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Preface

Tropical geometry

Tropical geometry is a rather new field within mathematics. Its roots go back to the
work of George M. Bergman [B71] as well as Robert Bieri and John R. J. Groves
[BG84], but only in the last ten years tropical geometry became a subject on its own.
The general idea of the theory is to map objects in algebraic or symplectic geometry
to polyhedral objects using some “tropicalization” process. These latter objects can
then be studied by purely combinatorial means, making life much easier in many cases.
Nevertheless, in this tropicalization process enough properties of the original objects
are preserved such that it is possible to transfer back many tropical results to algebraic
or symplectic geometry.
Tropical geometry is a useful tool in many different areas of mathematics, such as real
enumerative geometry (e.g. [IKS03], [IKS04], [IKS09], [M05]), symplectic geometry
(e.g. [A06]), number theory (e.g. [G07a], [G07b]), combinatorics (e.g. [J08]) as well as
algebraic statistics and computational biology (e.g. [PS04]).
There are a number of ways to approach tropical geometry. In this thesis we choose
a purely combinatorial point of view on the topic: We set up the beginnings of an
extensive tropical intersection theory on its own, without using the existing theory in
algebraic geometry. Nevertheless, our definitions and results are highly inspired by the
algebro-geometric theory (cf. [F84]).

Results of this thesis

In this thesis we set up the beginnings of a tropical intersection theory covering many
concepts and tools of its counterpart in algebraic geometry. For instance:

• We develop notions of tropical varieties and cycles, rational functions and Cartier
divisors, intersection products of Cartier divisors with cycles, morphisms of trop-
ical varieties and pull-backs of Cartier divisors and push-forward of cycles as well
as rational and numerical equivalence.

• We prove a projection formula for morphisms of tropical varieties.

• For the special case that our ambient cycle is Rn we prove that the concepts
of rational and numerical equivalence agree. Moreover, restricting ourselves to
“generic” cycles we study the numerical equivalence of cycles in more detail.
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• For the special case that our ambient cycle is a fan we show that every cycle is
numerical equivalent to an affine cycle.

• We define an intersection product of cycles in any “smooth” tropical variety and
prove some basic properties. We use this intersection product to introduce a
concept of pull-back of cycles along morphisms of smooth varieties.

• We prove that under some assumptions the one-to-one correspondence of Weil and
Cartier divisors that exists for example on Rn is preserved by “modifications” as
introduced in [M06].

• We introduce the notions of tropical vector bundles and Chern classes of tropical
vector bundles and prove some basic properties.

Chapter synopsis

This thesis consists of five chapters: Chapter 1 contains the basics of the theory and is
essential for the rest of the thesis. Chapters 2–5 are to a large extent independent of
each other and can be read separately.

• Chapter 1: Foundations of tropical intersection theory

In section 1.1 we introduce the concept of affine tropical cycles as balanced
weighted fans modulo refinements. After that, in section 1.2, we define Cartier
divisors to be piecewise integer affine linear functions modulo globally linear func-
tions and set up an intersection product of Cartier divisors and cycles. In section
1.3 we continue with the definitions of morphisms of tropical cycles, of pull-backs
of Cartier divisors and push-forwards of cycles and prove a projection formula. In
sections 1.4, 1.5 and 1.6 we generalize these concepts to abstract tropical cycles
which are abstract polyhedral complexes modulo refinements with affine cycles
as local building blocks. In section 1.7 we introduce a concept of rational equiva-
lence. Finally, in sections 1.8 and 1.9, we set up an intersection product of cycles
and prove that every cycle is rationally equivalent to some affine cycle in the
special case that our ambient cycle is Rn. We use this result to show that ra-
tional and numerical equivalence agree in this case and prove a tropical Bézout’s
theorem.

• Chapter 2: Tropical cycles with real slopes and numerical equivalence

In section 2.1 we generalize our definitions of tropical cycles to polyhedral com-
plexes with non-rational slopes. We use these cycles with non-rational slopes in
section 2.2 to show that if our ambient cycle is a fan then every subcycle is nu-
merically equivalent to some affine cycle. In section 2.3 we restrict ourselves to
cycles in Rn that are “generic” in some sense and study the concept of numerical
equivalence in more detail.

• Chapter 3: Tropical intersection products on smooth varieties

In section 3.1 we define an intersection product of tropical cycles on tropical linear
spaces Lnk and on other, related fans. In section 3.2 we use this result to obtain
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an intersection product of cycles on any “smooth” tropical variety. Finally, in
section 3.3, we use the intersection product to introduce a concept of pull-backs of
cycles along morphisms of smooth tropical varieties and prove that this pull-back
has all expected properties.

• Chapter 4: Weil and Cartier divisors under tropical modifications

In section 4.1 we introduce “modifications” and “contractions” and study their
basic properties. In section 4.2 we prove that under some further assumptions a
one-to-one correspondence of Weil and Cartier divisors is preserved by modifica-
tions. In particular we can prove that on any smooth tropical variety we have
a one-to-one correspondence of Weil and Cartier divisors. Moreover, using the
result it is possible to prove that there exists a one-to-one correspondence of Weil
and Cartier divisors on the moduli space of n-marked abstract tropical curves
M0,n,trop (cf. [H07]).

• Chapter 5: Chern classes of tropical vector bundles

In section 5.1 we give definitions of tropical vector bundles and rational sections
of tropical vector bundles. We use these rational sections in section 5.2 to define
the Chern classes of such a tropical vector bundle. Moreover, we prove that these
Chern classes have all expected properties. In section 5.3 we classify all tropical
vector bundles on an elliptic curve up to isomorphisms.

Publication of the results

This thesis contains material from my articles [AR07], [AR08] and [A09]. In particular,
the first chapter is the outcome of joint work with Johannes Rau and it is virtually
impossible to specify the contributions each of us made. As far as it can be told,
main contributions of Johannes Rau are contained in sections 1.2, 1.5 and 1.7, whereas
sections 1.1, 1.3, 1.4, 1.6 and 1.8 are mainly based on my ideas. Section 1.9 contains
important contributions of both of us. Moreover, I omit those parts that are to a large
extent the work of Johannes Rau.
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1 Foundations of tropical
intersection theory

This chapter consists of three parts: In the first part (sections 1.1 - 1.3) we start with
the introduction of affine tropical cycles as balanced weighted fans modulo refinements
and affine tropical varieties as affine cycles with non-negative weights. One would like
to define the intersection of two such objects, but in general neither is the set-theoretic
intersection of two cycles again a cycle, nor does the concept of stable intersection as
introduced in [RGST05] work for arbitrary ambient spaces as can be seen in example
1.2.10. Therefore we introduce the notion of affine Cartier divisors on tropical cycles
as piecewise integer affine linear functions modulo globally affine linear functions and
define a bilinear intersection product of Cartier divisors and cycles. We then prove
the commutativity of this product and a projection formula for push-forwards of cycles
and pull-backs of Cartier divisors. In the second part (sections 1.4 - 1.7) we generalize
the theory developed in the first part to abstract cycles which are abstract polyhedral
complexes modulo refinements with affine cycles as local building blocks. Again, ab-
stract tropical varieties are just cycles with non-negative weights. In both the affine
and abstract case a remarkable difference to the classical situation occurs: We can
define the mentioned intersection products on the level of cycles, i.e. we can intersect
Cartier divisors with cycles and obtain a well-defined cycle — not only a cycle class up
to rational equivalence as it is the case in classical algebraic geometry. However, for
simplifying the computations of concrete enumerative numbers we introduce a notion
of rational equivalence of cycles in section 1.7. In the third part (section 1.8 - 1.9)
we finally use our theory to define the intersection product of two cycles with ambient
space Rn. Here again it is remarkable that we can define these intersections — even for
self-intersections — on the level of cycles. It turns out that this intersection product
coincides with the stable intersection discussed in [M06] and [RGST05] (see [K09] and
[R08]). Afterwards, we study the special case of rational equivalence in Rn in more
detail and show that every tropical cycle in Rn is equivalent to a uniquely determined
affine cycle, called its degree. We use this result to prove a tropical Bézout’s theorem.

1.1 Affine tropical cycles

In this section we will briefly summarize the definitions and some properties of our
basic objects. We refer to [GKM07] for more details (but note that we use a slightly
more general definition of fan).
Throughout this paper Λ will always denote a finitely generated free abelian group, i.e.
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1.1 Affine tropical cycles

a group isomorphic to Zr for some r ∈ N, and V := Λ ⊗Z R the associated real vector
space containing Λ as a lattice. We will denote the dual lattice in the dual vector space
by Λ∨ ⊆ V ∨.

Definition 1.1.1 (Cones)
A cone in V is a subset σ ⊆ V that can be described by finitely many linear integral
equalities and inequalities, i.e. a set of the form

σ = {x ∈ V |f1(x) = 0, . . . , fr(x) = 0, fr+1(x) ≥ 0, . . . , fN(x) ≥ 0}

for some linear forms f1, . . . , fN ∈ Λ∨. We denote by Vσ the smallest linear subspace
of V containing σ and by Λσ the lattice Vσ ∩ Λ. We define the dimension of σ to be
the dimension of Vσ.

Definition 1.1.2 (Fans)
A fan X in V is a finite set of cones in V satisfying the following conditions:

(a) The intersection of any two cones in X belongs to X as well,

(b) every cone σ ∈ X is the disjoint union σ =
.⋃
τ∈X:τ⊆στ

ri, where τ ri denotes the
relative interior of τ , i.e. the interior of τ in Vτ .

We will denote the set of all k-dimensional cones of X by X(k). The dimension of X is
defined to be the maximum of the dimensions of the cones in X. The fan X is called
pure-dimensional if each inclusion-maximal cone in X has this dimension. The union
of all cones in X will be denoted |X| ⊆ V . If X is a fan of pure dimension k then the
cones σ ∈ X(k) are called facets of X.

Let X be a fan and σ ∈ X a cone. A cone τ ∈ X with τ ⊆ σ is called a face of σ. We
write this as τ ≤ σ (or τ < σ if in addition τ ( σ holds). Clearly we have Vτ ⊆ Vσ and
Λτ ⊆ Λσ in this case. Note that τ < σ implies that τ is contained in a proper face (in
the usual sense) of σ.

Example 1.1.3

The following figure shows three examples of fans of pure dimension two in V = R2

according to definition 1.1.2. Note that the third example is not a fan in the sense of
[GKM07, definition 2.4] as for example σ1 ∩ σ2 is not a face of σ2 according to that
definition.

τ5

σ1

σ2

τ6σ3

τ2

τ4

τ3

τ1

0 σ2

τ1

σ1

σ3

0 τ1

τ2

τ3

σ1

σ2

Figure 1.1: Examples of fans in R2.
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Chapter 1: Foundations of tropical intersection theory

τ
′
3

τ

σ2σ1

X Y

τ
′
1

τ
′
2

0

Figure 1.2: A fan X and a subfan Y EX.

Construction 1.1.4 (Normal vectors)
Let τ < σ be cones of some fan X in V with dim(τ) = dim(σ) − 1. This implies that
there is a linear form f ∈ Λ∨

σ that is zero on τ , non-negative on σ and not identically
zero on σ. Let uσ ∈ Λσ be a vector generating Λσ/Λτ

∼= Z with f(uσ) > 0. Note that
its class uσ/τ := [uσ] ∈ Λσ/Λτ does not depend on the choice of uσ. We call uσ/τ the
(primitive) normal vector of σ relative to τ .

Definition 1.1.5 (Subfans)
Let X,Y be fans in V . Y is called a subfan of X if for every cone σ ∈ Y there exists
a cone σ′ ∈ X such that σ ⊆ σ′. In this case we write Y E X and define a map
CY,X : Y → X that maps a cone σ ∈ Y to the unique inclusion-minimal cone σ′ ∈ X
with σ ⊆ σ′.

Definition 1.1.6 (Weighted fans)
A weighted fan (X,ωX) of dimension k in V is a fan X in V of pure dimension k,
together with a map ωX : X(k) → Z. The number ωX(σ) is called the weight of the
facet σ ∈ X(k). For simplicity we usually write ω(σ) instead of ωX(σ). Moreover,
we want to consider the empty fan ∅ to be a weighted fan of dimension k for all k.
Furthermore, by abuse of notation we simply write X for the weighted fan (X,ωX) if
the weight function ωX is clear from the context.

Definition 1.1.7 (Tropical fans)
A tropical fan of dimension k in V is a weighted fan (X,ωX) of dimension k satisfying
the following balancing condition for every τ ∈ X(k−1):

∑

σ:τ<σ

ωX(σ) · uσ/τ = 0 ∈ V/Vτ .

Let (X,ωX) be a weighted fan of dimension k in V and X∗ the fan

X∗ := {τ ∈ X|τ ≤ σ for some facet σ ∈ X with ωX(σ) 6= 0}.

(X∗, ωX∗) := (X∗, ωX |(X∗)(k)) is called the non-zero part of X and is again a weighted
fan of dimension k in V (note that X∗ = ∅ is possible). Obviously (X∗, ωX∗) is a
tropical fan if and only if (X,ωX) is one. We call a weighted fan (X,ωX) reduced if all
its facets have non-zero weight, i.e. if (X,ωX) = (X∗, ωX∗) holds.

3



1.1 Affine tropical cycles

Example 1.1.8

The following figure shows three examples of tropical fans in R2 and R3, respectively,
according to definition 1.1.7:

ω = 2

ω = 1

ω = 1

Figure 1.3: Examples of tropical fans in R2 and R3, respectively.

The blue cones in the second and third fan are supposed to have weight one, the red
cones to have weight minus one.

Remark 1.1.9

Let (X,ωX) be a tropical fan of dimension k and let τ ∈ X(k−1). Let σ1, . . . , σN be all
cones inX with σi > τ . For all i let vσi/τ ∈ Λ be a representative of the primitive normal

vector uσi/τ∈ Λσi/Λτ . By the above balancing condition we have
∑N

i=1 ωX(σi) · vσi/τ =

λτ for some λτ ∈ Λτ . Obviously we have λτ = gcd(ωX(σ1), . . . , ωX(σN)) · λ̃τ for some

further λ̃τ ∈ Λτ . We can represent the greatest common divisor by a linear combination
gcd(ωX(σ1), . . . , ωX(σN)) = α1ωX(σ1)+· · ·+αNωX(σN) with α1, . . . , αN ∈ Z and define

ṽσi/τ := vσi/τ − αi · λ̃τ

for all i. Note that ṽσi/τ is a representative of uσi/τ , too. Replacing all vσi/τ by ṽσi/τ
we can always assume that

∑N
i=1 ωX(σ) · vσ/τ = 0 ∈ Λ.

Definition 1.1.10 (Refinements)
Let (X,ωX) and (Y, ωY ) be weighted fans in V . We call (Y, ωY ) a refinement of (X,ωX)
if the following holds:

(a) Y ∗EX∗,

(b) |Y ∗| = |X∗| and

(c) ωY (σ) = ωX(CY ∗,X∗(σ)) for every σ ∈ (Y ∗)(dim(Y )).

Note that property (b) implies that either X∗ = Y ∗ = ∅ or dim(X) = dim(Y ). We call
two weighted fans (X,ωX) and (Y, ωY ) in V equivalent (write (X,ωX) ∼ (Y, ωY )) if
they have a common refinement. Note that (X,ωX)and (X∗, ωX |(X∗)(dim(X))) are always
equivalent.
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Chapter 1: Foundations of tropical intersection theory

ω

= 1

X2 X
′

ω = 1 ω = 1

ω = 1

ω = 1
ω = 1

ω = 1

ω = 1

ω = 1

X1

ω = 1 ω = 1

ω = 1

ω = 1

ω = 1

Figure 1.4: Two refinements X1 and X2 of R2 and a common refinement X ′.

Remark 1.1.11

Note that for a weighted fan (X,ωX) of dimension k and a refinement (Y, ωY ) we have
the following two properties:

(a) |X∗| = |Y ∗|, i.e. the support |X∗| is well-defined on the equivalence class of X,

(b) for every cone τ ∈ Y (k−1) there are exactly two cases that can occur: Either we
have dimCY,X(τ) = k or we have dimCY,X(τ) = k − 1. In the first case all cones
σ ∈ Y (k) with σ > τ must be contained in CY,X(τ). Thus there are precisely two
such cones σ1 and σ2 with ωY (σ1) = ωY (σ2) and uσ1/τ = −uσ2/τ . In the second
case we have a 1:1 correspondence between cones σ ∈ Y (k) with τ < σ and cones
σ′ ∈ X(k) with CY,X(τ) < σ′ preserving weights and normal vectors.

Construction 1.1.12 (Refinements)
Let (X,ωX) be a weighted fan and Y be any fan in V with |X| ⊆ |Y |. Let P :=
{σ ∩ σ′|σ ∈ X, σ′ ∈ Y }. In general P is not a fan in V as can be seen in the following
example:

X Y

σ′

1

σ1

σ3

τ2

τ1

τ3 τ ′1

0
σ2 σ′

2

Figure 1.5: Fans X and Y such that {σ ∩ σ′|σ ∈ X, σ′ ∈ Y } is not a fan.

Here P contains τ ′1 = σ2 ∩ σ
′
1, but also τ2 = σ1 ∩ σ

′
2 and τ3 = σ3 ∩ σ

′
2. Hence property

(b) of definition 1.1.2 is, for instance, not fulfilled for τ ′1. To resolve this, we define

X ∩ Y := {σ ∈ P |∄ τ ∈ P (dim(σ)) with τ ( σ}.

Note that X ∩ Y is now a fan in V . We can make it into a weighted fan by setting
ωX∩Y (σ) := ωX(CX∩Y,X(σ)) for all σ ∈ (X ∩ Y )(dim(X)). Then (X ∩ Y, ωX∩Y ) is a
refinement of (X,ωX). Note that if (X,ωX) and (Y, ωY ) are both weighted fans and

5



1.1 Affine tropical cycles

|X| = |Y | we can form both intersections X ∩Y and Y ∩X. Of course, the underlying
fans are the same in both cases, but the weights may differ since they are always induced
by the first fan.

The following setting is a special case of this construction: Let (X,ωX) be a weighted
fan of dimension k in V and let f ∈ Λ∨ be a non-zero linear form. Then we can
construct a refinement of (X,ωX) as follows:

Hf := {{x ∈ V |f(x) ≤ 0}, {x ∈ V |f(x) = 0}, {x ∈ V |f(x) ≥ 0}}

is a fan in V with |Hf | = V . Thus we have |X| ⊆ |Hf | and by our above construction
we get a refinement (Xf , ωXf ) := (X ∩Hf , ωX∩Hf ) of X.

Obviously we still have to answer the question if the equivalence of weighted fans
is indeed an equivalence relation and if this notion of equivalence is well-defined on
tropical fans. We will do this in the following lemma:

Lemma 1.1.13

The following two statements hold:

(a) The relation “∼” is an equivalence relation on the set of k-dimensional weighted
fans in V .

(b) If (X,ωX) is a weighted fan of dimension k and (Y, ωY ) is a refinement then
(X,ωX) is a tropical fan if and only if (Y, ωY ) is one.

Proof. Recall that a fan and its non-zero part are always equivalent and that a weighted
fan X is tropical if and only if its non-zero part X∗ is. Thus we may assume that all
our fans are reduced and the proof is the same as in [GKM07, section 2].

Having done all these preparations we are now able to introduce the most important
objects for the succeeding sections:

Definition 1.1.14 (Affine cycles and affine tropical varieties)
Let (X,ωX) be a tropical fan of dimension k in V . We denote by [(X,ωX)] its equiv-
alence class under the equivalence relation “∼” and by Zaff

k (V ) the set of equivalence
classes

Zaff
k (V ) := {[(X,ωX)]|(X,ωX) tropical fan of dimension k in V }.

The elements of Zaff
k (V ) are called affine (tropical) k-cycles in V . A k-cycle [(X,ωX)]

is called an affine tropical variety if ωX(σ) ≥ 0 for every σ ∈ X(k). Note that the last
property is independent of the choice of the representative of [(X,ωX)]. Moreover, note
that 0 := [∅] ∈ Zaff

k (V ) for every k. We define |[(X,ωX)]| := |X∗|. This definition is
well-defined by remark 1.1.11.

Construction 1.1.15 (Sums of affine cycles)
Let [(X,ωX)] and [(Y, ωY )] be k-cycles in V . We would like to form a fan X + Y by
taking the unionX∪Y , but obviously this collection of cones is in general not a fan. Us-
ing appropriate refinements we can resolve this problem: Let f1(x) ≥ 0, . . . , fN1(x) ≥ 0,

6



Chapter 1: Foundations of tropical intersection theory

fN1+1(x) = 0, . . . , fN(x) = 0 and g1(x) ≥ 0, . . . , gM1(x) ≥ 0, gM1+1(x) = 0, . . . ,
gM(x) = 0 be all different equalities and inequalities occurring in the descriptions of
all the cones belonging to X and Y , respectively. Using construction 1.1.12 we get
refinements

X̃ := X ∩Hf1 ∩ · · · ∩HfN ∩Hg1 ∩ · · · ∩HgM

of X and

Ỹ := Y ∩Hf1 ∩ · · · ∩HfN ∩Hg1 ∩ · · · ∩HgM

of Y (note that the final refinements do not depend on the order of the single refine-

ments). A cone occurring in X̃ or Ỹ is then of the form

σ =

{
fi(x) ≤ 0, fj(x) = 0, fk(x) ≥ 0,
gi′(x) ≤ 0, gj′(x) = 0, gk′(x) ≥ 0

∣∣∣∣
i ∈ I, j ∈ J, k ∈ K,
i′ ∈ I ′, j′ ∈ J ′, k′ ∈ K ′

}

for some partitions I ∪ J ∪K = {1, . . . , N} and I ′ ∪ J ′ ∪K ′ = {1, . . . ,M}. Now, all
these cones σ belong to the fan Hf1 ∩ · · · ∩ HfN ∩ Hg1 ∩ · · · ∩ HgM as well and hence

X̃ ∪ Ỹ fulfills definition 1.1.2. Thus, now we can define the sum of X and Y to be
X + Y := X̃ ∪ Ỹ together with weights ωX+Y (σ) := ωX̃(σ) + ωỸ (σ) for every facet

of X + Y (we set ω�(σ) := 0 if σ does not occur in � ∈ {X̃, Ỹ }). By construction,
(X + Y, ωX+Y ) is again a tropical fan of dimension k. Moreover, enlarging the sets
{fi}, {gj} by more (in)equalities just corresponds to refinements of X and Y and only
leads to a refinement of X + Y . Thus, replacing the set of relations by another one
that also describes the cones in X and Y , or replacing X or Y by refinements keeps
the equivalence class [(X + Y, ωX+Y )] unchanged, i.e. taking sums is a well-defined
operation on cycles.

This construction immediately leads to the following lemma:

Lemma 1.1.16

Zaff
k (V ) together with the operation “+” from construction 1.1.15 forms an abelian

group.

Proof. The class of the empty fan 0 = [∅] is the neutral element of this operation and
[(X,−ωX)] is the inverse element of [(X,ωX)] ∈ Zaff

k (V ).

Of course we do not want to restrict ourselves to cycles situated in some Rn. Therefore
we give the following generalization of definition 1.1.14:

Definition 1.1.17

Let X be a fan in V . An affine k-cycle in X is an element [(Y, ωY )] of Zaff
k (V ) such that

|Y ∗| ⊆ |X|. We denote by Zaff
k (X) the set of k-cycles in X. Note that

(
Zaff
k (X),+

)

is a subgroup of (Zaff
k (V ),+). The elements of the group Zaff

dimX−1(X) are called Weil
divisors on X. If [(X,ωX)] is a cycle in V then Zaff

k ([(X,ωX)]) := Zaff
k (X∗).

7



1.2 Affine Cartier divisors and their associated Weil divisors

1.2 Affine Cartier divisors and their associated Weil
divisors

Definition 1.2.1 (Rational functions)
Let C be an affine k-cycle. A (non-zero) rational function on C is a continuous piecewise
linear function ϕ : |C| → R, i.e. there exists a representative (X,ωX) of C such that
on each cone σ ∈ X the map ϕ is the restriction of an integer affine linear function
ϕ|σ = λ+ c, λ ∈ Λ∨

σ , c ∈ R. Obviously, c is the same on all faces by c = ϕ(0) and λ is
uniquely determined by ϕ and therefore denoted by ϕσ := λ.
The set of (non-zero) rational functions of C is denoted by K∗(C).

Remark 1.2.2 (The zero function and restrictions to subcycles)
The “zero” function can be thought of being the constant function −∞, therefore
K(C) := K∗(C) ∪ {−∞}. With respect to the operations max and +, K(C) is a
semifield.
Let us note an important difference to the classical case: Let D be an arbitrary subcycle
of C and ϕ ∈ K∗(C). Then ϕ||D| ∈ K∗(D), whereas in the classical case it might become
zero. This will be crucial for defining intersection products not only modulo rational
equivalence.

As in the classical case, each non-zero rational function ϕ on C defines a Weil divisor,
i.e. a cycle in Zaff

dimC−1(C). The idea of course should be to describe the “zeros” and
“poles” of ϕ. A naive approach could be to consider the graph of ϕ in V × R and
“intersect it with V × {−∞} and V × {+∞}”. However, our function ϕ takes values
only in R, in fact. On the other hand, the graph of ϕ is not a tropical object as it
is not balanced: Where ϕ is not linear, our graph gets edges that might violate the
balancing condition. So, we first make the graph balanced by adding new faces in the
additional direction (0,−1) ∈ V ×R and then apply our naive approach. Let us make
this precise.

Construction 1.2.3 (The associated Weil divisor)
Let C be an affine k-cycle in V = Λ⊗R and ϕ ∈ K∗(C) a rational function on C. Let
furthermore (X,ω) be a representative of C on whose faces ϕ is affine linear. Therefore,
for each cone σ ∈ X, we get a cone σ̃ := (id×ϕσ)(σ) in V ×R of the same dimension.
Obviously, Γϕ := {σ̃|σ ∈ X} forms a fan which we can make into a weighted fan (Γϕ, ω̃)
by ω̃(σ̃) := ω(σ). Its support is just the set-theoretic graph of ϕ− ϕ(0) in |X| ×R.
For τ < σ with dim(τ) = dim(σ) − 1 let vσ/τ ∈ Λ be a representative of the normal
vector uσ/τ . Then,

(
vσ/τ , ϕσ(vσ/τ )

)
∈ Λ × Z is a representative of the normal vector

uσ̃/τ̃ . Therefore, summing around a cone τ̃ with dim τ̃ = dim τ = k − 1, we get

∑

σ̃∈Γ
(k)
ϕ

τ̃<σ̃

ω̃(σ̃)
(
vσ/τ , ϕσ(vσ/τ )

)
=



∑

σ∈X(k)

τ<σ

ω(σ)vσ/τ ,
∑

σ∈X(k)

τ<σ

ϕσ(ω(σ)vσ/τ )


 .

From the balancing condition for (X,ω) it follows that
∑

σ∈X(k):τ<σ ω(σ)vσ/τ ∈ Vτ ,
which also means

(∑
σ∈X(k):τ<σ ω(σ)vσ/τ , ϕτ

(∑
σ∈X(k):τ<σ ω(σ)vσ/τ

))
∈ Vτ̃ . Therefore,

8
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σ3

σ2

← new edge

σ̃2

σ̃3

σ̃1

σ1

C ⊆ R2

Γϕ ⊆ R2 ×R

C = R2

Γϕ ⊆ R2 ×R

σ1

σ2

σ3

 
 
 

(
(
(
(
(
(
(
(( new faces

σ̃1

σ̃2σ̃3

Figure 1.6: Two examples of the construction of a Weil divisor.

modulo Vτ̃ , our first sum equals


0,

∑

σ∈X(k)

τ<σ

ϕσ(ω(σ)vσ/τ ) − ϕτ

( ∑

σ∈X(k)

τ<σ

ω(σ)vσ/τ

)

 ∈ V ×R.

So, in order to “make (Γϕ, ω̃) balanced at τ̃”, we add the cone ϑ := τ̃+({0}×R≤0) with

weight ω̃(ϑ) =
∑

σ∈X(k):τ<σ ϕσ(ω(σ)vσ/τ ) − ϕτ

(∑
σ∈X(k):τ<σ ω(σ)vσ/τ

)
. As obviously

[(0,−1)] = uϑ/τ̃ ∈ (V × R)/Vτ̃ , the above calculation shows that then the balancing
condition around τ̃ holds. In other words, we build the new fan (Γ′

ϕ, ω̃
′), where

Γ′
ϕ := Γϕ ∪

{
τ̃ + ({0} ×R≤0)|τ̃ ∈ Γϕ \ Γ(k)

ϕ

}
,

ω̃′|
Γ

(k)
ϕ

:= ω̃,

ω̃′(τ̃ + ({0} ×R≤0)) :=
∑

σ∈X(k)

τ<σ

ϕσ(ω(σ)vσ/τ ) − ϕτ

( ∑

σ∈X(k)

τ<σ

ω(σ)vσ/τ

)

if dim τ̃ = k − 1.

This fan is balanced around all τ̃ ∈ Γ
(k−1)
ϕ . We will show that it is also balanced at all

“new” cones of dimension k − 1 in proposition 1.2.7.
We now think of intersecting this new fan with V × {−∞} to get our desired Weil
divisor (as our weights are allowed to be negative, we can forget about intersecting also
with V × {+∞}). This construction leads to the following definition.

Definition 1.2.4 (Associated Weil divisors)
Let C be an affine k-cycle in V = Λ ⊗ R and ϕ ∈ K∗(C) a rational function on C.
Let furthermore (X,ω) be a representative of C on whose cones ϕ is affine linear. We

9



1.2 Affine Cartier divisors and their associated Weil divisors

define div(ϕ) := ϕ · C := [(
⋃k−1
i=0 X

(i), ωϕ)] ∈ Zaff
k−1(C), where

ωϕ : X(k−1) → Z,

τ 7→
∑

σ∈X(k)

τ<σ

ϕσ(ω(σ)vσ/τ ) − ϕτ

( ∑

σ∈X(k)

τ<σ

ω(σ)vσ/τ

)

and the vσ/τ are arbitrary representatives of the normal vectors uσ/τ .
Let D be an arbitrary subcycle of C. By remark 1.2.2, we can define ϕ ·D := ϕ||D| ·D.

Remark 1.2.5

Obviously, ωϕ(τ) is independent of the choice of the vσ/τ , as a different choice only
differs by elements in Vτ .
Our definition does also not depend on the choice of a representative (X,ω): Let (Y, υ)
be a refinement of (X,ω). For τ ∈ Y (k−1), two cases can occur (see also remark 1.1.11):
Let τ ′ := CY,X(τ). If dim τ ′ = k, there are precisely two cones at τ < σ1, σ2 ∈ Y (k),
which then fulfill CY,X(σ1) = CY,X(σ2) and therefore uσ1/τ = −uσ2/τ , υ(σ1) = υ(σ2)
and ϕσ1 = ϕσ2 . It follows that υϕ(τ) = 0. If dim τ ′ = k − 1, CY,X gives a one-to-one
correspondence between {σ ∈ Y (k)|τ < σ} and {σ′ ∈ X(k)|τ ′ < σ′} respecting weights
and normal vectors, and we have ϕσ = ϕCY,X(σ). It follows that υϕ(τ) = ωϕ(τ

′). So the
two weighted fans we obtain are equivalent.

Remark 1.2.6 (Affine linear functions and sums)
Let ϕ ∈ K∗(C) be globally affine linear, i.e. ϕ = λ||C| + c for some λ ∈ Λ∨, c ∈ R.
Then obviously ϕ · C = 0.
Let furthermore ψ ∈ K∗(C) be another rational function on C. As ϕσ +ψσ = (ϕ+ψ)σ
we can conclude that (ϕ+ ψ) · C = ϕ · C + ψ · C.

Proposition 1.2.7 (Balancing Condition and Commutativity)
The Weil divisor associated to a Cartier divisor as in definition 1.2.4 has the following
properties:

(a) Let C be an affine k-cycle in V = Λ⊗R and ϕ ∈ K∗(C) a rational function on C.
Then div(ϕ) = ϕ·C is an equivalence class of tropical fans, i.e. its representatives
are balanced.

(b) Let ψ ∈ K∗(C) be another rational function on C. Then ψ · (ϕ · C) = ϕ · (ψ · C)
holds.

The proof of this statement is to a large extent the work of Johannes Rau, my coauthor
of [AR07] and [AR08]. Hence we skip it here and refer to [AR07, proposition 3.7]
instead.

Definition 1.2.8 (Affine Cartier divisors)
Let C be an affine k-cycle. The subgroup of globally affine linear functions in K∗(C)
with respect to + is denoted by O∗(C). We define the group of affine Cartier divisors
of C to be the quotient group Div(C) := K∗(C)/O∗(C).

10
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Let [ϕ] ∈ Div(C) be a Cartier divisor. By remark 1.2.6, the associated Weil divisor
div([ϕ]) := div(ϕ) is well-defined. We therefore get a bilinear mapping

· : Div(C) × Zaff
k (C) → Zaff

k−1(C)

([ϕ], D) 7→ [ϕ] ·D = ϕ ·D,

called affine intersection product.

Example 1.2.9 (Self-intersection of hyperplanes)
Let Λ = Zn (and thus V = Rn), let e1, . . . , en be the standard basis vectors in
Zn and e0 := −e1 − · · · − en. By abuse of notation our ambient cycle is Rn :=
[({Rn}, ω(Rn) = 1)]. Let us consider the “linear tropical polynomial”

h = x1 ⊕ · · · ⊕ xn ⊕ 0 = max{x1, . . . , xn, 0} : Rn → R.

Obviously, h is a rational function in the sense of definition 1.2.1: For each subset
I ( {0, 1, . . . , n} we denote by σI the simplicial cone of dimension |I| generated by the
vectors −ei for i ∈ I. Then h is integer linear on all σI , namely

h|σI (x1, . . . , xn) =

{
0 if 0 /∈ I,
xi if there exists an i ∈ {1, . . . , n} \ I.

Let Lnk be the k-dimensional fan consisting of all cones σI with |I| ≤ k and weighted
with the trivial weight function ωLn

k
. Then Lnn is a representative of Rn fulfilling the

conditions of definition 1.2.1. We want to show

h · · · · · h︸ ︷︷ ︸
k times

·Rn = [Lnn−k]. (∗)

This follows inductively from h · [Lnk+1] = [Lnk ], so it remains to compute ωLn
k+1,h

(σI) for
all I with |I| = k < n. Let J := {0, 1, . . . , n} \ I. Obviously, the (k + 1)-dimensional
cones of Lnk+1 containing σI are precisely the cones σI∪{j}, j ∈ J . Moreover, −ej is
a representative of the normal vector uσI∪{j}/σI . Note also that for all i ∈ I ′, I ′ (
{0, 1, . . . , n} we have hσI′ (−ei) = h|σI′ (−ei) = h(−ei). Hence we compute

ωLn
k+1,h

(σI) =
∑

j∈J

ωLn
k+1

(σI∪{j})︸ ︷︷ ︸
=1

hσI∪{j}
(−ej)

+ hσI

(∑

j∈J

ωLn
k+1

(σI∪{j})︸ ︷︷ ︸
=1

ej

︸ ︷︷ ︸
=−

∑
i∈I ei

)

=
∑

j∈J

h(−ej) +
∑

i∈I

h(−ei)

= h(−e0) + h(−e1) + · · · + h(−en)

= 1 + 0 + · · · + 0 = 1 = ωLn
k
(σI),

which implies h · [Lnk+1] = [Lnk ] and also equation (∗).
We can summarize this example as follows: Firstly, for a tropical polynomial f , the

11



1.2 Affine Cartier divisors and their associated Weil divisors

Figure 1.7: The rigid curve R in S.

associated Weil divisor f · Rn coincides with the locus of non-differentiability T (f)
of f (see [RGST05, section 3]), and secondly, “the k-fold self-intersection of a tropical
hyperplane in Rn” is given by its (n−k)-skeleton together with trivial weights all equal
to 1.

