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1. Introduction

Tropical geometry is a rather new field of algebraic geometry. The main idea is to replace

algebraic varieties by certain piece-wise linear objects in Rn, which can be studied with the

aid of combinatorics. There is hope that many algebraically difficult operations become

easier in the tropical setting, as the structure of the objects seems to be simpler.

In particular, tropical geometry shows promise for application in enumerative geometry.

Enumerative geometry deals with the counting of geometric objects that are determined

by certain incidence conditions. Until around 1990, not many enumerative questions had

been answered and there was not much prospect of solving more. But then Kontsevich

introduced the moduli space of stable maps which turned out to be a very useful concept

for the study of enumerative geometry. The idea of Kontsevich was motivated by physics,

more precisely, by string theory. Since then, enumerative geometry has gained a lot more

attention: not only from physicists, but also from mathematicians, as the theory of stable

maps has become rich and elaborated. However, a lot of questions remain open, and there

are still many mathematicians working in enumerative geometry.

Tropical geometry supplies many new ideas and concepts that could be helpful to answer

enumerative problems. However, as a rather new field, tropical geometry has to be studied

more thoroughly. This thesis is concerned with the “translation” of well-known facts of

enumerative geometry to tropical geometry. We will first give a short introduction to

tropical geometry and then explain the well-known results of enumerative geometry that

will be “translated” in this thesis.

1.1. Tropical geometry

Tropical geometry is so far best developed for plane curves. An idea Kontsevich proposed

and Mikhalkin elaborated in [23] is to apply the map

Log : (C⋆)2 → R

2 : (z,w) 7→ (log |z|, log |w|)

to a complex curve in a toric surface. The observation is that the image of a complex

curve under this map looks roughly like a graph in R2 with linear edges. When we shrink

the image to a certain limit, we end up with such a graph fulfilling a condition called

the “balancing condition”. Such a graph will be referred to as a tropical curve. An

analogous “deformation” of the complex numbers yields a semiring (R ∪ {−∞},max,+)

with operations max as addition and + as multiplication. This semiring has been known

to computer scientists before and is referred to as “tropical semiring” in honour of the

Brazilian mathematician and computer scientist Imre Simon (see for example [29]).

As already mentioned, tropical curves look, shortly described, like graphs in R2 which

fulfill certain conditions. The balancing condition allows to associate a dual to a tropical

curve, which is a regular subdivision of a lattice polygon in Z2 (see section 2.3). Therefore,

the data of a tropical curve can be described purely combinatorially using lattice polygons

(respectively, their dual graphs).

A lot of work has been done to “translate” classical concepts to this tropical setting,

especially in enumerative geometry. A well-known problem of enumerative geometry is to

determine the numbers Ncplx(d, g) of complex genus g plane curves of degree d passing
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through 3d+g−1 points in general position. In [23], Mikhalkin associates a multiplicity to

each tropical curve C, which coincides with the number of complex curves that project to

C (under Log and taking the limit). He shows that the number Ncplx(d, g) is equal to the

number Ntrop(d, g) of tropical curves through 3d+ g− 1 points, counted with multiplicity.

This important result is referred to as Correspondence Theorem. We will describe it

more precisely in chapter 6. Furthermore, he computes Ncplx(d, g) = Ntrop(d, g) purely

combinatorially using certain lattice paths in the lattice polygon dual to the tropical curves

(see chapter 5). Siebert and Nishinou extended the Correspondence Theorem to rational

curves in an n-dimensional toric variety [24]. Shustin showed the same for certain singular

plane curves [26].

But not only enumerative geometry has been translated to the tropical world: Izhakian

found an analogue to the duality of curves [16], Vigeland established a group law on

tropical elliptic curves [33] and Tabera dealt with a tropical Pappus’ Theorem [30], just

to mention a few.

Tropical research is not restricted to the translation of classically well-known facts, there

are actually new results shown by means of tropical geometry that have not been known

before. For example, Mikhalkin gave a tropical algorithm to compute the Welschinger

invariant for real curves [23] and Itenberg, Shustin and Kharlamov were able to estimate

the Welschinger invariant (even for large degrees where the computation using Mikhalkin’s

algorithm is too complicated) using tropical curves [15]. Furthermore, there are ideas by

Mikhalkin to compute Zeuthen numbers, that is the numbers of plane curves which do not

only satisfy the condition to pass through certain points, but also tangency conditions to

lines.

This shows that tropical geometry can indeed be a tool for a better understanding of

classical geometry.

1.2. Enumerative geometry

As already mentioned, enumerative geomtry deals with the counting of geometric objects

that satisfy given incidence conditions. The conditions must be chosen in such a way that

there is actually a finite number of objects that satisfy them.

The main strategy to count objects is to construct a moduli space which parametrizes

these objects. The special objects that satisfy one of the given incidence conditions will

then correspond to a subspace of the moduli space. In order to count objects that satisfy

all conditions, we have to intersect the subspaces corresponding to each condition, and

determine the number of points in the 0-dimensional intersection product. (The way the

incidence conditions were chosen - such that there are only finitely many objects satisfying

them - guarantees that this intersection is indeed 0-dimensional.) The moduli space of

stable maps is a moduli space that seems appropriate for a large class of enumerative

questions. Therefore, enumerative geometry deals basically with intersection theory on

this moduli space. The numbers which occur as intersection numbers on the moduli space

of stable maps are called Gromov-Witten invariants. The numbers Ncplx(d, g) are called

Gromov-Witten invariants of P2, because they arise as intersection numbers on the moduli

space of stable maps to P2. For genus 0, they were first computed by Kontsevich using
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the moduli space of rational stable maps. This moduli space is based on a different under-

standing of “curve”. A curve can on the one hand be considered as an embedded object

in the ambient space. On the other hand, it can be considered as a map from an abstract

curve to the ambient space. The moduli space of stable maps parametrizes such maps

(satisfying certain conditions which we do not want to make precise here — the definition

can be found in section 3.1). The boundary of this moduli space consists of maps where the

underlying abstract curve is reducible. Kontsevich shows that two special divisors which

are contained in the boundary of the moduli space are linearly equivalent. We can intersect

both divisors with some more conditions to get something zero-dimensional. The stable

maps which are contained in these two zero-dimensional subsets are reducible. Compar-

ing the image curves on both sides yields a recursive formula that determines Ncplx(d, 0)

depending on the numbers Ncplx(d
′, 0) for d′ < d. The idea how Kontsevich’s formula can

be derived using the moduli space of stable maps is described more precisely in section

3.2. Note that due to the special structure of the moduli space of rational abstract curves

the methods of this proof cannot be generalized to higher genus.

For arbitrary genus, there is an algorithm developed by Caporaso and Harris that de-

termines Ncplx(d, g) using degenerations of curves after specializing the points [4]. The

algorithm does not only involve the numbers Ncplx(d, g), but also the numbers of curves

that do not only pass through the appropriate number of points in general position, but

in addition satisfy tangency conditions (of higher order) to a fixed line L. These numbers

are referred to as “relative Gromov-Witten invariants”. By specializing the points one

by one to lie on the line L, Caporaso and Harris derive recursive relations between the

relative Gromov-Witten invariants, that allow to compute Ncplx(d, g). For example, if

already d points are specialized to lie on L and we move the d+1-st point to L, the curves

passing through this configuration of points can no longer be irreducible. Instead, L has

to split off as a component of the curve. The remaining component then is a curve of

degree d− 1, which may fulfill tangency conditions of arbitrary order to L. The recursive

formula sums up the possibilities for a curve passing through a given set of points after

we moved one point to L: there are irreducible curves which then pass through one more

point on L, and there are the above described reducible curves. The difficult part of the

algorithm is to determine which reducible curves appear and with which multiplicity they

contribute (as components of a class in the Chow group of the moduli space). A more

detailed description of the ideas of the Caporaso-Harris algorithm - though not a proof -

can be found in section 3.3.

The aim of this thesis is to translate both Kontsevich’s formula and the Caporaso-Harris

algorithm to tropical geometry.

1.3. Tropical enumerative geometry

The Correspondence Theorem of Mikhalkin mentioned above shows that the numbers

Ntrop(d, g) coincide with the numbers Ncplx(d, g). Furthermore, we have seen that the

numbers Ncplx(d, g) satisfy some recursive relations. Of course, the Correspondence The-

orem shows that the numbers Ntrop(d, g) satisfy the same relations. The aim of this thesis

is to reprove this fact without using Mikhalkin’s Correspondence Theorem - that is, to

find “tropical proofs” of Kontsevich’s formula and the Caporaso-Harris algorithm. We will
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shortly describe the questions and challenges that arise in this context.

A fact which is classically well-known is that the number of complex curves through the

appropriate number of points does not depend on the position of the points, as long as it

is sufficiently general. Again, the Correspondence Theorem shows immediately that the

analogue is true for the numbers Ntrop(d, g). However, the statement was not shown purely

with methods from tropical geometry so far. When trying to prove a tropical Caporaso-

Harris algorithm, we need to specialize the points. Therefore it is important to see that

the number of tropical curves through 3d + g − 1 points does not depend on the position

of the points (see theorem 4.53). We prove this statement within tropical geometry in

section 4.7, using the moduli space of tropical curves. The definition of the moduli space

of tropical curves we use here is inspired by ideas of Mikhalkin. We define it in section 4.2

and discuss it further in section 4.4. The proof is more complicated than the proof that

the numbers Ncplx(d, g) do not depend on the position of the points, because we have to

count the tropical curves with multiplicity as mentioned above. If we count each curve

without that factor, this number will in fact depend on the position of the points.

With the aid of the moduli space of tropical curves and using analogous ideas as for

the classical proof of Kontsevich’s formula, we give a tropical proof that the numbers

Ntrop(d, 0) satisfy Kontsevich’s formula. This result is described in section 7. We do

not define tropical analogues of divisors and intersection theory. In our tropical proof,

other methods replace these concepts. We hope that our methods will help to understand

tropical geometry in a more general context and maybe to define tropical divisors or in-

tersection theory later.

For the Caporaso-Harris algorithm, we do not have to work with a tropical moduli space.

To the contrary, it is sufficient to consider a tropical curve through a given set of points

and to study the possible degenerations that arise after specializing the points. However,

as mentioned above, the algorithm involves relative Gromov-Witten invariants. Therefore

we have to define tropical analogues of relative Gromov-Witten invariants first (see section

8.1). The tropical proof of Caporaso’s and Harris’ algorithm can be found in chapter 8.

Mikhalkin’s Correspondence Theorem states that the numbers of complex and of tropical

curves through a given set of points coincides, but it does not state an analogue for the

relative Gromov-Witten invariants. The equality of the numbers of complex and tropical

curves passing through points and satisfying additional tangency conditions can be derived

recursively as we know that both number fulfill the relations given by Caporaso and Harris

— starting with the fact that there is one complex as well as one tropical line through 2

points. However, we wish to give a more direct proof of this correspondence, too. This

result can be found in section 8.4.

As mentioned before, tropical curves are dual to lattice polygons. Even more, Mikhalkin

gave a way to count tropical curves using certain paths in the lattice polygon dual to the

curve. Of course, the numbers of these paths fulfill the recursive relations known from

classical geometry, too. But again, we were interested in finding a direct proof of these

recursions. As before, we first had to define analogues of relative Gromov-Witten invari-

ants for lattice paths, and then reprove the Caporaso-Harris formula in the lattice path

setting. Also, we can see directly that our generalized lattice paths correspond to tropical

curves satisfying tangency conditions to a line. These results can be found in chapter 9.
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To sum up, we succeeded in “translating” the concepts from enumerative geometry men-

tioned above to tropical geometry. We believe that our work is a step towards a better

understanding of tropical geometry, which will in our opinion result in a better under-

standing of classical enumerative geometry.

1.4. The content of this thesis

This thesis is organized as follows. In chapter 2, we motivate what tropical curves should

look like and give an overview about some of their basic properties that were known before.

In chapter 3, we give a short introduction to enumerative geometry, and, more precisely,

to the concepts we want to translate to the tropical world later on. In chapter 4, we

define tropical curves combinatorially and introduce the moduli space of tropical curves.

We use it to derive the fact that the numbers Ntrop(d, g) do not depend on the position

of the points without passing to the complex world using the Correspondence Theorem.

In chapter 5, we give an overview of the duality of tropical curves and lattice paths

found by Mikhalkin, because we want to generalize these ideas to relative Gromov-Witten

invariants in chapter 9. In chapter 6, we state Mikhalkin’s Correspondence Theorem and

give a short overview of the structure of his proof. In chapter 7, we reprove Kontsevich’s

formula tropically. In chapter 8, we proceed towards the Caporaso-Harris algorithm in

the tropical setting. We define tropical relative Gromov-Witten invariants, prove the

Caporaso-Harris algorithm tropically, and prove a generalized Correspondence Theorem

for relative Gromov-Witten invariants. In chapter 9 finally, we reprove the Caporaso-

Harris algorithm in the lattice path setting.

That is, the new results can be found in the chapters 4, 7, 8 and 9. In the other chapters

known facts are described that we need for our work.

All results mentioned above were derived in joint work with my advisor Andreas Gath-

mann. They were published (some so far only as preprint) in [12], [13] and [14]. In this

joint work it is not easy to separate the contributions we both made. As far as it can be

told, most important ideas of 4.4 were developed by Andreas Gathmann, of 4.7 by myself.

(The main results of chapter 4 can be found in 4.4 and 4.7.) In chapter 7, important

ideas of both of us were used. The basic ideas of chapter 8.1 and 8.2 are due to Andreas

Gathmann, whereas the ideas of 8.3 and 8.4 are due to myself. The main ideas of chapter

9 are due to myself.

1.5. Acknowledgments

First of all I would like to thank my advisor Andreas Gathmann. Andreas was a really

great advisor from whom I could learn a lot — about mathematics, but also about the

way to teach mathematics. Many thanks to Andreas for his support, for many helpful

discussions, for providing me with ideas, for correcting my mistakes, for giving me the

opportunity to attend many interesting conferences ...

Andreas also managed to establish a whole working group of tropical geometry in

Kaiserslautern. I owe thank to this group of students, too. Many problems were solved

after discussions with Christian Eder, Michael Kerber and Johannes Rau. Thanks to Eric
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Westenberger who introduced me to tropical geometry. I also gained a lot of understand-

ing after discussions with Grisha Mikhalkin, Bernd Sturmfels and Oliver Wienand. Many

thanks to Ilya Itenberg who pointed out a serious mistake in an earlier version of the proof

of the Caporaso-Harris algorithm for lattice paths.

Many friends invested a lot of time in proofreading. As I know that proofreading is

not really an amusement, I am particularly thankful to all who still did that for me:

many thanks to Michael Brickenstein, Michael Cuntz, Christian Eder, Andreas Gathmann,

Michael Kerber, Thomas Markwig and Johannes Rau.

Furthermore, I want to thank my family and friends for their support and encouragement.

In particular, I would like to mention Michael Brickenstein, who provided me with an

advertising shirt for tropical geometry; Nadine Cremer, a “fellow sufferer” in the last

days; Michael Kunte, whose patience to listen is unbelievable; and Ingo Münch, who often

surprised me with nice interpretations of my black board writings. Furthermore, I want

to thank my parents Uschi and Micha Markwig for their selfless support over many years.

Finally, I want to thank my beloved husband Thomas for supporting and enduring me,

for encouraging me even when I went through a fainthearted period, for patient help with

computer questions, for a lot of help with the design of the title page ... — for sharing his

life with me.

To conclude, I would like to thank whoever invented the term “tropical”, because I think

that this term reflects just perfect how much fun it is.
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2. Motivation on plane tropical curves

The idea what a plane tropical curve should be arises after applying the map

Log : (C∗)2 → R

2 : (s, t) 7→ (log |s|, log |t|)

to a complex curve in (C∗)2. As a first example, let L be a projective line in P2
C

, and apply

Log to the restriction of L to (C∗)2. Let (x : y : z) be the coordinates of P2, and identify

C

2 with the set {z 6= 0}. Then the map Log associates the point (log |xz |, log |
y
z |) ∈ R

2 to a

point (x : y : z) ∈ P2. The line L intersects the coordinate line {x = 0} in one point. When

we move along the line L towards the intersection with {x = 0}, the first coordinate of the

image point under Log will tend to −∞. Also, when we move towards the intersection with

the coordinate line {y = 0}, the second coordinate of the image will tend to −∞. When

we move towards the intersection with {z = 0}, both coordinates will become big and

their difference will tend to a constant. Furthermore, the image Log(L) ⊂ R

2 should be

something 2-dimensional, as the complex line has two real dimensions. These observations

suggest that the image will look similar to the following:

The image Log(L) is called the amoeba of the line L. A tropical line can be thought of as

a limit of this amoeba. In fact, the tropical line is what we get after shrinking the amoeba

to something one-dimensional. It looks like the amoeba from very, very far away:

The only information kept are the three infinite rays and their directions.

2.1 Remark

Note that the primitive integer vectors pointing in these three directions sum up to 0:
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(
0
−1

)

(
1
1

)(
−1
0

)

As a second example, let C ⊂ P

2 be a conic. As before, let us examine what happens

at the coordinate lines. C intersects {x = 0} in two points, (0 : p0 : 1) and (0 : p1 : 1).

So we can move along C near p0 and the first coordinate of the image will tend to −∞,

whereas the second tends to log |p0|. When we move along C near p1, the first coordinate

will again tend to −∞, but the second to log |p1|. With the same argument as above, we

can see that the amoeba of a conic will have two “tentacles” in each of the three directions

(−1, 0), (0,−1) and (1, 1). However, we can not say precisely what happens in the middle.

When we try again to shrink the amoeba to something 1-dimensional to get an idea of

how a tropical conic should look like, there are indeed several possibilities of what can

happen in the middle.

The picture shows three different types of a tropical conic.

The two examples of a tropical line and a tropical conic suggest that a tropical curve

should be a piece-wise linear object which is in some sense the image of a complex curve

— under the map Log and a degeneration process which will be specified in chapter 6. We

can hope now that tropical curves still carry a lot of properties that the original complex

curves had, and furthermore, that they are easier to deal with due to their linearity. In

fact, we will see in this thesis that a lot of concepts of classical curves can be “translated”

to tropical geometry, and that proofs are in general easier in the tropical setting.

The idea that a tropical curve can be thought of as a limit of an amoeba serves as a

motivation why tropical curves are interesting and what they should roughly look like.

However, we will not use it as a definition, as it is rather difficult to make the notion of

limit precise. Instead, we will use a different approach to define tropical curves and see

in chapter 6 that the objects of our definition are actually limits of amoebas of complex

curves. (The notion of limit will be made precise in chapter 6).

2.1. The field of Puiseux series

An idea which leads us to a possible definition of a tropical curve is to replace the field

C by another algebraically closed field K (of characteristic 0). As the main properties of

curves should not depend on the algebraically closed field we are working with, we can as

well consider curves over K and hope to define tropical curves somehow as an image of a

curve over K. What is important about our choice of field is that we have again a map

from K to R which is in some sense similar to log. However, the field should in another
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sense be even “better” than C: it shall be equipped with a norm which is non-archimedean

(which does not hold for the canonical norm on C). We will specify the requirements we

have on the field K and the special map similar to log.

2.2 Definition

Let K be any field. A map | | : K → R≥0 satisfying

• |a| = 0 if and only if a = 0,

• |ab| = |a| · |b| and

• |a + b| ≤ max{|a|, |b|} for all a, b ∈ K

is called a non-archimedean norm.

Note that if L|K is an extension of a finite degree, the norm extends uniquely to a norm on

L. Especially, as every element a in the algebraic closure of K is contained in an extension

of a finite degree over K, we can extend the norm to a. Altogether, we get an extension

of the norm to the algebraic closure of K (see [6], chapter 1.)

2.3 Definition

A valuation is a map val : K → R ∪ {−∞} satisfying

• val(a) = −∞ if and only if a = 0,

• val(ab) = val(a) + val(b) and

• val(a + b) ≤ max{val(a), val(b)} for all a, b ∈ K.

Non-archimedean norms are in bijection with valuations by val(a) = log |a|.

Now we ask K to be a complete algebraically closed non-archimedean field. That is, K is

algebraically closed and there is a valuation val : K → R ∪ {−∞} such that eval defines a

norm on K. Furthermore, K has to be complete with respect to the norm eval.

We can then as before consider curves C in (K∗)2 and their image in R2 under the map

Val : (K∗)2 → R

2 : (a, b) 7→ (log |a|, log |b|) = (val(a), val(b)).

The main example of such a field K is the completion of the field of Puiseux series. Take

the algebraic closure C((t)) of the field C((t)) of Laurent series. An element of C((t)) is a

Puiseux series

p(t) = a1t
q1 + a2t

q2 + a3t
q3 + . . .

where ai ∈ C and q1 < q2 < q3 < . . . are rational numbers with bounded denominators.

Set val(p(t)) = −q1. Now define K to be the completion of C((t)) with respect to the

norm eval. The valuation extends to this completion by val = log | |.

2.4 Definition

Let C ⊂ (K∗)2 be a curve, where K is the completion of the field of Puiseux series,

as above. Then define the tropical curve associated to C as the closure of the image

Val(C) ⊂ R2 of C.

Note that for complex curves, we wanted to define tropical curves as a limit of the amoeba,

that is, a limit of the image Log(C). Unlike that, our definition 2.4 does not include any

limit, but only the closure of the image Val(C) ⊂ R

2. The reason is that Val(C) differs
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from the amoeba of a complex curve. It is not a 2-dimensional object with tentacles,

but it does in fact look like the limit of an amoeba: it is a 1-dimensional polyhedral

complex. To see this, we examine what the map val does to the field structure (K,+, ·)

and define tropical curves algebraically as something analogous to a zeroset of an ideal of

“val(K,+, ·)”.

2.2. The tropical semiring

The aim of this section is to describe tropical curves algebraically, similar to a zeroset of

a polynomial. The observation what the map val does to the field (K,+, ·) will help to

find out which ground field (resp. ground structure, as we will not end up with a field,

actually) will be appropriate for this aim. First of all, the image of the map val is of course

R ∪ {−∞}. Definition 2.3 gives us an idea what happens to the operations “+” and “·”:

they become “max” and “+”. We will therefore work with the following ground structure:

2.5 Definition

The tropical semiring (R ∪ {−∞},⊕,⊙) is the semiring with underlying set R ∪ {−∞}

and operations tropical addition and tropical multiplication defined by

x ⊕ y := max{x, y} and x ⊙ y := x + y (x, y ∈ R ∪ {−∞}).

The addition is idempotent in the sense that a ⊕ a = a. The extension of R by −∞

provides us with a neutral element of addition. However, there are no inverses with

respect to addition, therefore the structure can only be called a semiring.

A tropical monomial in two variables x and y is a product

m = a ⊙ xb ⊙ yc (a ∈ R, b, c ∈ N)

where the powers are computed tropically, too. Considered as a map m : R2 → R it

represents the linear form (x, y) 7→ a ⊙ xb ⊙ yc = a + bx + cy.

A tropical polynomial is a finite tropical sum of tropical monomials

F = a1 ⊙ xb1 ⊙ yc1 ⊕ . . . ⊕ an ⊙ xbn ⊙ ycn .

Again considered as a map F : R2 → R, F is the piece-wise linear map

(x, y) 7→ max{a1 + b1x + c1y, . . . , an + bnx + cny}.

As the tropical semiring does not have an inverse operation for addition, it would not make

sense to look at zerosets of tropical polynomials. Let us instead recall that the tropical

semiring should be thought of as the image of the field K under the map val. Remember

that K is defined as the completion of the field C((t)) of Puiseux series. As val(C((t))) is

dense in R, we can restrict our considerations to Puiseux series. Let

f = p1(t) · x
b1 · yc1 + . . . + pn(t) · xbn · ycn ∈ C((t))[x, y]

be a polynomial and let (q1(t), q2(t)) ∈ (C((t)))2. Then the sum f(q1(t), q2(t)) consists of

summands corresponding to the monomials pi(t) · x
bi · yci of f , and each summand is a

power series in C((t)) with a valuation

val
(
pi(t) · (q1(t))

bi · (q2(t))
ci
)

= val(pi(t)) + bi val(q1(t)) + ci val(q2(t)).
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Remember that the valuation is given by the negative of the minimal exponent of a power

series. A point (q1(t), q2(t)) ∈ (C((t)))2 can only be in the zeroset {f(x, y) = 0}, if the

monomials sum up to zero, that is, if the minimal exponent of the sum occurs at least

twice and these summands cancel. More precisely, a point (q1(t), q2(t)) can only be in the

zeroset {f(x, y) = 0}, if the maximum

max{val(p1(t)) + b1 val(q1(t)) + c1 val(q2(t)), . . . , val(pn(t)) + bn val(q1(t)) + cn val(q2(t))}

is attained by two or more of the terms.

2.6 Definition

Let f =
∑

i pi(t) · x
bi · yci ∈ C((t))[x, y] be a polynomial. We define its tropicalization to

be the tropical polynomial

trop f :=
⊕

i

val(pi(t)) ⊙ xbi ⊙ yci

= max
i

{val(p1(t)) + b1 · x + c1 · y, . . . , val(pn(t)) + bn · x + cn · y}.

Note that the condition we checked above to see whether a point (q1(t), q2(t)) can be in the

zeroset of f corresponds to checking whether the maximum trop f(val(q1(t)), val(q2(t)))

described by the tropical polynomial trop f evaluated at (val(q1(t)), val(q2(t))) ∈ R

2 is

attained by two or more monomials.

This observation motivates the following definition:

2.7 Definition

Let F be a tropical polynomial. Then the tropical curve associated to F is given by the

set of points (x, y) ∈ R2 such that the maximum F (x, y) is attained by two or more of

the terms (that is the monomials of F ). Equivalently, we can say that the tropical curve

associated to F is given by the set of points where the piece-wise linear map F is not

linear, that is, the tropical curve is the corner locus of the piece-wise linear map F .

