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Preface

Tropical geometry

Tropical geometry is a rather new field within mathematics. Its roots go back to the
work of George M. Bergman [B7I] as well as Robert Bieri and John R. J. Groves
[BG&4], but only in the last ten years tropical geometry became a subject on its own.
The general idea of the theory is to map objects in algebraic or symplectic geometry
to polyhedral objects using some “tropicalization” process. These latter objects can
then be studied by purely combinatorial means, making life much easier in many cases.
Nevertheless, in this tropicalization process enough properties of the original objects
are preserved such that it is possible to transfer back many tropical results to algebraic
or symplectic geometry.

Tropical geometry is a useful tool in many different areas of mathematics, such as real

enumerative geometry (e.g. [IKS03|, [IKS04], [IKS09], [M05]), symplectic geometry
(e.g. [AQ6]), number theory (e.g. [GOT7a], [GO7D]), combinatorics (e.g. [JO8]) as well as

algebraic statistics and computational biology (e.g. [PS04]).

There are a number of ways to approach tropical geometry. In this thesis we choose
a purely combinatorial point of view on the topic: We set up the beginnings of an
extensive tropical intersection theory on its own, without using the existing theory in
algebraic geometry. Nevertheless, our definitions and results are highly inspired by the
algebro-geometric theory (cf. [F84]).

Results of this thesis

In this thesis we set up the beginnings of a tropical intersection theory covering many
concepts and tools of its counterpart in algebraic geometry. For instance:

e We develop notions of tropical varieties and cycles, rational functions and Cartier
divisors, intersection products of Cartier divisors with cycles, morphisms of trop-
ical varieties and pull-backs of Cartier divisors and push-forward of cycles as well
as rational and numerical equivalence.

e We prove a projection formula for morphisms of tropical varieties.

e For the special case that our ambient cycle is R™ we prove that the concepts
of rational and numerical equivalence agree. Moreover, restricting ourselves to
“generic” cycles we study the numerical equivalence of cycles in more detail.
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e For the special case that our ambient cycle is a fan we show that every cycle is

numerical equivalent to an affine cycle.

We define an intersection product of cycles in any “smooth” tropical variety and
prove some basic properties. We use this intersection product to introduce a
concept of pull-back of cycles along morphisms of smooth varieties.

We prove that under some assumptions the one-to-one correspondence of Weil and

Cartier divisors that exists for example on R™ is preserved by “modifications” as
introduced in [M0G].

We introduce the notions of tropical vector bundles and Chern classes of tropical
vector bundles and prove some basic properties.

Chapter synopsis

This thesis consists of five chapters: Chapter [Il contains the basics of the theory and is
essential for the rest of the thesis. Chapters BHI are to a large extent independent of
each other and can be read separately.

vi

e Chapter 1: [Foundations of tropical intersection theory|

In section [[LJ] we introduce the concept of affine tropical cycles as balanced
weighted fans modulo refinements. After that, in section [[.2, we define Cartier
divisors to be piecewise integer affine linear functions modulo globally linear func-
tions and set up an intersection product of Cartier divisors and cycles. In section
we continue with the definitions of morphisms of tropical cycles, of pull-backs
of Cartier divisors and push-forwards of cycles and prove a projection formula. In
sections [L4] and we generalize these concepts to abstract tropical cycles
which are abstract polyhedral complexes modulo refinements with affine cycles
as local building blocks. In section [[.7] we introduce a concept of rational equiva-
lence. Finally, in sections and [[L9], we set up an intersection product of cycles
and prove that every cycle is rationally equivalent to some affine cycle in the
special case that our ambient cycle is R™. We use this result to show that ra-
tional and numerical equivalence agree in this case and prove a tropical Bézout’s
theorem.

Chapter 2: [Tropical cycles with real slopes and numerical equivalence]
In section 2] we generalize our definitions of tropical cycles to polyhedral com-
plexes with non-rational slopes. We use these cycles with non-rational slopes in
section to show that if our ambient cycle is a fan then every subcycle is nu-
merically equivalent to some affine cycle. In section we restrict ourselves to
cycles in R™ that are “generic” in some sense and study the concept of numerical
equivalence in more detail.

Chapter 3: [Tropical intersection products on smooth varieties|
In section B.Il we define an intersection product of tropical cycles on tropical linear
spaces L} and on other, related fans. In section we use this result to obtain
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an intersection product of cycles on any “smooth” tropical variety. Finally, in
section [3.3] we use the intersection product to introduce a concept of pull-backs of
cycles along morphisms of smooth tropical varieties and prove that this pull-back
has all expected properties.

e Chapter 4: [Weil and Cartier divisors under tropical modifications|
In section 1] we introduce “modifications” and “contractions” and study their
basic properties. In section we prove that under some further assumptions a
one-to-one correspondence of Weil and Cartier divisors is preserved by modifica-
tions. In particular we can prove that on any smooth tropical variety we have
a one-to-one correspondence of Weil and Cartier divisors. Moreover, using the
result it is possible to prove that there exists a one-to-one correspondence of Weil
and Cartier divisors on the moduli space of n-marked abstract tropical curves

MO,n,trop (Cf M)

e Chapter 5: [Chern classes of tropical vector bundles|
In section [5.0] we give definitions of tropical vector bundles and rational sections
of tropical vector bundles. We use these rational sections in section to define
the Chern classes of such a tropical vector bundle. Moreover, we prove that these
Chern classes have all expected properties. In section we classify all tropical
vector bundles on an elliptic curve up to isomorphisms.

Publication of the results

This thesis contains material from my articles [AR07], [ARO§] and JA09]. In particular,
the first chapter is the outcome of joint work with Johannes Rau and it is virtually
impossible to specify the contributions each of us made. As far as it can be told,
main contributions of Johannes Rau are contained in sections [[.2] and [[7, whereas
sections [T}, 3] [L.4] and are mainly based on my ideas. Section contains
important contributions of both of us. Moreover, I omit those parts that are to a large
extent the work of Johannes Rau.

vil
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1 Foundations of tropical
Intersection theory

This chapter consists of three parts: In the first part (sections [Tl - [L3]) we start with
the introduction of affine tropical cycles as balanced weighted fans modulo refinements
and affine tropical varieties as affine cycles with non-negative weights. One would like
to define the intersection of two such objects, but in general neither is the set-theoretic
intersection of two cycles again a cycle, nor does the concept of stable intersection as
introduced in [RGST05] work for arbitrary ambient spaces as can be seen in example
Therefore we introduce the notion of affine Cartier divisors on tropical cycles
as piecewise integer affine linear functions modulo globally affine linear functions and
define a bilinear intersection product of Cartier divisors and cycles. We then prove
the commutativity of this product and a projection formula for push-forwards of cycles
and pull-backs of Cartier divisors. In the second part (sections [[4] - [[L7]) we generalize
the theory developed in the first part to abstract cycles which are abstract polyhedral
complexes modulo refinements with affine cycles as local building blocks. Again, ab-
stract tropical varieties are just cycles with non-negative weights. In both the affine
and abstract case a remarkable difference to the classical situation occurs: We can
define the mentioned intersection products on the level of cycles, i.e. we can intersect
Cartier divisors with cycles and obtain a well-defined cycle — not only a cycle class up
to rational equivalence as it is the case in classical algebraic geometry. However, for
simplifying the computations of concrete enumerative numbers we introduce a notion
of rational equivalence of cycles in section [[L7. In the third part (section - [L9)
we finally use our theory to define the intersection product of two cycles with ambient
space R". Here again it is remarkable that we can define these intersections — even for
self-intersections — on the level of cycles. It turns out that this intersection product
coincides with the stable intersection discussed in [M06] and [RGST05] (see [K09] and
[RO§]). Afterwards, we study the special case of rational equivalence in R"™ in more
detail and show that every tropical cycle in R" is equivalent to a uniquely determined
affine cycle, called its degree. We use this result to prove a tropical Bézout’s theorem.

1.1 Affine tropical cycles

In this section we will briefly summarize the definitions and some properties of our
basic objects. We refer to [GKMOT7] for more details (but note that we use a slightly
more general definition of fan).

Throughout this paper A will always denote a finitely generated free abelian group, i.e.
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a group isomorphic to Z" for some r € IN, and V := A ®z R the associated real vector
space containing A as a lattice. We will denote the dual lattice in the dual vector space
by AV C VY.

Definition 1.1.1 (Cones)
A cone in V is a subset 0 C V that can be described by finitely many linear integral
equalities and inequalities, i.e. a set of the form

o={zeV|fi(x)=0,...,f(z) =0, fri1(z) >0,..., fn(z) > 0}

for some linear forms fi,..., fy € AY. We denote by V, the smallest linear subspace
of V' containing o and by A, the lattice V, N A. We define the dimension of o to be
the dimension of V.

Definition 1.1.2 (Fans)
A fan X in V is a finite set of cones in V satisfying the following conditions:

(a) The intersection of any two cones in X belongs to X as well,

(b) every cone 0 € X is the disjoint union o = {J..y.,c, 7", where 7" denotes the
relative interior of 7, i.e. the interior of 7 in V.

We will denote the set of all k-dimensional cones of X by X®*). The dimension of X is
defined to be the maximum of the dimensions of the cones in X. The fan X is called
pure-dimensional if each inclusion-maximal cone in X has this dimension. The union
of all cones in X will be denoted | X| C V. If X is a fan of pure dimension k then the
cones o € X are called facets of X.

Let X be a fan and o0 € X a cone. A cone 7 € X with 7 C ¢ is called a face of 0. We
write this as 7 < o (or 7 < ¢ if in addition 7 C ¢ holds). Clearly we have V, C V, and
A, C A, in this case. Note that 7 < o implies that 7 is contained in a proper face (in
the usual sense) of o.

Example 1.1.3

The following figure shows three examples of fans of pure dimension two in V = R?
according to definition [[LT.2l Note that the third example is not a fan in the sense of
[GKMOT, definition 2.4] as for example o1 N oy is not a face of oy according to that
definition.

T2

92 g1 o3 0 T1

Figure 1.1: Examples of fans in R2.
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g1 () 0

Figure 1.2: A fan X and a subfan Y < X.

Construction 1.1.4 (Normal vectors)

Let 7 < o be cones of some fan X in V with dim(7) = dim(o) — 1. This implies that
there is a linear form f € A that is zero on 7, non-negative on o and not identically
zero on o. Let u, € A, be a vector generating A, /A, = Z with f(u,) > 0. Note that
its class u,/r 1= [u,] € Ay/A; does not depend on the choice of u,. We call u,/, the
(primitive) normal vector of ¢ relative to 7.

Definition 1.1.5 (Subfans)

Let X,Y be fans in V. Y is called a subfan of X if for every cone o € Y there exists
a cone o' € X such that o C ¢'. In this case we write Y << X and define a map
Cyx 1Y — X that maps a cone ¢ € Y to the unique inclusion-minimal cone ¢’ € X
with o C o’.

Definition 1.1.6 (Weighted fans)

A weighted fan (X,wy) of dimension k in V is a fan X in V of pure dimension k,
together with a map wx : X* — Z. The number wx (o) is called the weight of the
facet o € X®). For simplicity we usually write w(c) instead of wx(c). Moreover,
we want to consider the empty fan () to be a weighted fan of dimension & for all k.
Furthermore, by abuse of notation we simply write X for the weighted fan (X,wy) if
the weight function wy is clear from the context.

Definition 1.1.7 (Tropical fans)
A tropical fan of dimension k in V' is a weighted fan (X, wx) of dimension k satisfying
the following balancing condition for every 7 € X*=1):

Z wx (o) Uy, =0€ V/V,.

o:7<0

Let (X,wx) be a weighted fan of dimension k in V' and X* the fan
X" :={r € X|r < o for some facet 0 € X with wy (o) # 0}.

(X" wx+) = (X", wx|(x+)w ) is called the non-zero part of X and is again a weighted
fan of dimension &k in V (note that X* = () is possible). Obviously (X* wx+) is a
tropical fan if and only if (X, wx) is one. We call a weighted fan (X, wx) reduced if all
its facets have non-zero weight, i.e. if (X,wy) = (X*, wx~) holds.
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Example 1.1.8
The following figure shows three examples of tropical fans in R? and R, respectively,
according to definition [LT.7

Figure 1.3: Examples of tropical fans in R? and R3, respectively.

The blue cones in the second and third fan are supposed to have weight one, the red
cones to have weight minus one.

Remark 1.1.9

Let (X,wx) be a tropical fan of dimension k and let 7 € X*~V. Let oy,..., 0y be all
cones in X with o; > 7. For all i let v,,/, € A be a representative of the primitive normal
vector U, /-€ Ay, /A-. By the above balancing condition we have SN wx(07)  Voy/r =
A, for some A, € A,. Obviously we have A, = ged(wx(a1), . ..,wx(on)) - A, for some
further XT € A.. We can represent the greatest common divisor by a linear combination
ged(wx (01), ..., wx(on)) = qwx (o1)+- - +anwx(oy) with aq, ..., ay € Z and define

Vo, /7 = Voy )7 — Q4 ° Ar

for all 7. Note that v,,/, is a representative of u,, /-, too. Replacing all v,,/, by vy, /-
we can always assume that S~ wx (o) Ve =0 €A

Definition 1.1.10 (Refinements)
Let (X,wx) and (Y, wy) be weighted fans in V. We call (Y, wy) a refinement of (X, wx)
if the following holds:

(a) V"< X7,
(b) |Y*| = |X*| and
(¢) wy(0) = wx(Cy«x+(c)) for every o € (Y*)(dmi),

Note that property [(b)] implies that either X* = Y* = § or dim(X) = dim(Y"). We call
two weighted fans (X,wyx) and (Y,wy) in V' equivalent (write (X,wx) ~ (Y,wy)) if
they have a common refinement. Note that (X, wy)and (X*, wX|(X*)<dim<X>>) are always
equivalent.
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X X’
w=1
w=1 w=1
w=1
,,,,, =1 .
w w=1
w=1 ' w=1 w=1

Figure 1.4: Two refinements X; and X, of R? and a common refinement X'.

Remark 1.1.11
Note that for a weighted fan (X, wy) of dimension k£ and a refinement (Y, wy ) we have
the following two properties:

(a) |X*| =|Y™*|, i.e. the support | X*| is well-defined on the equivalence class of X,

(b) for every cone T € Y =1 there are exactly two cases that can occur: Either we

have dim Cy x(7) = k or we have dim Cy x(7) = k — 1. In the first case all cones
o € Y® with ¢ > 7 must be contained in Cy x (7). Thus there are precisely two
such cones oy and oy with wy(01) = wy(02) and s, /r = —Uy,/-. In the second
case we have a 1:1 correspondence between cones o € Y*) with 7 < ¢ and cones
o' € X with Cy x(7) < o’ preserving weights and normal vectors.

Construction 1.1.12 (Refinements)

Let (X,wx) be a weighted fan and Y be any fan in V with |X| C |Y|. Let P :=
{ocNd'loc € X,0' € Y}. In general P is not a fan in V' as can be seen in the following
example:

X . %
P P /oy
// // // // /// // // // / // /
/] U/ /] /] /

[ Ny

AR ) /92 /"/1/ /
[/ // /] /]
/] 15/ /] /]

// // // / 6/ / // // // // / //

T8 1

Figure 1.5: Fans X and Y such that {c No’|c € X,0’ € Y} is not a fan.

Here P contains 7; = 09 N o}, but also 7 = 01 N0} and 73 = 05 N 05. Hence property
(b) of definition [ T2 is, for instance, not fulfilled for 7{. To resolve this, we define

XNY :={oec PP rec P9 with r C 5}

Note that X NY is now a fan in V. We can make it into a weighted fan by setting
wxny (o) = wx(Cxny.x(0)) for all ¢ € (X NY)dmEX) Then (X NY,wxny) is a
refinement of (X, wx). Note that if (X,wx) and (Y,wy) are both weighted fans and
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| X | = |Y| we can form both intersections X NY and Y N X. Of course, the underlying
fans are the same in both cases, but the weights may differ since they are always induced
by the first fan.

The following setting is a special case of this construction: Let (X,wy) be a weighted
fan of dimension k£ in V and let f € AY be a non-zero linear form. Then we can
construct a refinement of (X, wx) as follows:

Hy:={{z e V|f(z) <0}, {z € V[f(x) = 0}, {z € V|f(z) = 0}}

is a fan in V with |H¢| = V. Thus we have |X| C |Hf| and by our above construction
we get a refinement (X, wy,) := (X N Hy,wxnp,) of X.

Obviously we still have to answer the question if the equivalence of weighted fans
is indeed an equivalence relation and if this notion of equivalence is well-defined on
tropical fans. We will do this in the following lemma:

Lemma 1.1.13
The following two statements hold:

(a) The relation “~” is an equivalence relation on the set of k-dimensional weighted

fans in V.

(b) If (X,wx) is a weighted fan of dimension k and (Y,wy) is a refinement then
(X, wx) is a tropical fan if and only if (Y,wy) is one.

Proof. Recall that a fan and its non-zero part are always equivalent and that a weighted
fan X is tropical if and only if its non-zero part X* is. Thus we may assume that all
our fans are reduced and the proof is the same as in [GKMOT, section 2]. O

Having done all these preparations we are now able to introduce the most important
objects for the succeeding sections:

Definition 1.1.14 (Affine cycles and affine tropical varieties)

Let (X,wx) be a tropical fan of dimension & in V. We denote by [(X,wx)] its equiv-
alence class under the equivalence relation “~” and by ZT(V) the set of equivalence
classes

72V = {[(X,wx)]|(X,wx) tropical fan of dimension k in V'}.

The elements of Z (V) are called affine (tropical) k-cycles in V. A k-cycle [(X,wx)]
is called an affine tropical variety if wx (o) > 0 for every ¢ € X*). Note that the last
property is independent of the choice of the representative of [(X,wy)]. Moreover, note
that 0 := [0] € ZM (V) for every k. We define |[(X,wx)]| := |X*|. This definition is
well-defined by remark [LT.TT]

Construction 1.1.15 (Sums of affine cycles)

Let [(X,wx)] and [(Y,wy)] be k-cycles in V. We would like to form a fan X + Y by
taking the union X UY", but obviously this collection of cones is in general not a fan. Us-
ing appropriate refinements we can resolve this problem: Let fi(z) >0, ..., fn,(z) >0,
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fN1+1($) = 07 SR fN(x) = 0 and gl(x) >0,... ,ng(ZL‘) > 07 ng_H(l’) =0,...,
gu(x) =0 be all different equalities and inequalities occurring in the descriptions of
all the cones belonging to X and Y, respectively. Using construction we get
refinements

X:=XNH,N---NHy NH,N---NH

am

of X and
Y :=YNH,N---NH; NH, N---NH

am

of Y (note that the final refinements do not depend on the order of the single refine-
ments). A cone occurring in X or Y is then of the form

s | @) <0, fi(2) =0, fi(x) 20, | iel, jeJ, kek,
| gr(x) <0, gp(x)=0, gp(x)>0|del, jjet, KeK

for some partitions TUJU K ={1,..., N} and 'UJ UK’ ={1,...,M}. Now, all
these cones o belong to the fan Hy N--- N Hy, N Hy N--- N Hy,, as well and hence

9gm
XUy fulfills definition Thus, now we can define the sum of X and Y to be
X +Y := X UY together with weights wx;y(0) := wy(0) + wy (o) for every facet
of X +Y (we set wn(o) := 0 if & does not occur in 0 € {X,Y}). By construction,
(X + Y, wxyy) is again a tropical fan of dimension k. Moreover, enlarging the sets
{fi}.{g;} by more (in)equalities just corresponds to refinements of X and Y and only
leads to a refinement of X + Y. Thus, replacing the set of relations by another one
that also describes the cones in X and Y, or replacing X or Y by refinements keeps
the equivalence class [(X + Y,wx,y)] unchanged, i.e. taking sums is a well-defined
operation on cycles.

This construction immediately leads to the following lemma:

Lemma 1.1.16
ZM(V) together with the operation “+” from construction [LLLIA forms an abelian

group.

Proof. The class of the empty fan 0 = [(}] is the neutral element of this operation and
[(X, —wx)] is the inverse element of [(X,wx)] € ZM (V). O

Of course we do not want to restrict ourselves to cycles situated in some R™. Therefore
we give the following generalization of definition [LT.T4}

Definition 1.1.17

Let X be a fan in V. An affine k-cycle in X is an element [(Y,wy )] of Z2 (V') such that
[Y*| C |X]. We denote by ZT(X) the set of k-cycles in X. Note that (Z27(X),+)
is a subgroup of (Z¥(V),+). The elements of the group Z3f . | (X) are called Weil
divisors on X. If [(X,wx)] is a cycle in V then Z3M ([(X,wy)]) := Z2(X™).
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1.2 Affine Cartier divisors and their associated Well
divisors

Definition 1.2.1 (Rational functions)

Let C be an affine k-cycle. A (non-zero) rational function on C'is a continuous piecewise
linear function ¢ : |C] — R, i.e. there exists a representative (X, wx) of C such that
on each cone 0 € X the map ¢ is the restriction of an integer affine linear function
Vle =X+, A€ A, c € R. Obviously, ¢ is the same on all faces by ¢ = ¢(0) and X is
uniquely determined by ¢ and therefore denoted by ¢, := A.

The set of (non-zero) rational functions of C' is denoted by K*(C').

Remark 1.2.2 (The zero function and restrictions to subcycles)

The “zero” function can be thought of being the constant function —oo, therefore
K(C) := K*(C) U {—oc0}. With respect to the operations max and +, K£(C) is a
semifield.

Let us note an important difference to the classical case: Let D be an arbitrary subcycle
of C'and ¢ € K*(C'). Then ¢|p; € K*(D), whereas in the classical case it might become
zero. This will be crucial for defining intersection products not only modulo rational
equivalence.

As in the classical case, each non-zero rational function ¢ on C' defines a Weil divisor,
i.e. acyclein Z31 . (C). The idea of course should be to describe the “zeros” and
“poles” of p. A naive approach could be to consider the graph of ¢ in V' x R and
“Intersect it with V' x {—oo} and V' x {400}”. However, our function ¢ takes values
only in R, in fact. On the other hand, the graph of ¢ is not a tropical object as it
is not balanced: Where ¢ is not linear, our graph gets edges that might violate the
balancing condition. So, we first make the graph balanced by adding new faces in the
additional direction (0, —1) € V' x R and then apply our naive approach. Let us make
this precise.

Construction 1.2.3 (The associated Weil divisor)

Let C be an affine k-cycle in V = A® R and ¢ € K*(C) a rational function on C. Let
furthermore (X, w) be a representative of C' on whose faces ¢ is affine linear. Therefore,
for each cone o € X, we get a cone ¢ := (id X, )(0) in V' X R of the same dimension.
Obviously, I', := {7|c € X} forms a fan which we can make into a weighted fan (I'y,, @)
by @(6) := w(o). Its support is just the set-theoretic graph of ¢ — ¢(0) in | X| x R.
For 7 < ¢ with dim(7) = dim(c) — 1 let v,/, € A be a representative of the normal
vector uq/r. Then, (va 73 Qo (Vo /T)) € A x Z is a representative of the normal vector
uz/z. Therefore, summing around a cone 7 with dim7 = dim7 = k — 1, we get

> 96) (Voyr olverr)) = | D w0)oyrs D @o(wl(0)vayr)

ger® oeX®) seX®)
Fes 7O T<0

From the balancing condition for (X,w) it follows that Y _vw)., ., w(0)v,/r € V7,
which also means (3, v cp W(0)Vo/r @7 (e x® ey w(0)0s/7)) € Vi. Therefore,
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', CR2xR
I, CR*xR

new faces
«— new edge

Figure 1.6: Two examples of the construction of a Weil divisor.

modulo Vz, our first sum equals

0, Z 0o (wW(0)Vs/r) —<,0T< Z w(o)vJ/T) eV xR.

oeX (k) oeX (k)
70O T<o

So, in order to “make (', ) balanced at 77, we add the cone ¥ := 7+ ({0} x R<() with

weight 0(V) = Y cxm ey Po(W(0)Vs)7) — ¢T<Zaex(k>m<gw(g)va/7>- As obviously
[(0,=1)] = ugs» € (V x R)/Vz, the above calculation shows that then the balancing
condition around 7 holds. In other words, we build the new fan (I',,&’), where

I, = T,U{7+ ({0} x Rep)|7 €T, \TW},
(:)I’F(k) = (:J,
FE+{0} xRe) = D woll(@)er) = or( D wlohua)
cex (k) ceX (k)
TO TO0

if dim7 =4k —1.

This fan is balanced around all 7 € Fgﬂfl). We will show that it is also balanced at all
“new” cones of dimension k£ — 1 in proposition [[L2.7

We now think of intersecting this new fan with V' x {—oo} to get our desired Weil
divisor (as our weights are allowed to be negative, we can forget about intersecting also

with V' x {+00}). This construction leads to the following definition.

Definition 1.2.4 (Associated Weil divisors)
Let C be an affine k-cycle in V= A ® R and ¢ € K*(C) a rational function on C.
Let furthermore (X, w) be a representative of C' on whose cones ¢ is affine linear. We
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define div(p) :== ¢ - C:= [(UiZy XD, w,)] € 22T (C), where

w(p:X(k_l) — 7,

e Y eewlodv) = (Y wlo)ve)
cex (k) ocex (k)
T<o 70

and the v,/ are arbitrary representatives of the normal vectors u, .
Let D be an arbitrary subcycle of C'. By remark [L2.2] we can define ¢ - D := ¢|p|- D.

Remark 1.2.5

Obviously, w,(7) is independent of the choice of the v,/,, as a different choice only
differs by elements in V.

Our definition does also not depend on the choice of a representative (X,w): Let (Y, v)
be a refinement of (X,w). For 7 € Y~ two cases can occur (see also remark [LTIT]):
Let 7/ := Cyx(7). If dim7' = k, there are precisely two cones at 7 < oy,05 € Y*),
which then fulfill Cy,x(01) = Cyx(02) and therefore uy, /7 = —tg,/r, v(01) = v(02)
and ¢, = @q,. It follows that v,(7) = 0. If dim7’ = k£ — 1, Cy x gives a one-to-one
correspondence between {0 € Y ¥ |7 < ¢} and {0’ € X®) |7/ < o'} respecting weights
and normal vectors, and we have ¢, = @cy. (o). It follows that v,(7) = w,(7'). So the
two weighted fans we obtain are equivalent.

Remark 1.2.6 (Affine linear functions and sums)

Let ¢ € K*(C) be globally affine linear, i.e. ¢ = A|j¢| + ¢ for some A € AY, ¢ € R.
Then obviously ¢ - C' = 0.

Let furthermore ¢ € K*(C') be another rational function on C. As ¢, + 1, = (¢ + 1),
we can conclude that (¢ +1¢)-C=¢-C+9¢-C.

Proposition 1.2.7 (Balancing Condition and Commutativity)
The Weil divisor associated to a Cartier divisor as in definition[I.2.4) has the following
properties:

(a) Let C be an affine k-cycle in V = AQR and ¢ € K*(C) a rational function on C.
Then div(p) = ¢-C' is an equivalence class of tropical fans, i.e. its representatives
are balanced.

(b) Let ¢ € K*(C) be another rational function on C. Then - (p-C)=¢- (¢ -C)
holds.

The proof of this statement is to a large extent the work of Johannes Rau, my coauthor

of [AR07] and [AROS8]. Hence we skip it here and refer to [ARQOT, proposition 3.7]
instead.

Definition 1.2.8 (Affine Cartier divisors)

Let C' be an affine k-cycle. The subgroup of globally affine linear functions in *(C')
with respect to + is denoted by O*(C'). We define the group of affine Cartier divisors
of C' to be the quotient group Div(C) := K*(C)/O*(C).

10
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Let [¢] € Div(C') be a Cartier divisor. By remark [[L2.6] the associated Weil divisor
div([g]) := div(p) is well-defined. We therefore get a bilinear mapping

:Div(C) x Z(C) — 7 (C)
(¢, D) = [gl-D=¢-D,

called affine intersection product.

Example 1.2.9 (Self-intersection of hyperplanes)

Let A = Z" (and thus V. = R"™), let ey,...,e, be the standard basis vectors in
Z" and ey == —e; — --- — e,. By abuse of notation our ambient cycle is R" :=
[({R™},w(R™) = 1)]. Let us consider the “linear tropical polynomial”

h=x,& - ®&x,®0=max{zy,...,z,,0} : R" - R.