Example 1.2.10 (A rigid curve)
Using notations from example 1.2.9, we consider as ambient cycle the surface S :=
[L3

2] = max{x1, x2, x3, 0} · R3. In this surface, we want to show that the curve R :=
[(R · eR, ωR(R · eR) = 1)] ∈ Zaff

1 (S), where eR := e1 + e2, has negative self-intersection
in the following sense: We construct a rational function ϕ on S whose associated Weil
divisor is R and show that ϕ · R = ϕ · ϕ · S is just the origin with weight −1. This
curve and its rigidness were first discussed in [M06, Example 4.11, Example 5.9].
Let us construct ϕ: First we refine L3

2 to LR by replacing σ{1,2} and σ{0,3} with σ{1,R},
σ{R}, σ{R,2}, σ{0,−R}, σ{−R} and σ{−R,3} (using again the notations from example 1.2.9
and e−R := −eR = e0 + e3). We define ϕ : |S| → R to be the unique function that is
linear on the faces of LR and fulfills

0,−e1,−e2,−e3,−e−R 7→ 0, −e0 7→ 1 and − eR 7→ −1.

Analogous to 1.2.9, we can compute for i = 1, 2

ωLR,ϕ(σ{i}) = ϕ(−e0) + ϕ(−e3) + ϕ(−eR) = 1 + 0 − 1 = 0,

for i = 0, 3

ωLR,ϕ(σ{i}) = ϕ(−e1) + ϕ(−e2) + ϕ(−e−R) = 0 + 0 + 0 = 0,

and finally

ωLR,ϕ(σ{R}) = ϕ(−e1) + ϕ(−e2) − ϕ(−eR) = 0 + 0 − (−1) = 1,

ωLR,ϕ(σ{−R}) = ϕ(−e0) + ϕ(−e3) − ϕ(−e−R) = 1 + 0 + 0 = 1,

12
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which means ϕ·S = R. Now we can easily compute ϕ·ϕ·S = ϕ·R on the representative
{σ{R}, σ{−R}, {0}} (with trivial weights) of R:

ωR,ϕ({0}) = ϕ(−eR) + ϕ(−e−R) = −1 + 0 = −1.

Therefore ϕ · ϕ · S = [({0}, ω({0}) = −1)]. Note that we really obtain a cycle with
negative weight, not only a cycle class modulo rational equivalence as it is the case in
“classical” algebraic geometry.

1.3 Push-forward of affine cycles and pull-back of
Cartier divisors

The aim of this section is to construct push-forwards of cycles and pull-backs of Cartier
divisors along morphisms of fans and to study the interaction of both constructions.
To do this we first of all have to introduce the notion of morphism:

Definition 1.3.1 (Morphisms of fans)
Let X be a fan in V = Λ⊗ZR and Y be a fan in V ′ = Λ′⊗ZR. A morphism f : X → Y
is a Z-linear map, i.e. a map from |X| ⊆ V to |Y | ⊆ V ′ induced by a Z-linear map

f̃ : Λ → Λ′. By abuse of notation we will usually denote all three maps f, f̃ and
f̃ ⊗Z id by the same letter f (note that the last two maps are in general not uniquely
determined by f : X → Y ). A morphism of weighted fans is a morphism of fans. A
morphism of affine cycles f : [(X,ωX)] → [(Y, ωY )] is a morphism of fans f : X∗ → Y ∗.
Note that in this latter case the notion of morphism does not depend on the choice of
the representatives by remark 1.1.11.

Given such a morphism the following construction shows how to build the push-forward
fan of a given fan. Afterwards we will show that this construction induces a well-defined
operation on cycles.

Construction 1.3.2

We refer to [GKM07, section 2] for more details on the following construction. Let
(X,ωX) be a weighted fan of pure dimension n in V = Λ ⊗Z R, let Y be any fan in
V ′ = Λ′⊗ZR and let f : X → Y be a morphism. Passing to an appropriate refinement
of (X,ωX) the collection of cones

f∗X := {f(σ)|σ ∈ X contained in a maximal cone of X on which f is injective}

is a fan in V ′ of pure dimension n. It can be made into a weighted fan by setting

ωf∗X(σ′) :=
∑

σ∈X(n):f(σ)=σ′

ωX(σ) · |Λ′
σ′/f(Λσ)|

for all σ′ ∈ f∗X
(n). The equivalence class of this weighted fan only depends on the

equivalence class of (X,ωX).
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Example 1.3.3

Let X be the fan with cones τ1, τ2, τ3, {0} as shown in the figure

τ1

τ2

τ3

R{0}

R
2 ⊃ X

fi

and let ωX(τi) = 1 for i = 1, 2, 3. Moreover, let Y := R be the real line and the
morphisms f1, f2 : X → Y be given by f1(x, y) := x + y and f2(x, y) := x, respec-
tively. Then (f1)∗X = (f2)∗X = {{x ≤ 0}, {0}, {x ≥ 0}}, but ω(f1)∗X({x ≤ 0}) =
ω(f1)∗X({x ≥ 0}) = 2 and ω(f2)∗X({x ≤ 0}) = ω(f2)∗X({x ≥ 0}) = 1.

Proposition 1.3.4

Let (X,ωX) be a tropical fan of dimension n in V = Λ ⊗Z R, let Y be any fan in
V ′ = Λ′ ⊗Z R and let f : X → Y be a morphism. Then f∗X is a tropical fan of
dimension n.

Proof. A proof can be found in [GKM07, section 2].

By construction 1.3.2 and proposition 1.3.4 the following definition is well-defined:

Definition 1.3.5 (Push-forward of cycles)
Let V = Λ ⊗Z R and V ′ = Λ′ ⊗Z R. Moreover, let X ∈ Zaff

m (V ), Y ∈ Zaff
n (V ′) and

f : X → Y be a morphism. For [(Z, ωZ)] ∈ Zaff
k (X) we define

f∗[(Z, ωZ)] := [(f∗(Z
∗), ωf∗(Z∗))] ∈ Zaff

k (Y ).

Proposition 1.3.6 (Push-forward of cycles)
Let V = Λ ⊗Z R and V ′ = Λ′ ⊗Z R. Let X ∈ Zaff

m (V ) and Y ∈ Zaff
n (V ′) be cycles and

let f : X → Y be a morphism. Then the map

Zaff
k (X) −→ Zaff

k (Y ) : C 7−→ f∗C

is well-defined and Z-linear.

Proof. It remains to prove the linearity: Let (A,ωA) and (B,ωB) be two tropical fans
of dimension k with A = A∗, B = B∗ and |A|, |B| ⊆ |X∗|. We want to show that
f∗(A + B) ∼ f∗A + f∗B. Refining A and B as in construction 1.1.15 we may assume

that A,B ⊆ A+B. Set Ã := A+B and

ωÃ(σ) :=

{
ωA(σ), if σ ∈ A

0, else

for all facets σ ∈ Ã. Analogously, set B̃ := A+B with according weights. Then Ã ∼ A
and B̃ ∼ B. Carrying out a further refinement of A + B like in construction 1.3.2 we
can reach that f∗(A + B) = {f(σ)|σ ∈ A+B contained in a maximal cone of A+B
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on which f is injective}. Using Ã = B̃ = Ã + B̃ = A + B we get f∗Ã = f∗B̃ =

f∗(Ã+ B̃) = f∗(A+B) and it remains to compare the weights:

ωf∗(Ã+B̃)(σ
′) =

∑

σ∈(Ã+B̃)(k):f(σ)=σ′

ωÃ+B̃(σ) · |Λ′
σ′/f(Λσ)|

=
∑

σ∈(Ã+B̃)(k):f(σ)=σ′

[
ωÃ(σ) + ωB̃(σ)

]
· |Λ′

σ′/f(Λσ)|

=
∑

σ∈Ã(k):f(σ)=σ′

ωÃ(σ) · |Λ′
σ′/f(Λσ)| +

∑

σ∈B̃(k):f(σ)=σ′

ωB̃(σ) · |Λ′
σ′/f(Λσ)|

= ωf∗Ã(σ′) + ωf∗B̃(σ′)

for all facets σ′ of f∗(A+B). Hence f∗(A+B) ∼ f∗(Ã+ B̃) = f∗Ã+ f∗B̃ ∼ f∗A+ f∗B
as weighted fans.

Our next step is now to define the pull-back of a Cartier divisor. As promised, our next
step will then be to prove a projection formula that describes the interaction between
our two constructions.

Proposition 1.3.7 (Pull-back of Cartier divisors)
Let C ∈ Zaff

m (V ) and D ∈ Zaff
n (V ′) be cycles in V = Λ ⊗Z R and V ′ = Λ′ ⊗Z R,

respectively, and let f : C → D be a morphism. Then there is a well-defined and
Z-linear map

Div(D) −→ Div(C) : [h] 7−→ f ∗[h] := [h ◦ f ].

Proof. The map h 7→ h ◦ f is obviously Z-linear on rational functions and maps affine
linear functions to affine linear functions. Thus it remains to prove that h ◦ f is a
rational function if h is one: Therefore let (X,ωX) be any representative of C, let
(Y, ωY ) be a reduced representative of D such that the restriction of h to every cone in
Y is affine linear and let fV : V → V ′ be a Z-linear map such that fV ||C| = f . Since
Z := {f−1

V (σ′)|σ′ ∈ Y } is a fan in V and |X| ⊆ |Z| we can construct the refinement

X̃ := X ∩ Z of X such that h ◦ f is affine linear on every cone of X̃. This finishes the
proof.

Proposition 1.3.8 (Projection formula)
Let C ∈ Zaff

m (V ) and D ∈ Zaff
n (V ′) be cycles in V = Λ ⊗Z R and V ′ = Λ′ ⊗Z R

respectively and let f : C → D be a morphism. Let E ∈ Zaff
k (C) be a cycle and let

ϕ ∈ Div(D) be a Cartier divisor. Then the following equation holds:

ϕ · (f∗E) = f∗(f
∗ϕ · E) ∈ Zaff

k−1(D).

Proof. Let E = [(Z, ωZ)] and ϕ = [h]. We may assume that Z = Z∗ and h(0) = 0.
Replacing Z by a refinement we may additionally assume that f ∗h is linear on every
cone of Z (cf. definition 1.2.1) and that

f∗Z = {f(σ)|σ ∈ Z contained in a maximal cone of Z on which f is injective}
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(cf. construction 1.3.2). Note that in this case h is linear on the cones of f∗Z, too. Let
σ′ ⊆ |D| be a cone (not necessarily σ′ ∈ f∗Z) such that h is linear on σ′. Then there
is a unique linear map hσ′ : V ′

σ′ → R induced by the restriction h|σ′ . Analogously for
f ∗hσ, σ ⊆ |C|. For cones τ < σ ∈ Z of dimension k − 1 and k respectively let vσ/τ ∈ Λ
be a representative of the primitive normal vector uσ/τ ∈ Λσ/Λτ of construction 1.1.4.
Analogously, for τ ′ < σ′ ∈ f∗Z of dimension k − 1 and k respectively let vσ′/τ ′ be a
representative of uσ′/τ ′ ∈ Λ′

σ′/Λ′
τ ′ . Now we want to compare the weighted fans h · (f∗Z)

and f∗(f
∗h ·Z): Let τ ′ ∈ f∗Z be a cone of dimension k− 1. Then we can calculate the

weight of τ ′ in h · (f∗Z) as follows:

ωh·(f∗Z)(τ
′) =


 ∑

σ′∈f∗Z:σ′>τ ′

ωf∗Z(σ′) · hσ′(vσ′/τ ′)




−hτ ′


 ∑

σ′∈f∗Z:σ′>τ ′

ωf∗Z(σ′) · vσ′/τ ′




=


 ∑

σ′∈f∗Z:σ′>τ ′


 ∑

σ∈Z(k):f(σ)=σ′

ωZ(σ) · |Λ′
σ′/f(Λσ)|


 · hσ′(vσ′/τ ′)




−hτ ′


 ∑

σ′∈f∗Z:σ′>τ ′


 ∑

σ∈Z(k):f(σ)=σ′

ωZ(σ) · |Λ′
σ′/f(Λσ)|


 · vσ′/τ ′




=


 ∑

σ∈Z(k):f(σ)>τ ′

ωZ(σ) · |Λ′
f(σ)/f(Λσ)| · hf(σ)(vf(σ)/τ ′)




−hτ ′


 ∑

σ∈Z(k):f(σ)>τ ′

ωZ(σ) · |Λ′
f(σ)/f(Λσ)| · vf(σ)/τ ′




Now let τ ′ ∈ f∗(f
∗h · Z) of dimension k − 1. The weight of τ ′ in f∗(f

∗h · Z) can be
calculated as follows:

ωf∗(f∗h·Z)(τ
′) =

∑

τ∈(f∗h·Z)(k−1):
f(τ)=τ ′

ωf∗h·Z(τ) · |Λ′
τ ′/f(Λτ )|

=
∑

τ∈(f∗h·Z)(k−1):
f(τ)=τ ′


 ∑

σ∈Z(k):σ>τ

ωZ(σ)f∗hσ(vσ/τ )

− f∗hτ


 ∑

σ∈Z(k):σ>τ

ωZ(σ) · vσ/τ




 · |Λ′

τ ′/f(Λτ )|
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=
∑

τ∈(f∗h·Z)(k−1):
f(τ)=τ ′


 ∑

σ∈Z(k):σ>τ

ωZ(σ)hf(σ)(f(vσ/τ ))

− hf(τ)


 ∑

σ∈Z(k):σ>τ

ωZ(σ) · f
(
vσ/τ

)



 · |Λ′

τ ′/f(Λτ )|.

Note that f(vσ/τ ) = |Λ′
σ′/(Λ′

τ ′ + Zf(vσ/τ ))| ·vσ′/τ ′ +λσ,τ ∈ Λ′ for some λσ,τ ∈ Λ′
τ ′ . Since

hf(σ)(λσ,τ ) = hf(τ)(λσ,τ ) these parts of the corresponding summands in the first and
second interior sum cancel using the linearity of hf(τ). Moreover, note that f(vσ/τ ) =
λσ,τ ∈ Λ′

τ ′ for those σ > τ on which f is not injective and that the whole summands
cancel in this case. Thus we can conclude that the sum does not change if we restrict
the summation to those σ > τ on which f is injective. Using additionally the equation

|Λ′
σ′/f(Λσ)| = |Λ′

τ ′/f(Λτ )| · |Λ
′
σ′/(Λ′

τ ′ + Zf(vσ/τ ))|

we get

ωf∗(f∗h·Z)(τ
′) =

∑

τ∈(f∗h·Z)(k−1):
f(τ)=τ ′




∑

σ∈Z(k):
σ>τ,f(σ)>τ ′

ωZ(σ) · |Λ′
f(σ)/f(Λσ)| · hf(σ)(vf(σ)/τ ′)

− hτ ′




∑

σ∈Z(k):
σ>τ,f(σ)>τ ′

ωZ(σ) · |Λ′
f(σ)/f(Λσ)| · vf(σ)/τ ′







=


 ∑

σ∈Z(k):f(σ)>τ ′

ωZ(σ) · |Λ′
f(σ)/f(Λσ)| · hf(σ)(vf(σ)/τ ′)




−hτ ′


 ∑

σ∈Z(k):f(σ)>τ ′

ωZ(σ) · |Λ′
f(σ)/f(Λσ)| · vf(σ)/τ ′


 .

Note that for the last equation we used again the linearity of hτ ′ . We have checked so
far that a cone τ ′ of dimension k − 1 occurring in both h · (f∗Z) and f∗(f

∗h · Z) has
the same weight in both fans. Thus it remains to examine those cones f(τ), τ ∈ Z(k−1)

such that f is injective on τ but not on any σ > τ : In this case all vectors vσ/τ
are mapped to Λ′

f(τ). Again, hf(σ) = hf(τ) and by linearity of hf(τ) all summands

in the sum cancel as above. Hence the the weight of f(τ) in f∗(f
∗h · Z) is 0 and

ϕ · (f∗E) = [h · (f∗Z)] = [f∗(f
∗h · Z)] = f∗(f

∗ϕ · E).

1.4 Abstract tropical cycles

In this section we will introduce the notion of abstract tropical cycles as spaces that
have tropical fans as local building blocks. Then we will generalize the theory from the
previous sections to these spaces.
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Definition 1.4.1 (Abstract polyhedral complexes)
An (abstract) polyhedral complex is a topological space |X| together with a finite set
X of closed subsets of |X| and an embedding map ϕσ : σ → Rnσ for every σ ∈ X such
that

(a) X is closed under taking intersections, i.e. σ ∩ σ′ ∈ X for all σ, σ′ ∈ X with
σ ∩ σ′ 6= ∅,

(b) every image ϕσ(σ), σ ∈ X is a rational polyhedron not contained in a proper
affine subspace of Rnσ ,

(c) for every pair σ, σ′ ∈ X the concatenation ϕσ ◦ ϕ
−1
σ′ is integer affine linear where

defined,

(d) |X| =
.⋃

σ∈X

ϕ−1
σ (ϕσ(σ)◦), where ϕσ(σ)◦ denotes the interior of ϕσ(σ) in Rnσ .

For simplicity we will usually drop the embedding maps ϕσ and denote the polyhedral
complex (X, |X|, {ϕσ|σ ∈ X}) by (X, |X|) or just by X if no confusion can occur. The
closed subsets σ ∈ X are called the polyhedra or faces of (X, |X|). For σ ∈ X the open
set σri := ϕ−1

σ (ϕσ(σ)◦) is called the relative interior of σ. Like in the case of fans the
dimension of (X, |X|) is the maximum of the dimensions of its polyhedra. (X, |X|) is
pure-dimensional if every inclusion-maximal polyhedron has the same dimension. We
denote by X(n) the set of polyhedra in (X, |X|) of dimension n. Let τ, σ ∈ X. Like in
the case of fans we write τ ≤ σ (or τ < σ) if τ ⊆ σ (or τ ( σ respectively).

An abstract polyhedral complex (X, |X|) of pure dimension n together with a map
ωX : X(n) → Z is called weighted polyhedral complex of dimension n and ωX(σ) the
weight of the polyhedron σ ∈ X(n). Like in the case of fans the empty complex ∅ is
a weighted polyhedral complex of every dimension n. If ((X, |X|), ωX) is a weighted
polyhedral complex of dimension n then let

X∗ := {τ ∈ X|τ ⊆ σ for some σ ∈ X(n) with ωX(σ) 6= 0}, |X∗| :=
⋃

τ∈X∗

τ ⊆ |X|.

With these definitions
(
(X∗, |X∗|), ωX |(X∗)(n)

)
is again a weighted polyhedral complex of

dimension n, called the non-zero part of ((X, |X|), ωX). We call a weighted polyhedral
complex ((X, |X|), ωX) reduced if ((X, |X|), ωX) = ((X∗, |X∗|), ωX∗) holds.

Definition 1.4.2 (Subcomplexes and refinements)
Let (X, |X|, {ϕσ}) and (Y, |Y |, {ψτ}) be two polyhedral complexes. We call
(X, |X|, {ϕσ}) a subcomplex of (Y, |Y |, {ψτ}) if

(a) |X| ⊆ |Y |,

(b) for every σ ∈ X exists τ ∈ Y with σ ⊆ τ and

(c) the Z-linear structures of X and Y are compatible, i.e. for a pair σ, τ from (b)
the maps ϕσ ◦ ψ

−1
τ and ψτ ◦ ϕ

−1
σ are integer affine linear where defined.
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We write (X, |X|, {ϕσ})E (Y, |Y |, {ψτ}) in this case. Analogous to the case of fans we
define a map CX,Y : X → Y that maps a polyhedron in X to the inclusion-minimal
polyhedron in Y containing it.
We call a weighted polyhedral complex ((X, |X|), ωX) a refinement of ((Y, |Y |), ωY ) if

(a) (X∗, |X∗|)E (Y ∗, |Y ∗|),

(b) |X∗| = |Y ∗|,

(c) ωX(σ) = ωY (CX∗,Y ∗(σ)) for all σ ∈ (X∗)(dim(X)).

Definition 1.4.3 (Open fans)

Let (F̃ , ωF̃ ) be a tropical fan in Rn and U ⊆ Rn an open subset containing the origin.

The set F := F̃ ∩ U := {σ ∩ U |σ ∈ F̃} together with the induced weight function
ωF is called an open (tropical) fan in Rn. As in the case of fans let |F | :=

⋃
σ′∈F σ

′.

Note that the open fan F contains the whole information of the entire fan F̃ as F̃ =
{R≥0 · σ

′|σ′ ∈ F}.

Definition 1.4.4 (Tropical polyhedral complexes)
A tropical polyhedral complex of dimension n is a weighted polyhedral complex
((X, |X|), ωX) of pure dimension n together with the following data: For every polyhe-
dron σ ∈ X∗ we are given an open fan Fσ in some Rnσ and a homeomorphism

Φσ : Sσ :=
⋃

σ′∈X∗,σ′⊇σ

(σ′)ri ∼
−→ |Fσ|

such that

(a) for all σ′ ∈ X∗, σ′ ⊇ σ holds Φσ(σ
′ ∩ Sσ) ∈ Fσ and Φσ is compatible with the

Z-linear structure on σ′, i.e. Φσ ◦ϕ
−1
σ′ and ϕσ′ ◦Φ−1

σ are integer affine linear where
defined,

(b) ωX(σ′) = ωFσ(Φσ(σ
′ ∩ Sσ)) for every σ′ ∈ (X∗)(n) with σ′ ⊇ σ,

(c) for every pair σ, τ ∈ X∗ there is an integer affine linear map Aσ,τ and a commu-
tative diagram

Sσ ∩ Sτ

∼Φσ
��

∼

Φτ // Φτ (Sσ ∩ Sτ )

Φσ(Sσ ∩ Sτ )

Aσ,τ

66nnnnnnnnnnnn

.

For simplicity of notation we will usually drop the maps Φσ and write ((X, |X|), ωX)
or just X instead of (((X, |X|), ωX), {Φσ}). A tropical polyhedral complex is called
reduced if the underlying weighted polyhedral complex is.

Example 1.4.5

The following figure shows the topological spaces and the decompositions into polyhedra
of two such abstract tropical polyhedral complexes together with the open fan Fσ for
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1.4 Abstract tropical cycles

every polyhedron σ:

X1 X2

R
2

Remark 1.4.6

The above example X1 is an instance of a more general construction: Let X be a
weighted, balanced polyhedral complex in Rn as in [M06] or [S05]. Then X can be
interpreted as a tropical polyhedral complex in a natural way: For every polyhedron
σ ∈ X we have trivial embedding maps ϕσ : σ →֒ Hσ

∼= Rdim(σ), where Hσ ⊆ Rn is the
smallest affine subspace containing σ. Moreover, for every σ ∈ X we have trivial fan
charts Φσ : Sσ =

⋃
σ′∈X,σ′⊇σ(σ

′)ri ∼
−→ Str

σ , where Str
σ is a translation of Sσ such that σ

contains the origin. Then Str
σ is an open fan sitting in the associated tropical fan S̃tr

σ .

Construction 1.4.7 (Refinements of tropical polyhedral complexes)
Let (((X, |X|), ωX), {Φσ}) be a tropical polyhedral complex and let ((Y, |Y |), ωY ) be a
refinement of its underlying weighted polyhedral complex ((X, |X|), ωX). Then we can
make ((Y, |Y |), ωY ) into a tropical polyhedral complex as follows: We may assume that
X and Y are reduced as we do not pose any conditions on polyhedra with weight zero.
Fix some τ ∈ Y and let σ := CY,X(τ). By definition of refinement, for every τ ′ ∈ Y
with τ ′ ≥ τ there is σ′ ∈ X, σ′ ≥ σ with τ ′ ⊆ σ′. Thus Sτ ⊆ Sσ and we have a map
Ψτ := Φσ|Sτ : Sτ

∼
→ Ψτ (Sτ ) ⊆ Rnσ . It remains to give Ψτ (Sτ ) the structure of an open

fan: We may assume that {0} ⊆ Ψτ (τ) (otherwise replace Ψτ by the concatenation
of Ψτ with an appropriate translation Tτ , apply Tτ to FX

σ and Φσ and change the

maps Aσ,σ′ and Aσ′,σ accordingly). Let F̃X
σ := {R≥0 · σ

′|σ′ ∈ FX
σ } be the tropical fan

associated to FX
σ and let F̃ Y

τ be the set of cones F̃ Y
τ := {R≥0 · Ψτ (τ

′)|τ ≤ τ ′ ∈ Y }. Note
that the conditions on the Z-linear structures on X and Y to be compatible and on Φσ

to be compatible with the Z-linear structure on X assure that F̃ Y
τ is a fan in Rnσ . In

fact, F̃ Y
τ with the weights induced by Y is a refinement of (F̃X

σ , ωF̃Xσ ). Thus the maps

Ψτ together with the open fans {̺∩Ψτ (Sτ )|̺ ∈ F̃ Y
τ }, τ ∈ Y fulfill all requirements for

a tropical polyhedral complex.

Remark 1.4.8

If not stated otherwise we will from now on equip every refinement of a tropical polyhe-
dral complex coming from a refinement of the underlying weighted polyhedral complex
with the tropical structure constructed in 1.4.7.
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Definition 1.4.9 (Refinements and equivalence of tropical polyhedral complexes)
Let C1 =

(
((X1, |X1|), ωX1), {Φ

X1
σ1
}
)

and C2 =
(
((X2, |X2|), ωX2), {Φ

X2
σ2
}
)

be tropical
polyhedral complexes. We call C2 a refinement of C1 if

(a) ((X2, |X2|), ωX2) is a refinement of ((X1, |X1|), ωX1) and

(b) C2 carries the tropical structure induced by C1 as in construction 1.4.7, i.e.

if C ′
2 =

(
((X2, |X2|), ωX2), {Φ̃

X2
σ2
}
)

is the tropical polyhedral complex obtained

from C1 and the refinement ((X2, |X2|), ωX2) then the maps Φ̃X2
σ2

◦ (ΦX2
σ2

)−1 and

ΦX2
σ2

◦ (Φ̃X2
σ2

)−1 are integer affine linear where defined.

We call two tropical polyhedral complexes C1 and C2 equivalent (write C1 ∼ C2) if
they have a common refinement (as tropical polyhedral complexes).

Remark 1.4.10

Note that different choices of translation maps Tτ in construction 1.4.7 only lead to
tropical polyhedral complexes carrying the same tropical structure in the sense of defi-
nition 1.4.9 (b). In particular definition 1.4.9 does not depend on the choices we made
in construction 1.4.7. Note moreover that refinements of (((X, |X|), ωX), {Φσ}) and
((Y, |Y |), ωY ) in construction 1.4.7 only lead to refinements of (((Y, |Y |), ωY ), {Ψτ}).

Construction 1.4.11 (Refinements)
Let (((X, |X|, {ϕσ}), ωX), {Φσ}) and (((Y, |Y |, {ψτ}), ωY ), {Ψτ}) be reduced tropical
polyhedral complexes such that (Y, |Y |)E(X, |X|) and the tropical structures on X and
Y agree, i.e. for every τ ∈ Y and σ := CY,X(τ) ∈ X the maps Ψτ ◦Φ−1

σ and Φσ ◦Ψ−1
τ are

integer affine linear where defined. Moreover let (((X ′, |X ′|, {ϕ′
σ′}), ωX′), {Φ′

σ′}) be a
reduced refinement of (((X, |X|, {ϕσ}), ωX), {Φσ}). Like in the case of fans we will
construct a refinement

(
((Y ∩X ′, |Y ∩X ′|, {ψY ∩X′

τ ′ }), ωY ∩X′), {ΨY ∩X′

τ ′ }
)

of
(((Y, |Y |, {ψτ}), ωY ), {Ψτ}) such that (Y ∩X ′, |Y ∩X ′|)E (X ′, |X ′|) and the tropical
structures on Y ∩X ′ and X ′ agree:
Fix σ ∈ X. Note that the compatibility conditions on the Z-linear structures of
X ′, X and Y , X respectively (cf. definition 1.4.2 (c)) assure that ϕσ(σ

′), σ′ ∈ X ′

with σ′ ⊆ σ as well as ϕσ(τ), τ ∈ Y with τ ⊆ σ are rational polyhedra in Rnσ .
Thus in this case ϕσ(σ

′ ∩ τ) = ϕσ(σ
′) ∩ ϕσ(τ) is a rational polyhedron, too. Let

Hσ′,τ
∼= Rnτ be the smallest affine subspace of Rnσ containing ϕσ(σ

′ ∩ τ). We can
consider ϕσ|σ′∩τ to be a map σ′ ∩ τ → Rnτ . We can hence construct the underlying
weighted polyhedral complex of our desired tropical polyhedral complex as follows: Set
P := {τ ∩σ′|τ ∈ Y, σ′ ∈ X ′}, Y ∩X ′ := {τ ∈ P |∄τ̃ ∈ P (dim(τ)) : τ̃ ( τ}, |Y ∩X ′| := |Y |
and ωY ∩X′(τ) := ωY (CY ∩X′,Y (τ)) for all τ ∈ (Y ∩X ′)(dim(Y )). It remains to define the
maps ψY ∩X′

τ ′ and ΨY ∩X′

τ ′ : For every τ ′ ∈ Y ∩X ′ choose a triplet σ′ ∈ X ′, τ ∈ Y, σ ∈ X
such that σ′ ∩ τ = τ ′ and σ′, τ ⊆ σ and set ψY ∩X′

τ ′ := ϕσ|σ′∩τ . With these definitions
the weighted polyhedral complex ((Y ∩X ′, |Y ∩X ′|, {ψY ∩X′

τ ′ }), ωY ∩X′) is a refinement
of ((Y, |Y |, {ψτ}), ωY ). Thus we can apply construction 1.4.7 to obtain maps {ΨY ∩X′

τ ′ }
that endow our weighted polyhedral complex with the tropical structure inherited from
((Y, |Y |, {ψτ}), ωY ). Note that the compatibility property between the tropical struc-
tures of Y and X is bequeathed to Y ∩X ′ and X ′, too.
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Lemma 1.4.12

The equivalence of tropical polyhedral complexes is an equivalence relation.

Proof. Let C1 =
(
((X1, |X1|), ωX1), {Φ

X1
σ1
}
)
, C2 =

(
((X2, |X2|), ωX2), {Φ

X2
σ2
}
)

and C3 =(
((X3, |X3|), ωX3), {Φ

X3
σ3
}
)

be tropical polyhedral complexes such that C1 ∼ C2 via a
common refinement D1 =

(
((Y1, |Y1|), ωY1), {Φ

Y1
σ1
}
)

and C2 ∼ C3 via a common refine-
ment D2 =

(
((Y2, |Y2|), ωY2), {Φ

Y2
σ2
}
)
. We have to construct a common refinement of C1

and C3: First of all we may assume that D1 and D2 are reduced. Using construction
1.4.11 we get a refinement D3 :=

(
((Y1 ∩ Y2, |Y1 ∩ Y2|), ωY1∩Y2), {Φ

Y1∩Y2
τ }

)
of D1 with

(Y1∩Y2, |Y1∩Y2|)E(Y2, |Y2|) and a tropical structure that is compatible with the tropical
structure on D2. It is easily checked that D3 is a refinement of D2, too.

Definition 1.4.13 (Abstract tropical cycles)
Let ((X, |X|), ωX) be an n-dimensional tropical polyhedral complex. Its equivalence
class [((X, |X|), ωX)] is called an (abstract) tropical n-cycle. The set of n-cycles is
denoted by Zn. Since the underlying topological space |X∗| of a tropical polyhe-
dral complex ((X, |X|), ωX) is by definition invariant under refinements we define∣∣ [((X, |X|), ωX)]

∣∣ := |X∗|. Like in the affine case, an n-cycle [((X, |X|), ωX)] is called

an (abstract) tropical variety if ωX(σ) ≥ 0 for all σ ∈ X(n).

Let C ∈ Zn and D ∈ Zk be two tropical cycles. D is called an (abstract) tropical cycle
in C or a subcycle of C if there exists a representative (((Z, |Z|), ωZ), {Ψτ}) of D and
a reduced representative (((X, |X|), ωX), {Φσ}) of C such that

(a) (Z, |Z|)E (X, |X|),

(b) the tropical structures on Z and X agree, i.e. for every τ ∈ Z the maps
Ψτ ◦ Φ−1

CZ,X(τ) and ΦCZ,X(τ) ◦ Ψ−1
τ are integer affine linear where defined.

The set of tropical k-cycles in C is denoted by Zk(C).

Remark and Definition 1.4.14

(a) Let X be a finite set of rational polyhedra in Rn, f ∈ Hom(Zn,Z) a linear form
and b ∈ R. Then let

Hf,b :=
{
{x ∈ Rn|f(x) ≤ b}, {x ∈ Rn|f(x) = b}, {x ∈ Rn|f(x) ≥ b}

}
.

Like in the case of fans (cf. construction 1.1.12) we can form sets P :=
{σ ∩ σ′|σ ∈ X, σ′ ∈ Hf,b} and X ∩ Hf,b := {σ ∈ P |∄ τ ∈ P (dim(σ)) with τ ( σ}.

(b) Again let X be a finite set of rational polyhedra in Rn. Let {fi ≤ bi|i = 1, . . . , N}
be all (integral) inequalities occurring in the description of all polyhedra in X. Then
we can construct the set X ∩ Hf1,b1 ∩ · · · ∩ HfN ,bN . Note that for every collection
of polyhedra X this set X ∩ Hf1,b1 ∩ · · · ∩ HfN ,bN is a (usual) rational polyhedral
complex (i.e. for every polyhedron τ ∈ X every face (in the usual sense) of σ is
contained in X and the intersection of every two polyhedra in X is a common face
of each). Moreover note that the result is independent of the order of the fi and if
{gi ≤ ci|i = 1, . . . ,M} is a different set of inequalities describing the polyhedra in X
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then X ∩Hf1,b1 ∩ · · ·∩HfN ,bN and X ∩Hg1,c1 ∩ · · ·∩HgM ,cM have a common refinement,
namely X ∩Hf1,b1 ∩ · · · ∩HfN ,bN ∩Hg1,c1 ∩ · · · ∩HgM ,cM .