2.8 Example

Let F = 0 ⊙ x ⊕ 0 ⊙ y ⊕ 1 = max{x, y, 1} be a tropical polynomial. There are three

possibilities how a maximum can be reached by two monomials: either x = y ≥ 1, or

x = 1 ≥ y, or y = 1 ≥ x. These three possibilities correspond to three rays, all starting at

(1, 1), the first on the diagonal, the second vertically down, the third horizontal. In fact,

we get precisely what we suggested to call a tropical line in the beginning: the amoeba of

a complex line from far away.

1

1

{x = y ≥ 1}

{y = 1 ≥ x}

{x = 1 ≥ y}



12

As a second example, let F = 0 ⊙ x2 ⊕ 0 ⊙ y2 ⊕ 0 ⊙ x ⊙ y ⊕ 1 ⊙ x ⊕ 0 ⊙ y ⊕ 0 =

max{2x, 2y, x+ y, 1+x, y, 0}. Then we have the following possibilities that two terms can

both attain the maximum:

• 2x = 2y ≥ x + y, 1 + x, y, 0

⇒ x = y ≥ 1 — a diagonal ray starting at (1, 1). But then also 2x = 2y = x + y

and in fact, three monomials attain the maximum;

• 2x = 1 + x ≥ 2y, x + y, y, 0

⇒ x = 1, 1 ≥ y — a vertical ray starting at (1, 1);

• 2x = y ≥ 2y, x + y, 1 + x, 0

⇒ 2x ≥ 4x, 3x, 1 + x, 0 — not possible;

• 2x = 0 ≥ 2y, x + y, 1 + x, y

⇒ x = 0, 0 ≥ 1 + x = 1 — not possible;

• 2y = 1 + x ≥ 2x, x + y, y, 0

⇒ 2y ≥ 4y − 2, 3y − 1, y, 0 ⇒ 1 ≥ y ≥ 0, x = 2y − 1 — a line segment starting at

(−1, 0) and ending at (1, 1);

• 2y = y ≥ 2x, x + y, 1 + x, 0

⇒ y = 0, x ≤ −1 — a horizontal ray starting at (−1, 0). But then also 2y = y = 0

and again three monomials are maximal;

• x + y = 1 + x ≥ 2x, 2y, y, 0

⇒ y = 1, 1 + x ≥ 2 ⇒ y = 1, x ≥ 1, x + 1 ≥ 2x ⇒ y = x = 1 — the point (1, 1);

• x + y = y ≥ 2x, 2y, 1 + x, 0

⇒ x = 0, y ≥ 2y, 0 — not possible;

• x + y = 0 ≥ 2x, 2y, 1 + x, y

⇒ y ≥ −2y, 2y, 1 − y, y — not possible;

• 1 + x = y ≥ 2x, 2y, x + y, 0

⇒ y ≥ 2y, 0 — only a point: x = −1, y = 0;

• 1 + x = 0 ≥ 2x, 2y, x + y, y

⇒ x = −1, 0 ≥ y — a vertical ray starting at (−1, 0).

That is, the corresponding tropical curve looks like:
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Note that unlike the situation in remark 2.1, the primitive integer vectors pointing in the

directions of the three edges adjacent to both vertices (the picture should suggest what

we mean by using the words “edge” and “vertex”) do not sum up to zero:

`

−2
−1

´

“

1

1

”

“

0

−1

”

` 0
−1

´

`2
1

´

`

−1
0

´

However, both the diagonal and the horizontal ray only appear when three monomials

attain the maximum, not only two. That is, we might define the weight of an edge,

which is one less than the number of monomials taking the maximum along this edge (the

general definition will be slightly different, see remark 2.17). Then in our picture in the

left, the horizontal ray would be equipped with the weight of 2, and in the right picture,

the diagonal ray, too. The weighted sum of the primitive integer vectors will then again

be zero. We will see in the following section that this is not a coincidence.

We have now defined tropical curves in two ways: first as the image of a curve over the

completion of the field of Puiseux series — a definition which is more helpful to explain

why tropical curves should carry most properties of algebraic curves — and second as

the corner locus of a tropical polynomial — a definition which allows computations and

examples. We also motivated why these two definitions should be equivalent. That they

are really equivalent is the result of the following theorem, which is proved for example in

[6], Theorem 2.1.1, [25], Theorem 3.3 or [28], Theorem 2.1.

2.9 Theorem (Kapranov’s Theorem)

If C ⊂ K2 is a curve given by the equation {f = 0} and F is the tropical polynomial

F = trop(f), then the tropical curves associated to C (definition 2.4) and associated to F

(definition 2.7) coincide.

2.3. A combinatorial description of tropical curves

We have now defined tropical curves as images of algebraic curves, and we found an anal-

ogous description by means of the tropical semiring. However, both of these descriptions

do not give a lot of information about the properties of tropical curves (apart from being

piece-wise linear with rational slopes), nor do they describe tropical curves combinatori-

ally. From our examples we expect that tropical curves fulfill for example the condition

that the primitive integer vectors of the edges around a vertex sum up to zero. This

section will give a combinatorial interpretation of tropical curves that will help to deduce

more properties.

2.10 Definition

Let f =
∑

ai · xbi · yci ∈ k[x, y] be a polynomial (where k now denotes any field, not

necessarily the completion K of the Puiseux series from above). The Newton polygon

∆(f) of f is the convex hull of the set {(bi, ci)|ai 6= 0} ⊂ Z2.

2.11 Definition

Let s be a line segment in R2 which starts and ends at an integer valued point. Then the
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integer length of s is one less than the number of lattice points on it: the integer length

of s is #{s ∩Z2} − 1.

2.12 Example

Let f = 2x2 + y2 − xy + x + 5. Then the Newton polygon of f is a triangle with sides of

integer length 2:

xy

0 x x2

y2

2.13 Definition

Let f =
∑

ai · x
bi · yci ∈ k[x, y] be a polynomial. Let D ⊂ R

2 × R be the convex hull of

the set {(bi, ci, ai)|ai 6= 0}. Project the edges of D which can be seen from above (that is,

the edges adjacent to faces with an outward pointing normal vector with a positive third

coordinate) down to the first factor R2. The image will be a convex subdivision of the

Newton polygon, called the Newton subdivision of f .

2.14 Example

Let f = x2 + 2xy + y2 + 2x + 2y + 1. The picture shows the set D.

��

��

��

��

����

��

��

��

��

�� ��

The projection of the top looks like:

2.15 Theorem

The tropical curve C associated to the tropical polynomial F is dual to the Newton subdi-

vision of F , in the sense that every vertex V of C corresponds to a 2-dimensional polytope

of the subdivision and every edge of C is orthogonal to a 1-dimensional polytope.

Furthermore, if a vertex V is adjacent to an edge E, then the 1-dimensional polytope dual

to E is in the boundary of the 2-dimensional dual of V .

We will dispense with a precise proof and only give an idea. A proof can for example be

found in [23], Proposition 3.11.
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2.16 Example

The tropical curve associated to f = x2 + 2xy + y2 + 2x + 2y + 1 is shown on the left, on

the right we show again the Newton subdivision of f determined in example 2.14.

As an idea for the proof of Theorem 2.15, let (b1, c1) and (b2, c2) be two neighboring

points of the Newton subdivision of F . The edge dual to the 1-dimensional polytope

which goes from (b1, c1) to (b2, c2) will be the one that arises when the maximum in

max{ai + bix + ciy} is attained by the two terms a1 + b1x+ c1y and a2 + b2x + c2y. When

the maximum is attained by these two terms, we have a1 + b1x + c1y = a2 + b2x + c2y, a

condition which is fulfilled by the line y = b2−b1
c1−c2

x+ a2−a1
c1−c2

. But this line is orthogonal to the

line connecting (b1, c1) and (b2, c2), which has slope c1−c2
b1−b2

. The property that (b1, c1) and

(b2, c2) are neighboring helps to see that the condition that the two terms a1 + b1x + c1y

and a2 + b2x + c2y are not only equal but bigger than all other terms is indeed satisfied

by some points (x, y).

2.17 Remark

Note that there can be several tropical polynomials which define the same tropical curve.

The way to draw the tropical curve associated to a polynomial F with the aid of the

dual Newton subdivision helps us to get an idea why this is true. There can be terms

of F such that the corresponding point (bi, ci, ai) in the set D (that we use to determine

the Newton subdivision — see 2.13) cannot be seen from above. We can then change

the z-coordinate ai — that is, the corresponding coefficient of the polynomial — up to a

maximum without changing the Newton subdivision. In fact, it can also be shown that

we can vary this coefficient ai (up to the maximum) without changing the tropical curve

associated to the polynomial. Assume F is a tropical polynomial where we cannot enlarge

a coefficient without changing the Newton subdivision (that is, where all points (bi, ci, ai)

have their maximal z-coordinate for D). Then the weight of an edge e of the tropical curve

associated to F is defined to be the number of terms which attain the maximum on the

edge e. If F is an arbitrary polynomial, we first have to vary all coefficients up to their

maximum before we can compute the weight of an edge of the tropical curve associated

to F .

2.18 Remark

Note that duality is not a 1 : 1-correspondence. In fact, many tropical curves can be

dual to the same Newton subdivision. The Newton subdivision fixes only the directions

in which the edges of the tropical curve point, but not the lengths of the dual edges. This

is due to the fact that the coefficients ai are uniquely determined by the tropical curve,

but not by the Newton subdivision corresponding to a polynomial. The picture shows two

tropical curves which are dual to the same Newton subdivision.
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2.19 Remark

Theorem 2.15 helps us to deduce some nice facts about tropical curves which we assumed

to hold already. Let C be a tropical curve, and let V be a vertex of C. Let e1, . . . , en

be the edges which start at V . We know that V is dual to a 2-dimensional polytope P ,

and each edge ei is dual to a 1-dimensional polytope Ei in the boundary of P . As P

is a closed polytope, the vectors Ei sum up to zero. Furthermore, each vector Ei has a

certain integer length ωi. The primitive integral vector ui pointing in the direction of ei is

orthogonal to Ei. If we multiply ui with the integer length ωi, then
∑

i ωiui = 0. That is,

we can associate a weight to each edge ei and deduce that the following condition called

the balancing condition holds at every vertex V of C: the weighted sum of the primitive

integer vectors of all edges adjacent to V sum up to 0. (Note that the integer length of

a line segment in the Newton subdivision coincides with the number of monomials that

attain a maximum together (if all coefficients of the tropical polynomial defining C are at

their maximum, see 2.17) — so the definition of weight suggested here coincides with the

one suggested in 2.8.) As an example, the following picture shows a tropical curve locally

around a vertex:

�
�
�
�
�
�
�
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The primitive integer vectors pointing in direction of the four edges are
(−1

0

)
,
( 0
−1

)
,
(2
1

)

and
(
1
1

)
. The weights are 3, 2, 1 and 1. We can see that the balancing condition holds:

3 ·

(
−1

0

)
+ 2 ·

(
0

−1

)
+

(
2

1

)
+

(
1

1

)
= 0.

The observations we made suggest that we could probably define tropical curves purely

combinatorially — roughly as weighted graphs in R2 which fulfill the balancing condition.

We will indeed define so-called parametrized tropical curves in 4.10 in that way. As this

definition carries some properties similar to stable maps, we want to give an introduction

to classical enumerative geometry first.
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3. Classical concepts for the enumeration of plane curves

The aim of this chapter is to give an overview about the known results of classical enu-

merative geometry which we want to revisit tropically later.

3.1 Notation

We fix the complex numbers as ground field for the whole chapter. By P2 we denote the

complex projective plane, i.e. P2
C

.

Before we start with the definition of the moduli space of stable maps, we would like to

give some basic examples about enumerative geometry and point out some problems there

are to deal with. As already said in the introduction, enumerative geometry deals with the

enumeration of geometric objects — in general, curves — that satisfy certain incidence

conditions, like passing through a subspace, or having a given contact order to a subspace.

The conditions have to be chosen in such a way that only finitely many of the geometry

objects satisfy them.

The easiest example for an enumerative problem is the question: how many lines pass

through two given points? The answer is of course 1 — at least if the two points are

different. (Here we can see that we have to require the incidence conditions we choose to be

in general position). Let us prove the answer for the case of projective lines in the plane. A

line L in P2 is given by a linear polynomial in the three coordinates, L = {ax+by+cz = 0}.

That is, it is again given by three parameters. We can choose another copy of P2, denoted

with P2
(a:b:c), with coordinates (a : b : c), that parametrizes lines in P2. Given a point p1

in P2, the condition that a line L passes through p1 is fulfilled by a 1-dimensional linear

subspace of the space of lines, that is, by a line in P2
(a:b:c). The same holds of course for

the condition that a line passes through a second point p2. If the two points are distinct,

then also the two lines in P2
(a:b:c) are different and meet in one point, which corresponds

to the one line that passes through both points.

Let us try to apply the same idea to the next more complicated enumerative question:

how many smooth conics in P2 pass through five given points?

A conic C in P2 is given by a homogeneous polynomial of degree 2:

C = {ax2 + bxy + cy2 + dxz + eyz + fz2 = 0}.

That is, we can again parametrize conics in P2 by another projective space, this time by

a P5 with coordinates (a : b : c : d : e : f). The condition that the conic passes through a

point is a linear condition on the coefficients (a : b : c : d : e : f). Therefore we get again

a linear subspace of P5 of codimension 1, that parametrizes conics passing through that

point. The intersection of the five subspaces induced by the five points is one point — again

because we chose the points to be in general position, which then also leads to subspaces

in general position. The point in the intersection corresponds to the one conic that passes

through the five points. The proof seems to be correct so far — but actually, one important

argument is missing. We said that a polynomial ax2+bxy+cy2+dxz+eyz+fz2 determines

a conic — but it does not have to be a smooth conic, it can also be two lines, or even

a double line. We have to specify in our reasoning above why we counted smooth conics
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and not two lines. This is again true because we chose the points in general position.

It is not possible to consider instead of P5 the subset which parametrizes only smooth

conics, leaving the points which correspond to a union of lines out. This would lead to a

non-compact space, but we need compactness for the intersection products.

This example illustrates the problems enumerative geometry has to deal with. A strategy

of counting objects is to construct a moduli space which parametrizes these objects. In

general, such a moduli space will not be compact. So we have to worry about a good

compactification, before we can intersect subvarieties corresponding to objects that fulfill

the incidence conditions. At last, we have to check if our result really counted the objects

we wanted, or if there is some unwanted contribution from the boundary of the moduli

space.

Note that an analogous argument as above does not work for curves of higher degree: it is

still true that P(d+3)d/2 parametrizes curves of degree d, but in general, we want to count

curves of a fixed genus and degree. The space P(d+3)d/2 is only helpful if we want to count

curves of the maximal genus. (Note that lines and conics always have genus 0.)

The moduli space of stable maps is a compact moduli space which seems to be appropriate

for many enumerative problems. The basic idea is a different understanding of a curve.

We can think of a curve as an embedded object in the surrounding space, or we can think

of it as the image of a map from an abstract curve to the space. The moduli space of

stable maps is based on the second understanding of curve. Another important feature is

the chosen compactification of the space of maps — the stable maps — that turned out

to be very helpful for many enumerative questions.

3.1. The moduli space of stable maps

As already said, we want to understand a curve in a surrounding space as the image of an

abstract curve. So before we can deal with maps from abstract curves, we have to study

abstract curves themselves. Later on, the images of the abstract curves will be required

to meet certain subvarieties. We will therefore provide the abstract curves with certain

markings, that shall later map to the given subvarieties.

3.2 Definition

An n-marked curve is a tuple (C, x1, . . . , xn) where C is a smooth curve and the xi

are distinct points on C. An (iso-)morphism of n-marked curves (C, x1, . . . , xn) →

(C ′, x′
1, . . . , x

′
n) is an (iso-)morphism ϕ : C → C ′ satisfying ϕ(xi) = x′

i for all i.

Let n ≥ 3 if g = 0, and n ≥ 1 if g = 1. Mg,n is the set of isomorphism classes of n-marked

curves of genus g.

3.3 Example

As an easy example, let us start with rational curves. Of course, there is (up to isomor-

phism) only one smooth rational curve, namely P1. If we mark a rational curve with 3

markings, there is a unique isomorphism to P1 sending the 3 markings to 0, 1 and ∞.

That is, M0,3 is a point, which corresponds to P1 with the 3 markings 0, 1 and ∞. If we

mark a rational curve with 4 markings, then we can as before send the first 3 markings to
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0, 1 and ∞. The isomorphism class of this curve is therefore determined by the image of

the fourth marking under this isomorphism. This image can be any point in P1, except

0, 1 and ∞, as we required the marked points to be different. Therefore, M0,4 is equal to

P

1 \ {0, 1,∞}.

Of course, our argument is on a purely set-theoretic level so far. It can be shown that

P

1 \ {0, 1,∞} is a moduli space for isomorphism classes of rational 4-marked curves, but

we will only present the ideas here and refer to [10] or [18] for more detailed explanations

and proofs.

The question is now how to compactify this space. Let us move towards one of the missing

points, for example 0, and check what the corresponding curves look like. The point p

in P1 \ {0, 1,∞} corresponds to a rational curve, a P1, with markings x1 = 0, x2 = 1,

x3 = ∞ and x4 = p. When we let p move towards 0 — that is, the corresponding curve

has the markings (0 : 1 : ∞ : p) — the limit for p → 0 seems to be a curve with a double

marking at 0. But we required the markings to be different. A reason for this is given

by the following: the curve with the markings (0 : 1 : ∞ : p) is isomorphic to the curve

with the markings (0 : 1
p : ∞ : 1). But if we let p go to 0 here, the limit seems to be a

curve with a double marking at ∞. So the limit is not uniquely defined that way. We can

therefore not allow double markings.

Instead, we replace the double marking with a new component carrying the two markings.

That is, the curve corresponding to 0 is a reducible curve with two rational components,

one carrying the markings x1 and x4, the other carrying the markings x2 and x3. This curve

is unique up to isomorphism, as each component has 3 special points, the two markings,

and the intersection of the two components. (These 3 special points can as before be

mapped uniquely to 0, 1 and ∞ ∈ P

1, which shows us that the curve is unique up to

isomorphism.) Analogously, the two other “missing points” represent reducible curves,

but with a different arrangement of the markings.
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That is, M0,4, the compactification of the space of abstract rational 4-marked curves, is

isomorphic to P1. Each p ∈ P1 which is not equal to 0, 1 or ∞ represents a smooth rational

curve, isomorphic to P1 with the markings 0, 1, ∞ and p. 0 represents the reducible curve

in the picture on the left, 1 the picture in the middle, and ∞ on the right.

In general, the idea how to compactify the space of smooth abstract n-marked curves of

genus g is to allow reducible curves. They have to satisfy the notion of stability :

3.4 Definition

A pre-stable n-marked curve is a tuple (C, x1, . . . , xn) where C is a connected nodal curve

and x1, . . . , xn are distinct smooth points on C. An (iso-)morphism of pre-stable n-marked

curves (C, x1, . . . , xn) → (C ′, x′
1, . . . , x

′
n) is an (iso-)morphism ϕ : C → C ′ satisfying

ϕ(xi) = x′
i for all i.
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A pre-stable n-marked curve is called stable, if its group of automorphisms is finite. This

is equivalent to requiring that every rational component contains at least 3 special points

(nodes or markings) and every elliptic component contains at least one special point.

Let n ≥ 3 if g = 0, and n ≥ 1 if g = 1. Mg,n is defined to be the set of isomorphism

classes of stable n-marked curves of genus g and called the moduli space of stable curves.

It contains Mg,n as a subset, more precisely, this is the subset of smooth curves.

3.5 Example

Here is a picture of two rational 8-marked curves. The one on the left is stable. The one

on the right is not stable, because the middle component contains only 2 special points —

the 2 nodes.
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As rational curves will be of a special interest in section 3.2 and in chapter 7, we cite the

following result:

3.6 Theorem

For each n ≥ 3, M0,n is a projective variety of dimension n − 3 and a fine moduli space

for stable n-marked rational curves. Especially, M0,4 is isomorphic to P1.

As before, see [10] or [18] for more detailed explanations, or [17] for a proof. Here, we just

want to give an idea why the dimension is n−3: this is again due to the fact that 3 points

on a P1 can be sent by an automorphism to 0, 1 and ∞. Each further marking enlarges

the dimension by 1.

3.7 Remark

For higher genus, Mg,n should be thought of as a stack, due to the presence of automor-

phisms. This structure is still good enough to apply intersection theory in some sense.

For more information about stacks, see for example [7].

We are now ready to define stable maps.

3.8 Definition

An pre-stable n-marked map is a triple (C, x1, . . . , xn, f), where C is a connected nodal

curve, x1, . . . , xn are distinct smooth points on C and f : C → X is a map from C

to some ambient space X. An (iso-)morphism of n-marked maps (C, x1, . . . , xn, f) →

(C ′, x′
1, . . . , x

′
n, f ′) is an (iso-) morphism ϕ : C → C ′ such that ϕ(xi) = x′

i for all i and

such that the following diagram commutes:
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C ′C
ϕ

f

X

f ′

The class of a pre-stable n-marked map (C, x1, . . . , xn, f) is defined to be the element

f∗[C] ∈ H+
2 (X), where H+

2 (X) denotes the space of homology classes of algebraic curves.

A pre-stable n-marked map is called stable if its automorphism group is finite.

This is equivalent to requiring that every rational component which is mapped to a point

contains at least 3 special points (nodes or marks), and every elliptic component which is

mapped to a point contains at least one special point.

For a projective variety X, g, n ∈ N and β ∈ H+
2 (X), Mg,n(X,β) is defined to be the set

of isomorphism classes of stable n-marked maps, where C is a curve of genus g, f : C → X

is a map to X, and the class f∗[C] ∈ H+
2 (X) is equal to β. It is called the moduli space of

stable maps.

The subset of stable n-marked maps where the underlying curve C is smooth is called

Mg,n(X,β).

3.9 Example

The picture shows a 3-marked rational map.
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The middle component is contracted to a point, the other two components are mapped to

the two components of the image curve shown on the right. The map is stable, because

the only component which is contracted to a point has 3 special points — 2 nodes and 1

marking.

��
��

This picture shows a 1-marked rational map. The left component is mapped to a point,

the right component is mapped to the image shown on the right. This map is not stable,

because the component which is contracted to a point contains only 2 special points — 1

node and 1 marking.
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3.10 Remark

Note that for a stable map (C, x1, . . . , xn, f) the underlying curve C does not need to

be a stable curve itself. For example, the automorphism group of a non-constant map

f : P1 → X is finite, whereas the automorphism group of P1 is not.

3.11 Theorem

For a smooth projective variety X, β ∈ H+
2 (X) and g, n ∈ N, Mg,n(X,β) is a (Deligne-

Mumford) stack of expected dimension −KX .β + (dim X − 3)(1 − g) + n.

For a proof, see [3], Theorem 3.14. Here, we only want to present an idea for the dimension

count in the case of rational curves mapped to P2: Note first that the homology classes of

P

2 are given by the degrees of the curves. That is, instead of a class β we can fix a degree

d. Let (C, x1, . . . , xn, f) ∈ M0,n(P2, d). Assume (C, x1, . . . , xn, f) is an interior point,

that is, C is smooth and therefore isomorphic to P1. That is, f is (up to isomorphism)

a map from P

1 → P

2, whose image is a curve of degree d. Such a map is given by

3 homogeneous polynomials in two variables of degree d. The dimension of the space of

degree d homogeneous polynomials in two variables is d+1. As we need 3 such polynomials,

we have 3d + 3 degrees of freedom to choose them. We have to substract 1, because two

sets of 3 polynomials of degree d give the same map if they differ by a constant factor.

Furthermore, we have to substract 3 for the dimension of the automorphism group of P1.

Finally, we have to add n for the markings. Altogether, this dimension count gives us

3d − 1 + n which is equal to −K
P

2 · d − 1 + n, as predicted by theorem 3.11.

The following morphisms of Mg,n(X,β) will be needed to put incidence conditions on the

curves we want to count.

3.12 Definition

The i-th evaluation map

evi : Mg,n(X,β) → X : (C, x1, . . . , xn, f) 7→ f(xi)

evaluates the map at the point xi ∈ C.

Of course, the definition gives us only a set-theoretic assignment, it is not at all clear that

evi is indeed a morphism. This is shown in [3], Proposition 5.5.

Now we can explain how Mg,n(X,β) can be used to count curves in X of class β and genus

g passing through given subvarieties E1, . . . , En of X. The idea is to count the subset of

stable maps in Mg,n(X,β) such that f(xi) ∈ Ei for all i. To do this, we pull back the

classes of the subvarieties Ei by evi and intersect all these with the (virtual) fundamental

class of Mg,n(X,β). (Here, we need to work with the virtual fundamental class given by

the stack and obstruction theory. The virtual fundamental class has similar properties to

a fundamental class. For details concerning the construction of the virtual fundamental

class of Mg,n(X,β), see [2] or [1], for example.) We have to choose the Ei in such a way

that the dimension of this intersection product is 0, so that it consists of finitely many

points. That is, we determine the number
∫

[Mg,n(X,β)]

(
ev∗1(E1) ∩ . . . ∩ ev∗

n(En)
)
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and hope that it is equal to the number of curves of class β and genus g in X that meet

the subvarieties E1, . . . , En. This hope will however not always come true. There may for

example be some unwanted contributions from the boundary of the moduli stack. Also,

we have to be careful that we do not count for a given curve C ′ ⊂ X several stable maps

f : C → X with f(C) = C ′.

3.13 Notation

Intersection products of the form
∫

[Mg,n(X,β)]

(
ev∗1(E1) ∩ . . . ∩ ev∗

n(En)
)

are usually called Gromov-Witten invariants of the projective variety X.

The arguments above show that there remains some work to be done before we can inter-

pret the Gromov-Witten invariants as enumerative invariants. For an arbitrary variety X

this question is not solved yet. Here, we are mainly interested in Gromov-Witten invari-

ants of P2 for which it is known that the Gromov-Witten invariants have the enumerative

meaning we hoped for.

