers by the least common multiple of the divisors of all fractions we assume that
all vertices ofh(Γ) (resp., lengths of edges ofΓ) are inZ2 (resp., inZ).

The aim of definition 8.24 is on one side to use the affine structure of the edges for the
definition of a multiplicity. On the other side, if an elliptic tropical curve is special, we have
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a correspondence between itsj-invariant and thej-invariant of the corresponding algebraic
curves.

Definition 8.25. Let (Γ, x1, . . . , xN , h) be a special curve, lete be an edge ofΓ, and letV be
a vertex ofe. The lattice of the tangent space ofh(e) is denoted byNe. The lattice length of
v(e, V ) in Ne is denoted byl(e).

Definition 8.26. Let (Γ, x1, . . . , xN , h) be a special parameterizedn-marked tropical curve
of genus1 and fix an arbitrary orientation for each bounded edge such that the cycle in
Γ with this directions gives an oriented cycle. We denote byW the set of vertices ofΓ,
by W n the set of vertices adjacent tox1, . . . xn, by Eb the set of bounded edges and we
put W f = W\W n. Defineǫ(e, V ) to be−1 (resp.,1, resp.,0) if V ∈ W, e ∈ Eb and
V is the initial point ofe (resp.,V is the end point ofe, resp.,V is not a vertex ofe).
Let β be the group morphism⊕V ∈W (K∗)2 ⊕ ⊕e∈Eb(Ne) ⊗ K∗ → ⊕e∈Eb(K∗)2 given by

β(yV ) = ⊕e∈Eb

(yV
ǫ(e,V )
1

yV
ǫ(e,V )
2

)
andβ(ye) =

(ye
−l(e)
1

ye
−l(e)
2

)
(the labelsV ande denote the entry in the

direct sum forV ∈ W and e ∈ Eb). Let {e1, . . . em} be the set of edges forming the
cycle. We putδ : ⊕V ∈W (K∗)2 ⊕ ⊕e∈Eb(Ne) ⊗ K∗ → K∗ with δ(yV ) = 1, δ(ye) = ye

(Ne ⊗ K∗ ∼= K∗) if e ∈ {e1, . . . em} andδ(ye) = 1 otherwise. Furthermore, we define a map
idn : ⊕V ∈W (K∗)2 ⊕⊕e∈Eb(Ne)⊗ K∗ → ⊕V ∈W n(K∗)2, given byidn(yV ) = yV for V ∈W n

andidn(yV ) = idn(ye) = 1(K∗)2 ∈ (K∗)2 for V ∈ W f , e ∈ Eb. Put

E = β×δ× idn : ⊕V ∈W (K∗)2⊕⊕e∈Eb(Γ)(Ne)⊗K∗ → ⊕e∈Eb(Γ)(K
∗)2×K∗×⊕V ∈W n(K∗)2

and denote byK(Γ, P, j) the kernel ofE. We denote byβ, δ and idn as well theZ-linear
maps of the underlying lattices (Z ⊂ Z ⊗ K∗ = K∗).

The multiplicity of the tropical curves is the number of algebraic curves corresponding to it.
To see how the multiplicity|K(Γ, P, j)| is related to point conditions consider the following
remark.

Remark8.27. Let us use the notations of definition 8.26 and let{q1, . . . qn} = Q ⊂ (K∗)2

be a set ofn points in general position such thatval(Q) = P , for P = {h(x1), . . . h(xn)}.
SinceE is a group morphism, the number|K(Γ, P, j)| equals the number of preimages of
an element of the image. Thus,|K(Γ, P, j)| equals for example the number of preimages of
((1(K∗)2 , . . . , 1(K∗)2), 1, (q1, . . . , qn)).

Before stating the theorem of Tyomkin we consider an example.