Construction 1.4.15 (Sums of tropical cycles)
Let C ∈ Zn be a tropical cycle. Like in the affine case the set of tropical k-cycles
in C can be made into an abelian group by defining the sum of two such k-cycles
as follows: Let D1 and D2 ∈ Zk(C) be the two cycles whose sum we want to con-
struct. By definition there are reduced representatives

(
((X1, |X1|), ωX1), {Φ

X1
τ }
)

and(
((X2, |X2|), ωX2), {Φ

X2
τ }
)

of C and reduced representatives
(
((Y, |Y |), ωY ), {ΦY

τ }
)

of
D1 and

(
((Z, |Z|), ωZ), {ΦZ

τ }
)

of D2 such that (Y, |Y |)E (X1, |X1|) and the tropi-
cal structures on Y and X1 agree and (Z, |Z|)E (X2, |X2|) and the tropical struc-
tures on Z and X2 agree. As “∼” is an equivalence relation there is a common
refinement

(
((X, |X|, {ϕτ}), ωX), {ΦX

τ }
)

of X1 and X2 which we may assume to be
reduced. Applying construction 1.4.11 to Y and X we obtain the tropical polyhe-
dral complex

(
((Y ∩X, |Y ∩X|), ωY ∩X), {ΦY ∩X

τ }
)

which is a refinement of Y , has
a tropical structure that is compatible with the tropical structure on X and fulfils
(Y ∩X, |Y ∩X|)E (X, |X|). If we further apply construction 1.4.11 to Z and X we get
a refinement

(
((Z ∩X, |Z ∩X|), ωZ∩X), {ΦZ∩X

τ }
)

of Z with analogous properties. Now
fix some polyhedron σ ∈ X and let τ1, . . . , τr ∈ Y ∩X and τr+1, . . . , τs ∈ Z ∩X be all
polyhedra of Y ∩X and Z∩X respectively that are contained in σ. Note that property
(a) of definition 1.4.13 implies that for all i = 1, . . . , r the image ϕσ(τi) is a rational poly-
hedron in Rnσ . Like in remark and definition 1.4.14 let {fi ≤ bi|i = 1, . . . , N} be the
set of all integral inequalities occurring in the description of all polyhedra ϕσ(τi), i =
1, . . . , s and let Rσ

Y ∩X := {ϕσ(τi)|i = 1, . . . , r} ∩ Hf1,b1 ∩ · · · ∩ HfN ,bN and Rσ
Z∩X :=

{ϕσ(τi)|i = r+1, . . . , s}∩Hf1,b1 ∩ · · ·∩HfN ,bN . Then P σ
Y ∩X := {ϕ−1

σ (τ)|τ ∈ Rσ
Y ∩X} and

P σ
Z∩X := {ϕ−1

σ (τ)|τ ∈ Rσ
Z∩X} are a kind of local refinement of Y ∩ X and Z ∩ X,

respectively, but taking the union over all maximal polyhedra σ ∈ X(n) does in
general not lead to global refinements as there may be overlaps between polyhedra
coming from different σ. We resolve this as follows: For σ ∈ X(n), τ ∈

⋃n−1
i=0 X

(i)

let P σ
Y,τ := {̺ ∈ P σ

Y ∩X |τ is the inclusion-minimal polyhedron of X containing ̺} and

PY,n :=
⋃
σ∈X(n){̺ ∈ P σ

Y ∩X |∄τ̃ ∈ X(n−1) : ̺ ⊆ τ̃}. Analogously for P σ
Z,τ and PZ,n. Then

let

Ỹ := PY,n ∪


 ⋃

τ∈X(i):i<n

{
⋂

σ∈X(n):τ⊆σ

τσ|τσ ∈ P σ
Y,τ}




and

Z̃ := PZ,n ∪


 ⋃

τ∈X(i):i<n

{
⋂

σ∈X(n):τ⊆σ

τσ|τσ ∈ P σ
Z,τ}


 .

Moreover for every τ ∈ Ỹ ∪ Z̃ choose some σ ∈ X(n) with τ ⊆ σ and let ψτ :=
ϕσ|τ . Note that by construction (Ỹ , |Y ∩ X|) and (Z̃, |Z ∩ X|) with structure maps

ψτ , τ ∈ X̃ or τ ∈ Z̃ respectively and weight functions ωỸ and ωZ̃ induced by Y ∩ X
and Z ∩X are refinements of Y ∩X and Z ∩X (we need here that Rσ

Y ∩X and Rσ
Z∩X

were usual polyhedral complexes in Rnσ). Thus we can endow them with the tropical
structures inherited from Y ∩ X and Z ∩ X respectively (cf. construction 1.4.7). As
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1.4 Abstract tropical cycles

in the

boundary

σ2

refinements

σ1

σ1

σ1

Make the

fit together

σ1 σ2

X

boundary

the

faces in

Look at

boundary

the

faces in

Look at

σ2

σ2

Y ∩X

Construct local refinements

Z ∩X

Figure 1.8: An illustration of the process described in construction 1.4.15.
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Chapter 1: Foundations of tropical intersection theory

(X̃ ∪ Ỹ , |Y ∩X| ∪ |Z ∩X|) is a polyhedral complex now, we can form

((P, |P |), ωP ) := ((X̃ ∪ Ỹ , |Y ∩X| ∪ |Z ∩X|), ωP ),

where ωP (σ) := ωỸ (σ) + ωZ̃(σ) for all σ ∈ P (k) (we set ω�(σ) := 0 for σ /∈ �,

� ∈ {Ỹ , Z̃}). Recall that the tropical structures on Ỹ and Z̃ are inherited from
Y ∩ X and Z ∩ X and are thus compatible with the tropical structure on X. Thus
ΦX
σ (SPσ ) ⊆ |FX

σ | with weights induced from P is an open fan (the corresponding com-

plete tropical fan is just the sum of the fans coming from Ỹ and Z̃). Thus we can set

Φ̃σ := ΦX
σ |SPσ : SPσ

∼
→ ΦX

σ (SPσ ) and can hence define the sum D1 +D2 to be

D1 +D2 :=
[(

((P, |P |), ωP ), {Φ̃σ}
)]
.

Note that the class [(((P, |P |), ωP ), {Φ̃σ})] is independent of the choices we made, i.e.
the sum D1 +D2 is well-defined.

Lemma 1.4.16

Let C ∈ Zn be a tropical cycle. The set Zk(C) together with the operation “+” from
construction 1.4.15 forms an abelian group.

Proof. The class of the empty complex 0 = [∅] is the neutral element of this operation
and [((Y, |Y |),−ωY )] is the inverse element of [((Y, |Y |), ωY )] ∈ Zk(C).

Definition 1.4.17

Let (((X, |X|, {ϕσ}), ωX), {Φσ}) and (((Y, |Y |, {ψτ}), ωY ), {Ψτ}) be tropical polyhedral
complexes. We denote by

(((X, |X|, {ϕσ}), ωX), {Φσ}) × (((Y, |Y |, {ψτ}), ωY ), {Ψτ})

their cartesian product

(((X × Y, |X| × |Y |, {ϑσ×τ}), ωX×Y ), {Θσ×τ}),

where

X × Y := {σ × τ |σ ∈ X, τ ∈ Y } ,

ϑσ×τ := ϕσ × ψτ : σ × τ −→ Rnσ ×Rnτ ,

ωX×Y (σ × τ) := ωX(σ) · ωY (τ),

Θσ×τ := Φσ × Ψτ : SXσ × SYτ −→ |FX
σ | × |F Y

τ |.

Let F̃X
σ and F̃ Y

τ be the entire fans associated with FX
σ and F Y

τ from above. Ob-

viously, the product F̃X
σ × F̃ Y

τ := {α × β|α ∈ F̃X
σ , β ∈ F̃ Y

τ } with weight function
ωF̃Xσ ×F̃Yτ

(α× β) := ωF̃Xσ (α) · ωF̃Yτ (β) is again a tropical fan and thus its intersection

with |FX
σ | × |F Y

τ | yields an open fan (cf. definition 1.4.3). Hence the cartesian product

(((X × Y, |X| × |Y |, {ϑσ×τ}), ωX×Y ), {Θσ×τ})
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1.5 Cartier divisors and their associated Weil divisors

α2
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C C C

Figure 1.9: The Cartier divisor ϕ defined in example 1.5.2.

is again a tropical polyhedral complex.

If C = [(X,ωX)] and D = [(Y, ωY )] are tropical cycles we define

C ×D := [(X,ωX) × (Y, ωY )]

for (X,ωX)× (Y, ωY ) as defined above. Note that C×D does not depend on the choice
of the representatives X and Y .

1.5 Cartier divisors and their associated Weil divisors

Definition 1.5.1 (Rational functions and Cartier divisors)
Let C be an abstract k-cycle and let U be an open set in |C|. A (non-zero) rational
function on U is a continuous function ϕ : U → R such that there exists a representa-
tive (((X, |X|, {mσ}σ∈X), ωX), {Mσ}σ∈X) of C such that for each face σ ∈ X the map
ϕ ◦m−1

σ is locally integer affine linear (where defined). The set of all non-zero rational
functions on U is denoted by K∗

C(U) or just K∗(U).
If additionally for each face σ ∈ X the map ϕ ◦ M−1

σ is locally integer affine linear
(where defined), ϕ is called regular invertible. The set of all regular invertible func-
tions on U is denoted by O∗

C(U) or just O∗(U).
A representative of a Cartier divisor on C is a finite set {(U1, ϕ1), . . . , (Ul, ϕl)}, where
{Ui} is an open covering of |C| and ϕi ∈ K∗(Ui) are rational functions on Ui that only
differ in regular invertible functions on the overlaps, in other words, for all i 6= j we
have ϕi|Ui∩Uj − ϕj|Ui∩Uj ∈ O∗(Ui ∩ Uj).
We define the sum of two representatives by {(Ui, ϕi)}+{(Vj, ψj)} = {(Ui∩Vj, ϕi+ψj)},
which obviously fulfills again the condition on the overlaps.
We call two representatives {(Ui, ϕi)}, {(Vj, ψj)} equivalent if ϕi−ψj is regular invertible
(where defined) for all i, j, i.e. {(Ui, ϕi)} − {(Vj, ψj)} = {(Wk, γk)} with γk ∈ O∗(Wk).
Obviously, “+” induces a group structure on the set of equivalence classes of repre-
sentatives with the neutral element {(|C|, c0)}, where c0 is the constant zero function.
This group is denoted by Div(C) and its elements are called Cartier divisors on C.

Example 1.5.2

Let us give an example of a Cartier divisor which is not globally defined by a rational
function: As abstract cycle C we take the elliptic curve [X2] from example 1.4.5 (the
brackets resemble the fact that, to be precise, we take the equivalence class of the
polyhedral complex X2 with respect to refinements). By α1, α2 we denote the two
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Chapter 1: Foundations of tropical intersection theory

vertices in X2. W.l.o.g. we can assume that the maps Mαi map the points αi exactly
to 0 ∈ R. Of course, the stars Sα1 , Sα2 cover our whole space |C| = |X2|. So we can
define the Cartier divisor ϕ := [{(Sα1 , ψ1), (Sα2 , ψ2)}], where ψ1 := max(0, x) ◦ Mα1

and ψ2 := c0 ◦Mα2 with c0 the constant zero function. Let us check the condition on
the overlaps: On one open half of our curve the two functions coincide, whereas on the
other open half they differ by a linear function. So we constructed an Cartier divisor
which can not be globally defined by one rational function (as ψ1 can not be completed
to a continuous function on |C|).

Remark 1.5.3 (Restrictions to subcycles)
Note that, as in the affine case (see remark 1.2.2), we can restrict a non-zero rational
function ϕ ∈ K∗

C(U) to an arbitrary subcycle D ⊆ C, i.e. ϕ|U∩|D| ∈ K∗
D(U ∩ |D|). It is

also true that a regular invertible function ϕ ∈ O∗
C(U) restricted to D is again regular

invertible, i.e. ϕ|U∩|D| ∈ O∗
D(U ∩ |D|). Hence we can also restrict a Cartier divisor

[{(Ui, ϕi)}] ∈ Div(C) toD by setting [{(Ui, ϕi)}] |D := [{(Ui∩|D|, ϕi|Ui∩|D|)}] ∈ Div(D).

Construction 1.5.4 (Intersection products)
Let C be an abstract k-cycle and ϕ = [{(Ui, ϕi)}] ∈ Div(C) a Cartier divisor on C. By
definition 1.5.1 and lemma 1.4.12, there exists a representative
(((X, |X|, {mσ}σ∈X), ωX), {Mσ}σ∈X) of C such that for all i and σ ∈ X the map ϕi◦m

−1
σ

is locally integer affine linear (where defined). We can also assume that X = X∗, as
our functions are defined on |C| = |X∗| at the most. We would like to define the
intersection product ϕ · C to be

[(((
Y, |Y |, {mσ}σ∈Y

)
, ωX,ϕ

)
,
{
Mσ|SYσ : SYσ → |F Y

σ |
}
σ∈Y

)]
,

where

Y :=
k−1⋃

i=0

X(i), |Y | :=
⋃

σ∈Y

σ, SYσ =
⋃

σ′∈Y
σ⊆σ′

(σ′)ri, F Y
σ :=

k−1⋃

i=0

F (i)
σ

and ωX,ϕ is an appropriate weight function. So it remains to construct ωX,ϕ(τ) for
τ ∈ X(k−1).
First, we do this pointwise, i.e. we construct ωX,ϕ(p) for p ∈ (τ)ri. Given a p ∈ (τ)ri,
we pick an i with p ∈ Ui. Let V be the connected component of Mτ (Ui∩Sτ ) containing
Mτ (p). Then the function ϕi ◦M

−1
τ |V can be uniquely extended to a rational function

ϕ̃i ∈ K∗([(F̃τ , ωF̃τ )]), where (F̃τ , ωF̃τ ) is the tropical fan generated by the open fan
(Fτ , ωFτ ). So, in the affine case, we can compute ωF̃τ ,ϕ̃i(R ·Mτ (τ)) (see construction
1.2.3 and definition 1.2.4) and define ωX,ϕ(p) := ωF̃τ ,ϕ̃i(R ·Mτ (τ)).
This definition is well-defined, namely if we pick another j with p ∈ Uj and denote by
V ′ the connected component of Mτ (Uj ∩ Sτ ) containing Mτ (p), we know by definition
of a Cartier divisor that ϕi ◦M

−1
τ |V ∩V ′ − ϕj ◦M

−1
τ |V ∩V ′ is affine linear, hence ϕ̃i − ϕ̃j

is affine linear. By remark 1.2.6 we get ωF̃τ ,ϕ̃i(R ·Mτ (τ)) = ωF̃τ ,ϕ̃j(R ·Mτ (τ)).
The same argument shows that our definition does not depend on the choice of a
representative {(Ui, ϕi)} of ϕ.
But as (τ)ri is connected, the continuous function ωX,ϕ : (τ)ri → Z must be constant.
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1.6 Cartier divisors and their associated Weil divisors

Hence, we define ωX,ϕ(τ) := ωX,ϕ(p) for some p ∈ (τ)ri. With this weight function
(((

Y, |Y |, {mσ}σ∈Y
)
, ωX,ϕ

)
, {Mσ|SYσ }σ∈Y

)

is a tropical polyhedral complex.
Let us now check if the equivalence class of this complex is independent of the choice
of representatives of C. Let therefore (((X ′, |X ′|, {mσ′}σ′∈X′), ωX′), {Mσ′}σ′∈X′) be a
refinement of (((X, |X|, {mσ}σ∈X), ωX), {Mσ}σ∈X) (we can again assume X ′ = (X ′)∗).
Then, for each σ′ ∈ X ′, the map MCX′,X(σ′) ◦ M

−1
σ′ embeds Fσ′ into a refinement of

FCX′,X(σ′). Applying the affine statement here (see remark 1.2.5), we deduce that

for each τ ′ ∈ X ′(k−1) we have ωX′,ϕ(τ
′) = 0 (if dimCX′,X(τ ′) = k) or ωX′,ϕ(τ

′) =
ωX,ϕ(CX′,X(τ ′)) (if dimCX′,X(τ ′) = k − 1).

Definition 1.5.5 (Intersection products)
Let C be an abstract k-cycle and ϕ = [{(Ui, ϕi)}] ∈ Div(C) a Cartier divisor on C.
Let furthermore (((X, |X|, {mσ}σ∈X), ωX), {Mσ}σ∈X) be a reduced representative of C
such that for all i and σ ∈ X the map ϕi ◦m

−1
σ is locally integer affine linear (where

defined). The associated Weil divisor div(ϕ) = ϕ · C is defined to be

[(((
Y :=

k−1⋃

i=0

X(i),
⋃

σ∈Y

σ, {mσ}σ∈Y
)
, ωX,ϕ

)
, {Mσ|SYσ }σ∈Y

)]
∈ Zk−1(C),

where SYσ =
⋃
σ′∈Y
σ⊆σ′

(σ′)ri and ωX,ϕ is the weight function defined in construction 1.5.4.

Let D ∈ Zl(C) be an arbitrary subcycle of C of dimension l. We define the intersection
product of ϕ with D to be ϕ ·D := ϕ|D ·D ∈ Zl−1(C).

Example 1.5.6

Let us compute the Weil divisor associated to our Cartier divisor ϕ on the elliptic
curve C constructed in example 1.5.2. In fact, there is nothing to compute: One can
see immediately from the picture that div(ϕ) is just the vertex α1 with multiplicity
1 (the multiplicity of α2 is 0 as in order to compute it, one has to use the constant
function ψ2). Let us stress that this single point can not be obtained as the Weil divisor
of a (global) rational function, as all such divisors must have “degree 0” (this is defined
precisely and proven in remark 1.7.3).

Proposition 1.5.7 (Commutativity)
Let ϕ, ψ ∈ Div(C) be two Cartier divisors on C. Then ψ · (ϕ · C) = ϕ · (ψ · C).

Proof. Say ϕ = [{(Ui, ϕi)}] and ψ = [{(Vj, ψj)}]. Using lemma 1.4.12 we find a reduced
representative (((X, |X|, {mσ}σ∈X), ωX), {Mσ}σ∈X) of C such that for all i, j and all
σ ∈ X the maps ϕi ◦ m

−1
σ and ψj ◦ m

−1
σ are locally integer affine linear (where

defined). For θ ∈ X(k−2), p ∈ (θ)ri and i, j with p ∈ Ui ∩ Vj we get (using notations
from construction 1.5.4) ωX,ϕ,ψ(θ) = ωX,ϕ,ψ(p) = ωF̃θ,ϕ̃i,ψ̃j(R · Mθ(θ)) and similarily

ωX,ψ,ϕ(θ) = ωF̃θ,ψ̃j ,ϕ̃i(R ·Mθ(θ)). Using the corresponding statement in the affine case

now (see proposition 1.2.7 (b)), we deduce that the two weight functions are equal,
which proves the claim.
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Chapter 1: Foundations of tropical intersection theory

1.6 Push-forward of tropical cycles and pull-back of
Cartier divisors

Definition 1.6.1 (Morphisms of tropical cycles)
Let C ∈ Zn and D ∈ Zm be two tropical cycles. A morphism f : C → D of tropical
cycles is a continuous map f : |C| → |D| with the following property: There exist
reduced representatives (((X, |X|), ωX), {Φσ}) of C and (((Y, |Y |), ωY ), {Ψτ}) of D such
that

(a) for every polyhedron σ ∈ X there exists a polyhedron σ̃ ∈ Y with f(σ) ⊆ σ̃,

(b) for every pair σ, σ̃ from (a) the map Ψσ̃ ◦ f ◦ Φ−1
σ : |FX

σ | → |F Y
σ̃ | induces a

morphism of fans F̃X
σ → F̃ Y

σ̃ (cf. definition 1.3.1), where F̃X
σ and F̃ Y

σ̃ are the
tropical fans associated to FX

σ and F Y
σ̃ respectively (cf. definition 1.4.3).

First of all we want to show that the restriction of a morphism to a subcycle is again
a morphism:

Lemma 1.6.2

Let C ∈ Zn and D ∈ Zm be two cycles, f : C → D a morphism and E ∈ Zk(C) a
subcycle of C. Then the map f ||E| : |E| → |D| induces a morphism of tropical cycles
f |E : E → D.

Proof. By the definition of a morphism there exist reduced representatives
((X1, |X1|), ωX1) of C and ((Y, |Y |), ωY ) of D such that properties (a) and (b) in defi-
nition 1.6.1 are fulfilled. By the definition of a subcycle there exist reduced represen-
tatives ((Z1, |Z1|), ωZ1) of E and ((X2, |X2|), ωX2) of C such that properties (a) and
(b) in definition 1.4.13 are fulfilled, i.e. such that (Z1, |Z1|)E (X2, |X2|) and the trop-
ical structures on Z1 and X2 agree. As “∼” is an equivalence relation there exists
a common refinement ((X, |X|), ωX) of ((X1, |X1|), ωX1) and ((X2, |X2|), ωX2) which
we may assume to be reduced. Applying construction 1.4.11 to Z1 and X we obtain
a refinement ((Z, |Z|), ωZ) := ((Z1 ∩X, |Z1 ∩X|), ωZ1∩X) of ((Z1, |Z1|), ωZ1) such that
(Z, |Z|)E(X, |X|) and the tropical structures on Z andX agree. Thus properties (a) and
(b) of definition 1.6.1 are fulfilled by Z and Y and the restricted map f ||E| : |E| → |D|
gives us a morphism f |E : E → D.

If we are given a morphism and a tropical cycle the following construction shows how
to build the push-forward cycle of the given one along our morphism:

Construction 1.6.3 (Push-forward of tropical cycles)
Let C ∈ Zn and D ∈ Zm be two cycles and let f : C → D be a morphism. Let
(((X, |X|, {ϕσ}), ωX), {Φσ}) and (((Y, |Y |, {ψσ}), ωY ), {Ψτ}) be representatives of C
and D fulfilling properties (a) and (b) of definition 1.6.1. Consider the collection of
polyhedra

Z := {f(σ)|σ ∈ X contained in a maximal polyhedron of X on which f is injective}.

In general Z is not a polyhedral complex. We resolve this by subdividing the polyhedra
in Z and refining X accordingly:
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1.6 Push-forward of tropical cycles and pull-back of Cartier divisors

Fix some polyhedron σ̃ ∈ Y (m) and let τ1, . . . , τr ∈ Z be all polyhedra that are contained
in σ̃. Property (b) of definition 1.6.1 implies that {ψσ̃(τi)|i = 1, . . . , r} is a set of rational
polyhedra in Rnσ̃ . As in remark and definition 1.4.14 let {gi(x) ≤ bi|i = 1, . . . , N},
gi ∈ Hom(Znσ̃ ,Z), bi ∈ R be all inequalities occurring in the description of all polyhedra
in {ψσ̃(τi)|i = 1, . . . , r} and let

Rσ̃ := {ψσ̃(τi)|i = 1, . . . , r} ∩HG1,b1 ∩ · · · ∩HGN ,bN ,

Pσ̃ := {ψ−1
σ̃ (τ)|τ ∈ Rσi}.

As in construction 1.4.15 Pσ̃ can be seen as a kind of local refinement of Z. But here
again taking the union over all maximal polyhedra σ̃ ∈ Y (m) does in general not lead to
a global refinement as there may be overlaps between polyhedra coming from different
σ̃. We fix this as follows (cf. construction 1.4.15): For σ̃ ∈ Y (m) and τ̃ ∈

⋃m−1
i=0 Y (i) let

P σ̃
Z,τ̃ := {̺ ∈ Pσ̃|τ̃ is the inclusion minimal polyhedron of Y containing ̺}

and
PZ,m :=

⋃

σ̃∈Y (m)

{̺ ∈ Pσ̃|∄τ̃ ∈ Y (m−1) : ̺ ⊆ τ̃}.

Then

Z̃ := PZ,m ∪


 ⋃

τ̃∈Y (i):i<m

{
⋂

σ̃∈Y (m):τ̃⊆σ̃

τσ̃|τσ̃ ∈ P σ̃
Z,τ̃}




is the set of polyhedra (without any overlaps now) that shall induce our wanted refine-
ment of X: Let

T := {σ ∈ X(n)|f is injective on σ},

Q0 := {τ ∈ X|∄σ ∈ T : τ ⊆ σ}

and

Q1 :=

(
⋃

σ∈T

{(f |σ)
−1(τ)|τ ∈ Z̃, τ ⊆ f(σ)}

)
.

Then define X̃ := Q0 ∪Q1.
Let τ ∈ Q1 and choose σ ∈ T with τ ⊆ σ. Property (b) of definition 1.6.1 implies that
ψσ̃ ◦ f ◦ϕ

−1
σ is integer affine linear where defined. Hence ϕσ(τ) is a rational polyhedron

in Rnσ . Denote by Hσ,τ the smallest affine subspace of Rnσ containing ϕσ(τ). We can
consider ̺τ := ϕσ|τ to be a map ̺τ : τ → Hσ,τ

∼= Rnτ . Note that by construction

(X̃, |X|, {̺τ}) is a polyhedral complex. We endow it with the weight function ωX̃ and

tropical structure {ΦX̃
τ } induced by X. Now we are able to define

f∗X := {f(σ)|σ ∈ X̃ contained in a maximal polyhedron of X̃ on which f is injective}

and |f∗X| :=
⋃
τ∈f∗X

τ . For every polyhedron τ ∈ f∗X let στ ∈ Y be the inclusion-
minimal polyhedron containing τ . Then define ϑτ := ψστ |τ : τ → Hστ ,τ

∼= Rnτ ,
where Hστ ,τ ⊆ Rnστ is the smallest affine subspace containing the rational polyhedron

ψστ (τ) ∈ Z̃. Note that this makes (f∗X, |f∗X|, {ϑτ}) into a polyhedral complex. More-

over, note that property (b) of definition 1.6.1 still holds for X̃ and Y . Hence we
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Chapter 1: Foundations of tropical intersection theory

can assign weights and tropical fans to f∗X as follows: Let σ ∈ f∗X, let σ̃ ∈ Y be the
inclusion-minimal polyhedron containing it and let τ1, . . . , τr ∈ X̃ be all polyhedra with
f(τi) = σ that are contained in a maximal polyhedron of X̃ on which f is injective.

Then let Ψσ̃(Sσ̃) = F Y
σ̃ and ΦX̃

τi
(Sτi) = F X̃

τi
respectively be the corresponding open fans

and F̃ Y
σ̃ , F̃ X̃

τi
be the associated tropical fans. Property (b) of definition 1.6.1 implies

that f∗F̃
X̃
τi

⊆ |F̃ Y
σ̃ | is again a tropical fan (note that we do not need to refine F̃ X̃

τi
to

construct this push-forward). Thus we can define

(
F̃ f∗X
σ , ωF̃ f∗Xσ

)
:=

(
r⋃

i=1

f∗F̃
X̃
τi
,

r∑

i=1

ωf∗F̃ X̃τi

)
and F f∗X

σ := F̃ f∗X
σ ∩ Ψσ̃(Sσ)

(here again we assume that ωf∗F̃ X̃τi
(τ) = 0 if τ /∈ f∗F̃

X̃
τi

). Moreover we define

Θσ := Ψσ̃|Sσ : Sσ → |F f∗X
σ |.

Then the map Θσ, σ ∈ f∗X is 1:1 on polyhedra and we can endow the maximal
polyhedra of f∗X with weights ωf∗X(·) coming from F f∗X

σ in this way. These weights
are obviously well-defined by property (c) of the tropical polyhedral complex Y (cf.
definition 1.4.4) and the maps Θσ for different σ ∈ f∗X are obviously compatible.
Hence we can define

f∗C :=

[((
(f∗X, |f∗X|, {ϑτ}), ωf∗X

)
, {Θτ}

)]
∈ Zn(D).

Note that the class [(((f∗X, |f∗X|, {ϑτ}), ωf∗X), {Θτ})] is independent of the choices we
made. Thus construction 1.6.3 immediately leads to the following

Corollary 1.6.4 (Push-forward of tropical cycles)
Let C ∈ Zn and D ∈ Zm be two cycles and let f : C → D be a morphism. Then for all
k there is a well-defined and Z-linear map

Zk(C) −→ Zk(D) : E 7−→ f∗E := (f |E)∗E.

Proof. The linearity can be proven similar to the affine case (cf. proposition 1.3.6).

Our next aim is to define the pull-back of Cartier divisors. But first we need the
following

Lemma 1.6.5

Let C ∈ Zn and D ∈ Zm be two tropical cycles and let f : C → D be a morphism.
By definition there exist reduced representatives (((X, |X|, {ϕσ}), ωX), {Φσ}) of C and
(((Y, |Y |, {ψτ}), ωY ), {Ψτ}) of D such that properties (a) and (b) in definition 1.6.1
are fulfilled. Let (((Y1, |Y1|, {ψ

′
τ ′}), ωY1), {Ψ

′
τ ′}) be a refinement of Y . Then there is

a refinement (((X1, |X1|, {ϕ
′
σ′}), ωX1), {Φ

′
σ}) of X such that properties (a) and (b) of

definition 1.6.1 are fulfilled for X1 and Y1.
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Proof. Let X1 := {σ ∩ f−1(τ)|σ ∈ X, τ ∈ Y1}. By property (b) of definition 1.6.1 all
ϕσ(σ∩f

−1(τ)) are rational polyhedra in Rnσ . For every σ′ ∈ X1 choose σ ∈ X such that
σ′ = σ ∩ f−1(τ) for some τ ∈ Y1. Then we can define ϕ′

σ′ := ϕσ|σ′ : σ′ → Hσ,σ′ ∼= Rnσ′ ,
where Hσ,σ′ is the smallest affine subspace of Rnσ containing ϕσ(σ

′). Moreover let
|X1| := |X|. Note that with these settings (X1, |X1|, {ϕ

′
σ′}) is a polyhedral complex. We

can endow it with the weight function ωX1 and the tropical structure {Φ′
σ′} induced by

X. Together with Y1 the tropical polyhedral complex (((X1, |X1|, {ϕ
′
σ′}), ωX1), {Φ

′
σ′})

fulfills the requirements (a) and (b) of definition 1.6.1.

Proposition 1.6.6 (Pull-back of Cartier divisors)
Let C ∈ Zn and D ∈ Zm be tropical cycles and let f : C → D be a morphism. Then
there is a well-defined and Z-linear map

Div(D) −→ Div(C) : [{(Ui, hi)}] 7−→ f ∗[{(Ui, hi)}] := [{(f−1(Ui), hi ◦ f)}].

Proof. We have to show that h ◦ f ∈ K∗
C(f−1(U)) for h ∈ K∗

D(U) and that h ◦ f ∈
O∗
C(f−1(U)) for h ∈ O∗

D(U). Then the rest is obvious.
So let h ∈ K∗

D(U). Then there exists a representative (((Y, |Y |, {ψσ}), ωY ), {Ψτ}) of D
such that for every polyhedron σ ∈ Y the map h ◦ ψ−1

σ is locally integer affine linear.
Moreover, since f is a morphism there exist representatives (((X, |X|, {ϕσ}), ωX), {Φτ})
of C and (((Y ′, |Y ′|, {ψ′

σ′}), ωY ′), {Ψ′
τ ′}) of D such that properties (a) and (b) of defi-

nition 1.6.1 are fulfilled, i.e. f(σ) ⊆ σ̃ ∈ Y ′ for all σ ∈ X and the maps Ψσ̃ ◦ f ◦ Φ−1
σ

induce morphisms of fans. By lemma 1.6.5 we may assume that Y = Y ′. Now
let σ ∈ X and choose some σ̃ ∈ Y such that f(σ) ⊆ σ̃. Property (b) of def-
inition 1.6.1 implies that ψσ̃ ◦ f ◦ ϕ−1

σ and Ψσ̃ ◦ f ◦ Φ−1
σ are integer affine linear.

Thus h ◦ f ◦ ϕ−1
σ = (h ◦ ψ−1

σ̃ ) ◦ (ψσ̃ ◦ f ◦ ϕ−1
σ ) is locally integer affine linear and

h ◦ f ∈ K∗
C(f−1(U)). If additionally h ◦ Ψ−1

σ̃ is locally integer affine linear then so is
h ◦ f ◦Φ−1

σ = (h ◦Ψ−1
σ̃ ) ◦ (Ψσ̃ ◦ f ◦Φ−1

σ ). Hence h ◦ f ∈ O∗
C(f−1(U)) for h ∈ O∗

D(U).

Our last step in this chapter is to state the analogon of the projection formula from
1.3.8:

Proposition 1.6.7 (Projection formula)
Let C ∈ Zn and D ∈ Zm be two cycles and f : C → D be a morphism. Let E ∈ Zk(C)
be a subcycle of C and d ∈ Div(D) be a Cartier divisor. Then the following holds:

d · (f∗C) = f∗(f
∗d · C) ∈ Zk−1(D).

Proof. The claim follows from the constructions of f∗C and f ∗d, from definition 1.5.5
and proposition 1.3.8.

1.7 Rational equivalence

In this section we will introduce a concept of rational equivalence and prove that
this equivalence is compatible with push-forwards of cycles and pull-backs of Cartier
divisors.
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Definition 1.7.1 (Rational equivalence)
Let C be a cycle. We denote by R(C) := {(|C|, h)|h bounded} ⊆ Div(C) the subgroup
of all Cartier divisors globally given by a bounded rational function. Then we define
the Picard group of C to be

Pic(C) := Div(C)/R(C).

Moreover, let D be a subcycle of C. We call D rationally equivalent to zero on C if
there exist a tropical cycle C ′ of dimension dim(D) + 1, a morphism f : C ′ → C and a
bounded rational function h on C ′ such that

f∗(h · C ′) = D.

Let D′ be another subcycle of C. Then we call D and D′ rationally equivalent, denoted
by D ∼ D′, if D −D′ is rationally equivalent to zero. We define the k-th Chow group
of C to be

Ak(C) := Zk(C)/ ∼ .

To prove that this equivalence is not too strong for applications in enumerative geom-
etry we need the following lemma:

Lemma 1.7.2

Let C be a one-dimensional abstract tropical cycle, ϕ ∈ R(C) a bounded rational func-
tion on C and (((X, |X|, {mσ}σ∈X), ωX), {Mσ}σ∈X) a reduced representative of C such
that for all σ ∈ X the map ϕ ◦m−1

σ =: ϕσ is integer affine linear. Then

∑

{p}∈X(0)

ωϕ({p}) = 0,

i.e. ϕ · C is of degree zero.

The proof of this statement is to a large extent the work of Johannes Rau, my coauthor
of [AR07] and [AR08]. Hence we skip it here and refer to [AR07, lemma 8.3] instead.

Remark 1.7.3

Note that this property
∑

{p}∈X(0) ωϕ({p}) = 0 is preserved by pushing forward. As a
consequence, for any tropical cycle C there is a well-defined morphism

deg : A0(C) −→ Z : [λ1P1 + . . .+ λrPr] 7−→ λ1 + . . .+ λr.

For D ∈ A0(C) the number deg(D) is called the degree of D.

Lemma 1.7.4

Let D be a cycle in C that is rationally equivalent to zero. Then the following holds:

(a) Let E be another cycle. Then D × E is also rationally equivalent to zero.

(b) Let ϕ ∈ Div(C) be a Cartier divisor on C. Then ϕ ·D is also rationally equivalent
to zero.
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(c) Let g : C → C̃ be a morphism. Then g∗(D) is also rationally equivalent to zero.

Proof. Let f : C ′ → C be a morphism and h a bounded function on C ′ such that
f∗(h · C ′) = D. Then f × id : C ′ × E → C × E provides (a), restricting f to
f : f ∗(ϕ) · C ′ → C provides (b) and composing f with g provides (c).

Remark 1.7.5

In particular, the above lemma implies that there is a well-defined map

Pic(C)d × Ad(C) −→ Z : (([ϕ1], . . . , [ϕd]), D) 7−→ deg([ϕ1 · . . . · ϕd ·D]),

where C is our ambient cycle. This map is of particular interest when dealing with
enumerative questions.

Of course, our notion of rational equivalence should also be compatible with the pull-
back of Cartier divisors. This is indeed the case:

Lemma 1.7.6 (Pull-back of rational equivalence)
Let C,D be tropical cycles and let f : C → D be a morphism between them. Then the
pull-back map Div(D) → Div(C), ϕ 7→ f ∗ϕ induces a well-defined map on the quotients
Pic(D) → Pic(C) : [ϕ] 7→ [f ∗ϕ].

Proof. We only have to show that for each element (|D|, ψ) ∈ R(D) the pull-back
Cartier divisor f ∗(|D|, ψ) lies in R(C). But this follows from the trivial fact that the
composition ψ◦f of a bounded function ψ and an arbitrary map f is again bounded.

1.8 Intersection of cycles in Rn

So far we are only able to intersect Cartier divisors with cycles. Our aim in this section
is now to define the intersection of two cycles with ambient cycle Rn (with trivial
structure maps). We do this as follows:

Remark 1.8.1

We can express the diagonal in Rn ×Rn

[(△, 1)] = [({(x, x)|x ∈ Rn}, 1)] ∈ Zn(R
n ×Rn)

as a product of Cartier divisors, namely

[(△, 1)] = ψ1 · · ·ψn · (R
n ×Rn),

where ψi = [{(Rn × Rn,max{0, xi − yi})}] ∈ Div(Rn × Rn), i = 1, . . . , n. We will use
this fact to define the intersection product of any two cycles in Rn.