Obviously, h is a rational function in the sense of definition [[.2.It For each subset
I € {0,1,...,n} we denote by o; the simplicial cone of dimension |I| generated by the
vectors —e; for ¢ € I. Then h is integer linear on all oy, namely

(0 ifoerl
h"”(xl""’x")_{xi if there exists an i € {1,...,n}\ I.

Let L} be the k-dimensional fan consisting of all cones o; with |I| < &k and weighted
with the trivial weight function wrr. Then L} is a representative of R" fulfilling the
conditions of definition [L2.1l We want to show

Boeonn hR" = [L_,]. (%)
k times
This follows inductively from h-[Ly,,] = [L], so it remains to compute wry | n(07) for

all I with [I| =k <n. Let J:={0,1,...,n}\ I. Obviously, the (k + 1)-dimensional
cones of L}, , containing o; are precisely the cones o7y, € J. Moreover, —e; is
a representative of the normal vector Uy, for- Note also that for all i € I') 1" C
{0,1,...,n} we have h,,(—e;) = h|,, (—€;) = h(—e;). Hence we compute

WLZHJL(UI) - ZkaH O10{5} hglu{j}<_€j>
JEJ\————V————/

+ he, (Zka+1 aIug)) € >
—_———
-1

jeJ
Z—Zielei
= Z h(—e;) + Z h(—e:)
jeJ el

= h(—eg) + h(—e1) + -+ + h(—ep)
= 140+ +0=1=uwy(o),

which implies h - [L} ;] = [L}] and also equation (x).
We can summarize this example as follows: Firstly, for a tropical polynomial f, the

11
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Figure 1.7: The rigid curve R in S.

associated Weil divisor f - R™ coincides with the locus of non-differentiability 7(f)
of f (see [RGST05, section 3]), and secondly, “the k-fold self-intersection of a tropical
hyperplane in R"” is given by its (n — k)-skeleton together with trivial weights all equal
to 1.

Example 1.2.10 (A rigid curve)

Using notations from example [L2.9] we consider as ambient cycle the surface S :=
[L3] = max{zy,xq, 23,0} - R®. In this surface, we want to show that the curve R :=
[(R-er,wr(R-er) =1)] € Z(S), where e := e; + €9, has negative self-intersection
in the following sense: We construct a rational function ¢ on S whose associated Weil
divisor is R and show that ¢ - R = ¢ - ¢ - .S is just the origin with weight —1. This
curve and its rigidness were first discussed in [M06, Example 4.11, Example 5.9].

Let us construct ¢: First we refine L3 to Lp by replacing 01,2y and oo 3y With oy gy,
O{R}, O{R2}s O{0,—R}s Of{—r} and o(_g 3} (using again the notations from example
and e_g := —er = ey + e3). We define ¢ : [S| — R to be the unique function that is
linear on the faces of L and fulfills

0,—ey,—ey,—e3,—e_gp+— 0, —egr—1and —er+— —1.
Analogous to [LZ9, we can compute for i = 1,2
WEpe(oy) = o(—eo) + o(—e3) + p(—eg) =1+ 0—-1=0,
fori =0,3
Wipe(oy) = o(—e1) + o(—e2) + p(—e—g) =0+0+0 =0,
and finally

WL e(o(ry) = p(—e1) + p(—e2) — p(—er) =0+ 0 — (=1) =1,
Wne(0i-ry) = p(—eo) + p(—e3) —p(—e_g) =1+04+0=1,

12
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which means ¢-S = R. Now we can easily compute p-¢-S = - R on the representative
{ory; 01—ry,{0}} (with trivial weights) of R:

wre({0}) = ¢(—er) + o(—e_p) = —1+0=—1.

Therefore ¢ - ¢ - S = [({0},w({0}) = —1)]. Note that we really obtain a cycle with
negative weight, not only a cycle class modulo rational equivalence as it is the case in
“classical” algebraic geometry.

1.3 Push-forward of affine cycles and pull-back of
Cartier divisors

The aim of this section is to construct push-forwards of cycles and pull-backs of Cartier
divisors along morphisms of fans and to study the interaction of both constructions.
To do this we first of all have to introduce the notion of morphism:

Definition 1.3.1 (Morphisms of fans)

Let X beafaninV = A®zR and Y be a fanin V' = A’®yzR. A morphism f : X — Y
is a Z-linear map, i.e. a map from |X| C V to |Y| C V' induced by a Z-linear map
]E : A — A’. By abuse of notation we will usually denote all three maps f, ]? and
f ®z id by the same letter f (note that the last two maps are in general not uniquely
determined by f : X — Y). A morphism of weighted fans is a morphism of fans. A
morphism of affine cycles f : [(X,wx)] — [(Y,wy)] is a morphism of fans f: X* — Y™
Note that in this latter case the notion of morphism does not depend on the choice of
the representatives by remark [LT.TT]

Given such a morphism the following construction shows how to build the push-forward
fan of a given fan. Afterwards we will show that this construction induces a well-defined
operation on cycles.

Construction 1.3.2

We refer to [GKMOT7, section 2] for more details on the following construction. Let
(X,wx) be a weighted fan of pure dimension n in V"= A ®z R, let Y be any fan in
V'=AN®yzRandlet f: X — Y be a morphism. Passing to an appropriate refinement
of (X,wx) the collection of cones

X :={f(0)]oc € X contained in a maximal cone of X on which f is injective}

is a fan in V' of pure dimension n. It can be made into a weighted fan by setting

wrx(0) = ) wx(o) - [AL/f(AS)]

ceX():f(o)=0’

for all o € f,.X™. The equivalence class of this weighted fan only depends on the
equivalence class of (X, wx).

13



1.3 Push-forward of affine cycles and pull-back of Cartier divisors

Example 1.3.3
Let X be the fan with cones 7y, 79, 73, {0} as shown in the figure

R? D X
T3

T1 {0} R

and let wx(m) = 1 for i« = 1,2,3. Moreover, let Y := R be the real line and the
morphisms f1, fo : X — Y be given by fi(x,y) := z + y and fo(x,y) := z, respec-
tively. Then (f1).X = (f2).X = {{z <0},{0},{z = 0}}, but wp).x{z < 0}) =
wisy.x({z = 0}) =2 and wp). x({z < 0}) = wipy).x({z = 0}) = 1.

Proposition 1.3.4

Let (X, wx) be a tropical fan of dimension n in V= A ®z R, let Y be any fan in
Vi=N®gzR and let f : X — Y be a morphism. Then f.X is a tropical fan of
dimension n.

Proof. A proof can be found in [GKMOQT, section 2|. O

By construction [L3.2] and proposition [L3.4] the following definition is well-defined:

Definition 1.3.5 (Push-forward of cycles)
Let V = A®z R and V' = A’ ®z R. Moreover, let X € Z*5(V), Y € Z* (V') and
f: X — Y be amorphism. For [(Z,w)] € Z¢(X) we define

Fl(Z,wz)] = [(f1(Z7), wp.z9)] € Zi(Y).

Proposition 1.3.6 (Push-forward of cycles)
Let V=A®zR and V' = N @z R. Let X € Z*H(V) and Y € Z*(V') be cycles and
let f: X —Y be a morphism. Then the map

ZiNX) — 2" (Y): O £.C
1s well-defined and Z.-linear.

Proof. 1t remains to prove the linearity: Let (A,w,) and (B,wp) be two tropical fans
of dimension k with A = A*, B = B* and |A|,|B| C |X*|. We want to show that
f+(A+ B) ~ f,A+ f.B. Refining A and B as in construction we may assume
that A, B C A+ B. Set A:= A+ B and

walo), ifce A
wilo) = { 0, else

for all facets o € A. Analogously, set B := A+ B with according weights. Then A~ A

and B ~ B. Carrying out a further refinement of A 4+ B like in construction we
can reach that f.(A+ B) = {f(0)|oc € A+ B contained in a maximal cone of A+ B

14
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on which f is injective}. Using A=B=A+B=A+B we get f*g = fuiB =
f«(A+ B) = f.(A+ B) and it remains to compare the weights:

Wrdsp (@) = > wi, g(o) - [AL/f(As)]
oe(A+B)(R): f(o)=0c"
= S [walo) +wp(o)] 1AL/ f(A)]
c€(A+B)®):f(o)=0"
= Y wilo) 1AL/ F(A)] +
aeﬁ@):f(a):a’

Yo wplo) - 1AL/ F(A)]

aeé(k):f(a)za’

= wf*g(a') + wf*g(al)

for all facets o’ of f,(A+ B). Hence f.(A+ B) ~ f.(A+B) = f,A+ f.B ~ f,A+ f.B
as weighted fans. m

Our next step is now to define the pull-back of a Cartier divisor. As promised, our next
step will then be to prove a projection formula that describes the interaction between
our two constructions.

Proposition 1.3.7 (Pull-back of Cartier divisors)

Let C € Z*M(V) and D € Z(V') be cycles in V = A @z R and V' = N @7 R,
respectively, and let f : C' — D be a morphism. Then there is a well-defined and
Z.-linear map

Div(D) — Div(C) : [h] — f*[h] :=[h o f].
Proof. The map h — ho f is obviously Z-linear on rational functions and maps affine
linear functions to affine linear functions. Thus it remains to prove that h o f is a
rational function if h is one: Therefore let (X,wy) be any representative of C, let
(Y, wy) be a reduced representative of D such that the restriction of h to every cone in
Y is affine linear and let fy : V' — V' be a Z-linear map such that fy|c = f. Since
Z = {f;'(¢")]o’ € Y} is a fan in V and |X| C |Z| we can construct the refinement
X := XN Z of X such that ho f is affine linear on every cone of X. This finishes the
proof. O

Proposition 1.3.8 (Projection formula)

Let C € Z*M(V) and D € Z(V') be cycles in V = A @z R and V' = N @z R
respectively and let f : C' — D be a morphism. Let E € Z*(C) be a cycle and let
p € Div(D) be a Cartier divisor. Then the following equation holds:

¢ (f.E) = f(f¢ E) e Z} (D).

Proof. Let E = [(Z,wz)] and ¢ = [h]. We may assume that Z = Z* and h(0) = 0.
Replacing Z by a refinement we may additionally assume that f*h is linear on every
cone of Z (cf. definition [[21]) and that

f+Z ={f(0)|o € Z contained in a maximal cone of Z on which f is injective}

15
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(cf. construction [[.3.2)). Note that in this case h is linear on the cones of f.Z, too. Let
o' C |D| be a cone (not necessarily ¢’ € f,Z) such that h is linear on ¢’. Then there
is a unique linear map hy : V!, — R induced by the restriction h|,.. Analogously for
[*he,0 C |C|. For cones 7 < 0 € Z of dimension k — 1 and k respectively let v/, € A
be a representative of the primitive normal vector uy/, € A, /A, of construction [LT4
Analogously, for 7" < ¢’ € f,Z of dimension k — 1 and k respectively let v,/ be a
representative of u,/ /- € AL, /AL,. Now we want to compare the weighted fans h - (f.2)
and f.(f*h-Z): Let 7" € f.Z be a cone of dimension k — 1. Then we can calculate the
weight of 7/ in h - (f.Z) as follows:

o'€fuZ:a!>T!

Wh(fo2)(T) = ( > Wf*Z(OJ)'hU’(Ua’/T’)>
—h ( Z wf*Z(O'/) . ’UJ//T/)

olefZ:o">T1!

( 2 ( > wz<a>-A;,/f<Aa>)-hgf<vaf/ﬂ>)

o'€fxZ:0'>T" \oeZ®): f(o)=0’

hr/( 3 ( ) wz<a>-A;//f<Aa>)-val/ﬂ)

o'€fiZ:a' > \oeZ®): f(o)=0’

( > WZ(U)'A}(U)/JC(AJ)'hf(o)(vf(o)/T’))

o Z®): f(a)y>7!

hTf< > wz(a)-A}(a)/f(Aa)'Uf(a)/r’)

o€Z®):f(o)>1/

Now let 7" € f.(f*h - Z) of dimension k — 1. The weight of 7" in f.(f*h - Z) can be
calculated as follows:

W (penz) (T = S wpnz(r) AL/ F(AL)]
‘re(f*h-Z)(k—l);
f(r)=r'
- Z ( Z WZ(U)f*hU('UU/T)
re(f*h-Z)k=1. ocZ k) .o>1
f(r)=r'
— e | DD wzlo) veye || ML/ F(AS)]
ceZk):g>1
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= Z ( Z WZ(U)hf(U)(f(vo/T))

ceZ®).o>1

= by ( > wZ(U)'f(va/T))) AL/ F(A)].

oceZk):o>T

Note that f(ve/r) = [AL /(AL + Zf(Vs/7))| - Vor jrr + Aor € A for some A, € A7,. Since
hio)(Aor) = hy)(Aor) these parts of the corresponding summands in the first and
second interior sum cancel using the linearity of hy;). Moreover, note that f(v,/;) =
Aor € AL, for those o > 7 on which f is not injective and that the whole summands
cancel in this case. Thus we can conclude that the sum does not change if we restrict
the summation to those ¢ > 7 on which f is injective. Using additionally the equation

MG/ (Ae)l = [N/ F (AR - IAG /(AL + Zf (Vo))

we get
Wi (fhz)(T) = > > wz(0) [Ny / F(Ao)] - hy(o)(Vp(oy)
re(f*h-Z)k=1: oeZk).
flr)=r' o>7,f(a)>7’

— hy Z wz(o) - |A/f(g)/f(AU)| “Uf(o)/T

cez(k);
o>1,f(o)>7'

( > WZ(U)'A}(J)/f(Aa)'hf(o)(vf(a)/T’))

o€ ZF):f(o)>T!

—h ( Z CUZ(O') : ‘A/f(a)/f(Ao')‘ ! vf(o‘)/T’) .
o Z®): f(a)y>T!
Note that for the last equation we used again the linearity of h,.. We have checked so
far that a cone 7’ of dimension k& — 1 occurring in both A - (f.Z) and f.(f*h - Z) has
the same weight in both fans. Thus it remains to examine those cones f(7),7 € Z*~1
such that f is injective on 7 but not on any o > 7: In this case all vectors v, /.
are mapped to A’f(T). Again, hye) = hyi) and by linearity of hyy all summands
in the sum cancel as above. Hence the the weight of f(7) in f.(f*h - Z) is 0 and

¢ (fiB) = [h- (£ 2)] = [f(f*h- 2)] = fu(f¢ - E). O

1.4 Abstract tropical cycles

In this section we will introduce the notion of abstract tropical cycles as spaces that
have tropical fans as local building blocks. Then we will generalize the theory from the
previous sections to these spaces.
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Definition 1.4.1 (Abstract polyhedral complexes)

An (abstract) polyhedral complex is a topological space |X| together with a finite set
X of closed subsets of | X| and an embedding map ¢, : 0 — R" for every o € X such
that

(a) X is closed under taking intersections, i.e. o No’ € X for all 0,0’ € X with

ona #10,

(b) every image ¢,(0), 0 € X is a rational polyhedron not contained in a proper
affine subspace of R",

(c¢) for every pair 0,0’ € X the concatenation p, o ¢, is integer affine linear where
defined,

(d) |X]| = U 0 (9o (0)°), where ¢, (c)° denotes the interior of ¢, () in R".
oeX

For simplicity we will usually drop the embedding maps ¢, and denote the polyhedral
complex (X, |X|,{ps|oc € X}) by (X, |X]) or just by X if no confusion can occur. The
closed subsets o € X are called the polyhedra or faces of (X, |X]|). For 0 € X the open
set o™ := o 1 (p,(0)°) is called the relative interior of o. Like in the case of fans the
dimension of (X, |X]) is the maximum of the dimensions of its polyhedra. (X, |X]) is
pure-dimensional if every inclusion-maximal polyhedron has the same dimension. We
denote by X™ the set of polyhedra in (X, |X|) of dimension n. Let 7,0 € X. Like in
the case of fans we write 7 < o (or 7 < ¢) if 7 C o (or 7 C o respectively).

An abstract polyhedral complex (X,|X]) of pure dimension n together with a map
wx : X — 7 is called weighted polyhedral complex of dimension n and wx (o) the
weight of the polyhedron o € X . Like in the case of fans the empty complex 0 is
a weighted polyhedral complex of every dimension n. If ((X,|X]),wx) is a weighted
polyhedral complex of dimension n then let

X*:={r € X|r C o for some 0 € X™ with wx(c) # 0}, | X*| := U T C |X|.

TEX*

With these definitions ((X*,[X*|), wx|x-)m ) is again a weighted polyhedral complex of
dimension n, called the non-zero part of ((X,|X]),wx). We call a weighted polyhedral
complex ((X,|X]),wx) reduced if ((X,|X]),wx) = ((X*,|X*]),wx+) holds.

Definition 1.4.2 (Subcomplexes and refinements)
Let (X,|X],{¢s}) and (Y,|Y],{¥-}) be two polyhedral complexes. = We call
(X, [XT],{9s}) a subcomplex of (Y, Y], {¢r}) if

(a) [X]C|Y],
(b) for every o € X exists 7 € Y with ¢ C 7 and

(c) the Z-linear structures of X and Y are compatible, i.e. for a pair o, 7 from
the maps ¢, o ¢! and 1, o p ! are integer affine linear where defined.
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We write (X, | X]|, {¢s}) < (Y, |Y],{®-}) in this case. Analogous to the case of fans we
define a map Cxy : X — Y that maps a polyhedron in X to the inclusion-minimal
polyhedron in Y containing it.

We call a weighted polyhedral complex ((X,|X]),wx) a refinement of ((Y,|Y|),wy) if

(a) (X7 [XT) (Y, [Y™]),
(b) [X*] =Y~
(¢) wx(0) = wy(Cxxy«(a)) for all o € (X*)dmX),

Definition 1.4.3 (Open fans)
Let (F wz) be a tropical fan in R™ and U C R™ an open subset containing the origin.

The set F:= FNU := {c NUlo € F} together with the induced weight function
wr is called an open (tropical) fan in R™. As in the case of fans let |F| := U e FO’

Note that the open fan F' contains the whole information of the entire fan FasF =
{RZO o |0' c F}

Definition 1.4.4 (Tropical polyhedral complexes)

A tropical polyhedral complex of dimension n is a weighted polyhedral complex
(X, |X]|),wx) of pure dimension n together with the following data: For every polyhe-
dron o € X* we are given an open fan F, in some R" and a homeomorphism

O S,= ) (@) |F
o'eX* o' Do
such that
(a) for all o' € X* 0’ O o holds ®,(c' N S,) € F, and P, is compatible with the

Z-linear structure on o', i.e. ®,0 gp;,l and @, 0@ ! are integer affine linear where
defined,

(b) wx(0') = wg, (P, (0" N S,)) for every o’ € (X*)™ with ¢’ D o,

(c) for every pair 0,7 € X* there is an integer affine linear map A, , and a commu-
tative diagram

Sy NSy — = ®.(S, N S,) .

Dy |~
\L Acr,‘r

O, (S, N S,)

For simplicity of notation we will usually drop the maps ®, and write ((X, |X|),wx)
or just X instead of (((X,|X]|),wx),{®,}). A tropical polyhedral complex is called
reduced if the underlying weighted polyhedral complex is.

Example 1.4.5
The following figure shows the topological spaces and the decompositions into polyhedra
of two such abstract tropical polyhedral complexes together with the open fan F, for
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every polyhedron o:

Remark 1.4.6

The above example X; is an instance of a more general construction: Let X be a
weighted, balanced polyhedral complex in R"™ as in [MO06] or [SO5]. Then X can be
interpreted as a tropical polyhedral complex in a natural way: For every polyhedron
o € X we have trivial embedding maps ¢, : 0 — H, = R¥() where H, C R" is the
smallest affine subspace containing o. Moreover, for every ¢ € X we have trivial fan

charts @5 : Sy = Uy x.000(07)" — SY, where SY is a translation of S, such that o

contains the origin. Then S is an open fan sitting in the associated tropical fan 3\3} .

Construction 1.4.7 (Refinements of tropical polyhedral complexes)

Let (((X,|X]),wx),{®,}) be a tropical polyhedral complex and let ((Y,|Y]),wy) be a
refinement of its underlying weighted polyhedral complex ((X, |X|),wx). Then we can
make ((Y,]Y]),wy) into a tropical polyhedral complex as follows: We may assume that
X and Y are reduced as we do not pose any conditions on polyhedra with weight zero.
Fix some 7 € Y and let 0 := Cy x(7). By definition of refinement, for every 7/ € Y
with 7/ > 7 there is ¢/ € X, ¢/ > o with 7/ C ¢’. Thus S, C S, and we have a map
U, i=®,)s 1S, = U (S,) CR™. It remains to give ¥, (S,) the structure of an open
fan: We may assume that {0} C W, (7) (otherwise replace W, by the concatenation
of U, with an appropriate translation T}, apply T, to FX and ®, and change the
maps Agq and Ay, accordingly). Let FX := {Rsg-0’|0’ € FX} be the tropical fan
associated to FX and let FY be the set of cones FY := {Rxq - U, (7)|r < 7 € Y'}. Note
that the conditions on the Z-linear structures on X and Y to be compatible and on ®,
to be compatible with the Z-linear structure on X assure that F' is a fan in R". In
fact, ﬁTY with the weights induced by Y is a refinement of (ﬁ X Wﬁo)_(). Thus the maps

U, together with the open fans {o N W, (S,)|gp € FY}, 7 € Y fulfill all requirements for
a tropical polyhedral complex.

Remark 1.4.8

If not stated otherwise we will from now on equip every refinement of a tropical polyhe-
dral complex coming from a refinement of the underlying weighted polyhedral complex
with the tropical structure constructed in [L4.7
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Definition 1.4.9 (Refinements and equivalence of tropical polyhedral complexes)
Let C1 = (((X1,|X1]),wx,), {®21}) and Cy = (((Xa2, |Xa|),wx,), {®52}) be tropical
polyhedral complexes. We call Cy a refinement of C} if

(a) ((X2,|X2|),wx,) is a refinement of ((X,|X:|),wx,) and

(b) Cy carries the tropical structure induced by C) as in construction [L47 i.e.
if ¢} = (((Xz, | X2]), wx,), {E)f; > is the tropical polyhedral complex obtained

from Cy and the refinement ((Xa, |Xs|),wy,) then the maps ®X2 o (®X2)~! and
®X2 0 (PX2)! are integer affine linear where defined.

We call two tropical polyhedral complexes C) and Cy equivalent (write Cy ~ Csy) if
they have a common refinement (as tropical polyhedral complexes).

Remark 1.4.10

Note that different choices of translation maps 7. in construction [[.4.7 only lead to
tropical polyhedral complexes carrying the same tropical structure in the sense of defi-
nition [LZ9[()] In particular definition does not depend on the choices we made
in construction [LZ7 Note moreover that refinements of (((X,|X]),wx),{®,}) and
((Y,|Y]),wy) in construction [L47] only lead to refinements of (((Y;|Y]),wy),{¥,}).

Construction 1.4.11 (Refinements)

Let ((X,|X],{¢s});wx),{®s}) and (((Y,|Y],{¢r}),wy),{¥,}) be reduced tropical
polyhedral complexes such that (Y, |Y])< (X, |X|) and the tropical structures on X and
Y agree, i.e. for every 7 € Y and 0 := Cy x(7) € X the maps ¥, o® ! and ®,0¥ ! are
integer affine linear where defined. Moreover let (((X', | X'|,{¢¥).}),wx/),{P.,}) be a
reduced refinement of (((X,|X|,{¢s}),wx),{®Ps}). Like in the case of fans we will
construct  a  refinement (Y N X', [Y NX'|, {oX™}),wynx), {OXX})  of
(Y, Y], {¢+}),wy),{¥,}) such that (Y N X"/ |Y N X'])< (X',|X’|]) and the tropical
structures on Y N X’ and X’ agree:

Fix ¢ € X. Note that the compatibility conditions on the Z-linear structures of
X', X and Y, X respectively (cf. definition assure that ¢,(0’), o/ € X’
with ¢/ C o as well as ¢, (1), 7 € Y with 7 C o are rational polyhedra in R".
Thus in this case ¢,(0' N 7) = p,(0") N @, (7) is a rational polyhedron, too. Let
H, ; = R™ be the smallest affine subspace of R" containing ¢,(¢’ N 7). We can
consider ¢, |,nr to be a map o’ N7 — R". We can hence construct the underlying
weighted polyhedral complex of our desired tropical polyhedral complex as follows: Set
P:={rnd|reY, o e X'}, YNX = {r € P|#r € P4 .7 C 7} Y NX'|:=|Y]
and wynx:(7) := wy (Cynxy (7)) for all 7 € (Y N X)) Tt remains to define the
maps 1Y,"X" and WYX": For every 7/ € Y N X’ choose a triplet o/ € X', 7 € Y,0 € X
such that o' N7 = 7/ and ¢’,7 C o and set @DZ”X' ‘= Yolornr. With these definitions
the weighted polyhedral complex (Y N X", |Y N X'|, {¢X"%'}), wynxs) is a refinement
of (Y,]Y], {+}),wy). Thus we can apply construction [LZ7 to obtain maps {WYX"}
that endow our weighted polyhedral complex with the tropical structure inherited from
(Y, |Y|,{t+}),wy). Note that the compatibility property between the tropical struc-
tures of Y and X is bequeathed to Y N X’ and X', too.
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1.4 Abstract tropical cycles

Lemma 1.4.12
The equivalence of tropical polyhedral complexes is an equivalence relation.

P’/’OOf. Let Ol = (((Xl, |X1|),C¢)X1), {@g?}), OQ = (((XQ, |X2’),C¢)X2), {q)i(; ) and Cg ==
(X3, |X5]), wx,), {P23}) be tropical polyhedral complexes such that C; ~ Cs via a
common refinement Dy = (((Y3, |Yi]),wy;), {®¥}) and Cy ~ C5 via a common refine-
ment Dy = (((Ya, [Ya|),wy,), {®¥2}). We have to construct a common refinement of Cy
and Cj5: First of all we may assume that D; and D, are reduced. Using construction
[[Z1T we get a refinement D5 := (((Y; NYa, [Y1 NYa|),wyiny,), {2Y17¥2}) of Dy with
(Y1NYs, |[Y1NY3|)D(Y2, |Ya]) and a tropical structure that is compatible with the tropical
structure on Dsy. It is easily checked that Ds is a refinement of Dy, too. O

Definition 1.4.13 (Abstract tropical cycles)

Let ((X,|X]),wx) be an n-dimensional tropical polyhedral complex. Its equivalence
class [((X,|X]),wx)] is called an (abstract) tropical n-cycle. The set of n-cycles is
denoted by Z,. Since the underlying topological space |X*| of a tropical polyhe-
dral complex ((X,|X|),wx) is by definition invariant under refinements we define
| [((X,|X]),wx)] | := |X*|. Like in the affine case, an n-cycle [((X,|X|),wx)] is called
an (abstract) tropical variety if wx (o) > 0 for all 0 € X™,

Let C € Z,, and D € Z. be two tropical cycles. D is called an (abstract) tropical cycle
in C or a subcycle of C' if there exists a representative (((Z,|Z]),wz),{¥,}) of D and
a reduced representative (((X,|X]),wx),{®,}) of C such that

(a) (Z,12])2 (X, ]X]),

(b) the tropical structures on Z and X agree, i.e. for every 7 € Z the maps
U, o (IJE;X(T) and ®¢, ;)0 U ! are integer affine linear where defined.

The set of tropical k-cycles in C'is denoted by Z;(C).

Remark and Definition 1.4.14
(a) Let X be a finite set of rational polyhedra in R", f € Hom(Z",Z) a linear form
and b € R. Then let

Hyy = {{z € R'|f(x) < b}, {x € R"|f(x) = b}, {x € R"| () > b} }.

Like in the case of fans (cf.  construction [LTI2) we can form sets P :=
{oNndloc € X,0' € Hfp} and X N Hyy, == {0 € P|p 7 € PU™OD) with 7 C o}.