Let us set up an enumerative problem for P2. The homology classes of P2 are given by

the degrees of the curves. Instead of a class β we can therefore fix a degree d and require

that f∗[C] is a curve of degree d. Bézout’s Theorem tells us that a curve will intersect any

subvariety Ei of codimension 1, so such a subvariety does not give a condition. (In the

dimension count of the intersection product
⋂

i ev
∗
i (Ei) a subspace Ei of codimension 1 will

also not give a contribution bigger 0.) Therefore we leave the codimension 1 subvarieties

of P2 out for the moment, and require the curves to meet only points. How many points

do we need in order to get a 0-dimensional intersection product? The (virtual) dimension

of Mg,n(P2, d) is 3d + g − 1 + n by 3.11. The pullback of a point in P2 is of codimension

2 in Mg,n(P2, d). Therefore we need 3d + g − 1 points to get a 0-dimensional intersection

product.

3.14 Definition

Let N irr
cplx(d, g) be the number of irreducible degree d and genus g curves in P2 passing

through 3d + g − 1 points in general position.

We have seen in the beginning that N irr
cplx(1, 0) = 1 and N irr

cplx(2, 0) = 1. Up to know we do

actually not know that this is well-defined — that is, that the number of curves through

3d + g − 1 points does not depend on the points we require the curves to meet. This will

follow from 3.16 below, which uses the following theorem:

3.15 Theorem

For all d, g ∈ N, and with n = 3d + g − 1,

N irr
cplx(d, g) =

∫

[Mg,n(P2,d)]

(
ev∗

1(p1) ∩ . . . ∩ ev∗
n(pn)

)
,

where p1, . . . , pn ∈ P2 denotes a set of points in general position.

For a proof, see for example [18], chapter 3.5. Here, we only want to give an idea — see

remark 3.17.
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3.16 Remark

The fact that N irr
cplx(d, g) can be determined as an intersection product of the form

∫

[Mg,n(P2,d)]

(
ev∗

1(p1) ∩ . . . ∩ ev∗
n(pn)

)

tells us that the number N irr
cplx(d, g) does not depend on the choice of the n = 3d + g − 1

points, as long as they are in general position. A collection of points in general position will

lead to a collection of general substacks ev∗
i (pi), and the intersection product of those does

not depend on the special position of the substacks, only of their classes. But as points

in P2 are equivalent, also the pullbacks are equivalent. The independence of N irr
cplx(d, g) of

the position of the points is therefore an easy consequence of the theory of Gromov-Witten

invariants.

3.17 Remark

Why do we in fact count curves, when we consider intersection products in Mg,n(Pr, d)?

Of course, the image f(C) of a general stable map (C, x1, . . . , xn, f) is a curve of the correct

genus and class, and with f(xi) ∈ Ei, so it does also meet the given subvarieties. It only

remains to check if there are no repetitions. For example, assume f(C) meets Ei in two

different points. Then there are two stable maps whose image is f(C) due to the different

possibilities of putting the mark xi on the same curve. However, we only want to count the

single curve f(C). Such repetitions are in fact unavoidable if we allow subvarieties Ei of

codimension 1. Bézout’s Theorem tells us that a curve of degree d will meet a subvariety

Ei of degree e and codimension 1 in d · e points. So if we allow codimension-1-subvarieties

as incidence conditions, we need to divide our result by this correcting factor in the end.

For a subvariety of codimension 2 or more, the situation is different. A general curve will

not intersect such a subvariety at all. If we now force it to meet Ei in a point f(xi), then

it will in general intersect Ei only in this point and not in more points.

3.18 Remark

So far, we considered the moduli space of stable maps where we required the underlying

curve C to be connected. It is also possible to drop this requirement and to allow discon-

nected curves, too. This will in fact be done in section 3.3. Intersection products of the

form
∫

(ev∗
1(p1) ∩ . . . ∩ ev∗

n(pn)) on this space will count the numbers of possibly discon-

nected curves of given degree and genus through 3d+g−1 points in general position. The

latter numbers will be denoted by Ncplx(d, g). The main statements of this section hold

for these numbers, too.

3.2. Kontsevich’s formula to determine N irr
cplx(d, 0)

We have seen that we can compute the numbers N irr
cplx(d, g) as intersection products on the

moduli space of stable maps. But we still do not know how to compute these intersection

products.

For rational curves, Kontsevich gave in [19] a recursive formula how to determine these

numbers. The only initial value needed for the recursion is the number N irr
cplx(1, 0) = 1 of

lines through two given points.
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This recursive formula can be derived with the help of certain morphisms between the

moduli spaces of stable maps and stable curves, the forgetful morphisms. Roughly, a

forgetful morphisms does what its name claims: it forgets pieces of the data of a stable

map. It may forget certain markings, but it may also forget the whole map and send

a stable map (C, x1, . . . , xn, f) to its underlying curve (C, x1, . . . , xn). (Of course, if we

applied this naive description we would end up with non-stable maps or curves in some

cases. The morphism does not only forget, but it also stabilizes the result. The precise

definition will be given below in 3.24.) The forgetful map π used for Kontsevich’s formula

forgets all markings but 4 and the map. π is a map from M0,n(P2, d) to M0,4 which sends

a stable map to a stabilization of the underlying curve with only 4 markings kept.

A main argument of Kontsevich’s formula is the fact that M0,4 is isomorphic to P1 by 3.6.

In P1, all points are linearly equivalent. Therefore we can pullback two different points

and get two different, but equivalent divisors in M0,n(P2, d). We choose as points in M0,4

that we want to pull back the two boundary points
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(as in example 3.3). We will intersect the two pullbacks with some more substacks until

we have an intersection product of dimension 0, and then compare the two sides of the

equation. We will describe this more precisely in the following. We do not give a precise

proof but refer to [19] or [5] instead.

3.19 Remark

Note that the reasoning followed here is only valid for rational curves. A crucial argument

is that M0,4 is isomorphic to P1, so that all its points are linearly equivalent. There

is no analogous statement for higher genus. The methods described here have therefore

the disadvantage that they may only be applied for rational curves. The algorithm of

Caporaso and Harris which will be explained in the following section, 3.3, does not have

this disadvantage. However, it involves also the numbers of curves with higher tangency

conditions to a line. Therefore we need a more general moduli space in order to derive this

algorithm. Hence the algorithm of Caporaso and Harris can be applied more generally, but

its proof is more complicated, and the recursion involves more terms. So both algorithms

have their advantages and disadvantages, and in any case, they are both worth to study,

also later on in the tropical world.

Before we can define forgetful morphisms, we have to make the notion of stabilization

precise.

3.20 Definition

Let (C, x1, . . . , xn) be a pre-stable n-marked curve. We can associate to it its stabilization

s(C, x1, . . . , xn) by applying the following procedure:
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• every rational component which contains only one special point (which has to be

a node if the curve is not irreducible, as it is assumed to be connected) is dropped

and

• every rational component which contains only two special points (again, if it is not

irreducible, at least one has to be a node) is dropped and the two special points are

identified.

3.21 Example

The picture shows 3 pre-stable curves (all the components are assumed to be rational)

and their stabilizations:
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3.22 Definition

Let (C, x1, . . . , xn, f) be a pre-stable n-marked map. We can associate to it its stabilization

s(C, x1, . . . , xn, f) by stabilizing each rational component which is contracted to a point

by f as a curve following 3.20.

3.23 Example

The picture shows a pre-stable map with four components. We assume that the right

component (drawn with a loop) has genus 1 whereas all other components have genus 0.

Both the genus 1 and the middle genus 0 component are contracted to a point by f .
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The next picture shows its stabilization. The genus 0 component with only two special

points which is contracted to a point has been dropped, identifying the two special points.

The genus 1 component is not dropped, even so it is contracted to a point by f , because

it contains one special point.
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3.24 Definition

There are two types of forgetful maps. A forgetful map

π : Mg,n(P2, d) → Mg,n′(P2, d)

for n′ ≤ n associates to (C, x1, . . . , xn, f) the stabilization (see 3.22) of (C, x1, . . . , xn′ , f).

(Of course, we can also forget any subset of {x1, . . . , xn} different from {xn′+1, . . . , xn}.)

A forgetful map

π : Mg,n(P2, d) → Mg,n′

for n′ ≤ n associates to (C, x1, . . . , xn, f) the stabilization (see 3.20) of the curve

(C, x1, . . . , xn′). (As before, any other subset of {x1, . . . , xn} can also be forgotten in

addition to the map f .)

Of course, it is not at all obvious that these maps described here on a set-theoretical level

are indeed morphisms. This is the result of the following theorem proved in [3]:

3.25 Theorem

The forgetful maps from definition 3.24 are morphisms of (Deligne-Mumford) stacks.

3.26 Remark

The only important forgetful morphism in this section is the map

π : M0,n(P2, d) → M0,4

sending (C, x1, . . . , xn, f) to the stabilization of (C, x1, . . . , x4) (we assume n ≥ 4). When

we only talk of the forgetful map π without specifying what the map forgets, we refer to

this map.

3.27 Lemma

The two divisors
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41 ) andD1,2/3,4 = π∗( D1,3/2,4 = π∗( )

in M0,n(P2, d) (n ≥ 4) (where π denotes the forgetful map from 3.26) are linearly equiv-

alent.

Proof:

This is an easy consequence from 3.6, as the two divisors in M0,4 are linearly equivalent.

Before we can study these two linearly equivalent divisors in M0,n(P2, d), we need to

explain something about the structure of special divisors in M0,n(P2, d). Let us for sim-

plicity first begin with divisors in M0,n. In example 3.3 we learned that the boundary
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of M0,4 consists of the 3 points which correspond to reducible curves. We have also seen

that we needed reducible curves in order to replace curves where two markings coincide.

That is, when two markings move close to each other in a family of curves, the limit is

not the same curve with a double marking, but a curve with a new component with the

two markings that came together. This construction does not only hold for M0,4, but in

general. For example, take a family of curves in M0,6, where the markings 2 and 5 come

together. The family is shown on the left, the limit on the right:
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Especially, when we take the closure of the subset of curves with two components, one

with markings 1, 4 and 3 and the other with markings 6, 2 and 5, then the curve on the

right is contained in this closure, too, as it is the limit of a family contained in this subset.

Now consider the subset of curves with one node. Each such curve has two components,

and at least 2 markings on each component. Each further marking can move on the

component in a 1-dimensional family and enlarges the dimension of this set by 1. That

is, the dimension of the subset of curves with one node is n − 4. As dimM0,n = n − 3 by

theorem 3.6, the subset of curves with one node is of codimension 1. Analogously, we can

see that the subset of curves with δ nodes is of codimension δ.

That is, we can for example take the subset of curves with one node in M0,6, and with

markings 1, 4 and 3 on one of the components and 6, 2 and 5 on the other component.

Its closure is a subset of codimension 1, hence a divisor. Its closure contains the curve in

the picture above on the left with 2 nodes, too.

In general if we take the closure of the subset in M0,n of curves with one node and possibly

with some requirements on where the markings should lie, this is a divisor.

It also contains curves with more than one node in the boundary.

Also for M0,n(P2, d): the subset of stable maps, whose underlying curve has one node

and possibly some requirements on where the markings lie, is a divisor. It contains maps

whose underlying curve has more than one node in its boundary.

For more detailed explanation about these divisors, see for example [18], chapter 1.5 and

2.7.

Let us now study the two linear equivalent divisors D1,2/3,4 and D1,3/2,4 in M0,n(P2, d)

from lemma 3.27. As before, we only give a set-theoretic argument.

Let us determine what stable maps (C, x1, . . . , xn, f) in M0,n(P2, d) map to �
�
�
�������

��

3

41
2

under π. If we forget all markings but x1, . . . , x4 and the map, then we end up with a

reducible curve with two components, x1 and x2 on one component, x3 and x4 on the other.

That is, also C must have at least 2 components, and x1 and x2 must be on one component

(possibly after dropping some other unstable components), x3 and x4 on the other. That
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is, D1,2/3,4 is (as a set) equal to the closure of the subset of maps in M0,n(P2, d), where

the underlying curve has one node, x1 and x2 on one component, and x3 and x4 on the

other. When we take an interior point of this divisor (not a point in the boundary), then

the underlying curve has exactly one node and not more. Hence it has two components.

As the image f(C) is of degree d, there are several possibilities for the degrees of the

images of the two components. The first component can be mapped to a degree dA curve,

but then the image of the second component must be of degree dB = d − dA. Also, the

other markings {x5, . . . , xn} can lie anywhere on the two components. That is, the divisor

D1,2/3,4 is reducible. Its components are parametrized by partitions dA and dB of d (that

is, dA + dB = d) and disjoint subsets A and B whose union is {x1, . . . , xn}, such that

x1, x2 ∈ A and x3, x4 ∈ B.
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3.28 Notation

For dA and dB with dA + dB = d and A, B with A ·∪B = {1, . . . , n} we denote by

D(dA, dB , A,B) the closure of the subset of stable maps (C, x1, . . . , xn, f) in M0,n(P2, d)

such that

• C has precisely one node,

• all xi where i ∈ A are on one component,

• this component is mapped to a curve of degree dA in P2 under f ,

• all xi where i ∈ B are on the other component and

• this other component is mapped to a curve of degree dB in P2 under f .

So far we know the support of the divisor D1,2/3,4, we do not know if any of the reducible

components occur with a higher order on the pullback. But each order is 1, which is the

result of the following theorem proved in [18]:

3.29 Theorem

With the notation from 3.28 we have the following equality for the divisor D1,2/3,4 from

lemma 3.27:

D1,2/3,4 =
∑

dA+dB=d

∑

A,B

D(dA, dB , A,B),

where the second sum goes over all A and B with A ·∪B = {1, . . . , n}, 1, 2 ∈ A and 3, 4 ∈ B.

An analogous equality holds for D1,3/2,4.

We are now ready for (at least an idea of) Kontsevich’s formula.

3.30 Definition

Let N(d) be a collection of numbers given for each d ∈ N. We say that the numbers N(d)
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satisfy Kontsevich’s formula, if for all d > 1 the following recursive formula holds:

N(d) =
∑

dA+dB=d
dA,dB>0

(
d2

Ad2
B

(
3d − 4

3dA − 2

)
− d3

AdB

(
3d − 4

3dA − 1

))
N(dA)N(dB).

3.31 Theorem (Kontsevich’s formula)

The numbers N irr
cplx(d, 0) from definition 3.14 satisfy Kontsevich’s formula.

For a proof, see [19], [5] or [18]. Here, we want to present an idea of the proof. As already

mentioned, we intersect both sides of the equation [D1,2/3,4] = [D1,3/2,4] in M0,3d(P
2, d)

with ev∗
1(L1) ∩ ev∗

2(L2) ∩ ev∗
3(p3) ∩ . . . ∩ ev∗3d(p3d), where the set of lines Li and points pi

is in general position. That is, we require the first two markings each to meet a line, L1

(respectively L2) and all other points to meet a point.

Let us first determine the left side of this equation. From theorem 3.29 we know that

[D1,2/3,4] ∩ ev∗1(L1) ∩ ev∗
2(L2) ∩ ev∗

3(p3) ∩ . . . ∩ ev∗
3d(p3d) =

∑

dA+dB=d

∑

A,B

D(dA, dB , A,B) ∩ ev∗
1(L1) ∩ ev∗

2(L2) ∩ ev∗3(p3) ∩ . . . ∩ ev∗3d(p3d)

where the second sum goes over all A and B with A ·∪B = {1, . . . , n}, 1, 2 ∈ A and 3, 4 ∈ B.

Let us specify what summands there are: It can for example happen that dA = 0 and

dB = d. That is, for all stable maps belonging to this summand, the component which

contains the markings x1 and x2 is mapped to a point. As x1 is required to meet L1

and x2 to meet L2, this point must be L1 ∩ L2. There cannot be another marking on

this component, as pi 6= L1 ∩ L2 for all i. That is, all other markings lie on the second

component which is mapped with degree d to P2. The image curve is therefore a curve of

degree d passing through the 3d − 1 points L1 ∩ L2, p3, . . . , p3d. Hence, the summand
∑

A,B

D(0, d, {1, 2}, {3, . . . , 3d}) ∩ ev∗
1(L1) ∩ ev∗2(L2) ∩ ev∗3(p3) ∩ . . . ∩ ev∗3d(p3d)

is equal to N irr
cplx(d, 0).

Next, let us look at a summand with dB = 0. There is actually no stable map in this

intersection, as the markings x3 and x4 lie on the component which is then contracted to

a point. x3 and x4 are required to meet distinct points p3 and p4, which is not possible if

the component on which they lie is mapped to one single point.

So there are only summands left with dA, dB > 0. A stable map in such a summand

has two components called CA and CB , one is mapped to a degree dA curve, the other

to a degree dB curve. We can consider these two components as distinct stable maps

(CA, xi, fCA
) where i runs over all i ∈ A, and (CB , xi, fCB

) where i runs over all i ∈ B.

They are then elements of M0,#A(P2, dA), respectively M0,#B(P2, dB). The dimension

of these two spaces (see theorem 3.11) tells us that #A must be equal to 3dA +1 (because

the two markings x1 and x2 which are required to meet a line are in A, and they do not

change the dimension) and #B to 3dB−1, as otherwise we would not have a 0-dimensional

intersection product in total. There are
(

3d−4
3dA−1

)
possibilities how the markings x5, . . . , x3d

can be arranged on the two components. Then (CA, xi, fCA
) is a stable map which meets

the two lines L1 and L2. As in remark 3.17 we know that L1 (respectively, L2) intersects
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f(CA) in dA points. Therefore, there are d2
A different stable maps which have the same

image f(CA). The image curve f(CA) is a curve of degree dA passing through 3dA − 1

points. The image curve f(CB) is a curve of degree dB passing through 3dB − 1 points.

The two curves f(CA) and f(CB) intersect due to Bézout’s theorem in dA · dB points.

That is, there are dA · dB different stable maps with the image f(CA) ∪ f(CB), as each

of the intersection points can be the node where the two components CA and CB are

attached to each other. That is, a summand with dA, dB > 0 gives a contribution of( 3d−4
3dA−1

)
· d3

A · dB · N irr
cplx(dA, 0) · N irr

cplx(dB , 0).

Now, we can determine the right side of the equation.

Let us first check the summands where dA or dB is 0. Then one component is contracted

to a point. But this component contains at least two markings, x1 and x3, respectively

x2 and x4. One is required to meet a line, the other to meet a point. But as none of the

points lies on the line, this is not possible, if the component is mapped to one point. So

there is no contribution from summands where one of the degrees is 0.

So on the right side we only have summands with dA, dB > 0. Again, a stable map in such

a summand has two components CA and CB . Considered as two distinct stable maps,

they lie in M0,#A(P2, dA), respectively M0,#B(P2, dB). One marking on each of the

maps is required to meet a line, therefore #A = 3dA and #B = 3dB . There are
( 3d−4
3dA−2

)

possibilities how the markings x5, . . . , x3d can be arranged on the two components. The

line L1 intersects f(CA) in dA points. So we have again dA different stable maps mapping

to the same image curve. Also, for f(CB), we have dB different stable maps mapping to

it due to the line L2. And as above, there are dA · dB possibilities for the node where the

two components are attached to each other. That is, altogether a summand on the right

side of the equation with dA, dB > 0 contributes
( 3d−4
3dA−2

)
· d2

A · d2
B · N irr

cplx(dA) · N irr
cplx(dB).

Finally, let us bring the summands with dA, dB > 0 on one side of the equation. The

result is the desired formula.

3.32 Remark

Note that a collection of numbers satisfying Kontsevich’s formula is uniquely determined

by the initial value N(1). Therefore, theorem 3.31 tells us that we can determine the

numbers N irr
cplx(d, 0) recursively, only using the initial information that there is one line

through two points.

3.3. The algorithm of Caporaso and Harris to determine Ncplx(d, g)

In this section, we want to present another recursive formula that determines the numbers

Ncplx(d, g) from remark 3.18 from the only initial value that Ncplx(1, 0) = 1. As before,

we do not give proofs, but only present some ideas why such a formula should be true.

The algorithm is more complicated, because it involves also the numbers of curves that

do not only pass through certain given points, but satisfy in addition tangency conditions

(of higher order) to a line (see remark 3.19). We need to define a substack of the moduli

space of stable maps, where the markings are not only required to meet subspaces, but

also to be tangent (of higher order) to a subspace.
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The main idea of this algorithm is to change the position of the points that the curves

are required to meet. Assume we want to determine the number Ncplx(d, g). We know by

theorem 3.11 that we need 3d + g − 1 points in general position in order to get a finite

number of curves passing through them. We fix a line L. Then we specialize the position

of the points by moving one after the other to the line L.

An important argument for the algorithm is that the number of curves through the set of

points stays the same, even if we specialize the position (as long as it is finite). However,

we have to count certain degenerations of the curves (that is, elements in the boundary

of our moduli space) that may arise after specializing the points. For example, when

we count curves of degree 3 and we specialize the fourth point to lie on L, then there

is no irreducible curve of degree 3 through this set of points. The line L splits off as a

component, leaving a curve of degree 2 as second component.

These remaining components that arise in the degenerations of our curves may now have

a higher tangency order to the line L in some points.

Another important argument of the proof is to determine with which multiplicity the

degenerations in the boundary of the moduli space have to be counted, as components of an

element in the Chow group of the space of stable maps. In fact, some of these components

that parametrize the degenerations have to be counted with a higher multiplicity. More

precisely, whenever we have a component of our curve with a point of tangency order m

to the line L, we have to multiply with m.

Let us start with an example of the algorithm:

3.33 Example

Assume we want to count rational cubics through 8 points p1, . . . , p8 in general position,

that is, we want to determine Ncplx(3, 0).
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We move the point p1 to our chosen line L. Next, we move the point p2 to L. So far,

nothing happens, there are no degenerations, but only smooth cubics through these 8

points. In fact, the two points p1 and p2 just determine the line L.
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Now, let us move the point p3 to L. There are still smooth cubics that pass through these

points. But now, there is also a degeneration that we have to count: it is possible that

the line L splits off as a component. The remaining component is then a curve of degree

2 through 5 points. We can assume that this number is recursively known. (In fact, we

know from the beginning of the chapter that it is 1.) The smooth conic through the five

remaining points intersects the line L — and hence, the other component of the stable

map — in two points. Therefore, there are 2 distinct stable maps that have the same

image curve. We have to multiply by 2.
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Next, we move the point p4 to L. Now there is no smooth cubic through this set of points,

as no smooth cubic can intersect a line in more than 3 points. So the line has to split off

as a component, and we have to determine how the remaining component may look like.

It is in any case a curve of degree 2 through 4 points. There are several possibilities. (It

is part of Caporaso’s and Harris’ proof to determine which possibilities actually arise.)

• It could be a conic tangent to L.

This is now where the higher tangency orders can appear: we know that a smooth

conic is determined by 5 given points. But alternatively, it can also be determined

by 4 points and a line to which it is tangent. (This follows by a dimension count:

the condition to pass through a point is of the same dimension than that to be

tangent to a given line.) We can again assume that this number is given recursively,

in fact, it is equal to 2. As mentioned in the beginning, we have to multiply this

number by 2 due to the component with tangency order 2 to the line.
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• It could be a conic that passes through one of the other 3 points that was already

moved to the line L.

The number of conics through 5 points in known to be 1. Contrary to the step

before, where we also had a conic through 5 points, there is now no choice for the

node of the stable map mapping to this curve, as the markings are required to be

different from the nodes. That is, the node is fixed to be on the intersection point of

the conic and L different from the 3 points p1, p2 and p3 on L. We have to multiply

the number of conics through 5 points with 3 due to the 3 possibilities for the point

on L through which the conic passes.
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• It could be a reducible curve, that is, a union of two lines.

Of course, the degree 2 curve that splits off does not need to be smooth. It can

also be a union of two lines which are determined by the four points. The number

of lines through 2 points is known to be 1. But we have to multiply with the factor

3, as there are 3 possibilities to distribute the four points on the two lines.
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Let us count all the degenerations whose numbers are assumed to be known recursively:

we have 2 for the conic through 5 points and the line. In the next step, there are 2 for the

conic through 4 points and tangent to a line — but we also have to multiply with another

factor of 2 here, since we are counting curves with a higher tangency order to the line, so

altogether 4. Furthermore 3 for the conics through the 4 points and through one more

point on L, and finally 3 possibilities for the two lines, each counting once, as there is one

line trough two points. Altogether, we have 2 + 4 + 3 + 3 = 12 rational cubics through 8

points.

Let us now give a more formal description of the algorithm of Caporaso and Harris. Before

we can do so, we have to fix some notational conventions:

3.34 Notation

Let α = (α1, α2, . . . ) be a finite sequence of natural numbers, that is, almost all αk are

zero. If αk = 0 for all k > n we will also write this sequence as α = (α1, . . . , αn). For two

sequences α and β we define

|α| :=α1 + α2 + · · · ,

Iα :=1α1 + 2α2 + 3α3 + · · · ,

Iα :=1α1 · 2α2 · 3α3 · · · · ,

α + β :=(α1 + β1, α2 + β2, . . .),

α ≥ β :⇔ αn ≥ βn for all n, and



35

(
α

β

)
:=

(
α1

β1

)
·

(
α2

β2

)
· · · · .

We denote by ek the sequence which has a 1 at the k-th place and zeros everywhere else.

In example 3.33 we have seen that we do not only need the numbers Ncplx(d, g) in the

recursion, but also the numbers of curves satisfying in addition tangency conditions to the

line L. The following definition makes this notion precise:

3.35 Definition

Let d ≥ 0 and g be integers, and let α and β be two sequences with Iα+Iβ = d. Fix a line

L ⊂ P

2. Then we denote by Nα,β
cplx(d, g) the number of nodal, not necessarily irreducible

curves of degree d and genus g that

• intersect L in αi fixed general points of L with contact order i for all i ≥ 1,

• intersect L in βi arbitrary points of L with contact order i for all i ≥ 1 and

• pass additionally through 2d + g + |β| − 1 more points in general position in P2.