Definition 1.8.2

Let π : Rn ×Rn → Rn : (x, y) 7→ x. Then we define the intersection product of cycles
in Rn by

Zn−k(R
n) × Zn−l(R

n) −→ Zn−k−l(R
n)

(C,D) 7−→ C ·D := π∗(△ · (C ×D)),
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where π∗ denotes the push-forward as defined in 1.6.4 and △ · (C × D) :=
ψ1 · · ·ψn · (C ×D) with ψ1, . . . , ψn as defined in remark 1.8.1.

Having defined this intersection product of arbitrary cycles in Rn we will prove now
some basic properties. But as a start we need the following lemmas:

Lemma 1.8.3

Let C ∈ Zk(R
n) be a cycle with representative (X,ωX) and let ψ1, . . . , ψn be the Cartier

divisors defined in remark 1.8.1. Then (Xj, ωXj) with

Xj :=
{
(Rn × σ) ∩ {(x, y) ∈ Rn ×Rn|xi = yi for i = j, . . . , n}|σ ∈ X

}
,

ωXj
(
(Rn × σ) ∩ {(x, y) ∈ Rn ×Rn|xi = yi for i = j, . . . , n}

)
:= ωX(σ)

is a representative of ψj · · ·ψn · (R
n × C).

Proof. We use induction on j. For j = n + 1 there is nothing to show. Now let the
above representative be correct for some j + 1. We have to show that Xj is a tropical
polyhedral complex and that it represents ψj · · ·ψn · (R

n × C): Note that

dim ((Rn × σ) ∩ {(x, y) ∈ Rn ×Rn|xi = yi for i = j, . . . , n})
< dim ((Rn × σ) ∩ {(x, y) ∈ Rn ×Rn|xi = yi for i = j + 1, . . . , n})

(∗)

for all σ ∈ X. Hence Xj is a tropical polyhedral complex. Moreover note that

X̃j+1 := {σ ∩ {xj − yj = 0}, σ ∩ {xj − yj ≤ 0}, σ ∩ {xj − yj ≥ 0}|σ ∈ Xj+1}

with weights induced by Xj+1 is a refinement of Xj+1 such that max{0, xj−yj} is linear

on every face of X̃j+1. By (∗) there are exactly two types of faces of codimension one

in X̃j+1:

(i) (Rn × σ) ∩ {xi − yi = 0 for i = j, . . . , n} with σ ∈ X, codim(σ) = 0,

(ii) (Rn × σ) ∩ {xi − yi = 0 for i = j + 1, . . . , n; xj − yj ≤ 0} or
(Rn × σ) ∩ {xi − yi = 0 for i = j + 1, . . . , n; xj − yj ≥ 0} with σ ∈ X,
codim(σ) = 1,

where the faces of the second type are not contained in {(x, y) ∈ Rn × Rn|xj = yj}.
Hence max{0, xj − yj} is linear on a neighborhood of every face of type (ii) and thus

these faces get weight zero in max{0, xj − yj} · X̃j+1. The faces of type (i) are weighted

by ωXj+1
((Rn × σ) ∩ {xi − yi = 0 for i = j + 1, . . . , n}) in max{0, xj − yj} · X̃j+1 since

x1 − y1, . . . , xn − yn are part of a lattice basis of (Zn × Zn)∨. Thus max{0, xj − yj} ·

X̃j+1 = Xj and Xj is a representative of ψj · · ·ψn · (R
n × C).

Corollary 1.8.4

Let C ∈ Zk(R
n) be a cycle. Then we have the equation:

Rn · C = C.
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Proof. Let (X,ωX) be a representative of C, let π : Rn×Rn → Rn : (x, y) 7→ x and let
ψ1, . . . , ψn be the Cartier divisors defined in remark 1.8.1. By lemma 1.8.3 we know that
X1 = {{(x, x)|x ∈ σ}|σ ∈ X} with ωX1({(x, x)|x ∈ σ}) = ωX(σ) is a representative of
ψ1 · · ·ψn · (R

n × C). Hence

Rn · C = π∗(ψ1 · · ·ψn ·R
n × C) = [π∗(X1, ωX1)] = [(X,ωX)] = C.

Lemma 1.8.5

Let C ∈ Zk(R
n) and D ∈ Zl(R

m) be abstract cycles, ϕ ∈ Div(Rn) a Cartier divisor
and π : Rn ×Rm → Rn :(x, y) 7→ x. Then:

(ϕ · C) ×D = π∗ϕ · (C ×D).

Proof. We prove the statement for affine cycles C,D and an affine Cartier divisor ϕ.
The general case then follows by applying the statement locally.
Choose arbitrary representatives Y of D and h of ϕ and choose a representative X of
C such that h is linear on every face of X. This implies that π∗h is linear on every face
of X × Y , too. In X × Y we have two types of faces of codimension one:

(i) σ × τ with σ ∈ X, τ ∈ Y, codim(σ) = 1, codim(τ) = 0,

(ii) σ × τ with σ ∈ X, τ ∈ Y, codim(σ) = 0, codim(τ) = 1.

For the second type the adjacent facets are exactly all σ × τ̃ with τ̃ > τ . We get
ωh(σ× τ) = 0 in h · (X ×Y ) as π∗h is linear on σ× |Y |. For the first type the adjacent
facets are exactly all σ̃ × τ with σ̃ > σ and the weights can be calculated exactly like
for h ·X. This finishes the proof.

Let C and D be cycles in Rn. Assume that C can be expressed as a product of Cartier
divisors, i.e. there are ϕ1, . . . , ϕr ∈ Div(Rn) such that C = ϕr · · ·ϕ1 ·R

n. The obvious
questions are now how C ·D relates to ϕr · · ·ϕ1 ·D and whether ϕr · · ·ϕ1 ·D depends on
the choice of the Cartier divisors ϕi. To answer this question we first prove a somewhat
stronger statement:

Lemma 1.8.6

Let C ∈ Zk(R
n) and D ∈ Zl(R

n) be cycles and ϕ ∈ Div(Rn) a Cartier divisor. Then
we have the equality:

(ϕ · C) ·D = ϕ · (C ·D).

Proof. Let π : Rn ×Rn → Rn : (x, y) 7→ x be like above. The following holds:

(ϕ · C) ·D = π∗(△ · ((ϕ · C) ×D))

1.8.5
= π∗(π

∗ϕ · △ · (C ×D))

1.6.7
= ϕ · π∗(△ · (C ×D))

= ϕ · (C ·D).
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Corollary 1.8.7

Let C ∈ Zk(R
n) be a cycle such that there are Cartier divisors ϕ1, . . . , ϕr ∈ Div(Rn)

with ϕr · · ·ϕ1 ·R
n = C and let D ∈ Zl(R

n) be any cycle. Then

ϕr · · ·ϕ1 ·D = C ·D.

Proof. Applying lemma 1.8.6 and lemma 1.8.3 we obtain

C ·D = (ϕr · · ·ϕ1 ·R
n) ·D = ϕr · · ·ϕ1 · (R

n ·D) = ϕr · · ·ϕ1 ·D.

Remark 1.8.8

Note that corollary 1.8.7 in particular implies that our definition of the intersection
product on Rn (cf. definition 1.8.2) is independent of the choice of the Cartier divisors
describing the diagonal △.

Theorem 1.8.9

Let C,C ′ ∈ Zk(R
n), D ∈ Zl(R

n) and E ∈ Zm(Rn) be cycles. Then the following
equations hold:

(a) C ·D = D · C,

(b) (C + C ′) ·D = C ·D + C ′ ·D,

(c) (C ·D) · E = C · (D · E).

Proof. (a): Let πi : Rn ×Rn → Rn : (x1, x2) 7→ xi and π12 : (Rn ×Rn)2 → Rn ×Rn :
(x1, x2, x3, x4) 7→ (x1, x2). Moreover, let △Rn be the diagonal in Rn ×Rn and △Rn×Rn

be the diagonal in (Rn ×Rn)2. Then we can conclude by corollary 1.8.7 that

|ψ1 · · ·ψn · (C ×D)| = |△Rn · (C ×D)|
= |π12

∗ (△Rn×Rn · (△Rn × (C ×D)))| ⊆ |△Rn|

and hence

C ·D = π1
∗(ψ1 · · ·ψn · (C ×D)) = π1

∗(△Rn · (C ×D))
= π2

∗(△Rn · (C ×D)) = π1
∗(△Rn · (D × C))

= π1
∗(ψ1 · · ·ψn · (D × C)) = D · C.

(b): Follows immediately by bilinearity of the intersection product

Div(Rn ×Rn) × Zp(R
n ×Rn)

·
−→ Zp−1(R

n ×Rn),

linearity of the push-forward and the fact that (C + C ′) ×D = C ×D + C ′ ×D.
(c): We will show that △ · (C × π∗(△ · (D × E))) = △ · (π∗(△ · (C ×D)) × E) :
Let π12 : (Rn)3 → (Rn)2 : (x, y, z) 7→ (x, y), π13 : (Rn)3 → (Rn)2 : (x, y, z) 7→ (x, z)
and π23 : (Rn)3 → (Rn)2 : (x, y, z) 7→ (y, z). An easy calculation shows that

△ · (C × π∗(△ · (D × E))) = △ · π12
∗ (C × (△ · (D × E))) (1.1)
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and

△ · (π∗(△ · (C ×D)) × E) = △ · π13
∗ ((△ · (C ×D)) × E). (1.2)

Now let ψ1, . . . , ψn be the Cartier divisors defined in remark 1.8.1. We label these
Cartier divisors with pairs of letters ψxyi to point out the coordinates they are acting
on. We obtain

△ · (C × π∗(△ · (D × E)))

(1.1)
= △ · π12

∗ (C × (△ · (D × E)))

= ψxy1 · · ·ψxyn · π12
∗ (C × (ψyz1 · · ·ψyzn · (D × E)))

1.6.7
= π12

∗ ((π12)∗ψxy1 · · · (π12)∗ψxyn · (C × (ψyz1 · · ·ψyzn · (D × E))))

1.8.5
= π12

∗ ((π23)∗ψyz1 · · · (π23)∗ψyzn · (π12)∗ψxy1 · · · (π12)∗ψxyn · (C ×D × E))

1.8.7
= π13

∗ ((π12)∗ψxy1 · · · (π12)∗ψxyn · (π13)∗ψxz1 · · · (π13)∗ψxzn · (C ×D × E))

1.8.5
= π13

∗ ((π13)∗ψxz1 · · · (π13)∗ψxzn · (ψxy1 · · ·ψxyn · (C ×D)) × E)

1.6.7
= ψxz1 · · ·ψxzn · π13

∗ ((ψxy1 · · ·ψxyn · (C ×D)) × E)

= △ · π13
∗ ((△ · (C ×D)) × E)

(1.2)
= △ · (π∗(△ · (C ×D)) × E).

This proves (c).

It remains to show that our intersection product is well-defined modulo rational equiv-
alence. If this is the case the intersection product induced on A∗(R

n) clearly inherits
the properties of the intersection product on Z∗(R

n) we have proven in this section.

Proposition 1.8.10

The intersection product Zn−k(R
n) × Zn−l(R

n)
·

−→ Zn−k−l(R
n) induces a well-defined

and bilinear map

An−k(R
n) × An−l(R

n)
·

−→ An−k−l(R
n) : ([C], [D]) 7−→ [C] · [D] := [C ·D].

Proof. The intersection product C ·D is defined to be

π∗(max{x1, y1} · · ·max{xr, yr} · (C ×D)),

where the xi (resp. yi) are the coordinates of the first (resp. second) factor of Rn×Rn

and π : Rn×Rn → Rn is the projection onto the first factor (cf. definition 1.8.2). Thus
we can apply lemma 1.7.4 (a) – (c) and the claim follows.
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1.9 Rational equivalence on Rn

In this section we will prove that every tropical cycle in Rn is rationally equivalent to
a uniquely determined affine cycle, called its degree. We will use this equivalence to
prove a tropical version of Bézout’s theorem.
We start the section with the easiest example of rationally equivalent cycles in Rn,
namely translations:

Definition 1.9.1

Let X be a tropical polyhedral complex in Rn and let v ∈ Rn. We denote by X(v) the
translation

X(v) := {σ + v|σ ∈ X}

of X along v. If [X] = C ∈ Zk(R
n) then C(v) := [X(v)]. Note that the class C(v) is

independent of the representative X.

Lemma 1.9.2

Let C be a subcycle of Rn and let v ∈ Rn be an arbitrary vector. Then the equation

C(v) ∼ C

holds.

Proof. Consider the cycle C ×R in Rn ×R with morphism

f : Rn ×R → Rn,

(x, t) 7→ x+ t · ei,

where ei is the i-th unit vector in Rn. For µ ∈ R let hµ be the bounded function

hµ(x, t) =





0 t ≤ 0

t 0 ≤ t ≤ µ

µ t ≥ µ.

Then f∗(hµ · C ×R) = C − C(µ · ei), which proves the claim.

Definition 1.9.3

Let C be a cycle in Rn of codimension k. Then we define dC to be the map

dC : Zk(R
n) −→ Z,

D 7−→ deg(C ·D).

Lemma 1.9.4

Let C = [(X,ωX)] be a d-dimensional affine cycle in Rn. Then there always exists a
representative (X ′, ωX′) of C and a complete simplicial fan Θ such that X ′ ⊆ Θ.

Proof. Let X0 := X = {σ1, . . . , σN} and let σi = {x ∈ Rn|fσi1 (x) ≥ 0, . . . , fσikσi
(x) ≥ 0}.

Moreover, let Y0 := {Rn} and for f ∈ Λ∨ let

Hf := {{x|f(x) ≥ 0}, {x|f(x) = 0}, {x|f(x) ≤ 0}} .
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For all i = 1, . . . , N we construct refinements

Xi := Xi−1 ∩Hf
σi
1

∩ . . . ∩Hf
σi
kσi

and
Yi := Yi−1 ∩Hf

σi
1

∩ . . . ∩Hf
σi
kσi

as described in [GKM07, 2.5(e)]. This construction yields fans XN and YN with X
(k)
N ⊆

Y
(k)
N for all k and |X| = |XN |. Moreover, YN is a complete fan in Rn. We can make
YN into a simplicial fan by further subdividing its cones: Let Θ := YN . If σ ∈ Θ(p) is
generated by vectors v1, . . . , vq then remove σ and add all cones R≥0vi1 + . . .+ R≥0vik
for 1 ≤ k ≤ p and 1 ≤ i1 < . . . < ik ≤ q to Θ. Finally, we take (X ′, ωX′) := (X,ωX)∩Θ
as described in [GKM07, 2.11(b)].

Lemma 1.9.5

Let C1 and C2 be affine cycles in Rn with dC1 = dC2. Then C1 = C2.

The proof of this statement is to a large extent the work of Johannes Rau, my coauthor
of [AR07] and [AR08]. Hence we skip it here and refer to [AR08, lemma 6] instead.
Combining this statement with proposition 1.8.10 we can immediately conclude the
following:

Corollary 1.9.6

Let C1 and C2 be affine cycles in Rn with C1 ∼ C2. Then C1 = C2.

Theorem 1.9.7

Let C be a cycle in Rn. Then there exists an affine cycle δ(X) in Rn with

X ∼ δ(X).

Proof. Let (X1, ωX1) be a representative of C1 := C. Refining (X1, ωX1) we may assume
that every polyhedron σ ∈ X1 is the convex hull of its 1-skeleton (see for example
[Z95, 1.2 and 2.2]) and that every polyhedron σ ∈ X1 contains at least one vertex

σ ⊇ Pσ ∈ X
(0)
1 .

The 1-skeleton of X1 is a finite graph Γ with edges X
(1)
1 = {ε1, . . . , εN} and vertices

X
(0)
1 = {P0, . . . , PM}. By lemma 1.9.2 we may assume that P0 is the origin. On every

edge εi of this graph we choose an orientation and a primitive direction vector vi ∈ Λεi

respecting this orientation (see figure 1.10 (a)). Then for i = 1, . . . , N let li · ||vi|| be
the length of the edge εi (we set li = ∞ if εi is unbounded).
Adjacency of the bounded edges in the graph Γ yields a system of linear equations
in the variables li having the entries of the vectors vi as coefficients (see figure 1.10
(b)). As the system is solved by the given lengths li ∈ R>0 and all vectors vi are
integral there exists a positive and integral solution l′1, . . . , l

′
N . Using these numbers l′i

we construct a polyhedral complex X t
1, t ∈ R as follows: We keep the position of the

point P0 fixed and for all i = 1, . . . , N with li < ∞ we change the length of the edge
εi to li + t · l′i. For all unbounded edges εi we just keep the directions and the lengths
unchanged. For a given polyhedron σ ∈ X1 this process yields a deformation σt of
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lN · vNP0

l2 · v2

l1 · v1

(a) The oriented
graph constructed

from Γ.

l2 · v2

l4 · v4

l5 · v5

l6 · v6
P0

l1 · v1

l3 · v3

l1v1+l2v2+l3v3−l4v4−l5v5−l6v6 =

0

(b) Adjacency in this
graph yields linear

equations.

P0 P0

σt
2

σt
3

σt
1

(c) Two examples of the
shrinking process.

Figure 1.10: Constructions described in the proof of theorem 1.9.7.

σ which is not necessarily a polyhedron, but that can be decomposed into polyhedra
σt1, . . . , σ

t
pt (see figure 1.10 (c)). If such a polyhedron σtj is of dimension dim(C), then

we define its weight to be

ω̃Xt
1
(σtj) := (−1)δ(σ

t
j) · ωX1(σ),

where δ(σtj) is defined as follows: δ(σtj) :=
∑
d(σt

′

j ), where the sum is taken over all
values t′ ∈ R between 0 and t such that at least one of the lengths liq + t′ · l′iq occurring

in the boundary of σtj is zero and d(σt
′

j ) := dim(σtj) − dim(σt
′

j ). We denote by X̃ t
1 the

set of all polyhedra σtj for σ ∈ X1 and by ω̃Xt
1

the weight function on the polyhedra of
maximal dimension. Refining and possibly merging some of the σtj (we have to add up
the weights of all merged polyhedra) yields a tropical polyhedral complex (X t

1, ωXt
1
).

Note that (X0
1 , ωX0

1
) = (X1, ωX1). Furthermore, for σ ∈ X1 we can consider the set

σ̃ :=
⋃

t∈R

(
pt⋃

j=1

σtj × {t}

)
⊆ Rn ×R.

This set naturally splits up into polyhedra σ̃1, . . . , σ̃sσ . If a polyhedron σ̃i is of maximal
dimension we associate the weight ω̃Xt

1
(σtj) to it, where σtj is a polyhedron containing

a point in the relative interior of σ̃i (this weight is obviously well-defined). We denote

by Z̃ the set {σ̃1, . . . , σ̃sσ |σ ∈ X1} and by ω̃Z the weight function on the polyhedra of
maximal dimension. The choice of the weights ω̃Z(σ̃i) ensures that refining some of the
σ̃i yields a tropical polyhedral complex (Z, ωZ).
Now, for µ ∈ R let ϕµ be the rational function defined by

ϕµ : Rn ×R → R : (x, t) 7→ max{0, t} − max{µ, t}.

Let σ̃i ∈ Z be a polyhedron of maximal dimension and let (possibly after a refinement
of X t

1) σ
t
j ⊆ σ̃i be a polyhedron of X t

1 of maximal dimension. As every polyhedron in
X1 contains at least one vertex, this property also holds for X t

1 and we can choose a
vertex Pσtj ⊆ σtj. Let Pσt+1

j
be the translation of Pσtj in X t+1

1 . We have

Pσt+1
j

− Pσtj =
k∑

j=1

±l′ijvij
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Z

X0
1

X−1
1

X−2
1

ω = −1

Figure 1.11: An example of a cycle Z as constructed in theorem 1.9.7.

for some ij ∈ {1, . . . , N}. Hence

( ∑k
j=1 ±l

′
ij
vij

1

)
∈ Λ × Z

is a generator of (Λ × Z)σ̃i/(Λ × Z)σt and we can deduce that

ϕµ · [(Z, ωZ)] = [(X0
1 , ωX0

1
)] − [(Xµ

1 , ωXµ
1
)].

Now let t0 ∈ R<0 be the largest value such that there exists an edge that has been
shrunk to length 0, i.e. an edge ε′i ∈ (X t0

1 )(1) with length li + t0 · l
′
i = 0. We conclude

that
ϕt0 · [(Z, ωZ)] = C1 − C2,

where C2 := [(X t0
1 , ωXt0

1
)] can be seen as the cycle C = C1 with at least one bounded

polyhedron shrunk to one dimension less.
We repeat the whole process until all bounded polyhedra are shrunk to a point, i.e.
until we obtain an affine cycle Cp. By construction we have

C = C1 ∼ C2 ∼ . . . ∼ Cp,

which proves the claim.

Definition 1.9.8

Let C be a cycle in Rn. We define the recession cycle or degree of C, denoted by δ(C),
to be the affine cycle equivalent to C. This affine cycle exists by theorem 1.9.7 and is
unique by lemma 1.9.5.

Remark 1.9.9

Let σ be a polyhedron in Rn. We define the recession cone of σ to be

rc(σ) := {v ∈ Rn|x+ R≥0v ⊆ σ∀x ∈ σ} = {v ∈ Rn|∃x ∈ σ s.t. x+ R≥0v ⊆ σ}.
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Chapter 1: Foundations of tropical intersection theory

The two sets coincide as σ is closed and convex.
Let C be a d-dimensional cycle in Rn with representative (X,ωX) and let

R̃(C) := {rc(σ)|σ ∈ X}.

By removing all cones of R̃(C) that are not contained in a d-dimensional cone and by
subdividing the remaining cones we can make this set into a fan R(C) of pure dimension
d. To every cone σ ∈ R(C)(d) we associate the weight

ωR(C)(σ) :=
∑

σ′∈X
σ⊆rc(σ′)

ωX(σ′).

The proof of theorem 1.9.7 indeed shows that

δ(C) = [(R(C), ωR(C))]

holds.

Theorem 1.9.10

Let C,D be two tropical cycles in Rn. Then the following are equivalent:

i) C ∼ D

ii) dC = dD

iii) δ(C) = δ(D)

Proof. i) ⇒ ii) follows from proposition 1.8.10. iii) ⇒ i) is an immediate consequence
of theorem 1.9.7. ii) ⇒ iii) follows from theorem 1.9.7, i) ⇒ ii) and lemma 1.9.5.

Remark 1.9.11

In other words, the above theorem says: The notions of rational equivalence, numerical
equivalence and “having the same degree” coincide.

Theorem 1.9.12 (General Bézout’s theorem)
Let C,D be two tropical cycles in Rn. Then

δ(C ·D) = δ(C) · δ(D).

Proof. We apply theorem 1.9.7 and proposition 1.8.10 and get

δ(C ·D) ∼ C ·D ∼ δ(C) · δ(D).

By corollary 1.9.6 two rationally equivalent affine cycles are equal.

Our last step in this section is to prove a version of Bézout’s theorem for a special
class of tropical cycles in Rn called Pn-generic cycles. But first we need some further
definitions:
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1.9 Rational equivalence on Rn

Definition 1.9.13

Let C ∈ Zk(R
n) be a tropical cycle and let Lnk be the tropical fan defined in example

1.2.9. Then we define the degree of C to be the number

deg(C) := deg(C · LncodimX),

where the second map deg : Z0(R
n) → Z : λ1P1 + . . . + λrPr 7→ λ1 + . . . + λr is the

usual degree map. Then the map deg : Zk(R
n) → Z is obviously linear by definition.

Moreover, we define the degree of [C] ∈ Ak(R
n) to be deg([C]) := deg(C). Note that

deg([C]) is well-defined by remark 1.7.3 and proposition 1.8.10.

Definition 1.9.14 (Pn-generic cycles)
Let C ∈ Zk(R

n) be a tropical cycle. C is called Pn-generic if for one (and thus for every)
representative X of C holds: For every face σ ∈ X(k) there exists a polytope Pσ ⊆ Rn

of some dimension r ∈ {0, . . . , k} and a cone σ̃ ∈ (Lnk)
(k−r) such that σ ⊆ Pσ + σ̃.

Remark 1.9.15

Note that that the above definition of Pn-generic cycles is equivalent to the condition
that the recession cycle δ(C) of our cycle C ∈ Zk(R

n) is contained in the tropical
fan Lnk . By [GKM07, example 2.18] this implies that C is Pn-generic if and only if
δ(C) = λ · Lnk holds for some integer λ. In this case we can easily conclude that
deg(C) = deg(δ(C)) = λ.

X

Y

Figure 1.12: The intersection of two Pn-generic cycles of degrees 2 and 3.

Theorem 1.9.16 (Bézout’s theorem)
Let C ∈ Zk(R

n) and D ∈ Zn−k(R
n) be two tropical cycles of complementary dimensions.

Moreover, assume that C is Pn-generic. Then the following equation holds:

deg(C ·D) = deg(C) · deg(D).

Proof. By proposition 1.8.10, theorem 1.9.7 and remark 1.9.15 we can conclude that

deg(C ·D) = deg(δ(C) ·D)
= deg((deg(C) · Lnk) ·D)
= deg(C) · deg(Lnk ·D)
= deg(C) · deg(D).
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2 Tropical cycles with real slopes
and numerical equivalence

In this chapter we introduce a generalized definition of tropical fans and tropical cycles
that allows non-rational slopes. Obviously, these objects cannot be realized as images
of algebraic varieties over the field of Puiseux series under the valuation, but they
are quite useful for some theoretical aspects of tropical geometry. For example, using
tropical cycles with real slopes we give a proof that in any tropical fan any cycle is
numerically equivalent to its degree cycle.

2.1 Tropical cycles with real slopes

We start this section giving the necessary generalizations of the first definitions in
[GKM07] and chapter 1. In the following, let V always be a real vector space of finite
dimension.

Definition 2.1.1

A polyhedron in V is a non-empty subset σ ⊆ V of the form

σ = {x ∈ V |f1(x) = b1, . . . , fr(x) = br, fr+1(x) ≥ br+1, . . . , fN(x) ≥ bN}

for some linear forms f1, . . . , fN ∈ V ∨ and numbers b1, . . . , bN ∈ R. A cone in V is a
polyhedron for which all the numbers b1, . . . , bN are zero.

Definition 2.1.2

A polyhedral complex X in V is a finite set of polyhedra in V such that the following
properties are fulfilled:

(a) All faces of the polyhedra in X are again in X and

(b) the intersection of two polyhedra in X is either a face of each or empty.

A fan in V is a polyhedral complex consisting of cones only. As before we denote by
|X| the union of all polyhedra in X.

Definition 2.1.3

A marked fan in V is a pure-dimensional simplicial fan X in V together with a gener-
ating vector vσ for every edge in X, i.e. a vector vσ ∈ σ \ {0} for every σ ∈ X(1).
As in [GKM07, construction 2.13], for all pairs σ ∈ X(dim(X)) and τ ∈ X(dim(X)−1) with
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2.1 Tropical cycles with real slopes

τ < σ there is exactly one edge σ′ ∈ X(1) that is a face of σ but not of τ . We denote
the associated vector vσ′ by vσ/τ and call it the normal vector of σ relative to τ .

Definition 2.1.4

A tropical fan (with real slopes) in V is a pair (X,ωX) where X is a marked fan and
ωX : X(dim(X)) → R is a weight function on the cones of maximal dimension such that
the balancing condition ∑

σ:τ<σ

ωX(σ) · vσ/τ = 0 in V/Vτ

is fulfilled for all τ ∈ X(dim(X)−1). As in definition 1.1.7 we denote by (X∗, ωX∗) :=
({τ ∈ X|τ ⊆ σ for some σ ∈ X(dim(X)) with ωX(σ) 6= 0}, ωX |(X∗)(dim(X))) the non-zero
part of X.

Remark and Definition 2.1.5

Let (X,ωX) be a tropical fan with real slopes, let σ1 ∈ X(1) be an edge of X and let
λ ∈ R>0 be a positive number. Then let X ′ := X and

ωX′(σ) :=

{
ωX(σ), if σ1 * σ
1
λ
· ωX(σ), if σ1 ⊆ σ.

Moreover, replace in X ′ the vector vσ1 by λ · vσ1 . We would like to call (X,ωX) and
(X ′, ωX′) the same tropical fan, but according to definition 2.1.4 this is not the case.
Hence, in the following we will always identify tropical fans that arise one from the
other by operations as above.

We also have to take care of this ambiguity when defining refinements:

Definition 2.1.6

Let (X,ωX) and (Y, ωY ) be tropical fans with real slopes in V . Analogously to definition
1.1.5 we say that Y is a subfan of X if for every cone σ ∈ Y there exists a cone σ̃ ∈ X
such that σ ⊆ σ̃. In this case we define a map CY,X : Y → X that maps a cone σ ∈ Y
to the inclusion-minimal cone σ̃ ∈ X with σ ⊆ σ̃.
We say that (Y, ωY ) is a refinement of (X,ωX) if

(a) Y ∗ is a subfan of X∗,

(b) |Y ∗| = |X∗| and

(c) ωX(CY,X(σ)) · | det(Aσ,CY,X(σ))| = ωY (σ) for every σ ∈ (Y ∗)(dim(Y )),

where Aσ,CY,X(σ) is a matrix expressing the generating vectors of CY,X(σ) in terms of
the generating vectors of σ.

Remark 2.1.7

Using the above definitions we can carry over the other basic definitions from section
1.1, in particular the definition of affine tropical cycles, to our context. Note that in
some cases, e.g. for taking sums of cycles, it is necessary to further refine the tropical
fans our constructions in section 1.1 yield to obtain simplicial fans. Moreover, we can
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Chapter 2: Tropical cycles with real slopes and numerical equivalence

define open marked fans and open tropical fans in analogy to definition 1.4.3. Using
rational functions with arbitrary slopes it is obviously possible to define intersection
products of Cartier divisors and tropical cycles with real slopes in exactly the same
way as we did in section 1.2. What is missing so far is the notion of morphisms:

Definition 2.1.8

Let (X,ωX) and (Y, ωY ) be tropical fans with real slopes in finite-dimensional real
vector spaces V and V ′, respectively. A morphism f : X → Y is just the restriction of
an R-linear map f̃ : V → V ′ to |X|. As before we can refine X in such a way that

f∗X := {f(σ)|σ ∈ X is contained in a maximal cone of X on which f is injective}

is a fan in V ′. We can make f∗X into a tropical fans as follows: For every cone
σ′ ∈ f∗X

(1) we choose a generating vector vσ′ ∈ σ′ \ {0}. Moreover, for all cones
σ′ ∈ f∗X

(dim(X)) we set

ωf∗X(σ′) :=
∑

σ∈X:f(σ)=σ′

ωX(σ) · | det(Aσ′,f(σ))|,

where Aσ′,f(σ) is a matrix expressing the images f(vτi) of the generating vectors vτi of
σ in terms of the chosen generating vectors of σ′.

In the following we will define marked polyhedral complexes and tropical polyhedral
complexes with real slopes in analogy to marked and tropical fans. This will lead us to
(embedded) tropical cycles with real slopes as spaces “looking locally like affine cycles”.

Definition 2.1.9

A marked polyhedral complex in V is a pure-dimensional polyhedral complex X in V
fulfilling the following conditions:

(a) For every polyhedron σ ∈ X there exists a vertex Pσ ∈ X(0) with Pσ ∈ σ,

(b) for every vertex P ∈ X(0) and every edge σ ∈ X(1) with P ∈ σ we are given a
vector vPσ ∈ V such that the set {σ ∈ X|P ∈ σ} together with the set of vectors
{vPσ |P ∈ σ ∈ X(1)} is an open marked fan in V (after a suitable translation),

(c) for all vertices P1, P2 ∈ X(0) with P1 6= P2 and every edge σ ∈ X(1) with P1, P2 ∈ σ
holds vP1

σ = −vP2
σ and

(d) for every pair of vertices P1, P2 ∈ X(0) and all polyhedra σ ∈ X with P1, P2 ∈
σ the base change from vP1

τ1
, . . . , vP1

τr to vP2
̺1
, . . . , vP2

̺r has determinant ±1, where

τ1, . . . , τr ∈ X(1) and ̺1, . . . , ̺r ∈ X(1) are all the edges contained in σ that
contain P1 respectively P2.

Definition 2.1.10

A tropical polyhedral complex (with real slopes) in V is a pair (X,ωX) where X is
a marked polyhedral complex and ωX : X(dim(X)) → R is a weight function on the
polyhedra of maximal dimension such that for all vertices P ∈ X(0) these weights
make the open marked fan {σ ∈ X|P ∈ σ} into a tropical fan. As before, we denote by
(X∗, ωX∗) := ({τ ∈ X|τ ⊆ σ for some σ ∈ X(dim(X)) with ωX(σ) 6= 0}, ωX |(X∗)(dim(X)))
the non-zero part of X.
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2.1 Tropical cycles with real slopes

Definition 2.1.11

Let (X,ωX) and (Y, ωY ) be tropical polyhedral complexes with real slopes in V . Exactly
as in definition 2.1.6 we say that Y is a subcomplex of X if for every polyhedron σ ∈ Y
there exists a polyhedron σ̃ ∈ X such that σ ⊆ σ̃. Again, we can define a map
CY,X : Y → X that maps a polyhedron σ ∈ Y to the inclusion-minimal polyhedron
σ̃ ∈ X with σ ⊆ σ̃.
We say that (Y, ωY ) is a refinement of (X,ωX) if

(a) Y ∗ is a subcomplex of X∗,

(b) |Y ∗| = |X∗| and

(c) ωX(CY,X(σ)) · | det(Aσ,CY,X(σ))| = ωY (σ) for every σ ∈ (Y ∗)(dim(Y )),

where the matrix Aσ,CY,X(σ) arises as follows: Pick vertices P ∈ σ and Q ∈ CY,X(σ).
Then Aσ,CY,X(σ) is a matrix expressing the generating vectors vQτi of CY,X(σ) in the
open marked fan {σ̃ ∈ X|Q ∈ σ̃} in terms of the generating vectors vP̺i of σ in the
open marked fan {σ̃ ∈ Y |P ∈ σ̃}. By property (d) of definition 2.1.9 condition (c) is
independent of the choice of the vertices P,Q.

Remark 2.1.12

As before, using these new definitions we can carry over the definitions and results from
sections 1.4 – 1.6, in particular the definition of a tropical cycle and the notion of a
morphism of cycles, to our context. Here again it is necessary in some cases to further
refine the polyhedral complexes we obtain by our constructions in chapter 1 to end up
with simplicial complexes. Note that properties (c) and (d) of definition 2.1.9 make
sure that we can define the intersection of a Cartier divisor with a cycle by taking local
intersection products as we did in definition 1.5.5.

Example 2.1.13

We want to consider tropical curves in R2, i.e. tropical cycles of dimension one ac-
cording to remark 2.1.12, and their moduli space in analogy to [GKM07, section 4].
Therefore we fix a degree △0 := {v1, v2, v3}, vi ∈ R2,

∑3
i=1 vi = 0 and say a curve with

real slopes has degree d if its degree (in the sense of [GKM07, definition 4.1]) is

{v1, . . . , v1, v2, . . . , v2, v3, . . . , v3},

where each vi occurs exactly d times. Given n := 3d−1 points P1, . . . , Pn ∈ R2 we want
to calculate the number of tropical curves with real slopes of degree d passing through
P1, . . . , Pn (counted with multiplicities) as an intersection product on the corresponding
moduli space Mlab

0,n,trop(R
2, d) = M0,3d+n,trop ×R2:

Let the matrix A be given by

A = (−v1| − v2)
−1 .