Example8.28. Let (Γ, x1, . . . , x5, h) be the parameterized tropical curve withh(Γ) shown in
figure 8.5 and equipped with the orientation such thate1 is directed fromx1 toV1 ande2 . . . e5
form a clockwise oriented cycle; letP = {(−2,−1); (1, 1)}, let Q = {(t2, t); (1/t, 1/t)}
and let the degree∆ be (

(
−2
−1

)
,
(
1
2

)
,
(

1
−1

)
). The mapE from definition 8.26 is a map from

a 15-dimensional space to a15-dimensional space. By abuse of notation we use the same
notation as in the previous definition for slightly different objects (yV is the value(K∗)2

V as
before, butye is the value inK∗

e
∼= Ne ⊗ K∗ instead of the value inNe ⊗ K∗). To count the

elements of the kernel ofE we can solve the following equations:

(yV1)1

t2 · y2
e1

= 1,
(yV1)2

t · ye1

= 1,
1

t · (yV1)1 · ye2

= 1,
1

t · (yV1)2 · ye2

= 1,
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x3

x4

V2

V3

x1

x5

V1

x2

e2

e3

e4

e5
e1

Figure 8.5: An elliptic curve with5 marked ends.

(yV2)1 · t

ye3

= 1,
(yV2)2 · t

ye3

= 1,
(yV3)1

(yV2)1

= 1,
(yV3)2

(yV2)2 · ye4

= 1,

(yV1)1

(yV3)1 · ye5

= 1,
(yV1)2

(yV3)2
= 1, ye2 · ye3 · ye4 · ye5 = 1.

Since it can be calculated, that these equations have a unique solution, the kernel contains
exactly one element.

Notation8.29. Let Z be an algebraic curve of genus one. We denote byJ thej-invariant of
Z.

Theorem 8.30(Tyomkin, [T], theorem 6.3). Let (Γ, x1, . . . , xn, h) be a parameterized tropi-
cal curve of genus one and degreed. LetP be a set of3d−1 generic points and letQ ⊂ (K∗)2

be a set of3d − 1 points in general position such thatval(Q) = P . Let furtherj ∈ R>0 be
thej-invariant ofΓ. (Recall: Thej-invariant is the sum of all lengths forming the cycle of
Γ.) If Γ is special,P = {h(x1), . . . , h(xn)}, j(Γ) = j andJ ∈ K with val(J) = j then there
exist|K(Γ, P, j)| elliptic algebraic curves of degreed andj-invariantJ in (K∗)2 which pass
throughQ and are mapped toh(Γ) byval.

The next proposition gives a tropical interpretation of|K(Γ, P, j)|.

Definition 8.31. Take the assumptions and notations of theorem 8.30. For eachxi, i ∈
{1, . . . , n} we can write

h(xi) = h(x1) +
∑

e∈R

l(e)ve

for a subsetR ⊂ Eb(Γ) andve a generator ofNe (see example 8.33). For a fixed subsetR
and a fixed vectorve, these equalities define the linear map

ẽvi : R2 ⊕ R#Eb

→ R2, (x,⊕e∈Ebye) 7→ x+
∑

e∈R

yeve.

We denote the product̃ev1 × . . .× ẽvn by ẽv.
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Remark8.32. The parameterized tropical curveΓ has a cycle and thus the maps̃evi from
definition 8.31 do depend onR. Nevertheless we only need those maps to calculate the
absolute value of a determinant (proposition 8.34) which will be independent of the choice
of R andve. This is the reason why we denote the map byẽvi instead of(ẽvi)R,ve .

Example8.33. The evaluationh(xi) of the vertexxi of the parameterized tropical curve in
figure 8.6 can be written as

h(xi) = h(x1) + l(e1)

(
1

0

)
+ l(e2)

(
1

1

)
+ l(e3)

(
0

1

)
+ l(e4)

(
−1

1

)
+ l(e5)

(
0

1

)
+ l(e6)

(
1

1

)
.

h(xi)

e3

h(x1)

e2e1

e4

e6
e5

Figure 8.6: Evaluation ofx2.

Proposition 8.34.Take the same assumptions and notations as in theorem 8.30. The number
|K(Γ, P, j)| coincides with the absolute value of the determinant of the linear map

D = ẽv × j × a1 × a2 : R2+#Eb

→ R6d−2 × R × R2.