(b) Again let X be a finite set of rational polyhedra in R™. Let {f; <b;Ji=1,...,N}
be all (integral) inequalities occurring in the description of all polyhedra in X. Then
we can construct the set X N Hy p, N --- N Hypyp,y- Note that for every collection
of polyhedra X this set X N Hyp, N --- N Hyypy is a (usual) rational polyhedral
complex (i.e. for every polyhedron 7 € X every face (in the usual sense) of o is
contained in X and the intersection of every two polyhedra in X is a common face
of each). Moreover note that the result is independent of the order of the f; and if
{9: < ¢li=1,...,M} is a different set of inequalities describing the polyhedra in X
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then XﬂHfl,bl n--- meN,bN and )(ﬁf'fgl,c1 n-- 'ﬂHgM7CM
namely X N Hy p N - N Hpy oy NHy oy M- N H

gMCM *

have a common refinement,

Construction 1.4.15 (Sums of tropical cycles)

Let C' € Z, be a tropical cycle. Like in the affine case the set of tropical k-cycles
in C' can be made into an abelian group by defining the sum of two such k-cycles
as follows: Let D; and Dy € Z;(C) be the two cycles whose sum we want to con-
struct. By definition there are reduced representatives (((X1,|X1|),wx,), {®2'}) and
(((X2,]X2]), wx,), {2X2}) of C' and reduced representatives (((Y,]Y]),wy), {®Y}) of
Dy and (((Z,|Z]),wz), {®?}) of D, such that (Y,[Y]) < (X;,|X;]) and the tropi-
cal structures on Y and X; agree and (Z,|Z]) < (X, |Xs|) and the tropical struc-
tures on Z and X, agree. As “~” is an equivalence relation there is a common
refinement (((X, |X|,{¢;}),wx),{®X}) of X; and X, which we may assume to be
reduced. Applying construction [L4TIT] to Y and X we obtain the tropical polyhe-
dral complex (((Y NX,|Y NX|),wyny), {®X"¥}) which is a refinement of Y, has
a tropical structure that is compatible with the tropical structure on X and fulfils
(Y NnX,|Y NnX|)<(X,|X]). If we further apply construction [LZITto Z and X we get
arefinement (((ZNX,|ZNX|),wznx), {®Z"*}) of Z with analogous properties. Now
fix some polyhedron ¢ € X and let 74,..., 7, € Y N X and 7,44,...,7s € ZN X be all
polyhedra of YN X and Z N X respectively that are contained in . Note that property
(a) of definition [[L4.T3implies that for alli = 1,..., 7 the image ¢, (7;) is a rational poly-
hedron in R™ . Like in remark and definition [LAT4 let {f; < b;li = 1,..., N} be the
set of all integral inequalities occurring in the description of all polyhedra ¢, (7;),i =
1,...,s and let Ry ~y = {p,(1)|i = 1,...,r} N Hpp, 0N Hypypy and Ry =
{oo(ri)li=r+1,...,s}NVHy pN---NHpypy. Then PZoy = {¢, (T)|T € R}y } and
PGy = {o;'(7)|T € Ry x} are a kind of local refinement of ¥ N X and Z N X,
respectively, but taking the union over all maximal polyhedra ¢ € X®™ does in
general not lead to global refinements as there may be overlaps between polyhedra
coming from different 0. We resolve this as follows: For o € X 7 ¢ [J7) X®
let Py = {0 € P x|7 is the inclusion-minimal polyhedron of X containing ¢} and
Pyy = Uyexm{o € Plnx|37 € XD 1 o C 7}, Analogously for Pg_ and Py,. Then
let

i; = Pym U U { ﬂ Ta|To € P{;’T}

7eX@Wii<n ceX(M:rCo

and

Z =Py, U U { () mwleers}

7eX@Wii<n ceX(M:rCo

Moreover for every 7 € YUZ choose some o € X ) with 7 C ¢ and let v, :=
¢o|r- Note that by construction (Y,|Y N X|) and (Z,|Z N X|) with structure maps
Ve, T € XorTeZ respectively and weight functions wy and wz induced by ¥ N X
and Z N X are refinements of Y N X and Z N X (we need here that Ry and Ry
were usual polyhedral complexes in R"). Thus we can endow them with the tropical
structures inherited from Y N X and Z N X respectively (cf. construction [L47). As
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Figure 1.8: An illustration of the process described in construction [L4.15]
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Chapter 1: Foundations of tropical intersection theory

(XUY,|Y NX|U|ZN X]) is a polyhedral complex now, we can form
((P,|P]),wp) == (X UY,|Y N X|U|ZNX]),wp),

where wp(0) = wy(o) + wz(o) for all 0 € P® (we set wn(o) = 0 for o ¢ O,
Oe{Y,Z}). Recall that the tropical structures on Y and Z are inherited from
Y NX and ZN X and are thus compatible with the tropical structure on X. Thus
OX(SP) C |FX| with weights induced from P is an open fan (the corresponding com-
plete tropical fan is just the sum of the fans coming from Y and Z ). Thus we can set
O, = dX|gp : SP 5 dX(SE) and can hence define the sum D + Ds to be

D+ Dy i= | ((P.|P]),wr), {8}

Note that the class [(((P,|P]),wp), {®,})] is independent of the choices we made, i.e.
the sum D; + D is well-defined.

Lemma 1.4.16
Let C € Z, be a tropical cycle. The set Z(C') together with the operation “+” from
construction [I.4.15 forms an abelian group.

Proof. The class of the empty complex 0 = [()] is the neutral element of this operation
and [((Y,|Y|), —wy)] is the inverse element of [((Y,|Y]),wy)] € Z(C). O

Definition 1.4.17

Let (X, |X],{¢s}),wx),{Ps}) and (((YV,|Y], {¢)+}),wy), {¥,}) be tropical polyhedral
complexes. We denote by

(X [X]{po ), wx), { @6 1) < (Y, [Y], {5 }), wy), {¥7})

their cartesian product

(((X X Y7 |X| X |Y|’ {ﬁaxr})NUXxY), {@UXT})’

where
XxY = {oxrloeX,TeY},
Doxr = Yo XU :0xT—R" xR",
wxxy (o xX7) = wx(o)- wy(r),
Opnr = Py x W, :SF xSY — |FX| x |EY|.

Let ﬁf and ﬁTY be the entire fans associated with F;* and FY from above. Ob-
viously, the product FX x FY = {a x fla € FX,3 € F¥} with weight function
wrx py (@ X B) 1= wpx () - wpy (B) is again a tropical fan and thus its intersection
with |FX] x |FY| yields an open fan (cf. definition [LZ3]). Hence the cartesian product

(X XY [X] X Y {Uoxr}), wx v ), {Ooxr}t)
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11 on Sa1 1o on Sa2 11 — o on the overlaps

Figure 1.9: The Cartier divisor ¢ defined in example [L5.2]

is again a tropical polyhedral complex.

If C =[(X,wx)] and D = [(Y,wy)] are tropical cycles we define
CxD:=[X,wx)x (Y,wy)]

for (X,wx) X (Y,wy) as defined above. Note that C' x D does not depend on the choice
of the representatives X and Y.

1.5 Cartier divisors and their associated Weil divisors

Definition 1.5.1 (Rational functions and Cartier divisors)

Let C' be an abstract k-cycle and let U be an open set in |C|. A (non-zero) rational
function on U is a continuous function ¢ : U — R such that there exists a representa-
tive (((X, | X, {motoex),wx),{Ms}sex) of C such that for each face o € X the map
pom;!is locally integer affine linear (where defined). The set of all non-zero rational
functions on U is denoted by K5 (U) or just K*(U).

If additionally for each face 0 € X the map ¢ o M ! is locally integer affine linear
(where defined), ¢ is called regular invertible. The set of all regular invertible func-
tions on U is denoted by OF(U) or just O*(U).

A representative of a Cartier divisor on C'is a finite set {(Uy, ¢1),..., (U, ¢1)}, where
{U;} is an open covering of |C| and ¢; € K*(U;) are rational functions on U; that only
differ in regular invertible functions on the overlaps, in other words, for all ¢ # j we
have ¢;|v,nu; — @jlvnu; € O (U NT;).

We define the sum of two representatives by {(Us, ¢;) }+{(V},¥;)} = {(U:NV}, pi+10;)},
which obviously fulfills again the condition on the overlaps.

We call two representatives {(U;, pi) }, {(V},v,)} equivalent if ¢, —1); is regular invertible
(where defined) for all 4, 5, i.e. {(Ui, i)} —{(V;,¥5)} = {(Wik, %)} with v, € OF(Wy).
Obviously, “+” induces a group structure on the set of equivalence classes of repre-
sentatives with the neutral element {(|C|, co)}, where ¢ is the constant zero function.
This group is denoted by Div(C') and its elements are called Cartier divisors on C.

Example 1.5.2

Let us give an example of a Cartier divisor which is not globally defined by a rational
function: As abstract cycle C' we take the elliptic curve [X5] from example (the
brackets resemble the fact that, to be precise, we take the equivalence class of the
polyhedral complex X, with respect to refinements). By «j, s we denote the two
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Chapter 1: Foundations of tropical intersection theory

vertices in Xy. W.lo.g. we can assume that the maps M,, map the points «; exactly
to 0 € R. Of course, the stars S,,, Sa, cover our whole space |C| = |X3|. So we can
define the Cartier divisor ¢ = [{(Sa,, 1), (Sas, ¥2)}], where ¢ := max(0,x) o M,,
and 1y 1= ¢y o M,, with ¢y the constant zero function. Let us check the condition on
the overlaps: On one open half of our curve the two functions coincide, whereas on the
other open half they differ by a linear function. So we constructed an Cartier divisor
which can not be globally defined by one rational function (as ¢, can not be completed
to a continuous function on |C1).

Remark 1.5.3 (Restrictions to subcycles)

Note that, as in the affine case (see remark [[2.2]), we can restrict a non-zero rational
function ¢ € KCf(U) to an arbitrary subcycle D C C, i.e. ¢|ynp| € KH(U N |DY). Tt is
also true that a regular invertible function ¢ € OF(U) restricted to D is again regular
invertible, i.e. ¢|lynp € Op(U N |D|). Hence we can also restrict a Cartier divisor

{(Ui, ¢i)}] € Div(C) to D by setting [{(U;, ¢:)}] |p == [{(U:N|D|, vilv,np)) }] € Div(D).

Construction 1.5.4 (Intersection products)

Let C be an abstract k-cycle and ¢ = [{(U;, ¢;)}] € Div(C) a Cartier divisor on C'. By
definition [L5I and lemma [4I2  there exists a  representative
(X, )X, {mo }oex ), wx), { M, }yex ) of C such that for all i and o € X the map p;om_*!
is locally integer affine linear (where defined). We can also assume that X = X*, as
our functions are defined on |C| = |X*| at the most. We would like to define the
intersection product ¢ - C' to be

|:(<(Y7 |Y|7 {mU}OGY)JwX,<P>7 {MU’SX : S}; - ‘FUY|}U€Y)‘|’
where

1 k-1
Y = UX(i), Y] := U o, SY = U (o), F) = U FY
i=0 ocy ZIQE;C i=0

and wx,, is an appropriate weight function. So it remains to construct wx ,(7) for
e Xk,

First, we do this pointwise, i.e. we construct wx ,(p) for p € (7)". Given a p € (7)",
we pick an ¢ with p € U;. Let V' be the connected component of M, (U;NS;) containing
M, (p). Then the function ; o M|y, can be uniquely extended to a rational function
0 € IC*([(FT,wFT)]), where (FT,wFT) is the tropical fan generated by the open fan
(F7,wr,). So, in the affine case, we can compute wz_ (R - M;(7)) (see construction
and definition [L2.4)) and define wx ,(p) == wg_; (R - M (7)).

This definition is well-defined, namely if we pick another j with p € U; and denote by
V" the connected component of M, (U; NS;) containing M, (p), we know by definition
of a Cartier divisor that ¢; o M yayr — @ 0 Mty is affine linear, hence ¢; — @,
is affine linear. By remark [L2.6l we get wp o (R M (7)) = wp 5 (R - M (7)).

The same argument shows that our definition does not depend on the choice of a
representative {(U;, p;)} of ¢.

But as (7)" is connected, the continuous function wx , : (7)™

— 7, must be constant.
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Hence, we define wyx ,(7) := wx ,(p) for some p € (7). With this weight function

(((Y, Y] {moboer ) cx, ). {MASUY}UEY)

is a tropical polyhedral complex.

Let us now check if the equivalence class of this complex is independent of the choice
of representatives of C. Let therefore (((X',|X'|,{mes }orex’),wx’),{My}orcx:) be a
refinement of (((X, | X[, {ms}oex),wx), {Ms}sex) (We can again assume X' = (X')*).
Then, for each o’ € X', the map Mc, (o) © M_"' embeds F,/ into a refinement of
Foy «on- Applying the affine statement here (see remark [[ZH), we deduce that
for each 7 € X'*=Y we have wx: (1) = 0 (if dim Cx/ x(7) = k) or wy (7)) =
wX7w(Cxl7x(T/)) (lf dim Cx/7x(7'/) =k— 1)

Definition 1.5.5 (Intersection products)

Let C' be an abstract k-cycle and ¢ = [{(U;,¢;)}] € Div(C) a Cartier divisor on C.
Let furthermore (((X, | X[, {ms }oex),wx), {Ms}sex) be a reduced representative of C
such that for all ¢ and 0 € X the map ¢; o m; ! is locally integer affine linear (where
defined). The associated Weil divisor div(p) = ¢ - C' is defined to be

K((y ::]::U:X(i)?

where SY = J,ey (/)™ and wy,, is the weight function defined in construction 5.4
ocCo’

Let D € Z;(C) be an arbitrary subcycle of C of dimension [. We define the intersection
product of ¢ with D to be ¢ - D :=¢|p- D € Z,_1(C).

U o {madoer) o) DMl Yoer )| € Z4(©,

oeY

Example 1.5.6

Let us compute the Weil divisor associated to our Cartier divisor ¢ on the elliptic
curve C constructed in example [L5.2l In fact, there is nothing to compute: One can
see immediately from the picture that div(y) is just the vertex oy with multiplicity
1 (the multiplicity of as is 0 as in order to compute it, one has to use the constant
function v5). Let us stress that this single point can not be obtained as the Weil divisor
of a (global) rational function, as all such divisors must have “degree 0” (this is defined
precisely and proven in remark [[L7.3]).

Proposition 1.5.7 (Commutativity)
Let o, € Div(C) be two Cartier divisors on C. Then ¢ - (¢ -C)=¢- (¢ -C).

Proof. Say ¢ = [{(Ui, ;) }] and ¥ = [{(V},%;)}]. Using lemma L4 T2l we find a reduced
representative (((X, | X, {ms}toex) . wx),{Ms}sex) of C such that for all 7,j and all
o € X the maps ¢; o m ' and ¢; o m ! are locally integer affine linear (where
defined). For § € X*=2 p € ()" and i,j with p € U; NV, we get (using notations
from construction L54) wxeu(0) = wxeu(p) = wp, 5 4, (R - Mp(f)) and similarily
wxpe(0) = wg, 5. 5, (R - Mp(0)). Using the corresponding statement in the affine case
now (see proposition [L2Z71 (b)), we deduce that the two weight functions are equal,
which proves the claim. O
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Chapter 1: Foundations of tropical intersection theory

1.6 Push-forward of tropical cycles and pull-back of
Cartier divisors

Definition 1.6.1 (Morphisms of tropical cycles)

Let C € Z, and D € Z,, be two tropical cycles. A morphism f : C' — D of tropical
cycles is a continuous map f : |C| — |D| with the following property: There exist
reduced representatives (((X, | X|),wx),{®s}) of C and (((Y, |Y]),wy),{¥,}) of D such
that

(a) for every polyhedron o € X there exists a polyhedron o € Y with f(o) C &

(b) for every pair 0,0 from the map Wz o f o @' : |FX| — |FY]| induces a
morphism of fans FX — FY (cf. definition [[3J]), where FX and FY are the
tropical fans associated to F* and FJ respectively (cf. definition [LZ43)).

First of all we want to show that the restriction of a morphism to a subcycle is again
a morphism:

Lemma 1.6.2

Let C € Z, and D € Z,, be two cycles, f : C — D a morphism and E € Zy(C) a
subcycle of C. Then the map f| g : |E| — |D| induces a morphism of tropical cycles
fle: £ — D.

Proof. By the definition of a morphism there exist reduced representatives
(X1, |X1|),wx,) of C and ((Y,|Y]),wy) of D such that properties (a) and (b) in defi-
nition [.6.1] are fulfilled. By the definition of a subcycle there exist reduced represen-
tatives ((Z1,]Z1]),wz,) of E and ((Xs,|Xs|),wx,) of C' such that properties (a) and
(b) in definition are fulfilled, i.e. such that (71, |7;|) < (Xs, |X3|) and the trop-
ical structures on Z; and X, agree. As “~” is an equivalence relation there exists
a common refinement ((X,|X|),wx) of ((Xi,|X1]),wx,) and ((Xz,|X3|),wx,) which
we may assume to be reduced. Applying construction [[.4.11] to Z; and X we obtain
a refinement ((Z,|Z]),wz) := (Z1NX,|Z1 N X|),wznx) of ((Z1,]Z1]),wz,) such that
(Z,1Z])2(X, | X|) and the tropical structures on Z and X agree. Thus properties (a) and
(b) of definition [LG.] are fulfilled by Z and Y and the restricted map f| g : |E| — |D|

gives us a morphism f|g: £ — D. O

If we are given a morphism and a tropical cycle the following construction shows how
to build the push-forward cycle of the given one along our morphism:

Construction 1.6.3 (Push-forward of tropical cycles)

Let C € Z, and D € Z,, be two cycles and let f : C — D be a morphism. Let
(X, X, {eo}), wx), {Ps}) and (((Y, Y], {¢s}),wy),{¥,}) be representatives of C
and D fulfilling properties (a) and (b) of definition [L61 Consider the collection of
polyhedra

Z :={f(0)|loc € X contained in a maximal polyhedron of X on which f is injective}.

In general Z is not a polyhedral complex. We resolve this by subdividing the polyhedra
in Z and refining X accordingly:
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1.6 Push-forward of tropical cycles and pull-back of Cartier divisors

Fix some polyhedron & € Y™ and let 7y, ..., 7, € Z be all polyhedra that are contained
in o. Property (b) of definition[L6dlimplies that {¢5(7;)|i = 1,...,r} is a set of rational
polyhedra in R". As in remark and definition [LZT4] let {g;(x) < b;|i = 1,..., N},
g; € Hom(Z",7Z.), b; € R be all inequalities occurring in the description of all polyhedra
in {¢Ys(r;)[t =1,...,r} and let

R& = {wﬁ(TiMi:17--'7T}QHG1,b1ﬁ”'mHGvaN’
P = {¢3'(7)|7 € R,.}.

As in construction [L4TH P5 can be seen as a kind of local refinement of Z. But here
again taking the union over all maximal polyhedra & € Y™ does in general not lead to
a global refinement as there may be overlaps between polyhedra coming from different

. We fix this as follows (cf. construction [LZIH): For & € Y and 7 € "' Y@ let
PZ; := {0 € P5|7 is the inclusion minimal polyhedron of Y containing o}

and
Pym = U {o€ Ps|P7 ¢ ym=1.,C 7}.
gey (m)
Then

Z = Pz, U U { ) mwlwePi
7eY(@:i<m ey (m):7Cs
is the set of polyhedra (without any overlaps now) that shall induce our wanted refine-
ment of X: Let
= {0 € X™|f is injective on o},

0::{TEX|§90€T:T§U}

and

Q1:—<U{f| Tr€Z,7C flo )}>-

oeT

Then define X := Qo U Q1.

Let 7 € @1 and choose o € T with 7 C 0. Property (b) of definition [LG.1] implies that
s o fop ! is integer affine linear where defined. Hence o, (7) is a rational polyhedron
in R". Denote by H,, the smallest affine subspace of R™ containing ¢,(7). We can
consider o, := ¢,|, to be a map o, : 7 — H,, = R". Note that by construction

(X,|X],{0-}) is a polyhedral complex. We endow it with the weight function w + and
tropical structure {®X} induced by X. Now we are able to define

£.X :={f(0)]o € X contained in a maximal polyhedron of X on which f is injective}

and [f,.X] = U, r.x T- For every polyhedron 7 € f.X let 0. € Y be the inclusion-
minimal polyhedron containing 7. Then define ¥, = ¢, |, : 7 — H, . = R",
where H, , C R"~ is the smallest affine subspace containing the rational polyhedron
Yo (7) € Z. Note that this makes (f,X, [f.X|, {¢,}) into a polyhedral complex. More-
over, note that property (b) of definition [LGI still holds for X and Y. Hence we
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Chapter 1: Foundations of tropical intersection theory

can assign weights and tropical fans to f, X as follows: Let o € f.X, let ¢ € Y be the
inclusion-minimal polyhedron containing it and let 74, ..., 7. € X be all polyhedra with
f(7:) = o that are contained in a maximal polyhedron of X on which f is injective.

Then let U5(S5) = FY and @ff (S7,) = FX respectively be the corresponding open fans
and ﬁgy , fTX be the associated tropical fans. Property (b) of definition [LE1] implies

that f*i)} - ]ﬁgy | is again a tropical fan (note that we do not need to refine ﬁfz to
construct this push-forward). Thus we can define

(ﬁ;*x,wﬁ*x> = (U f*ﬁf’zwf*ﬁ§> and  FfX = FFXN0,(S,)
i=1 i=1 '

(here again we assume that w; < (7) =01if 7 ¢ f*ﬁf{ ). Moreover we define

O, :=Vsls, : So — ]FJ*X\.

Then the map ©,, ¢ € f.X is 1:1 on polyhedra and we can endow the maximal
polyhedra of f,X with weights wy, x(-) coming from FZ/*% in this way. These weights
are obviously well-defined by property (c) of the tropical polyhedral complex Y (cf.
definition [C44]) and the maps O, for different ¢ € f,X are obviously compatible.
Hence we can define

f:C = (((f*X,‘f*X‘,{ﬁT})7Wf*X),{@T}) EZH(D>

Note that the class [(((f.X, [/ X]|,{9:}),wr. x), {©;})] is independent of the choices we
made. Thus construction immediately leads to the following

Corollary 1.6.4 (Push-forward of tropical cycles)
Let C € Z, and D € Z,, be two cycles and let f : C'— D be a morphism. Then for all
k there is a well-defined and Z.-linear map

2(C) — Z4(D) : B [.E = (f]s).F.
Proof. The linearity can be proven similar to the affine case (cf. proposition[[3.6]). [

Our next aim is to define the pull-back of Cartier divisors. But first we need the
following

Lemma 1.6.5

Let C' € Z, and D € Z,, be two tropical cycles and let f : C — D be a morphism.
By definition there ezist reduced representatives (((X,|X|,{¢s}),wx),{®s}) of C and
(Y, Y], {2 }),wy ), {¥+}) of D such that properties (a) and (b) in definition [LG.1]
are fulfilled. Let (((Y1, |Yi|,{¥L}),wy,),{V"}) be a refinement of Y. Then there is
a refinement (((X1, | X1|,{¢.}),wx,), {PL}) of X such that properties (a) and (b) of
definition [LG 1l are fulfilled for X, and Y;.
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1.7 Rational equivalence

Proof. Let X| := {o N f~}(7)|lc € X,7 € Y;}. By property (b) of definition [LE.1] all
0o (cNf~1(7)) are rational polyhedra in R" . For every o’ € X choose o0 € X such that
o' =o N f(7) for some 7 € Y;. Then we can define ¢/, := @,|o : 0/ — Hy oo = R,
where H,, is the smallest affine subspace of R™ containing ¢,(¢’). Moreover let
| X1| := | X]. Note that with these settings (X1, | X1|, {¢).}) is a polyhedral complex. We
can endow it with the weight function wy, and the tropical structure {®/,} induced by
X. Together with Y] the tropical polyhedral complex (((Xy, | Xi], {¢..}), wx,), {®.,})
fulfills the requirements (a) and (b) of definition [LE.11 O

Proposition 1.6.6 (Pull-back of Cartier divisors)
Let C € Z, and D € Z,, be tropical cycles and let f : C'— D be a morphism. Then
there is a well-defined and Z.-linear map

Div(D) — Div(C) : [{(Us, ha)}] — [ {(Us, ha)}] == [{(f 71 (U3), hi o f)}].

Proof. We have to show that ho f € K&(f1(U)) for h € K;,(U) and that ho f €
OL(fH(U)) for h € OF(U). Then the rest is obvious.

So let h € KC3,(U). Then there exists a representative (((Y,|Y], {5}),wy),{¥.}) of D
such that for every polyhedron o € Y the map h o ! is locally integer affine linear.
Moreover, since f is a morphism there exist representatives (((X, | X|, {vs}), wx), {®-})
of C and (((Y',|Y'|,{¢,}),wy’),{¥.,}) of D such that properties (a) and (b) of defi-
nition [L6.1] are fulfilled, i.e. f(o) C o € Y’ for all 0 € X and the maps W5 o f o @ *
induce morphisms of fans. By lemma we may assume that ¥ = Y’. Now
let 0 € X and choose some ¢ € Y such that f(o) C 7. Property (b) of def-
inition [L6.] implies that ¥z o f o ;! and Uz o f o &, are integer affine linear.
Thus ho f ot = (hots') o (s o f o, is locally integer affine linear and
ho f € K&(f~1(U)). If additionally h o W-' is locally integer affine linear then so is
hofod t = (hoW.")o(¥sz0fod 1), Hence hof € OL(f~HU)) for h € O%(U). O

Our last step in this chapter is to state the analogon of the projection formula from

15,00

Proposition 1.6.7 (Projection formula)
Let C € Z,, and D € Z,, be two cycles and f: C — D be a morphism. Let E € Z(C)
be a subcycle of C' and d € Div(D) be a Cartier divisor. Then the following holds:

d-(f.C) = f.(fd-C) € Z1(D).
Proof. The claim follows from the constructions of f,C' and f*d, from definition
and proposition [[L3.8] O
1.7 Rational equivalence
In this section we will introduce a concept of rational equivalence and prove that

this equivalence is compatible with push-forwards of cycles and pull-backs of Cartier
divisors.
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Definition 1.7.1 (Rational equivalence)

Let C be a cycle. We denote by R(C) := {(|C], h)|h bounded} C Div(C) the subgroup
of all Cartier divisors globally given by a bounded rational function. Then we define
the Picard group of C' to be

Pic(C) := Div(C)/R(C).

Moreover, let D be a subcycle of C'. We call D rationally equivalent to zero on C'if
there exist a tropical cycle C” of dimension dim(D) + 1, a morphism f : " — C and a
bounded rational function h on C” such that

fu(h-C") = D.

Let D’ be another subcycle of C'. Then we call D and D’ rationally equivalent, denoted
by D ~ D’ if D — D' is rationally equivalent to zero. We define the k-th Chow group
of C' to be

To prove that this equivalence is not too strong for applications in enumerative geom-
etry we need the following lemma:

Lemma 1.7.2

Let C be a one-dimensional abstract tropical cycle, p € R(C') a bounded rational func-
tion on C and (X, | X|,{mqs}oex),wx), {Ms}oex) a reduced representative of C' such
that for all o € X the map ¢ o m;* =: ¢, is integer affine linear. Then

> w.({ph) =0,

{pyex©®
.e. ¢-C is of degree zero.

The proof of this statement is to a large extent the work of Johannes Rau, my coauthor

of [ARO7] and [ARO§]. Hence we skip it here and refer to [AR07, lemma 8.3] instead.

Remark 1.7.3
Note that this property > (p}ex® wy,({p}) = 0 is preserved by pushing forward. As a
consequence, for any tropical cycle C' there is a well-defined morphism

degAg(C') %Z[)\lpl—i——i—)\TPT] '—>)‘1++)\7’
For D € Ay(C') the number deg(D) is called the degree of D.

Lemma 1.7.4
Let D be a cycle in C' that is rationally equivalent to zero. Then the following holds:

(a) Let E be another cycle. Then D x E is also rationally equivalent to zero.

(b) Let ¢ € Div(C) be a Cartier divisor on C. Then ¢- D is also rationally equivalent
to zero.
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1.8 Intersection of cycles in R"

(c) Let g: C — C be a morphism. Then g.(D) is also rationally equivalent to zero.

Proof. Let f : C'" — C be a morphism and h a bounded function on C’ such that
fe(h-C") = D. Then f xid : " x E — C x E provides (a), restricting f to
f:f*(p)- C"— C provides (b) and composing f with g provides (c). O

Remark 1.7.5
In particular, the above lemma implies that there is a well-defined map

Pic(C)! x Au(C) — Z: ((l¢1), - -, [wal), D) — deg([r - - .. - ga - DJ),

where C' is our ambient cycle. This map is of particular interest when dealing with
enumerative questions.

Of course, our notion of rational equivalence should also be compatible with the pull-

back of Cartier divisors. This is indeed the case:

Lemma 1.7.6 (Pull-back of rational equivalence)

Let C, D be tropical cycles and let f : C'— D be a morphism between them. Then the
pull-back map Div(D) — Div(C'), ¢ — f*p induces a well-defined map on the quotients
Pic(D) — Pic(C) « [p] — [f7¢].