Hence we have maps

M0,3d+n,trop ×R2 evi−→ R2 A
−→ R2.
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v1

v2

v2

v3

v3

Av3

Av3
Av1

Av2

A Av1

Av2v1

Figure 2.1: A curve with real slopes mapped to an ordinary degree-2-curve.

Note that for a curve C of degree d in R2 we have that A(C) is an ordinary degree-
d-curve, i.e. A(C) has degree d in the sense of [GKM07, definition 4.1]. Let Pi =

(a
(i)
1 , a

(i)
2 ). We can write Pi as

Pi = max{a(i)
1 , x} · max{a(i)

2 , y} ·R
2,

where x, y are the coordinates on R2. Moreover, we have

A∗ max{a(i)
1 , x} · A

∗ max{a(i)
2 , y} ·R

2 = | det(A)| · Pi
= | det(A)| · max{a(i)

1 , x} · max{a(i)
2 , y} ·R

2.

Using this equation and the projection formula we can conclude that

Nd = deg

(
n∏
i=1

ev∗
i A

∗ max{a(i)
1 , x} · ev

∗
i A

∗ max{a(i)
2 , y} ·M0,n+3d,trop ×R2

)

= deg

(
n∏
i=1

| det(A)| · ev∗
i max{a(i)

1 , x} · ev
∗
i max{a(i)

2 , y} ·M0,n+3d,trop ×R2

)

= | det(A)|n · deg

(
n∏
i=1

ev∗
i max{a(i)

1 , x} · ev
∗
i max{a(i)

2 , y} ·M0,n+3d,trop ×R2

)

= | det(A)|n · Ñd,

where Nd is the number of ordinary degree-d-curves passing through P1, . . . , Pn (counted

with multiplicities) and Ñd is exactly the number we want to calculate. Hence we obtain
the equation

Ñd =
1

| det(A)|n
· Nd = | det (v1|v2) |

n · Nd.

Remark 2.1.14

In the following, the notions of tropical fan, tropical polyhedral complex and tropical
cycle will always refer to the objects introduced in chapter 1. We will state explicitly if
a fan or cycle is a tropical fan or tropical cycle with real slopes according to definition
2.1.4 or remark 2.1.12, respectively.

49



2.2 Numerical equivalence on fans

u2

u1

u3

τ τ

0

ωZ(τ̃ ′) = (−1)2 · ωX(τ)

ωZ(τ̃) = ωX(τ)

v1

v3

v1

v2

v3

−v3

−v2

−v1

v2

Figure 2.2: Cones τ̃ , τ̃ ′ with normal vectors vi over a polyhedron τ .

2.2 Numerical equivalence on fans

Definition 2.2.1

Let Y be a tropical fan in some vector space V and let C,D ∈ Zk(Y ) be tropical cycles.
We call C and D numerically equivalent if deg(ϕ1 · · ·ϕk ·C) = deg(ϕ1 · · ·ϕk ·D) holds
for all Cartier divisors ϕ1, . . . , ϕk on Y .

Proposition 2.2.2

Let Y be a tropical fan in Rn and let C ∈ Zk(Y ) be a tropical cycle. Then C and
its degree cycle δ(C) ∈ Zk(Y ) are numerically equivalent (see definition 1.9.8 for the
definition of δ(C)).

Proof. Let X be a representative of C. We perform the same construction as in the
proof of theorem 1.9.7, but with some modifications: Like before, we translate our
chosen vertex P0 to the point P ′

0 := 0, but instead of replacing the lengths li by
li + t · l′i we replace li by t · li. Note that we do not change the directions and lengths of
unbounded edges. After a suitable refinement ofX the cones arising from the polyhedra
τ ∈ X for t ≥ 0 in this way are simplicial. Moreover, for t ≤ 0 a polyhedron τ ∈ X
in general yields a union of simplicial cones. We denote this set of cones by Z. We
can make Z into a tropical polyhedral complex by further refining it and equipping it
with weights and normal vectors as follows: Let first τ ∈ X be a bounded polyhedron.
Performing operations as described in remark and definition 2.1.5 we may assume that
every normal vector associated to an edge E of τ with endpoints PE and QE is just
PE − QE (cf. figure 2.2). If τ̃ (for t ≥ 0) and τ̃ ′ (for t ≤ 0) are the cones in Z arising
from τ and P1, . . . , Pr ∈ X(0) are all vertices in τ we choose ±(P1, 1), . . . ,±(Pr, 1) ∈
Rn × R as generating vectors of τ̃ and τ̃ ′, respectively. If τ ∈ X is an unbounded
polyhedron we have all vectors (v̺, 0) ∈ Rn ×R, where v̺ is the primitive normal
vector of an unbounded edge in τ in our original complex X, as additional primitive
normal vectors generating τ̃ . In both cases we set ωZ(τ̃) := ωX(τ) if τ̃ is a cone of
maximal dimension. Moreover, if τ is unbounded, τ̃ ′ is in general not a cone but a union
of cones that contains the primitive normal vectors (v̺, 0) ∈ Rn ×R, too, but due to
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C

δ(C)

Figure 2.3: A curve C and its degree cycle δ(C).

the necessary refinements we need some additional generating vectors in this case. Let
τ̃ ′i be one such cone (or τ̃ ′i = τ̃ ′ if τ is bounded). Then we set ωZ(τ̃ ′i) := (−1)d(τ)ωX(τ),
where d(τ) := dim((τ̃ ′i)

t) − dim(rc((τ̃ ′i)
t)) and (τ̃ ′i)

t is the intersection of (τ̃ ′i) with
Rn × {t} for some t < 0 (cf. theorem 1.9.7, remark 1.9.9 and figure 2.2). Performing
a refinement of overlapping cones and adding up their weights as in theorem 1.9.7
the above choices make Z into a tropical polyhedral complex with real slopes (Z, ωZ)
according to definition 2.1.10 in Rn × R such that moreover max{1, t} · [(Z, ωZ)] =
C(−P0) holds, where t is the coordinate of the additional factor R and C(−P0) is the
translation of C by the vector −P0. Additionally we have max{0, t} · [(Z, ωZ)] = δ(C)
in this case. Let f : Rn ×R → Rn be the map given by (x, t) 7→ x + t · P0. Then f
maps |Z| ∩ {0 ≤ t ≤ 1} to Y . We can conclude the following:

deg (ϕ1 · · ·ϕk · (C − δ(C)))
= deg (ϕ1 · · ·ϕk · f∗(max{1, t} − max{0, t} · [(Z, ωZ)]))
= deg (f∗ (f ∗ϕ1 · · · f

∗ϕk · (max{1, t} − max{0, t}) · [(Z, ωZ)]))
= deg (f ∗ϕ1 · · · f

∗ϕk · (max{1, t} − max{0, t}) · [(Z, ωZ)])

= deg
(
f̃ ∗ϕ1 · · · f̃ ∗ϕk · (max{1, t} − max{0, t}) · [(Z, ωZ)]

)

= deg
(
(max{1, t} − max{0, t}) · f̃ ∗ϕ1 · · · f̃ ∗ϕk · [(Z, ωZ)]

)

= 0,

where f̃ ∗ϕi is any continuation of f ∗ϕi : |Z| ∩ {0 ≤ t ≤ 1} → R on the whole cycle Z.
Hence, using the linearity of deg and the intersection product, we can conclude that
deg (ϕ1 · · ·ϕk · C) = deg (ϕ1 · · ·ϕk · δ(C)) for all Cartier divisors ϕ1, . . . , ϕk on Y and
thus that C and δ(C) are numerically equivalent.

2.3 Chow groups via numerical equivalence

In analogy to Pn-generic cycles (cf. definition 1.9.14) we can define generic cycles
corresponding to other toric compactifications of the algebraic torus:
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2.3 Chow groups via numerical equivalence

Definition 2.3.1 (F -generic cycles)
Let F be a complete fan in Rn corresponding to a compact and smooth toric variety, i.e.
|F | = Rn and every cone of F is generated by part of a lattice basis. Let C ∈ Zk(R

n) be
a tropical cycle. C is called F -generic if for one (and thus for every) representative X
of C holds: For every face σ ∈ X(k) there exists a polytope Pσ ⊆ Rn of some dimension
r ∈ {0, . . . , k} and a cone σ̃ ∈ F (k−r) such that σ ⊆ Pσ + σ̃.
We denote by ZF

k (Rn) the group of all k-dimensional and F -generic cycles in Rn.

Remark 2.3.2

The above definition of F -generic cycles is equivalent to the condition that the recession
cycle δ(C) of our cycle C ∈ Zk(R

n) is contained in the k-skeleton of our given fan
F . Hence, for every F -generic cylce C there is a representative Y of δ(C) such that
Y ⊆

⋃k
i=0 F

(i).

Example 2.3.3

Let F1 and F2 be the complete fans in R2 and R3, respectively, defining P1 × P1 and
P1 × P1 × P1, respectively, as a toric variety. The following figure shows examples of
F1- and F2-generic cycles:

C D

Figure 2.4: An F1-generic curve C and an F2-generic cycle D.

For the rest of this section F will always denote a complete fan in Rn corresponding
to a compact and smooth toric variety as in definition 2.3.1.

Definition 2.3.4 (F -numerical equivalence)
Let C,C ′ ∈ Zk(R

n) be arbitrary tropical cycles in Rn. We say that C and C ′ are
F -numerical equivalent, denoted by C ∼num C ′, if the maps dC : ZF

k (Rn) → Z :
D 7→ deg(C ·D) and dC′ : ZF

k (Rn) → Z : D 7→ deg(C ′ ·D) coincide (cf. definition
1.9.3). We define the k-th tropical Chow group of Rn induced by numerical equivalence
to be the group

AFk (Rn) := Zk(R
n)/ ∼num .

Theorem 2.3.5

Let X(F ) be the toric variety associated to F and Ak(X(F )) and Ak(X(F )) its k-th
Chow group and k-th Chow cohomology group, respectively. Then we have an isomor-
phism:

AFk (Rn) ∼= Ak(X(F )),
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Chapter 2: Tropical cycles with real slopes and numerical equivalence

i.e. the “classical” Chow cohomology groups and the tropical Chow groups are naturally
isomorphic. Hence we also have

AFk (Rn) ∼= Ak(X(F )),

but there is no canonical map giving this last isomorphism.

Proof. As X(F ) is a smooth toric variety we can deduce that Ak(X(F )) is free. Hence,
by [FS97, theorem 2.1] there are Minkowski weights c1, . . . , cr on F (n−k) freely gener-
ating Ak(X(F )). We define X(ci) to be the tropical fan with cones X(ci) :=

⋃n−k
i=0 F

(i)

and weight function ci. Moreover, [F84, corollary 17.4] and [FS97, proposition 1.4]
imply that the map

I : Ak(X(F )) // Hom(Ak(X(F )),Z) // Hom(An−k(X(F )),Z)

c � // deg((c ∪ ·) ∩ [X(F )])

is an isomorphism. As An−k(X(F )) is a free group, we can conclude that Ak(X(F )) ∼=
An−k(X(F )). Thus, there are again r Minkowski weights d1, . . . , dr on F (k) freely
generating the group An−k(X(F )) and associated tropical fans X(di) :=

⋃k
i=0 F

(i) with
weight functions di. The isomorphism I is then given by

I : Ak(X(F )) //

∼

��

Hom(An−k(X(F )),Z)

∼

��

Zr // Zr

(α1, . . . , αr) 7−→ (
∑r

j=1 γ1jαj, . . . ,
∑r

j=1 γrjαj),

where
γij := deg((di ∪ cj) ∩ [X(F )]) = (di ∪ cj)({0}).

The last equation follows from [FS97, proposition 3.1]. By [R08, theorem 1.9] we can
deduce that moreover

γij = deg(X(di) ·X(cj))

holds.
Now, let C ∈ Zn−k(R

n) be a tropical cycle and let δi := deg(X(di)·C) ∈ Z. As the map
I is an isomorphism, the matrix (γij)ij is invertible over Z and there are α1, . . . , αr ∈ Z

with
∑r

j=1 γijαj = δi for all i = 1, . . . , r. We claim that C ∼num α1X(c1)+. . .+αrX(cr):

Let D ∈ ZF
k (Rn) be an F -generic cycle. By remark 2.3.2 there exists a representative

Y of δ(D) such that Y ⊆
⋃k
i=0 F

(i). The weight function ωY defines a Minkowski
weight c(Y ) on F n−k. Hence, there are coefficients β1, . . . , βr ∈ Z such that c(Y ) =
β1d1 + . . .+ βrdr and equivalently Y = β1X(d1) + . . .+ βrX(dr). Thus we obtain

deg(Y · C) = deg((β1X(d1) + . . .+ βrX(dr)) · C) = β1δ1 + . . .+ βrδr.

Moreover, we can deduce that

deg(Y · (α1X(c1) + . . .+ αrX(cr)))
= deg((β1X(d1) + . . .+ βrX(dr)) · (α1X(c1) + . . .+ αrX(cr)))

=
∑r

i=1

(
βi

(∑r
j=1 αjγij

))

=
∑r

i=1 βiδi.
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Thus we have C ∼num α1X(c1) + . . .+ αrX(cr).
Now, let α1, . . . , αr ∈ Z be given such that α1X(c1) + . . . + αrX(cr) ∼num 0. In
particular, this implies that

deg((α1X(c1) + . . .+ αrX(cr)) ·X(di)) =
r∑

j=1

αjγij = 0

for all i = 1, . . . , r. As (γij)ij is invertible we can deduce that α1 = . . . = αr = 0.
Altogether we can conclude that the map

〈X(c1), . . . , X(cr)〉Z → AFk (Rn) :
r∑

i=1

αiX(ci) 7→

[
r∑

i=1

αiX(ci)

]

∼num

is an isomorphism. Hence we obtain

AFk (Rn) ∼= 〈X(c1), . . . , X(cr)〉Z ∼= 〈c1, . . . , cr〉Z ∼= Ak(X(F )) ∼= Ak(X(F )),

which finishes the proof.
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3 Tropical intersection products on
smooth varieties

In this chapter we define an intersection product of tropical cycles on tropical linear
spaces Lnk , i.e. on tropical fans of the type max{0, x1, . . . , xn}

n−k · Rn, in analogy to
section 1.8. Afterwards we use this result to obtain an intersection product of cycles on
every smooth tropical variety, i.e. on every tropical variety that arises from gluing such
tropical linear spaces. In contrast to classical algebraic geometry these products always
yield well-defined cycles, not cycle classes only. Using these intersection products we
are able to define the pull-back of a tropical cycle along a morphism between smooth
tropical varieties.

3.1 Intersection products on tropical linear spaces

In this section we will give a proof that tropical linear spaces Lnk admit an intersection
product. Therefore we show at first that the diagonal in the Cartesian product Lnk×L

n
k

of such a linear space with itself is a sum of products of Cartier divisors. Given two
cycles C and D we can then intersect the diagonal with C ×D and define the product
C ·D to be the projection thereof.
Throughout the section e1, . . . , en will always be the standard basis vectors in Rn and
e0 := −e1 − . . .− en.
We begin the section with our basic definitions:

Definition 3.1.1 (Tropical linear spaces)
For I ( {0, 1, . . . , n} let σI be the cone generated by the vectors ei, i ∈ I. We denote by
Lnk the tropical fan consisting of all cones σI with I ( {0, 1, . . . , n} and |I| ≤ k, whose
maximal cones all have weight one (cf. example 1.2.9). This fan Lnk is a representative
of the tropical linear space max{0, x1, . . . , xn}

n−k ·Rn.

Definition 3.1.2

Let C ∈ Zk(R
n) be a tropical cycle and let the map i : Rn → Rn × Rn be given by

x 7→ (x, x). Then the push-forward cycle

△C := i∗(C) ∈ Zk(R
n ×Rn)

is called the diagonal of C × C.

In order to express the diagonal in Lnk × Lnk by means of Cartier divisors we first have
to refine Lnk × Lnk in such a way that the diagonal is a subfan of this refinement:

55



3.1 Intersection products on tropical linear spaces

Definition 3.1.3

Let F n
k be the refinement of Lnk × Lnk that arises recursively from Lnk × Lnk as follows:

Let M := (Lnk × Lnk)
(2k) be the set of maximal cones in Lnk × Lnk . If a cone σ ∈ M is

generated by (
−ei
0

)
,

(
0

−ei

)
, v3, . . . , v2k

for some i and vectors

vj ∈

{(
−eµ
−eµ

)
,

(
−eµ
0

)
,

(
0

−eµ

)∣∣∣∣µ = 0, . . . , n

}

then replace the cone σ by the two cones spanned by

(
−ei
−ei

)
,

(
−ei
0

)
, v3, . . . , v2k

and (
−ei
−ei

)
,

(
0

−ei

)
, v3, . . . , v2k,

respectively. Repeat this process until there are no more cones in M that can be
replaced. The fan F n

k is then the set of all faces of all cones in M .

The next lemma and the following corollary provide technical tools needed in the proofs
of the subsequent theorems:

Lemma 3.1.4

Let F be a complete and smooth fan in Rn (in the sense of toric geometry) and let
h1, . . . , hr, r ≤ n, be rational functions on Rn that are linear on every cone of F . Then
the intersection product h1 · · ·hr · F is given by

h1 · · ·hr · F =

(
n−r⋃

i=0

F (i), ωh1···hr

)

with some weight function ωh1···hr on the cones of dimension n−r. For a cone σ ∈ F (n−r)

such that all functions h1, . . . , hr are identically zero on σ the weight ωh1···hr(σ) is given
by

ωh1···hr(σ) =
∑

ru1 ,...,rur∈F
(1):

ru1 ,...,rur ,σ span a cone in F (n)

h1(u1) · · ·hr(ur),

where rui denotes the ray generated by the primitive lattice vector ui.

Proof. We prove the claim by induction on r: For r = 1 the above formula is just
the definition of the intersection product (see definition 1.2.4). For r > 1 we have the
equation

ωh1···hr(σ) =
∑

ru1∈F
(1):

ru1 ,σ span a cone σ̃∈F (n−r+1)

ωh2···hr(σ̃) · h1(u1).
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Using the induction hypothesis we can conclude that

ωh1···hr(σ)

=
∑

ru1∈F
(1):

ru1 ,σ span a cone σ̃∈F (n−r+1)




∑
ru2 ,...,rur∈F

(1):

ru2 ,...,rur ,σ̃ span a cone in F (n)

h2(u2) · · ·hr(ur)


 · h1(u1)

=
∑

ru1 ,...,rur∈F
(1):

ru1 ,...,rur ,σ span a cone in F (n)

h1(u1) · · ·hr(ur).

Corollary 3.1.5

Under the above assumptions the weight of the cone σ can equivalently be written as

ωh1···hr(σ) =
∑

̺∈F (n):
̺ is generated by ru1 ,...,rur ,σ

perm ((hi(uj)i,j=1,...,r) ,

where perm(A) denotes the permanent of the matrix A.

Proof. Using lemma 3.1.4 we can conclude that

ωh1···hr(σ) =
∑

u1,...,ur∈F (1):
u1,...,ur,σ span a cone in F (n)

h1(u1) · · ·hr(ur)

=
∑

̺∈F (n),
̺ is generated by u1,...,ur,σ

∑
p∈Sr

(
h1(up(1)) · · ·hr(up(r))

)

=
∑

̺∈F (n):
̺ is generated by u1,...,ur,σ

perm ((hi(uj)i,j=1,...,r) .

Remark 3.1.6

Note that the above assumption that all rational functions are identically zero on σ is
not really a restriction: We can always achieve this by adding suitable globally linear
functions to the rational functions hi which does not change the intersection product
and in particular not the weight ωh1···hr(σ).

Notation 3.1.7

Let F be a simplicial fan in Rn and let u be a generator of a ray ru in F . By abuse
of notation we also denote by u the unique rational function on |F | that is linear on
every cone in F , that has the value one on u and that is identically zero on all rays of
F other than ru.
If not stated otherwise, vectors considered as Cartier divisors will from now on always
denote rational functions on the complete fan F n

n .
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Notation 3.1.8

Let C be a tropical cycle and let h1, . . . , hr ∈ Div(C) be Cartier divisors on C. If

P (x1, . . . , xr) =
∑

i1+...+ir≤d

αi1,...,irx
i1
1 · · ·xirr

is a polynomial in variables x1, . . . , xr we denote by P (h1, . . . , hr) · C the intersection
product

P (h1, . . . , hr) · C :=
∑

i1+...+ir≤d

(
αi1,...,irh

i1
1 · · ·hirr · C

)
.

In the following theorem we give a description of the diagonal △Ln
n−k

by means of
Cartier divisors on our fan F n

n :

Theorem 3.1.9

The fan

((
−e1
0

)
+

(
0

−e0

))
. . .

((
−en
0

)
+

(
0

−e0

))
·

((
−e0
0

)
+

(
−e0
−e0

))k
· F n

n

is a representative of the diagonal △Ln
n−k

.

Proof. First of all, note that
(

−e0
0

)
+

(
−e0
−e0

)

is a representation of the tropical polynomial max{0, x1, . . . , xn}, where x1, . . . , xn are
the coordinates of the first factor of Rn ×Rn. Applying lemma 1.8.5 we obtain

[((
−e0
0

)
+

(
−e0
−e0

))k
· F n

n

]
= [Lnn−k ×Rn].

By lemma 1.8.3 we can conclude that △Rn · [Lnn−k × Rn] = i∗([L
n
n−k]) = △Ln

n−k
and

hence it suffices to show that [X] = △Rn for

X :=

((
−e1
0

)
+

(
0

−e0

))
. . .

((
−en
0

)
+

(
0

−e0

))
· F n

n

to prove the claim. Therefore, let σ = 〈r1, . . . , rn〉R≥0
∈ X(n) be a cone not contained

in |△Rn |. We will show that the weight of σ in X has to be zero. W.l.o.g. we assume
that

r1 6∈ D :=

{(
−e1
−e1

)
, . . . ,

(
−en
−en

)}
.

Moreover, let

T :=

{(
−e1
0

)
, . . . ,

(
−en
0

)}
and B :=

{(
0

−e1

)
, . . . ,

(
0

−en

)}
.

We distinguish between two cases:
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1. First, we assume that

ri 6∈

{(
−e0
0

)
,

(
0

−e0

)}
, i = 1, . . . , n.

Changing the given rational functions by globally linear functions we can rewrite
the above intersection product as X = ϕ1 · · ·ϕn · F

n
n , where

ϕi =





(
−ei
0

)
+

(
0

−e0

)
, if

(
−ei
0

)
6∈ {r1, . . . , rn}

(
0

−ei

)
+

(
−e0
0

)
, else.

All occurring rational functions are identically zero on σ now and we can apply
corollary 3.1.5: If the weight of σ in X is non-zero there must be at least one cone
σ̃ = 〈r1, . . . , rn, v1, . . . , vn〉R≥0 ∈ F n

n such that perm ((ϕi(vj))i,j) 6= 0. We study
three subcases:

a) More than one vector ri is contained in T (or in B): If

(
−ei
0

)
,

(
−ej
0

)
∈

{r1, . . . , rn} for some i 6= j then ϕi =

(
0

−ei

)
+

(
−e0
0

)
and ϕj =

(
0

−ej

)
+

(
−e0
0

)
. Hence we need two vectors out of

(
0

−ei

)
,

(
0

−ej

)
,

(
−e0
0

)
among the vµ such that perm ((ϕi(vj))i,j) can be non-zero. But

there is no cone in F n
n containing

(
−ei
0

)
and

(
0

−ei

)
or

(
−ej
0

)
and

(
0

−ej

)
. (Analogously for B.)

b) There are vectors ri ∈ T and rj ∈ B: Then we need both vectors

(
−e0
0

)

and

(
0

−e0

)
among the vµ such that perm ((ϕi(vj))i,j) can be non-zero.

But again there is no cone in F n
n containing these two vectors.

c) r1 ∈ T (or r1 ∈ B) and rj ∈ D for j 6= 1: Like in (a) we need v1 =

(
−e0
0

)

and v2, . . . , vn ∈

{(
−e2
0

)
, . . . ,

(
−en
0

)}
such that perm ((ϕi(vj))i,j) can

be non-zero. But there is no cone in F n
n containing

(
−e1
0

)
, . . . ,

(
−en
0

)

and

(
−e0
0

)
. (Analogously for B.)

2. Now we assume that

r1 =

(
−e0
0

) (
or r1 =

(
0

−e0

))
.
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Again, by changing the given rational functions by globally linear functions we
can rewrite the intersection product as X = ϕ1 · · ·ϕn · F

n
n , where

ϕi =





(
−ei
0

)
+

(
0

−e0

)
, if

(
−ei
0

)
6∈ {r1, . . . , rn}

some equivalent rational function
not involving r1, . . . , rn

, else.

Again we reached that all rational functions are identically zero on σ and we can

apply corollary 3.1.5: If

(
−ei
0

)
6∈ {r1, . . . , rn} then ϕi =

(
−ei
0

)
+

(
0

−e0

)

and we need

(
−ei
0

)
or

(
0

−e0

)
among the vµ such that perm ((ϕi(vj))i,j) can

be non-zero. But as there is no cone in F n
n containing

(
0

−e0

)
and

(
−e0
0

)
we

must have

(
−ei
0

)
∈ {v1, . . . , vn}. Hence all the vectors

(
−e1
0

)
, . . . ,

(
−en
0

)

and

(
−e0
0

)
must be contained in {r1, . . . , rn, v1, . . . , vn}, but there is no such

cone in F n
n . (Analogously for r1 =

(
0

−e0

)
.)

Our last step in this proof is to show that at least one cone in the diagonal of Rn×Rn

occurs with weight one in X. As the diagonal is irreducible we can then conclude by
[GKM07, lemma 2.21] that the whole diagonal occurs with weight one. We have a look
at the cone

σ = 〈r1, . . . , rn〉R≥0 =

〈(
−e1
−e1

)
, . . . ,

(
−en
−en

)〉

R≥0

.

As all the rational functions

ϕi =

(
−ei
0

)
+

(
0

−e0

)

are already zero on σ we can immediately apply corollary 3.1.5: There is exactly one
cone

σ̃ = 〈r1, . . . , rn, v1, . . . , vn〉R≥0

=

〈(
−e1
−e1

)
, . . . ,

(
−en
−en

)
,

(
−e1
0

)
, . . . ,

(
−en
0

)〉

R≥0

in F n
n containing σ such that the permanent perm ((ϕi(vj))i,j) is non-zero and for this

cone we have perm ((ϕi(vj))i,j) = 1. This finishes the proof.

Our next step is to derive a description of the diagonal △Ln
n−k

on Lnn−k × Lnn−k from
our description on F n

n :
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Theorem 3.1.10

The intersection product in theorem 3.1.9 can be rewritten as

(
r∑

i=1

hi,1 . . . hi,n−k

)
·

((
0

−e0

)
+

(
−e0
−e0

))k
·

((
−e0
0

)
+

(
−e0
−e0

))k
· F n

n

for some Cartier divisors hi,j on F n
n .

We have to prepare the proof of the theorem by the following lemma:

Lemma 3.1.11

Let C ∈ Zl(L
n
n−k) be a subcycle of Lnn−k. Then the following intersection products are

zero:

(a)

(
−e0
0

)
·

(
0

−e0

)
· (C ×Rn) ,

(b) vi1 · · · vin−k+r · (C ×Rn) ,

(c)

(
0

−e0

)
·

(
−e0
−e0

)s
· vi1 · · · vin−k−s+r · (C ×Rn),

where r, s > 0 and the vectors

vij ∈

{(
−e0
0

)
, . . . ,

(
−en
0

)
,

(
−e0
−e0

)
, . . . ,

(
−en
−en

)}

are pairwise distinct.

Proof. (a) and (b): In both cases, a cone that can occur in the intersection product with
non-zero weight has to be contained in a cone of F n

n that is contained in |Lnn−k × Rn|

and that contains the vectors

(
−e0
0

)
,

(
0

−e0

)
or vi1 , . . . , vin−k+r , respectively. But

there are no such cones.
(c): By (a) and lemma 1.8.6 we can rewrite the intersection product as

(
0

−e0

)
·

(
−e0
−e0

)s
· vi1 · · · vin−k−s+r · (C ×Rn)

=

(
0

−e0

)
·

((
−e0
0

)
+

(
−e0
−e0

))s
· vi1 · · · vin−k−s+r · (C ×Rn)

=

(
0

−e0

)
· vi1 · · · vin−k−s+r ·

[((
−e0
0

)
+

(
−e0
−e0

))s
· C

]
×Rn

=

(
0

−e0

)
· vi1 · · · vin−k−s+r · [max{0, x1, . . . , xn}

s · C] ×Rn,

which is zero by (b) as max{0, x1, . . . , xn}
s · C is contained in Lnn−k−s.
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Proof of theorem 3.1.10. By theorem 3.1.9 we have the representation

△Ln
n−k

=
((

−e1
0

)
+
(

0
−e0

))
. . .
((

−en

0

)
+
(

0
−e0

))
·
((

−e0
0

)
+
(

−e0
−e0

))k
· [F n

n ]︸ ︷︷ ︸
=[Ln

n−k×Rn]

=
((

−e1
0

)
· · ·
(

−en

0

)
+ . . .+

(
0

−e0

)n)
· [Lnn−k ×Rn].

By lemma 3.1.11 (b) all the summands containing

(
0

−e0

)s
with a power s < k are

zero. Hence we can rewrite the intersection product as

△Ln
n−k

=

[(
−e1
0

)
· · ·

(
−ek
0

)
+ . . .+

(
0

−e0

)n−k
·

((
0

−e0

)
+

(
−e0
−e0

))k
−A

]

·[Lnn−k ×R
n],

where A contains all the summands we added too much. Thus all the summands of A
are of the form

α · v1 · · · vn−s−r ·

(
0

−e0

)s
·

(
−e0
−e0

)t

for some integer α, vectors vi ∈

{(
−e1
0

)
, . . . ,

(
−en
0

)}
and powers 1 ≤ t ≤ k,

0 ≤ s ≤ n. By lemma 3.1.11 (b) and (c) such a summand applied to [Lnn−k × Rn] is
zero if s < k and only those summands remain in A that have t ≥ 1, s ≥ k. Let

S := α · v1 · · · vn−s−r ·

(
0

−e0

)s
·

(
−e0
−e0

)t

be one of the remaining summands. By lemma 3.1.11 (a) we obtain the equation

α · v1 · · · vn−s−t ·
(

0
−e0

)s
·
(

−e0
−e0

)t
· [Lnn−k ×Rn]

=

(
t∑

j=0

(
t
j

)
· α · v1 · · · vn−s−t ·

(
0

−e0

)s
·
(

−e0
−e0

)j
·
(

−e0
0

)t−j
)

· [Lnn−k ×Rn]

=
(
α · v1 · · · vn−s−t ·

(
0

−e0

)s
·
((

−e0
0

)
+
(

−e0
−e0

))t)
· [Lnn−k ×Rn]

=
[((

0
−e0

)
+
(

−e0
−e0

))k

·
(
α · v1 · · · vn−s−t ·

(
0

−e0

)s−k
·
((

−e0
0

)
+
(

−e0
−e0

))t)
−BS

]
· [Lnn−k ×Rn],

where BS contains again all the summands we added too much. Thus all the summands
of BS are of the form

S ′ := β ·

(
t

j

)
· v1 · · · vn−s−t ·

(
0

−e0

)s−s′
·

(
−e0
−e0

)s′
·

(
−e0
0

)t′
·

(
−e0
−e0

)t−t′

for some integer β and powers 1 ≤ s′ ≤ k, 0 ≤ t′ ≤ t. If s − s′ < k we group all
corresponding summands together as

β · v1 · · · vn−s−t ·

(
0

−e0

)s−s′
·

(
−e0
−e0

)s′
·

((
−e0
0

)
+

(
−e0
−e0

))t
.
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This product applied to [Lnn−k × Rn] is zero by lemma 3.1.11 (b) and (c). Moreover,
all summands S ′ with s− s′ ≥ k and t′ > 0 yield zero on [Lnn−k ×Rn] by lemma 3.1.11
(a). Thus only those summands S ′ are left in BS that are of the form

S ′ = β′ · v1 · · · vn−s−t ·

(
0

−e0

)s−s′
·

(
−e0
−e0

)t+s′

with s − s′ ≥ k and s′ ≥ 1. Applying this process inductively to all summands with

t = 1, . . . , n−k−1 in which we could not factor out

((
0

−e0

)
+

(
−e0
−e0

))k
, yet, we

can by and by increase the power of

(
−e0
−e0

)
in all remaining summands until finally

only one summand

γ ·

(
0

−e0

)k
·

(
−e0
−e0

)n−k

is left. But

γ ·

(
0

−e0

)k
·

(
−e0
−e0

)n−k
· [Lnn−k ×Rn]

= γ ·

((
0

−e0

)
+

(
−e0
−e0

))k
·

((
−e0
0

)
+

(
−e0
−e0

))n−k
· [Lnn−k ×Rn]

as (
0

−e0

)i
·

(
−e0
−e0

)k−i
·

((
−e0
0

)
+

(
−e0
−e0

))n−k
· [Lnn−k ×Rn]

=

(
0

−e0

)i
·

(
−e0
−e0

)k−i
· [Ln0 ×Rn]

= 0

for all i < k by lemma 3.1.11 (b) and
(

0
−e0

)k
·

(
−e0
0

)j
·

(
−e0
−e0

)n−k−j
· [Lnn−k ×Rn] = 0

for all j > 0 by lemma 3.1.11 (a). This proves the claim.

Corollary 3.1.12

The Cartier divisors hi,j from theorem 3.1.10 provide the following description of the
diagonal △Ln

n−k
:

△Ln
n−k

=
r∑

i=1

hi,1 . . . hi,n−k · [L
n
n−k × Lnn−k].

Proof. Let x1, . . . , xn be the coordinates of the first and y1, . . . , yn be coordinates of
the second factor of Rn ×Rn. Applying lemma 1.8.5 we can conclude that

[((
0

−e0

)
+

(
−e0
−e0

))k
·

((
−e0
0

)
+

(
−e0
−e0

))k
· F n

n

]

=
[
max{0, x1, . . . , xn}

k · max{0, y1, . . . , yn}
k · F n

n

]

= [Lnn−k × Lnn−k]
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and hence by theorem 3.1.9 and theorem 3.1.10 that

r∑

i=1

hi,1 . . . hi,n−k · [L
n
n−k × Lnn−k] = △Ln

n−k
.

Remark 3.1.13

As lemma 3.1.11 does not only hold on Lnn−k × Rn but also on any C × Rn with C a
subcycle of Lnn−k, the proof of theorem 3.1.10 indeed shows that

(
r∑
i=1

hi,1 . . . hi,n−k

)
·

((
0

−e0

)
+

(
−e0
−e0

))k
· (C ×Rn)

=

((
−e1
0

)
+

(
0

−e0

))
. . .

((
−en
0

)
+

(
0

−e0

))
· (C ×Rn)

for all cycles C ∈ Zl(L
n
n−k). Using corollary 1.8.7 we can conclude that

(
r∑
i=1

hi,1 . . . hi,n−k

)
·

((
0

−e0

)
+

(
−e0
−e0

))k
· (C ×Rn)

= △Rn · (C ×Rn)

= △C

for all such cycles C.

Corollary 3.1.14

Let σ ∈ Lnn−k, let x ∈ σ and let U ⊆ Sσ =
⋃
σ′∈Ln

n−k:σ
′⊇σ(σ

′)ri be an open subset of

|Lnn−k| containing x. Moreover, let F be the open fan F := {−x+σ∩U |σ ∈ Lnn−k} and

F̃ the associated tropical fan. Then there are Cartier divisors h′i,j on F̃ × F̃ such that

△[F̃ ] =
r∑

i=1

h′i,1 . . . h
′
i,n−k · [F̃ × F̃ ].