That is, Nα,β
cplx(d, g) is the number of degree d and genus g curves that have the given contact

orders to L (in some fixed, some arbitrary points). Note that this definition generalizes

the definition of 3.18 from before: Ncplx(d, g) = N
(0),(d)
cplx (d, g) in the new notation.

3.36 Remark

Once we defined an appropriate moduli stack parametrizing curves with the properties

from definition 3.35, we will see for dimensional reasons why the number 2d + g + |β| − 1

of points that the curves are required to meet is the correct number to choose in order to

get a finite number of curves (see definition 3.42 and theorem 3.43).

The result of Caporaso and Harris is now that these numbers (and with them, also the

numbers Ncplx(d, g)) can be computed recursively:

3.37 Definition

Let Nα,β(d, g) be a collection of numbers given for each d ∈ N, g ∈ Z and finite sequences

α and β with Iα + Iβ = d. We say that this collection satisfies the Caporaso-Harris

formula if

Nα,β(d, g) =
∑

k|βk>0

k · Nα+ek,β−ek(d, g)

+
∑

Iβ′−β ·

(
α

α′

)
·

(
β′

β

)
· Nα′,β′

(d − 1, g′)

for all d, g, α and β as above with d > 1, where the second sum is taken over all α′, β′ and

g′ satisfying

α′ ≤ α,

β′ ≥ β,

Iα′ + Iβ′ = d − 1,

g − g′ = |β′ − β| − 1, and

d − 2 ≥ g − g′.
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3.38 Theorem (The algorithm of Caporaso and Harris)

The numbers Nα,β
cplx(d, g) of definition 3.35 satisfy the Caporaso-Harris formula.

3.39 Remark

The result 3.38 is originally shown in [4]. It is proved there with different methods. The

moduli space of stable maps is not used there, but Hilbert schemes. Both languages have

their advantages and disadvantages (see [32], remark 1.1). In the following, we want to

present some ideas of the proof, sticking to the language of stable maps in order to stay

consistent with the previous section. The results of [4] were reproved (and generalized) in

the language of stable maps in [32], for example. Also, a more general result (although

restricted to rational curves) is shown in [11] by means of stable maps.

3.40 Remark

Note that a collection of numbers satisfying the Caporaso-Harris formula is uniquely de-

termined by the initial values for d = 1. In particular, theorem 3.38 tells us that we can

compute the numbers Nα,β
cplx(d, g) recursively, starting with the initial value that there is

one line through two given points.

Let us now give some ideas for the proof of theorem 3.38. First, we have to take a slightly

different moduli space:

3.41 Definition

A quasi-stable map has the same properties as a stable map, the only difference is, that

the underlying curve is allowed to be disconnected. All constructions that work for stable

maps (the moduli stack, divisors, evaluation morphisms, forgetful morphisms and so on)

work for quasi stable maps in the same way. The moduli stack of quasi-stable maps is

denoted with M
′
g,n(P2, d).

3.42 Definition

Fix a line L in P

2. Let d ≥ 0 and g be given, and furthermore sequences

α = (α1, . . . , αm) and β = (β1, . . . , βm′) satisfying Iα + Iβ = d. Let Γ =

{q1,1, . . . , q1,α1, . . . , qm,1, . . . , qm,αm} ⊂ L be a set of general points on L.

Then we denote by V
Γ,(α,β)
n (d, g) the closure in M

′
g,|α|+n(P2, d) of the subset of quasi stable

maps

(C, x1,1, . . . , x1,α1 , . . . , xm,1, . . . , xm,αn , x1, . . . , xn, f)

(note that we choose this at first glance complicated labelling of the markings, because

the markings labelled xi,ji
will be required to be points of contact order i to L, whereas

the markings labelled xi will as usually be required to meet points)

satisfying

• each connected component of C maps birationally onto its image in P2,

• f−1(L) is a finite set

f−1(L) = {x1,1, . . . , x1,α1 , . . . , xm,1, . . . , xm,αm} ∪ {r1,1, . . . , r1,β1 , . . . , rm′,1, . . . , rm′,βm′
}

of |α| + |β| smooth points of C,
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• the divisor f∗(L) on C is given by

f∗(L) =
∑

i=1,...,m

∑

j=1,...,αi

i · xi,ji
+

∑

i=1,...,m′

∑

j=1,...,βi

i · ri,ji

and

• f(xi,ji
) = qi,ji

for all i = 1, . . . ,m and ji = 1, . . . , αi.

This is a map-theoretic equivalent of the Severi variety in [4].

3.43 Theorem

V
Γ,(α,β)
n (d, g) is a substack of dimension 2d + g + |β| − 1 + n.

For a proof, see [32], Theorem 3.1.

3.44 Remark

Similar to the proof of Kontsevich’s formula, the idea of the proof of theorem 3.38 is to

determine the number of points in the intersection product
∫

[V
Γ,(α,β)
n (d,g)]

(
ev∗1(p1) ∩ . . . ∩ ev∗n(pn)

)
,

where p1, . . . , pn is a set of points in general position in P2. The number n is chosen to be

equal to 2d + g + |β| − 1, in order to get indeed a 0-dimensional intersection. Analogously

to what we have seen in section 3.2 (see for example remark 3.17), it is not at all obvious

that the quasi stable maps we count then are actually in bijection to the image curves

through the appropriate number of points. (Of course, the image curve will be a curve that

fulfills the requirements of definition 3.35). That is, also if we are able to determine this

intersection product, we still have to worry about the enumerative interpretation of this

result. We refer to [32], chapter 4 for a discussion of this question. The result presented

there is that for P2 (actually, it is shown for more general surfaces than P2) the numbers

we get are enumerative, that is, by computing this intersection product, we actually count

the numbers Nα,β
cplx(d, g) of definition 3.35.

3.45 Notation

Intersection products of the form
∫

[V
Γ,(α,β)
n (d,g)]

(
ev∗1(p1) ∩ . . . ∩ ev∗n(pn)

)
,

or more generally, intersection products that should count curves satisfying conditions of

higher contact order to a given subspace in addition to meeting certain given points, are

called relative Gromov-Witten invariants.

So let us next try to compute this intersection product.

As in remark 3.16, the divisor class of ev∗
i (pi) is independent of pi.

Therefore we can choose a point q ∈ L not in Γ and intersect V
Γ,(α,β)
n (d, g) with ev∗

1(q).

We know that we can make this choice for q, as the class of ev∗
1(q) does not depend on q.

We want to describe the components of this intersection again in terms of other substacks

V
Γ′,(α′,β′)
n′ (d′, g′). Once we understand the components of V

Γ,(α,β)
n (d, g) ∩ ev∗1(q) in terms
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of some other V
Γ′,(α′,β′)
n′ (d′, g′), we can intersect this substack with the remaining point

conditions (ev∗
2(p2) ∩ . . . ∩ ev∗n(pn)) to get a 0-dimensional set that we can count.

The equality

Nα,β
cplx(d, g) = V Γ,(α,β)

n (d, g) ∩
(
ev∗1(p1) ∩ . . . ∩ ev∗n(pn)

)

=
(
V Γ,(α,β)

n (d, g) ∩ ev∗1(q)
)
∩
(
ev∗2(p2) ∩ . . . ∩ ev∗n(pn)

)

leads to the recursive relations we want, when we insert the result of our study of the

intersection
(
V

Γ,(α,β)
n (d, g) ∩ ev∗1(q)

)
.

There are two types of components in this intersection.

First, there is a set K1 of components consisting of maps where one of the points ri,ji

is mapped to q. That is, x1 = ri,ji
and is now one of the points that is mapped to L.

(In example 3.33, in the step when we moved the third point p3 to the line L — which

corresponds to intersecting with ev∗
1(p3) for the point p3 ∈ L — the smooth cubic through

the 3 points on L is for instance an element of such a component of first type.)

Second, there is a set K2 of components consisting of maps where one component is

mapped onto the line L. Let (C, {xi,ji
}, x1, . . . , xn, f) be a general point of one component

of K2.

That is, C = C ′∪C ′′, x1 ∈ C ′ and f |C′(C ′) = L. It can be shown that indeed f |C′∗(C
′) =

1 · L (see [32], proof of Theorem 5.1). f |C′′(C ′′) is then a curve of degree d − 1.

There are several possibilities how the markings can be arranged on C ′ respectively C ′′.

Any subset of the {xi,1, . . . , xi,αi
} can lie on C ′′. For all i, let us assume the subset of

{xi,1, . . . , xi,αi
} of points on C ′′ consists of α′

i elements with α′
i ≤ αi. Altogether, the

subset of {x1,1, . . . , x1,α1 , . . . , xm,1, . . . , xm,αm} of points on C ′′ then has |α′| elements. Let

us denote this subset by {x′
1,1, . . . , x

′
1,α′

1
, . . . , x′

m,1, . . . , x
′
m,α′

m
}. There are

(α
α′

)
possibilities

for the choice of such a subset. The subset induces a subset Γ′ ⊂ Γ of the images of these

markings.

Assume the markings x2, . . . , xn′ , n′ ≤ n, lie on C ′′.

Our aim is now to relate the map

(C ′′, x′
1,1, . . . , x

′
1,α′

1
, . . . , x′

m,1, . . . , x
′
m,α′

m
, x2, . . . , xn′ , f |C′′)

to an element of a substack of the form V
Γ′,(α′,β′)
n′ (d − 1, g′) in M

′
g,|α′|+n′(P2, d − 1). For

this, we study the pullback of the line L on C ′′ as a divisor.

Of course, the pullback contains the markings {x′
1,1, . . . , x

′
1,α′

1
, . . . , x′

m,1, . . . , x
′
m,α′

m
}, the

multiplicity of (f |C′′)∗(L) at a point x′
i,ji

is i and f |C′′(x′
i,ji

) is the corresponding point in

Γ′.

The set of points in C ′∩C ′′ is mapped to the line L as C ′ is. Therefore, also these points are

contained in the divisor (f |C′′)∗(L). Let γ be the sequence defined by the multiplicity of

(f |C′′)∗(L) at these points. That is, if γ = (γ1, γ2, . . . , γl) there are γ1 points of multiplicity

1, γ2 of multiplicity 2, and so on in C ′ ∩ C ′′.
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By taking a family of maps around (C, {xi,ji
}, x1, . . . , xn, f) it can be seen that the pull-

back contains furthermore |β| points, with the corresponding multiplicities given by the

sequence β.

That is, we have for the pullback of the line L as divisor on C ′′

(f |C′′)∗(L) =
∑

i=1,...,m

∑

j=1,...,α′

i

i · x′
i,ji

+
∑

i=1,...,m′

∑

j=1,...,βi

i · r′i,ji
+
∑

i=1,...,l

∑

j=1,...,γi

i · ti,ji
,

where the set {ti,ji
} = C ′ ∩ C ′′ and the r′i,ji

are general smooth points on C ′′.

Let β′ := β + γ, then β′ ≥ β. As the image f |C′′(C ′′) is a curve of degree d − 1, we must

have Iα′ + Iβ′ = d − 1.

C ′′ is a curve of genus g′ := g − |γ| + 1.

The dimension of V
Γ,(α,β)
n (d, g) ∩ ev∗1(q) is equal to 2d + g + |β| − 1 + n − 2 by theorem

3.43. With the same argument, the dimension of V
Γ′,(α′,β′)
n′ (d − 1, g′) is

2d − 2 + g′ + |β′| − 1 + n′ = 2d − 2 + g − |β′ − β| + 1 + |β′| − 1 + n′

= 2d − 2 + g + |β| + n′.

But the dimension must be equal, as we are only interested in components of V
Γ,(α,β)
n (d, g)∩

ev∗1(q) of highest possible dimension — all other components are enumeratively irrelevant.

Therefore we have n′ = n, that is, the markings x2, . . . , xn must lie on C ′′.

Let us determine one more condition the difference of the genera g − g′ needs to satisfy:

the maximal number of points that can be in the intersection C ′ ∩ C ′′ is d − 1 (because

this is the degree of the image curve of C ′′, and this image curve can not have more than

d − 1 points in common with the line L.) Therefore |γ| ≤ d − 1 and also |γ| − 1 ≤ d − 2.

But |γ| − 1 is equal to g − g′, so g − g′ ≤ d − 2.

With all these notations, the map

(C ′′, x′
1,1, . . . , x

′
1,α′

1
, . . . , x′

m,1, . . . , x
′
m,α′

m
, x2, . . . , xn, f |C′′)

is an element of V
Γ′,(α′,β′)
n−1 (d − 1, g′).

Therefore, there is a rational map from the component of K2 containing this map to the

stack V
Γ′,(α′,β′)
n−1 (d − 1, g′) which forgets the component C ′. This map is of degree

(β′

β

)
, as

there are γ = β′ − β possibilities how C ′ can be connected to C ′′.

Summarizing, we have the following result proved in [32], Theorem 5.1:

3.46 Theorem

Let K be an irreducible component of V
Γ,(α,β)
n (d, g) ∩ ev∗1(q) (as defined in 3.42). Then

• K ⊂ K1 is a component of

V
Γ∪{q},(α+ek,β−ek)
n−1 (d, g) ⊂ M

′
g,|α|+n(P2, d),

(where k denotes the contact order of f(C) with the line L at the point q that is

equal to one of the points ri,ji
); or
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• K ⊂ K2 is a component that can be mapped with a degree
(β′

β

)
map to some

V
Γ′,(α′,β′)
n−1 (d − 1, g′) ⊂ M

′
g′,|α′|+n−1(P

2, d − 1),

where we have the following restrictions to the possible choices of α′, β′ and g′:

α′ ≤ α,

β′ ≥ β,

Iα′ + Iβ′ = d − 1,

g − g′ = |β′ − β| − 1 and

d − 2 ≥ g − g′.

All that remains to be done is to compute the multiplicities with which the different

components occur in the intersection V
Γ,(α,β)
n (d, g) ∩ ev∗

1(q). The results are stated in the

following two propositions:

3.47 Proposition

In the intersection V
Γ,(α,β)
n (d, g) ∩ ev∗

1(q), each component of K1 (as in 3.46) belonging to

V
Γ∪{q},(α+ek,β−ek)
n−1 (d, g) occurs with multiplicity k.

For a proof, see [32], Proposition 6.2.

3.48 Proposition

In the intersection V
Γ,(α,β)
n (d, g) ∩ ev∗

1(q), each component of K2 (as in 3.46) that can be

mapped to V
Γ′,(α′,β′)
n−1 (d − 1, g′) occurs with multiplicity Iβ′−β.

For a proof, see [32], Proposition 6.8.

3.49 Remark

The proofs of the propositions 3.47 and 3.48 are a very hard part of the proof of the

Caporaso-Harris formula. One advantage of the tropical proof we will present in chapter

8 is that the analogous argument is a lot easier in the tropical setting.

Finally, let us sum up our results so far to derive the Caporaso-Harris formula. Consider

once more the equality

Nα,β
cplx(d, g) =

(
V Γ,(α,β)

n (d, g) ∩ ev∗1(q)
)
∩
(
ev∗2(p2) ∩ . . . ∩ ev∗n(pn)

)

Here, we can now replace
(
V

Γ,(α,β)
n (d, g) ∩ ev∗1(q)

)
by

∑

k

k · V
Γ∪{q},(α+ek ,β−ek)
n−1 (d, g)

+
∑(

β′

β

)
·

(
α

α′

)
· Iβ′−β · V

Γ′,(α′,β′)
n−1 (d − 1, g′),

where the second sum is taken over all β′, α′ and g′ satisfying the same requirements as

needed for the Caporaso-Harris formula (see 3.37).

Intersecting this equation with ev∗2(p2)∩ . . .∩ ev∗n(pn) gives the desired result, the formula

of theorem 3.38.
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3.50 Example

Let us revisit example 3.33. Now we want to apply the recursive relations given by the

Caporaso-Harris formula to check again what we have done before, where we used only

some pictures to convince ourselves. We want to determine N
(0),(3)
cplx (3, 0), that is, the

number of rational cubics through 8 points. In the first step, we get

N
(0),(3)
cplx (3, 0) = N

(1),(2)
cplx (3, 0).

That is, we just get the same number if we count rational cubics that pass through one

fixed point on the line L, and in addition through 7 points. The second step yields

N
(1),(2)
cplx (3, 0) = N

(2),(1)
cplx (3, 0) + N

(0),(2)
cplx (2, 1),

where the second summand contributes 0, because there are no elliptic conics. That is,

we can as well count the number of rational cubics that pass through 2 fixed points on L

and in addition through 6 more points. This corresponds to our results from 3.33, where

we noticed that the line L was just determined by the two points we specialized to lie on

L.

The third step is the first one where we get some degenerations:

N
(2),(1)
cplx (3, 0) = N

(3),(0)
cplx (3, 0) + 2 · N

(0),(2)
cplx (2, 0) + 2 · N

(1),(1)
cplx (2, 1).

The last summand does not contribute, as before, because there are no elliptic conics. The

factor 2 with which we count the second summand comes from the binomial coefficient(β′

β

)
, which counted the number of possibilities how the two components of the stable map

can be attached to each other. This was precisely our argument before in 3.33. We can

insert the recursively known result N
(0),(2)
cplx (2, 0) = 1. In the last step finally, there is no

contribution from the first type of component, K1:

N
(3),(0)
cplx (3, 0) = 2 · N

(0),(0,1)
cplx (2, 0) + 3 · N

(1),(1)
cplx (2, 0) + N

(0),(2)
cplx (2,−1) + 3 · N

(2),(0)
cplx (2, 1).

The last summand does not contribute, as before. The first summand has to be counted

with the factor 2. This time, the factor comes from the multiplicity Iβ′−β, with which we

have to count this component. The second summand comes with the factor 3, it is due to

the possibilities
(

α
α′

)
how the fixed points on L that the curve is required to meet can be

distributed on the two components. We can insert now the recursively known terms and

get N
(0),(0,1)
cplx (2, 0) = 2, N

(1),(1)
cplx (2, 0) = 1 and N

(0),(2)
cplx (2,−1) = 3, where the last equality is

due to the possibilities how the markings can be arranged on the two lines.

Altogether, we have

N
(0),(3)
cplx (3, 0) = 2 · N

(0),(2)
cplx (2, 0) + 2 · N

(0),(0,1)
cplx (2, 0) + 3 · N

(1),(1)
cplx (2, 0) + N

(0),(2)
cplx (2,−1)

= 2 + 4 + 3 + 3 = 12,

so we get precisely what we had in 3.33 before.

3.51 Remark

In [4], section 1.4, Caporaso and Harris also showed an algorithm to count irreducible

curves. The ideas to prove this formula are just the same, we only have to restrict to con-

nected stable maps again, that is, we consider the substack corresponding to V
Γ,(α,β)
n (d, g)

in Mg,|α|+n(P2, d), not in M
′
g,|α|+n(P2, d).
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As we will give a tropical proof for this formula in chapter 8, too, we shortly present this

result here.

By N
irr,(α,β)
cplx (d, g) we denote the numbers of irreducible curves satisfying the properties of

definition 3.35 in addition.

They fulfill the following recursive relation:

N
irr,(α,β)
cplx (d, g) =

∑

k|βk>0

k · N
irr,(α+ek,β−ek)
cplx (d, g)

+
∑ 1

σ

(
2d + g + |β| − 2

2d1 + g1 + |β1| − 1, . . . , 2dk + gk + |βk| − 1

)

·

(
α

α1, . . . , αk

)

·
k∏

j=1

((
βj

βj − βj′

)
· Iβj′

· N
irr,(αj ,βj)
cplx (dj , gj)

)

with the second sum taken over all collections of integers d1, . . . , dk and g1, . . . , gk and all

collections of finite sequences α1, . . . , αk, β1, . . . , βk and β1′ , . . . , βk′

satisfying

α1 + . . . + αk ≤ α,

β1 + . . . + βk = β + β1′ + . . . + βk′

,

|βj′ | > 0,

d1 + . . . + dk = d − 1 and

g − (g1 + . . . + gk) = |β1′ + . . . + βk′

| + k.

Here as usual
( n
a1,...,ak

)
denotes the multinomial coefficient

(
n

a1, . . . , ak

)
=

n!

a1! · . . . · ak!(n − a1 − . . . − ak)!

and correspondingly, for sequences α,α1, . . . , αk the multinomial coefficient is
(

α

α1, . . . , αk

)
=
∏

i

(
αi

α1
i , . . . , α

k
i

)
.

The number σ is defined as follows: Define an equivalence relation on the set {1, 2, . . . , k}

by i ∼ j if di = dj , gi = gj, αi = αj , βi = βj and βi′ = βj′ . Then σ is the product of the

factorials of the cardinalities of the equivalence classes.

3.4. A short overview of curves on toric surfaces

So far, we restricted our description of enumerative geometry to curves on P2. The reason

is that the main results which we cited here (and which we want to prove in the tropical

context in the chapters 7 and 8) — Kontsevich’s formula and the algorithm of Caporaso

and Harris — are restricted to curves in P2. However, there are also tropical curves which

do not correspond to complex curves in P2, but to complex curves on a different toric

surface. Some results can be shown for these tropical curves, too. Therefore, we want to

give a short overview based on [9] on toric surfaces and set up an enumerative problem
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for curves on arbitrary toric surfaces, too. For more details about toric surfaces, we refer

to [9].

3.52 Definition

The 2-dimensional torus is defined to be T := (C∗)2.

A toric surface is a normal variety X that contains T as a dense open subset, together

with a torus action T × X → X that extends the natural action of T on itself.

3.53 Example

P

2 is a toric surface. Let P2 be given by the coordinates {x : y : z}. Then the torus T

can be embedded as (t1, t2) 7→ (t1 : t2 : 1). The action

T × P2 → P

2 : ((t1, t2), (x : y : z)) 7→ (t1 · x : t2 · y : z)

extends the natural action of T .

The main idea about toric surfaces is that they can be described by a combinatorial

structure — by a fan. This combinatorial structure helps to describe a lot of properties

of the surface.

3.54 Definition

A polyhedral cone in R2 is a convex cone with apex at the origin, generated by finitely

many vectors. A polyhedral cone is called rational if it is generated by lattice vectors,

that is, by elements of Z2. It is called strongly convex if it contains no line through the

origin.

As all cones we are working with will have the described properties, we will by abuse of

notation call a strongly convex rational polyhedral cone just a cone.

3.55 Example

Cones can be 2-dimensional, 1-dimensional, or 0-dimensional — the latter, if they just

consist of the origin:

By a face of a cone we denote the cones that appear in the boundary — for a 2-dimensional

cone, this can be the two half rays that limit σ or the origin itself; for a 1-dimensional

cone, the origin is a face.

3.56 Definition

A fan F is a set of cones such that

• each face of a cone σ ∈ F is contained in F , too, and
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• the intersection of two cones is a face of each.

A fan is called complete if it covers the whole of R2.

3.57 Example

The following picture shows a complete fan:

It contains of 7 cones: 3 two dimensional cones, 3 one dimensional cones, and the origin.

3.58 Definition

By M := Hom(Z2,Z) we denote the dual lattice of Z2.

For a cone σ we define the dual cone σ∨ to be the set of vectors in M ⊗ R that are

nonnegative on σ.

σ∨ defines a semigroup Sσ = σ∨ ∩ M which in turn defines a group algebra C[Sσ].

Such a group algebra defines an affine variety Uσ := Spec(C[Sσ]), the affine variety asso-

ciated to σ.

3.59 Example

Let σ be the origin. The dual cone σ∨ is the whole plane. The intersection of σ∨ with the

dual lattice M ∼= Z

2 (hence, M itself) is as semigroup generated by the four vectors e1,

e2, −e1 and −e2. We write the semigroup structure multiplicatively. The four generators

of course fulfill two relations. We can therefore write the generators as x, x−1, y and

y−1. Therefore, C[Sσ] = C[x, x−1, y, y−1] and the affine variety associated to the origin,

Uσ := Spec(C[Sσ]), is just the torus.

3.60 Lemma

If τ is a face of a cone σ, then there is a map which embeds Uτ into Uσ as a principal

open subset.

For a proof, see [9], section 1.3.

3.61 Definition

Let F be a fan. Then we can define the toric surface XF associated to F in the following

way: for all cones σ ∈ F , we take the affine varieties Uσ as in 3.58 and glue them with the

aid of the maps from lemma 3.60.

3.62 Remark

Note that XF is indeed a toric surface: each fan contains the origin (0, 0) as a cone,



45

whose associated affine variety is T . The torus action is given on each Uσ by the inclusion

C[Sσ] → C[Sσ] ⊗ C[S(0,0)].

3.63 Remark

It is also possible to associate a fan to a given toric variety. In fact, it can be seen that

the corresponding construction is an equivalence of categories.

3.64 Example

Let us compute the group algebras and varieties corresponding to the cones in the fan of

example 3.57. The picture shows the three dual cones to the 2-dimensional cones.

These three dual cones are generated by −e1 and −e2, respectively e1 and (1,−1), respec-

tively e2 and (−1, 1). In none of the cases fulfill the two generators any relations. We

can therefore consider them as free generators of the semigroup Sσ. Hence each affine

variety Uσ = SpecC[x, y] corresponding to the two dimensional cones is just a copy of C2.

By computing the gluing maps (which are given by the affine varieties associated to the

1-dimensional cones, the rays) we can see that XF = P

2.

Here are some basic properties of toric surfaces that we can read off from the combinatorial

description by the fan:

3.65 Lemma

The toric surface associated to a fan is compact if and only if the fan is complete.

3.66 Lemma

An affine toric variety Uσ is nonsingular if and only if there are generators of σ which

can be completed to a lattice basis of Z2.

For proofs, see [9].

We can deduce the (non-surprising) fact that P2 is a nonsingular compact surface.

Another important property of toric surfaces is that we can also interpret the divisor

classes on a toric surface by means of the corresponding fan.