Proof. We only have to show that for each element (|D|,1) € R(D) the pull-back
Cartier divisor f*(|D|, ) lies in R(C'). But this follows from the trivial fact that the
composition Yo f of a bounded function ¢) and an arbitrary map f is again bounded. [J

1.8 Intersection of cyclesin R”

So far we are only able to intersect Cartier divisors with cycles. Our aim in this section
is now to define the intersection of two cycles with ambient cycle R™ (with trivial
structure maps). We do this as follows:

Remark 1.8.1
We can express the diagonal in R™ x R"

(A, D] = [({(z,2)]x € R"}, 1)) € Zn(R" x R")
as a product of Cartier divisors, namely
(A D) =1 b - (R* X RY),

where ¢; = [{(R" x R, max{0,z; — y;})}] € Div(R" x R™), i = 1,...,n. We will use
this fact to define the intersection product of any two cycles in R™.

Definition 1.8.2
Let 7 : R" x R" — R"™: (x,y) — x. Then we define the intersection product of cycles
in R by
Zp-k(R") x Z,(R") —  Z,_p(R")
(C,D) +— C-D:=m(A-(CxD)),
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Chapter 1: Foundations of tropical intersection theory

where 7, denotes the push-forward as defined in [LG4 and A - (C x D) =
1y - (C x D) with ¢y, ..., 1, as defined in remark [LYT]

Having defined this intersection product of arbitrary cycles in R™ we will prove now
some basic properties. But as a start we need the following lemmas:

Lemma 1.8.3
Let C € Z(R") be a cycle with representative (X, wx) and let ¥y, ..., ¢, be the Cartier
divisors defined in remark[L.8d. Then (X;, wx,) with

X;={R"xo)N{(z,y) e R" x R"|z; =y; fori=j,...,n}lo € X},
wx, (R" x o) N{(z,y) € R" x R"|w; =y; fori=7j,...,n}) :=wx(0)
is a representative of V; - -, - (R" x C).

Proof. We use induction on j. For j = n + 1 there is nothing to show. Now let the
above representative be correct for some j + 1. We have to show that X is a tropical
polyhedral complex and that it represents ;- - - ¢, - (R™ x C'): Note that

dim ((R" x o) N {(z,y) € R" x R"|z; = y; for i = j,...,n}) (%)
<dim ((R" x o) N{(z,y) € R* x R"|a; = y; fori=j+1,...,n})

for all o € X. Hence Xj is a tropical polyhedral complex. Moreover note that
Xj+1 = {Uﬂ {ZE]' —Y; = O},O' N {l’j — Yy S 0},0’ N {l’j —Yj Z 0}|O’ S Xj+1}

with weights induced by X1 is a refinement of X such that max{0, z; —y;} is linear
on every face of X; ;. By (@) there are exactly two types of faces of codimension one
in Xj+1

(i) (R"x o)N{x; —y; =0fori=j, ... ,n} with o € X, codim(o) =0,

)
(i) (R*xo)n{x; —y;=0fori=j+1,...,n; z; —y; <0} or
(R”xa)ﬂ{xl y,—Oforz—]+1,...,n; xr; —y; > 0} with 0 € X,
codim(o) =

where the faces of the second type are not contained in {(z,y) € R" x R™|z; = y;}.
Hence max{0,z; — y;} is linear on a neighborhood of every face of type (ii) and thus
these faces get weight zero in max{0,z; —y;} X j+1. The faces of type (i) are weighted
by wx,,, (R" x o) N {x; —y; = 0 for i = j+1,...,n}) in max{0,x; — y;} - X'J-H since
T1—Y1,..., Ty — Yy are part of a lattice basis of (Z" x Z")". Thus max{0,z; —y;} -
)@-H = X, and X is a representative of ¢; - - -1, - (R" x C). O

Corollary 1.8.4
Let C € Zi(R™) be a cycle. Then we have the equation:

R"-C =C.

35



1.8 Intersection of cycles in R"

Proof. Let (X,wx) be a representative of C', let 7 : R* x R" — R" : (x,y) — x and let
1, . .., 1, be the Cartier divisors defined in remark [[L81] By lemmall.83]we know that
X; = {{(z,2)|zr € o}|o € X} with wx, ({(z,x)|z € 0}) = wx(0) is a representative of
-y, - (R" x C). Hence

R" - C =m (¢ - R" x O) = [m(Xy,wx,)] = [(X,wx)] = C.

Lemma 1.8.5
Let C € Z(R™) and D € Z;(R™) be abstract cycles, ¢ € Div(R"™) a Cartier divisor
and m: R" x R™ — R" :(x,y) — x. Then:

(p-C)xD=7"p-(C xD,).

Proof. We prove the statement for affine cycles C, D and an affine Cartier divisor .
The general case then follows by applying the statement locally.

Choose arbitrary representatives Y of D and h of ¢ and choose a representative X of
C such that h is linear on every face of X. This implies that 7*h is linear on every face
of X xY, too. In X xY we have two types of faces of codimension one:

(i) o x 7 with 0 € X, 7 € Y, codim(o) = 1, codim(7) = 0,
(ii) o x 7 with ¢ € X, 7 € Y, codim(c) = 0, codim(7) = 1.

For the second type the adjacent facets are exactly all o x 7 with 7 > 7. We get
wp(ox7)=01in h- (X xY) as 7*h is linear on o x |Y|. For the first type the adjacent
facets are exactly all o x 7 with ¢ > ¢ and the weights can be calculated exactly like
for h - X. This finishes the proof. n

Let C' and D be cycles in R"™. Assume that C' can be expressed as a product of Cartier
divisors, i.e. there are 1, ..., ¢, € Div(R"™) such that C' = ¢, - - - ¢1 - R™. The obvious
questions are now how C'- D relates to ¢, - - - 1 - D and whether ¢, - - - ;- D depends on
the choice of the Cartier divisors ¢;. To answer this question we first prove a somewhat
stronger statement:

Lemma 1.8.6
Let C € Zy(R"™) and D € Z;(R™) be cycles and ¢ € Div(R"™) a Cartier divisor. Then
we have the equality:

(p-C)-D=¢-(C-D).
Proof. Let m: R" x R" — R" : (z,y) — « be like above. The following holds:
(0-C)-D = m(b-((p-C)xD))
(" - A - (C x D))

= ¢m(A(Cx D))
= ¢ (C-D)
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Corollary 1.8.7
Let C € Zi(R™) be a cycle such that there are Cartier divisors ¢1, ..., ¢, € Div(R")
with @, -1 - R* = C and let D € Z;(R™) be any cycle. Then

¢rp1-D=C-D.
Proof. Applying lemma and lemma we obtain

C-D=(pr--1-R") - D=g,--¢1-(R"- D)=, - D.

Remark 1.8.8

Note that corollary [[L8.7 in particular implies that our definition of the intersection
product on R™ (cf. definition [[L82]) is independent of the choice of the Cartier divisors
describing the diagonal A.

Theorem 1.8.9
Let C,C" € Zy(R™), D € Z(R™) and E € Z,(R™) be cycles. Then the following
equations hold:

(a) C-D=D-C,
(b) (C+C")-D=C-D+C"-D,
(¢) (C-D)-E=C-(D-E).

Proof. (a): Let 7 : R" x R® — R" : (z1,72) — ; and 72 : (R" x R")? - R" x R" :
(21, T2, x3,24) — (x1,22). Moreover, let Agrn» be the diagonal in R™ x R™ and Agnyxgn
be the diagonal in (R™ x R™)%. Then we can conclude by corollary [L81 that

[y by - (Cx D)| = |Agn - (C x D)
= |12 (Arnxre - (DAre X (Cx D)))| € [Ags]

and hence

C-D = 7yt (Cx D) = 7O~ (Cx D))
— ®(Ap - (Cx D)) = m(ge(DxC)
= 11 Un- (DxC)) = D-C.

(b): Follows immediately by bilinearity of the intersection product
Div(R" x R") x Z,(R" x R") — Z,-1(R" x R"),
linearity of the push-forward and the fact that (C+C") x D =C x D+ C" x D.
(c): We will show that A - (C' x m.(A - (D x E))) = A (m(A - (C x D)) x E):
Lot 2 - (R™? — (R")? © (2,9,2) — (£,9), 7 - (R")? — (R™)? : (2.4,2) o (z,7)
and 72 : (R")® — (R™)?: (z,9,2) — (y,2). An easy calculation shows that

A (Cxm (D (DxE))=A-12(C x (A (D x E))) (1.1)
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and
A (m (AN (Cx D)) x E)=A-73(A-(C x D)) x E). (1.2)

Now let #1,...,1, be the Cartier divisors defined in remark [L8Il We label these
Cartier divisors with pairs of letters ¢} to point out the coordinates they are acting
on. We obtain

A-(Cx m(A- (D x B))

1.1)

LA 20 x (A (D x E)))
AR AN e (O (C SRR AR 02 D))

—

LET oo (izyggy . (1272 - (O x (W -4 - (D x E))))

AR ()Y (1) - (@ (1) (C % D x )
TED 18 ((mizygy . (12)yay - (w8 - (13)792 - (C x D x E))
Wig((ﬂm)*wfz . (WIB)*wzz X (wiﬁy .. w;iy . (C X D)) X E)

67

YPF e B (Wi - (C x D)) x E)
= A-7B(A-(Cx D)) xE)
2 A (m.(L-(C % D)) x B).

This proves (c). O

It remains to show that our intersection product is well-defined modulo rational equiv-
alence. If this is the case the intersection product induced on A,(R") clearly inherits
the properties of the intersection product on Z,(R™) we have proven in this section.

Proposition 1.8.10

The intersection product Z, (R™) x Z, (R") — Z,_x_1(R") induces a well-defined
and bilinear map

Ay 1(R") X A y(R") = A, 4(R™) : ([C), [D]) — [C] - [D] := [C- D).
Proof. The intersection product C' - D is defined to be
r.(max{ay, i} - maxfe,.y,} - (C x D)),
where the x; (resp. y;) are the coordinates of the first (resp. second) factor of R™ x R"

and 7 : R" x R™ — R™ is the projection onto the first factor (cf. definition[[.8&2)). Thus
we can apply lemma [[L7.4] (a) — (¢) and the claim follows. O
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1.9 Rational equivalence on R”

In this section we will prove that every tropical cycle in R" is rationally equivalent to
a uniquely determined affine cycle, called its degree. We will use this equivalence to
prove a tropical version of Bézout’s theorem.

We start the section with the easiest example of rationally equivalent cycles in R",
namely translations:

Definition 1.9.1
Let X be a tropical polyhedral complex in R"™ and let v € R™. We denote by X (v) the
translation

X(v) :={o+vjoc e X}
of X along v. If [X] = C € Z,(R™) then C(v) := [X(v)]. Note that the class C(v) is
independent of the representative X.

Lemma 1.9.2

Let C' be a subcycle of R™ and let v € R™ be an arbitrary vector. Then the equation
Cv) ~C

holds.

Proof. Consider the cycle C' x R in R™ x R with morphism

f*R"xR — R",
(x,t) — x+t-e,

where ¢; is the i-th unit vector in R". For 1 € R let h, be the bounded function

0 t<0
hy(z,t) =<t 0<t<pu
pot =
Then f.(h,-C x R)=C —C(u-e;), which proves the claim. O

Definition 1.9.3
Let C be a cycle in R"™ of codimension k. Then we define d to be the map

do: Zu(R") — A
D — deg(C' - D).

Lemma 1.9.4
Let C = [(X,wx)] be a d-dimensional affine cycle in R™. Then there always erists a
representative (X', wx/) of C and a complete simplicial fan © such that X' C ©.

Proof. Let Xg:= X ={01,...,on} and let 03 = {w € R"[f]"(x) > 0,..., f' (z) > 0}.
Moreover, let Yy := {R"} and for f € AY let

Hy = {{x|f(x) = 0}, {z[f(x) = 0}, {z[f(x) < O}}.
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For all : =1,..., N we construct refinements

ko,

and
K:}/;flmefzmmeZﬁ

as described in [GKMOQT, 2.5(e)]. This construction yields fans Xy and Yy with X](\’f) C

Y]\(,k) for all k£ and |X| = | Xy|. Moreover, Yy is a complete fan in R". We can make
Yy into a simplicial fan by further subdividing its cones: Let © := Yy. If 0 € O®) ig
generated by vectors vy, ..., v, then remove o and add all cones R>ov;, + ...+ Rx>ov;,

for1<k<pandl<i; <...<i, <qto®. Finally, we take (X', wx/) := (X,wx)NO

as described in [GKMOT, 2.11(b)]. O

Lemma 1.9.5
Let Cy and Cy be affine cycles in R™ with do, = dc,. Then Cy = Cl.

The proof of this statement is to a large extent the work of Johannes Rau, my coauthor
of [AR07] and [AROS]. Hence we skip it here and refer to [ARO8, lemma 6] instead.
Combining this statement with proposition [L8I0 we can immediately conclude the
following:

Corollary 1.9.6
Let Cy and Cy be affine cycles in R™ with Cy ~ Cy. Then C7 = Cs.

Theorem 1.9.7
Let C be a cycle in R™. Then there exists an affine cycle 6(X) in R™ with

X ~§(X).

Proof. Let (X1,wx,) be arepresentative of Cy := C. Refining (X;,wy,) we may assume
that every polyhedron o € Xj is the convex hull of its 1-skeleton (see for example
[Z95, 1.2 and 2.2]) and that every polyhedron ¢ € X; contains at least one vertex
o2 P, e X

The 1-skeleton of X; is a finite graph I' with edges Xl(l) = {e1,...,en} and vertices
Xl(o) ={P,..., Py} By lemma[[92 we may assume that P, is the origin. On every
edge ¢; of this graph we choose an orientation and a primitive direction vector v; € A,
respecting this orientation (see figure (a)). Then for i =1,..., N let [; - ||v;]| be
the length of the edge &; (we set [; = oo if €; is unbounded).

Adjacency of the bounded edges in the graph I' yields a system of linear equations
in the variables [; having the entries of the vectors v; as coefficients (see figure
(b)). As the system is solved by the given lengths I; € R.o and all vectors v; are
integral there exists a positive and integral solution [}, ... ). Using these numbers [/
we construct a polyhedral complex X}, t € R as follows: We keep the position of the
point Py fixed and for all ¢ = 1,..., N with [; < oo we change the length of the edge
g; to l; +t-I.. For all unbounded edges ¢; we just keep the directions and the lengths
unchanged. For a given polyhedron o € X; this process yields a deformation o' of
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Figure 1.10: Constructions described in the proof of theorem [[L9.7]

o which is not necessarily a polyhedron, but that can be decomposed into polyhedra
of,...,0}, (see figure [LT0 (c)). If such a polyhedron of is of dimension dim(C), then
we define its weight to be

CT);(/{(O';) = (_1)6(05) ’ WX1(0-)7

where §(ct) is defined as follows: §(ct) := > d(c"), where the sum is taken over all
values t' € R between 0 and ¢ such that at least one of the lengths I; + - l’ occurring

in the boundary of ¢ is zero and d(c") := dim(c*) — dim(s!). We denote by Xt the
set of all polyhedra a;. for 0 € X; and by u/)}/f the weight functlon on the polyhedra of
maximal dimension. Refining and possibly merging some of the 0§. (we have to add up
the weights of all merged polyhedra) yields a tropical polyhedral complex (X! ,wX{).
Note that (X7, wyo) = (X1,wx, ). Furthermore, for o € X; we can consider the set

5::U<©0§x{t}) CR" xR.

teR

This set naturally splits up into polyhedra oy, ..., 05, . If a polyhedron g; is of maximal
dimension we associate the weight wx:(0?) to it, where o} is a polyhedron containing
a point in the relative interior of ; (this weight is obviously well-defined). We denote
by Z the set {&1,...,5,, |0 € X1} and by &y the weight function on the polyhedra of
maximal dimension. The choice of the weights wz(7;) ensures that refining some of the
0; yields a tropical polyhedral complex (Z,wy).

Now, for i € R let ¢, be the rational function defined by

L RPX R — R (2,t) — max{0,t} — max{u,t}.

Let g; € Z be a polyhedron of maximal dimension and let (possibly after a refinement
of X{) 0§ C 7; be a polyhedron of X{ of maximal dimension. As every polyhedron in
X, contains at least one vertex, this property also holds for X! and we can choose a
vertex PJ§ C 0';-. Let PU§+1 be the translation of PU;; in X' We have

k
_ E : /
P0§+1 - PU;; = j:ll-jvij

j=1

41



1.9 Rational equivalence on R”

Figure 1.11: An example of a cycle Z as constructed in theorem [[L9.7

for some i; € {1,..., N}. Hence
k .
( Zj:l]:_i:lijvlj ) c A N/

is a generator of (A X Z)z /(A x Z),+ and we can deduce that

o [(Z,wz)] = (X7, wxo)] = (X', wxp)].

Now let t5 € R.o be the largest value such that there exists an edge that has been
shrunk to length 0, i.e. an edge ¢, € (X)) with length I; + ¢ - [, = 0. We conclude
that

gpto : [(Z)WZ)] - Ol - 027
where Cy := [(X{°,wy)] can be seen as the cycle C' = C; with at least one bounded

polyhedron shrunk to one dimension less.
We repeat the whole process until all bounded polyhedra are shrunk to a point, i.e.
until we obtain an affine cycle C,. By construction we have

C=Ci~Cyn...~Cp

which proves the claim. O

Definition 1.9.8

Let C be a cycle in R™. We define the recession cycle or degree of C', denoted by 6(C'),
to be the affine cycle equivalent to C. This affine cycle exists by theorem [[L9.7] and is
unique by lemma

Remark 1.9.9
Let o be a polyhedron in R". We define the recession cone of o to be

rc(o) ={veR|z+Rspv CoVr €o} ={veR"|Fr €ost. 2+ Rspv C o}
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Chapter 1: Foundations of tropical intersection theory

The two sets coincide as ¢ is closed and convex.
Let C be a d-dimensional cycle in R™ with representative (X,wx) and let

R(C) := {rc(0)|o € X}

—_~—

By removing all cones of R(C') that are not contained in a d-dimensional cone and by
subdividing the remaining cones we can make this set into a fan R(C') of pure dimension
d. To every cone o € R(C)@ we associate the weight

wroy(0) = Y wx(d).
o'eX
oCrc(o’)

The proof of theorem [[.9.7 indeed shows that

holds.

Theorem 1.9.10
Let C, D be two tropical cycles in R™. Then the following are equivalent:

i) C~D
i) do = dp
iii) 8(C') = 6(D)

Proof. i) = ii) follows from proposition [[810 iii) = i) is an immediate consequence
of theorem [[L97] ii) = iii) follows from theorem [[L9.7] i) = ii) and lemma[[L95 [O

Remark 1.9.11
In other words, the above theorem says: The notions of rational equivalence, numerical
equivalence and “having the same degree” coincide.

Theorem 1.9.12 (General Bézout’s theorem)
Let C, D be two tropical cycles in R™. Then

(C-D)=06(C)-0(D).
Proof. We apply theorem [[L9.7] and proposition and get
)(C-D)~C-D~d(C)-6(D).
By corollary two rationally equivalent affine cycles are equal. O

Our last step in this section is to prove a version of Bézout’s theorem for a special
class of tropical cycles in R" called P"-generic cycles. But first we need some further
definitions:
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1.9 Rational equivalence on R”

Definition 1.9.13
Let C' € Z,(R™) be a tropical cycle and let L} be the tropical fan defined in example
[L2Z9 Then we define the degree of C' to be the number

deg(C) = deg(c ’ L?odimX)a

where the second map deg : Zo(R") — Z : M\Pi+ ... + AP — A1 + ...+ A, is the
usual degree map. Then the map deg : Z;(R") — Z is obviously linear by definition.
Moreover, we define the degree of [C] € Ax(R") to be deg([C]) := deg(C). Note that
deg([C]) is well-defined by remark and proposition [LT0

Definition 1.9.14 (P™-generic cycles)

Let C' € Z,(R™) be a tropical cycle. C'is called P"-generic if for one (and thus for every)
representative X of C holds: For every face 0 € X®) there exists a polytope P, C R
of some dimension r € {0,...,k} and a cone & € (L?)*~") such that 0 C P, + 5.

Remark 1.9.15

Note that that the above definition of IP"-generic cycles is equivalent to the condition
that the recession cycle 6(C) of our cycle C' € Z;(R™) is contained in the tropical
fan L}. By |[GKMOT, example 2.18] this implies that C' is P"-generic if and only if
d(C) = X - L} holds for some integer A. In this case we can easily conclude that

deg(C) = deg(5(C)) = .

Figure 1.12: The intersection of two P™-generic cycles of degrees 2 and 3.

Theorem 1.9.16 (Bézout’s theorem)
Let C € Zi(R™) and D € Z,_(R™) be two tropical cycles of complementary dimensions.
Moreover, assume that C' is P"-generic. Then the following equation holds:
deg(C - D) = deg(C) - deg(D).
Proof. By proposition [[810, theorem [[L9.7] and remark we can conclude that
deg(C'- D) = deg(6(C)- D)

(0
= deg((deg(C) - Ly) - D)
= deg(C) - deg(Ly - D)
= deg(C) - deg(D).
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2 Tropical cycles with real slopes
and numerical equivalence

In this chapter we introduce a generalized definition of tropical fans and tropical cycles
that allows non-rational slopes. Obviously, these objects cannot be realized as images
of algebraic varieties over the field of Puiseux series under the valuation, but they
are quite useful for some theoretical aspects of tropical geometry. For example, using
tropical cycles with real slopes we give a proof that in any tropical fan any cycle is
numerically equivalent to its degree cycle.

2.1 Tropical cycles with real slopes

We start this section giving the necessary generalizations of the first definitions in
[GKMOQT] and chapter [l In the following, let V' always be a real vector space of finite
dimension.

Definition 2.1.1
A polyhedron in V' is a non-empty subset 0 C V of the form

0= {ZL’ € V’fl(x) = bla"'afr(x) = b?"va-f—l(x) > br-i—la"'afN(x) > bN}

for some linear forms fi,..., fy € V" and numbers b;,...,by € R. A cone in V is a
polyhedron for which all the numbers b, ..., by are zero.

Definition 2.1.2
A polyhedral compler X in V is a finite set of polyhedra in V' such that the following
properties are fulfilled:

(a) All faces of the polyhedra in X are again in X and
(b) the intersection of two polyhedra in X is either a face of each or empty.

A fan in V is a polyhedral complex consisting of cones only. As before we denote by
|X'| the union of all polyhedra in X.

Definition 2.1.3

A marked fan in V is a pure-dimensional simplicial fan X in V' together with a gener-
ating vector v, for every edge in X, i.e. a vector v, € o \ {0} for every o € X,

As in [GKMOT, construction 2.13], for all pairs ¢ € X)) and 7 € X@mX)=1) with
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2.1 Tropical cycles with real slopes

T < o there is exactly one edge o/ € X that is a face of o but not of 7. We denote
the associated vector v, by v,/, and call it the normal vector of o relative to 7.

Definition 2.1.4
A tropical fan (with real slopes) in V is a pair (X, wx) where X is a marked fan and
wy : X@mX) 5 R is a weight function on the cones of maximal dimension such that
the balancing condition

Z wx (o) - vg/r =0in V/V;

o.7<0
is fulfilled for all 7 € X~ Ag in definition [LT7 we denote by (X* wyx-) 1=
({r € X|r C o for some 0 € XWX with wy(0) # 0}, wx|(x+y@mx)) the non-zero
part of X.

Remark and Definition 2.1.5
Let (X,wx) be a tropical fan with real slopes, let o, € X be an edge of X and let
A € R+g be a positive number. Then let X’ := X and

| wx(o), ifoy Z o

wyi(0) = { % ~wx (o), if oy Co.

Moreover, replace in X’ the vector v,, by A - v,,. We would like to call (X,wx) and
(X',wx+) the same tropical fan, but according to definition 2T this is not the case.
Hence, in the following we will always identify tropical fans that arise one from the
other by operations as above.

We also have to take care of this ambiguity when defining refinements:

Definition 2.1.6

Let (X,wx) and (Y, wy) be tropical fans with real slopes in V. Analogously to definition
we say that Y is a subfan of X if for every cone o € Y there exists a cone 0 € X
such that ¢ C o. In this case we define a map Cy x : Y — X that maps a cone 0 € Y
to the inclusion-minimal cone o € X with ¢ C o.

We say that (Y,wy) is a refinement of (X,wx) if

(a) Y* is a subfan of X*,
(b) [Y*| = |X*| and
(¢) wx(Cyx(0)) - |det(Agcy ()] = wy (o) for every o € (Y*)dim(¥)

where A, ¢y (o) 18 a matrix expressing the generating vectors of Cy x (o) in terms of
the generating vectors of o.

Remark 2.1.7

Using the above definitions we can carry over the other basic definitions from section
[Tl in particular the definition of affine tropical cycles, to our context. Note that in
some cases, e.g. for taking sums of cycles, it is necessary to further refine the tropical
fans our constructions in section [[L1] yield to obtain simplicial fans. Moreover, we can
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Chapter 2: Tropical cycles with real slopes and numerical equivalence

define open marked fans and open tropical fans in analogy to definition Using
rational functions with arbitrary slopes it is obviously possible to define intersection
products of Cartier divisors and tropical cycles with real slopes in exactly the same
way as we did in section What is missing so far is the notion of morphisms:

Definition 2.1.8

Let (X,wx) and (Y,wy) be tropical fans with real slopes in finite-dimensional real
vector spaces V' and V', respectively. A morphism f: X — Y is just the restriction of
an R-linear map f: V — V' to |X|. As before we can refine X in such a way that

f:X :={f(0)|o € X is contained in a maximal cone of X on which f is injective}

is a fan in V'. We can make f,X into a tropical fans as follows: For every cone
o' € f,. X1 we choose a generating vector v, € o'\ {0}. Moreover, for all cones
o € f.XImEX) we set

wrx(@) = Y wx(0) - |det(Ap s,

ceX:f(o)=0c'

where Ay f(o) is a matrix expressing the images f(v.,) of the generating vectors v,, of
o in terms of the chosen generating vectors of o’.

In the following we will define marked polyhedral complexes and tropical polyhedral
complexes with real slopes in analogy to marked and tropical fans. This will lead us to
(embedded) tropical cycles with real slopes as spaces “looking locally like affine cycles”.

Definition 2.1.9
A marked polyhedral complex in V' is a pure-dimensional polyhedral complex X in V
fulfilling the following conditions:

(a) For every polyhedron o € X there exists a vertex P, € X(© with P, € o,

or every vertex I° € and every edge o € wit € o we are given a

b) f P e X© and d X with P i
vector vl € V such that the set {0 € X|P € o} together with the set of vectors
{vP|P € 0 € XM} is an open marked fan in V (after a suitable translation),

(c) for all vertices Py, P, € X O with P, # P, and every edge o € XO with P, P, € 0
holds v = —vf> and

(d) for every pair of vertices Pi, P, € X and all polyhedra o € X with P, P, €
o the base change from vf',... v/t to v}2, ... v!? has determinant +1, where

1,7 € XD and o1,...,00 € XU are all the edges contained in o that
contain P; respectively Ps.

Definition 2.1.10

A tropical polyhedral complex (with real slopes) in V' is a pair (X,wy) where X is
a marked polyhedral complex and wy : X@™X) — R is a weight function on the
polyhedra of maximal dimension such that for all vertices P € X© these weights
make the open marked fan {o € X|P € o} into a tropical fan. As before, we denote by
(X* wx+) = ({7 € X|r C o for some ¢ € XI™X) with wy (o) # 0}, wx|(x+)@imex)))
the non-zero part of X.
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2.1 Tropical cycles with real slopes

Definition 2.1.11

Let (X,wx) and (Y, wy ) be tropical polyhedral complexes with real slopes in V. Exactly
as in definition we say that Y is a subcomplex of X if for every polyhedron o € YV
there exists a polyhedron ¢ € X such that ¢ C ¢. Again, we can define a map
Cyx 1Y — X that maps a polyhedron ¢ € Y to the inclusion-minimal polyhedron
o€ X witho Co.

We say that (Y,wy) is a refinement of (X,wx) if

(a) Y* is a subcomplex of X*,
(b) [Y*] = |X*| and
(¢) wx(Cyx(0)) | det(Agcy y(0))| = wy (o) for every o € (Y*)dim()),

where the matrix A, ¢, (o) arises as follows: Pick vertices P € o and Q € Cyx(0).
Then Agcy (o) I8 @ matrix expressing the generating vectors v? of Cy,x (o) in the
open marked fan {7 € X|Q € &} in terms of the generating vectors v} of ¢ in the
open marked fan {¢ € Y|P € ¢}. By property (d) of definition condition (c) is
independent of the choice of the vertices P, Q).