Proof. To obtain the Cartier divisors h′i,j we just have to restrict the Cartier divisors
hi,j from corollary 3.1.12 to the open set U × U , translate them suitably and extend

them from F × F to the associated tropical fan F̃ × F̃ .

Example 3.1.15

The following figure shows two fans associated to open subsets of L3
2 as in corollary

3.1.14:
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Lemma 3.1.16

Let C ∈ Zk(R
n) and D ∈ Zl(R

n) be tropical cycles such that there exist representations
of the diagonals △C and △D as sums of products of Cartier divisors on C × C and
D × D, respectively. Then there also exists a representation of △C×D as a sum of
products of Cartier divisors on (C ×D)2.

Proof. Let △C =
∑r

i=1 ϕi,1 . . . ϕi,k · (C × C) and △D =
∑s

i=1 ψi,1 . . . ψi,l · (D × D).
Moreover, let πx, πy : (Rn)4 → (Rn)2 be given by (x1, y1, x2, y2) 7→ (x1, x2) and
(x1, y1, x2, y2) 7→ (y1, y2), respectively. Then we have the equation

△C×D =

(
r∑

i=1

π∗
xϕi,1 . . . π

∗
xϕi,k

)
·

(
s∑

i=1

π∗
yψi,1 . . . π

∗
yψi,l

)
· (C ×D)2.

Now we are ready to define intersection products on all spaces on which we can express
the diagonal by means of Cartier divisors:

Definition 3.1.17 (Intersection products)
Let C ∈ Zk(R

n) be a tropical cycle and assume that there are Cartier divisors ϕi,j on
C × C such that

△C =
r∑

i=1

ϕi,1 . . . ϕi,k · (C × C).

Moreover, let π : C × C → C be the morphism given by (x, y) 7→ x. Then we define
the intersection product of subcycles of C by

Zk−l(C) × Zk−l′(C) −→ Zk−l−l′(C)
(D1, D2) 7−→ D1 ·D2 := π∗ (

∑r
i=1 ϕi,1 . . . ϕi,k · (D1 ×D2)) .

We use the rest of this section to prove that this intersection product is independent
of the used representation of the diagonal and that it has all the properties we expect
— at least for those spaces we are interested in:

Lemma 3.1.18

Let C ∈ Zk(R
n) be a tropical cycle, D ∈ Zk−l(C), E ∈ Zk−l′(C) be subcycles, let

ϕ ∈ Div(C) be a Cartier divisor and π : C × C → C the morphism given by (x, y) 7→ x.
Then the following equation holds:

(ϕ ·D) × E = π∗ϕ · (D × E).

Proof. The proof is exactly the same as for lemma 1.8.5.

Corollary 3.1.19

Let C ∈ Zk(R
n) be a tropical cycle that admits an intersection product as in definition

3.1.17, let D ∈ Zk−l(C), E ∈ Zk−l′(C) be subcycles and let ϕ ∈ Div(C) be a Cartier
divisor. Then the following equation holds:

(ϕ ·D) · E = ϕ · (D · E).
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Proof. The proof is exactly the same as for lemma 1.8.6.

Proposition 3.1.20

Let D ∈ Zl(L
n
n−k) be a subcycle. Then the equation

D · [Lnn−k] = [Lnn−k] ·D = D

holds on Lnn−k.

Proof. Let πi : Lnn−k × Lnn−k → Lnn−k be the morphism given by (x1, x2) 7→ xi. By
remark 3.1.13 we get the equation

D · [Lnn−k] = (π1)∗

(
r∑
i=1

hi,1 . . . hi,n−k ·
(
D × [Lnn−k]

))

= (π1)∗

((
r∑
i=1

hi,1 . . . hi,n−k

)
·

((
0

−e0

)
+

(
−e0
−e0

))k
· (D ×Rn)

)

= (π1)∗ (△Rn · (D ×Rn))
= (π1)∗ (△D)
= D.

Furthermore, let φ : Lnk × Lnk → Lnk × Lnk be the morphism induced by (x, y) 7→ (y, x).
Obviously we have the equality
(

r∑

i=1

hi,1 . . . hi,n−k

)
· [Lnn−k × Lnn−k] =

(
r∑

i=1

φ∗hi,1 . . . φ
∗hi,n−k

)
· [Lnn−k × Lnn−k].

If πij : (Lnn−k)
4 → (Lnn−k)

2 is the morphism given by (x1, x2, x3, x4) 7→ (xi, xj) and

△ :=

(
r∑

i=1

π∗
13hi,1 . . . π

∗
13hi,n−k

)
·

(
r∑

i=1

π∗
24hi,1 . . . π

∗
24hi,n−k

)

we can conclude by proposition 1.6.7 and lemma 1.8.5 that
(

r∑
i=1

φ∗hi,1 . . . φ
∗hi,n−k

)
· (D × [Lnn−k])

=

(
r∑
i=1

φ∗hi,1 . . . φ
∗hi,n−k

)
·
(
(D × [Lnn−k]) · ([L

n
n−k × Lnn−k])

)

=

(
r∑
i=1

φ∗hi,1 . . . φ
∗hi,n−k

)
· (π12)∗

(
△ ·

(
(D × [Lnn−k]) × ([Lnn−k × Lnn−k])

) )

=

(
r∑
i=1

φ∗hi,1 . . . φ
∗hi,n−k

)
· (π12)∗

(
△D×[Ln

n−k]

)

=

(
r∑
i=1

φ∗hi,1 . . . φ
∗hi,n−k

)
· (π34)∗

(
△D×[Ln

n−k]

)

= (π34)∗

((
r∑
i=1

π∗
34φ

∗hi,1 . . . π
∗
34φ

∗hi,n−k

)
· △ ·

(
(D × [Lnn−k]) × ([Lnn−k × Lnn−k])

))

= (π34)∗

(
△ · (D × [Lnn−k]) ×

((
r∑
i=1

φ∗hi,1 . . . φ
∗hi,n−k

)
· [Lnn−k × Lnn−k]

))

= (π34)∗

(
△ · (D × [Lnn−k]) ×

((
r∑
i=1

hi,1 . . . hi,n−k

)
· [Lnn−k × Lnn−k]

))

=

(
r∑
i=1

hi,1 . . . hi,n−k

)
· (D × [Lnn−k]).
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Hence we can deduce that

D · [Lnn−k] = (π1)∗ (△D)
= (π2)∗ (△D)

= (π2)∗

((
r∑
i=1

hi,1 . . . hi,n−k

)
· (D × [Lnn−k])

)

= (π2)∗

((
r∑
i=1

φ∗hi,1 . . . φ
∗hi,n−k

)
· (D × [Lnn−k])

)

= (π1)∗

((
r∑
i=1

hi,1 . . . hi,n−k

)
· ([Lnn−k] ×D)

)

= [Lnn−k] ·D.

This proves the claim.

Remark 3.1.21

We can prove in the same way that [Lnn−k ×Lmm−l] ·D = D holds for all subcycles D of
Lnn−k × Lmm−l and even that [Ln1

n1−k1
× . . .× Lnrnr−kr ] ·D = D holds for all r ≥ 1 and all

subcycles D of Ln1
n1−k1

× . . . × Lnrnr−kr . Moreover, restricting the intersection products
to open subsets of |Lnk | or |Ln1

n1−k1
× . . .×Lnrnr−kr |, respectively, implies that X ·D = D

also holds for all subcycles D ∈ Zl(X) if X ∈ {[F̃ ], [F̃1 × . . . × F̃r]} where F̃ , F̃i are
tropical fans associated to an open subsets of some |Lnk | like in corollary 3.1.14.

Proposition 3.1.22

Let C ∈ Zk(R
n) be a tropical cycle that admits an intersection product as in definition

3.1.17 and let D,D′ ∈ Zl(C), E ∈ Zl′(C) be subcycles. Then the following equation
holds:

(D +D′) · E = D · E +D′ · E.

Proof. The proof is exactly the same as for theorem 1.8.9.

Proposition 3.1.23

Let C ∈ Zk(R
n) be a tropical cycle that admits an intersection product as in definition

3.1.17 and let D ∈ Zl(C) be a subcycle of C. Moreover, let E ∈ Zl′(C) be a subcycle
such that there are Cartier divisors ψi,j ∈ Div(C) with

r∑

i=1

ψi,1 . . . ψi,k−l′ · C = E.

If additionally C ·D = D holds then

r∑

i=1

ψi,1 . . . ψi,k−l′ ·D = E ·D.

Proof. The proof is the same as for corollary 1.8.7.

Remark 3.1.24

The meaning of proposition 3.1.23 is the following: If X ∈ Zk(R
n) is a tropical cycle
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such that the diagonal △X can be written as a sum of products of Cartier divisors as
in definition 3.1.17 and additionally (X × X) · Y = Y is fulfilled for all subcycles Y
of X × X then we can apply proposition 3.1.23 with C := X × X and E := △X to
deduce that the definition of the intersection product is independent of the choice of the
Cartier divisors describing the diagonal. In particular we have well-defined intersection
products on Lnk , L

n1
k1
× . . .×Lnrkr , F̃ and F̃1× . . .×F̃r for all tropical fans F̃ , F̃i associated

to an open subset of some |Lnk | like in corollary 3.1.14.

Theorem 3.1.25

Let C ∈ Zk(R
n) be a tropical cycle that admits an intersection product as in definition

3.1.17 such that additionally (C ×C) ·D = D is fulfilled for all subcycles D of C ×C.
Moreover, let E,E ′ ∈ Zl(C), F ∈ Zl′(C) and G ∈ Zl′′(C) be subcycles. Then the
following equations hold:

(a) E · F = F · E,

(b) (E · F ) ·G = E · (F ·G).

Proof. The proof is exactly the same as for theorem 1.8.9 (a) and (c).

We finish this section with an example showing that even curves intersecting in the
expected dimension can have negative intersections:

Example 3.1.26

Let C,D ∈ Z1(L
3
2) be the curves shown in the figure. We want to compute the inter-

section C ·D. By proposition 3.1.23 the easiest way to achieve this is to write one of
the curves as ψ · [L3

2] for some Cartier divisor ψ on L3
2.

C


−1
−1
0







1
1
0




D




−2
−3
0







2
2
−1







0
1
1




Let F be the refinement of L3
2 arising by dividing the cones 〈−e1,−e2〉R≥0

and
〈−e0,−e3〉R≥0

into cones 〈−e1,−e1−e2〉R≥0
, 〈−e2,−e1−e2〉R≥0

and 〈−e0,−e0−e3〉R≥0
,

〈−e3,−e0 − e3〉R≥0
, respectively. Then

ψ :=




1
1
1


−




−1
−1
0



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defines a rational function on F . As shown in example 1.2.10 we have ψ · [L3
2] = C.

Hence we can calculate

C ·D = ψ ·D =


ψ




−2
−3
0


+ ψ




2
2
1


+ ψ




0
1
1


− ψ




0
0
0




 · {0}

= (−2 + 0 + 1 − 0) · {0}
= −1 · {0}.

3.2 Intersection products on smooth tropical varieties

In this section we use our results from section 3.1 to define an intersection product on
smooth tropical varieties, i.e. on varieties with tropical linear spaces as local building
blocks:

Definition 3.2.1 (Smooth tropical varieties)
An abstract tropical variety C is called a smooth variety if it has a representative
(((X, |X|), ωX), {Φσ}) such that all the maps

Φσ : Sσ =
⋃

σ′∈X∗,σ′⊃σ

(σ′)ri
∼

−→ |Fσ| ⊆ |F̃σ|

(cf. definition 1.4.4) map into tropical fans F̃σ = F̃ σ
1 × . . . × F̃ σ

rσ where the F̃ σ
i are

tropical fans associated to open subsets of some |L
nσ,i
kσ,i

| as in corollary 3.1.14.

Remark 3.2.2

Note that the existence of such a representative (((X, |X|), ωX), {Φσ}) for C implies
that all representatives of C have the requested property.

Example 3.2.3

The following figures show two examples of smooth tropical varieties:

Definition 3.2.4

Let C be an abstract tropical cycle, D a subcycle of C with representative X and
U ⊆ |C| an open subset. We denote by X ∩ U the open tropical polyhedral complex

X ∩ U := ({σ ∩ U |σ ∈ X}, |X| ∩ U)
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and by [X ∩ U ] its equivalence class modulo refinements. As this class only depends
on the class of X we can define D ∩ U := [X ∩ U ].

Remark 3.2.5

If we are given an open covering {U1, . . . , Ur} of C and open tropical polyhedral com-
plexes D1 ∩ U1, . . . , Dr ∩ Ur such that Di ∩ Ui ∩ Uj = Dj ∩ Ui ∩ Uj we can glue
D1 ∩ U1, . . . , Dr ∩ Ur to obtain a cycle D ∈ Z∗(C).

Definition 3.2.6 (Intersection products)
Let C be a smooth tropical variety and let (((X, |X|), ωX), {Φσ}) be a representative
of C like in definition 3.2.1. Moreover, let D,E be subcycles of C. We construct local
intersection products as follows: For every σ ∈ X we can regard (D∩Sσ) and (E ∩Sσ)

as open tropical cycles in F̃σ via the map Φσ. Let D̃ ∩ Sσ and Ẽ ∩ Sσ be any tropical
cycles in F̃σ restricting to D ∩ Sσ and E ∩ Sσ. As we have an intersection product on
F̃σ by remark 3.1.24 we can define the intersection

(D ·σ E) ∩ Sσ :=
(
(D̃ ∩ Sσ) · (Ẽ ∩ Sσ)

)
∩ Sσ.

Note that (D ·σE)∩Sσ does not depend on the choice of the cycles D̃ ∩ Sσ and Ẽ ∩ Sσ.
Since {Sσ|σ ∈ X} is an open covering of |C| and the local intersection products
(D ·σ E) ∩ Sσ, σ ∈ X are compatible by the following lemma we can glue them to
obtain a global intersection cycle D · E ∈ Z∗(C).

Lemma 3.2.7

For the local intersection products in definition 3.2.6 holds:

(D ·σ E) ∩ Sσ ∩ Sσ′ = (D ·σ′ E) ∩ Sσ ∩ Sσ′ .

Proof. By definition we have an integer linear map

|F̃1| ⊇ Φσ(Sσ ∩ Sσ′)
f

−→ Φσ′(Sσ ∩ Sσ′) ⊆ |F̃2|

with integer linear inverse f−1, where F̃1, F̃2 are the tropical fans generated by
Φσ(Sσ ∩ Sσ′) and Φσ′(Sσ ∩ Sσ′), respectively. Let C1, C2 be subcycles of F̃1. We have
to show that

C1 · C2 = (f−1)∗(f∗(C1) · f∗(C2)).

If π is the respective projection on the first factor we obtain by proposition 3.1.23 and
remark 3.1.24 the equation

(f−1)∗(f∗(C1) · f∗(C2)) = (f−1)∗

(
π∗

(
△F̃2

· (f∗(C1) × f∗(C2))
))

= π∗

(
(f−1 × f−1)∗

(
△F̃2

· (f∗(C1) × f∗(C2))
))

= π∗

(
(f−1 × f−1)∗

(
(f × f)∗(△F̃1

) · (f × f)∗(C1 × C2)
))

= π∗

(
△F̃1

· C1 × C2

)

= C1 · C2.
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Chapter 3: Tropical intersection products on smooth varieties

Remark 3.2.8

Lemma 3.2.7 also implies that further refinements of the representative
(((X, |X|), ωX), {Φσ}) of C do not change the result D · E. Hence the intersection
product is well-defined.

Our last step consists in proving basic properties of our intersection product:

Theorem 3.2.9

Let C be a smooth tropical variety, let D,D′ ∈ Zl(C), E ∈ Zl′(C) and F ∈ Zl′′(C) be
subcycles and let ϕ ∈ Div(C) be a Cartier divisor on C. Then the following equations
hold in Z∗(C):

(a) C ·D = D,

(b) D · E = E ·D,

(c) (D +D′) · E = D · E +D′ · E,

(d) (D · E) · F = D · (E · F ),

(e) ϕ · (D · E) = (ϕ ·D) · E.

If moreover D = (
∑r

i=1 ϕi,1 · · ·ϕi,l) · C for some Cartier divisors ϕi,j ∈ Div(C) then

D · E =
r∑

i=1

ϕi,1 · · ·ϕi,l · E

holds.

Proof. The statements follow immediately from the definition of the intersection prod-
uct and the corresponding statements in section 3.1.

3.3 Pull-backs of cycles on smooth varieties

We will now use the intersection product defined in section 3.2 to introduce pull-backs
of tropical cycles along morphisms between smooth tropical varieties.

Definition 3.3.1 (Pull-back)
Let X and Y be smooth tropical varieties of dimension m and n, respectively, and let
f : X → Y be a morphism of tropical cycles. Moreover, let π : X × Y → X be the
projection onto the first factor and let γf : X → X × Y be the morphism given by
x 7→ (x, f(x)). We denote by Γf := (γf )∗X the graph of f . For a cycle C ∈ Zn−k(Y )
we define its pull-back f ∗C ∈ Zm−k(X) to be

f ∗C := π∗ (Γf · (X × C)) .

The easiest non-trivial, but nevertheless important example of a pull-back is the fol-
lowing:
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3.3 Pull-backs of cycles on smooth varieties

Example 3.3.2

Let C and D be smooth tropical cycles and let p : C×D → D be the projection on the
second factor. We want to calculate the pull-back p∗E for a cycle E ∈ Zk(D): The map
γp from definition 3.3.1 is then just given by γp : C×D → C×D×D : (x, y) 7→ (x, y, y)
and the map π : C×D×D → C×D is the projection to the first two factors. Hence we
can conclude that Γp = C ×△D. Moreover, let π1 : C ×D×D → C be the projection
to the first and π2 : C×D×D → D be the projection to the second factor. We obtain
by definition 3.3.1:

p∗E = π∗(Γp · (C ×D × E))
= π∗((C ×△D) · (C ×D × E))
= π1

∗(C · C) × π2
∗(△D · (D × E))

= C × E.

The pull-back has the following basic properties:

Theorem 3.3.3

Let X,Y and Z be smooth tropical varieties and let f : X → Y and g : Y → Z be
morphisms of tropical cycles. Moreover, let C,C ′ ∈ Z∗(Y ) and D ∈ Z∗(X) be subcycles.
Then the following holds:

(a) f ∗Y = X,

(b) id∗
Y C = C,

(c) if C = ϕ1 · · ·ϕr · Y then f ∗C = f ∗ϕ1 · · · f
∗ϕr ·X,

(d) C · f∗D = f∗(f
∗C ·D),

(e) (g ◦ f)∗C = f ∗g∗C,

(f) f ∗(C · C ′) = f ∗C · f ∗C ′.

Proof. Throughout the proof, let πX , πX , π
1, π1, π

Y , πY , π
2, π2, π

X,Y , πX,Y , π
1,2, π1,2 and

so forth be the projections to the respective factors.
(a) and (b): By definition of the pull-back follows

f ∗Y = πX∗ (Γf · (X × Y )) = πX∗ (Γf ) = X

and
id∗
Y C = π1

∗(ΓidY · (Y × C)) = π1
∗(△Y · (Y × C)) = Y · C = C.

(c): We have
f ∗C = πX∗ (Γf · (X × (ϕ1 · · ·ϕr · Y )))

= πX∗ (π∗
2ϕ1 · · ·π

∗
2ϕr · Γf · (X × Y ))

= πX∗ (π∗
2ϕ1 · · ·π

∗
2ϕr · Γf ) .

By definition of the intersection product (see definitions 1.2.4 and 1.5.5) this last line
is equal to

f ∗ϕ1 · · · f
∗ϕr ·X.
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Chapter 3: Tropical intersection products on smooth varieties

(d): Let πX : X × Y → X be the projection on X. By example 3.3.2 we know that
π∗
XD = D × Y . As the diagonal △X can locally be expressed by Cartier divisors we

can apply proposition 1.6.7 and statement (c) locally to deduce that for all subcycles
E of X × Y holds

D · πX∗ E = π1
∗(△X · (D × πX∗ E))

= π1
∗(△X · (id×πX)∗(D × E))

= π1
∗((id×πX)∗((id×πX)∗△X · (D × E)))

= π1
∗((id×πX)∗((△X × Y ) · (D × E)))

= π1
∗(π

1,2
∗ ((△X × Y ) · (D × E)))

= π1
∗(π

1,2
∗ (△X×Y · (D × Y × E)))

= π1
∗((D × Y ) · E)

= πX∗ (π∗
XD · E).

This implies that

f ∗C ·D = D · πX∗ (Γf · (X × C))
= πX∗ (π∗

XD · Γf · (X × C))
= πX∗ ((D × Y ) · Γf · (X × C))
= πX∗ (Γf · (D × C)).

Moreover, it is easy to check that (f × id)∗△Y = Γf . As above we can conclude that

C · f∗D = π1
∗(△Y · (C × f∗D))

= π1
∗((id×f)∗((id×f)∗△Y · (C ×D)))

= f∗(π
X
∗ ((id×f)∗△Y · (C ×D)))

= f∗(π
X
∗ ((f × id)∗△Y · (D × C)))

= f∗(π
X
∗ (Γf · (D × C)))

= f∗(f
∗C ·D).

(e): Let Φ : X → X × Y × Z be given by x 7→ (x, f(x), g(f(x))). An easy calculation
shows that (Γf × Z) · (X × Γg) = Φ∗X. Hence we can conclude by statement (d) that

f ∗g∗C = πX∗
(
Γf ·

(
X × πY∗ (Γg · (Y × C))

))

= πX∗
(
πX,Y∗ ((Γf × Z) · (X × Γg) · (X × Y × C))

)

= πX∗ ((Γf × Z) · (X × Γg) · (X × Y × C))
= πX∗ (Φ∗X · (X × Y × C))
= πX∗ (Γg◦f · (X × C))
= (g ◦ f)∗C.

(f): Let Φ : X → X × Y × Y be given by x 7→ (x, f(x), f(x)) and let π1,2, π1,3 :
X × Y × Y → X × Y be the projections to the respective factors. An easy calculation
shows that

(Γf × Y ) · (X × ΓidY ) = Φ∗X = π∗
1,2Γf · π

∗
1,3Γf .
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3.3 Pull-backs of cycles on smooth varieties

Hence we can deduce that

f ∗(C · C ′) = πX∗ (Γf · (X × (C · C ′)))
= πX∗ (Γf · (X × π1

∗(ΓidY · C × C ′)))
= πX∗ (Γf · π

1,2
∗ ((X × ΓidY ) · (X × C × C ′)))

= πX∗ (π1,2
∗ ((Γf × Y ) · (X × ΓidY ) · (X × C × C ′)))

= πX∗ (π1,3
∗ ((Γf × Y ) · (X × ΓidY ) · (X × C × C ′)))

= πX∗
(
π1,3
∗ (π∗

1,2Γf · π
∗
1,3Γf · (X × C × C ′))

)

= πX∗ (Γf · π
1,3
∗ ((Γf × Y ) · (X × C × C ′)))

= πX∗
(
Γf · (π

X
∗ (Γf · (X × C)) × C ′)

)

= πX∗ (Γf · (f
∗C × C ′))

= f ∗C · f ∗C ′.

We finish the section with another important example:

Example 3.3.4

Let D be a smooth tropical variety and let C ∈ Zk(D) be a smooth tropical subvariety.
Moreover, let ι : C → D be the inclusion map. We want to calculate the pull-back ι∗E
for a cycle E ∈ Zl(D): Let πC : C ×D → C and πD : C ×D → D be the projections
to the first and second factor and let γι : C → C ×D be given by x 7→ (x, x). Hence
we can deduce that Γι = (γι)∗C = △C and by example 3.3.2 that (πD)∗E = C × E.
Thus we can conclude by theorem 3.3.3 (d):

ι∗E = πC∗ (Γι · (C × E))
= πC∗ (△C · (C × E))
= πD∗ (△C · (C × E))
= πD∗ (△C · (πD)∗E)
= πD∗ (△C) · E
= C · E,

where C · E is the intersection product on D.
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4 Weil and Cartier divisors under
tropical modifications

In this chapter we study “contractions” (the concept of contractions was introduced by
G. Mikhalkin in [M06]) and “modifications” — the inverse operation of contractions
— of affine tropical cycles. We will prove that under some further assumptions these
modifications preserve the 1:1-correspondence of Weil and Cartier divisors that exists,
for example, on Rn. In particular we can conclude that on the moduli spaces M0,n,trop

of n-marked abstract tropical curves Weil and Cartier divisors agree. Applying our
results locally we can moreover prove that there is a 1:1-correspondence of Weil and
Cartier divisors on smooth tropical varieties as introduced in chapter 3.

4.1 Modifications and contractions

In this section we introduce modifications and contractions as our main objects of
study.

Definition 4.1.1 (Modifications and contractions)
Let C ∈ Zaff

m (V ) be an m-cycle in V and h ∈ K∗(C), h : |C| → R a rational function
on C. Let (X,ωX) be a representative of C such that h is linear on every face of X,
i.e. for every face σ ∈ X we have h|σ = hσ + c for some hσ ∈ Λ∨ and c ∈ R. Let
V ′ := (Λ × Z) ⊗Z R. Then we define the modification of X along h to be the tropical
fan

(ΓX,h, ωΓX,h)

in V ′, where

ΓX,h := {(id×hσ)(σ)|σ ∈ X} ∪ {(id×hσ)(σ) + ({0V } ×R≤0)|σ ∈ X \X(m)},
ωΓX,h((id×hσ)(σ)) := ωX(σ) for all σ ∈ X,
ωΓX,h((id×hσ)(σ) + ({0V } ×R≤0)) := ωh(σ) for all σ ∈ X(m−1)

(cf. construction 1.2.3). Conversely, X is called the contraction of ΓX,h along h. Note
that the equivalence class [ΓX,h] only depends on C and not on the choice of the
representative X. Hence we can define the modification of C along h to be

ΓC,h := [ΓX,h] ∈ Zaff
m (V ′)

and call C the contraction of ΓC,h along h.

75



4.1 Modifications and contractions

D

ω = 1

ω = 1

ω = −1

ω = −1

h = 0

h = 1

h = 0

h = 1

h = 0

h = 0

C

Figure 4.1: D ∈ Zaff
m−1(C), but ΓD,h 6∈ Zaff

m−1(ΓC,h).

Definition 4.1.2

For C ∈ Zaff
m (V ) we define a map

γ : Zaff
m−1(C) −→ Zaff

m−1(ΓC,h) : D 7−→ ΓD,h.

Note that for some cycles C ∈ Zaff
m (V ) this map is not well-defined as D ∈ Zaff

m−1(C)
does in general not imply that ΓD,h is a subcycle of ΓC,h (the simplest example of such
cycles C and D is drawn in figure 4.1). But the following lemma shows that the latter
implication in fact is true for the cases we are interested in:

Lemma 4.1.3

Let C ∈ Zaff
m (V ) be a cycle such that Div(C)

∼
→ Zaff

m−1(C) : ϕ 7→ ϕ·C is an isomorphism.
Then holds:

(a) γ is well-defined, i.e. ΓD,h ∈ Zaff
m−1(ΓC,h) for all D ∈ Zaff

m−1(C),

(b) γ(D1 +D2) = γ(D1) + γ(D2).

Proof. (a): We fix a Weil divisor D ∈ Zaff
m−1(C) and have to prove that |ΓD,h| ⊆ |ΓC,h|.

Therefore it suffices to show that |h · D| ⊆ |h · C|. By assumption we know that
D = ϕ · C for some Cartier divisor ϕ ∈ Div(C) and hence

|h ·D| = |h · ϕ · C| = |ϕ · h · C| ⊆ |h · C|.

(b): Is obvious by definition of γ.

Definition 4.1.4

Let C ∈ Zaff
m (V ). The projection p : Λ×Z → Λ induces a morphism p : ΓC,h → C and

thus a homomorphism
p∗ : Zaff

m−1(ΓC,h) → Zaff
m−1(C).
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Chapter 4: Weil and Cartier divisors under tropical modifications

Remark 4.1.5

Note that p∗ ◦ γ = idZaff
m−1(C) if Div(C)

∼
→ Zaff

m−1(C).

The next proposition shows how the intersection products on C and ΓC,h are related:

Proposition 4.1.6

Let C ∈ Zaff
m (V ) be a cycle such that Div(C)

∼
→ Zaff

m−1(C). Moreover let ϕ ∈ Div(C)
be a Cartier divisor and let D ∈ Zaff

m−1(C) be a Weil divisor. The following equation
holds:

ϕ ·D = p∗(p
∗ϕ · γ(D)).

Proof. Using the projection formula (cf. proposition 1.3.8) we can conclude that

ϕ ·D = ϕ · (p∗ ◦ γ)(D) = p∗(p
∗ϕ · γ(D)).

Proposition 4.1.7

Let C ∈ Zaff
m (V ) be a cycle in V = Λ ⊗Z R and let D ∈ Zaff

n (V ′) be a cycle in V ′ =
Λ′ ⊗Z R. Moreover let hC ∈ K∗(C) and hD ∈ K∗(D) be rational functions. For
simplicity of notation we write hC and hD for the pull-backs of hC and hD along the
occurring projection maps as well. Then the following equation holds:

ΓΓC×D,hC
,hD = ΓC,hC × ΓD,hD .

Proof. An easy calculation shows that ΓC×D,hC = ΓC,hC × D. Hence ΓΓC×D,hC
,hD =

ΓC,hC×D,hD = ΓC,hC × ΓD,hD .

Corollary 4.1.8

Let V = Λ⊗Z R and V ′ = Λ′ ⊗Z R. Then let C̃ ∈ Zaff
m (V ×Rk) and D̃ ∈ Zaff

n (V ′ ×Rl)
be cycles that arise from C ∈ Zaff

m (V ) and D ∈ Zaff
n (V ′) respectively by a finite series

of modifications. Then C̃ × D̃ ∈ Zaff
m+n(V × V ′ × Rk+l) arises from C ×D by a finite

series of modifications.

4.2 Cartier divisors and Weil divisors

Our aim in this section is to prove that a 1:1-correspondence between Weil divisors and
Cartier divisors on an affine cycle C ∈ Zaff

m (V ) implies a 1:1-correspondence between
Weil divisors and Cartier divisors on many modifications ΓC,h of C. To prove this
statement we need some preparations:

Definition 4.2.1

Let C ∈ Zaff
m (V ) be a cycle. If C 6= 0 we define the number lcm(C) to be the lowest

common multiple
lcm

{
ωX(σ)|σ ∈ (X∗)(m)

}
∈ Z>0

of all non-zero weights of the facets of X for some (and thus for every) representative
(X,ωX) of C. If C = 0 we define lcm(C) := 0.
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4.2 Cartier divisors and Weil divisors

Definition 4.2.2

Let C ∈ Zaff
m (V ) be a cycle. C is called locally irreducible if for some (and thus for

every) reduced representative (X,ωX) of C holds: For every cone τ ∈ X(m−1) the
equality ∑

σ>τ

λσ · uσ/τ = 0 ∈ Λ/Λτ , λσ ∈ Z

(where uσ/τ denotes the primitive normal vector of σ relative to τ) implies that there
exists λ ∈ Q such that λσ = λ · ωX(σ) for all σ > τ .

Example 4.2.3

The following figure shows an example of a tropical cycle C which is not locally irre-
ducible as the condition in definition 4.2.2 is not fulfilled around τ . But note that the
condition is fulfilled for all other cones of codimension one.

τ

Figure 4.2: A cycle C which is not locally irreducible.

Lemma 4.2.4

Let C ∈ Zaff
m (V ) be a cycle such that Div(C)

∼
→ Zaff

m−1(C), let h ∈ K∗(C) be a rational
function and let D ∈ ker(p∗) ⊆ Zaff

m−1(ΓC,h). If m ≤ 2 or ΓC,h is locally irreducible then
there exists a Cartier divisor ϕD ∈ Div(ΓC,h) such that ϕD · ΓC,h = lcm(ΓC,h) ·D.

Proof. Note that for m = 1 the statement is trivial. Thus we may assume that m ≥ 2.
Moreover we can choose representatives X = X∗ of C and ΓY = Γ∗

Y of D such that

p∗(ΓY ) = {p(σ)|σ ∈ ΓY contained in a maximal cone of ΓY on which p is injective}

and such that Y := p∗(ΓY ) ⊆ X (cf. constructions 1.1.15 and 1.3.2). Using these
representatives we ensure that above every cone σ ∈ Y (m−1) there is a finite number of
facets σ1, . . . , σr(σ) ⊆ ̺(σ) := (id×hσ)(σ) + ({0V } ×R≤0) projecting injectively onto σ
as shown in figure 4.3, plus possibly some additional facets in the boundary of ̺(σ) on
which p is not injective. Our assumption D ∈ ker(p∗) implies that

|ΓY | ⊆
⋃

σ∈X(m−1)

(id×hσ)(σ) + ({0V } ×R≤0)

and thus that, in fact, every facet of ΓY is of one of those two types mentioned above.
Now we construct a piecewise linear function ϕ : |ΓY | → R as follows: First, we set
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σ

ϕ1

ϕr

p

vr

v1

̺(σ)0

̺(σ)r

̺(σ)1

ϕ0

−em

a
(r)
1

a
(1)
2

a
(r)
2

σr

σ1

a
(1)
1

Figure 4.3: σ1, . . . , σr ⊆ (id×hσ)(σ) + ({0V } ×R≤0).

ϕ|(id×hσ)(σ) := 0 for all σ ∈ X(m) and ϕ|̺(σ) := 0 for all σ ∈ X(m−1) \ Y (m−1). Then
we fix a cone σ ∈ Y (m−1). Choosing a basis b1, . . . , bm−1 of Λσ we obtain a basis
b1, . . . , bm−1, bm := (0Λ, 1) of Λ̺(σ) = Λσ × Z and can hence consider the face ̺(σ) in
Rm ∼= V ′

̺(σ) with lattice Zm (see figure 4.3): Let σ1, . . . , σr, r = r(σ), be all facets of ΓY
contained in ̺(σ), let σ0 := (id×hσ)(σ) and let ̺(σ)i denote the m-dimensional cone
in ̺(σ) bounded by σi and σi+1, respectively the cone below σr for i = r (note that
̺(σ)0 might be (m− 1)-dimensional if σ0 = σ1). We will construct a linear function ϕi
on every ̺(σ)i in order to define a piecewise linear function on ̺(σ) as follows: We set
ϕ0 := 0. Then ϕ1 is determined on σ1. In order to get ωϕ(σ1) = lcm(ΓC,h) ·ωΓY (σ1) we
have to set

ϕ1(v1) := χσ · ωΓY (σ1) with χσ :=
lcm(ΓC,h)

ωΓC,h(̺(σ))

and ϕ1 is entirely determined then. Now ϕ2 is determined on σ2. In order to get
ωϕ(σ2) = lcm(ΓC,h) · ωΓY (σ2) we have to set ϕ2(v2) := χσ · ωΓY (σ2) + ϕ1(v2) and ϕ2 is
entirely determined. Going on this way we set ϕi(vi) := χσ · ωΓY (σi) + ϕi−1(vi) for all
i and obtain the function ϕ̺(σ). Using the same procedure we can construct functions
ϕ̺(σ) for all σ ∈ Y (m−1) and it remains to check that all our pieces ϕ̺(σ), σ ∈ X(m−1)

glue together to obtain a globally defined rational function ϕ on C. Therefore, for all
i = 1, . . . , r we choose a basis a

(i)
1 , . . . , a

(i)
m−1 of Λσi ⊆ Zm and a representative vi ∈ Zm

of the primitive normal vector of ̺(σ)i relative to σi. We set

∣∣∣det
(
a

(i)
1 · · · a

(i)
m−1 −em

)∣∣∣ =: αi ∈ Z>0,

where ej denotes the j-th unit vector in Rm ∼= V ′
̺(σ). Using our assumption D ∈ ker(p∗)

we can conclude that

0 = ωY (σ) =
r∑
i=1

ωΓY (σi) · αi. (∗)
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4.2 Cartier divisors and Weil divisors

As a
(i)
1 , . . . , a

(i)
m−1,−em is a basis of Rm we can express vi by a linear combination

vi = c
(i)
1 a

(i)
1 + . . .+ c

(i)
m−1a

(i)
m−1 − c(i)m em.