3.67 Lemma

Let F be a complete fan with rays (that is, 1-dimensional cones) τ1, . . . , τr. Then the

divisor class group Div(XF ) of XF is generated by divisors Dτi
defined by the rays τi,

where Dτi
is the closure of SpecC[τ⊥

i ∩ M ].

(τ⊥
i denotes the set of all vectors which are orthogonal to τi.)

For a proof, see [9], section 3.3.
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3.68 Remark

Let ∆ be a lattice polytope in Z2. We can draw a perpendicular ray to each side of ∆.

The union of these rays defines a complete fan in R2.

The integer length (see definition 2.11) of a side of ∆ associates a number to the corre-

sponding ray, and with this, to the corresponding divisor Dτi
. Let s1, . . . , sr be the sides

of the polygon, where each side si is dual to the ray τi. Let li denote the integer length of

si. So the polygon defines the divisor class l1 · Dτ1 + . . . + lr · Dτr .

That is, the polytope defines not only a toric variety (via the fan) but also a divisor class

in the toric surface.

Note that Div(XF ) is not freely generated by the Dτi
. The Dτi

satisfy two relations which

correspond to the condition that the polygon ∆ closes up.

3.69 Definition

Let ∆d be the triangle with vertices (0, 0), (d, 0) and (0, d).

3.70 Example

The perpendicular lines of the triangle ∆d from above obviously define the fan of P2 as in

example 3.57. The integer lengths d of the sides define the divisor class of curves of degree

d.

3.71 Definition

Due to remark 3.68 a polytope ∆ defines a toric surface and a divisor class on it. We

define Ncplx(∆, g) (and N irr
cplx(∆, g)) (analogously to definition 3.14 (and 3.18)) to be the

number of (irreducible) curves of genus g and of the corresponding divisor class in the

toric surface that pass through the appropriate number of points in general position.

Note that Ncplx(∆d, g) = Ncplx(d, g) with ∆d as in 3.69 (and the same for the corresponding

numbers of irreducible curves). As for the numbers Ncplx(d, g), we can also interpret the

more general numbers Ncplx(∆, g) as intersection products on the moduli space of stable

maps. The basic results from above hold in this case as well. Only, as mentioned before,

both Kontsevich’s formula and the algorithm of Caporaso and Harris are restricted to

curves in P2.
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4. The tropical enumerative problem in the plane

In this chapter, we would like to define tropical analogues N irr
trop(∆, g) of the numbers

N irr
cplx(∆, g) (respectively, tropical analogues Ntrop(∆, g) of the numbers Ncplx(∆, g)) that

were defined in 3.14 and 3.71. Also, we want to define tropical analogues of the moduli

spaces of stable curves and stable maps. In chapter 3, we have seen that these moduli

spaces were helpful to answer many classical enumerative problems. Of course, our aim

is to make answers to enumerative problems easier by using tropical geometry — there-

fore, we would like to work with an easy, combinatorial description of tropical curves as

mentioned in chapter 2. In the first two sections (4.1 and 4.2), we will introduce such a

combinatorial description of a tropical curve, and define the analogues of the moduli spaces

of stable curves, respectively stable maps. In the third section (4.3) we will compare the

new definition of a tropical curve with the ones we made in chapter 2. We will study the

moduli space of tropical curves in more detail in section 4.4.

An important result that we found in remark 3.16 for the numbers N irr
cplx(∆, g) (respec-

tively, Ncplx(∆, g) — see 3.18 and 3.71) was, that they do not depend on the position

of the points through which we count the curves (as long as the points are sufficiently

general). This statement was a consequence of the fact that the numbers N irr
cplx(∆, g) ap-

pear as intersection products on the moduli space of stable maps. In tropical geometry,

we cannot work with intersection products, as intersection theory is not yet defined in its

full extent in the tropical world. We therefore have to find another argument, why the

numbers N irr
trop(∆, g) do not depend on the position of the points that the tropical curves

are required to meet. We hope that our results will help to develop a theory of intersection

products in the tropical world.

In the fifth section (4.5), we will make the enumerative problem precise and define the

numbers N irr
trop(∆, g). The main theorem of this chapter — the theorem that the numbers

N irr
trop(∆, g) do not depend on the position of the points — is stated in 4.53. For its proof,

we need to equip the moduli space of tropical curves with more structure. In section 4.6

we will therefore introduce the structure of polyhedral complexes. In the last section (4.7)

finally, we will prove theorem 4.53, using a local moduli space. The statement that also

the numbers Ntrop(∆, g) do not depend on the position of the point will not be proved,

the proof is analogous.

The main result of this chapter — theorem 4.53 — was achieved in joint work with Andreas

Gathmann and published in [14] (though using different methods).

4.1. Abstract tropical curves

Following the ideas of chapter 2.3, we want to define parametrized tropical curves roughly

as graphs in R2 that satisfy the balancing condition. But in this definition, we also want

to take the ideas of chapter 3 into account. That is, we want to consider abstract tropical

curves first (also abstract n-marked curves), and then maps from these abstract curves to

R

2.

We will start with the definition of a graph.
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4.1 Definition

Let I1, . . . , Ik be closed (bounded or half bounded) real intervals. Choose some (not nec-

essarily distinct) boundary points P1, . . . , Pr and Q1, . . . , Qr of the intervals I1 ·∪ . . . ·∪ Ik.

The topological space Γ that is obtained by identifying Pi and Qi for all i = 1, . . . , r in

I1 ·∪ . . . ·∪ Ik is called a graph. We fix the following notations:

• The boundary points of the intervals I1, . . . , Ik are called the flags of Γ. The set of

flags is denoted by Γ′.

• The images of the flags in Γ are called the vertices of Γ. If F is a flag its image

vertex will be denoted by ∂F . The set of vertices is denoted by Γ0.

• For a vertex V we define the valence of V , valV , as the number of flags F with

∂F = V .

• The open intervals I◦1 , . . . , I◦k are open subsets of Γ, they are called the edges of Γ.

The set of edges is denoted by Γ1. A flag F belongs to exactly one edge of Γ which

will be denoted by [F ]. We can therefore also think of a flag F as the edge [F ]

together with a direction oriented away from the vertex ∂F .

• An edge is called bounded if its corresponding open interval is bounded, and un-

bounded otherwise. The set of bounded edges is denoted by Γ1
0, the set of unbounded

edges by Γ1
∞. The unbounded edges will also be called ends of Γ.

4.2 Example

The following picture shows four unbounded and one bounded interval and a choice of

boundary points pi, qi which are identified to get the graph Γ below.

P1

P2

P3

Q1 = Q2

Q3 = P4

Q4

We also need to define some properties of graphs:

4.3 Definition

A graph is called connected if Γ is connected as a topological space.

The genus of a graph is defined to be

g(Γ) := 1 − #Γ0 + #Γ1
0.

A graph is called 3-valent , if for all vertices V ∈ Γ0, we have val V = 3.

4.4 Remark

We can think of the graph Γ as a cell complex. Then we can see that

g(Γ) = 1 − χ(Γ) = 1 − dim H0(Γ,Z) + dim H1(Γ,Z).



49

As dim H0(Γ,Z) is equal to the number of connected components of Γ, a graph can only

have negative genus if it is disconnected. So let us assume Γ has k connected components

Γ1, . . . ,Γk. Then the genus g(Γi) is nonnegative. As the sum of the number of vertices in

each connected component is equal to #Γ0 and the same holds for #Γ1
0, we have

g(Γ1) + . . . + g(Γk) = k − #Γ0 + Γ1
0 = g(Γ) + k − 1.

If Γ is connected, the genus is equal to

g(Γ) = 1 − dim H0(Γ,Z) + dimH1(Γ,Z) = dimH1(Γ,Z).

An element in H1(Γ,Z) is a collection of bounded edges that form a loop. The genus g(Γ)

is the number of “independent” loops of the graph Γ. (For further information on cell

complexes and homology, see for example [31].)

We are now ready to define abstract marked tropical curves. Following an idea of

Mikhalkin, markings should be thought of as unbounded edges (see [21]).

4.5 Definition

An abstract tropical curve is a graph Γ such that all vertices V ∈ Γ0 have valence at least

3. An n-marked abstract tropical curve is a tuple (Γ, x1, . . . , xn), where Γ is a tropical

curve and x1, . . . , xn ∈ Γ1
∞ are distinct unbounded edges.

Two marked tropical curves (Γ, x1, . . . , xn) and (Γ′, x′
1, . . . , x

′
n) are isomorphic if there is

a homeomorphism ϕ : Γ → Γ′ mapping xi to x′
i for all i, and such that every edge of Γ is

mapped bijectively onto an edge of Γ′ by an affine map of slope ±1, that is, by a map of

the form t 7→ a ± t for some a ∈ R.

The set of all isomorphism classes of connected n-marked tropical curves with exactly n

unbounded edges and of genus g is called Mtrop, g,n.

4.6 Example

There is exactly one tropical curve in Mtrop, 0,3, since there is only one graph with 3

unbounded edges all of whose vertices have valence at least 3:

(we will always draw the marked unbounded edges as dotted lines). Hence Mtrop, 0,3 is

simply a point.

4.7 Remark

We can think of Mtrop, g,n as a tropical analogue of the space of stable curves Mg,n as

defined in 3.4. In fact, example 4.6 gives the expected result: both Mtrop, 0,3 and M0,3

are just points.
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4.8 Remark

The isomorphism condition of definition 4.5 means that every edge of a marked tropical

curve has a parametrization as an interval in R that is unique up to translation and sign.

In particular, every bounded edge e of a tropical curve has an intrinsic length that we will

denote by l(e) ∈ R. For an unbounded edge e ∈ Γ1
∞, we will say that l(e) = ∞.

For each flag, we can get rid of the ambiguity in translation and sign by choosing as a

normal form the parametrization that maps the edge [F ] to the interval [0, l([F ])], where

the flag F is mapped to 0. This parametrization is called the canonical parametrization.

4.9 Example

As a second example, let us consider Mtrop, 0,4. There are 4 different types of graphs with

four unbounded ends all of whose vertices have valence at least 3:

1

1

1
1

3

3 3

4

4

4 4

(1) (2) (3) (4)

2

2 2
2

3

The three types on the left differ from each other by the choice of two marked ends that

come together at a 3-valent vertex. The fourth type has just one 4-valent vertex. For the

first three types, the set of tropical curves of this type is parametrized by the length of the

bounded edge that links the two 3-valent vertices. As the length is required to be bigger

than or equal to 0, this set is parametrized by a half line. The fourth one does not have

a bounded edge at all, therefore, it is parametrized by a point. In fact, in can be seen as

the “limit” of all three other types. That is, the three half lines come together at a point

which corresponds to a curve of type 4.

Hence, Mtrop, 0,4 looks like a tropical line:

1

3 4

(4)

1
4

(1)

1

34

(3)

1

3 4

(2)

2

2

2

2

3

In the picture, the type which is parametrized by each half line is drawn next to it.
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Note that also here the theory coincides with the theory of stable maps, where M0,4 is

just a line (see 3.3).

4.2. Parametrized tropical curves

We are now ready to define parametrized tropical curves:

4.10 Definition

A parametrized tropical curve is a pair (Γ, h) where Γ is an abstract tropical curve and

h : Γ → R

2 is a continuous map such that:

(1) On each edge e of Γ the map h is of the form

h(t) = a + t · v

for some a ∈ R2 and v ∈ Z2 (i.e. “h is affine linear with rational slope”). The integral

vector v occurring in this equation if we pick for e the canonical parametrization

with respect to a chosen flag F of e (see remark 4.8) will be denoted by v(F ) and

called the direction of F .

(2) At every vertex V ∈ Γ0, the balancing condition is fullfilled:
∑

F∈Γ′|∂F=V

v(F ) = 0.

An n-marked parametrized tropical curve is a tuple (Γ, h, x1, . . . , xn) where (Γ, h) is a

parametrized tropical curve, and x1, . . . , xn ∈ Γ1
∞ are distinct unbounded edges of Γ that

are mapped to a point in R2 by h (that is, v(F ) = 0 for the corresponding flags).

Two n-marked tropical curves (Γ, h, x1, . . . , xn) and (Γ′, h′, x′
1, . . . , x

′
n) are called isomor-

phic if there is an isomorphism ϕ : (Γ, x1, . . . , xn) → (Γ′, x′
1, . . . , x

′
n) of the underlying

abstract curves as in definition 4.5 such that h′ ◦ ϕ = h.

4.11 Example

The following picture shows a parametrized tropical curve of genus 0:

R

2

x1

h

x2

x3

x4

x5

h(x5)
h(x2)

h(x1)

h(x4)

h(x3)

The marked unbounded edges are, as always, drawn as dotted lines. Their images in R2

are just points. Note that the balancing condition is fulfilled at each vertex. Take for

example the vertex to which x1 is adjacent: x1 is contracted to a point, that is v(x1) = 0.

The other two flags adjacent to that vertex have the directions (−1, 0) and (1, 0). Or take
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the vertex on the right next to it: there are three flags that map to it, and their directions

are (−1, 0), (0,−1) and (1, 1).

4.12 Remark

The map h of a parametrized tropical curve (Γ, h, x1, . . . , xn) does not need to be injective

on the edges. It may happen that v(F ) = 0 for a flag F , that is, the edge [F ] is contracted

to a point in R2. The remaining flags around the vertex ∂F then satisfy the balancing

condition themselves. If ∂F is a 3-valent vertex, this means that the two other flags F1 and

F2 around ∂F have to satisfy v(F1) = −v(F2), that is, they point in opposite directions.

Hence, the image h(Γ) looks locally around h(∂F ) like a straight line.

This holds in particular for the marked unbounded edges x1, . . . , xn, as they are required

to be mapped to a point. Therefore, they can be seen as tropical analogues of the marked

points of stable maps as in 3.8. By abuse of notation we will therefore often call the

marked unbounded edges “marked points”.

Note that the contracted bounded edges also lead to “hidden moduli parameters”: if we

vary the length of a contracted bounded edge, then we arrive at a family of different

parametrized tropical curves whose images in R2 are all the same. This behavior is well-

known for stable maps, too.

4.13 Remark

If the direction v(F ) ∈ Z

2 of a flag F of a plane tropical curve is not equal to zero

then it can be written uniquely as a positive integer times a primitive integral vector,

v(F ) = ω(F ) · u(F ). This positive integer ω(F ) is what we called the weight of the

corresponding edge in chapter 2.

4.14 Definition

The degree of an n-marked plane tropical curve is defined to be the unordered tuple

∆ = (v(F ); [F ] ∈ Γ1
∞\{x1, . . . , xn})

of directions of its non-marked unbounded edges. If this degree consists of the vectors

(−1, 0), (0,−1), (1, 1) each d times then we simply say that the degree of the curve is d.

4.15 Remark

As in chapter 2.3, we can draw the dual to the image of a parametrized tropical curve.

For each edge, we draw a line segment perpendicular to its image. We know that this dual

is a subdivision of a polygon called Newton polygon.

In particular, we can draw the duals to the images of the unbounded edges

Γ1
∞\{x1, . . . , xn}. This corresponds to the boundary of the Newton polygon. By abuse of

notation, the Newton polygon is also denoted by ∆.

In chapter 6, we will see that parametrized tropical curves occur as limits of complex curves

in toric surfaces. In 3.68 we have seen that a Newton polygon ∆ defines a toric surface

together with a divisor class. Also vice versa, a toric surface together with a complex curve

determines a Newton polygon. We will see in chapter 6 that the parametrized tropical

curves that occur as limits of a complex curve on a toric surface given by ∆ are of degree
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∆. This justifies in particular why we call a tropical curve whose degree consists of the

vectors (−1, 0), (0,−1), (1, 1) each d times (or, in the dual language: whose degree is the

triangle ∆d with vertices (0, 0), (d, 0) and (0, d), see definition 3.69) a tropical curve of

degree d — they occur as limits of degree d complex curves in P2.

Now we want to define a moduli space for parametrized tropical curves of a given degree.

4.16 Definition

For all g, n ≥ 0 and ∆, let Mtrop, g,n(∆) be the set of all isomorphism classes of connected

parametrized tropical curves (Γ, h, x1, . . . , xn) of degree ∆ and genus g′ ≤ g.

4.17 Remark

As in the classical situation, we can also drop the requirement that Γ should be a con-

nected graph. The space M′
trop, g,n(∆) of not necessarily connected parametrized tropical

curves will help to determine the numbers Ntrop(∆, g) of not necessarily irreducible tropical

curves. Here, we restrict to the connected case. Some arguments will be less complicated

for connected tropical curves. However, the main ideas do not change when we allow

disconnected curves, too.

We will study the space Mtrop, g,n(∆) in more detail in chapter 4.4, but before we do so,

let us compare the new definition of a tropical curve with the definitions from chapter 2.

4.3. The comparison of parametrized tropical curves with the defini-

tions of tropical curves from chapter 2

From theorem 2.15 and remark 2.19 we know that each tropical curve associated to a

complex curve over the completion of the field of Puiseux series (as defined in 2.4) (and

with this, each tropical curve associated to a tropical polynomial as defined in 2.7) arises as

the image of some parametrized tropical curve, because it looks like the image of a graph

which fulfills the balancing condition. However, it is not self-evident that we can find a

complex curve C for each parametrized tropical curve such that the image h(Γ) ⊂ R

2

coincides with Val(C). (Respectively, it is not clear that we can find a tropical polynomial

such that the tropical curve associated to it is equal to h(Γ).)

In theorem 4.27, we will cite a result by Speyer that specifies which parametrized tropical

curves actually come from a complex curve, that is, for which image h(Γ) ⊂ R

2 of a

parametrized tropical curve we have h(Γ) = Val C for a complex curve C ⊂ (K∗)2. (Of

course, there can be several parametrizations for a given image h(Γ).)

But before we can do so, we have to define some more properties for parametrized tropical

curves. It will not be possible to show in general that all parametrized tropical curves

come from complex curves. In fact, it will only be possible for those parametrized tropical

curves that satisfy a special property we are about to define.

4.18 Notation

Recall that we decided to work with the space Mtrop, g,n(∆) (see 4.16 and 4.17). That is,

we assume the underlying graphs Γ to be connected for the whole chapter, unless otherwise

specified.
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4.19 Definition

The combinatorial type of an abstract tropical curve is the homeomorphism class of Γ

relative x1, . . . , xn, that is, the data of (Γ, x1, . . . , xn) modulo homeomorphisms of Γ that

map each marked point xi to itself. (That is, the information about the length l(e) of the

edges of Γ is lost.)

The combinatorial type of a parametrized tropical curve (Γ, h, x1, . . . , xn) is the data of

the combinatorial type of the abstract tropical curve (Γ, x1, . . . , xn) together with the

direction v(F ) for each flags F of Γ′.

Mα
trop, g,n(∆) is defined to be the subset of Mtrop, g,n(∆) of parametrized tropical curves

of type α.

4.20 Example

The following picture shows a graph together with the information about the directions

of all flags — hence a combinatorial type. (Note that for two flags F and F ′ which belong

to the same edge [F ] = [F ′] = e, the direction v(F ) is equal to −v(F ′). Therefore we only

note one of these directions in our picture.) Below, the images of two tropical curves of

this type are shown.
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4.21 Lemma

For every combinatorial type α occurring in Mtrop, g,n(∆) the space Mα
trop, g,n(∆) is natu-

rally an (unbounded) open convex polyhedron in a real vector space of dimension 2+ #Γ1
0,

that is a subset of a real vector space given by finitely many linear equations and finitely

many linear strict inequalities.

Proof:

The combinatorial type fixes the graph Γ up to homeomorphism, and for each edge, the

direction. It does not fix the length l(e) of a bounded edge e of the graph. (Note that the
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length of the image h(e) is determined by the length l(e) and the direction v(F ) of a flag

F with [F ] = e.) Nor does the combinatorial type fix the position of the image h(Γ) in

R

2.

Choose a “root vertex” V ∈ Γ0. Two coordinates are given by the position of the image

of that root vertex h(V ) ∈ R2. The remaining coordinates are given by the lengths l(e)

of the bounded edges. That is, we can embed Mα
trop, g,n(∆) into R2+#Γ1

0 .

Of course, the lengths have to be nonnegative. Also, if the curve has higher genus, the

lengths cannot be chosen independently. On the contrary, every loop leads to conditions

on the lengths of the images of bounded edges in the loop. Therefore, the subset in R2+#Γ1
0

that corresponds to parametrized tropical curves is given by the linear inequalities that all

lengths have to be nonnegative, and by the linear equations that the images of the loops

have to close up in R2. The polyhedron given by these conditions is unbounded, as for

example the root vertex can be moved in the whole of R2.

4.22 Remark

A different choice of the root vertex or of the order of the bounded edges in lemma 4.21

leads to a linear isomorphism on Mα
trop, g,n(∆) of determinant ±1. This is obvious for the

order of the bounded edges. If we choose another root vertex V ′, the difference h(V )−h(V ′)

of the images of the two vertices is given by
∑

F l([F ]) · v(F ), where the sum is taken over

a chain of flags leading from V to V ′. This is obviously a linear combination of the lengths

of the bounded edges, that is of the other coordinates of Mα
trop, g,n(∆). As these length

coordinates themselves remain unchanged it is clear that the determinant of this change

of coordinates is 1.

Note that not only Mα
trop, g,n(∆) is embedded naturally into R2+#Γ1

0 . If we fix a lattice in

Mα
trop, g,n(∆), then this lattice is also uniquely embedded into Z2+#Γ1

0 , as the determinant

of a coordinate change is ±1. We will see later on that it seems natural to think of

Mα
trop, g,n(∆) as a vector space with a lattice (see example 4.57).

4.23 Remark

The dimension of the space Mα
trop, g,n(∆) in R2+#Γ1

0 can be estimated. We know that

Mα
trop, g,n(∆) is a polyhedron given by some linear inequalities and some linear equalities.

To estimate the dimension, we only have to check how many independent linear equalities

there are. Let the genus of a tropical curve of type α be g′. Choose a set of g′ generators

of H1(Γ,Z). Such a generator is a loop in Γ, that is, it consists of some bounded edges

that form a loop. The bounded edges are equipped with a direction by the fixed type α.

The condition that the image of this loop closes up gives therefore 2 linear conditions on

the lengths of the bounded edges in the loop. Altogether, we get 2g′ linear conditions.

As we chose generators of H1(Γ,Z), these conditions are in fact enough to guarantee

that all loops close up. However, in general we do not know whether these conditions

are independent (an example where this is not the case can be found in 4.34). For the

dimension of Mα
trop, g,n(∆), we therefore get

dimMα
trop, g,n(∆) ≥ 2 + #Γ1

0 − 2g′.
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4.24 Definition

The expected dimension of the space Mα
trop, g,n(∆) (defined in 4.19), where α is a combi-

natorial type of a tropical curve of genus g′ ≤ g, is defined to be

edim
(
Mα

trop, g,n(∆)
)

= 2 + #Γ1
0 − 2g′.

4.25 Remark

If Γ is a 3-valent graph of genus g′ ≤ g with k unbounded edges, then it has k − 3 + 3g′

bounded edges. (If Γ has also higher valent vertices, then the number of bounded edges

is smaller.) Therefore

edimMα
trop, g,n(∆)) ≤ 2 + (n + #∆) − 3 + 3g′ − 2g′

= n + #∆ − 1 + g′

≤ n + #∆ + g − 1,

with equality if and only if α is the combinatorial type of a 3-valent tropical curve of genus

g. (The number of unbounded edges is prescribed with the degree ∆ and the number of

markings n.)

That is, we have to choose n = #∆+ g−1 points in R2 in order to expect a finite number

of tropical curves that meet them.

4.26 Definition

A parametrized tropical curve of combinatorial type α is called regular , if the dimension

of the space Mα
trop, g,n(∆) coincides with the expected dimension. Otherwise, it is called

superabundant .

We are now ready to state the result of Speyer that tells us which parametrized tropical

curves actually come from complex curves:

4.27 Theorem (Speyer’s Theorem)

For every regular parametrized tropical curve (Γ, h) (without markings) there is a complex

curve C defined over the completion K of the field of Puiseux series (as defined in section

2.1), such that h(Γ) is equal to the tropical curve associated to C.

For a proof, see [27], Theorem 5.0.4.

4.28 Remark

Note that the image h(Γ) of a superabundant parametrized tropical curve can allow a

regular parametrization, too. This shows that the image h(Γ) can come from a complex

curve even though the chosen parametrization is superabundant. (For example, the im-

ages of the curves from example 4.34 with the double edges can also be parametrized

by a graph where the double edges are replaced by one edge of higher weight. Such a

parametrization is regular.) In fact, plane tropical curves can be parametrized regularly

(see [23], corollary 2.24). Hence all plane tropical curves come from complex curves. As we

work with parametrized tropical curves here however, we still make the difference between

superabundant and regular parametrized curves.
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4.29 Remark

Note the different notations in [27] and here. What we call “tropical curves associated

to a curve C over the Puiseux series” is just called “tropical curve” by Speyer. What we

call parametrized tropical curve is called “zero-tension curve” by Speyer. His notation

puts more emphasis on what we are actually interested in. He wants to gain information

about complex curves by using tropical curves, therefore, he only calls those objects a

tropical curve that actually come from a complex curve. However, theorem 4.27 tells us

that we consider at least in general cases the right objects — those who actually come

from a complex curve — when considering parametrized tropical curves. We prefer to call

the balanced graphs where we cannot be sure if they come indeed from a complex curve

also (parametrized) tropical curves, because we need them as “boundary objects”. In

order to avoid confusion, we always add “parametrized”, “associated to a complex curve”

or “associated to a tropical polynomial” whenever it is necessary to specify what we are

talking about.

4.4. The moduli space of parametrized tropical curves

Let us come back to the space Mtrop, g,n(∆). In section 4.3, we defined for each combinato-

rial type α a subset of this space. We would now like to study how the space Mtrop, g,n(∆)

can be described using the subsets Mα
trop, g,n(∆).