Recall: j is thej-invariant anda1, a2 are the equations for the closing cycle at the end of
section 7.2. The spaceR2+#Eb

encodes the position of the vertexV1 = h(x1) and the lengths
of the bounded edges of the curve. (In particular the absolute value of the determinant is
independent of the choice ofR in definition 8.31.)

Proof. The mapD is a linear map. Thus, the absolute value of the determinant of D is the
same as the numbers of elements of the cokernel of the map

D′ = ẽv × j × a1 × a2 : Z2+#Eb

→ Z6d−2 × Z × Z2.

The idea of the proof is to replace the matrixD′ with a matrix

(
D′ 0
⋆ f |V1=0

)
, where

(
⋆ f |V1=0

)
= f̃ (see below) and then to use row operations to getE|Z. After this we use

the tensor product to prove the statement.

Let e1 be an edge of the cycle. This cokernel is isomorphic to the cokernel of the map

D′ × f : Z2+#Eb

⊕⊕V ∈W\{V1}Z
2 → Z6d−2 × Z × Z2 ×⊕e∈Eb\{e1}Z

2
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where for eache ∈ Eb\{e1} the image off in the coordinateZ2
e is the sum

∑
V ∈W ǫ(e, V )yV

with yV ∈ Z2
V . The cokernel ofD′ is isomorphic to the cokernel ofD′×f due to the fact, that

after fixingV1 the mapf is a bijective map from the group⊕V ∈W\{V1}Z
2 to ⊕e∈Eb\{e1}Z

2.
(The inversef−1 is defined recursively starting with vertices connected with V1 by an edge
from Γ\{e1}. For e an edge connectingV andV ′ we defineyV ′ = yV + ǫ(e, V )ye. Since
Γ\{e1} is connected andV1 is fixed we can do this to definef−1.) For eache ∈ Eb\{e1} we
now change theZ2

e-component off . Let theZ2
e-component off beyVi

− yVk
. We change the

image by adding the product of the integer corresponding toe in Z2+#Eb
and the direction

v(e, Vi) of e pointing fromVi to Vk. Sincef was bijective, the number of elements of the
cokernel stays the same after changing the mapf to this new map̃f .

The mapD′ × f̃ is a linear map and therefore it can be written as a matrixM . The maps
a1 anda2 refer to the closing of the cycle and are given as a sum ofv(e, Vi)ve with ve ∈ Ze

ande is an edge of the cycle. By adding the rows ofZ2
e, in the matrix corresponding to the

mapD′× f̃ , to the rows(a1, a2) we can change the mapsa1, a2 to get the mapβ to⊕e∈EbZ2

instead of a mapa1 × a2 × f̃ to Z2 ⊕e∈Eb\{e1} Z2. Since these are linear row operations, the
determinant and the number of elements in the cokernel staysthe same. So far we got the
map

ẽv × j × β : Z2+#Eb

⊕V ∈W\{V1} Z2 → Z6d−2 × Z ×⊕e∈EbZ2.

The image of a point inZ2+#Eb
⊕V ∈W\{V1} Z2 underẽvl bexV1 +

∑
e∈R yeve (see definition

8.31). Letẽ ∈ R and let the mapβ at coordinateZẽ bexV ẽ
i
− xV ẽ

k
± yẽvẽ. By adding the

rows corresponding tõe with a suitable sign we can change the row ofẽvi to get the image

xV1 +
∑

e∈R\{ẽ}

yeve ± (xV ẽ
i
− xV ẽ

k
).

After doing this for alle ∈ R we get the sum

xV1 +
∑

e∈R

±(xV e
i
− xV e

k
).

Since the edges ofR build a path fromxV1 to xVl
this sum is equal toxVl

. Thus we can
change the evaluation maps to identity maps ofZ2

Vl
to Z2

Vl
by row operations which do not

change the determinant and thus get a(6d−2)-identity matrix. Therefore the cokernel of the
mapD has the same number of elements as the cokernel of the map

E|Z = β × δ × idn : ⊕V ∈W Z2 ⊕⊕e∈Eb(Γ)Z → ⊕e∈Eb(Γ)Z
2 × Z ×⊕V ∈W nZ2.