It is easily checked that c
(i)
m = 1

αi
. We can use the above linear combination to calculate

ϕi(−em):

ϕ1(v1) = χσ · ωΓY (σ1)

= c
(1)
1 ϕ1(a

(1)
1 ) + . . .+ c

(1)
m−1ϕ1(a

(1)
m−1) +

1

α1

ϕ1(−em)

=
1

α1

ϕ1(−em)

implies ϕ1(−em) = χσ · ωΓY (σ1)α1. Similarly,

ϕ2(v2) = χσ · ωΓY (σ2) + ϕ1(v2)

= χσ · ωΓY (σ2) + c
(2)
1 ϕ1(a

(2)
1 ) + . . .+ c

(2)
m−1ϕ1(a

(2)
m−1) +

1

α2

ϕ1(−em)

= c
(2)
1 ϕ2(a

(2)
1 ) + . . .+ c

(2)
m−1ϕ2(a

(2)
m−1) +

1

α2

ϕ2(−em)

implies χσ · ωΓY (σ2) + 1
α2
ϕ1(−em) = 1

α2
ϕ2(−em) and hence

ϕ2(−em) = χσ · (ωΓY (σ2)α2 + ωΓY (σ1)α1).

Inductively we obtain

ϕi(−em) = χσ ·
i∑

j=1

ωΓY (σj)αj (∗∗)

and hence using (∗):

ϕr(−em) = χσ ·
r∑

j=1

ωΓY (σj)αj = 0.

Thus all patches ϕ̺(σ), σ ∈ X(m−1) fit together on the ray {0V ′} + ({0V } × R≤0) and
we are done in the case m = 2.
Now let m ≥ 3. To see that the patches ϕ̺(σ) glue together everywhere we have to

study the consequences of the balancing condition of ΓY : Let τ ∈ Γ
(m−1)
X,h be a common

face of the cones ̺(σ(1)), . . . , ̺(σ(s)). For all i we may choose a representative vi of the
primitive normal vector of ̺(σ(i)) relative to τ such that the equation

s∑

i=1

ωΓX,h(̺(σ
(i))) · vi = 0 ∈ Λ′

holds (cf. remark 1.1.9). Like above, for i = 1, . . . , s let σ
(i)
1 , . . . , σ

(i)
ri be all facets of ΓY

contained in ̺(σ(i)) on which p is injective and which meet in a common face τ1 ⊆ τ

of dimension m − 2 (see figure 4.4). Then let v
(i)
j be a representative of the primitive
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κ

τ

τr

τ3

τ2

τ1

Figure 4.4: The common face τ of ̺(σ(1)), . . . , ̺(σ(s)).

normal vector of σ
(i)
j relative to τ1. The balancing condition of ΓY implies that

s∑

i=1

ri∑

j=1

ωΓY (σ
(i)
j ) · [v(i)

j ] = 0 ∈ Λ′/Λ′
τ . (∗ ∗ ∗)

Choosing a basis u1, . . . , um−2 of Λ′
τ1

and extending it by a vector um−1 to a basis of

Λ′
τ we can express the vectors v

(i)
j by Z-linear combinations

v
(i)
j = c

(i)
1 u1 + . . .+ c

(i)
m−1um−1 + t

(i)
j vi.

Note that the orientations of vi and v
(i)
j imply that t

(i)
j > 0. Equation (∗ ∗ ∗) then

implies

s∑

i=1

ri∑

j=1

ωΓY (σ
(i)
j ) · t(i)j [vi] = 0 ∈ Λ′/Λ′

τ .

As ΓC,h is locally irreducible we can conclude that there exists some λ ∈ Q such that

ri∑

j=1

ωΓY (σ
(i)
j ) · t(i)j = λ · ωΓX,h(̺(σ

(i)))

for all i. Now we fix i ∈ {1, . . . , s} and choose a basis b1, . . . , bm−2, bm−1 := vi, bm :=
(0Λ′ , 1) of Λ′

̺(σ(i))
∼= Zm like above. Note that in general we cannot simply take again

the vectors u1, . . . , um−2 we have chosen above because in general u1, . . . , um−2, bm is

not a basis of Λ′
τ . Nevertheless, on the other hand, we can express the vectors v

(i)
j by

an R-linear combination

v
(i)
j = d

(i)
1 u1 + . . .+ d

(i)
m−2um−2 + t

(i)
j vi + d(i)

m bm
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4.2 Cartier divisors and Weil divisors

and can hence calculate using (∗∗):

(ϕ̺(σ(i)))κ(−em)

= χ(i)
σ ·

ri∑

j=1

ωΓY (σ
(i)
j ) ·

∣∣∣det
(
ũ1 · · · ũm−2 ṽ

(i)
j − em

)∣∣∣

= χ(i)
σ ·

ri∑

j=1

ωΓY (σ
(i)
j )t

(i)
j ·
∣∣det

(
ũ1 · · · ũm−2 em−1 − em

)∣∣
︸ ︷︷ ︸

=:B

= χ(i)
σ ·

ri∑

j=1

ωΓY (σ
(i)
j )t

(i)
j ·B

(here x̃ denotes the representation of x in the basis b1, . . . , bm). Note that B is inde-
pendent of i. Thus we obtain:

(ϕ̺(σ(i)))κ(−em) = χσ(i) ·
ri∑

j=1

ωΓY (σ
(i)
j )t

(i)
j B = λB · lcm(ΓC,h)

for all i. This proves that the pieces ϕ̺(σ) of our map ϕ agree on common faces of codi-
mension one. Moreover, the argument shows that if one of the cones ̺(σ(i)) does not

contain any facet σ
(i)
j with non-zero weight on which p is injective, then ϕ̺(σ(i))|τ = 0

for all i.
It remains to check that our pieces of ϕ̺(σ) glue together on cones of higher codimen-
sion as well: Therefore let τ < ̺(σ1), ̺(σ2) be a common face of ̺(σ1) and ̺(σ2),
σ1, σ2 ∈ X(m−1). If σ1, σ2 6∈ Y (m−1) then ϕ̺(σ1) = 0 = ϕ̺(σ2) and we are done. Hence let
σ1 ∈ Y (m−1). We have to distinguish between two cases: If all facets ̺(σ) with ̺(σ) > τ
contain facets σj with non-zero weights on which p is injective then ϕ̺(σ1)|τ = ϕ̺(σ2)|τ
by applying our above argument several times. Otherwise ϕ̺(σ1)|τ = 0 = ϕ̺(σ2)|τ any-
way.
Hence ϕ is in fact a rational function on C. The faces of ϕ · ΓX,h with non-zero
weights on which p is injective are by construction exactly the faces of lcm(ΓC,h) ·
ΓY on which p is injective and these faces occur with correct weights. As both
ϕ · ΓX,h and lcm(ΓC,h) · ΓY fulfill the balancing condition it follows that [ϕ · ΓX,h] =
[lcm(ΓC,h) · ΓY ] = lcm(ΓC,h) ·D. Hence ϕD := [ϕ] ∈ Div(ΓC,h) is our wanted Cartier
divisor with ϕD · ΓC,h = lcm(ΓC,h) ·D.

Using this lemma we are able to prove the first part of the promised 1:1-correspondence
between Weil divisors and Cartier divisors:

Theorem 4.2.5

Let C ∈ Zaff
m (V ) be a cycle such that Div(C)

∼
→ Zaff

m−1(C), let h ∈ K∗(C) be a rational
function and let D ∈ Zaff

m−1(ΓC,h). If m ≤ 2 or ΓC,h is locally irreducible then there
exists a Cartier divisor ϕD ∈ Div(ΓC,h) with ϕD · ΓC,h = lcm(ΓC,h) ·D.

Proof. D ∈ Zaff
m−1(ΓC,h) implies that p∗D ∈ Zaff

m−1(C). By assumption there exists a
Cartier divisor ϕ′

D ∈ Div(C) with ϕ′
D · C = p∗D. By proposition 4.1.6 we know that

p∗D = ϕ′
D · C = p∗(p

∗ϕ′
D · γ(C)) = p∗(p

∗ϕ′
D · ΓC,h).
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Hence D − p∗ϕ′
D · ΓC,h ∈ ker(p∗) and by lemma 4.2.4 there exists a Cartier divisor

ϕ′′
D ∈ Div(ΓC,h) with ϕ′′

D · ΓC,h = lcm(ΓC,h) · (D − p∗ϕ′
D · ΓC,h). Thus we obtain

(ϕ′′
D + lcm(ΓC,h) · p

∗ϕ′
D) · ΓC,h = lcm(ΓC,h) ·D.

Now we prove the missing part of the 1:1-correspondence. Note that in contrast to the
first part we need no special assumptions here.

Theorem 4.2.6

Let C ∈ Zaff
m (V ) be a cycle such that Div(C)

∼
→ Zaff

m−1(C), let h ∈ K∗(C) be a rational
function and let Φ ∈ Div(ΓC,h) with Φ · ΓC,h = 0. Then Φ = 0 ∈ Div(ΓC,h).

Proof. Let (X,ωX) be a reduced representative of C and let v1, . . . , vk ∈ |X| be a basis
of 〈|X|〉 ⊆ V . For every cone σ ∈ X(m) and all τ < σ, τ ∈ X(m−1) we can choose
representatives vσ,τ of the primitive normal vector of σ relative to τ such that

∑

σ>τ

ωX(σ)vσ,τ = 0

by remark 1.1.9. Moreover, for every cone τ ∈ X we choose a basis xτ1, . . . , x
τ
dτ

of Λτ .
For σ ∈ X(m) with vσ1 , . . . , v

σ
tσ ∈ σ, vσj ∈ {v1, . . . , vk}, we have linear relations

f1({vσ,τ |τ < σ, τ ∈ X(m−1)} ∪ {vσ1 , . . . , v
σ
tσ} ∪ {xτj |τ ≤ σ}) = 0,

...
fsσ({vσ,τ |τ < σ, τ ∈ X(m−1)} ∪ {vσ1 , . . . , v

σ
tσ} ∪ {xτj |τ ≤ σ}) = 0.

Our assumption Div(C)
∼
→ Zaff

m−1(C) then implies that the following system of equations
in the variables ψσ(vσ,τ ), ψσ(x

τ
j ) and ψσ(v

σ
j ) has exactly the solution 0:

∀τ ∈ X(m−1) :
∑

σ>τ ωX(σ)ψσ(vσ,τ ) = 0,
∀σ1, σ2 ∈ X(m) : ψσ1(x

τ
j ) = ψσ2(x

τ
j ) ∀τ < σ1, σ2,∀j,

∀σ ∈ X(m) : fi({ψσ(vσ,τ )|τ < σ, τ ∈ X(m−1)} ∪ {ψσ(v
σ
1 ), . . . , ψσ(v

σ
tσ)}∪

{ψσ(x
τ
j )|τ ≤ σ}) = 0 ∀i,

∀σ ∈ X(m) : ψσ(v
σ
j ) = 0 ∀j.

Now we set ṽi := (vi, hσ(vi)) for all i, we set x̃τj := (xτj , hτ (x
τ
j )) for all τ and j and

ṽσ,τ := (vσ,τ , hσ(vσ,τ )) for all τ ∈ X(m−1), σ ∈ X(m) with τ < σ. Moreover we set τ̃ :=
(id×hτ )(τ) and ̺(τ) := τ̃ +({0V ′}×R≤0). Now we choose a representative ϕ ∈ K∗(X)
of Φ with ϕ((0V , 0)) = 0, ϕ(ṽi) = 0 for all i and additionally ϕ((0V ,−1)) = 0. Note
that Φ · ΓC,h = 0 implies that ϕ is linear on every face of ΓX,h. Then we consider the
following system of equations:

∀τ ∈ X(m−1) : ωΓX,h(̺(τ))ϕ̺(τ)((0V ,−1)) +
∑

σ>τ ωX(σ)ϕσ̃(ṽσ,τ ) = 0,
∀σ1, σ2 ∈ X(m) : ϕσ̃1(x̃

τ
j ) = ϕσ̃2(x̃

τ
j ) ∀τ < σ1, σ2,∀j,

∀σ ∈ X(m) : fi({ϕσ̃(ṽσ,τ )|τ < σ, τ ∈ X(m−1)} ∪ {ϕσ̃(ṽ
σ
1 ), . . . , ϕσ̃(ṽ

σ
tσ)}∪

{ϕσ̃(x̃
τ
j )|τ ≤ σ}) = 0 ∀i,

∀σ ∈ X(m) : ϕσ̃(ṽ
σ
j ) = 0 ∀j,

∀τ ∈ X \X(m) : ϕ̺(τ)((0V ,−1)) = 0.
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4.2 Cartier divisors and Weil divisors

As this system is fulfilled by the values of our given function ϕ and since we can
simplify this system to the one above we have the unique solution ϕσ̃(ṽσ,τ ) = ϕσ̃(x̃

τ
j ) =

ϕσ̃(ṽ
σ
j ) = 0 for all σ, τ and j. Hence Φ = 0 ∈ Div(ΓC,h).

Let C ∈ Zaff
m (V ) with Div(C) ∼= Zaff

m−1(C) like above. The preceding theorem enables
us to define an intersection product of two cycles in a modification ΓC,h of C if one of
them can be expressed by a Cartier divisor:

Definition 4.2.7

Let C ∈ Zaff
m (V ) be a cycle such that Div(C)

∼
→ Zaff

m−1(C) and let ΓC,h be a modification
of C. Let D ∈ Zaff

k (ΓC,h) be any cycle and let E ∈ Zaff
m−1(ΓC,h) be a Weil divisor such

that there exists ϕE ∈ Div(ΓC,h) with ϕE · ΓC,h = E. Then we define:

E ·D := ϕE ·D.

Example 4.2.8

The moduli space M0,n,trop of n-marked abstract tropical curves embedded into the

real vector space R(n2)−n as defined in [GKM07, section 3] arises from Rn−3 by a finite
series of modifications

Rn−3 = C0  C1  C2  · · · C(n2)−2n+3 = M0,n,trop

such that every Ci is locally irreducible and lcm(Ci) = 1 for all i (a proof for this
fact can be found in [H07, pages 44ff]). Hence we can conclude by theorems 4.2.5 and
4.2.6 that Div(M0,n,trop) ∼= Zaff

n−4(M0,n,trop) and we can define an intersection product
of arbitrary cycles with Weil divisors as given in definition 4.2.7.

Example 4.2.9

The tropical linear space Lnk introduced in definition 3.1.1 arises from Rk by a finite
series of modifications

Rk
 Lk+1

k  Lk+2
k  · · · Lnk

via maps max{0, x1, . . . , xk}, . . . ,max{0, x1, . . . , xn−1}. Moreover, every Lk+ik is locally
irreducible and lcm(Lk+ik ) = 1 for all i. Using the same maps this also holds for tropical

fans F̃ associated to open subsets of Lnk as in corollary 3.1.14. Using proposition 4.1.7

we can extend this statement to all tropical fans F̃ = F̃1 × . . . × F̃r, where all F̃i are
tropical fans associated to open subsets of Lnk as in corollary 3.1.14. Hence we can
define an intersection product of arbitrary cycles with Weil divisors on these spaces as
introduced in definition 4.2.7. Moreover, we can deduce the following corollary.

Corollary 4.2.10

Let C ∈ Zn be a smooth tropical variety (cf. definition 3.2.1). Then the map

Div(C) −→ Zn−1(C) : ϕ 7→ ϕ · C

is an isomorphism.
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Chapter 4: Weil and Cartier divisors under tropical modifications

Proof. Let (((X, |X|), ωX), {Φσ}) be a representative of C as in definition 3.2.1 and let
D ∈ Zn−1(C) be a cycle of codimension one. For all σ ∈ X we can regard D ∩ Sσ as

an open tropical cycle in F̃σ via the map Φσ. Let D̃ ∩ Sσ be any tropical cycle in F̃σ
restricting to D ∩ Sσ. By example 4.2.9 and theorem 4.2.5 there is a Cartier divisor

ϕσ ∈ Div(F̃σ) with ϕσ · F̃σ = D̃ ∩ Sσ. As all these Cartier divisors ϕσ are unique by
theorem 4.2.6 they agree on overlaps Sσ ∩Sσ′ and hence define a global Cartier divisor
ϕ ∈ Div(C). Moreover, ϕ is locally unique and thus globally unique. Hence the claim
follows.
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5 Chern classes of tropical vector
bundles

In this chapter we introduce tropical vector bundles, morphisms and rational sections
of these bundles and define the pull-back of a tropical vector bundle and of a rational
section along a morphism. Most of the definitions presented here for tropical vector
bundles will be contained in [T09] for the case of line bundles. Afterwards we use the
bounded rational sections of a tropical vector bundle to define the Chern classes of this
bundle and prove some basic properties of Chern classes. Finally we give a complete
classification of all vector bundles on an elliptic curve up to isomorphisms.

5.1 Tropical vector bundles

In this section we will introduce our basic objects such as tropical vector bundles,
morphisms of tropical vector bundles and rational sections.

Definition 5.1.1 (Tropical matrices)
A tropical matrix is an ordinary matrix with entries in the tropical semi-ring

(T = R ∪ {−∞},⊕,⊙),

where a ⊕ b = max{a, b} and a ⊙ b = a + b. We denote by Mat(m × n,T) the set of
tropical m×n matrices. Let A ∈ Mat(m×n,T) and B ∈ Mat(n× p,T). We can form
a tropical matrix product A⊙B := (cij) ∈ Mat(m× p,T) where cij =

⊕m
k=1 aik ⊙ bkj.

Moreover, let G(r× s) ⊆ Mat(r× s,T) be the subset of tropical matrices with at most
one finite entry in every row. Let G(r) be the subset of G(r× r) containing all tropical
matrices with exactly one finite entry in every row and every column.

Remark 5.1.2

Note that a matrix A ∈ G(r × s) does, in general, not induce a map fA : Rs → Rr :
x 7→ A⊙ x as the vector A ⊙ x may contain entries that are −∞. To obtain a map
fA : Rs → Rr anyway we use the following definition: Let x ∈ Rs and A ⊙ x =
(y1, . . . , yr) ∈ Tr with yi = −∞ for i ∈ I and yi ∈ R for i 6∈ I. Then we define
fA(x) := (ỹ1, . . . , ỹr) ∈ Rr with ỹi := 0 for i ∈ I and ỹi := yi for i 6∈ I.

Notation 5.1.3

For an element σ of the symmetric group Sr we denote by Aσ the tropical matrix
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5.1 Tropical vector bundles

Aσ = (aij) ∈ Mat(r × r,T) given by

aij :=

{
0, if j = σ(i)

−∞, else.

Moreover, for a1, . . . , ar ∈ R we denote by D(a1, . . . , ar) the tropical diagonal matrix
D(a1, . . . , ar) = (dij) ∈ Mat(r × r,T) given by

dij :=

{
ai, if i = j

−∞, else.

Note that every element M ∈ G(r) can be written as M = Aσ ⊙ D(a1, . . . , ar) for
some σ ∈ Sr and some numbers a1, . . . , ar ∈ R. Moreover, G(r) together with tropical
matrix multiplication is a group with neutral element E := D(0, . . . , 0).

Lemma 5.1.4

G(r) is precisely the set of invertible tropical matrices, i.e.

G(r) = {A ∈ Mat(r × r,T)|∃A′ ∈ Mat(r × r,T) : A⊙ A′ = A′ ⊙ A = E}.

Proof. The inclusion

G(r) ⊆ {A ∈ Mat(r × r,T)|∃A′ ∈ Mat(r × r,T) : A⊙ A′ = A′ ⊙ A = E}

is obvious. Thus, let A,A′ ∈ Mat(r × r,T) be given such that A ⊙ A′ = A′ ⊙ A = E.
Assume that A = (aij) contains more than one finite entry in a row or column. For
simplicity of notation we assume that a11, a12 6= −∞. As A⊙A′ = E we can conclude
that the first two rows of A′ look as follows:

A′ =




α −∞ . . . −∞
β −∞ . . . −∞

*


 for some α, β ∈ R.

As moreover A′ ⊙ A = E holds, we can conclude from the second line of A′ and the
first column of A that

a11 + β = −∞,

which is a contradiction to a11, β ∈ R.

We have all requirements now to state our main definition:

Definition 5.1.5 (Tropical vector bundles)
Let X be a tropical cycle. A tropical vector bundle over X of rank r is a tropical cycle
F together with a morphism π : F → X and a finite open covering {U1, . . . , Us} of X

as well as a homeomorphism Φi : π−1(Ui)
∼=
→ Ui ×Rr for every i ∈ {1, . . . , s} such that
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Chapter 5: Chern classes of tropical vector bundles

(a) for all i we obtain a commutative diagram

π−1(Ui)
Φi //

π
&&L

L
L

L
L

L
L

L
L

L
L

Ui ×Rr

p1

��

Ui

where p1 : Ui ×Rr → Ui is the projection to the first factor,

(b) for all i, j the composition p
(i)
j ◦Φi : π−1(Ui) → R is a regular invertible function,

where p
(i)
j : Ui ×Rr → R : (x, (a1, . . . , ar)) 7→ aj,

(c) for every i, j ∈ {1, . . . , s} there exists a transition map Mij : Ui∩Uj → G(r) such
that

Φj ◦ Φ−1
i : (Ui ∩ Uj) ×Rr → (Ui ∩ Uj) ×Rr

is given by (x, a) 7→ (x,Mij(x) ⊙ a) and the entries of Mij are regular invertible
functions on Ui ∩ Uj or constantly −∞,

(d) there exist representatives F0 of F and X0 of X such that F0 = {π−1(τ)|τ ∈ X0}
and ωF0(π

−1(τ)) = ωX0(τ) for all maximal polyhedra τ ∈ X0.

An open set Ui together with the map Φi : π−1(Ui)
∼=
→ Ui ×Rr is called a local trivial-

ization of F . Tropical vector bundles of rank one are called tropical line bundles.

Remark 5.1.6

Let V1, . . . , Vt be any open covering of X. Then the covering {Ui∩Vj} together with the
restricted homeomorphisms Φi|π−1(Ui∩Vj) and transition maps Mij|(Ui∩Vk)∩(Uj∩Vl) fulfills
all requirements of definition 5.1.5, too, and hence defines again a vector bundle. As
the open covering, the homeomorphisms and the transition maps are part of the data
of definition 5.1.5 this new bundle is (according to our definition) different from our
initial one even though they are “the same” in some sense. Hence, in the following we
will identify vector bundles that arise by such a construction one from the other:

Definition 5.1.7

Let π : F → X together with open covering U1, . . . , Us, homeomorphisms Φi and
transition maps Mij and π : F → X together with open covering V1, . . . , Vt, home-
omorphisms Ψi and transition maps Nij be two tropical vector bundles according to
definition 5.1.5. We will identify these vector bundles if the vector bundles π : F → X
with open covering {Ui ∩Vj} and restricted homeomorphisms Φi|π−1(Ui∩Vj) respectively
Ψj|π−1(Ui∩Vj) and transition maps Mij|(Ui∩Vk)∩(Uj∩Vl) respectively Nkl|(Ui∩Vk)∩(Uj∩Vl) are
equal.

Remark 5.1.8

Let π1 : F1 → X and π2 : F2 → X be two vector bundles on X. By definition 5.1.7 we
can always assume that F1 and F2 satisfy definition 5.1.5 with the same open covering.
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Remark 5.1.9

Let π : F → X be a vector bundle with open covering U1, . . . , Us and transition maps
Mij as in definition 5.1.5. On the common intersection Ui ∩Uj ∩Uk we obviously have
Mij(x) = Mkj(x) ⊙Mik(x). This last equation is called cocycle condition. Conversely,
given an open covering U1, . . . , Us of X and maps Mij : Ui ∩ Uj → G(r) such that the
entries of Mij(x) are regular invertible functions on Ui ∩ Uj or constantly −∞ and the
cocycle conditionMij(x) = Mkj(x)⊙Mik(x) holds on Ui∩Uj∩Uk, we can construct a vec-
tor bundle π : F → X with this given open covering and transition functions Mij: Take
the disjoint union

∐s
i=1(Ui ×Rr) and identify points (x, y) ∼ (x,Mij(x)⊙ a) to obtain

the topological space |F |. We have to equip this space with the structure of a tropical
cycle. As this construction is exactly the same as for tropical line bundles, we only
sketch it here and refer to [T09] for more details. Let (((X0, |X0|, {ϕσ}), ωX0), {Φσ}) be
a representative of X. We define F0 := {π−1(σ)|σ ∈ X0} and ωF0(π

−1(σ)) := ωX0(σ)
for all maximal polyhedra σ ∈ X0. Our next step is to construct the polyhedral charts
ϕ̃π−1(σ) for F0: Let σ ∈ X0 be given and let Ui1 , . . . , Uit be all open sets with non-empty
intersection with σ. Moreover, let {Vi|i ∈ I} be the set of all connected components of
all σ ∩Uik . Every such set Vi comes from a set Uj(i) of the given open covering. Hence,
for every pair k, l ∈ I we have a restricted transition map Nkl := Mj(k),j(l)|Vk∩Vl . This
implies that for all k, l ∈ I the entries of Nkl ◦ Φ−1

σ are (globally) integer affine linear
functions on Vk ∩ Vl. As σ is simply connected, for every such entry h ∈ O∗(Vk ∩ Vl) of

Nkl there exists a unique continuation h̃ ∈ O∗(σ). Hence we can extend all transition
maps Nkl : Vk ∩ Vl → G(r) to maps N ′

kl : σ → G(r). Now we choose for every i ∈ I a
point Pi ∈ Vi and for all pairs k, l ∈ I a path γkl : [0, 1] → σ from Pk to Pl. Let k, l ∈ I
be given. As the image of γkl is compact there exists a finite covering Vµ1 , . . . , Vµc of
γkl([0, 1]). For x ∈ Vl we set

S(γkl)(x) := (N ′
µ1,µ2

(x))−1 ⊙ · · · ⊙ (N ′
µc−1,µc

(x))−1 ∈ G(r).

Now fix some k0 ∈ I. For all l ∈ I we define maps

ϕ̃
(l)

π−1(σ) : Vl ×Rr ∼= π−1(Vl) → Rnσ+r : (x, a) 7→ (ϕσ(x), S(γk0l)(x) ⊙ a).

These maps agree on overlaps and hence glue together to an embedding

ϕ̃π−1(σ) : π−1(σ) → Rnσ+r.

In the same way we can construct the fan charts Φ̃π−1(σ). Then we define F to be the
equivalence class

F :=
[
(((F0, |F0|, {ϕ̃π−1(σ)}), ωF0), {Φ̃π−1(σ)})

]
.

Example 5.1.10

Throughout the chapter, the curve X := X2 from example 1.4.5 will serve us as a
central example. Recall that X arises by gluing open fans as drawn in the figure:
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X

Moreover, recall from definition 1.4.4 that the transition functions between these open
fans composing X are integer affine linear. This implies that the curve X has a well-
defined lattice length L. We can cover X by open sets U1, U2, U3 as drawn in the
following figure:

=
X

U1

U3

U2

The easiest way to construct a (non-trivial) vector bundle of rank r on X is fixing a
(non-trivial) transition map M12 : U1 ∩U2 → G(r) and defining M23 : U2 ∩U3 → G(r),
M31 : U3 ∩ U1 → G(r) to be the trivial maps x 7→ E for all x. We will see later that in
fact every vector bundle of rank r on X arises in this way.

Knowing what tropical vector bundles are, there are a few notions related to this
definition we want to introduce now:

Definition 5.1.11 (Direct sums of vector bundles)
Let π1 : F1 → X and π2 : F2 → X be two vector bundles of rank r and r′, respectively,
with a common open covering U1, . . . , Us and transition maps M

(1)
ij and M

(2)
ij , respec-

tively, satisfying definition 5.1.5 (see remark 5.1.8). We define the direct sum bundle
π : F1 ⊕F2 → X to be the vector bundle of rank r+ r′ we obtain from the gluing data

• U1, . . . , Us

• M
(1)
ij ×M

(2)
ij : Ui ∩ Uj → G(r + r′) : x 7→

(
M

(1)
ij (x) −∞

−∞ M
(2)
ij (x)

)
.

Definition 5.1.12 (Subbundles)
Let π : F → X be a vector bundle with open covering U1, . . . , Us and homeomorphisms
Φi according to definition 5.1.5. A subcycle E ∈ Zl(F ) is called a subbundle of rank r′

of F if π|E : E → X is a vector bundle of rank r′ such that we have for all i = 1, . . . , s:

Φi|(π|E)−1(Ui) : (π|E)−1(Ui)
∼=
→ Ui × 〈ej1 , . . . , ejr′ 〉R

for some 1 ≤ j1 < . . . < jr′ ≤ r, where the ej are the standard basis vectors in Rr.
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Remark 5.1.13

If π : F → X is a vector bundle of rank r with subbundle E of rank r′ like in definition
5.1.12 this implies that there exists another subbundle E ′ of rank r − r′ with

Φi|(π|E′ )−1(Ui) : (π|E′)−1(Ui)
∼=
→ Ui × 〈ej|j 6∈ {j1, . . . , jr′}〉R

and hence that F = E ⊕ E ′ holds.

Definition 5.1.14 (Decomposable bundles)
Let π : F → X be a vector bundle of rank r. We say that F is decomposable if there
exists a subbundle π|E : E → X of F of rank 1 ≤ r′ < r. Otherwise we call F an
indecomposable vector bundle.

As announced in the very beginning of this section we also want to talk about mor-
phisms and, in particular, isomorphisms of tropical vector bundles:

Definition 5.1.15 (Morphisms of vector bundles)
A morphism of vector bundles π1 : F1 → X of rank r and π2 : F2 → X of rank r′ is a
morphism Ψ : F1 → F2 of tropical cycles such that

(a) π1 = π2 ◦ Ψ and

(b) there exist an open covering U1, . . . , Us according to definition 5.1.5 for both F1

and F2 (see remark 5.1.8) and maps Ai : Ui → G(r′ × r) for all i such that

ΦF2
i ◦ Ψ ◦ (ΦF1

i )−1 : Ui ×Rr → Ui ×Rr′

is given by (x, a) 7→ (x, fAi(x)(a)) (cf. 5.1.2) and the entries of Ai are regular
invertible functions on Ui or constantly −∞.

An isomorphism of tropical vector bundles is a morphism of vector bundles Ψ : F1 → F2

such that there exists a morphism of vector bundles Ψ′ : F2 → F1 with Ψ′ ◦ Ψ = id =
Ψ ◦ Ψ′.

Lemma 5.1.16

Let π1 : F1 → X and π2 : F2 → X be two vector bundles of rank r over X. Then the
following are equivalent:

(a) There exists an isomorphism of vector bundles Ψ : F1 → F2.

(b) There exist a common open covering U1, . . . , Us of X and transition maps M
(1)
ij

for F1 and M
(2)
ij for F2 satisfying definition 5.1.5 (cf. remark 5.1.8) and maps

Ei : Ui → G(r) for i = 1, . . . , s such that

• the entries of Ei are regular invertible functions on Ui or constantly −∞
and

• for all i, j holds Ej(x) ⊙M
(1)
ij (x) = M

(2)
ij (x) ⊙ Ei(x) for all x ∈ Ui ∩ Uj.
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Proof. (a) ⇒ (b): We claim that the maps Ai : Ui → G(r × r) of definition 5.1.15
are the wanted maps Ei. As Ψ is an isomorphism we can conclude that Ai(x) is an
invertible matrix for all x ∈ Ui, i.e. that Ai : Ui → G(r). Hence it remains to check

that Aj(x)⊙M
(1)
ij (x) = M

(2)
ij (x)⊙Ai(x) holds for all x ∈ Ui ∩Uj: Let i, j be given. As

Ψ : F1 → F2 is an isomorphism, the diagram

(Ui ∩ Uj) ×Rr
Φ
F2
i ◦Ψ◦(Φ

F1
i )−1

//

Φ
F1
j ◦(Φ

F1
i )−1

��

(Ui ∩ Uj) ×Rr

Φ
F2
j ◦(Φ

F2
i )−1

��

(Ui ∩ Uj) ×Rr

Φ
F2
j ◦Ψ◦(Φ

F1
j )−1

// (Ui ∩ Uj) ×Rr

commutes. Hence Aj(x) ⊙M
(1)
ij (x) = M

(2)
ij (x) ⊙ Ai(x) holds.

(b) ⇒ (a): Conversely, let the maps Ei : Ui → G(r) be given. The equation

Ej(x) ⊙M
(1)
ij (x) = M

(2)
ij (x) ⊙ Ei(x)

for all x ∈ Ui ∩ Uj ensures that the maps

Ui ×Rr → Ui ×Rr : (x, a) 7→ (x,Ei(x) ⊙ a)

on the local trivializations can be glued to a globally defined map Ψ : |F1| → |F2|.

Moreover, this map is a morphism as π1, π2 are morphisms and the maps p
(i)
j ◦ ΦF1

i ,

p
(i)
j ◦ ΦF2

i and the finite entries of Ei are regular invertible functions (cf. definition

5.1.5). The equation Ej(x) ⊙M
(1)
ij (x) = M

(2)
ij (x) ⊙ Ei(x) implies that

E−1
j (x) ⊙M

(2)
ij (x) = M

(1)
ij (x) ⊙ E−1

i (x)

holds for all x ∈ Ui∩Uj, where E−1
k (x) := (Ek(x))

−1 for all x ∈ Uk. As the finite entries
of E−1

k : Uk → G(r) are again regular invertible functions we can also glue the maps

Ui ×Rr → Ui ×Rr : (x, a) 7→ (x,E−1
i (x) ⊙ a)

on the local trivializations to obtain the inverse morphism Ψ′ : |F2| → |F1|, which
proves that Ψ is an isomorphism.

The morphisms we have just introduced admit another important operation, namely
the pull-back of a vector bundle:

Definition 5.1.17 (Pull-back of vector bundles)
Let π : F → X be a vector bundle of rank r with open covering U1, . . . , Us and transition
maps Mij as in definition 5.1.5, and let f : Y → X be a morphism of tropical cycles.
Then the pull-back bundle π′ : f ∗F → Y is the vector bundle we obtain by gluing the
patches f−1(U1) × Rr, . . . , f−1(Us) ×Rr along the transition maps Mij ◦ f . Hence we
obtain the commutative diagram

f ∗F
f ′

//___

π′

��
�

�

�
F

π

��

Y
f

// X
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where f ′ and π′ are locally given by f ′ : f−1(Ui) × Rr → Ui × Rr : (y, a) 7→ (f(y), a)
and π′ : f−1(Ui) ×Rr → f−1(Ui) : (y, a) 7→ y.

To be able to define Chern classes in the second section we need the notion of a rational
section of a vector bundle:

Definition 5.1.18 (Rational sections of vector bundles)
Let π : F → X be a vector bundle of rank r. A rational section s : X → F of F is a
continuous map s : |X| → |F | such that

(a) π(s(x)) = x for all x ∈ |X| and

(b) there exist an open covering U1, . . . , Us and homeomorphisms Φi satisfying def-

inition 5.1.5 (cf. definition 5.1.7) such that the maps p
(i)
j ◦ Φi ◦ s : Ui → R are

rational functions on Ui for all i, j,

where p
(i)
j : Ui×Rr → R is given by (x, (a1, . . . , ar)) 7→ aj. A rational section s : X → F

is called bounded if the above maps p
(i)
j ◦ Φi ◦ s are bounded for all i, j.