4.30 Lemma

For all g, n and ∆ there are only finitely many combinatorial types occurring in the space

Mtrop, g,n(∆) (see definitions 4.16 and 4.19).

Proof:

For all g′ ≤ g, n and ∆ there are only finitely many homeomorphism classes of connected

graphs Γ of genus g′ and with n + #∆ unbounded edges. Furthermore, by 2.15 the image

h(Γ) is dual to a subdivision of the polygon associated to ∆. In particular, this means

that the absolute value of the entries of the vectors v(F ) is bounded in terms of the size

of ∆. Therefore there are only finitely many choices for the direction vectors.

4.31 Proposition

Let α be a combinatorial type occurring in Mtrop, g,n(∆). Then every point in M
α
trop, g,n(∆)

(where the closure is taken in R2+#Γ1
0, see lemma 4.21) can naturally be thought of as an

element in Mtrop, g,n(∆). The corresponding map

iα : M
α
trop, g,n(∆) → Mtrop, g,n(∆)

maps the boundary ∂Mα
trop, g,n(∆) to a union of strata Mα′

trop, g,n(∆) such that α′ is a

combinatorial type with fewer internal edges than α. Moreover, the restriction of iα to

any inverse image of such a stratum Mα′

trop, g,n(∆) is an affine map.

Proof:

Note that by the proof of 4.21 a point in the boundary of the open polyhedron

Mα
trop, g,n(∆) ⊂ R

2+#Γ1
0 corresponds to a tuple (Γ, h, x1, . . . , xn) where some bounded

edges e have length l(e) = 0. Such a curve is of a different combinatorial type then,
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because the homeomorphism class of the graph has changed. For all edges e with length

l(e) = 0 the two flags F and F ′ with [F ] = [F ′] = e are identified. We can as well remove

the edges of length 0 then. Note that the balancing condition will be fulfilled at the new

vertices. Two examples what this can look like are shown in the following picture. The

edges who tend to have length zero when we move towards the boundary of the open

polyhedron Mα
trop, g,n(∆) are drawn in bold.

Γ1

ΓΓ Γ1

Let Γ1 be the graph which is obtained by removing the edges of length 0. Note that Γ1 has

fewer bounded edges than Γ. The tuple (Γ1, h|Γ1 , x1, . . . , xn) is a parametrized tropical

curve again, possibly of a smaller genus than (Γ, h, x1, . . . , xn). This shows that the points

in the boundary ∂Mα
trop, g,n(∆) can naturally be thought of as parametrized tropical curves

in Mtrop, g,n(∆) themselves. The combinatorial types α′ that can occur in the boundary

of Mα
trop, g,n(∆), that is, in the image iα(∂Mα

trop, g,n(∆)), have by construction fewer

bounded edges than α. Finally, it is clear that the restriction of iα to the inverse image

of any stratum Mα′

trop, g,n(∆) is an affine map since the affine structure on any stratum is

given by the position of the curve in the plane and the lengths of the bounded edges.

4.32 Definition

We will say that a type α′ appears in the boundary of another type α, if there is a point

in ∂Mα
trop, g,n(∆) that is identified with a curve of type α′ (as in the proof of proposition

4.31).

4.33 Remark

Note that by proposition 4.31 it is possible that there is a type of genus g′ < g in the

boundary of a type of genus g. This is the reason why we allowed tropical curves of a

genus g′ < g in the space Mtrop, g,n(∆): they occur as deformations of genus g tropical

curves.

Let us consider the moduli space of tropical curves again, and recall that we want to use

it to count the images Val(C) of curves C over the Puiseux series. Assume there is a curve

C such that Val(C) is equal to the image h(Γ) of a parametrized tropical curve. Then this

property does not depend on the parametrization (Γ, h) of this image. Also, we have seen

in 4.27 that we can only be sure that the image h(Γ) comes from a complex curve if the

parametrization (Γ, h) is not superabundant. For our purpose to count complex curves

with the aid of tropical curves, the space Mtrop, g,n(∆) therefore seems to be too big. We

should exclude redundant parametrizations, that is, for example parametrizations with

contracted bounded edges (that is, edges which are mapped to a point by h, see 4.12), and

we should exclude superabundant curves. However, we cannot exclude all superabundant

parametrized curves from the space Mtrop, g,n(∆), as some can appear as deformations
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of regular curves (as in the second case of example 4.34). That is, superabundant curves

can lie in the boundary of a regular type. As we need a closed moduli space, we cannot

exclude these superabundant curves.

4.34 Example

We are going to present two superabundant curves, one which is not in the boundary of a

regular type, and one which is.

The following picture shows a 3-valent curve.

2 2

Vertices are drawn bold here to distinguish them between all the parallel edges. The

number 2 occurring over two edges denotes their weights.

Such a “flat” loop as it is given by the double edge makes the tropical curve superabundant,

as the two linear equations given by this loop are not independent. However this curve is

not in the boundary of a regular curve.

As second example, assume now that a regular tropical curve (Γ, h, x1, . . . , xn) contains

the graph in the following picture on the left as a subgraph, and assume we move towards

a point in the boundary of Mα
trop, g,n(∆) where the edges drawn in bold tend to have

length 0. This point corresponds to a tropical curve that has Γ1 as subgraph, a graph

with a double edge.

Γ Γ1

This curve has now again a flat loop, however, the loop does not end at edges which are

also parallel to the loop.

Types with such a flat loop will play a role later one, therefore we make the following

definition:

4.35 Definition

We call a type of a tropical curve of genus g where the graph contains Γ1 as in example

4.34 as a subgraph and is 3-valent else an exceptional type.

Our aim is now to define a subset called relevant subset of Mtrop, g,n(∆). It does not con-

tain parametrizations with contracted bounded edges, and it contains only superabundant

curves that appear as deformations of regular ones.

Note that all curves with a “flat” loop as in example 4.34 are superabundant. But only

those can occur in the boundary of a regular curve, where the flat loop happens due to the
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vanishing of some edges that were part of the loop. In particular, each vertex V adjacent

to the flat loop must be at least 4-valent, and as such a vertex V comes from (at least)

two 3-valent vertices, we will also have that the directions of the flags F with ∂F = V

span R2. This motivates the following definition:

4.36 Definition

Let V be a vertex of a graph Γ such that there are two flags adjacent to V that point

in the same direction — that is, for two flags F1 and F2 with ∂F1 = ∂F2 = V we have

u(F1) = u(F2). (u(Fi) denotes the primitive integer vector pointing in the direction of Fi

as in remark 4.13, u(Fi) · ω(Fi) = v(Fi)). We call such a vertex a vertex with a double

edge.

Let C = (Γ, h, x1, . . . , xn) be a tropical curve. If C has no contracted bounded edges, and

if for all vertices with double edges as above the directions of the flags adjacent to V span

R

2, then C is called relevant. (In particular, every vertex with a double edge of C is at

least 4-valent.)

(Note that the property of being relevant depends only on the combinatorial type of a

tropical curve C, not on C itself. We will therefore also call the type of C relevant.)

We define M̃trop, g,n(∆) ⊂ Mtrop, g,n(∆) to be the subset of relevant tropical curves which

satisfy in addition the following property: if they are of genus g′ < g, then they appear in

the boundary of a type of genus g. M̃trop, g,n(∆) is called the relevant subset .

4.37 Remark

Note that those 3-valent curves we exclude when passing to the relevant subset are not

important for enumerative arguments: later on, we will see that we have to count them

with multiplicity 0 (see definition 4.47).

Our next aim is to study the dimensions of the subsets Mα
trop, g,n(∆) of M̃trop, g,n(∆).

4.38 Definition

Let α be a combinatorial type of a relevant tropical curve C in M̃trop, g,n(∆). We define

its codimension to be

codim α :=
∑

V ∈Γ0

(val V − 3) + g − g′,

where g′ ≤ g denotes the genus of C. Note that the codimension is always a nonnegative

integer.

4.39 Remark

The idea of the concept of the codimension of a combinatorial type is that it should

correspond to the codimension of the stratum Mα
trop, g,n(∆) in the space M̃trop, g,n(∆).

Note that this is true for the “expected codimension”: the maximal expected dimension of

a stratum is 2n as we have seen in remark 4.25. As a 3-valent graph has n + #∆− 3+ 3g′

bounded edges, we can conclude that in general #Γ1
0 = n + #∆− 3 + 3g′ −

∑
(val V − 3).

This leads to an expected dimension of n + #∆ + g′ − 1 −
∑

(val V − 3) = 2n − codim α

for the type α. The following example shows that codim α is not always equal to the
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codimension of the stratum Mα
trop, g,n(∆) in M̃trop, g,n(∆). (However, proposition 4.41

gives a lower bound for the codimension of Mα
trop, g,n(∆) in M̃trop, g,n(∆) at least.)

4.40 Example

Assume we consider curves of genus 3. Then the combinatorial type of the curve in

the picture below has codimension 6 as there are two 4-valent and two 5-valent vertices.

Therefore we would expect dimMα
trop, g,n(∆) = 2n − codim α = 10 − 6 = 4. We have

dimMα
trop, g,n(∆) = 5 however: there are two dimensions for translations of the curve in

the plane, 2 for the bounded edges on the bottom which are not involved in any loop, and

one more for rescaling the whole curve.
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4.41 Proposition

Let n = #∆ + g − 1. For a relevant combinatorial type α occurring in M̃trop, g,n(∆) (see

4.36) we have

dimMα
trop, g,n(∆)





= 2n if codim α = 0;

= 2n − 1 if codim α = 1 or if α is exceptional;

≤ 2n − 2 otherwise.

Proof:

The proof of this proposition is based on the ideas of [23] proposition 2.23. Our result is

similar to [26] lemma 2.2 but differs in that we consider parametrized tropical curves and

not their images (so that we cannot apply Shustin’s technique of Newton polygons).

By lemma 4.21 we know that Mα
trop, g,n(∆) is the subset of R2+#Γ1

0 given by the conditions

that all coordinates corresponding to lengths are positive, and that the loops close up in

R

2. Let g′ ≤ g denote the genus of a curve of type α.

By remark 4.23, we expect Mα
trop, g,n(∆) to have dimension 2 + #Γ1

0 − 2g′. If α is of

codimension 0, then the expected dimension is edimMα
trop, g,n(∆) = 2 + #Γ1

0 − 2g =

2 + (#∆ + n − 3 + 3g) − 2g = 2n. If α is of codimension 1, the expected dimension is

2n−1. However, the 2g′ equations given by the loops of Γ do not have to be independent.

The expected dimension is only a lower bound. The aim is now to see that for relevant

curves of codimension 0 or 1, the dimension is equal to the expected dimension, whereas

for all other relevant curves, the codimension of Mα
trop, g,n(∆) is at least 2 (with one

exception: an exceptional type).
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Pick a tropical curve C = (Γ, h, x1, . . . , xn) in Mα
trop, g,n(∆). Choose a vertex V1 of maxi-

mal valence. Let L be a line in R2 through h(V1). (For some cases later on, we choose a

special line through h(V1), but for the moment, any line is good.)

Order the vertices of Γ starting with V1, such that the distance of their images in R2 from

L is increasing and such that on every line parallel to L no vertex lies between two other

with a lower number.

If there are more vertices besides V1 on L, we first order the ones left of V1 by increasing

distance of V1, and then the ones right of V1. (For some cases later one, we will choose a

different order for the points on the line L, but for the moment, this order is good.)

Orient the edges so that they point from the lower to the higher vertex. Unbounded edges

are always oriented so that they points from their vertex to infinity.

Two properties of the chosen order and orientation are important for our reasoning:

(1) at every vertex V , there is at least one edge that is oriented away from V and

(2) if two edges whose images are parallel point to the same vertex, they point in the

same direction.

The reason for the first property is the balancing condition.

V

The second property means that two parallel edges that point to the same vertex cannot

have opposite directions. Note first that two edges with opposite directions cannot point to

the same vertex if their images are not parallel to L. So assume the two edges are mapped

to a line parallel to L. Also, two edges that point to a vertex V have to be bounded. But

this means that they end at another vertex which lies also on the line parallel to L. We

have chosen the order of the vertices on a line parallel to L in such a way that at least

one of the two other end vertices of the two bounded edges is of higher order than V . But

this is a contradiction to the chosen orientation.

In the picture, the situation on the left is possible, the one on the right not.

We will now distinguish recursively 2g′ edges e1, . . . , eg′ , e
′
1, . . . , e

′
g′ as follows. For i =

1, . . . , g′ we let ei be a (bounded) edge contained in a loop of Γ\{e1, . . . , ei−1} such that

the vertex that this edge points to is maximal. Then T := Γ\{e1, . . . , eg′} is a maximal tree

in Γ. In particular, for all i = 1, . . . , g′ the edge ei closes a unique loop Li in T ∪{ei} ⊂ Γ.

We let e′i be the unique (bounded) edge of T that is contained in Li and adjacent to the

vertex that ei points to.
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The picture above shows an example. The edges ei and e′i are drawn in bold. Note that by

construction the edges e1, . . . , eg′ are all distinct and different from the edges e′1, . . . , e
′
g′ .

It may happen however that not all edges e′1, . . . , e
′
g′ are distinct. An example is shown in

the following picture:

2

1

34

L

In the picture, 4 is the highest number of a vertex contained in a loop. So we can for

example choose the edge from 3 to 4 as e1. Then, if we remove this edge, 4 is still the

highest number contained in a loop, and we can choose the edge from 2 to 4 as e2. Both

edges e′1 and e′2 are equal to the edge from 1 to 4.

By construction, ei and e′i always point to the same vertex, namely to the highest vertex

contained in the loop Li.

We will now define a set of conditional edges. We start with the 2g′ edges

e1, . . . , eg′ , e
′
1, . . . , e

′
g′ and remove some of these edges by applying the following rules at

each vertex V :

(i) if there is at least one edge e′i pointing to V that is not parallel to its corresponding

edge ei then we keep the edge e′i with this property such that i is maximal and

remove all other edges e′1, . . . , e
′
g′ that point to V ;

(ii) if there is no such edge then we remove all edges e′1, . . . , e
′
g′ that point to V .

The edges of e1, . . . , eg′ , e
′
1, . . . , e

′
g′ which remain after this procedure are called conditional

edges. Note that all edges e1, . . . , eg′ will end up to be conditional edges, and that all

conditional edges will be distinct.

We claim that for any tropical curve in Mα
trop, g,n(∆) the lengths of its conditional edges

are determined uniquely in terms of the lengths of all other edges. To see this apply

the following procedure recursively for i = g′, . . . , 1: assume that we know already the
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lengths of all edges ei+1, . . . , eg′ , e
′
i+1, . . . , e

′
g′ as well as of all unconditional edges. Then

by construction the only edges in the loop Li whose lengths are not yet known can be ei

and e′i (if V is the vertex that ei and e′i point to then all other edges in Li must point to

smaller vertices than V whereas all edges ej and e′j with j < i point to vertices greater

than or equal to V ). If ei and e′i are not parallel then the condition that Li closes up in

R

2 determines both their lengths uniquely. Otherwise e′i is an unconditional edge by (ii),

and ei is again determined uniquely by the condition that Li closes up.

It follows that the dimension of Mα
trop, g,n(∆) is at most equal to 2 + #Γ1

0 minus the

number of conditional edges. So let us determine how many conditional edges there are.

We claim that when passing from the 2g′ edges e1, . . . , eg′ , e
′
1, . . . , e

′
g′ to the conditional

edges we removed at most valV − 3 edges at each vertex V .

To see this, let V be any vertex. In case (i) above there is at least one edge pointing away

from V and one pair {ei, e
′
i} that we do not remove.

V

ei
e′i

In case (ii) all edges e′i are parallel to ei. By our chosen order, this is only possible if e′i
and ei point in the same direction. But C is assumed to be a relevant curve, that is, the

direction vectors of the flags adjacent to V have to span R2. That is, we keep at least one

ei, at least one edge that is pointing away from V , and then there must be another edge

adjacent to V , because otherwise R2 would not be spanned.

V
ei

e′i

As all edges are pointing away from V1, we did not remove any edge at V1 at all.

Therefore the number of conditional edges is at least

2g′ −
∑

V 6=V1

(val V − 3).

Note that the number of bounded edges is equal to #Γ1
0 = n+#∆−3+3g′−

(∑
V (val V −

3)
)

by remark 4.25 and due to the fact that every vertex of higher valence can be separated

by (val V − 3) edges to get a 3-valent graph.

Therefore, an upper bound for the dimension of Mα
trop, g,n(∆) is

2 + n + #∆ − 3 + 3g′ −
(∑

V

(val V − 3)
)
− 2g′ +

∑

V 6=V1

(val V − 3)

=n + #∆ + g′ − 1 − (val V1 − 3)

=2n − (g − g′) − (val V1 − 3).

Now we consider several cases, stopping at the first one that applies to α:
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• If codim α ≤ 1, then V1 is the only vertex that can possibly have valence 4.

So the number 2n − (g − g′) − (val V1 − 3) = 2n − codim α and it follows that

dimMα
trop, g,n(∆) = 2n − codim α as we know already that this number is a lower

bound by remark 4.23.

• If the number 2n−(g−g′)−(val V1−3) is at most 2n−2 then the statement follows

immediately.

• If there are 2 vertices V1 and V2 of valence 4 such that there is no flat loop on the

line connecting them between them as in example 4.34, we choose L to be the line

through h(V1) and h(V2). As we already fixed the numbers 1 and 2 for these two

vertices, we then cannot choose the order of the vertices on the line L as above.

Instead, we choose the following order: We start with the vertices that lie between

V1 and V2, and order them correspondingly to their distance to V1. Next, we take

the vertices on the opposite side of V1 and order them, too, by their distance to V1.

Then, we do the same thing with the vertices on the opposite side of V2:

3 4 5 2 9 108 7 6 1
L

The second property of our order (if two edges are parallel and point to a vertex,

then they point in the same direction) is no longer fulfilled. In fact, there may be a

vertex lying on the line L between V1 and V2. Then if there are two parallel edges

that point to Vr between V1 and V2, they do not need to point in the same direction.

In the picture above, we might for example have the following two edges oriented

towards V5:

3 4 5 2 9 108 7 6 1
L

However, this property of the orientation was only important to see that we do not

remove more than val V − 3 edges at every vertex V , when passing from the edges

e1, . . . , eg′ to the conditional edges. Note that now we assumed that there is no

flat loop between V1 and V2. That is, there cannot be a loop such that the vertex

Vr is the one with the highest number occurring in the loop. In particular, none

of the edges parallel to L that point to Vr are contained in the set e1, . . . , eg′ , and

therefore, we do not remove any edge at Vr. With the same argument, we do not

remove any edge at V2. Therefore, we can subtract val V2 − 3 ≥ 1 from the upper

bound above and get dimMα
trop, g,n(∆) ≤ 2n − 2.

• The last case that remains to consider is the one of a type of genus g, where there are

only 3 and 4-valent vertices, and all pairs of 4-valent vertices have a flat loop between

them. In this case the dimension is obviously the same for the combinatorial type

where each flat loop is replaced by one edge. This is then the type of a 3-valent curve

of a lower genus. If there were more than one flat loop, it is a type of codimension

at least 2 and we have already shown the statement for those. If there was only

one flat loop, then the type was exceptional. The type where we replaced the loop

by one edge is of codimension 1. Also for this type we have shown the statement

already.
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4.42 Corollary

Every 3-valent curve of genus g in M̃trop, g,n(∆) is regular.

Proof:

By the above, we have seen that the dimension of Mα
trop, g,n(∆) is equal to the expected

dimension for a type with codimα = 0.

Let us sum up the statements we made about the space M̃trop, g,n(∆).

By lemma 4.30 and proposition 4.31 we can think of it as being obtained by starting with

finitely many unbounded closed convex polyhedra Mα
trop, g,n(∆) and then gluing them

together by attaching each boundary ∂Mα
trop, g,n(∆) with affine maps to some polyhedra

Mα′

trop, g,n(∆). Proposition 4.41 gives us information about the dimensions of the strata.

In particular, we know the highest occurring dimension, and we know the types α such

that Mα
trop, g,n(∆) is of codimension 1 in the relevant subset.

This structure (the “glued polyhedra”) will be called a polyhedral complex and we will

study it in section 4.6. In fact, it would be nice if we could give the space M̃trop, g,n(∆)

the structure of an abstract tropical variety. However, the theory of abstract tropical

varieties is very much in its beginnings, so we will not apply this language (see [22]). The

structure of a polyhedral complex seems to be something that an abstract tropical variety

should carry. Before we learn more about polyhedral complexes, we come back to tropical

enumerative geometry.

4.5. The tropical enumerative problem

Having defined the moduli space of relevant parametrized tropical curves, we want to come

back to enumerative geometry.

4.43 Notation

The relevant subset M̃trop, g,n(∆) (defined in 4.36) is a suitable moduli space for our

following considerations. Therefore we will fix this space as moduli space of tropical

curves for the whole chapter.

An important notion from chapter 3 are the evaluation maps. We will define their tropical

analogues, too:

4.44 Definition

Let evi denote the i-th (tropical) evaluation map

evi : M̃trop, g,n(∆) → R

2 : (Γ, h, x1, . . . , xn) 7→ h(xi).

As xi is contracted to a point in R2 by h, this is well-defined.

By ev we denote the product evaluation map

ev = ev1 × . . . × evn : M̃trop, g,n(∆) → R

2n :
(
Γ, h, x1, . . . , xn) 7→ (h(x1), . . . , h(xn)

)
.

4.45 Lemma

On each subset Mα
trop, g,n(∆), the evaluation map evi from definition 4.44 is a linear map.
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Proof:

The coordinates on Mα
trop, g,n(∆) are by 4.21 given by a root vertex V and an order on

the bounded edges. Of course, these coordinates do not need to be independent, but if

they are not, they fulfill a linear condition themselves. As Γ is connected, we can reach xi

from the root vertex V by a chain of flags F , such that [F ] is a bounded edge. Then the

position of h(xi) is given as a sum

h(V ) +
∑

F

v(F ) · l([F ]),

where the summation goes over all flags F in the chain. Hence the position h(xi) is given

by two linear expressions in the coordinates of Mα
trop, g,n(∆).

For a given set of points P = (p1, . . . , pn) ∈ R2n, we would now like to count the tropical

curves that pass through P, that is, we would like to count inverse images of P under ev.

However, we have to count each inverse image with a certain multiplicity: As mentioned

in the introduction, the main object of this thesis is to achieve enumerative results for

complex curves with the help of tropical curves. More precisely, we want to count the

limits of amoebas Log(C) of complex curves C (respectively, images Val(C)) instead of

the complex curves themselves (see chapter 2). Each tropical curve comes therefore with

a natural multiplicity : there might be several complex curves C1, . . . , Ck such that the

limits of their amoebas are all equal to the same tropical curve. Then we have to count

this tropical curve k times.

This is only the idea why tropical curves have to be counted with a multiplicity at all. We

will not define the multiplicity in that way. Instead, we will define it in some combinatorial

way, and give an idea in chapter 6 why this definition coincides with the number of complex

curves that map to the tropical curve (under Log and the limiting process which we will

specify in chapter 6).

We need another definition before we can define the multiplicity:

4.46 Definition

Let C = (Γ, h, x1, . . . , xn) be a 3-valent parametrized tropical curve.

(1) A string in C is a subgraph of Γ homeomorphic either to R or to S1 (that is, a

“path” starting and ending with an unbounded edge, or a path around a loop) that

does not intersect the closures xi of the marked points.

(2) A tropical curve is called rigid if it contains no strings.

4.47 Definition

Let C = (Γ, h, x1, . . . , xn) be a 3-valent parametrized tropical curve of degree ∆ and genus

g′, and let n = #∆ + g′ − 1.

(1) The multiplicity of a vertex V ∈ Γ0 is defined to be the absolute value of the

determinant det(v1, v2), where v1 and v2 are two directions of flags adjacent to V .

The balancing condition tells us that it makes no difference which two of the three

flags adjacent to V we choose.
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(2) If C is rigid and regular, the multiplicity of C is defined to be the product of the

multiplicities of all vertices that are not adjacent to a marked point. Otherwise, the

multiplicity of C is defined to be 0.

Note that the multiplicity of a tropical curve C = (Γ, h, x1, . . . , xn) depends only on the

type α, not on the lengths of the bounded edges.

As already mentioned, we will see that for a rigid and regular tropical curve, the multiplic-

ity is equal to the number of complex curves of the corresponding degree and genus that

map to it (under Log and the limiting process). A reason why we define the multiplicity

of a nonrigid or superabundant tropical curve to be 0 is given in proposition 4.49.

Note that this definition of multiplicity differs from the definition given in [23], definition

4.15. There the multiplicity of a nonrigid or superabundant curve is not set to be 0.

4.48 Remark

Note that the multiplicity of a 3-valent nonrelevant curve is 0: either it contains a con-

tracted bounded edge, or it contains a vertex where the edges do not span R2, both leading

to a vertex of multiplicity 0.

4.49 Proposition

Let C be a 3-valent curve of genus g and type α in M̃trop, g,n(∆), and let n = #∆+ g− 1.

Then multC = 0 if and only if the evaluation map restricted to Mα
trop, g,n(∆) is not

injective.

Proof:

Let mult C = 0. We will study different cases:

• C is not rigid,

• C is not regular,

• there is a vertex of multiplicity 0.

First we note that the second case cannot occur, as every relevant 3-valent curve of genus

g in M̃trop, g,n(∆) is regular by 4.42.

Next, we deal with the third case. Assume V is a vertex of multiplicity 0. Then the flags

adjacent to V do not span R2. As C is relevant, it does not have a contracted bounded

edge, hence no edge of direction 0. As C is 3-valent, we have 3 flags adjacent to V , and as

none is of direction 0, two have to point in the same direction. But this is a contradiction

to the relevance of C again, as the edges around V need to span R2 in this case.