Thus, it remains to show that the cokernelC of E|Z has the same number of elements as the
kernelK of E. The mapE|Z is injective, thus we have the following exact sequence

0 → Zm E|Z
−−→ Zm → C → 0,

for suitablem ∈ N. The mapE isE|Z ⊗ K∗. Thus, by tensorizing withK∗ we get the exact
sequence

0 → K → Zm ⊗ K∗ E
−→ Zm ⊗ K∗ → C ⊗ K∗ → 0,
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where

Zm ⊗ K∗ ∼= ⊕V ∈W (K∗)2 ⊕⊕e∈Eb(Γ)Ne ⊗ K∗ ∼= ⊕e∈Eb(Γ)(K
∗)2 × K∗ ×⊕V ∈W n(K∗)2.

SinceC is finiteC ⊗K∗ is 0. FurthermoreK = Tor(K∗, C). It is known thatTor commutes
with direct sums. SinceC is an abelian group the problem reduces to the case whereC = Zs

andm = 1. Thus, it remains to show thatZs andK = Tor(K∗, C) from the exact sequences

0 → Z ·s
−→ Z → Zs → 0,

and
0 → K → K∗ (.)s

−−→ K∗ → 0

with s ∈ N>0 have the same number of elements. ButK andZs are isomorphic and thus the
proposition holds.

Remark8.35. By remark 4.7 in [KM] the numbers in proposition 8.34 are the same as the
multiplicities we calculated for those tropical curves in chapter 7 with the help of corollary
6.29.

8.2 Correspondence theorem for elliptic curves with
given j-invariant

After stating some known correspondence theorems, we now want to treat the case of elliptic
curves with fixedj-invariant. Therefore, let us do some preparation before weare able to
prove our results. For this, we start with a fact about algebraic curves.

Theorem 8.36(Pandharipande,[P]). LetK be an algebraically closed field of characteristic
0. The numberE(d, J) of irreducible nodal degreed K-plane elliptic curves withj-invariant
J which pass through fixed3d − 1 points in general position is independent of the choice of
the points. Furthermore,E(d, J) is independent of the choice ofJ for J 6= 0, 1728,∞. In
this caseE(d, J) =

(
d−1
2

)
N irr(0, d).

In the theorems we stated in the first section of this chapter,we considered curves satisfying
some point conditions. To establish a correspondence it wasnecessary to have a corre-
spondence of the conditions as well. Since we consider elliptic tropical curves with fixed
j-invariant we want to start with a fact about this invariant.

Theorem 8.37(Tyomkin, [T], (Theorem 2.32)). Let(Γ, x1, . . . , xn, h) be the special tropical
curve corresponding to an algebraic curveZ (i.e. val(Z) = h(Γ), for further details see [T]).
If g(Z) = g(Γ) = 1, if h is injective on the cycle and ifJ is the algebraicj-invariant ofZ
then the tropicalj-invariant ofΓ is equal toval(J).

Corollary 8.38. Let (Γ, x1, . . . , xn, h) be the special tropical curve corresponding to an al-
gebraic elliptic curveZ of degreed passing through given3d − 1 = n points in general
position. Ifval(J) >> 0 (for J being thej-invariant ofZ), thenh(Γ) allows rational pa-
rameterizations of degreed.
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Proof. SinceZ is of degreed, we can find a parameterization ofh(Γ) of degreed as well.
Therefore it remains to show thath(Γ) allows a rational parameterization. In a parameteriza-
tion each point which is locally an intersection of two linescan be resolved (see figure 8.7).
Take a parameterization(Γ, h) which has resolved all crossings of two lines (and therefore

P

P

P
h

Figure 8.7: Resolving a crossing of two lines.

all vertices ofΓ are three-valent). Assume thatΓ has genus1. By theorem 8.37 the cycle
length has to beval(J) if Γ has no contracted bounded edge. Let us first assume thatΓ has
a contracted bounded edgee (i.e. h(e) is a point). By the balancing conditionh(Γ) has a
crossing ath(e) which is a contradiction since we resolved all crossings. Thus,(Γ, h) has no
contracted bounded edge. Therefore the cycle length has to be val(J). But this is a contra-
diction to proposition 5.1 in [GM3] (every elliptic tropical curve of degreed with a very big
j-invariant and passing through the3d− 1 fixed points has a contracted bounded edge).