Remark 2.1.12

As before, using these new definitions we can carry over the definitions and results from
sections [[L4] - [L6] in particular the definition of a tropical cycle and the notion of a
morphism of cycles, to our context. Here again it is necessary in some cases to further
refine the polyhedral complexes we obtain by our constructions in chapter [Il to end up
with simplicial complexes. Note that properties (c¢) and (d) of definition make
sure that we can define the intersection of a Cartier divisor with a cycle by taking local
intersection products as we did in definition [[L5.0

Example 2.1.13

We want to consider tropical curves in R?, i.e. tropical cycles of dimension one ac-
cording to remark 2-T.T2] and their moduli space in analogy to [GKMOT, section 4].
Therefore we fix a degree A := {vy, vy, v3},v; € R?, Z?:l v; = 0 and say a curve with

real slopes has degree d if its degree (in the sense of [GKMO07, definition 4.1]) is

{Ul,...,’Uh’UQ,...,UQ,Ug,...,’Ug},

where each v; occurs exactly d times. Given n := 3d—1 points P, ..., P, € R? we want
to calculate the number of tropical curves with real slopes of degree d passing through
Py, ..., P, (counted with multiplicities) as an intersection product on the corresponding
moduli space M2 (R?, d) = Mo 3dsn.irop X R?:

0,n,trop

Let the matrix A be given by
A= (—v]—w) "

Hence we have maps

2 evj 2 A 2
M0,3d+n,trop x R* — R* — R”.
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v3

vy Avg Avg
v1

Figure 2.1: A curve with real slopes mapped to an ordinary degree-2-curve.

Note that for a curve C' of degree d in R? we have that A(C) is an ordinary degree-

d-curve, i.e. A(C) has degree d in the sense of [GKMOT, definition 4.1]. Let P, =

(a\”,al"). We can write P; as

b= maX{a’gi)? ZE} ’ max{ag), y} ’ R27
where z,y are the coordinates on R?%. Moreover, we have

A*max{al”, z} - A*max{al”,y} - R = |det(A)|- P,
| det(A4)] - max{a{”, 2} - max{al’, y} - R2.

Using this equation and the projection formula we can conclude that

=1

Ny = deg| []evr A* max{a&i), x}-evi A* max{aéi), Y} - Mo nt3dtrop X ]R2>
= deg | []|det(A)|-ev} max{agi), x}-ev) max{ag), Y} - Mo ntsdtrop X ]RQ)
i=1

— | det(A)|" - deg (H evi max{al”, 2} - evi max{al, y} - Mosaaop X ]RQ)
=1
= |det(A)|" - Ny,

where N is the number of ordinary degree-d-curves passing through P, . .., P, (counted

with multiplicities) and Ny is exactly the number we want to calculate. Hence we obtain

the equation
—~ 1

Nd " 'Nd = ]det (’U1|U2) ’n 'Nd.

[ det(A)]

Remark 2.1.14
In the following, the notions of tropical fan, tropical polyhedral complex and tropical
cycle will always refer to the objects introduced in chapter [l We will state explicitly if

a fan or cycle is a tropical fan or tropical cycle with real slopes according to definition
214 or remark 2Z.T.12, respectively.
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U1

A

u3

— V9

Figure 2.2: Cones 7,7’ with normal vectors v; over a polyhedron 7.

2.2 Numerical equivalence on fans

Definition 2.2.1

Let Y be a tropical fan in some vector space V and let C, D € Z,(Y') be tropical cycles.
We call C and D numerically equivalent if deg(y - - - ¢r - C) = deg(p1 - - - pp - D) holds
for all Cartier divisors ¢q,...,¢, on Y.

Proposition 2.2.2
Let Y be a tropical fan in R™ and let C' € Zi(Y) be a tropical cycle. Then C and
its degree cycle 0(C) € Zp(Y') are numerically equivalent (see definition [L.9.8 for the
definition of 6(C')).

Proof. Let X be a representative of C'. We perform the same construction as in the
proof of theorem [[9.7 but with some modifications: Like before, we translate our
chosen vertex P to the point P := 0, but instead of replacing the lengths [; by
l;+t-1; we replace [; by t- ;. Note that we do not change the directions and lengths of
unbounded edges. After a suitable refinement of X the cones arising from the polyhedra
7 € X for t > 0 in this way are simplicial. Moreover, for t < 0 a polyhedron 7 € X
in general yields a union of simplicial cones. We denote this set of cones by Z. We
can make Z into a tropical polyhedral complex by further refining it and equipping it
with weights and normal vectors as follows: Let first 7 € X be a bounded polyhedron.
Performing operations as described in remark and definition we may assume that
every normal vector associated to an edge F of 7 with endpoints Pr and Qg is just
Pr — Qp (cf. figure 22). If 7 (for t > 0) and 7 (for ¢t < 0) are the cones in Z arising
from 7 and P,..., P, € X© are all vertices in 7 we choose +(P;,1),...,+(P,,1) €
R"™ x R as generating vectors of 7 and 7', respectively. If 7 € X is an unbounded
polyhedron we have all vectors (v,,0) € R™ x R, where v, is the primitive normal
vector of an unbounded edge in 7 in our original complex X, as additional primitive
normal vectors generating 7. In both cases we set wz(T) := wx(7) if 7 is a cone of
maximal dimension. Moreover, if 7 is unbounded, 7’ is in general not a cone but a union
of cones that contains the primitive normal vectors (v,,0) € R™ x R, too, but due to

50



Chapter 2: Tropical cycles with real slopes and numerical equivalence

Figure 2.3: A curve C and its degree cycle §(C).

the necessary refinements we need some additional generating vectors in this case. Let
7! be one such cone (or 7/ = 7' if 7 is bounded). Then we set wz (7)) := (—1) Dwx(7),
where d(7) := dim((7])") — dim(re((77)")) and (77)" is the intersection of (7) with
R™ x {t} for some t < 0 (cf. theorem [[O.7, remark and figure [2.2]). Performing
a refinement of overlapping cones and adding up their weights as in theorem [1.9.7]
the above choices make Z into a tropical polyhedral complex with real slopes (Z,wyz)
according to definition in R™ x R such that moreover max{1,t} - [(Z,wz)] =
C(—Fp) holds, where t is the coordinate of the additional factor R and C'(—Fp) is the
translation of C' by the vector —Fy. Additionally we have max{0,t} - [(Z,wz)] = 0(C)
in this case. Let f:R™ x R — R" be the map given by (z,t) — x +t- F,. Then f
maps |Z| N {0 <t <1} toY. We can conclude the following:

deg (11 - (C = d(C)))
= deg(p1-- sok fe(max{1,t} — max{0,t} - [(Z,wz)]))
= deg(f. (f o1 fror - (max{1,t} — max{0,t}) - [(Z,wz)]))
= deg(f o1 fror - (max{1, 1} —max{0,7}) - [(Z,wz)])

— deg (Frpr- Fin - (max{1, 1} — max{0,}) - [(Z,w7)])
deg ((max{1,#} — max{0,1}) - For- - i - [(Z.w2)])
= 0,

where f*\g;, is any continuation of f*p; : |Z|N{0 <t <1} — R on the whole cycle Z.
Hence, using the linearity of deg and the intersection product, we can conclude that
deg (o1 ¢k - C) = deg (1 - d(C)) for all Cartier divisors ¢1,..., ¢, on Y and
thus that C' and §(C) are numerically equivalent. O

2.3 Chow groups via numerical equivalence

In analogy to P™-generic cycles (cf. definition [LOI4]) we can define generic cycles
corresponding to other toric compactifications of the algebraic torus:
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2.3 Chow groups via numerical equivalence

Definition 2.3.1 (F-generic cycles)

Let I be a complete fan in R™ corresponding to a compact and smooth toric variety, i.e.
|F| = R™ and every cone of F'is generated by part of a lattice basis. Let C' € Z;(R™) be
a tropical cycle. C is called F-generic if for one (and thus for every) representative X
of C holds: For every face ¢ € X® there exists a polytope P, C R™ of some dimension
r € {0,...,k} and a cone 5 € F*~") guch that ¢ C P, + 5.

We denote by Z{ (R") the group of all k-dimensional and F-generic cycles in R™.

Remark 2.3.2
The above definition of F-generic cycles is equivalent to the condition that the recession
cycle §(C') of our cycle C € Zi(R™) is contained in the k-skeleton of our given fan
F. Hence, for every F-generic cylce C' there is a representative Y of §(C') such that
Y c UL, F9.

Example 2.3.3

Let F} and F5 be the complete fans in R? and R?, respectively, defining P! x P! and
P! x P! x P!, respectively, as a toric variety. The following figure shows examples of
Fi- and Fs-generic cycles:

c D

Figure 2.4: An Fi-generic curve C' and an F,-generic cycle D.

For the rest of this section F' will always denote a complete fan in R"™ corresponding
to a compact and smooth toric variety as in definition 2.3.1]

Definition 2.3.4 (F-numerical equivalence)
Let C,C" € Zp(R™) be arbitrary tropical cycles in R™. We say that C' and C’ are
F-numerical equivalent, denoted by C ~y,, C’, if the maps do : ZF (R") — 7Z :
D+ deg(C - D) and dev = ZF(R™) — Z : D — deg(C"- D) coincide (cf. definition
[L93]). We define the k-th tropical Chow group of R" induced by numerical equivalence
to be the group

AE(R™) = Z4(R")/ ~om -

Theorem 2.3.5
Let X(F) be the toric variety associated to F and Ap(X(F)) and A*(X(F)) its k-th
Chow group and k-th Chow cohomology group, respectively. Then we have an isomor-
phism:

A (R") = AMX(F)),
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Chapter 2: Tropical cycles with real slopes and numerical equivalence

1.e. the “classical” Chow cohomology groups and the tropical Chow groups are naturally
1somorphic. Hence we also have

A (R") = A(X(F)),
but there is no canonical map giving this last isomorphism.

Proof. As X (F) is a smooth toric variety we can deduce that A*(X (F)) is free. Hence,
by [FS97, theorem 2.1] there are Minkowski weights cy, ..., ¢, on F"™*) freely gener-
ating A*(X(F)). We define X (¢;) to be the tropical fan with cones X (c¢;) := U?:_Ok F®
and weight function ¢;. Moreover, [F84] corollary 17.4] and [FS97, proposition 1.4]
imply that the map

I: AMX(F)) — Hom(Ay(X(F)), Z) —= Hom(A" (X (F)), Z)
Cl deg((cU-) N[X(F)])

is an isomorphism. As A" *(X(F)) is a free group, we can conclude that A*(X (F)) =
A"F(X(F)). Thus, there are again r Minkowski weights dy,...,d, on F*) freely
generating the group A" *(X(F)) and associated tropical fans X (d;) := Uf:o FO with
weight functions d;. The isomorphism [ is then given by

I: Ak(j(F)) — Hom(A”’“J/(X(F)), 7)
7" 7

(a1,...,q) — (Zgzl REVECTRERE Z;:1 Tri %),
where
i = deg((di U ¢;) N [X(F)]) = (di U ¢;)({0}).
The last equation follows from [FS97, proposition 3.1]. By [ROS8, theorem 1.9] we can

deduce that moreover
Yij = deg(X(di) - X(cj))

holds.
Now, let C' € Z,,_x(R"™) be a tropical cycle and let ¢; := deg(X (d;)-C) € Z. As the map
I is an isomorphism, the matrix (7;;),; is invertible over Z and there are oy, ..., 0, € Z

with Y70, vyija; = 6; foralli = 1,...,r. We claim that C' ~pun a1 X (c1)+. . .+, X (c,):
Let D € ZF(R") be an F-generic cycle. By remark there exists a representative
Y of §(D) such that YV C Uf:o F®_ The weight function wy defines a Minkowski
weight ¢(Y) on F"*. Hence, there are coefficients 3i,...,3, € Z such that ¢(Y) =
Bidy + ...+ Byd, and equivalently Y = 3, X (dy) + ... + 5,X(d,). Thus we obtain

deg(Y - C) = deg((BX (1) + ..+ B X(d) - C) = Buby + ... + B,
Moreover, we can deduce that

deg(YV - (a1 X (1) + ...+ . X(¢c)))
= deg((51X(dr) + ...+ 5:X(d,)) - (anX(e1) + ...+ . X(c)))
- 22:1 (@' <Z;:1 aj%‘j))
= i1 Bidi:
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2.3 Chow groups via numerical equivalence

Thus we have C' ~pym a1 X (¢1) + ... + . X(¢;).

Now, let ai,...,a, € Z be given such that oy X(c;) + ... + @, X(¢) ~pum 0.

particular, this implies that

deg((a1 X (c1) + ...+, X(c,) - X(dy)) = Z a;yi; = 0

for all i = 1,...,7. As (7;5)i; is invertible we can deduce that a; = ... = a, = 0.

Altogether we can conclude that the map

(X(c1),.. . X(e))z — AL (R") 2 ) i X (c;) [Z OziX(ci)]

=1 ~num

is an isomorphism. Hence we obtain
AF(R™) 2 (X (c1),..., X(c;)z = (cr, ... ez =2 ANX(F)) =2 Ap(X(F)),

which finishes the proof.
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3 Tropical intersection products on
smooth varieties

In this chapter we define an intersection product of tropical cycles on tropical linear
spaces L7, i.e. on tropical fans of the type max{0,z,...,2,}" % - R", in analogy to
section Afterwards we use this result to obtain an intersection product of cycles on
every smooth tropical variety, i.e. on every tropical variety that arises from gluing such
tropical linear spaces. In contrast to classical algebraic geometry these products always
yield well-defined cycles, not cycle classes only. Using these intersection products we
are able to define the pull-back of a tropical cycle along a morphism between smooth
tropical varieties.

3.1 Intersection products on tropical linear spaces

In this section we will give a proof that tropical linear spaces L} admit an intersection
product. Therefore we show at first that the diagonal in the Cartesian product L} x L}
of such a linear space with itself is a sum of products of Cartier divisors. Given two
cycles C' and D we can then intersect the diagonal with C' x D and define the product
C - D to be the projection thereof.

Throughout the section ey, ..., e, will always be the standard basis vectors in R™ and
€p:— —€1 —...— €Enp.

We begin the section with our basic definitions:

Definition 3.1.1 (Tropical linear spaces)

For I C {0,1,...,n} let o7 be the cone generated by the vectors e;, ¢ € I. We denote by
Ly the tropical fan consisting of all cones oy with I C {0,1,...,n} and |I| < k, whose
maximal cones all have weight one (cf. example [L2Z0). This fan L} is a representative
of the tropical linear space max{0, zy,...,z,}" % R™

Definition 3.1.2
Let C € Z(R"™) be a tropical cycle and let the map i : R™ — R™ x R™ be given by
x + (x,z). Then the push-forward cycle

AC = Z*(C) S Zk(IRn X Rn>
is called the diagonal of C' x C.

In order to express the diagonal in L} x L} by means of Cartier divisors we first have
to refine L} x L} in such a way that the diagonal is a subfan of this refinement:

25



3.1 Intersection products on tropical linear spaces

Definition 3.1.3
Let F}' be the refinement of L} x L} that arises recursively from L} x L} as follows:
Let M := (L} x L?)®® be the set of maximal cones in LY x L. If a cone o € M is

generated by
—€; 0 v v
0 ) —e y U3y ooy U2k
for some 7 and vectors

e (2) () (2o

then replace the cone o by the two cones spanned by

—6i 6

V3,...,U9
—e; ) 0 s U3y y U2k
—€; 0

V3, ...,V
—é; ) —e; s U3y ) )

respectively. Repeat this process until there are no more cones in M that can be
replaced. The fan [}’ is then the set of all faces of all cones in M.

and

The next lemma and the following corollary provide technical tools needed in the proofs
of the subsequent theorems:

Lemma 3.1.4
Let F' be a complete and smooth fan in R™ (in the sense of toric geometry) and let
hi,..., h., v <mn, be rational functions on R"™ that are linear on every cone of F'. Then

the intersection product hy ---h, - F' is given by

hy---h, F = (U F(i),whl---hr>
i=0

with some weight function wy, .., on the cones of dimensionn—r. For a cone o € F")
such that all functions hy, ..., h, are identically zero on o the weight wy, .., (o) is given
by

Why-hy () = Z ha(uy) -+ - he (),

1).
Tuy ,...,ruTGF( )
Tup 5o sTup,0 SPATL G COTE N Fn)

where r,, denotes the ray generated by the primitive lattice vector u;.

Proof. We prove the claim by induction on r: For r = 1 the above formula is just
the definition of the intersection product (see definition [L2Z4]). For » > 1 we have the
equation

Whyooho (0) = D Whyeotn (7)< ha(uy).
ruleF(l):
Tup,0 Span a cone secF(n—r+1)
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Chapter 3: Tropical intersection products on smooth varieties

Using the induction hypothesis we can conclude that

Why -k, (0)

= > > ho(ug) - hy(u,) | - ha(u)

Tu1€F(1); ru27".77‘ur€F(1);
Tup,0 Span a cone sgeF(n—r+1) Tag 5Ty ,0 SPaN a cone in F(n)

— 3 hy(uy) -« hy(uy).

1).
rul,‘..,ruTGF( )
Tuq e Tuy,0 SPan a cone in F(n)

Corollary 3.1.5
Under the above assumptions the weight of the cone o can equivalently be written as

Whyoohy (0) = Z perm ((h(u;)ij=1,..r) ,

oeF ().
0 is generated by Tuy .. Tuy 0

where perm(A) denotes the permanent of the matriz A.

Proof. Using lemma [B.1.4] we can conclude that

Why-hy (O’) = Z hy (ul) T hr(ur)

ulsureF):
U1 ,...,ur,0 span a cone in F(n)

— > > (hl(up(l)) T hr(up(r)))

QGF(”)7 pEST
o is generated by ui,...,ur,0

= > perm ((hi(u;)ij=1,..r) -

oeF(n);
o is generated by ui,...,ur,0

Remark 3.1.6

Note that the above assumption that all rational functions are identically zero on o is
not really a restriction: We can always achieve this by adding suitable globally linear
functions to the rational functions h; which does not change the intersection product
and in particular not the weight wp,..p, (o).

Notation 3.1.7

Let F' be a simplicial fan in R™ and let u be a generator of a ray r, in I'. By abuse
of notation we also denote by u the unique rational function on |F'| that is linear on
every cone in F', that has the value one on u and that is identically zero on all rays of
F other than r,.

If not stated otherwise, vectors considered as Cartier divisors will from now on always
denote rational functions on the complete fan £
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3.1 Intersection products on tropical linear spaces

Notation 3.1.8
Let C be a tropical cycle and let Ay, ..., h, € Div(C) be Cartier divisors on C'. If

_ i1
P(xy,...,x,) = g Qi XY T

is a polynomial in variables z1, ..., x, we denote by P(hq,...,h,) - C the intersection
product

P(hy,....h)-Ci= Y (ag,.ihi b -C).

In the following theorem we give a description of the diagonal Az» by means of
Cartier divisors on our fan F)":

Theorem 3.1.9
The fan

() () (o) () () = ()

is a representative of the diagonal Ay .

—€o —€o
is a representation of the tropical polynomial max{0,xy,...,z,}, where z,..., x, are
the coordinates of the first factor of R” x R". Applying lemma [[.8.5 we obtain

k
—€p —€p n
() ()
By lemma we can conclude that Agrn - [L , x R"] = d.([L},_,]) = Apr  and
hence it suffices to show that [X] = Agn for

() () (G8) ()

to prove the claim. Therefore, let o = (rq,. .. ,rn>R20 € X™ be a cone not contained
in [Agn|. We will show that the weight of ¢ in X has to be zero. W.l.o.g. we assume

M ner={(=) - (E0))
T:_{( 5 )( —g)} andB:_{< M )(_2)}

We distinguish between two cases:

Proof. First of all, note that

= [Ly_p x R"].
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Chapter 3: Tropical intersection products on smooth varieties

1. First, we assume that

m:f{( ‘50),< _ZO)},izl,...,n.

Changing the given rational functions by globally linear functions we can rewrite
the above intersection product as X = ¢q--- ¢, - I}, where

o= (_0€i>+<_0€0>’ if<_06i)€{r1,...,rn}
(—Oei)+(_()€o>, else.

All occurring rational functions are identically zero on ¢ now and we can apply
corollary B.T.5t If the weight of o in X is non-zero there must be at least one cone
0= (Tl V1, .., Up)r0 € F7 such that perm ((¢;(v;)):;) # 0. We study
three subcases:

a) More than one vector r; is contained in 7' (or in B): If ( G ) , < S > €

0 0

{r1,...,rp} for some i # j then p; = (—Oei ) + ( _060) and ¢; =

( 0 )+( —“ ) Hence we need two vectors out of( 0 ) , ( 0 > ,
—6]' 0 —€; —€j

( —<0 ) among the v, such that perm ((¢;(v;));;) can be non-zero. But

0
. . .. —€; 0 —€;
there is no cone in [ containing 0 and — ) or 0 and

( 0 ) (Analogously for B.)

b) There are vectors r; € T and r; € B: Then we need both vectors ( _060 )

and ( 0@ > among the v, such that perm ((®;(v;)):;) can be non-zero.
—e€g

But again there is no cone in F” containing these two vectors.

c) rmeT (orry € B)and r; € D for j # 1: Like in (a) we need vy = ( —<0 )

0
and vy, ..., v, € { ( _062 ) e <_Oe"> } such that perm ((¢;(v;)); ;) can
be non-zero. But there is no cone in £’ containing ( _06 - ) e < _5 - >

and (_060). (Analogously for B.)

2. Now we assume that

- (5) o ()
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3.1 Intersection products on tropical linear spaces

Again, by changing the given rational functions by globally linear functions we
can rewrite the intersection product as X = ¢y -+ ¢, - F)}, where

Co) (e

some equivalent rational function
not involving ry,...,7,

, else.

Again we reached that all rational functions are identically zero on ¢ and we can

apply corollary B3 1 () ¢ ruveor hen = () + (1)
—C0

and we need ( _Oei ) or < Oe ) among the v, such that perm ((¢;(v;)); ;) can
—€o

. . . 0 —
be non-zero. But as there is no cone in F]' containing ( c ) and (OGO we
—€o
—e; —e —€n
must have (O) € {vy,...,v,}. Hence all the vectors ( 5 ) e < 0 >
and <—O€0 must be contained in {ry,...,7,,v1,...,0,}, but there is no such

cone in F'. (Analogously for r; = < 0 >)

Our last step in this proof is to show that at least one cone in the diagonal of R x R"
occurs with weight one in X. As the diagonal is irreducible we can then conclude by
[GKMOT, lemma 2.21] that the whole diagonal occurs with weight one. We have a look

at the cone
—e1 —€n
o = <7“1,...,7"n>]1{20: N gy e, ]RZO.

As all the rational functions
o —€; + O
QDZ - O _eo

are already zero on ¢ we can immediately apply corollary B.I.5t There is exactly one
cone

0 = (T1,.e oy Toy UL, ey, Un)R>0

ED) - ED)E) -G

in £ containing o such that the permanent perm ((¢;(v;));;) is non-zero and for this
cone we have perm ((¢;(v;)); ;) = 1. This finishes the proof. O

Our next step is to derive a description of the diagonal Ar» on Ly, x Ly, from
our description on F)':
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Chapter 3: Tropical intersection products on smooth varieties

Theorem 3.1.10
The intersection product in theorem [31.9 can be rewritten as

(Snoos) () (o) () + ()

for some Cartier divisors h;; on F}'.

We have to prepare the proof of the theorem by the following lemma:
Lemma 3.1.11

Let C € Z;(L!'_,.) be a subcycle of L' . Then the following intersection products are
zero:

@ () () xm.

(b) viy -+ vy, - (CXR)

0 —€0 ° n
(C) ( _60 ) ' ( _60 ) . U'Ll o "Uin—k—s-&-r : (C X ]R‘ )7

where r,s > 0 and the vectors

we{(G) - (G) (52 (52)

are pairrwise distinct.

Proof. (a)and (b): In both cases, a cone that can occur in the intersection product with
non-zero weight has to be contained in a cone of F" that is contained in |L?_, x R"|

. — 0 .
and that contains the vectors ( 060 ) , < e > Or Uy, ...,V .., Tespectively. But

there are no such cones.
(c): By (a) and lemma [[.8.6] we can rewrite the intersection product as

( 0 ).(_60> iy i, (C X R

—€o —€o

(NG ) o
() v (G )+ (22) ] e

_ ( 0 ) ViV [max{()’wl, L. ,xn}s . C] X Rn’

which is zero by (b) as max{0, xy,...,z,}* - C is contained in L , .. O
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3.1 Intersection products on tropical linear spaces

Proof of theorem[3.1.10. By theorem [3.1.9] we have the representation

Dpg, = ((59)+ (=) - () + (=) () + (=0) - 1]

g

=[L7_, xR"]

= (=) (=) +. o+ (=2)") - [Lr, x R™. .

By lemma B.ITT] (b) all the summands containing ( ) with a power s < k are

zero. Hence we can rewrite the intersection product as

i = [(5) (5 o () () ()

[LZ—]@ X Rn]v

where A contains all the summands we added too much. Thus all the summands of A

are of the form .
() (=)
O{ . Ul o« o e Unisir . .
—€o —€

for some integer «, vectors v; € _061 . ( _5” )} and powers 1 < t < k,

0 < s <n. By lemma BIII (b) and (¢) such a summand applied to [L"_, x R"] is
zero if s < k and only those summands remain in A that have t > 1,s > k. Let

s t
Szza.vl...vn_S_T.( 0 > .(—eo)
—€0 —€p

be one of the remaining summands. By lemma B.I.TT] (a) we obtain the equation

ey (=) (=) L, xR

) (Z () arvn e (25" () (5 )) [y xR
= Ea.yl...vnst, ( —20 )S_ (( —(;30 )+< 122 ))t> ) [LZ_k « R”]

(=) + (==))"
(oo v (2 () + (229)") - Bo] - (B x R,

where Bg contains again all the summands we added too much. Thus all the summands
of Bg are of the form

" 0 s—s’ o s’ o t e t—t'
/ D— . . DY . . — 0 . — 0 . — 0
e (3o () (50) - (50) (50

for some integer 7 and powers 1 < & < k, 0 <t/ <t. If s —§ < k we group all
corresponding summands together as

’

oo () ) (o) ()

62



Chapter 3: Tropical intersection products on smooth varieties

This product applied to [L" , x R"] is zero by lemma BIT1] (b) and (c). Moreover,
all summands S" with s — s > k and ¢’ > 0 yield zero on [L?_, x R"| by lemma B.T.1T]
(a). Thus only those summands S” are left in Bg that are of the form

0 s—s’ t+s’
S =8 v . Y
n—s—t —eo —eo

with s — s > k and s’ > 1. Applying this process inductively to all summands with

k
t=1,...,n—k—1in which we could not factor out (< Oe > + < _ZO >> , yet, we
—€o —€o

can by and by increase the power of c
—€0

in all remaining summands until finally

only one summand

is left. But
0\ /= \"" R
7.(60)0 ‘(60)60 ‘[ink iRe(]J —eg ok
- () (50) () + (5) mexm
(L) () ()« (=) e
(_20)-(:23) (1§ x R
for allz’<k’?3y lemma ZTIT (b) and

( —Oeo )k ( 5 )j' ( :23 )H_j L, xR =0

for all j > 0 by lemma B.I.TT] (a). This proves the claim. O

as

Corollary 3.1.12
The Cartier diwvisors h;; from theorem [Z1.10 provide the following description of the
diagonal Ngn

ADpn = Z hit .. iy [Ly_j X Ly _].
i=1

Proof. Let x1,...,z, be the coordinates of the first and y,...,y, be coordinates of
the second factor of R® x R". Applying lemma [[.8.5 we can conclude that

() () (5 () m

= [maX{O, Ty, .., 1 max{0,yy, ..., yn}F - Fjj]

= Ly X Ly 4]
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3.1 Intersection products on tropical linear spaces

and hence by theorem [B.1.9 and theorem [3.1.10] that

thl zn k" [Lz_k X LZ_ ] ALZ P

Remark 3.1.13
As lemma BITT] does not only hold on L , x R™ but also on any C' x R™ with C' a
subcycle of L7, the proof of theorem indeed shows that

(Samane) - (Z) + (Z)) -0
- (( 5) () () o (-2)) e

ﬁ

for all cycles C' € Z;(L"_,). Using corollary [L87 we can conclude that
L 0 —€p b
Z h@l . hi,n—k : + . (C X ]Rn)
i=1 —¢€o —€o
A - (C x RY)
VAVS

for all such cycles C.