Remark 5.1.19

Let π : L → X be a line bundle and s : X → L a rational section. By definition, the
map p(i) ◦ Φi ◦ s is a rational function on Ui for all i. Moreover, on Ui ∩ Uj the maps
p(i) ◦Φi ◦ s and p(j) ◦Φj ◦ s differ by a regular invertible function only. Hence s defines
a Cartier divisor D(s) ∈ Div(X).

There is a useful statement on these Cartier divisors D(s) in [T09] that we want to cite
here including its proof:

Lemma 5.1.20

Let π : L→ X be a line bundle and let s1, s2 : X → L be two bounded rational sections.
Then D(s1) − D(s2) = h for some bounded rational function h ∈ K∗(X), i.e. D(s1)
and D(s2) are rationally equivalent.

Proof. Let U1, . . . , Us be an open covering of X with transition maps Mij and homeo-

morphisms Φi according to definition 5.1.5 such that for all i both s
(i)
1 := p(i) ◦ Φi ◦ s1

and s
(i)
2 := p(i) ◦ Φi ◦ s2 are rational functions on Ui (cf. definition 5.1.18). We define

hi := s
(i)
1 − s

(i)
2 ∈ K∗(Ui). As we have s

(i)
1 − s

(j)
1 = s

(i)
2 − s

(j)
2 = Mij ∈ O∗(Ui ∩Uj) for all

i, j these maps hi glue together to h ∈ K∗(X). Hence we have

D(s1) −D(s2) = [{(Ui, s
(i)
1 )}] − [{(Ui, s

(i)
2 )}]

= [{(Ui, s
(i)
1 − s

(i)
2 )}]

= [{(Ui, hi)}]
= [{(|X|, h)}].

Remark 5.1.21

Lemma 5.1.20 implies that we can associate to any line bundle L admitting a bounded
rational section s a Cartier divisor class D(F ) := [D(s)] that only depends on the
bundle L and not on the choice of the rational section s.
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Combining both the notion of a morphism of vector bundles and the notion of a rational
section we can define the following:

Definition 5.1.22 (Pull-back of rational sections)
Let π : F → X be a vector bundle of rank r and f : Y → X a morphism of tropical
varieties. Moreover, let s : X → F be a rational section of F with open covering
U1, . . . , Us and homeomorphisms Φ1, . . . ,Φs as in definition 5.1.18. Then we can define
a rational section f ∗s : Y → f ∗F of f ∗F , the pull-back section of s, as follows: On
f−1(Ui) we define

f ∗s : f−1(Ui) → f−1(Ui) ×Rr : y 7→ (y, (pi ◦ Φi ◦ s ◦ f)(y)),

where pi : Ui × Rr → Rr is the projection on the second factor. Note that for y ∈
f−1(Ui) ∩ f−1(Uj) the points (y, (pi ◦ Φi ◦ s ◦ f)(y)) and (y, (pj ◦ Φj ◦ s ◦ f)(y)) are
identified in f ∗F if and only if (f(y), (pi ◦Φi ◦ s ◦ f)(y)) and (f(y), (pj ◦Φj ◦ s ◦ f)(y))
are identified in F . But this is the case as (f(y), (pi ◦Φi ◦ s ◦ f)(y)) = (Φi ◦ s)(f(y)) ∼
(Φj ◦ s)(f(y)) = (f(y), (pj ◦ Φj ◦ s ◦ f)(y)). Hence we can glue our locally defined map
f ∗s to obtain a map f ∗s : Y → f ∗F .

We finish this section with the following statement on vector bundles on simply con-
nected tropical cycles which will be of use for us later on:

Theorem 5.1.23

Let π : F → X be a vector bundle of rank r on the simply connected tropical cycle X.
Then F is a direct sum of line bundles, i.e. there exist line bundles L1, . . . , Lr on X
such that F = L1 ⊕ . . .⊕ Lr.

Proof. We show that every vector bundle of rank r ≥ 2 on X is decomposable. Let
U1, . . . , Us be an open covering of X and let

Mij(x) = D(ϕ
(1)
i,j , . . . , ϕ

(r)
i,j )(x) ⊙ Aσij(x) =: Dij(x) ⊙ Aσij(x), x ∈ Ui ∩ Uj

with ϕ
(1)
i,j , . . . , ϕ

(r)
i,j ∈ O∗(Ui ∩ Uj) and σij(x) ∈ Sr be transition functions according to

definition 5.1.5. We only have to show that it is possible to track the first coordinate
of the Rr-factor in U1 ×Rr consistently along the transition maps: Let γ : [0, 1] → |X|
be a closed path starting and ending in P ∈ U1. Decomposing γ into several paths if
necessary, we may assume that γ has no self-intersections, i.e. that γ|[0,1) is injective.
As γ([0, 1]) is compact we can choose an open covering V1, . . . , Vt of γ([0, 1]) such that
for all j we have Vj ⊆ Ui for some index i = i(j), P ∈ V1 = Vt ⊆ U1, all sets Vj
and all intersections Vj ∩ Vj+1 are connected and all intersections Vj ∩ Vj′ for non-
consecutive indices are empty. For sets Vj and Vj′ with non-empty intersection we have

restricted transition maps M̃Vj ,Vj′
(x) = D̃Vj ,Vj′

(x) ⊙ AσVj,Vj′
induced by the transition

maps between Ui(j) ⊇ Vj and Ui(j′) ⊇ Vj′ . Note that the permutation parts AσVj,Vj′
of

the transition maps do not depend on x as all intersections Vj∩Vj′ are connected and the
permutations have to be locally constant. We define Iγ := σVt−1,Vt ◦ . . . ◦ σV1,V2(1). We
have to check that Iγ = 1 holds. First we show that Iγ does not depend on the choice
of the covering V1, . . . , Vt. Hence, let V ′

1 , . . . , V
′
t′ be another covering as above. We may
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assume that all intersections Vj ∩ V
′
j′ are connected, too. Between any two sets A,B ∈

{V1, . . . , Vt, V
′
1 , . . . , V

′
t′} with non-empty intersection we have restricted transition maps

M̃A,B(x) = D̃A,B(x) ⊙ AσA,B as above. Moreover, let 0 = α0 < α1 < . . . < αp = 1 be
a decomposition of [0, 1] such that for all i we have γ([αi, αi+1]) ⊆ Vj ∩ V ′

j′ for some
indices j, j′. Let i0 be the maximal index such that γ([αi0 , αi0+1]) ⊆ Va ∩ V

′
b and

σVa−1,Va ◦ . . . ◦ σV1,V2 = σV ′
b
,Va ◦ σV ′

b−1,V
′
b
◦ . . . ◦ σV ′

1 ,V
′
2

is still fulfilled. Assume that i0 < p − 1. Let γ([αi0+1, αi0+2]) ⊆ Va′ ∩ V ′
b′ . Hence

γ(αi0+1) ∈ Va ∩ V
′
b ∩ Va′ ∩ V

′
b′ and we can conclude using the cocycle condition:

σVa,Va′ ◦ σVa−1,Va ◦ . . . ◦ σV1,V2 = σVa,Va′ ◦ σV ′
b
,Va ◦ σV ′

b−1,V
′
b
◦ . . . ◦ σV ′

1 ,V
′
2

= σVa,Va′ ◦ σV ′
b′
,Va ◦ σV ′

b
,V ′
b′
◦ σV ′

b−1,V
′
b
◦ . . . ◦ σV ′

1 ,V
′
2

= σV ′
b′
,Va′

◦ σV ′
b
,V ′
b′
◦ σV ′

b−1,V
′
b
◦ . . . ◦ σV ′

1 ,V
′
2
,

a contradiction to our assumption. Hence i0 = p − 1 and we can conclude that Iγ is
independent of the chosen covering.
If γ and γ′ are paths that pass through exactly the same open sets Ui in the same order,
then we can conclude that Iγ = Iγ′ holds as exactly the same transition functions are
involved. Hence, a continuous deformation of γ does not change Iγ. As X is simply
connected we can contract γ to a point. This implies Iγ = Iγ0 , where γ0 is the constant
path γ0(t) = P for all t. Thus Iγ = Iγ0 = 1. This proves the claim.

There is a related theorem in [T09] which we want to state here. As we will not need
the result in this work, we will omit the proof and refer to [T09] instead.

Theorem 5.1.24

Let π : L → X be a line bundle on the simply connected tropical cycle X. Then L is
trivial, i.e. L ∼= X ×R as a vector bundle.

Combing both theorem 5.1.23 and theorem 5.1.24 we can conclude the following:

Corollary 5.1.25

Let π : F → X be a vector bundle of rank r on the simply connected tropical cycle X.
Then F is trivial, i.e. F ∼= X ×Rr as a vector bundle.

5.2 Chern classes

In this section we will introduce Chern classes of tropical vector bundles and prove
basic properties. To be able to do this we need some preparation:

Definition 5.2.1

Let π : F → X be a vector bundle of rank r and let s : X → F be a rational section with
open covering U1, . . . , Us as in definition 5.1.18. We fix a natural number 1 ≤ k ≤ r
and a subcycle Y ∈ Zl(X). By definition, sij := p

(i)
j ◦ Φi ◦ s : Ui → R is a rational

function on Ui for all i, j. Hence, for all i we can take local intersection products

(s(k) · Y ) ∩ Ui :=
∑

1≤j1<...<jk≤r

sij1 · · · sijk · (Y ∩ Ui).
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Since si′j = siσ(j) + ϕj on Ui ∩ Ui′ for some σ ∈ Sr and some regular invertible map
ϕj ∈ O∗(Ui∩Ui′), the intersection products (s(k) ·Y )∩Ui and (s(k) ·Y )∩Ui′ coincide on
Ui ∩ Ui′ and we can glue them to obtain a global intersection cycle s(k) · Y ∈ Zl−k(X).

Lemma 5.2.2

Let π : F → X be a vector bundle of rank r, fix k ∈ {1, . . . , r} and let s : X → F be a
rational section. Moreover, let Y ∈ Zl(X) be a cycle and let ϕ ∈ K∗(Y ) be a bounded
rational function on Y . Then the following equation holds:

s(k) · (ϕ · Y ) = ϕ · (s(k) · Y ).

Proof. The claim follows immediately from the definition of the product s(k) · Y .

Lemma 5.2.3

Let π : F → X and π′ : F ′ → X be two isomorphic vector bundles of rank r with
isomorphism f : F → F ′. Moreover, fix k ∈ {1, . . . , r}, let s : X → F be a rational
section and let Y ∈ Zl(X) be a cycle. Then the following equation holds:

s(k) · Y = (f ◦ s)(k) · Y ∈ Zl−k(X).

Proof. Let U1, . . . , Us be an open covering of X satisfying definition 5.1.5 for both F
and F ′ and let sij := p

(i)
j ◦ Φi ◦ s : Ui → R and (f ◦ s)ij := p

(i)
j ◦ Φi ◦ f ◦ s : Ui → R as

in definition 5.2.1. By lemma 5.1.16 the isomorphism f can be described on Ui × Rr

by (x, a) 7→ (x,Ei(x)⊙ a) with Ei(x) = D(ϕ1, . . . , ϕr)⊙Aσ for some regular invertible
functions ϕ1, . . . , ϕr ∈ O∗(Ui) and a permutation σ ∈ Sr. Hence (f ◦ s)ij = siσ(j) + ϕj
on Ui and thus

∑

1≤j1<...<jk≤r

sij1 · · · sijk · (Y ∩ Ui) =
∑

1≤j1<...<jk≤r

(f ◦ s)ij1 · · · (f ◦ s)ijk · (Y ∩ Ui),

which proves the claim.

To be able to prove the next theorem, which will be essential for defining Chern classes,
we first need some generalizations of our previous definitions:

Definition 5.2.4 (Infinite tropical cycle)
We define an infinite tropical polyhedral complex to be a tropical polyhedral complex
according to definition 1.4.4 but we do not require the set of polyhedra X to be finite.
In particular, all open fans Fσ have still to be open tropical fans according to definition
1.4.3. Then an infinite tropical cycle is an infinite tropical polyhedral complex modulo
refinements analogous to definition 1.4.13.

Definition 5.2.5 (Infinite rational functions and infinite Cartier divisors)
Let C be an infinite tropical cycle and let U be an open set in |C|. As in definition 1.5.1
an infinite rational function on U is a continuous function ϕ : U → R such that there
exists a representative (((X, |X|, {mσ}σ∈X), ωX), {Mσ}σ∈X) of C, which may now be an
infinite tropical polyhedral complex, such that for each face σ ∈ X the map ϕ ◦m−1

σ is
locally integer affine linear (where defined). Analogously it is possible to define infinite
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regular invertible functions on U .
A representative of an infinite Cartier divisor on C is then a set {(Ui, ϕi)| i ∈ I}, where
{Ui} is an open covering of |C| and ϕi is an infinite rational function on Ui. An infinite
Cartier divisor on C is then a representative of an infinite Cartier divisor modulo the
equivalence relation given in definition 1.5.1.

Remark 5.2.6

Using these basic definitions it is possible to generalize many other concepts to the
infinite case. In particular, as our infinite objects are locally finite, it is possible to
perform intersection theory as before.

Definition 5.2.7 (Tropical vector bundles on infinite cycles)
Let X be an infinite tropical cycle. A tropical vector bundle over X of rank r is an
infinite tropical cycle F together with a morphism π : F → X such that properties
(a)–(d) given in definition 5.1.5 are fulfilled with the difference that the open covering
{Ui} of X may now be infinite.

Now we are ready to prove the announced theorem:

Theorem 5.2.8

Let π : F → X be a vector bundle of rank r and s1, s2 : X → F two bounded rational
sections. Then s

(k)
1 · Y and s

(k)
2 · Y are rationally equivalent, i.e.

[s
(k)
1 · Y ] = [s

(k)
2 · Y ] ∈ A∗(X)

holds for all subcycles Y ∈ Zl(X).

Proof. Let p : |X̃| → |X| be the universal covering space of |X|. We can locally equip

|X̃| with the tropical structure inherited form X and obtain an infinite tropical cycle

X̃ according to definition 5.2.4. Moreover, pulling back F along p, we obtain a tropical
vector bundle p∗F on X̃ according to definition 5.2.7. As X̃ is simply connected we can
conclude by lemma 5.1.23 that p∗F = L1⊕. . .⊕Lr for some infinite tropical line bundles
L1, . . . , Lr on X̃. Hence, the bounded rational sections p∗s1 and p∗s2 correspond to r
infinite tropical Cartier divisors as in definition 5.2.5 each, which we will denote by
ϕ1, . . . , ϕr and ψ1, . . . , ψr, respectively. By lemma 5.1.20 we can conclude that for all i
these Cartier divisors differ by bounded infinite rational functions only, i.e. ϕi−ψi = hi
for some bounded infinite rational function hi on X̃. In particular,

(
∑

1≤j1<...<jk≤r

ϕj1 · · ·ϕjk −
∑

1≤j1<...<jk≤r

ψj1 · · ·ψjk

)
· X̃ = h̃ · ξ̃2 · · · ξ̃k · X̃

with a bounded infinite rational function h̃ and infinite Cartier divisors ξ̃i. Then we
can define a rational function h, which is then also bounded, and Cartier divisors ξi
on X as follows: Let U ⊆ |X| and Ũ ⊆ |X̃| be open subsets such that p|Ũ : Ũ → U

is bijective with inverse map p′ : U → Ũ . Then we locally define h|U := (p′)∗h̃|Ũ and

ξi|U := (p′)∗ξ̃i|Ũ . Note that h and ξi are well-defined as the Cartier divisors ϕi and ψi,
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respectively, are the same on every possible set Ũ
∼=
→ U . As we locally have

(s
(k)
1 · Y ) ∩ U = p∗

(
∑

1≤j1<...<jk≤r

ϕj1 · · ·ϕjk · (p
′)∗(Y ∩ U)

)

and

(s
(k)
2 · Y ) ∩ U = p∗

(
∑

1≤j1<...<jk≤r

ψj1 · · ·ψjk · (p
′)∗(Y ∩ U)

)

we can conclude that
(s

(k)
1 − s

(k)
2 ) · Y = h · ξ2 · · · ξk · Y,

which proves the claim.

Now we are ready to give a definition of Chern classes:

Definition 5.2.9 (Chern classes)
Let π : F → X be a vector bundle of rank r admitting bounded rational sections. For
k ∈ {1, . . . , r} we define the k-th Chern class of F to be the endomorphism

ck(F ) : A∗(X) → A∗(X) : [Y ] 7→ [s(k) · Y ],

where A∗(X) =
⊕

iAi(X) and s : X → F is any bounded rational section. Note that
the map ck(F ) is well-defined by lemma 5.2.2 and independent of the choice of the
rational section s by theorem 5.2.8. Moreover, we define c0(F ) : A∗(X) → A∗(X) to be
the identity map and ck(F ) : A∗(X) → A∗(X) to be the zero map for all k 6∈ {0, . . . , r}.
To stress the character of an intersection product of ck(F ) we usually write ck(F ) · Y
instead of ck(F )(Y ) for Y ∈ A∗(X).

Remark 5.2.10

Note that lemma 5.2.3 implies that isomorphic vector bundles have the same Chern
classes.

As announced in the beginning we finish this section with proving some basic properties
of Chern classes:

Theorem 5.2.11 (Properties of Chern classes)
Let π : F → X and π′ : F ′ → X be vector bundles of rank r and r′, respectively,
admitting bounded rational sections. Moreover, let f : X̃ → X be a morphism of
tropical cycles. Then the following holds:

(a) ci(F ) = 0 for all i 6∈ {0, . . . , rank(F )},

(b) ci(F ) · (cj(F
′) · Y ) = cj(F

′) · (ci(F ) · Y ) for all Y ∈ A∗(X),

(c) f∗(ci(f
∗F ) · Y ) = ci(F ) · f∗(Y ) for all Y ∈ A∗(X̃),

(d) ci(f
∗F )·f ∗(Y ) = f ∗(ci(F )·Y ) for all Y ∈ A∗(X) if X and X̃ are smooth varieties,

(e) ck(F ⊕ F ′) =
∑

i+j=k ci(F ) · cj(F
′)
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(f) c1(F ) · Y = D(F ) · Y for all Y ∈ A∗(X) if r = rank(F ) = 1, where D(F ) is the
Cartier divisor class associated to F .

Proof. Properties (a) and (e) follow immediately from definition 5.2.9, property (b)
follows from the fact that the intersection product is commutative and property (f)
follows from remark 5.1.21.
(c): The projection formula implies

f∗(ci(f
∗F ) · Y ) = f∗([(f

∗s)(i) · Y ]) = [s(i) · f∗Y ] = ci(F ) · f∗Y,

where s is any bounded rational section of F .
(d): Applying theorem 3.3.3 (c) and (f) we obtain

ci(f
∗F ) · f ∗Y = [(f ∗s)(i) · f ∗Y ] = [f ∗(s(i) · Y )] = f ∗[s(i) · Y ] = f ∗(ci(F ) · Y ),

where s is again any bounded rational section of F .

Remark 5.2.12

In “classical” algebraic geometry even the following, generalized version of property
(e) is true: Let 0 → F ′ → F → F ′′ → 0 be an exact sequence of vector bundles,
then ck(F ) =

∑
i+j=k ci(F

′) · cj(F
′′). In the tropical world it is not entirely clear what

an exact sequence of tropical vector bundles should be. Nevertheless, in some sense
the “classical” statement is true in tropical geometry as well: Let π1 : F1 → X and
π2 : F2 → X be tropical vector bundles of rank r1 and r2, respectively, and let U1, . . . , Us
be an open covering ofX such that all requirements of definition 5.1.5 are fulfilled for F1

and F2 simultaneously. Moreover, let f : F1 → F2 be an injective morphism of tropical
vector bundles such that (ΦF2

i ◦f ◦(ΦF1
i )−1)(Ui×Rr1) = Ui×〈ei1 , . . . , eir1 〉R for all i, i.e.

such that the image of F1 under f is a subbundle F ′ of F2 (cf. definition 5.1.12). Then
we can conclude by remark 5.1.13 that F2 is decomposable into F2 = F ′⊕F ′′ ∼= F1⊕F

′′

for some other subbundle F ′′ of F2. Hence we can conclude by theorem 5.2.11 that
ck(F2) =

∑
i+j=k ci(F1) · cj(F

′′).

5.3 Vector bundles on an elliptic curve

In this section we will give a complete classification of all vector bundles on an elliptic
curve up to isomorphism. One characteristic to distinguish different bundles will be
the following:

Definition 5.3.1 (Degree of a vector bundle)
Let X := X2 be the curve from example 1.4.5 and let π : F → X be a vector bundle
of rank r. We define the degree of F to be the number

deg(F ) := deg(c1(F ) ·X).

As already advertised in example 5.1.10 vector bundles on the elliptic curve X can
be described by a single transition function. We will prove this fact in the following
lemma:
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Lemma 5.3.2

Again, let X := X2 be the curve from example 1.4.5 and let π : F → X be a vector
bundle of rank r. Then F is isomorphic to a vector bundle π′ : F ′ → X that admits
an open covering U ′

1, . . . , U
′
s and transition maps M ′

ij such that at most one transition
map is non-trivial.

Proof. Let U1, . . . , Us be the open covering with transition maps Mij for F according
to definition 5.1.5. We may assume that all sets Ui are connected and that for all i, j
the intersections Ui∩Uj are connected as well. Moreover, we may assume that the sets
Ui are numbered consecutively as shown in the figure. For simplicity of notation we
will consider our indices modulo s.

X

=
U3 U4

U1

U2

U5

We can write every map Mi,i+1, i = 1, . . . , s, as

Mi,i+1(x) = D(ϕ
(1)
i,i+1, . . . , ϕ

(r)
i,i+1)(x) ⊙ Aσi,i+1

=: Di(x) ⊙ Pi

for some regular invertible functions ϕ
(k)
i,i+1 ∈ O∗(Ui∩Ui+1) and permutations σi,i+1 ∈ Sr.

We will show that we can replace successively all the transition maps Mi,i+1 but one
by the constant map M ′

i,i+1 : Ui ∩ Ui+1 → G(r) : x 7→ E and the resulting vector
bundle F ′ is isomorphic to F : Choose j0 ∈ {2, . . . , s}. Note that if we are given a
regular invertible function ϕ ∈ O∗(Ui∩Uj) there is a unique regular invertible function
ϕ̃ ∈ O∗(Ui) such that ϕ̃|Ui∩Uj = ϕ. As they are regular invertible functions, too, we
can extend in exactly the same way the finite entries of the matrix Dj0 along the chain
Uj0−1, Uj0−2, . . . , Ui+1 to any set Ui+1 for i ∈ {2, . . . , j0 − 1}. By abuse of notation we
will denote this continuation of Dj0 as well by Dj0 . Now, we take U ′

i := Ui for all
i = 1, . . . , s and

M ′
i,i+1(x) :=

{
Pj0 ⊙Dj0(x) ⊙Mi,i+1(x) ⊙Dj0(x)

−1 ⊙ P−1
j0
, if i ∈ {2, . . . , j0 − 1}

Mi,i+1(x), if i ∈ {j0 + 1, . . . , s}.

Moreover, we set M ′
12(x) := Pj0 ⊙Dj0(x)⊙D1(x)⊙P1 and M ′

j0,j0+1(x) := E. To check
that the vector bundle F ′ we obtain from this gluing data is isomorphic to F we apply
lemma 5.1.16: We set

Ei(x) :=

{
Dj0(x) ⊙ Pj0 , if i ∈ {2, . . . , j0}
E, else,

and get

(Dj0 ⊙ Pj0) ⊙ (D1 ⊙ P1) = (Dj0 ⊙ Pj0 ⊙D1 ⊙ P1) ⊙ E
(Dj0 ⊙ Pj0) ⊙ (D2 ⊙ P2) = (Dj0 ⊙ Pj0 ⊙D2 ⊙ P2 ⊙D−1

j0
⊙ P−1

j0
) ⊙ (Dj0 ⊙ Pj0)

...
...

E ⊙ (Dj0 ⊙ Pj0) = E ⊙ (Dj0 ⊙ Pj0).

This finishes our proof.
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To classify all vector bundles on our elliptic curve X we give now a non-redundant
parametrization of all indecomposable vector bundles on X. Arbitrary vector bundles
are then just direct sums of these building blocks.

Theorem 5.3.3 (Vector bundles on elliptic curves)
Let X := X2 be the curve from example 1.4.5. Then the set of indecomposable vector
bundles of rank r and degree d is in natural bijection with gcd(r, d) ·X, i.e. with points
of the curve X stretched to gcd(r, d) times the original length.

Proof. Let π : F → X be an indecomposable vector bundle of rank r with open
covering U1, . . . , Us and transition maps Mij according to definition 5.1.5. Again, we
may assume that all sets Ui are connected, that for all i, j the intersections Ui ∩ Uj
are connected as well and that the sets Ui are numbered consecutively. Moreover,
by lemma 5.3.2 we may assume that M12 is the only non-trivial transition map. Let
M12(x) = D(ϕ1, . . . , ϕr)(x) ⊙ Aσ =: D(x) ⊙ Aσ for some regular invertible functions
ϕ1, . . . , ϕr ∈ O∗(U1 ∩ U2) and a permutation σ ∈ Sr. As F is indecomposable σ must
by a single cycle. Hence there exists ̺ ∈ Sr such that ̺σ̺−1 = (12 . . . r). We will apply
lemma 5.1.16 to show that we can replace M12(x) by M ′

12(x) := A̺ ⊙D(x) ⊙ A̺−1 ⊙
A(12...r) without changing the isomorphism class of F : We set Ei(x) := A̺ for all x and
all i and obtain

A̺ ⊙ (D(x) ⊙ Aσ) = (A̺ ⊙D(x) ⊙ A̺−1 ⊙ A(12...r)) ⊙ A̺
A̺ ⊙ E = E ⊙ A̺

...
...

A̺ ⊙ E = E ⊙ A̺.

Hence we may assume that σ = (12 . . . r). Our next step is to apply lemma 5.1.16 to
show that we may replace D(x) = D(ϕ1, . . . , ϕr) by D′(x) = D(ϕ′, 0, . . . , 0) for some
ϕ′ ∈ O∗(U1 ∩ U2) without changing the isomorphism class of F . For i = 1, . . . , r let αi
be the slope of ϕi and let L be the (lattice) length of our curve X. For i = 2, . . . , r
we set δi :=

∑r
j=i(j − i+ 1) · αj. Moreover, we define ϕ′ := ϕ1 + . . .+ ϕr − δ2L. Note

that if we are given a regular invertible function ψ ∈ O∗(Ui ∩ Uj) there is a unique

regular invertible function ψ̃ ∈ O∗(Ui) such that ϕ̃|Ui∩Uj = ϕ. Hence we can extend
our regular invertible functions ϕ1, . . . , ϕr along the chain U2, U3, . . . , Us, U1 to any of
the sets U1, . . . , Us. Note that on U1 ∩ U2 the extension of ϕi to U2 and the extension
of ϕi to U1 differ exactly by αiL. We use these continuations to define the maps Ei:

Ei(x) := D(ϕ̃2 + . . .+ ϕ̃r − δ2L, ϕ̃3 + . . .+ ϕ̃r − δ3L, . . . , ϕ̃r − δrL, 0),

where for entries of Ei the map ϕ̃j denotes the continuation of ϕj to Ui. Hence we
obtain on U1 ∩ U2:

E2 ⊙M12

= D(ϕ̃2 + . . .+ ϕ̃r − δ2L, . . . , ϕ̃r − δrL, 0) ⊙ (D(ϕ1, . . . , ϕr) ⊙Aσ)
= D(ϕ2 + . . .+ ϕr − δ2L, . . . , ϕr − δrL, 0) ⊙ (D(ϕ1, . . . , ϕr) ⊙Aσ)
= D(ϕ1 + . . .+ ϕr − δ2L,ϕ2 + . . .+ ϕr − δ3L, . . . , ϕr−1 + ϕr − δrL,ϕr) ⊙Aσ
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and

M ′
12 ⊙ E1

= (D(ϕ1 + . . .+ ϕr − δ2L, 0, . . . , 0) ⊙Aσ) ⊙D(ϕ̃2 + . . .+ ϕ̃r − δ2L, . . . , ϕ̃r − δrL, 0)
= (D(ϕ1 + . . .+ ϕr − δ2L, 0, . . . , 0) ⊙Aσ) ⊙D(ϕ2 + . . .+ ϕr − δ3L, . . . , ϕr − δr−1L, 0)
= D(ϕ1 + . . .+ ϕr − δ2L,ϕ2 + . . .+ ϕr − δ3L, . . . , ϕr−1 + ϕr − δrL,ϕr) ⊙Aσ.

The other conditions are trivially fulfilled as Ei|Ui∩Ui+1
= Ei+1|Ui∩Ui+1

for all i 6= 1.
Hence we may assume that M12(x) = D(x) ⊙ Aσ = D(ϕ′, 0, . . . , 0)(x) ⊙ A(12...r).
As F is a vector bundle of degree d the affine linear map ϕ′ must have slope −d.
Thus, the transition map M12 is determined by the isomorphism class of F up to
translations of ϕ′. To prove the claim it remains to show that two vector bundles
F and F ′ as above with transition maps M12(x) = D(ϕ, 0, . . . , 0)(x) ⊙ A(12...r) and
M ′

12(x) = D(ϕ+ cL, 0, . . . , 0)(x) ⊙ A(12...r) are isomorphic if and only if c is an inte-
ger multiple of gcd(r, d): By lemma 5.1.16 F and F ′ are isomorphic if and only if for
all i = 1, . . . , s there exists a map Ei : Ui → G(r) such that for all i the equation
Ei+1(x)⊙Mi,i+1(x) = M ′

i,i+1(x)⊙Ei(x) holds for all x ∈ Ui ∩Ui+1. As Mi,i+1 is trivial
for all i 6= 1 these equations imply Ei|Ui∩Ui+1

= Ei+1|Ui∩Ui+1
for all i 6= 1. Hence F and

F ′ are isomorphic if and only if there exist a permutation τ ∈ Sr and regular invertible

functions ψ1, . . . , ψr ∈ O∗(U1 ∩ U2) with continuations ψ̃1, . . . , ψ̃r to all sets U1, . . . , Us
along the chain U2, U3, . . . , Us, U1 such that

(D(ψ̃1, . . . , ψ̃r)⊙Aτ )⊙(D(ϕ, 0, . . . , 0)⊙Aσ) = (D(ϕ+cL, 0, . . . , 0)⊙Aσ)⊙(D(ψ̃1, . . . , ψ̃r)⊙Aτ )

holds on U1∩U2. In particular, the last equation implies Aτ ⊙Aσ = Aσ⊙Aτ and hence
τ = σk for some k ∈ Z. Thus F and F ′ are isomorphic if and only if there exist k ∈ Z
and ψ1, . . . , ψr as above such that

D(ψ̃1, . . . , ψ̃k, ψ̃k+1 + ϕ, ψ̃k+2, . . . , ψ̃r) ⊙Aσk+1 = D(ϕ+ cL+ ψ̃r, ψ̃1, . . . , ψ̃r−1) ⊙Aσk+1 .

Let αi be the slope of ψi. Then on U1 ∩ U2 the continuation of ψi to U2 and the
continuation of ψi to U1 differ exactly by αiL. Hence we obtain the system of equations

ψ1 = ϕ+ cL+ ψr + αrL
ψ2 = ψ1 + α1L
...

...
ψk = ψk−1 + αk−1L
ψk+1 + ϕ = ψk + αkL
ψk+2 = ψk+1 + αk+1L
...

...
ψr = ψr−1 + αr−1L.

In particular, we can conclude that α1 = . . . = αk and αk+1 = . . . = αr. Hence F and
F ′ are isomorphic if and only if there exist α1, αr, k ∈ Z such that

−c = (r − k) · αr + k · α1 and α1 = −d+ αr,

or equivalently if and only if there exist αr, k ∈ Z with

−c = rαr − k · d.

This finishes the proof.
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Remark 5.3.4

Note that the claim of theorem 5.3.3 coincides with the equivalent result in “classical”
algebraic geometry (see [A57, theorem 7]).
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Appendix: Pictures of tropical
surfaces

Tropical varieties arise in a natural way as images of algebraic varieties under valuation
maps. Let us make this precise:

Definition (Tropicalization of algebraic varieties)
Let K be the field of Puiseux series with complex coefficients, i.e.

K :=

{
∑

q∈R

aqt
q

∣∣∣∣
aq ∈ C and {q ∈ R|aq 6= 0} ⊆ R is bounded
below and has no accumulation points

}

with the usual addition and multiplication of power series. This field K is algebraically
closed and admits a non-archimedean valuation

val : K∗ −→ R :
∑

q∈R

aqt
q 7→ min{q ∈ R|aq 6= 0} ∈ R.

We use this valuation to define the map

Val : Kn → Tn : (x1, . . . , xn) 7→ (− val(x1), . . . ,− val(xn)).

Let X ⊆ Kn be an algebraic variety. Then the set Trop(X) := Val(X ∩ (K∗)n) ⊆ Rn

is called the tropicalization of X.

Remark

The tropicalization Trop(X) of an algebraic variety X carries a natural structure of a
tropical variety in Rn. More details on this fact can be found, for example, in [S05].

A special case of this process is the case where X is a hypersurface, i.e. the zero
locus of a single polynomial over K. In this situation it is much easier to describe the
tropicalization of X.

Definition (Tropicalization of polynomials)
Let f =

∑
i1,...,in

ai1...inz
i1
1 · · · zinn ∈ K[z1, . . . , zn] be a polynomial over the field K. Then

we call
Trop(f) := max

i1,...,in
{− val(ai1...in) + i1x1 + . . .+ inxn}

the tropicalization of f . Obviously, the function Trop(f) : Rn → R is piecewise integer
linear. We denote by V (Trop(f)) the corner locus of Trop(f), i.e. the set of all points
x ∈ Rn where Trop(f) is not differentiable.
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With these definitions we get the following statement:

Proposition

Let f ∈ K[z1, . . . , zn] be a polynomial over K and V (f) its zero locus. Then the
following equation holds:

Trop(V (f)) = V (Trop(f)).

Proof. A proof of this fact can be found in [EKL04].

In fact, every tropical hypersurface, i.e. every tropical variety of codimension one
in Rn, arises as a tropicalization of a hypersurface V (f) ⊆ Kn (see for example
[M05]) and every tropical cycle of codimension one in Rn is a difference of tropi-
cal hypersurfaces. As the corner locus of a tropical polynomial is relatively easy to
calculate, tropical varieties of the form V (Trop(f)) are an important source of ex-
amples in tropical geometry. For some purposes the easiest possible case of curves
in R2 cannot provide sufficient examples and one has to deal with hypersurfaces in
3-space. This was the reason for creating a computer program to calculate the cor-
ner locus of a tropical polynomial in 3 variables: TropicalSurfaces. The program
is written in Delphi and binary versions as well as the source code are available on
http://www.mathematik.uni-kl.de/~allermann/software.html.

The usage of TropicalSurfaces is easy: Type a tropical polynomial in the text box and
press the button labeled with “Zeichne”.
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Appendix: Pictures of tropical surfaces

A picture of the corner locus of the given polynomial is drawn. Click with the left
mouse button into the drawing area and move the cursor to rotate the picture in
3-space. If you press the right mouse button within the picture, a context menu appears.
Here you can

• zoom in and out,

• change transparency settings,

• save the displayed tropical surface as a binary or text file,

• load tropical surfaces from binary or text files,

• export the displayed picture as a pixel graphic, POV-Ray file or scalable vector
graphic,

• change other settings, e.g. the color scheme and the clipping area.

Moreover, you can create random polynomials of degrees 2 and 3 via the context menu
and display the corresponding tropical surfaces.
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