Definition 8.39(tropical cycle). Let (Γ, x1, . . . , xN , h) be a parameterized tropical curve. We
call the imageh(Γ) of a tropical curve atropical cycle. If the tropical cycle of a parameterized
tropical elliptic curve can not be parameterized by a rational curve we call the tropical cycle
anelliptic cycle(for example figure 8.8) and arational cycleotherwise (for example figure
8.9).

Example8.40. The image of a special parameterized tropical curve of genusone, degree3,
and passing through given8 points looks for example as is figure 8.8. But, if we fix a big

Figure 8.8: Elliptic curve passing through8 points.

j-invariant, the curve having thisj-invariant has to look like in figure 8.9.

Remark8.41. D. Speyer gives in proposition 9.2 [Sp2] some conditions, when the tropical-
ization of thej-invariant of an algebraic curve is the cycle length of the tropical curve. In
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Figure 8.9: The tropical cycle of an elliptic curve passing through8 points and with given
big j-invariant (therefore the curve has a contracted edge).

particular he needs an injectivity condition to show that the tropicalization is the same as the
length of the loop. In example 8.40 this injectivity condition is violated for figure 8.9. Thus,
the elliptic curve(Γ, x1, . . . , x9, h) with h(Γ) being the tropical cycle from figure 8.9 has a
contracted edge at the4-valent vertex.

Definition 8.42 (Multiplicity of an elliptic tropical curve). Let CΓ = (Γ, x1, . . . , xn, h) be
an elliptic tropical curve inR2, letPC be the corresponding point inMlab

1,n,trop(R
2, d) and let

f = ev1 × · · ·×evn×j. Furthermore, put̃f = f as continuous map, but redefine the weights
of Mlab

1,n,trop(R
2, d) to be 1

2
(resp.,0) for curves with contracted cycle (resp., with the cycle

which is not contracted). We definemultj(CΓ) to bemult[PC ] f − mult[PC ] f̃ (see corollary
6.29, end of section 7.2 and theorem 7.17).

Remark8.43. The multiplicity defined in the previous definition agrees with the multiplicity
of [KM] (see definition 3.5 and chapter 4 in [KM]).

Definition 8.44. LetEtrop(d, j, P ) be the number of irreducible nodal degreed plane elliptic
tropical curves with fixedj-invariant and passing through3d− 1 pointsP counted with the
multiplicity from definition 8.42.

Now we can state a main result of this chapter, a correspondence theorem for elliptic curves
with givenj-invariant. Note, that it is a correspondence between tropical cycles and param-
eterized algebraic curves.

Theorem 8.45.Letd > 2 and let us fix as a ground field the fieldK. For a generic configu-
ration P of 3d − 1 points, sufficiently big tropicalj-invariant j andJ ∈ K with val(J) = j
we haveEtrop(d, j, P ) = E(d, J). Furthermore, letQ ⊂ (K∗)2 be a configuration of3d− 1
points in general position withval(Q) = P , andC be the tropical cycleh(Γ) of a parame-
terized tropical curve(Γ, x1, . . . , x3d−1, h) of genus1, degreed and j-invariant j such that
P = {h(x1), . . . , h(x3d−1)}. Then, there exist

(
d−1
2

)
mult(C) (remember thatC is rational

sincej is sufficiently big, thus the parameterization ofC as a rational parameterized tropical
curve of degreed is unique and by abuse of notation we writemult(C) for the multiplicity
of this curve) distinct algebraic curvesZ of genus1, with j-invariant J and degreed such
thatZ passes throughQ. These curves are irreducible and the image of each of these curves
underval isC.
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Chapter 8: Correspondence theorems

Before proving the theorem we quote some facts for Berkovichspaces. For an introduction
to the theory of Berkovich spaces we recommend [Ba], [Be3] or[D]. For a general study of
this theory we recommend [Be1] and [Be2].