Corollary 3.1.14
Let o € L ,, let v € 0 and let U C S, = |, ern_,: w56 (0')" be an open subset of

|L x| containing x. Moreover, let F' be the open fan F:={-z+0on U|a eLr ,} and
F the associated tropical fan. Then there are Cartier divisors h; ; on F x F such that

Af‘}zzh;,l znk [FXF]
=1

Proof. To obtain the Cartier divisors h; ; we just have to restrict the Cartier divisors
h; ; from corollary 3.1.12] to the open set U x U, translate them suitably and extend

them from F x F' to the associated tropical fan FxF. n

Example 3.1.15
The following figure shows two fans associated to open subsets of L3 as in corollary

B.I.T4
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Lemma 3.1.16

Let C € Zx(R™) and D € Z;(R™) be tropical cycles such that there exist representations
of the diagonals N¢ and Ap as sums of products of Cartier divisors on C' x C' and
D x D, respectively. Then there also exists a representation of Ncxp as a sum of
products of Cartier divisors on (C x D)?.

Proof. Let A¢ = Y0 1 0in---pir - (CxC)and Ap = >0 i1...¢y - (D x D).
Moreover, let m,,m, : (R")* — (R™)? be given by (z1,y1,22,y2) — (x1,22) and
(1, Y1, %2, y2) — (y1,y2), respectively. Then we have the equation

ACXD = <Z T;g&i’l c.. W;@i,k) . <Z W;lpi’l R 7'(';1/}2"1) . (C X D)2
=1

i=1
[l

Now we are ready to define intersection products on all spaces on which we can express
the diagonal by means of Cartier divisors:

Definition 3.1.17 (Intersection products)
Let C' € Z,(R™) be a tropical cycle and assume that there are Cartier divisors ¢; ; on
C x C such that

Aczz¢i,1--~%,k'(cx C).
i=1

Moreover, let 7 : C' x C' — C' be the morphism given by (z,y) — x. Then we define
the intersection product of subcycles of C' by

Zk_l<C) X Zk_l/(C) I Zk_l_l/(C)
(Dh Dg) — D1 . D2 = Ty (Z::l i1 Pik - (Dl X DQ)) .

We use the rest of this section to prove that this intersection product is independent
of the used representation of the diagonal and that it has all the properties we expect
— at least for those spaces we are interested in:

Lemma 3.1.18

Let C' € Zi(R™) be a tropical cycle, D € Zy(C), E € Z_y(C) be subcycles, let
¢ € Div(C) be a Cartier divisor and w : C' x C — C' the morphism given by (x,y) — x.
Then the following equation holds:

(p-D)x E=7"p- (D x E).
Proof. The proof is exactly the same as for lemma [[.8.5] m

Corollary 3.1.19
Let C € Zx(R™) be a tropical cycle that admits an intersection product as in definition
[31.17 let D € Zy_(C), E € Zy_y(C) be subcycles and let p € Div(C) be a Cartier

divisor. Then the following equation holds:

(p-D)-E=¢-(D-E).
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3.1 Intersection products on tropical linear spaces

Proof. The proof is exactly the same as for lemma [1.8.6] O

Proposition 3.1.20
Let D € Z(L?_,) be a subcycle. Then the equation

D-[Ly ] =[Ly4]-D=D
holds on L,

Proof. Let m; : L, x L' , — L" . be the morphism given by (xy,z2) — ;. By
remark B.T.T3 we get the equation

DLy ] = (m). <Zh@1 hin—r: - (DX[LZ—k]))

(o) () (22) 0em)

(
= (1)« (Dgn - (D x R"))
(m1)« (Ap)

= D.

Furthermore, let ¢ : L} x L} — L} x L} be the morphism induced by (x,y) — (y, ).
Obviously we have the equality

(Z hig P k) Lok X L] = (i ¢ hig ... ¢*hz‘,n—k> Lok X Ly
i=1
If m;; : (L' _,)* — (L"_,)? is the morphism given by (1, z2, x3,74) — (z;,2;) and
A= (Z iy .. .ﬁg,hi,nk) : (Z wiihiy .. .n;4hi,nk>
=1 i=1
we can conclude by proposition [[6.7 and lemma that
; O hiy - 6 himi ) - (D X [L2,])
= (S ohinni ) - (O x L) - (e x L))
= (o0 hini ) - (ma)e (& (D x (L) (L < 134D) )
- Z SRt i ) - (T12)s (ADX[LM)
_ Z S his e iy ) - (T30)s (ADX[%k])
(
)

— (). ((Z:f;lw%qs* . w§4¢*hi,n_k>-A-
— (maa) (O (DX [L0,]) x ( ; S hin ... *hm_k) -[Lgkang)
= (e (8- @ x () x (St o) 1 x 2] )

= (st - (0 %12,
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Hence we can deduce that

D [szk] =

|

3y
N =
* ¥
> >
SHCH

I
5

[
=

s
Il
—

..hm_k) (D x [Lg_k]))
hi ..gb*hi,n_k) (D x [Lg_k}))

..hm_k) ([LI_,] x D)

I
5
[
<
*

s
Il
—

I
-
Sa

@
I
~

|
=

This proves the claim. ]

Remark 3.1.21
We can prove in the same way that [L_, x L™ |- D = D holds for all subcycles D of

Ly x Ly and even that [L7' X ...x Ly, |- D = D holds for all r > 1 and all
subcycles D of L}, X ... x Ly . Moreover restricting the intersection products
to open subsets of \L”] or [Lpt . X ...ox Ly |, respectlvely, 1rnphes that X - D =D
also holds for all subcycles D € Zl(X) if X e {[F],[F\ x ... x F,]} where F, F; are

tropical fans associated to an open subsets of some |L”| hke in corollary m.

Proposition 3.1.22
Let C € Zi(R™) be a tropical cycle that admits an intersection product as in definition
[31.17 and let D, D" € Z,(C), E € Zy(C) be subcycles. Then the following equation
holds:

(D+D)-E=D-E+D'-E.

Proof. The proof is exactly the same as for theorem [[.8.9) O]

Proposition 3.1.23
Let C € Zi(R™) be a tropical cycle that admits an intersection product as in definition

[3.1.17 and let D € Z;(C) be a subcycle of C. Moreover, let E € Zy(C') be a subcycle
such that there are Cartier divisors 1; ; € Div(C') with

Z¢i,1 iy - C =E.
i=1
If additionally C - D = D holds then
Z%’,l oYy D=FE-D.
i=1

Proof. The proof is the same as for corollary [[L.8.7 H

Remark 3.1.24
The meaning of proposition is the following: If X € Z;(RR") is a tropical cycle
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3.1 Intersection products on tropical linear spaces

such that the diagonal Ax can be written as a sum of products of Cartier divisors as
in definition B.I.T7 and additionally (X x X)-Y =Y is fulfilled for all subcycles Y
of X x X then we can apply proposition with C' := X x X and F := Ax to
deduce that the definition of the intersection product is independent of the choice of the
Cartier divisors describing the diagonal. In particular we have well-defined intersection
products on Ly, Lt x ... x Lj", F'and Fy x ... x F, for all tropical fans F', F; associated
to an open subset of some |L}| like in corollary B.1.14l

Theorem 3.1.25

Let C € Zi(R™) be a tropical cycle that admits an intersection product as in definition
[3.1.17 such that additionally (C' x C)-D = D s fulfilled for all subcycles D of C'x C.
Moreover, let E,E" € Z,(C), F € Zy(C) and G € Z;n(C) be subcycles. Then the

following equations hold:
() BE-F=F.E,
(b) (E-F)-G=FE-(F-G).
Proof. The proof is exactly the same as for theorem (a) and (c). O

We finish this section with an example showing that even curves intersecting in the
expected dimension can have negative intersections:

Example 3.1.26

Let C, D € Z;(L3) be the curves shown in the figure. We want to compute the inter-
section C'- D. By proposition the easiest way to achieve this is to write one of
the curves as ¢ - [L3] for some Cartier divisor ¢ on L3.

Let F' be the refinement of L3 arising by dividing the cones (—ei, —e2)r,, and

(—e0, —e3)R., into cones (—ey1, —e1 —e€2)R.,, (—€2, —€1—€2)R., and (—eg, —€o—€3)R- >
(—es, —€g — 63)]320, respectively. Then

1 —1
ve=|1]1—-1 —1
1 0
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Chapter 3: Tropical intersection products on smooth varieties

defines a rational function on F. As shown in example [LZI0 we have ¢ - [L3] = C.
Hence we can calculate

—2 2 0 0
CD=y-D = |¢| =3 |+¢|2|+v|1]-v|o0]]| {0}
0 1 1 0
= (-2+0+1-0)-{0}

— —1-{0}.

3.2 Intersection products on smooth tropical varieties

In this section we use our results from section 3.1l to define an intersection product on
smooth tropical varieties, i.e. on varieties with tropical linear spaces as local building
blocks:

Definition 3.2.1 (Smooth tropical varieties)
An abstract tropical variety C' is called a smooth variety if it has a representative
(X, |X]),wx), {P,}) such that all the maps

o, :5,= |J ()" I|E|CIF

o'eX* o' Do

(cf. definition [LZ4]) map into tropical fans F, = F’f X ... X F;‘i where the F/’f are
tropical fans associated to open subsets of some |LZ:Z\ as in corollary B.T.T41

Remark 3.2.2
Note that the existence of such a representative (((X,|X]),wx),{®,}) for C' implies
that all representatives of C' have the requested property.

Example 3.2.3
The following figures show two examples of smooth tropical varieties:

Definition 3.2.4
Let C' be an abstract tropical cycle, D a subcycle of C' with representative X and
U C |C| an open subset. We denote by X NU the open tropical polyhedral complex

XNU:={onUloce X}, |X|NU)
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3.2 Intersection products on smooth tropical varieties

and by [X NU]J its equivalence class modulo refinements. As this class only depends
on the class of X we can define DNU :=[X NU].

Remark 3.2.5

If we are given an open covering {Uy, ..., U,} of C' and open tropical polyhedral com-
plexes Dy N Uy,...,D, N U, such that D, N U; NU; = D; NU; N U; we can glue
DiNUy,...,D,.NU, to obtain a cycle D € Z,(C).

Definition 3.2.6 (Intersection products)
Let C' be a smooth tropical variety and let (((X,|X|),wx),{®,}) be a representative

of C like in definition B.2Z.Il Moreover, let D, E be subcycles of C. We construct local
intersection products as follows: For every o € X we can regard (DN S,) and (EN.S,)

as open tropical cycles in E via the map ®,. Let DN S, and £ N S, be any tropical
cycles in F,, restricting to D N S, and £ N S,. As we have an intersection product on
F, by remark B.1.24l we can define the intersection

(D5 EYN S, = ((53@) : (E?E)) ns,.

P e NI

Note that (D -, E)NS, does not depend on the choice of the cycles DN S, and E N S,.
Since {S,Jc € X} is an open covering of |C| and the local intersection products
(D E)NS,, 0 € X are compatible by the following lemma we can glue them to
obtain a global intersection cycle D - E € Z,(C).

Lemma 3.2.7
For the local intersection products in definition [3.2.4 holds:

(D EYNS; NSy = (D -5 E)N S, NS,
Proof. By definition we have an integer linear map
[Fi| 2 05(S, 1 Sor) = ®0s(S, N Sr) C ||

with integer linear inverse f~!, where /FI,E are the tropical fans generated by
O, (S, N S,r) and D,/ (S, N S,), respectively. Let Cy,Cy be subcycles of Fy. We have
to show that

Cr+ o= (f)u(fu(C1) - fu(CR)).

If 7 is the respective projection on the first factor we obtain by proposition 3.1.23] and
remark B.1.24] the equation

(PO £C) = (P (7 (5 (C1) x 1))
= (xS (AR - (L(C) x £(C2)) )
= (DX DABE) - (F X Hu(CLx o)) )
= (85 -CixG)
= (-0

70



Chapter 3: Tropical intersection products on smooth varieties

Remark 3.2.8

Lemma [B27 also implies that further refinements of the representative
(X, |X]),wx),{P,}) of C" do not change the result D - E. Hence the intersection
product is well-defined.

Our last step consists in proving basic properties of our intersection product:

Theorem 3.2.9
Let C be a smooth tropical variety, let D, D" € Z,(C), E € Zy(C) and F € Zy(C) be

subcycles and let ¢ € Div(C') be a Cartier divisor on C. Then the following equations
hold in Z.(C):

(a) C-D=D,
(b)) D-E=E-D,

(c) (D+D)-E=D-E+D'-E,
(d) (D-E)-F=D-(E-F),

(¢) p-(D-E)=(p-D)-E.

If moreover D = (>"i_ @i1---@iy) - C for some Cartier divisors ¢; ; € Div(C) then

holds.

Proof. The statements follow immediately from the definition of the intersection prod-
uct and the corresponding statements in section B.1] O]

3.3 Pull-backs of cycles on smooth varieties

We will now use the intersection product defined in section to introduce pull-backs
of tropical cycles along morphisms between smooth tropical varieties.

Definition 3.3.1 (Pull-back)

Let X and Y be smooth tropical varieties of dimension m and n, respectively, and let
f X — Y be a morphism of tropical cycles. Moreover, let 7 : X XY — X be the
projection onto the first factor and let vy : X — X X Y be the morphism given by
x — (x, f(x)). We denote by I'y := (7¢).X the graph of f. For a cycle C € Z,,_4(Y)
we define its pull-back f*C € Z,,_x(X) to be

ffC=n(p (X x0O)).

The easiest non-trivial, but nevertheless important example of a pull-back is the fol-
lowing;:
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3.3 Pull-backs of cycles on smooth varieties

Example 3.3.2

Let C' and D be smooth tropical cycles and let p : C'x D — D be the projection on the
second factor. We want to calculate the pull-back p*E for a cycle E € Zg(D): The map
7, from definition B3 Tlis then just given by 7, : O x D — Cx D x D : (z,y) — (z,y,y)
and the map 7 : Cx Dx D — C x D is the projection to the first two factors. Hence we
can conclude that I')y = C' x Ap. Moreover, let 7' : C'x D x D — C' be the projection
to the first and 72 : C' x D x D — D be the projection to the second factor. We obtain
by definition B3k

p'E = m () (CxDxE))
T.((C'x Ap) - (C x D x E))
7H(C-C) x 72(Ap - (D x E))
= OUxFE.

The pull-back has the following basic properties:

Theorem 3.3.3

Let X,Y and Z be smooth tropical varieties and let f : X — Y and g :' Y — Z be
morphisms of tropical cycles. Moreover, let C,C" € Z,(Y') and D € Z.(X) be subcycles.
Then the following holds:

(a) fY =X,

(b) idi C = C,

(c) if C =Y then f*C = o1 f'or - X,
(d) C- f.D = f.(f*C- D),

(e) (go f)C=fgC,

(f) f(C-C")=fC-fC.

Proof. Throughout the proof, let 7%, wx, 7!, 7y, 7%, my, 72, mo, %Y mxy, 782 715 and
so forth be the projections to the respective factors.
(a) and (b): By definition of the pull-back follows

JY =X (X x V) = 7X(T)) = X

and
id}, C =7l(Tiq, - (Y xO)) =7al(Ay - (Y xC)) =Y -C =C.
(c): We have
1O = mf Ty (X x (19, Y)))
= ml (w1 mypr - Ty - (X X Y))
m X (w31 mhpr - Ty).
By definition of the intersection product (see definitions [L2.4] and [L50]) this last line
is equal to

[for o X.
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Chapter 3: Tropical intersection products on smooth varieties

(d): Let mx : X x Y — X be the projection on X. By example B.3.21 we know that
%D = D x Y. As the diagonal Ax can locally be expressed by Cartier divisors we

can apply proposition [L6.7 and statement (c) locally to deduce that for all subcycles
E of X xY holds

D-mXFE

x (D xmlE))

(id x7X) (D x E))
(id x7 %), ((id x7X)*Ax - (D x E)))
(id xwX).((Lx x V) - (D x E))
#<wxxn<Dxm»
T, (AXXY (D XY X E)))
(DxY)-E)
(m%D - E).

A
AVE
X

R e e eI e SR i GRS e

(
(
(
(
(
(7.
(

Il
N8 3 3 3333

*

This implies that

ffC-D = DX (X xC))

= mX(mD Ty (X X O)
X(DxY) Ty (X x O))
X(Ty- (D xQ)).

*

s

T

5

Moreover, it is easy to check that (f x id)*Ay =T';. As above we can conclude that
C-fiD = (O x f.D))

(id x f).((id x f)* Ay - (C x D)))

(2 ((idx f)* Ay - (C x D))
*EWX((f x id)*Ay - (D x C)))
(f*

H(Dy
H

I
3 3

YTy (Dx ()
C-D).

*

S

*

(e): Let ®: X — X XY X Z be given by = — (z, f(z),g(f(x))). An easy calculation
shows that (I'y x Z) - (X xI'y) = ®,X. Hence we can conclude by statement (d) that

[rgC

(T (X x 7y (Ty- (Y x())))
(72X (T x Z) - (X x Ty) - (X x ¥ x C)))
><Z) (X xTy) - (X xY x(C))

I
SHERE RS

(f): Let ® : X — X xY xY be given by z — (z, f(x), f(x)) and let 722 713 :
X XY xY — X xY be the projections to the respective factors. An easy calculation
shows that

(Ff X Y) : (X X Fidy) =, X = 7r’f721”f . 7T>1k73rf.
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3.3 Pull-backs of cycles on smooth varieties

Hence we can deduce that

-

= ==
~

’2((Ff xY)-
’igrf><Y7

S R R R e b K

R

CS-X—

(X x i (Tiay, - C x C")))
T2 (X x Ty ) - (X x C x C")))

(X xTig, ) - (X x C xC)))
(X xTigy ) - (X x C x ("))

( 7'1'1< Ff 7T13Ff (X x C' x C/)))
(D - w3 (T x V) - (X x C x C")))
((Ff (T - (X x 0)) x ("))

We finish the section with another important example:

Example 3.3.4

Let D be a smooth tropical variety and let C' € Z(D) be a smooth tropical subvariety.

Moreover, let ¢ :
for a cycle E € Z;(D): Let n¢
to the first and second factor and let ~,

we can deduce that T', = (7,).C = A¢ and by example that (7P

Thus we can conclude by theorem (d):

FE

[l
N 3 3
u*u*o*q

|
N

*
D
*

|
5

Q

- E,

where C' - E is the intersection product on D.
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(r, -

(Ao

(Ac - (C x E))
(A

(Ac)- E

C — D be the inclusion map. We want to calculate the pull-back (*FE
:C x D — C and 7P
: C'— C x D be given by z +— (z,x). Hence

:C x D — D be the projections

VE =C x E.

(C X E))
(Cx E))

P)°E)



4 \Well and Cartier divisors under
tropical modifications

In this chapter we study “contractions” (the concept of contractions was introduced by
G. Mikhalkin in [MO06]) and “modifications” — the inverse operation of contractions
— of affine tropical cycles. We will prove that under some further assumptions these
modifications preserve the 1:1-correspondence of Weil and Cartier divisors that exists,
for example, on R". In particular we can conclude that on the moduli spaces M, trop
of n-marked abstract tropical curves Weil and Cartier divisors agree. Applying our
results locally we can moreover prove that there is a 1:1-correspondence of Weil and
Cartier divisors on smooth tropical varieties as introduced in chapter 3]

4.1 Modifications and contractions

In this section we introduce modifications and contractions as our main objects of
study.

Definition 4.1.1 (Modifications and contractions)

Let C' € Z2 (V) be an m-cycle in V and h € K*(C), h : |C| — R a rational function
on C. Let (X,wx) be a representative of C' such that h is linear on every face of X,
i.e. for every face 0 € X we have h|, = h, + ¢ for some h, € AY and ¢ € R. Let
V"= (A xZ) ®z R. Then we define the modification of X along h to be the tropical
fan

(FXJu wrxyh)

in V', where

Pan = {(id xhy)(0)lo € X} U {(id xh,)(0) + ({0} x Reg)lor € X \ X0},
wry, ((id xhe)(0)) := wx(o) for all o € X,
wry, ((id xR, () + ({0v} x Rg)) = wy(o) for all o € XY

(cf. construction [[.2.3). Conversely, X is called the contraction of I'y, along h. Note
that the equivalence class [I'x ;] only depends on C' and not on the choice of the
representative X. Hence we can define the modification of C' along h to be

PC,h = {FX,}J € Z;H(V’)

and call C' the contraction of I'c, along h.

75



4.1 Modifications and contractions

Figure 41: D e Z;H_I(C), but FD,h ¢ Z%ﬁ_l(rah).

Definition 4.1.2
For C' € Z* (V) we define a map

v Zslff_l(C) — Z;H_I(th) . D — FD,h-

Note that for some cycles C € Z* (V) this map is not well-defined as D € Z2T | (C)
does in general not imply that I'p 5, is a subcycle of ', (the simplest example of such
cycles C' and D is drawn in figure [LT]). But the following lemma shows that the latter
implication in fact is true for the cases we are interested in:

Lemma 4.1.3
Let C € Z (V) be a cycle such that Div(C) = Z* (C) : ¢ +— ¢-C is an isomorphism.
Then holds:

(a) v is well-defined, i.e. Upy € Z2 (Tey) for all D € Z2E (C),
(b) v(D1+ Da) = v(D1) + v(D2).

Proof. (a): We fix a Weil divisor D € Z2% | (C') and have to prove that |Tp | C [Tl
Therefore it suffices to show that |h - D| C |h - C|. By assumption we know that
D = ¢ - C for some Cartier divisor ¢ € Div(C') and hence

|h-D|=1lh-¢-Cl=lp-h-C|C|h-C|
. Is obvious efinition of ~.
(b): Is obvious by definition of ~ O

Definition 4.1.4
Let C' € Z* (V). The projection p : A x Z — A induces a morphism p : I'¢j, — C and
thus a homomorphism

D« - 2;3—1(F0,h) - ngﬁ—l(c)-
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Chapter 4: Weil and Cartier divisors under tropical modifications

Remark 4.1.5
Note that p, oy = idzgnﬁ_l(c) if DiV(C) = Zszﬁ—1<0>'

The next proposition shows how the intersection products on C' and I'¢, are related:

Proposition 4.1.6

Let C € ZM(V) be a cycle such that Div(C) = Z3 (C). Moreover let ¢ € Div(C)
be a Cartier divisor and let D € Z* | (C) be a Weil divisor. The following equation
holds:

@D =p.p°p-v(D)).

Proof. Using the projection formula (cf. proposition [[3.8) we can conclude that

o-D=p-(p.oy)(D)=pp"p-v(D)).

Proposition 4.1.7

Let C € Z*(V) be a cycle in V = A @z R and let D € Z*(V') be a cycle in V' =
N ®z R. Moreover let he € K*(C) and hp € K*(D) be rational functions. For
simplicity of notation we write he and hp for the pull-backs of he and hp along the
occurring projection maps as well. Then the following equation holds:

Irevpnehn = LTone X Tonp-

Proof. An easy calculation shows that I'cxpn. = I'epne X D. Hence I're,p, hp =
Lehexphp = LUone X ooy

Corollary 4.1.8 B B
LetV=A®zR and V' = N @z R. Then let C € Z*1(V x R*) and D € Z*1(V' x R!)
be cycles that arise from C € Z*X(V) and D € Z* (V') respectively by a finite series
of modifications. Then CxDe Z2M (V. x V' x RFY) arises from C' x D by a finite
series of modifications.

4.2 Cartier divisors and Weil divisors

Our aim in this section is to prove that a 1:1-correspondence between Weil divisors and
Cartier divisors on an affine cycle C € Z*1 (V) implies a 1:1-correspondence between
Weil divisors and Cartier divisors on many modifications I'c; of C. To prove this
statement we need some preparations:

Definition 4.2.1
Let C € Z*(V) be a cycle. If C' # 0 we define the number lem(C) to be the lowest

common multiple
lem {wx (0)|o € (X*)(m)} € Z~o

of all non-zero weights of the facets of X for some (and thus for every) representative
(X,wx) of C. If C' =0 we define lem(C) := 0.
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4.2 Cartier divisors and Weil divisors

Definition 4.2.2
Let C € Z*(V) be a cycle. C is called locally irreducible if for some (and thus for
every) reduced representative (X,wyx) of C holds: For every cone 7 € X(™~1 the
equality

> Aocttgyr =0€A/A;, N, EZ

o>T
(where u,/; denotes the primitive normal vector of o relative to 7) implies that there
exists A € @ such that A\, = A\ - wx(o) for all o > 7.

Example 4.2.3

The following figure shows an example of a tropical cycle C' which is not locally irre-
ducible as the condition in definition is not fulfilled around 7. But note that the
condition is fulfilled for all other cones of codimension one.

Figure 4.2: A cycle C' which is not locally irreducible.

Lemma 4.2.4

Let C € Z(V) be a cycle such that Div(C) = Z2 (), let h € K*(C) be a rational
function and let D € ker(p,) C Z* | (Tcy). If m <2 or Uey, is locally irreducible then
there ezists a Cartier divisor pp € Div(I'¢y) such that pp - oy = lem(Dey) - D.

Proof. Note that for m = 1 the statement is trivial. Thus we may assume that m > 2.
Moreover we can choose representatives X = X* of C' and I'y =I'j, of D such that

p«(I'y) = {p(o)|o € I'y contained in a maximal cone of I'y on which p is injective}

and such that Y := p,(I'y) € X (cf. constructions and [[32]). Using these
representatives we ensure that above every cone o € Y (™~ there is a finite number of
facets o1,...,0.6) € 0(0) := (id xh,)(0) + ({0v} x R<g) projecting injectively onto o
as shown in figure @3], plus possibly some additional facets in the boundary of o(co) on
which p is not injective. Our assumption D € ker(p,) implies that

Iyl€  |J  (dxhe)(0) + ({0v} x Re)
ceX(m=1)

and thus that, in fact, every facet of I'y is of one of those two types mentioned above.
Now we construct a piecewise linear function ¢ : [I'y| — R as follows: First, we set
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\ o(a)o

vy ‘ o1
‘

voo(on

‘ .

Ur

Pr

o)

Figure 4.3: 01,...,0, C (id xh,)(0) + ({0v} x R<p).