It remains to deal with the first case — C is not rigid. Then C = (Γ, h, x1, . . . , xn) contains

a string Γ1 ⊂ Γ. There is a deformation of C that changes the position of the string, but

neither the images of the marked points nor the lines, on which the images of the edges in

Γ \Γ1 lie. In particular, we can see that if we fix the position of the images of the marked

points, then there is a whole family of curves of the same combinatorial type such that the

marked points are mapped to the fixed images. Therefore ev |Mα
trop, g,n(∆) is not injective.

The following picture shows two examples of (images of) non rigid tropical curves, and

their deformations:
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For the other direction, assume ev is not injective on Mα
trop, g,n(∆). The set

(ev |Mα
trop, g,n(∆))

−1(P) is the set of all curves of type α that pass through P. Let C

be such a curve. Then C + ker(ev |Mα
trop, g,n(∆)) = (ev |Mα

trop, g,n(∆))
−1(P). Let v 6= 0 be a

vector in ker(ev |Mα
trop, g,n(∆)). Then v cannot only have nonzero entries at the coordinates

corresponding to the root vertex, as a translation of C, C + λ · v will not pass through P.

Therefore v has at least one nonzero entry at a coordinate corresponding to the length of

a bounded edge. This bounded edge is not mapped to a point, as C is relevant. But then

also the image of C + λ · v in R2 contains a longer (respectively shorter) bounded edge,

and is still passing through P.

For an edge e (respectively, for a vertex V ), we will say that the position of e (respectively

V ) is fixed in the family C + λv, if the line (point) to which e (respectively V ) is mapped

is the same for all curves in the family. Otherwise, we say that an edge (vertex) changes

position. Note that a vertex adjacent to a marked point cannot change position, as the

marked points are mapped to the same image points P in the family.

Remember also that at each vertex V of C the edges e1, e2 and e3 adjacent to V span

R

2. (We assumed that no edge is mapped to a point, that is, if e1, e2 and e3 do not span

R

2, two edges point in the same direction. But this cannot happen due to the relevance.)

Therefore the positions of two of the edges ei determine the position of V . If at least two

edges do not change position, then also V does not change position. Hence at each vertex

V that changes position there are at least two edges adjacent to V which change position.

We know that in the family C+λv there is an edge whose image grows longer (respectively

shorter). Therefore there must also be a vertex V which changes position.

Starting at V , we can follow one, say e1, of the (at least) two edges adjacent to V that

change position to the next vertex V2 (so V2 is the second vertex adjacent to e1). V2 must

change position, too. Therefore, there are again at least two edges adjacent to V2 which

change position, e1, and another, e2. So we can follow e2 to the next vertex and so on,

until we either reach our vertex V again, or until we reach an unbounded end, which is

not mapped to a point. In the second case, we can follow the second edge adjacent to V

which changes position, until we either reach V again or another unbounded end. In any

case, we finally end up with either a loop or a chain connecting two unbounded edges that

change position. We cannot have met a marked point in this procedure, as the marked

points do not change position. Therefore this loop respectively this chain connecting two

unbounded edges is a string. Hence C is not rigid.
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4.50 Lemma

Let C = (Γ, h, x1, . . . , xn) be a 3-valent curve of genus g.

Assume n = #∆ + g − 1. Then C is rigid if and only if every connected component of

Γ\
⋃

i xi has genus 0 and exactly one unbounded edge.

Assume n < #∆ + g − 1. Then C is not rigid.

Proof:

Let n = #∆ + g − 1. Let us first assume that every connected component of Γ\
⋃

i xi

has genus 0 and exactly one unbounded edge. Then C contains obviously no string and is

therefore rigid. Now assume C is rigid. Then every connected component of Γ\
⋃

i xi needs

to be rational and cannot have more than one unbounded edge. It remains to see that

there cannot be a component with no unbounded edge. To see this, remove the closures

of the marked points x1, . . . , xn from Γ one after the other. As C is 3-valent, each removal

can either separate one more component, or break a loop. As we end up with rational

components, g of the removals must have broken a loop. That is, we have 1+n− g = #∆

connected components. Therefore, each component has precisely one unbounded edge.

Now let n < #∆ + g − 1. Consider again Γ\
⋃

i xi. If one of the connected components

is not rational, then C contains a string. So let us assume all connected components

are rational. With the same argument as above, we can then see that there are #∆ − 1

connected components. Therefore, there must be at least one which contains more than

one unbounded edge. Hence C contains a string.

We would like to count tropical curves whose marked points are mapped to a certain given

set of points P = (p1, . . . , pn) ∈ R2n. That is, we would like to count the tropical curves in

ev−1(P). We already said that we have to count the tropical curves with their multiplicity.

However, the multiplicity is only defined for 3-valent curves. (Recall that 3-valent relevant

curves are regular by 4.42, therefore they are images of a complex curve by theorem 4.27.)

Therefore we have to make a restriction on the configurations of points — they have to

be in (tropical) general position.

4.51 Definition

A set of points P = (p1, . . . , pn) ∈ R2n is called to be in (tropical) general position, if the

types of all tropical curves C ∈ ev−1(P) are of codimension 0 as defined in 4.38, that is,

C is 3-valent and of genus g.

Note that the subset U ⊂ R2n of points in general position is the complement of a union

of polyhedra of dimension less than 2n. This is true because due to proposition 4.41 the

strata of types which are not of codimension 0 are of dimension less than 2n, and they are

mapped linearly to R2n by ev. It is in fact a consequence of our main theorem, 4.53, that

U is not only open and of top dimension, but even dense in R2.

We are now ready to formulate the tropical enumerative problem:

4.52 Definition

For all g, n and ∆, and for a set P = (p1, . . . , pn) ∈ R2n of points in general position as
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defined in 4.51 (where n = #∆ + g − 1), we define the number of tropical curves through

P counted with multiplicity as

N irr
trop(∆, g,P) =

∑

C∈ev−1(P)

mult(C),

where ev is defined in 4.44, and mult in 4.47.

Note that the sum on the right is indeed finite: by lemma 4.30, there are only finitely many

types α occurring in the space M̃trop, g,n(∆). If there is a type α such that Mα
trop, g,n(∆)

contains infinitely many preimages C ∈ ev−1(P), then the multiplicity of these curves is

0 due to proposition 4.49.

The aim is to show that the number N irr
trop(∆, g,P) does not depend on P. (Therefore, we

will also denote it by N irr
trop(∆, g) in the following.) More precisely, we want to prove the

following theorem:

4.53 Theorem

Let U ⊂ R2n denote the subset of points in general position. Then the map

U → N : P 7→ N irr
trop(∆, g,P)

is constant (where N irr
trop(∆, g,P) is defined in 4.52).

We could prove theorem 4.53 with the aid of Mikhalkin’s Correspondence Theorem (see

theorem 6.1, respectively [23], theorem 1). Roughly, it states that the number of tropical

curves through a set of points P = (p1, . . . , pn) ∈ R2n counted with multiplicity coincides

with the number of complex curves in the toric surface defined by ∆ through a set of

points (q1, . . . , qn) with pi = log |qi|. As the latter number N irr
cplx(∆, g) does not depend on

the position of the points (see 3.16 and 3.71), the result follows.

However, in this chapter we want to give a proof of theorem 4.53 within tropical geometry

which imitates the methods of stable maps.

Before we can start with the proof, we need to equip the moduli space of relevant tropical

curves with more structure.

4.6. The moduli space and the structure of polyhedral complexes

4.54 Definition

Let X1, . . . ,XN be (possibly unbounded) open convex polyhedra in real vector spaces. A

polyhedral complex with cells X1, . . . ,XN is a topological space X together with continuous

inclusion maps ik : Xk → X such that X is the disjoint union of the sets ik(Xk) and the

“coordinate changing maps” i−1
k ◦il are linear (where defined) for all k 6= l. We will usually

drop the inclusion maps ik in the notation and say that the cells Xk are contained in X.

The dimension dim X of a polyhedral complex X is the maximum of the dimensions of its

cells. We say that X is of pure dimension dim X if every cell is contained in the closure of

a cell of dimension dim X. A point of X is said to be in general position if it is contained

in a cell of dimension dimX.
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4.55 Definition

A morphism between two polyhedral complexes X and Y is a continuous map f : X → Y

such that for each cell Xi ⊂ X the image f(Xi) is contained in only one cell of Y , and

f |Xi
is a linear map (of polyhedra).

Let X and Y be two polyhedral complexes of the same pure dimension, and let f : X → Y

be a morphism. Let P ∈ X be in general position, and such that also f(P ) ∈ Y is in

general position. Then locally around P the map f is a linear map between vector spaces

of the same dimension. We define the multiplicity of f at P multf (P ) to be the absolute

value of the determinant of this linear map. Note that the multiplicity depends only on

the cell of X in which P lies. We will therefore also call it the multiplicity of f in this cell.

Now let Q ∈ Y be a point in general position. It is defined to be in f -general position, if

all points P ∈ f−1(Q) are in general position in X. Note that the set of points in f -general

position in Y is the complement of a subset of Y of dimension at most dimY −1, therefore

it is a dense open subset.

For a point Q ∈ Y in f -general position we define the degree of f at Q to be

degf (Q) =
∑

P∈f−1(Q)

multf (P ).

This sum is indeed finite: first of all there are only finitely many cells in X. Moreover, in

each cell (of maximal dimension) of X where f is not injective (that is, where there might

be infinitely many inverse image points of Q) the determinant of f is zero and with it also

the multiplicity for all points in this cell.

Note that the definition of the multiplicity multf (P ) in general depends on the coordinates

we choose for the cells. However, we will use this definition only for a morphism for which

the determinant does not depend on the chosen coordinates, if they are chosen in a natural

way.

4.56 Lemma

The space M̃trop, g,n(∆) (defined in 4.36) is a polyhedral complex of pure dimension 2n

and ev : M̃trop, g,n(∆) → R

2n a morphism of polyhedral complexes of the same dimension.

Proof:

The cells are obviously the sets Mα
trop, g,n(∆) corresponding to relevant types. By 4.21

they are open convex polyhedra. By proposition 4.31, their boundary is also contained

in M̃trop, g,n(∆), and the coordinate changing maps are linear. By proposition 4.41, the

highest dimension of such a cell is 2n. Furthermore, by definition of the relevant subset

each type of a lower genus is contained in the boundary of a type of genus g. Each

higher-valent vertex can be resolved to 3-valent vertices. Therefore each type is contained

in the boundary of a type of codimension 0. The evaluation map maps every cell of

M̃trop, g,n(∆) obviously to the only cell of the polyhedral complex (of pure dimension 2n)

R

2n. Furthermore, ev restricted to a cell is a linear map due to 4.45. Therefore ev is a

morphism between polyhedral complexes of the same dimension.
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In fact, it would be desirable to see that multev(C) is equal to the multiplicity mult C of

a tropical curve C. Then a different formulation of theorem 4.53 would be to show that

the map

P 7→ degev(P)

is constant on U . However, the computation of multev(C) requires the knowledge of a

basis of the space Mα
trop, g,n(∆). That is, we would need to find a set of vectors that span

the vector space given by the conditions of the loops. It is of course possible to compute

such a set of vectors for special given conditions, but not in general.

An example shows furthermore that in general the ev-multiplicity multev(C) will not be

equal to the multiplicity of C:

4.57 Example

The picture shows a curve of genus 1. Before we can calculate multev(C) we have to find a

basis of the parametrizing space of curves of this type. The root vertex is chosen to be V

as in the picture, and we have six coordinates for the lengths of the bounded edges. The

directions are indicated in the picture.

V

l4

l5l6

(
1
−1

)l3

l2
(

3
−1

)

(
−2
0

)
(
−3
−1

)

(
0
2

)

(
1
1

)

l1

x3

x1

x2

The two conditions of the loop are

1 · l2 − 1 · l4 = 0 and 1 · l2 + 1 · l4 − 2 · l5 − 2 · l6 = 0.

That is, a basis that generates the subspace in R8 defined by the two equations is for

example given by the following 6 vectors:

e1, e2, e3, e5, (0, 0, 0, 1, 0, 1, 1, 0) and (0, 0, 0, 0, 0, 0, 1,−1),

where the coordinates are chosen in the following order: first the two coordinates given

by the root vertex, then the coordinates of the lengths as indicated in the picture. Also,

we have to choose a chain of flags from V to each of the marked points xi, in order to

describe the position of h(xi) depending on the lengths of the edges in the chain. Let us
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choose the following:

h(x1) = h(V ) + l1 ·

(
−3

−1

)
,

h(x2) = h(V ) + l2 ·

(
1

1

)
+ l3 ·

(
0

2

)
,and

h(x3) = h(V ) − l6 ·

(
−2

0

)
.

If we evaluate this map at our chosen basis vectors, we get the following matrix as repre-

sentation of ev:



1 0 −3 0 0 0

0 1 −1 0 0 0

1 0 0 0 1 0

0 1 0 2 1 0

1 0 0 0 0 2

0 1 0 0 0 0




The determinant of this matrix can be computed to be 4, but the multiplicity of the curve

is 8. The reason for this is that we forget too many things that are important for the

structure of a tropical variety. Without having defined what a tropical variety should be,

we can say that it should also be equipped with a lattice (see remark 4.22) — in the case of

a tropical curve the integer lattice decides for example about the weight that is associated

to an edge of a certain direction. The space Mα
trop, g,n(∆) in the above example is given as

the intersection of two subspaces defined by the two equations that the loop closes. So we

also have to take into account how the two lattices of these two subspaces intersect. Also,

the coefficients of the equations of the loop can have a greatest common divisor which is

bigger than 1. Then the subspace defined by the equations is the same if we divide out this

factor. But the multiplicity of the curve is different if this factor is missing. In the above

example, the index of the two lattices of the two subspaces each given by one equation can

be computed to be 2 — the missing factor we needed to get the multiplicity of the curve.

In fact, it can be seen for a set of examples (of genus 1) that this is the correct solution:

the product of the determinant of ev, the greatest common divisors of the coefficients in

the equations of the loop and the index of the two lattices of the two subspaces each given

by one equation is equal to the multiplicity of a curve. However, this product is difficult to

compute in general, as we need to compute lattice bases for subspaces given by arbitrary

equations. For more information on lattices, we refer to [20].

As multev(C) is not equal to mult C in general, we intend to define another morphism,

which imitates the evaluation map in some sense, but has the advantage that its multi-

plicity at C coincides with multC. For this, we will in fact need a different space, which

is bigger than our moduli space of tropical curves. However, this definition will only work

locally. Before we start with the definition of this local bigger moduli space, we collect

the other ingredients which will be needed for the proof of theorem 4.53.
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4.7. The proof of theorem 4.53

Theorem 4.53 states that the map P 7→ N irr
trop(∆, g,P) is constant. We want to prove this

locally.

4.58 Lemma

The map P 7→ N irr
trop(∆, g,P) is locally constant at a point configuration P ′ in the subset

of R2n of points in general position.

Proof:

If P ′ is a configuration of points in general position then at any curve that counts for

N irr
trop(∆, g,P ′) with a non-zero multiplicity the map ev is a local isomorphism: let C ∈

ev−1(P ′) be a curve of type α with a nonzero multiplicity. By proposition 4.49, we know

that ev |Mα
trop, g,n(∆) is injective. Because P ′ is in general position, we know that codimα =

0 and therefore the dimension of Mα
trop, g,n(∆) is 2n by proposition 4.41. Therefore ev is

a local isomorphism.

4.59 Remark

By definition 4.51 and 4.55, the set of points in general position is equal to the set of points

in ev-general position. Recall that the points in ev-general position are the complement of a

polyhedral complex of codimension 1, that is, they form a finite number of top-dimensional

regions separated by “walls” that are polyhedra of codimension 1.

Due to lemma 4.58 it is sufficient for the proof of theorem 4.53 to consider a general point

on such a wall and show that P 7→ N irr
trop(∆, g,P) is locally constant at these points, too.

Such a general point on a wall is simply the image under ev of a general plane tropical

curve C of a combinatorial type α such that dimMα
trop, g,n(∆) = 2n − 1.

So we have to check that N irr
trop(∆, g,P) is locally constant around such a point C ∈

M̃trop, g,n(∆). That is, we have to show that for a neighborhood U(C) around the

point C ∈ M̃trop, g,n(∆), the sum of the multiplicities of the preimages C ′ in U(C),∑
C′∈ev−1(P ′′)∩U(C) multC ′, stays constant and does not depend on the point P ′′. (We will

denote this sum in the following still by “N irr
trop(∆, g,P) locally around C”, even if we do

not count the whole sum here, only the summands close to C.)

By proposition 4.41, we know that the types α such that dimMα
trop, g,n(∆) = 2n − 1 are

precisely the types of codimension 1 and the exceptional types.

So we have to check that locally at a point C ∈ Mα
trop, g,n(∆), where α is a type of

codimension 1 or an exceptional type, N irr
trop(∆, g,P) stays constant. There are three cases

we have to check:

(1) C is of genus g and has exactly one 4-valent vertex,

(2) C is of genus g′ = g − 1 and is 3-valent or

(3) C is of an exceptional type.

For the last two cases, we can immediately see that the sum over all inverse images of ev

stays constant:
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4.60 Lemma

Let C be a 3-valent (relevant) curve of genus g − 1 (that is, C is as in case 2 of remark

4.59).

Then P 7→ N irr
trop(∆, g,P) is locally constant around C.

Proof:

Let P ′ = ev(C). We have to see that for a configuration P ′′ in general position near P ′,

the sum of the inverse images under ev near C (counted with multiplicity) is constant and

does not depend on P ′′. Let P ′′ (near P ′) be in general position. Then the inverse images

under ev of P ′′ near C are all 3-valent curves of genus g, such that C is in the boundary of

their parametrizing spaces Mα′

trop, g,n(∆). Let C ′ be such an inverse image. C ′ is of genus

g and has therefore a loop which must disappear to a vertex of C. As C ′ is 3-valent and

relevant, it cannot be a flat loop. But then the three edges adjacent to the vertex of C to

which the loop disappears have to span R2. In particular, none can be a marked point.

That is, in C ′ there cannot be a marked point adjacent to the vanishing loop. Therefore

C ′ is not rigid, and counts with multiplicity 0. Hence no matter which types we have in

the inverse image of P ′′, the sum of the multiplicities is always 0.

4.61 Lemma

Let C be a (relevant) curve of an exceptional type α (that is, C is as in case 3 of remark

4.59).

Then P 7→ N irr
trop(∆, g,P) is locally constant around C.

Proof:

Let P ′ = ev(C). First recall that by 4.31 C is in the boundary of all types where the flat

loop is “resolved”, that is, where the graph contains the following graph as subgraph:

e′

e

So let C ′ be a curve of such a type which contains C in its boundary. We can assume

that C ′ is rigid, as otherwise it would count 0. Then there must be at least one marked

point adjacent to the bounded edges e and e′, because the loop must be broken. It is

also possible that there are two marked points, one adjacent to e, the other to e′. (There

cannot be more marked points, as otherwise C ′ would not be rigid again. The remaining

part of C ′ would contain a string as it is not marked by enough points, see 4.50.)

Let us first assume there is one marked point xi adjacent to the flat loop. Then we know

that there are two types α1 and α2 that have α in their boundary. They are shown in the

following picture.
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v1

α α2

xi

α1

e2

e3 e5

e4

The multiplicities of a curve of type α1 obviously coincides with the multiplicity of a curve

of type α2. So we only have to see that for a configuration P ′′ in general position near P ′,

a curve of exactly one of the types appears as preimage. As C is in the boundary of a rigid

type, the unbounded edges we can reach via e2, . . . , e5 have to be separated by the marked

points. We conclude that from xi, we can reach an unbounded edge (without meeting

marked points) by a path in Γ which involves precisely one of the four edges e2, . . . , e5

adjacent to the flat loop. Without restriction, let us assume that this is e2. That is, the

lines to which the other three edges e3, e4 and e5 are mapped to are fixed by the marked

points P ′ \ {p′i}. This holds of course too for a curve of type α1 and α2 and the marked

points P ′′ \ {p′′i }. So the question which type appears depends on whether the point p′′i of

the configuration P ′′ lies above or below the line through h(e4) ∩ h(e5) with direction v1.

(Due to the balancing condition, the direction vectors v4 and v5 of e4 and e5 must point

to different sides of the line generated by v1, as indicated in the picture.)

If there are two marked points, we can use similar arguments. Two of the edges will be

fixed by other marked points, and the question which type appears depends on which of

the two points lies above the other (with respect to a line of direction v1).

It would in fact be possible to give a similar (even though more complicated) argument

for the first case of remark 4.59 (see theorem 4.8 of [14]). Here, we prefer to give another

proof, which takes advantage of the structure of a polyhedral complex.

We define locally around C a space obtained by gluing some polyhedra, and a morphism

of this space. The latter imitates the evaluation map but has the advantage that the

absolute value of its determinant (in the maximal cells) is equal to the multiplicity of a

corresponding tropical curve.

The new space that we are about to define, as well as the morphism, is defined by gluing

pieces corresponding to the type of C and the types which have C in their boundary. We

will start by defining these pieces and the maps on them and then define how to glue

them.

4.62 Definition

Let α be a combinatorial type. Choose coordinates of Mα
trop, g,n(∆) — that is, a root

vertex V and an order of the bounded edges. Define the polyhedron M̂α
trop, g,n(∆) to

be the subset of R2+#Γ1
0 given by the linear strict inequalities that all coordinates that

correspond to lengths of edges have to be positive.
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A different choice of the coordinates of Mα
trop, g,n(∆) only leads to an isomorphism of

M̂α
trop, g,n(∆) of determinant ±1 as we have seen in 4.21.

Recall that a type of genus g and degree ∆ has n + #∆ − 3 + 3g −
∑

V (val V − 3) =

2n−2+2g−
∑

V (val V −3) bounded edges. (Remark 4.25 shows this for a 3-valent graph.

Each higher valent vertex can be “resolved” by adding valV − 3 edges.) In particular, for

a type of codimension 0, we have dimM̂α
trop, g,n(∆) = 2n + 2g.

Note that M̂α
trop, g,n(∆) contains the space Mα

trop, g,n(∆) as the subset given by the con-

ditions that the loops close up.

4.63 Definition

For a type α we choose the following data:

• for each marked point xi a chain of flags leading from the root vertex V to xi and

• a set of generators of H1(Γ,Z), where each such generator is given as a chain of

flags around the loop.

Depending on these choices, we define a linear map fα : M̂α
trop, g,n(∆) → R

2+#Γ1
0 by

defining a 2n + 2g′ times 2 + #Γ1
0 matrix with

• for each marked point two rows with the linear equation describing the position of

h(xi) (depending on the position of h(V ) and the lengths of the bounded edges in

the chosen chain of flags from V to xi):

h(V ) +
∑

F

v(F ) · l([F ]),

where the summation goes over all flags F in the chosen chain from V to xi; and

• for each chosen generator of H1(Γ,Z) two rows with the equation of the loop (de-

pending on the lengths of the bounded edges in the loop):
∑

F

v(F ) · l([F ]),

where F now goes over a chain of flags around the loop.

Note that fα is a square matrix if and only if the number of marked points is equal to the

number of nonmarked unbounded edges plus the genus minus one.

4.64 Example

The picture shows a tropical curve of genus 1.

v2
v4

v5

v6

x1

x2

x3

V
l6

l4

l5

v3

v1

l3

l2

l1
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The chosen root vertex is denoted by V , the order of the bounded edges is indicated,

and the directions of the edges which are prescribed by the type are labelled. For the

marked point x1, we choose to go from V via the bounded edges l6 and l1, of direction v6

respectively v1. For x2, we choose to go from V via the bounded edges l6, l2 and l3, of

direction v6, v2 and v3. For x3, we choose to go via l5 of direction −v4. There is no choice

for the generator of H1(Γ,Z). The equation given by a chain of flags around the unique

loop is l6 · v6 + l2 · v2 + l4 · v4 + l5 · v4 = 0.

Hence the matrix of size 8 by 8 of fα as defined above is:




E2 v1 0 0 0 0 v6

E2 0 v2 v3 0 0 v6

E2 0 0 0 0 −v4 0

0 0 v2 0 v4 v4 v6




where each row stands for two rows, either corresponding to a marked point or to a loop.

4.65 Remark

Note that the map fα of definition 4.63 depends on the choices we made, while the absolute

value of the determinant of fα does not. First, a coordinate change for Mα
trop, g,n(∆) has

determinant ±1 and will therefore leave the absolute value of det fα unchanged. The same

holds of course for a coordinate change of the target space R2n+2g′ , that is, a different

order of the marked points and loops.

If there are two chains of flags from a root vertex V to a marked point xi, then their

difference is a loop. (In the example above, we could also go from V to x2 over l5, l4

and l3 with directions −v4, −v4 and v3.) Assume first that this loop is one of our chosen

generators of H1(Γ,Z). Then choosing one or the other chain of flags from above just

corresponds to adding (respectively subtracting) the two equations of the loop from the

two rows of the marked point. (In the example, we have to subtract the two last rows if

we choose the different chain of flag to x2.)

If we choose another set of generators for H1(Γ,Z), these new generators are given as

linear combinations with coefficients in Z of the old generators. Therefore, we also get

linear combinations with coefficients in Z of the equations. Hence a different choice of the

generators of H1(Γ,Z) does either not change the determinant.

Therefore, we also get no different result if we choose for a marked point xi another chain

of flags, such that the difference is a loop that is not one of our chosen generators.

By abuse of notation, we will still speak of the map fα, even though its definition depends

on the choices we made, and keep in mind that |det(fα)| is uniquely determined, no matter

what choices we made.

4.66 Remark

In definition 4.62 we enlarged the spaces Mα
trop, g,n(∆) by ignoring the conditions given

by the loops. But the map fα from 4.63 still carries the information about the conditions:



80

the inverse image

f−1
α (R2n × {0}) ⊂ M̂α

trop, g,n(∆)

of those points in R2n+2g′ which have zeros at the entries to which the equations of the

loops map to is equal to the space Mα
trop, g,n(∆).