Fact 8.46. Let k be a non-Archimedean field. There exists a functorF such that for each
k-algebraic varietyX one can associate ak-analytic spaceXan to it. This space is called
the Berkovichk-analytic space associated toX.

See for example section 1.4 in [D] (or§3.4.1 in [Be1] and§2.6 in [Be2]).

To get a first idea of analytic spaces let us consider a remark.

Remark8.47. LetAn be the space of multiplicative seminorms ofK[T1, . . . , Tn] (in particular
eachx ∈ Kn defines a seminorm by|f |x = |f(x)|, where|.| is the norm induced by the
valuation). The topology ofAn is defined to be the weakest topology such that the map
An → R≥0 : |.|x 7→ |f |x is continuous for allf ∈ K[T1, . . . , Tn]. An analytic function is a
local limit of rational functions. Denote byO the sheaf of analytic functions on open subsets
U ⊂ An.

A local model for ak-analytic space is a locally ringed space(X,OX) given by an open
setU ⊂ An and a finite set of analytic functionsf1, . . . , fn ∈ O(U) such thatX = {x ∈
U |fi(x) = 0 ∀1 ≤ i ≤ n} andOX = (OU/ < f1, . . . , fn >)|X .

Let E = E(a, r) be a closed disk inK with centera ∈ K and radiusr > 0. The function
defined byf =

∑n
i=1 αi(T − a)i is mapped tomax1≤i≤n |αi|r

i is a multiplicative norm|.|E
onk[T ]. It is a fact, that the set of seminorms onK is given byf 7→ infE∈E |f |E, whereE is
a family of nested closed disks. Each point ofA1 corresponds toE = E(a, 0) = a (called
points of type(1)) or a closed disk withr ∈ |K∗| (type (2)) or a closed disk withr /∈ |K∗|
(type(3)) or to aE with

⋂
E∈E E = ∅ (type(4)). The analytification functor from fact 8.46

mapsK to A1.

Fact 8.48(Fact 4.1.3 in [Be3], proposition 3.4.6 und 3.4.7 in [Be1]). Letϕ : X → Y be a
morphism of schemes of finite type overk, and letϕan : Xan → Y an be the corresponding
morphism ofk-analytic spaces. The morphismϕ is étale, smooth, separated, an open im-
mersion and an isomorphism if and only ifϕan possesses the same property. Suppose thatϕ
is of finite type. Thenϕ is a closed immersion, finite, and proper if and only ifϕan possesses
the same property.

Fact 8.49(Fact 4.1.4 in [Be3], theorem 3.4.8 in [Be1]). One hasX is proper⇔ |Xan| is
compact.

Proof of theorem 8.45.R. Pandharipande has shown thatE(d, J) =
(

d−1
2

)
N irr(0, d) (see

[P]). By theorem 8.23 we know that the numbersN irr
trop(0, d, P ) andN irr(0, d) agree. Thus,

the first part of the theorem (Etrop(d, j, P ) = E(d, J)) follows from the second part if we can
show that the set of tropical cycles of tropical curves of genus1, with j-invariantj and degree
d passing throughP is the same as the set of tropical cycles of rational curves ofdegreed
passing throughP . Each tropical cycle of a rational curve has at least one nodeor a vertex of
multiplicity greater than1 becaused > 2. For a node we can make the parameterized tropical
curve elliptic by inserting a contracted edge. Sincej is very big we can choose the length of
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Chapter 8: Correspondence theorems

the contracted edge of this parameterized elliptic tropical curve such that thej-invariant of
this curve isj. At a vertex of valence greater than one we can insert a cycle of lengthj and
thus we get a curve which fulfill the requirement. Therefore it remains to show the second
part.