Pliaxno) =0 for all 0 € X™ and ¢y, := 0 for all 0 € XM=\ Y™=D_ Then
we fix a cone ¢ € Y1), Choosing a basis by,...,b,_1 of A, we obtain a basis
bi, ... bm—1,by = (0a,1) of Ayey = Ay x Z and can hence consider the face o(o) in
R™ =V, with lattice Z™ (see figure [L.3): Let o1,...,0,, 7 =1(0), be all facets of I'y
contained in o(c0), let o¢ := (id xh,)(0) and let o(o); denote the m-dimensional cone
in o(o) bounded by o; and o;,1, respectively the cone below o, for i = r (note that
0(0)p might be (m — 1)-dimensional if oy = o). We will construct a linear function ¢;
on every o(o); in order to define a piecewise linear function on o(o) as follows: We set
o := 0. Then ¢, is determined on oy. In order to get w,(o1) =lem(I'cy) - wry (01) we
have to set

lcm(Fcﬂh)

wre,(0(0))

and 7 is entirely determined then. Now ¢, is determined on 5. In order to get
wy(o2) =lem(Lep) - wry (02) we have to set pa(v2) == Xo - wry (02) + ¢1(v2) and ¢y is
entirely determined. Going on this way we set ¢;(v;) 1= X, - wry (0;) + wi—1(v;) for all
¢ and obtain the function y,). Using the same procedure we can construct functions
Poo) for all o € Y™ and it remains to check that all our pieces @ (), o € X ™~V
glue together to obtain a globally defined rational function ¢ on C'. Therefore, for all
t=1,...,7 we choose a basis agi e ,aﬁz)_l of A,, € Z™ and a representative v; € Z™
of the primitive normal vector of p(o); relative to o;. We set

(,01(7)1) ‘= Xo " Wry (Ul) with x, =

‘det ( agi) ‘ ‘ agfl)fl ‘ —€m )’ =: a; € Lo,

where e; denotes the j-th unit vector in R™ = Vg’(g). Using our assumption D € ker(p,)
we can conclude that

0=wy(o) = i_ilwpy (03) + . (%)
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As a@, e ,af;)fl, —e,, is a basis of R™ we can express v; by a linear combination

v = cgi)agi) + ...+ c(i)flag)f1 — c(i)em.

m m

It is easily checked that ) = ai We can use the above linear combination to calculate
pi(—em):

901(7)1) = Xa'wry(Ul)

1
1 1 1 1
= o)+ .+ lieanl) + o pr(=em)
1
= a_lSOI(_em)
implies ¢1(—em) = Xo - wry (01)a;. Similarly,
pa(v2) = Xo-wry(02) + p1(v2)
1
2 2 2 2
= Xorwry (o) + (@) + o+ gl + en—en)

1
2 2 2 2
= e(a?) + .+l + —eal—en)

implies X, - wry (02) + o¢1(—em) = 55 ¢2(—€pn) and hence
pa(—€m) = Xo - (wry (02)a2 + wry (1) 1),
Inductively we obtain '
pi(—em) = Xo Y _wr, (05); (%)
j=1
and hence using ():

Pr(—€m) = Xo - ZWFY (0j); = 0.
j=1

Thus all patches gy, 0 € X™ Y fit together on the ray {Ov/} + ({Ov} x R<o) and
we are done in the case m = 2.
Now let m > 3. To see that the patches ¢,,) glue together everywhere we have to

study the consequences of the balancing condition of I'y: Let 7 € Fg’(nh_ Y he a common

face of the cones o(cM), ..., o(¢®)). For all i we may choose a representative v; of the
primitive normal vector of o(c() relative to 7 such that the equation

prxyh(g(a(i))) v =0€e N
=1

holds (cf. remark [LT9)). Like above, fori =1,...,s let UY), o ,ag) be all facets of I'y
contained in o(c”) on which p is injective and which meet in a common face 7, C 7

of dimension m — 2 (see figure 4]). Then let vj(»i) be a representative of the primitive
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Figure 4.4: The common face 7 of o(c™), ..., o(c®).

normal vector of O'j(»i) relative to 77. The balancing condition of I'y implies that

s

33 en (o) ) =0 € NN .

i=1 j=1

Choosing a basis uy,...,uy—2 of A7 and extending it by a vector u,,_; to a basis of

Al we can express the vectors vj(-i) by Z-linear combinations

v](.i) = cgi)ul +...+ cffl)_lum,l + t?vi

Note that the orientations of v; and U](-i) imply that ty) > 0. Equation (x % ) then
implies

S ny ) 100u] = 0 € A/

=1 j5=1

As I'¢y, is locally irreducible we can conclude that there exists some A € @ such that

Zwry DNt = N wry, (o(0®))

for all . Now we fix i € {1,...,s} and choose a basis b, ..., by_2,bpm_1 := Vi, by, =
(0pr, 1) of A’Q (o) = 77 like above. Note that in general we cannot simply take again
the vectors uq, ..., u,_o we have chosen above because in general uq, ..., U, 2, bm is
not a basis of A’T Nevertheless, on the other hand, we can express the vectors v by
an R-linear combination

o = dPuy o dD) s + 10 4 d Dby,
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4.2 Cartier divisors and Weil divisors

and can hence calculate using (s#):

(909(0(-))) (—em)

_Xa ZWFY ](2 "det<ﬁ1""‘am_2‘6§i)‘—6m>‘

-~ Zwry (@ det (i | | [ ens]| e )]

~

=:B

= X9 Z wry (o)t - B
Jj=1

(here & denotes the representation of x in the basis by,...,b,). Note that B is inde-
pendent of 7. Thus we obtain:

(gpg(a(i)))l‘@( = Xo() * Z (‘UFY (Z 2 =\B- 1CII1(FC h)

for all 2. This proves that the pieces ¢,(,) of our map ¢ agree on common faces of codi-
mension one. Moreover, the argument ShOWS that if one of the cones o(c) does not
contain any facet U](-i)
for all i.

It remains to check that our pieces of ¢, glue together on cones of higher codimen-
sion as well: Therefore let 7 < o(01), 0(02) be a common face of p(oy) and o(02),
01,09 € XD If 01,09 ¢ Y™ then ©o(o1) = 0 = y(oy) and we are done. Hence let
o1 € Y= We have to distinguish between two cases: If all facets o(o) with o(o) > 7
contain facets o; with non-zero weights on which p is injective then ¢,o)|r = ©o(s)|~
by applying our above argument several times. Otherwise @yo,)|r = 0 = Qp(oy) |+ any-
way.

Hence ¢ is in fact a rational function on C. The faces of ¢ - I'x; with non-zero
weights on which p is injective are by construction exactly the faces of lem(I'cy) -
'y on which p is injective and these faces occur with correct weights. As both
¢ -I'xyp and lem(I'eyp) - I'y fulfill the balancing condition it follows that [p-I'x ;] =
lem(Tep) - Ty] = lem(Iep) - D. Hence ¢p := [¢] € Div(I'cy) is our wanted Cartier
divisor with ®p - FC,h = lcm(F(;,h) - D. ]

with non-zero weight on which p is injective, then ¢, )l = 0

Using this lemma we are able to prove the first part of the promised 1:1-correspondence
between Weil divisors and Cartier divisors:

Theorem 4.2.5

Let C € Z*(V) be a cycle such that Div(C) = Z3 | (C), let h € K*(C) be a rational
function and let D € Zaff {(Len). If m < 2 or Ty, is locally irreducible then there
exists a Cartier divisor pp € Div(l'ep) with op - T'ep =lem(Teyp) - D.

Proof. D € 73 1(FCh) implies that p.D € Z (C). By assumption there exists a
Cartier div1sor o € Div(C) with ¢, - C = p,.D. By proposition [A.1.6] we know that

peD = - C =pu(p"p - 7(C)) = p(p"¢p - Ton)-
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Chapter 4: Weil and Cartier divisors under tropical modifications

Hence D — p*¢), - T'cp € ker(p,) and by lemma B2 there exists a Cartier divisor
¢, € Div(Lep) with ¢, - Tep =lem(Teyp) - (D — p* ¢, - T'ep). Thus we obtain
(¢ +lem(Tep) - p*¢p) - Pop = lem(Dep) - D.
]

Now we prove the missing part of the 1:1-correspondence. Note that in contrast to the
first part we need no special assumptions here.

Theorem 4.2.6
Let C € Z*(V) be a cycle such that Div(C) = Z2 (C), let h € K*(C) be a rational
function and let ® € Div(I'c ) with @ - I'¢, = 0. Then ® =0 € Div(I¢ ).

Proof. Let (X,wx) be a reduced representative of C' and let vy, ..., v, € |X| be a basis
of {|X|) € V. For every cone ¢ € X" and all 7 < ¢, 7 € XV we can choose
representatives v, , of the primitive normal vector of o relative to 7 such that

Zu)X(O’)UU’T =0

o>T
by remark [LT.9 Moreover, for every cone 7 € X we choose a basis z7,..., 2] of A;.
For 0 € X(™) with v,...,v¢ € o, v € {v1,..., v}, we have linear relations
o J

Ji({vnglr < 0,7 € XVYU (o7, 0} U {ag|r < o) =0,

fso({vor|m < o0,7 € Xm=Dyy {o?, ... ,uf U {:UJT|7' <o})=0.

Our assumption Div(C) = Z2T | (C') then implies that the following system of equations
in the variables ¥y (o7 ), 15 (2}) and 1, (v7) has exactly the solution 0:

vre XD S wx(0)he(ver) =0,
Vo, 00 € XM Vo (2F) = Vo, (2]) VT < 01,09, V5,
Vo e X o fi({te(vor) |7 < 0,7 € XDY U {hy (v]), ..., o (07 ) JU
{o(2])|T < 0}) =0V,
Vo e XM . Vo (v7) = 0Vj.

Now we set ; := (v, ho(v;)) for all 4, we set 77 := (27, ho(27)) for all 7 and j and
Vo = (Vor, ho(Vor)) for all 7 € X=1D 5 e X with 7 < 0. Moreover we set 7 :=
(id xh,)(7) and o(7) := 7+ ({Oy/} x R<p). Now we choose a representative ¢ € K*(X)
of ® with ¢((0y,0)) = 0, p(7;) = 0 for all ¢ and additionally ¢((0y,—1)) = 0. Note
that ® - I'c;, = 0 implies that ¢ is linear on every face of I'x . Then we consider the
following system of equations:

Ve XU wry, (0(7)) o) (Ov, =1)) + 3,o, wx (0)9s(T6,r) = 0,
Yoy, 09 € XM 0 s, (T7) = 95, (T7) VT < 01,09, V7,
Vo€ X fi({ps(Tor)|T < 0,7 € XMV U {i05(79),. . ., ©& (07 ) U
{ps(2])|r < o}) =04,
Vo e Xt ps(07) = 0 V),
Yr e X\ X002 gy (0, ~1)) = 0.
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4.2 Cartier divisors and Weil divisors

As this system is fulfilled by the values of our given function ¢ and since we can
simplify this system to the one above we have the unique solution s (0,,-) = 95 (77) =
¢5(07) = 0 for all o, 7 and j. Hence ® = 0 € Div(I'cp). O

Let C' € Z*(V) with Div(C) = Z*T | (C) like above. The preceding theorem enables
us to define an intersection product of two cycles in a modification I'cj, of C' if one of
them can be expressed by a Cartier divisor:

Definition 4.2.7

Let C' € Z* (V) be a cycle such that Div(C') = Z21 | (C) and let T'cj, be a modification
of C. Let D € ZM(I'c;,) be any cycle and let E € Z (') be a Weil divisor such
that there exists pp € Div(I'cy) with g - T'cp = E. Then we define:

Example 4.2.8
The moduli space Mg, trop 0f n-marked abstract tropical curves embedded into the

real vector space R(:)" as defined in [GKMOT, section 3] arises from R"™3 by a finite
series of modifications

= MO,n,trop

—2n+3

RniBZCOW01WCQW"'WC(n)
2
such that every C; is locally irreducible and lem(C;) = 1 for all ¢ (a proof for this
fact can be found in [HOT, pages 44ff]). Hence we can conclude by theorems [£2.5] and
4.2.6] that Div(Mo ,, trop) = Zﬁfil(./\/lo,n,tmp) and we can define an intersection product
of arbitrary cycles with Weil divisors as given in definition L.2.7]

Example 4.2.9
The tropical linear space L} introduced in definition BTl arises from R* by a finite
series of modifications

RkwL’IszL’]sz---sz

via maps max{0,z1,...,x},...,max{0,zy,...,z,1}. Moreover, every LI+ s locally
irreducible and lem (L") = 1 for all i. Using the same maps this also holds for tropical
fans F' associated to open subsets of L} as in corollary B.1.T4l Using proposition L.1.7]

we can extend this statement to all tropical fans F' = F; X ... x F,, where all E are
tropical fans associated to open subsets of L} as in corollary B.1.14 Hence we can
define an intersection product of arbitrary cycles with Weil divisors on these spaces as
introduced in definition L2771l Moreover, we can deduce the following corollary.

Corollary 4.2.10
Let C' € Z, be a smooth tropical variety (cf. definition[3.21]). Then the map

Div(C) — Z,1(C) 1 p— - C

s an isomorphism.
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Chapter 4: Weil and Cartier divisors under tropical modifications

Proof. Let (((X,|X]),wx),{®,}) be a representative of C' as in definition B.2.1] and let
D € Z, 1(C) be a cycle of codimension one. For all ¢ € X we can regard D N S, as
an open tropical cycle in ]?; via the map ®,. Let D/ﬂ\g,7 be any tropical cycle in ]?;
restricting to D N S,. By exar@l\e/ and theorem there is a Cartier divisor
Y, € Div(ﬁ’;) with ¢, - Fg = DnNS,. As all these Cartier divisors ¢, are unique by
theorem they agree on overlaps S, NS, and hence define a global Cartier divisor

v € Div(C). Moreover, ¢ is locally unique and thus globally unique. Hence the claim
follows. o
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5 Chern classes of tropical vector
bundles

In this chapter we introduce tropical vector bundles, morphisms and rational sections
of these bundles and define the pull-back of a tropical vector bundle and of a rational
section along a morphism. Most of the definitions presented here for tropical vector
bundles will be contained in [T09] for the case of line bundles. Afterwards we use the
bounded rational sections of a tropical vector bundle to define the Chern classes of this
bundle and prove some basic properties of Chern classes. Finally we give a complete
classification of all vector bundles on an elliptic curve up to isomorphisms.

5.1 Tropical vector bundles

In this section we will introduce our basic objects such as tropical vector bundles,
morphisms of tropical vector bundles and rational sections.

Definition 5.1.1 (Tropical matrices)
A tropical matrix is an ordinary matrix with entries in the tropical semi-ring

(T=RU{-00},®,0),

where a @& b = max{a,b} and a © b = a + b. We denote by Mat(m x n,T) the set of
tropical m x n matrices. Let A € Mat(m x n,T) and B € Mat(n x p, T). We can form
a tropical matrix product A ® B := (¢;;) € Mat(m x p, T) where ¢;; = D", au © by;.
Moreover, let G(r x s) C Mat(r x s, T) be the subset of tropical matrices with at most
one finite entry in every row. Let G(r) be the subset of G(r x ) containing all tropical
matrices with exactly one finite entry in every row and every column.

Remark 5.1.2

Note that a matrix A € G(r x s) does, in general, not induce a map f4 : R® — R" :
x+— A ®x as the vector A ©® x may contain entries that are —co. To obtain a map
fa : R® — R" anyway we use the following definition: Let x € R®* and A © =z =
(Y1, yr) € T" with y; = —oco for ¢ € I and y; € R for i ¢ I. Then we define
fa(x) = (y1,...,9,) € R" with ; := 0 fori € I and y; := y; for i & I.

Notation 5.1.3
For an element o of the symmetric group S, we denote by A, the tropical matrix
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5.1 Tropical vector bundles

A, = (a;;) € Mat(r x r,T) given by

0 ::{ 0, ifj=o(i)

—o00, else.

Moreover, for ay,...,a, € R we denote by D(ay,...,a,) the tropical diagonal matrix
D(ay,...,a,) = (dij) € Mat(r x r,T) given by

o a;, ifi=y
diy ‘_{ —o0, else.

Note that every element M € G(r) can be written as M = A, ® D(ay,...,a,) for

some o € S, and some numbers aq, ...,a, € R. Moreover, G(r) together with tropical
matrix multiplication is a group with neutral element E := D(0,...,0).
Lemma 5.1.4

G(r) is precisely the set of invertible tropical matrices, i.e.

G(r) ={A e Mat(r x r,T)|3A" e Mat(r x r,T): A0 A=A A=E}.
Proof. The inclusion

G(r) C{A e Mat(r x r,T)|3A" e Mat(r x r, T): A0 A =A"©A=FE}

is obvious. Thus, let A, A" € Mat(r x r,T) be given such that A® A=A ©A=F.
Assume that A = (a;;) contains more than one finite entry in a row or column. For
simplicity of notation we assume that aq1, a1 # —00. As A® A’ = E we can conclude
that the first two rows of A’ look as follows:

A = for some «a, 3 € R.

As moreover A’ ® A = E holds, we can conclude from the second line of A" and the
first column of A that

a1 + B = —oo,

which is a contradiction to a1, 5 € R. O

We have all requirements now to state our main definition:

Definition 5.1.5 (Tropical vector bundles)
Let X be a tropical cycle. A tropical vector bundle over X of rank r is a tropical cycle
F together with a morphism 7 : F' — X and a finite open covering {Uy,...,Us} of X

as well as a homeomorphism ®; : 7= 1(U;) = U; x R” for every i € {1,..., s} such that
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Chapter 5: Chern classes of tropical vector bundles

(a) for all i we obtain a commutative diagram

Y U) Uy x R

\ lpl

U

where p; : U; x R" — Uj; is the projection to the first factor,

g@ o®; : 7 1(U;) — R is a regular invertible function,

where p§i) Ui xR —= R (z,(ay,...,a,)) — aj,

(b) for all 4, j the composition p

(c) for everyi,j € {1,...,s} there exists a transition map M;; : U;NU; — G(r) such
that
CI)jOCI)i_l : (Usz]) XRrﬁ(UiﬂUj) x R"

is given by (z,a) — (x, M;;(x) ® a) and the entries of M;; are regular invertible
functions on U; N U; or constantly —oo,

(d) there exist representatives Fy of F' and X of X such that Fy = {7 !(7)|7 € X,}
and wr, (771(7)) = wx, () for all maximal polyhedra 7 € X,.

An open set U; together with the map ®; : #=1(U;) = U; x R" is called a local trivial-
1zation of F'. Tropical vector bundles of rank one are called tropical line bundles.

Remark 5.1.6

Let Vi, ..., V, be any open covering of X. Then the covering {U;NV;} together with the
restricted homeomorphisms q>i|r1(UmVj) and transition maps Mz‘j|(UiﬂVk)ﬂ(UjﬂVl) fulfills
all requirements of definition (.1.5] too, and hence defines again a vector bundle. As
the open covering, the homeomorphisms and the transition maps are part of the data
of definition this new bundle is (according to our definition) different from our
initial one even though they are “the same” in some sense. Hence, in the following we
will identify vector bundles that arise by such a construction one from the other:

Definition 5.1.7

Let m : F — X together with open covering Uy, ..., Us, homeomorphisms ®; and
transition maps M;; and 7 : ' — X together with open covering Vi,...,V;, home-
omorphisms ¥; and transition maps N;; be two tropical vector bundles according to
definition 5.T.0l We will identify these vector bundles if the vector bundles 7 : F¥ — X
with open covering {U; NV} and restricted homeomorphisms <I>i|,r_1(UmVj) respectively
V| e-1w,nv;) and transition maps M;;|w,nv)nw,;nvy) respectively Nulw,nvinw,;nn) are
equal.

Remark 5.1.8
Let 7w : F} — X and my : F5 — X be two vector bundles on X. By definition B.1.7 we
can always assume that F} and F; satisfy definition G.1.5 with the same open covering.
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5.1 Tropical vector bundles

Remark 5.1.9

Let m: F' — X be a vector bundle with open covering Uy, ..., U, and transition maps
M;; as in definition On the common intersection U; N U; N Uy, we obviously have
M;j(x) = My;(x) © M;(z). This last equation is called cocycle condition. Conversely,
given an open covering Uy, ..., Us of X and maps M;; : U; N U; — G(r) such that the
entries of M;;(x) are regular invertible functions on U; N U; or constantly —oo and the
cocycle condition M;;(x) = My;(x)®M;(z) holds on U;NU;NUj, we can construct a vec-
tor bundle 7 : F' — X with this given open covering and transition functions M;;: Take
the disjoint union [[7_, (U; x R") and identify points (x,y) ~ (z, M;;(x) ® a) to obtain
the topological space |F'|. We have to equip this space with the structure of a tropical
cycle. As this construction is exactly the same as for tropical line bundles, we only
sketch it here and refer to [T09] for more details. Let (((Xo, | Xol|, {¢s}), wx,), {®s}) be
a representative of X. We define Fy := {7 !(0)|oc € Xy} and wg, (771 (0)) := wx,(0)
for all maximal polyhedra o € Xy. Our next step is to construct the polyhedral charts
Or-1(0) for Fy: Let o € Xq be given and let Uy, ..., U;, be all open sets with non-empty
intersection with o. Moreover, let {V;]i € I} be the set of all connected components of
all c N U;,. Every such set V; comes from a set Uj(;) of the given open covering. Hence,
for every pair k,l € I we have a restricted transition map Ny := M;w)j@)|venv;- This
implies that for all k,1 € I the entries of Ny o ;! are (globally) integer affine linear
functions on V; N'V}. As o is simply connected, for every such entry h € O*(V,, N'V]) of
Ni; there exists a unique continuation he O*(0). Hence we can extend all transition
maps Ny : Ve NV, — G(r) to maps Ny, : 0 — G(r). Now we choose for every i € [ a
point P; € V; and for all pairs k,l € I a path 4y, : [0,1] — o from Py to F,. Let k,l € T
be given. As the image of i is compact there exists a finite covering V,,,,..., V), of
ve1([0,1]). For x € V; we set

S(m)(@) = (N}, 1 (@)@ O (N, (2)) 7 € G(r).

M1, 42 He—1,Hc
Now fix some ko € I. For all [ € I we define maps
By Vi R 277 (1) = R (,0) 1= (0(2), SOia) (@) © ).
These maps agree on overlaps and hence glue together to an embedding

Pr-1(0) 7o) — R,

In the same way we can construct the fan charts ®,-1(,). Then we define I to be the
equivalence class

= [(((Fm | Fol, {5w*1(a)})7wFo)’{&)”71(")})] '

Example 5.1.10
Throughout the chapter, the curve X := X, from example [L45 will serve us as a
central example. Recall that X arises by gluing open fans as drawn in the figure:
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Chapter 5: Chern classes of tropical vector bundles

<]

Moreover, recall from definition [[4.4] that the transition functions between these open
fans composing X are integer affine linear. This implies that the curve X has a well-
defined lattice length L. We can cover X by open sets Uj,Us, Us as drawn in the
following figure:

Us

Uz

The easiest way to construct a (non-trivial) vector bundle of rank r on X is fixing a
(non-trivial) transition map Mo : Uy N Uy — G(r) and defining My3 : Uy NUs — G(r),
M3, : UsNU; — G(r) to be the trivial maps x +— F for all x. We will see later that in
fact every vector bundle of rank r on X arises in this way.

Knowing what tropical vector bundles are, there are a few notions related to this
definition we want to introduce now:

Definition 5.1.11 (Direct sums of vector bundles)

Let 7 : I7 — X and my : Iy — X be two vector bundles of rank » and 7/, resg)ectively,
with a common open covering Uy, ..., U, and transition maps Mi(jl) and Mi(f , respec-
tively, satisfying definition (see remark [(.1.8). We define the direct sum bundle
m: F1 ® Fy, — X to be the vector bundle of rank r 4+ ' we obtain from the gluing data

[ ] Ul;---aUs

u® @ Glr+ ) - M (z)  —oo
o My’ x M5" :UinNU; — G(r+7') sz . MZ-(]'Q)(@ .

Definition 5.1.12 (Subbundles)
Let 7 : FF — X be a vector bundle with open covering Uy, ..., Uy and homeomorphisms

®, according to definition A subcycle E € Zj(F) is called a subbundle of rank »/
of Flif m|p : E — X is a vector bundle of rank 7" such that we have for alli =1,...s:

D (rip)-2(vs) - (w|E) T U;) = Ui X ejy, .- €5, 0w

for some 1 < j; < ... < j» <r, where the e; are the standard basis vectors in R".
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Remark 5.1.13
If 7 : F — X is a vector bundle of rank r with subbundle £ of rank 7’ like in definition
this implies that there exists another subbundle E’ of rank r — 7’ with

D4l (x ) -1 ) * () N U) = Ui x {ejlj & i, dw DR
and hence that F' = E' @ E’ holds.

Definition 5.1.14 (Decomposable bundles)

Let w : ' — X be a vector bundle of rank r. We say that F' is decomposable if there
exists a subbundle 7|g : £ — X of F of rank 1 < v’ < r. Otherwise we call F' an
mdecomposable vector bundle.

As announced in the very beginning of this section we also want to talk about mor-
phisms and, in particular, isomorphisms of tropical vector bundles:

Definition 5.1.15 (Morphisms of vector bundles)
A morphism of vector bundles 7; : F} — X of rank r and 7y : F5 — X of rank 7’ is a
morphism ¥ : F} — Fy of tropical cycles such that

(a) m = m oW and

(b) there exist an open covering Uy, ..., U, according to definition for both Fy
and Fy (see remark B.I1.8) and maps A; : U; — G(r’ x r) for all ¢ such that

2o Wo (@)1 U x R" — U; x R”

is given by (z,a) — (x, fa,)(a)) (cf. EI2) and the entries of A; are regular
invertible functions on U; or constantly —oo.

An isomorphism of tropical vector bundles is a morphism of vector bundles W : F} — F3
such that there exists a morphism of vector bundles V' : F, — F; with ¥/ o U =id =
Wo U,

Lemma 5.1.16
Let m : Fy — X and my : Fy — X be two vector bundles of rank r over X. Then the
following are equivalent:

(a) There exists an isomorphism of vector bundles V : F} — Fy.

. ‘ i (1)
(b) There exist a common open covering Uy, ..., Us of X and transition maps M

for Fy and MZ-(]?) for Fy satisfying definition (cf. remark [Z1.8) and maps
E;: U, — G(r) fori=1,...,s such that

e the entries of E; are reqular invertible functions on U; or constantly —oo
and

o for alli,j holds Ej(z) ® M (z) = M () ® Ei(x) for all x € U;NUj.
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Proof. (a) = (b): We claim that the maps A; : U; — G(r x r) of definition E.1.15
are the wanted maps F;. As W is an isomorphism we can conclude that A;(x) is an
invertible matrix for all z € U;, i.e. that A; : U; — G(r). Hence it remains to check

that A;(z) © Mi(jl)(a:) = Mi(f) (z) ® A;(z) holds for all x € U; NU;: Let i, j be given. As
U : F} — Fj is an isomorphism, the diagram

Fy Fry—1
; 2oWo(d, )

(U;NU;) x R™ (U;NU;) x R
q)f‘lo(cbfl)ll J/CI)FQO(@FQ)I

(UlﬂUj) x R" (UlﬂUJ) x R"

Fa

Fpy_
@ o\I/o(CIDjl) !

commutes. Hence A;(x) ® Mi(jl)(x) = MZ-(]-Q) (x) ® A;(x) holds.
(b) = (a): Conversely, let the maps E; : U; — G(r) be given. The equation

Ej(2) © M () = M7 (x) © Ei(x)
for all € U; N U; ensures that the maps
U xR = U xR": (z,a) — (z, Ei(z) ®a)

on the local trivializations can be glued to a globally defined map ¥ : |F}| — |F|.
Moreover, this map is a morphism as 7y, 7y are morphisms and the maps py) o CIDZF '
p§.i) o ® and the finite entries of E; are regular invertible functions (cf. definition
L.10). The equation Ej(z) ® Mig»l)(x) = Mi(jz)(a:) ® E;(z) implies that

—1 (2) _ a0 -1
Ej (z) ® Mij (z) = Mij (z) © E; ()

holds for all z € U;NUj;, where E, ' (z) := (Ej(x)) ! for all z € Uy. As the finite entries
of E; ' : U, — G(r) are again regular invertible functions we can also glue the maps

U xR — U; xR": (2,0) — (z, B (2) © a)

on the local trivializations to obtain the inverse morphism W' : |Fy| — |Fy|, which
proves that W is an isomorphism. O]

The morphisms we have just introduced admit another important operation, namely
the pull-back of a vector bundle:

Definition 5.1.17 (Pull-back of vector bundles)

Let 7 : ' — X be a vector bundle of rank r with open covering Uy, . .., U and transition
maps M;; as in definition B.1.5] and let f : Y — X be a morphism of tropical cycles.
Then the pull-back bundle 7' : f*F — Y is the vector bundle we obtain by gluing the
patches f~H(U;) x R",..., f~1(Us) x R" along the transition maps M;; o f. Hence we
obtain the commutative diagram

/

I

7T/

|
\i
Y ——

f
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where f' and 7’ are locally given by f/: fFYU) x R" — U; x R" : (y,a) — (f(y),a)
and 7' : f7HU;) x R" — f7H(U;) : (y,a) — y.

To be able to define Chern classes in the second section we need the notion of a rational
section of a vector bundle:

Definition 5.1.18 (Rational sections of vector bundles)
Let m : F' — X be a vector bundle of rank r. A rational section s : X — F of F'is a
continuous map s : |X| — |F| such that

(a) m(s(x)) =« for all z € | X| and

(b) there exist an open covering Uy, ..., Us and homeomorphisms ®; satisfying def-
inition B.I.A (cf. definition B.I7) such that the maps pg-l) o®;0s5:U; — R are
rational functions on U; for all 4, j,

where p] : UixR" — Ris given by (z, (a1, ...,a,)) — a;. Arational section s : X — F

is called bounded if the above maps p(~)

;" 0 ®; 0s are bounded for all 7, j.

Remark 5.1.19
Let w: L — X be a line bundle and s : X — L a rational section. By definition, the
map p'¥) o ®; o s is a rational function on U; for all .. Moreover, on U; N U; the maps

pY o ®; 05 and p¥) o @; o s differ by a regular invertible function only. Hence s defines
a Cartier divisor D(s) € Div(X).

There is a useful statement on these Cartier divisors D(s) in [T09] that we want to cite
here including its proof:

Lemma 5.1.20
Let m: L — X be a line bundle and let s1,so : X — L be two bounded rational sections.
Then D(s1) — D(se) = h for some bounded rational function h € K*(X), i.e. D(s1)

and D(sq) are rationally equivalent.