Let Vd,1 be the Severi variety which is the closure (in the variety of all curves of degreed) of
the reduced and irreducible plane elliptic nodal algebraicdegreed curves. It is known that
Vd,1 has dimension3d (see for example [HM]). LetV be the intersection ofVd,1 with the
codimension3d−1 subspace formed by the curves passing throughQ. By [P] the curveV is
a branched cover ofP1 by thej-invariant. The ramification points are0, 1728, and∞. Since
V is a closed subset ofPN for someN , one gets thatV is proper.

SinceV is an algebraic variety fact 8.46 applies and we can associate the analytic spaceV an

to V . Since the points ofV can be identified with points ofV an (those points are the rigid
points ofV an) we can speak ofV being a subset ofV an (see for example proposition 2.1.15
[Be1]). Let r ∈ V be a point parameterizing a rational curve and letU be a neighborhood
of ∞ in (P1)an. By J we denote as well the mapV → P1 given by thej-invariant. Since
Jan is continuous, there exists a neighborhoodW of r such thatJan(W ) ⊂ U (the topology
of (P1)an is induced by the valuation, see for example section 1.3 in [Ba]). Assume now
thatW is a closed subset ofV an such thatJan(W )∩P1 contains elements with arbitrary big
valuation (remark: By 2.1.15 of [Be1]P1 is dense in(P1)an). SinceV is proper and therefore
V an is compact by fact 8.49 we get thatU contains a preimage of∞. By definition, this
preimage is a point ofV ⊂ V an (Jan is finite and thus, the preimage of aK point is the
spectrum of aK-algebra of finite dimension. SinceK is algebraically closed it follows that
the preimage lies inV . For example see section 3.3 in [Be1] or for an idea of this fact
see remark 2.1.4 [Ba]) and thus it corresponds to a rational curve. Thus, all curves which
have a sufficiently bigj-invariant are in a neighborhood of a rational curve. By [DH]the
normalizationΠ : V no → V near a rational curver is the union of(d − 1)(d − 2)/2
separated smooth sheets (in particularV no → V → P1 is unramified at infinity). Thus, by
fact 8.48(V no)an admits local isomorphisms (in the neighborhood ofΠ−1(r)) from each of
the (d − 1)(d − 2)/2 sheets toP1. Let ǫ be greater0. By the local isomorphisms, for each
j-invariantJ with sufficiently big valuation, there are exactly(d− 1)(d− 2)/2 curves which
have distanceǫ (P1 has a distance and each sheet is isomorphic to it) or smaller from r and
which havej-invariantJ .

Let C be the tropical cycleh(Γ) of a parameterized tropical curve(Γ, x1, . . . , x3d−1, h) of
genus1, degreed andj-invariantj such thatP = {h(x1), . . . , h(x3d−1)}. The tropical cycle
C is a rational cycle by corollary 8.38 (ifC contains a cycle it has a contracted edge since
j >> 0 or see proposition 5.1 in [GM3]). By theorem 8.23 there aremult(C) plane rational
algebraic curves of degreed, passing throughQ and which have valuationC. Let r be one of
those rational curves. A local chartU at r is Spec(K[x1, . . . , xN ]/I) for some idealI. Since
U → R≥0 : |.|x 7→ |f |x is continuous for allf ∈ K[x0, . . . , xN ] we can define distances tor
usingf (d(r, s) = |f(x− r)|s). In particular we can defineǫ-neighborhoods ofr. (Remark:
For different choices off we get different neighborhoods.) In the following, a point is in the
ǫ-neighborhood ofr if it is in the ǫ-neighborhood forf = xi for each0 ≤ i ≤ N (notice that
this is a neighborhood ofr). Forj sufficiently big, we find(d−1)(d−2)/2 elliptic algebraic
curves passing throughQ and withj-invariantJ such that each of these curves is in anǫ-
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neighborhood ofr. Let e be one of those elliptic curves. The distance of the coefficients of
the polynomials parameterized byr ande is less thanǫ. Thus we get that the valuation of
the difference of the coefficients (val(r − e)i, 0 ≤ i ≤ N) is much less than0 and therefore
the tropicalizations of the curvesr ande do agree. For each tropical cycleC of a curve of
genus1, with j-invariantj and degreed passing throughP we have

(
d−1
2

)
mult(C) distinct

algebraic curves of genusg, with j-invariantJ and degreed passing throughQ and which
are mapped toC underval.