Proof. Let Uy, ..., U, be an open covering of X with transition maps M;; and homeo-
morphisms ®; according to definition such that for all 7 both sgi) = p@ o d, 05
and sg) = p(i) o ®; o s9 are rational functions on U; (cf. definition 5.1.18). We define
hi :== sg) — 32 € K*(U;). As we have SY) sg') = sg) - sgj) = M,;; € O*(U;NU;) for all
i, 7 these maps h; glue together to h € K*(X). Hence we have

D(s1) — D(sz) = (Ui s)} — { (U s}
= {5 — s}
= [
{

= [{(U;, hi)}]

(X
( (2
( 79
( 79
(1XT], h) -

Remark 5.1.21

Lemma [5.T.20 implies that we can associate to any line bundle L admitting a bounded
rational section s a Cartier divisor class D(F) := [D(s)] that only depends on the
bundle L and not on the choice of the rational section s.
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Combining both the notion of a morphism of vector bundles and the notion of a rational
section we can define the following:

Definition 5.1.22 (Pull-back of rational sections)

Let m : FF — X be a vector bundle of rank r and f : Y — X a morphism of tropical
varieties. Moreover, let s : X — F be a rational section of F' with open covering
Ui, ...,U, and homeomorphisms @4, ..., d, as in definition Then we can define
a rational section f*s: Y — f*F of f*F, the pull-back section of s, as follows: On
f~HU;) we define

[rso f7HU) = fTHU) xR :y e (y, (pio ®ioso f)(y),

where p; : U; x R" — R" is the projection on the second factor. Note that for y €
f7HU) N f71(U;) the points (y, (pi o ®ioso f)(y)) and (y, (pj o ®j0s0 f)(y)) are
identified in f*F" if and only if (f(y), (p; o ®ioso f)(y)) and (f(y), (pjo ®jos0 f)(y))
are identified in F. But this is the case as (f(y), (pio ®; 050 f)(y)) = (P;05)(f(y)) ~
(®;08)(f(y) = (f(y), (pjo®;joso f)(y)). Hence we can glue our locally defined map
f*s to obtain a map f*s:Y — f*F.

We finish this section with the following statement on vector bundles on simply con-
nected tropical cycles which will be of use for us later on:

Theorem 5.1.23

Let m: F — X be a vector bundle of rank r on the simply connected tropical cycle X.
Then F' is a direct sum of line bundles, i.e. there exist line bundles Ly, ..., L, on X
such that F =1L,&...D L,.

Proof. We show that every vector bundle of rank r > 2 on X is decomposable. Let
Uiy, ...,Ug be an open covering of X and let

Mij(x) = D(@}] -, 01))(0) © Ag, (2) =: Dyj(2) © Aq, (2), z € Uinl

with gpl(}j), . ,<p§.j;? € O*(U; NUj) and o;j(x) € S, be transition functions according to
definition [B.T.0l We only have to show that it is possible to track the first coordinate
of the R"-factor in U; x R" consistently along the transition maps: Let 7 : [0,1] — | X]|
be a closed path starting and ending in P € U;. Decomposing 7 into several paths if
necessary, we may assume that v has no self-intersections, i.e. that 7| 1) is injective.
As ([0, 1]) is compact we can choose an open covering Vi, ..., V; of v([0, 1]) such that
for all j we have V; C U; for some index i = i(j), P € V; = V; C Uy, all sets V;
and all intersections V; NV, are connected and all intersections V; NV for non-
consecutive indices are empty. For sets V; and V}» with non-empty intersection we have

restricted transition maps My, v, (x) = Evj,vj, () ® A,y induced by the transition
VAM 1

maps between Us;y 2 V; and Uy 2 V. Note that the permutation parts AUWVJ-/ of
the transition maps do not depend on x as all intersections V;NV): are connected and the
permutations have to be locally constant. We define I, :== oy, , v, 0...001,1,(1). We
have to check that I, = 1 holds. First we show that I, does not depend on the choice

of the covering Vi,...,V;. Hence, let V/,... V) be another covering as above. We may
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5.2 Chern classes

assume that all intersections V; NV}, are connected, too. Between any two sets A, B €
{Vi,..., Vi, V{, ..., V) } with non-empty intersection we have restricted transition maps
My p(x) = Dap(z) © As, , as above. Moreover, let 0 = ap < a1 < ... < a, = 1 be
a decomposition of [0, 1] such that for all i we have y([a;, a;1]) € V; NV, for some
indices j,j’. Let ig be the maximal index such that ([, @i,+1]) € Vo NV and

OVa1,Va @ - 00V W, =0V v, 00y, v ©...00v v

is still fulfilled. Assume that igc < p — 1. Let y([ai 11, ®igr2]) € Vi NV}, Hence
Y(iy41) € Vo NV NV NV and we can conclude using the cocycle condition:

aVa,Va/ OO0V, 1V, ©...00y v, = aVa,Va/ @) O.V;,/,Va ¢} O-Vbl—lvvb/ ©0...0 O-V{,VQ’

= OVaVy OO0V, Va O OVSVy, OO0V vy © - 00V Yy

= o o
TV Var © OV, OV,

Vb/ o... OO—V{,VQH

a contradiction to our assumption. Hence ¢y = p — 1 and we can conclude that I, is
independent of the chosen covering.

If v and " are paths that pass through exactly the same open sets U; in the same order,
then we can conclude that I, = I, holds as exactly the same transition functions are
involved. Hence, a continuous deformation of v does not change I,. As X is simply
connected we can contract v to a point. This implies I, = I, where v, is the constant
path yy(t) = P for all t. Thus I, = I, = 1. This proves the claim. O

There is a related theorem in [T09] which we want to state here. As we will not need
the result in this work, we will omit the proof and refer to [T09] instead.

Theorem 5.1.24
Let m: L — X be a line bundle on the simply connected tropical cycle X. Then L is
trivial, i.e. L = X X R as a vector bundle.

Combing both theorem B.1.23] and theorem [(.1.24] we can conclude the following;:

Corollary 5.1.25
Let m: F — X be a vector bundle of rank r on the simply connected tropical cycle X .
Then F' is trivial, i.e. F = X x R" as a vector bundle.

5.2 Chern classes

In this section we will introduce Chern classes of tropical vector bundles and prove
basic properties. To be able to do this we need some preparation:

Definition 5.2.1

Let 7 : I — X be a vector bundle of rank r» and let s : X — F be a rational section with
open covering Uy, ..., U, as in definition E.I.T8 We fix a natural number 1 < £ < r
and a subcycle Y € Z;(X). By definition, s;; := py) o®,0s:U; — R is a rational
function on U; for all 7, 7. Hence, for all + we can take local intersection products

P -YV)NUi= > syyeeesiy - (YO0,

1<j1< . <ji<r
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Since sy = Si(j) + ¢; on U; N Uy for some o € S, and some regular invertible map
©; € O*(U;NUy), the intersection products (s*) . Y)NU; and (s*)-Y) N Uy coincide on
U; N Uy and we can glue them to obtain a global intersection cycle s*) - Y € Z;_(X).

Lemma 5.2.2

Let m: F — X be a vector bundle of rank r, fit k € {1,...,r} and let s : X — F be a
rational section. Moreover, let Y € Z;(X) be a cycle and let ¢ € K*(Y') be a bounded
rational function on'Y . Then the following equation holds:

s . (- Y)=¢- (s -Y).
Proof. The claim follows immediately from the definition of the product s - Y. O

Lemma 5.2.3

Let m : F — X and 7' : F' — X be two isomorphic vector bundles of rank r with
isomorphism f : F — F'. Moreover, fix k € {1,...,r}, let s : X — F be a rational
section and let Y € Z)(X) be a cycle. Then the following equation holds:

sB .Y = (fos)M .Y € Z_4(X).

Proof. Let Uy, ...,Us be an open covering of X satisfying definition for both F
and F” and let s;; ::py)o@ios :U; — Roand (f os); ::pgl)o(I)iofos :U; — R as
in definition (.2.Jl By lemma the isomorphism f can be described on U; x R”
by (z,a) — (x, E;(z) ® a) with E;(z) = D(¢1,...,¢,) ® A, for some regular invertible
functions ¢4, ..., ¢, € O*(U;) and a permutation o € S,. Hence (f 0 5);; = si0(j) + ©;
on U; and thus

Z Siji + - Sig, - (Y N U;) = Z (fo8)ij - (fos)y (Y NU),

1<ji<..<jp<r 1<ii<..<jgp<r
which proves the claim. O

To be able to prove the next theorem, which will be essential for defining Chern classes,
we first need some generalizations of our previous definitions:

Definition 5.2.4 (Infinite tropical cycle)
We define an infinite tropical polyhedral complex to be a tropical polyhedral complex
according to definition [L4.4] but we do not require the set of polyhedra X to be finite.
In particular, all open fans F, have still to be open tropical fans according to definition
[L43l Then an infinite tropical cycle is an infinite tropical polyhedral complex modulo
refinements analogous to definition [L4.T3

Definition 5.2.5 (Infinite rational functions and infinite Cartier divisors)

Let C be an infinite tropical cycle and let U be an open set in |C|. As in definition [5.]]
an infinite rational function on U is a continuous function ¢ : U — R such that there
exists a representative (((X, | X[, {ms}oex),wx ), { My }sex) of C, which may now be an
infinite tropical polyhedral complex, such that for each face o € X the map @ om! is
locally integer affine linear (where defined). Analogously it is possible to define infinite
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reqular invertible functions on U.

A representative of an infinite Cartier divisor on C'is then a set {(U;, ¢;)| i € I}, where
{U;} is an open covering of |C| and ¢; is an infinite rational function on U;. An infinite
Cartier divisor on C' is then a representative of an infinite Cartier divisor modulo the
equivalence relation given in definition [L5.11

Remark 5.2.6

Using these basic definitions it is possible to generalize many other concepts to the
infinite case. In particular, as our infinite objects are locally finite, it is possible to
perform intersection theory as before.

Definition 5.2.7 (Tropical vector bundles on infinite cycles)

Let X be an infinite tropical cycle. A tropical vector bundle over X of rank r is an
infinite tropical cycle F' together with a morphism 7 : ' — X such that properties
(a)—(d) given in definition are fulfilled with the difference that the open covering
{U;} of X may now be infinite.

Now we are ready to prove the announced theorem:

Theorem 5.2.8
Let m: F' — X be a vector bundle of rank r and s1,ss : X — F two bounded rational
sections. Then sgk) -Y and sgk) -Y are rationally equivalent, i.e.

17 Y] =[5 Y] € A (X)
holds for all subcycles Y € Z;(X).

Proof. Let p : \)? | — | X| be the universal covering space of |X|. We can locally equip
|)? | with the tropical structure inherited form X and obtain an infinite tropical cycle
X according to definition [5.2.4l Moreover, pulling back F' along p, we obtain a tropical
vector bundle p*F on X according to deﬁmtlonm As X is simply connected we can
conclude by lemmaB.T.23that p* ' = L1@®. ..® L, for some infinite tropical line bundles
Lq,...,L, on X. Hence, the bounded rational sections p*s; and p*s, correspond to r
infinite tropical Cartier divisors as in definition each, which we will denote by
©1, .., and Yy, ..., 1, respectively. By lemma [(.1.20l we can conclude that for all 4
these Cartier divisors differ by bounded infinite rational functions only, i.e. p; —; = h;
for some bounded infinite rational function h; on X. In particular,

< Z i1 m P — Z ¢j1¢]k>)z:’ﬁg25€)z

1<j1<...<jp<r 1<ii <. <jgg<r

with a bounded infinite rational function h and infinite Cartier divisors é Then we
can define a rational function h, which is then also bounded, and Cartier divisors §;
on X as follows: Let U C |X| and U C |X| be open subsets such that p| U — U

is bijective with inverse map p’ : U — U. Then we locally define h|y := (p/)* h\U and
&lu = (0')"&|p. Note that h and &; are well-defined as the Cartier divisors ¢; and ;,

98



Chapter 5: Chern classes of tropical vector bundles

respectively, are the same on every possible set U S U. As we locally have

(" Y)nU =p, ( > e )Y N U))

1<ni<..<jr<r

and
(s57-Y)nU = p, ( S Wy (@)Y N U>)
1< <...<jg<r
we can conclude that
(s =58y =h-&- 6 Y,

which proves the claim. O

Now we are ready to give a definition of Chern classes:

Definition 5.2.9 (Chern classes)
Let 7 : ' — X be a vector bundle of rank r admitting bounded rational sections. For
ke {1,...,r} we define the k-th Chern class of F' to be the endomorphism

cr(F): Ay(X) — AX) : [Y] = [sW - Y],

where A, (X) =, Ai(X) and s : X — F is any bounded rational section. Note that
the map ¢, (F') is well-defined by lemma and independent of the choice of the
rational section s by theorem [.2.8 Moreover, we define ¢y(F') : A.(X) — A.(X) to be
the identity map and cx(F) : A.(X) — A.(X) to be the zero map for all k ¢ {0,...,r}.
To stress the character of an intersection product of ¢x(F) we usually write ¢ (F) - Y
instead of ¢ (F)(Y) for Y € A, (X).

Remark 5.2.10
Note that lemma B.2.3] implies that isomorphic vector bundles have the same Chern
classes.

As announced in the beginning we finish this section with proving some basic properties
of Chern classes:

Theorem 5.2.11 (Properties of Chern classes)

Letm : F — X and " : F' — X be vector bundles of rank r and 1', respectively,
admitting bounded rational sections. Moreover, let f : X — X be a morphism of
tropical cycles. Then the following holds:

(a) c;(F) =0 for all i ¢ {0,... rank(F)},

(b) ci(F) - (c;(F")-Y) = ¢;(F') - (e;(F) - Y) for all Y € A,(X),

(¢) fuci(f*F)-Y) =ci(F)- f.(Y) for all Y € A,(X),

(d) ci(f*F)-f*(Y) = f*(c;(F)-Y) for allY € A.(X) if X and X are smooth varieties,

(¢) cn(FOF) =3 o ci(F) - ¢ (F)
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5.3 Vector bundles on an elliptic curve

(f) ci(F)-Y =D(F)-Y forallY € A.(X) if r = rank(F) = 1, where D(F) is the
Cartier divisor class associated to F'.

Proof. Properties (a) and (e) follow immediately from definition 229 property (b)
follows from the fact that the intersection product is commutative and property (f)

follows from remark B.1.21]
(c): The projection formula implies

Fla(fF)-Y) = £((Fs)D - Y]) =[O LY] = a(F) - LY,

where s is any bounded rational section of F'.
(d): Applying theorem (¢) and (f) we obtain

G(fF)- Y =[(f9) fY]=[f (s V)= s Y] = f(a(F)Y),
where s is again any bounded rational section of F. O]

Remark 5.2.12

In “classical” algebraic geometry even the following, generalized version of property
(e) is true: Let 0 — F' — F — F” — 0 be an exact sequence of vector bundles,
then ¢ (F) = >,y ¢i(F') - ¢;(F"). In the tropical world it is not entirely clear what
an exact sequence of tropical vector bundles should be. Nevertheless, in some sense
the “classical” statement is true in tropical geometry as well: Let 7 : F; — X and
my : Iy — X be tropical vector bundles of rank r; and ry, respectively, and let Uy, ..., U,
be an open covering of X such that all requirements of definition [5.1.5 are fulfilled for F}
and Fy simultaneously. Moreover, let f : F; — F, be an injective morphism of tropical
vector bundles such that (&2 o fo (&)~ (U; x R™) = U; x (e, . . . €, )r for all i, i.e.
such that the image of Fy under f is a subbundle F’ of Fy (cf. definition [.T.12). Then
we can conclude by remark B.T.T3l that F3 is decomposable into Fo = F'@ F" = Fi & F”
for some other subbundle F” of F,. Hence we can conclude by theorem [(E.2.11] that

cr(F2) = Do Gi(F1) - ¢ (F7).

5.3 Vector bundles on an elliptic curve

In this section we will give a complete classification of all vector bundles on an elliptic
curve up to isomorphism. One characteristic to distinguish different bundles will be
the following:

Definition 5.3.1 (Degree of a vector bundle)
Let X := X5 be the curve from example and let 7 : F' — X be a vector bundle
of rank r. We define the degree of F' to be the number

deg(F) := deg(c1(F) - X).

As already advertised in example L.1.10 vector bundles on the elliptic curve X can
be described by a single transition function. We will prove this fact in the following
lemma:
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Lemma 5.3.2

Again, let X := Xy be the curve from example [I.4.5 and let 7 : F — X be a vector
bundle of rank r. Then F is isomorphic to a vector bundle ' : F' — X that admits
an open covering U], ..., Ul and transition maps Mi’j such that at most one transition
map s non-trivial.

Proof. Let Uy,...,Us be the open covering with transition maps M;; for F' according
to definition We may assume that all sets U; are connected and that for all 7, j
the intersections U; N U; are connected as well. Moreover, we may assume that the sets
U; are numbered consecutively as shown in the figure. For simplicity of notation we
will consider our indices modulo s.

We can write every map M, ;1,7 =1,...,s, as

Mg () = D(@i 21, 9012) (@) © Ag, 1y =2 Dil) O P
for some regular invertible functions gogl?ﬂ € O*(U;NU;41) and permutations ; ;11 € S,.
We will show that we can replace successively all the transition maps M;;; but one
by the constant map M;;,, : Uy N Ujy1 — G(r) : @ — E and the resulting vector
bundle F” is isomorphic to F: Choose jo € {2,...,s}. Note that if we are given a
regular invertible function ¢ € O*(U; NU;) there is a unique regular invertible function
¢ € O*(U;) such that ¢ vinu; = - As they are regular invertible functions, too, we
can extend in exactly the same way the finite entries of the matrix Dj, along the chain
Ujo—1,Ujo—2, ..., Uis1 to any set U4y for i € {2,...,jo — 1}. By abuse of notation we

will denote this continuation of D;, as well by D;,. Now, we take U] := U, for all
i1=1,...,s and
M (z) = Pj, ® Dj(x) © M;;1(x) © Dj(x) "t © Pt ifie{2,...,jo—1}
bitl Mi,i+1(x)7 if1 € {]0 + ]., ce ,S}.
Moreover, we set Mi,(z) := Pj, © Dj,(z) © Dy(x) © Py and Mj , ,,(x) := E. To check

that the vector bundle F’ we obtain from this gluing data is isomorphic to F' we apply
lemma B.I.16F We set
D Jo (1’ ) oF

' o io» ifie{2,...,50}
Ei(x) := { B, else,

and get

(Djy®Pj)© (D1 oP) = (Dj,0P, 0D P)OE
(Dj, ®P;,) @ (D, 0 Py) = (D, @ P, ®@ Dy © P,o D' © PY) © (Dj, © Py)

EQ(DJOQPJO) = EQ(DJOQPJO)'

This finishes our proof. m
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To classify all vector bundles on our elliptic curve X we give now a non-redundant
parametrization of all indecomposable vector bundles on X. Arbitrary vector bundles
are then just direct sums of these building blocks.

Theorem 5.3.3 (Vector bundles on elliptic curves)

Let X := Xy be the curve from example[I.4.5 Then the set of indecomposable vector
bundles of rank r and degree d is in natural bijection with ged(r,d)- X, i.e. with points
of the curve X stretched to ged(r,d) times the original length.

Proof. Let m : FF — X be an indecomposable vector bundle of rank r with open
covering Uy, ...,Us and transition maps M;; according to definition B.I.5l Again, we
may assume that all sets U; are connected, that for all 7,j the intersections U; N U;
are connected as well and that the sets U; are numbered consecutively. Moreover,
by lemma we may assume that M, is the only non-trivial transition map. Let
Mis(z) = D(p1,...,p.)(x) © A, =: D(x) ® A, for some regular invertible functions
O1y- .00 € OF(Up NUs) and a permutation o € S,.. As F' is indecomposable o must
by a single cycle. Hence there exists o € S, such that pop™t = (12...7). We will apply
lemma 5116l to show that we can replace Mis(x) by M{y(z) := A, ® D(z) ® Ap—1 ©
Aq2...r) without changing the isomorphism class of F: We set E;(x) := A, for all x and
all 7 and obtain

A, ©(D(r) ©A;) = (A, 0D(x) ® Ayr © Apa.ry) © A,
A,0E = E®A,

A,0E = E®A,

Hence we may assume that o = (12...7). Our next step is to apply lemma to
show that we may replace D(z) = D(¢1,...,¢,) by D'(x) = D(¢',0,...,0) for some
¢ € O*(U; NUy) without changing the isomorphism class of F. For i =1,... 7 let a;
be the slope of ¢; and let L be the (lattice) length of our curve X. For ¢ = 2,...,r
we set d; := Y. _;(j — i+ 1) - ;. Moreover, we define ¢’ := @1 + ... + ¢, — 02 L. Note
that if we are given a regular invertible function ¢ € O*(U; N U;) there is a unique
regular invertible function ¢ € O*(U;) such that @lv,nu, = ¢. Hence we can extend
our regular invertible functions ¢, ..., ¢, along the chain Us,,Us, ..., Uy, U; to any of
the sets Uy, ..., Us. Note that on U; N U, the extension of ¢; to U, and the extension
of ¢; to U, differ exactly by «a;L. We use these continuations to define the maps FEj:

Ei(x) =D(pa+ ...+, — 2L, o3+ ...+, — 3L, ..., 0. —6,L,0),

where for entries of E; the map ¢; denotes the continuation of ¢, to U;. Hence we
obtain on U; N Us:

Ey ® Mo

= D(@a4...+ ¢, —0L,....5, —06,L,0)® (D(p1,...,0r) O Ag)
D(pa+ ...+ —0L,.... 00 —6,L,0)® (D(p1,...,0,) ® Ay)

= D(pr1+...4¢or—0L,pa+ ...+, —03L,...,0r—1+@r — 0L, p,) © Ap
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and

M, © B,
= (D(p1+...4+¢r—08L,0,...,000 Ay) ® D(p3 + ...+ @, — 2L, ..., 0, — 6.L,0)
= D(p1+...+p,—50L,0,...,0) ®A;) ©D(p2+ ...+ @r — 3L, ..., 0, —0,—1L,0)
= D(pr1+...+pr—0L,ps+...4+0, —03L,...,00—1+ pr — 6L, p,) ©® Ay

The other conditions are trivially fulfilled as E;|y,nv, o = Einlvo,,, for all i # 1.
Hence we may assume that My (z) = D(x) © A, = D(¢',0,...,0)(z) ©® Apz.r)-
As I is a vector bundle of degree d the affine linear map ¢’ must have slope —d.
Thus, the transition map M, is determined by the isomorphism class of F' up to
translations of ¢’. To prove the claim it remains to show that two vector bundles
F and F' as above with transition maps Ms(z) = D(p,0,...,0)(x) ® Apa. ) and
Miy(x) = D(¢ +cL,0,...,0)(x) ® Ana., are isomorphic if and only if ¢ is an inte-
ger multiple of ged(r, d): By lemma F and I’ are isomorphic if and only if for
all i = 1,...,s there exists a map F; : U; — G(r) such that for all ¢ the equation
Eiy1(z) © Myip1(x) = M} ;1 (z) © E;(z) holds for all z € U; N Uiy1. As M is trivial
for all @ # 1 these equations imply E;|v,~v,., = Fit1|vinv,,, for all @ # 1. Hence F' and
F" are isomorphic if and only if there exist a permutation 7 € S5, and regular invertible
functions 1, ..., 1, € O*(U; N Usy) with continuations 1, ..., 1, to all sets Uy, ..., Us
along the chain U,, Us, ..., Us, Uy such that

(D1, ..., )@ A)O(D(,0,...,0)0A,) = (D(p+cL,0,...,0)0A4,) (D1, ..., b)) OA,)

holds on U; NUs. In particular, the last equation implies A, ® A, = A, ® A, and hence
7 = 0% for some k € Z. Thus F and F' are isomorphic if and only if there exist k € Z
and 1, ...,1, as above such that

D(%?"'7%7qm +()05,(Z;€:—/27""{/)\7:) ®A0'k+1 = D(SD+CL+/I’/;;7%""7/(Z;:) ®A0'k+1'

Let «; be the slope of ;. Then on U; N U, the continuation of v; to U and the
continuation of v; to U; differ exactly by a; L. Hence we obtain the system of equations

Uy = ¢o+cL+ Y.+ a.L
o = Y1+l
Uy, = Yp_1 + o1 L
Yk +9 = Y+l
Pryo = Ypp1 + gL
wr - wr—l + ar—lL-
In particular, we can conclude that ay = ... = a; and apyy = ... = a,.. Hence F' and

F" are isomorphic if and only if there exist oy, a,., k € Z such that
—c=(r—k)-a+k-a and oy = —d + a,
or equivalently if and only if there exist «,., k € Z with
—c=ra, — k-d.

This finishes the proof. m
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5.3 Vector bundles on an elliptic curve

Remark 5.3.4
Note that the claim of theorem [.3.3] coincides with the equivalent result in “classical”
algebraic geometry (see [A5T, theorem 7]).
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Appendix: Pictures of tropical
surfaces

Tropical varieties arise in a natural way as images of algebraic varieties under valuation
maps. Let us make this precise:

Definition (Tropicalization of algebraic varieties)
Let K be the field of Puiseux series with complex coefficients, i.e.

K = {Z agt?

geR

below and has no accumulation points

a, € Cand {q € R|a, # 0} C R is bounded }

with the usual addition and multiplication of power series. This field K is algebraically
closed and admits a non-archimedean valuation

val : K* —>]R:Zaqtq»—>min{q€]R|aq7é0} eR.

geR

We use this valuation to define the map
Val: K" — T" : (xy,...,2,) — (—val(zy),..., —val(z,)).

Let X C K™ be an algebraic variety. Then the set Trop(X) := Val(X N (K*)") C R"
is called the tropicalization of X.

Remark
The tropicalization Trop(X) of an algebraic variety X carries a natural structure of a
tropical variety in R"™. More details on this fact can be found, for example, in [S05].

A special case of this process is the case where X is a hypersurface, i.e. the zero
locus of a single polynomial over K. In this situation it is much easier to describe the
tropicalization of X.

Definition (Tropicalization of polynomials)
Let f=> iy i, 2 -2 € K[z1,. .., 2,] be a polynomial over the field K. Then
we call

Trop(f) :

the tropicalization of f. Obviously, the function Trop(f) : R® — R is piecewise integer
linear. We denote by V (Trop(f)) the corner locus of Trop(f), i.e. the set of all points
x € R™ where Trop(f) is not differentiable.

max {—val(a;, ,) + 9121 + ... + 02y}

U15esy in
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Appendix: Pictures of tropical surfaces

With these definitions we get the following statement:

Proposition
Let f € Klz,...,z,] be a polynomial over K and V(f) its zero locus. Then the
following equation holds:

Trop(V(f)) = V(Trop(f)).

Proof. A proof of this fact can be found in [EKL04]. O

In fact, every tropical hypersurface, i.e. every tropical variety of codimension one
in R", arises as a tropicalization of a hypersurface V(f) C K" (see for example
[M05]) and every tropical cycle of codimension one in R™ is a difference of tropi-
cal hypersurfaces. As the corner locus of a tropical polynomial is relatively easy to
calculate, tropical varieties of the form V(Trop(f)) are an important source of ex-
amples in tropical geometry. For some purposes the easiest possible case of curves
in R? cannot provide sufficient examples and one has to deal with hypersurfaces in
3-space. This was the reason for creating a computer program to calculate the cor-
ner locus of a tropical polynomial in 3 variables: TropicalSurfaces. The program
is written in Delphi and binary versions as well as the source code are available on
http://www.mathematik.uni-kl.de/~allermann/software.html.

The usage of TropicalSurfaces is easy: Type a tropical polynomial in the text box and
press the button labeled with “Zeichne”.

Zeichhe
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Appendix: Pictures of tropical surfaces

A picture of the corner locus of the given polynomial is drawn. Click with the left
mouse button into the drawing area and move the cursor to rotate the picture in
3-space. If you press the right mouse button within the picture, a context menu appears.
Here you can

zoom in and out,

change transparency settings,

save the displayed tropical surface as a binary or text file,
load tropical surfaces from binary or text files,

export the displayed picture as a pixel graphic, POV-Ray file or scalable vector
graphic,

change other settings, e.g. the color scheme and the clipping area.

Moreover, you can create random polynomials of degrees 2 and 3 via the context menu
and display the corresponding tropical surfaces.
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