Conjecture 8.50. Let us fix as a ground field the fieldK. For a generic configurationP
of 3d − 1 points, sufficiently big tropicalj-invariant j and J ∈ K with val(J) = j we
haveEtrop(d, j, P ) = E(d, J). LetS be the set of parameterized tropical curves which pass
throughP , are of degreed, genus1 and which havej-invariant j. For each configuration
Q ⊂ (K∗)2 of 3d−1 points in general position withval(Q) = P one has that forC being the
tropical cycleh(Γ) of a parameterized tropical curve(Γ, x1, . . . , x3d−1, h) of genus1, degree
d andj-invariantj such thatP = {h(x1), . . . , h(x3d−1)} we have

∑

(Γ,x1,...,xn,h)∈S,h(Γ)=C

multK,M((Γ, x1, . . . , xn, h))

distinct algebraic curves of genusg, with j-invariantJ and degreed passing throughQ. The
multiplicity multK,M is the same as in [KM]. The curves are irreducible and the image of
these curves underval isC.

Remark8.51. By proposition 8.34 the numbers stated in the conjecture 8.50 for tropical
cycles of special parameterized tropical curves are the same as in theorem 8.30.

The numbers stated in conjecture 8.50 for tropical cycles ofelliptic curves with bigj-
invariant agree with those in theorem 8.45 by lemma 6.2 from [KM].

These two remarks give a hint why the conjecture might be true. In the proof of theorem 8.45
we used the Berkovich space to make small deformations and used the understanding of the
rational case. Our last remark gives a hint why a deformationin other cases might be helpful
as well.

Remark8.52. To see why a deformation could help to prove a correspondencewe examine
the deformation of tropical curves. Since we are interestedin the deformation of thej-
invariant we take a plane elliptic parameterized tropical curveC of degreed and passing
through3d − 1 points in general position. Thus, the image of the curve inR2 has to be
a rational tropical curve or an elliptic tropical curve. Fixa j-invariantj and consider the
case, in which the curve is rational. If we can deform the tropical curves continuously we
can deform it by making thej-invariant bigger and bigger. As long as the image of the
curve stays rational it cannot change since the3d − 1 points are in general position. Let us
consider the case where the image of the curve changes by deforming thej-invariant. In
this case the parameterization of the curve has a4-valent vertex. Therefore the two other
parameterizations have to be elliptic or the same rational curve. Since we know the number
of algebraic curves mapped to the tropical cycle of an elliptic tropical curve with sufficiently
big j-invariant or where the cycle is elliptic we can deduce the number of algebraic curves
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which are mapped to the cycle ofC by the balancing condition in the moduli space of elliptic
tropical curves of genus1 and degreed.

We consider an example of a deformation of tropical curves.

Example8.53. Assume that a parameterized tropical curve(Γ, x1, . . . , xn, h) has the tropical
cycle shown in figure 8.10. If we change thej-invariant continuously, the tropical cycle either

Figure 8.10: Rational cycle

stays the same or transforms to a tropical cycle similar to the one shown in figure 8.11. Letj0

Figure 8.11: Elliptic cycle with changedj-invariant.

be the value of thej-invariant where the tropical cycle changes, and assume that the tropical
cycle shown in figure 8.10 does not change for biggerj-invariants. Thus, the multiplicity of
the tropical cycle in figure 8.10 withj-invariant smaller thanj0 has the same multiplicity as
the sum of the multiplicity of the tropical cycle in figure 8.10 with big j-invariant and of the
multiplicity of the tropical cycle in figure 8.11.
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