Note that for a point (P, 0) ∈ R2n × {0} a preimage (under fα) C ∈ Mα
trop, g,n(∆) is a

tropical curve such that the markings are sent to the points P, that is ev(C) = P. That

is, the map fα from the larger space where we ignored the conditions of the loops can also

be thought of as an enlarged evaluation map that carries the information about the loops.

What is important about the maps fα is that for relevant 3-valent types, its determinant

coincides with the multiplicity of a curve C of type α. This will be shown in the following

two lemmata.

4.67 Lemma

Let C be a relevant 3-valent curve of genus g, degree ∆ and type α, which is marked by

#∆ + g − 1 points. Then the determinant det fα (where fα is defined in 4.63) is zero if

and only if multC = 0 (where multC is defined in 4.47).

Proof:

By proposition 4.49 we know that the multiplicity of C is zero if and only if the evaluation

map ev |Mα
trop, g,n(∆) is not injective. But ev |Mα

trop, g,n(∆) has more than one preimage for a

point P ∈ R2n if and only if also f−1
α (P, 0) consists of more than one element (see remark

4.66). Hence det fα = 0 if and only if multC = 0.

4.68 Lemma

Let C be a relevant 3-valent curve of genus g, degree ∆ and type α, which is marked by

#∆ + g − 1 points. Then |det fα| (where fα is defined in 4.63) is equal to mult C (where

multC is defined in 4.47).

Proof:

By lemma 4.67 we know that the statement is true if multC = 0. Therefore we can now

assume multC 6= 0, in particular, we can assume that C is rigid.

The proof will be an induction on the sum of the number of bounded edges and the genus.

As induction beginning, we need a curve which is 3-valent, has a vertex to which no marked

point is adjacent and where the sum of the number of bounded edges and the genus is

minimal. As we need a vertex with no marked points, we need at least 3 unbounded edges

which are not mapped to a point. As C is assumed to be rigid, it must have at least two

marked points then. Therefore the following curve is adequate for the induction beginning:

Γ

h

x1 x2

R

2

u

vV
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The direction vectors of the two bounded edges are denoted by u and v. The curve is

rational, therefore the matrix we have to set up to compute det fα contains only the rows

corresponding to the evaluation map. We choose the root vertex to be V . Then the

marked point x1 is mapped to h(V ) + l1 · u, where l1 denotes the length of the bounded

edge leading to x1. The marked point x2 is mapped to h(V ) + l2 · v. Therefore the matrix

describing fα is

A :=


E2 u 0

E2 0 v




A computation shows |det A| = |det(u, v)|. The latter is by definition the multiplicity of

C.

Note that there is no other rigid curve where the sum of the number of bounded edges

and the genus is 2 or less. So this computation is enough for the induction beginning.

As induction step, let us now assume C has k bounded edges, is a curve of genus g and

degree ∆, and k + g > 2. Cut one of the bounded edges. That is, in the graph Γ, choose

a bounded edge e and replace it by two unbounded edges, each being adjacent to one end

vertex of e. Two things can happen:

(1) The graph could decompose into two connected components that we will denote by

Γ1 and Γ2. In this case, the edge e should be chosen such that both Γ1 and Γ2

contain at least one bounded edge.

(2) The graph could stay connected, but a loop could be broken. We denote the new

connected graph of genus g − 1 by Γ1. In this case, the edge e should be chosen

such that it is adjacent to a marked point. (Such a choice is possible as C is rigid.)

We have to prove the statement for each of the two cases separately, as the arguments

differ:

For the first case, denote the two tropical curves that arise when we replace e by two

unbounded edges with C1 and C2. Assume C1 is of type α1 and C2 of type α2.

C1

C2

e

Let us assume C1 has e1 + 1 unbounded edges which are not marked points, and C2 has

e2 + 1 unbounded edges (that is, e1 + e2 = #∆ is the number of unbounded edges of C,

and the cut edge e counts as a new unbounded edge both for C1 and C2). Let us also

assume that the genus of C1 is equal to g1 and the genus of C2 is g2. As the cutting of
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e leads to a nonconnected graph, it cannot have broken a loop. Therefore g1 + g2 = g is

the genus of C. Let us now assume C1 has l1 < (e1 + 1) + g1 − 2 marked points. That is,

we assume that there are at least two points less than we need to separate all unbounded

edges and loops. Then by lemma 4.50 C1 would not be rigid. If there was a loop which

does not contain a marked point, the same would hold for C, and so C would not be rigid.

If there were two ends which are connected by a string, then one of these ends could of

course be the new unbounded edge which replaces e. So we cannot immediately conclude

that C contains a string, too. Let us mark this new unbounded edge of C1, too. Then we

have l1 + 1 < (e1 + 1) + g1 − 1 marked points, which is still not enough to separate the

ends and loops. Hence there is still a string which is contained in C, too.

So we have l1 ≥ e1 + g1 − 1, and analogously, also l2 ≥ e2 + g2 − 1. But l1 + l2 is the

number of marked points of C, which is equal to n = #∆ + g − 1 = e1 + g1 + e2 + g2 − 1.

Therefore there are only two possibilities: l1 = e1 + g1 and l2 = e2 + g2 − 1 or vice versa.

Without loss of generality, let l1 = e1 + g1 and l2 = e2 + g2 − 1.

Let us now describe the matrix fα. We choose the root vertex to be the vertex in ∂e

that belongs to C1 after cutting. Then we begin with the marked points and loops which

belong to C1. These marked points and loops need only the coordinates of the root vertex

(which is chosen to lie in C1) plus the coordinates of C1. As C1 as well as C is 3-valent,

we have by remark 4.25 e1 + l1 − 2 + 3g1 = 2e1 + 4g1 − 2 bounded edges in C1.

So for the l1 = e1+g1 marked points and g1 loops of C1, we need 2+2e1+4g1−2 = 2e1+4g1

coordinates. That is, the matrix is of the form



A1 0

∗ A2




where A1 and A2 are square matrices of size 2e1 + 4g1 and 2e2 + 4g2 − 2. A1 is actually

the matrix fα1. C1 has fewer bounded edges than C, and we can therefore by induction

assume that multC1 = |det fα1 | = |det A1|. (We choose for C1 the same root vertex, order

of bounded edges, chains of flags from the root vertex to the marked points and loops.) So

det fα = det fα1 · det A2. C2 is now marked with l2 = e2 + g2 − 1 points, and is therefore

not rigid. More precisely, we know that e must be part of the string of C2, because C is

rigid. Therefore we mark e by another marked point, and choose the root vertex of C2 to

be the new vertex adjacent to this marked point. The curve C2 together with this new

marked point has again fewer bounded edges than C, and we can by induction assume

that multC2 = |det fα′

2
| (where α′

2 denotes now the type of C2 together with the new

marked point).

The matrix A2 contains the rows that describe the position of the marked points of C2

depending on the root vertex in C1. Every chain of flags from the root vertex in C1 that

leads to a marked point in C2 has to pass e. Furthermore, A2 contains the rows that

describe equations of loops in C2.

Let us now compare A2 with the matrix fα′

2
of C2 with the newly added marked point.

The equations of the loops in C2 that occurred in A2 will also occur in the matrix fα′

2

— only we have to add zeros for the coordinates of the new root vertex. The rows that
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describe the position of the marked points in C2 now depend on the new root vertex. But

as this is chosen to be adjacent to the marked point on e, every chain of flags from this

root vertex to a marked point has to pass e, too. So we can choose the same chains of flags

as for C. As we chose the root vertex to be the vertex adjacent to the new marked point,

the position of this marked point coincides with the position of the root vertex. That is,

the matrix fα′

2
is of the following form:

0E2

E2

A2

..

.

E2

0

0
..
.

Therefore, det A2 is indeed equal to the determinant of the matrix fα′

2
.

To sum up, we have seen that

|det fα| = |det fα1 | · |det fα′

2
| = multC1 · mult C2 = mult C,

where the second equality holds by induction and the last equality holds by definition of

the multiplicity.

For the second case, let Γ1 be the — still connected — graph that arises after cutting the

edge e. The graph Γ1 has genus g−1, it has #∆+2 unbounded edges that are not marked

points, and it has #∆ + g− 1 < (#∆ + 2)+ (g− 1)− 1 marked points, therefore it cannot

be rigid by 4.50. We add a marked point x adjacent to one of the new unbounded edges.

There is only one possibility to choose this unbounded edge such that the new tropical

curve is rigid. Recall that we chose e such that it is adjacent to a marked point xi.

e

xi
x

V

The tropical curve C1 of type α1 defined in this way has genus g−1 and as many bounded

edges as C. Therefore we can assume by induction that its multiplicity is equal to |det fα1 |.

As the multiplicity of C is equal to the multiplicity of C1, it remains to see that |det fα| =

|det fα1|. So let us choose coordinates to compare the two matrices of fα and fα1 . Choose

V — the vertex adjacent to the marked point xi — as root vertex both for C and for C1.

Choose the same order of bounded edges, marked points and loops for the two curves.

One of the loops, say L, of C is broken after the cutting of e. This loop corresponds to the
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last two lines of the matrix of fα. For C1, the last two lines shall be given by the marked

point x. As chain of flags leading from V to x in C1, we choose just the same chain of

flags as for the loop L. The following table represents both matrices. The two matrices

only differ by the h(V )-entries in the last two rows. In the table, each row represents two

or more rows as before. Each matrix contains the first three rows, fα contains the fourth,

and fα1 the fifth.

h(V ) bounded edges

the marked point xi E2 0

other marked points E2 ∗

other loops 0 ∗

for fα the loop L 0 equation for L

for fα1 the new point x E2 equation for L

Note that both matrices are block matrices with a 2 × 2 block on the top left. Therefore,

both determinants are equal to the determinant of the lower right block. But this block

coincides for both matrices, because it does not involve the two numbers we changed from

0 to 1.

Hence |det fα| is equal to |det fα1 |, and the latter is seen by induction to be equal to

multC1 = multC.

It would be desirable to define the polyhedral complex M̂trop, g,n(∆) with cells

M̂α
trop, g,n(∆) and the morphism of polyhedral complexes f : M̂trop, g,n(∆) → R

2n+2g glob-

ally. Then for theorem 4.53 it would be enough to prove that the map P 7→ degf ((P, 0)) is

constant (even without considering the two other special cases in lemma 4.60 and lemma

4.61). But we have given the map only locally as fα on the sets M̂α
trop, g,n(∆), and even

though |det fα| is unique, the map fα does depend on the choices (see remark 4.66). There

is no “global” description of this map as for the evaluation map, because the elements of

M̂α
trop, g,n(∆) are not even tropical curves, only those are where the conditions that the

loops close up are fulfilled. So for different types, which contain the same type in their

boundary, we would have to make a “consistent” choice of the coordinates in order to get

maps fα that coincide on the boundary. Due to the large amount of different types and

their boundary relations, this aim seems unachievable.

We will therefore only define a local space M̂ over a general point on a codimension 1-

“wall” as in remark 4.59, case 1, and locally a map f from this space. Our aim is then to

show that the degree of f is locally constant.

4.69 Remark

Note that for the case of rational curves, the spaces M̂α
trop, g,n(∆) coincide with the spaces

Mα
trop, g,n(∆), and fα is just the evaluation map. In this case, we therefore have a global

space and a global description of f , and we can prove theorem 4.53 (without using lemma
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4.60 and lemma 4.61, as these cases cannot appear for rational curves) by showing that

the map P 7→ degf (P) is constant. (Note that lemma 4.68 shows that for rational curves

multev(C) is equal to mult(C).) For this, it will as before be sufficient to prove that

P 7→ degf (P) is locally constant which follows with the same “local” proof as below for

lemma 4.72.

4.70 Definition

Let C be a tropical curve of a type α of genus g and with exactly one 4-valent vertex,

as in case 1 of remark 4.59. From remark 4.31 we know that there are three types which

contain a curve of type α in the boundary. We will denote them as in the picture with

α1, α2 and α3. They differ in which of the four edges come together at a 3-valent vertex,

and in the direction of the new edge e that separates the 4-valent vertex.

V

V

V

Ve

e

e

α α1 α2 α3

For all i, we take the polyhedra M̂αi
trop, g,n(∆), and also M̂α

trop, g,n(∆).

Choose the root vertex to be V as in the picture. Choose an order of the bounded edges

which coincides for all types at the edges that appear in all types, and such that the edge

e comes last. For all types and all marked points, choose a chain of flags from V to the

marked point that may differ only at e. Also, choose a set of generators of the loops for

each type which may differ only at e.

We identify the part of the boundaries of M̂αi
trop, g,n(∆) that corresponds to curves where

the coordinate of e is 0 with M̂α
trop, g,n(∆). The space defined in that way is denoted by

M̂.

For the coordinates as chosen above, the four maps fα, fα1 , fα2 and fα3 coincide at the

identified points and we can therefore glue them to one map f : M̂ → R

2n+2g.

4.71 Remark

The space M̂ from definition 4.70 can be thought of as a “local polyhedral complex” of

pure dimension 2n + 2g, and the map

f : M̂ → R

2n+2g

as a “local morphism of polyhedral complexes of the same dimension”. M̂ consists of four

cells (however, their closures are not completely contained in M̂). Three of the cells are of

dimension 2n+2g, the one which is of lower dimension is contained in their boundary. The

coordinate change is obviously a linear map, as it just drops one coordinate (corresponding

to the length of the bounded edge e, as in 4.70). f : M̂ → R

2n+2g maps each cell to the

one open cell of R2n+2g, which is a polyhedral complex. By abuse of notation, we will

therefore speak of the degree of f , even though it is not really a morphism of polyhedral

complexes.
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We are finally ready to prove the last statement which is missing for the proof of theorem

4.53:

4.72 Lemma

Let C be a (relevant) curve with exactly one 4-valent vertex, and of genus g (that is, C is

as in case 3 of remark 4.59).

Then P 7→ N irr
trop(∆, g,P) is locally constant around C.

Proof:

Let ev(C) = P ′. Recall that N irr
trop(∆, g,P) =

∑
C′∈ev−1(P) mult C ′. By remark 4.66, we

have

(ev |Mα
trop, g,n(∆))

−1(P) = f−1
α (P, 0).

In particular, for the four types that we glued to get M̂ in definition 4.70, and for a

configuration P ′′ near P ′ we have:

ev−1(P ′′) ∩
(
Mα

trop, g,n(∆) ∪
⋃

i

Mαi
trop, g,n(∆)

)
= f−1(P ′′, 0)

Therefore it is enough to see that

P 7→
∑

C′∈f−1(P,0)

mult C ′

is locally constant at P ′.

From lemma 4.68 we know that multC ′ = |det f |. Note that by remark 4.65 the latter

does not depend on any choice of coordinates of M̂αi
trop, g,n(∆), nor on the choice of the

map fαi
on each cell.

Hence, ∑

f−1(P,0)

multC ′ =
∑

f−1(P,0)

multf C ′ = degf (P, 0)

by definition 4.55 and the latter is well-defined. (Recall that by 4.71 we use the notation

of degree, even though M̂ is not really a polyhedral complex.)

So our aim is now to show that P 7→ degf (P, 0) is locally constant at P ′.

To see this, we study the three matrices A1, A2 and A3 of fα1 , fα2 and fα3. They differ

only in the column corresponding to the edge e. Denote the four edges adjacent to the

4-valent vertex of C with e1, e2, e3 and e4, and their respective directions with v1, . . . , v4.

The root vertex is as before V as indicated in the picture.

V

V

V

e
V

e

e4

e2

e1
e3

e

α1α α2 α3

As we assumed in definition 4.70 that all choices are made consistently, the three matrices

only differ in the column which belongs to the new edge e. The following table represents

all three matrices: Each matrix Ai contains the first block of columns (corresponding to
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the image h(V ) of the root vertex and the lengths li of the edges ei) and the i-th of the last

three columns (corresponding to the length of the new edge e). The columns corresponding

to the other bounded edges are not shown; it suffices to note here that they are the same

for all three matrices. The first four rows correspond to the images of the marked points,

the last six rows correspond to the equations of the loops. We get four different types of

rows for the marked points depending on via which of the four edges ei a marked point is

reached from V . (Each row represents in fact two or more rows of the matrix, two rows

for the two coordinates of the image of each marked point). For the loops, we get six

different types of rows depending on which two of the four edges e1, . . . , e4 are involved in

a loop. (Again, each row represents two or more rows for the two equations given by each

loop.) Loops that do not involve any of the four edges are not added, they just have zeros

in every of the special columns we show, and they do not change the computations.

h(V ) l1 l2 l3 l4 lα1 lα2 lα3

points behind e1 E2 v1 0 0 0 0 0 0

points behind e2 E2 0 v2 0 0 0 v2 + v3 v2 + v4

points behind e3 E2 0 0 v3 0 v4 + v3 v2 + v3 0

points behind e4 E2 0 0 0 v4 v4 + v3 0 v2 + v4

loops involving e1 and e2 0 −v1 v2 0 0 0 v2 + v3 v2 + v4

loops involving e1 and e3 0 −v1 0 v3 0 v3 + v4 v2 + v3 0

loops involving e1 and e4 0 −v1 0 0 v4 v3 + v4 0 v2 + v4

loops involving e2 and e3 0 0 −v2 v3 0 v3 + v4 0 −v2 − v4

loops involving e2 and e4 0 0 −v2 0 v4 v3 + v4 −v2 − v3 0

loops involving e3 and e4 0 0 0 −v3 v4 0 −v2 − v3 v2 + v4

As det is linear in each column, we have detA1+detA2+detA3 is equal to the determinant

of the following matrix, where we added the three last columns:

h(V ) l1 l2 l3 l4

points behind e1 E2 v1 0 0 0 0

points behind e2 E2 0 v2 0 0 2v2 + v3 + v4

points behind e3 E2 0 0 v3 0 2v3 + v2 + v4

points behind e4 E2 0 0 0 v4 2v4 + v3 + v2

loops involving e1 and e2 0 −v1 v2 0 0 2v2 + v3 + v4

loops involving e1 and e3 0 −v1 0 v3 0 2v3 + v2 + v4

loops involving e1 and e4 0 −v1 0 0 v4 2v4 + v2 + v3

loops involving e2 and e3 0 0 −v2 v3 0 v3 − v2

loops involving e2 and e4 0 0 −v2 0 v4 v4 − v2

loops involving e3 and e4 0 0 0 −v3 v4 v4 − v3
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Now we subtract the four columns for l1, . . . , l4 from the last column.

h(V ) l1 l2 l3 l4

points behind e1 E2 v1 0 0 0 −v1

points behind e2 E2 0 v2 0 0 v2 + v3 + v4

points behind e3 E2 0 0 v3 0 v3 + v2 + v4

points behind e4 E2 0 0 0 v4 v4 + v3 + v2

loops involving e1 and e2 0 −v1 v2 0 0 v2 + v3 + v4 + v1

loops involving e1 and e3 0 −v1 0 v3 0 v3 + v2 + v4 + v1

loops involving e1 and e4 0 −v1 0 0 v4 v4 + v2 + v3 + v1

loops involving e2 and e3 0 0 −v2 v3 0 0

loops involving e2 and e4 0 0 −v2 0 v4 0

loops involving e3 and e4 0 0 0 −v3 v4 0

Due to the balancing condition v1 + v2 + v3 + v4 = 0, and finally we can add v1 times the

h(V )-columns to the last column and get a matrix with a zero column whose determinant

is 0. Therefore det A1 + det A2 + det A3 = 0.

Note that we assume here that the edges ei are in fact all bounded. If this is not true, the

argument needs to be changed slightly. If ei is unbounded, then there can be no marked

points that can be reached from V via ei. That is, we do not have the corresponding rows.

For a given i ∈ {1, 2, 3} let us now determine whether the combinatorial type αi occurs in

the inverse image of a fixed point (P ′′, 0) ∈ R2n+2g near (P ′, 0). We may assume without

loss of generality that the multiplicity of αi is non-zero since other types are irrelevant for

the statement of the proposition. So the restriction fαi
of f to M̂αi

trop, g,n(∆) is given by the

invertible matrix Ai. There is therefore at most one inverse image point in f−1
αi

((P ′′, 0)),

which would have to be the point with coordinates A−1
i · (P ′′, 0). In fact, this point exists

in M̂αi
trop, g,n(∆) if and only if all coordinates of A−1

i · (P ′′, 0) corresponding to lengths of

bounded edges are positive. By continuity this is obvious for all edges except the newly

added edge e, because in the boundary curve C = f−1
α ((P ′, 0)) all these edges had positive

length. We conclude that there is a point in f−1
αi

((P ′′, 0)) if and only if the last coordinate

(corresponding to the length of the newly added edge e) of A−1
i · (P ′′, 0) is positive. By

Cramer’s rule this last coordinate is det Ãi/det Ai, where Ãi denotes the matrix Ai with

the last column replaced by (P ′′, 0). But note that Ãi does not depend on i since the last

column was the only one where the matrices Ai differ. Hence whether there is a point in

f−1
αi

((P ′′, 0)) or not depends only on the sign of detAi: either there are such inverse image

points for exactly those i where detAi is positive, or exactly for those i where detAi is

negative. But by the above the sum of the absolute values of the determinants satisfying

this condition is the same in both cases. Hence P 7→ degf (P, 0) is locally constant at

P ′.

Let us finally sum up again the arguments we collected for the proof of theorem 4.53:
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Proof of theorem 4.53:

By lemma 4.58 we know that P 7→ N irr
trop(∆, g,P) is locally constant on the subset of

points in general position. So we only have to check that this map is also locally constant

at a general configuration of points which is not in general position. Remark 4.59 tells us

which points these are: there are three cases to check. The first is checked in 4.72, the

second in 4.60 and the third in 4.61.

4.73 Remark

Recall that we restricted to connected graphs Γ.

The numbers Ntrop(∆, g,P) can be defined analogously to 4.52, where we replace the space

M̃trop, g,n(∆) by the space M̃′
trop, g,n(∆). The latter contains also tropical curves where

the underlying graph Γ is not connected (see 4.17). All concepts we had for M̃trop, g,n(∆)

(evaluation maps and so on) can be defined for M̃′
trop, g,n(∆), too. The analogous state-

ment for Ntrop(∆, g,P) as in theorem 4.53 holds, too. To prove it, we have to study the

dimensions of the strata M′α
trop, g,n(∆) of the moduli space of not necessarily connected

relevant parametrized tropical curves. When we do this, we will see that the strata of

dimension 2n − 1 are precisely of the same types as in the proof above.

Therefore, we can also talk about the numbers Ntrop(∆, g), knowing that they do not

depend on the position of the points.
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5. The correspondence of tropical curves and lattice paths

Chapter 2.3 suggests an (although not 1 : 1-) correspondence of tropical curves and New-

ton subdivisions of the Newton polygon. So far, we enumerated parametrized tropical

curves passing through certain marked points. The duality of tropical curves and Newton

subdivisions brings up the idea that it should be possible to enumerate Newton subdivi-

sions instead. We start the chapter in section 5.1 with the description of basic properties

of parametrized tropical curves in the dual setting of Newton subdivisions. As the dual

Newton subdivision depends only on the image h(Γ) of a parametrized tropical curve, we

have to deal with these images, too. They (together with some information about weights)

will be called unparametrized tropical curves. When passing from a parametrized tropical

curve (Γ, h) to its image h(Γ) ⊂ R

2, we may lose a lot of information about the curve.

A possibility to avoid this is to work with simple parametrized tropical curves, a notion

which will also be explained in section 5.1.

When we try to count Newton subdivisions instead of tropical curves, we have to keep

in mind that we only have to enumerate those Newton subdivisions which are dual to a

tropical curve that passes through a given set of points. In order to distinguish those, we

are going to study the dual of marked tropical curves in section 5.2. Also, we have to

make a restriction on the set of points, because we only want to deal with simple curves.

Therefore we introduce the notion of restricted general position — only simple curves will

pass through such a set of points. We will show that the subset of points in restricted

general position in R2n is still of top dimension.

For a special point configuration in restricted general position, the marked tropical curves

passing through this set will be dual to lattice paths in the Newton polygon. We will

introduce this notion in section 5.3, and also define the multiplicity of a lattice path. We

can then define the number of lattice paths counted with multiplicity as Npath(∆, g) —

these numbers will be the analogues of the numbers Ntrop(∆, g).

In section 5.4 we will finally prove that Npath(∆, g) = Ntrop(∆, g) (theorem 5.44) by

defining a bijection between the set of lattice paths and the set of tropical curves through

our chosen point configuration (both counted with multiplicity). It is important to note

that the multiplicity of a lattice path is not equivalent to the multiplicity of a tropical

curve. In fact, our bijection will assign several tropical curves to one lattice path in some

cases. The multiplicity of the path corresponds to the sum of the multiplicities of the

assigned tropical curves.

Contrary to the numbers Ncplx(∆, g) and Ntrop(∆, g) the lattice paths numbers Npath(∆, g)

can be computed directly: we just have to take all λ-increasing paths in the polygon ∆ and

compute their multiplicity, which is defined recursively. In particular, the correspondence

Npath(∆, g) = Ntrop(∆, g) = Ncplx(∆, g) allows us to compute all the numbers Ncplx(∆, g)

using the lattice path count.

The results explained in this chapter were achieved by Mikhalkin in [23]. However, we

wish to present a proof here, too, adding some details and adjusting it to our definitions

for parametrized curves, which slightly differ from the definitions in [23].
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5.1. Properties of parametrized tropical curves described in the dual

language of Newton subdivisions

First recall how the dual of a tropical curve is constructed. Given a regular parametrized

tropical curve (Γ, h), we know that there is a curve over the completion of the field of

Puiseux series K, such that Val(C) = h(Γ) by theorem 4.27. This curve is given by a

polynomial f , and by theorem 2.9 we know that the tropical curve associated to it (that

is, h(Γ)) is equal to the tropical curve associated to the tropical polynomial trop f . For

the tropical curve associated to trop f (again, that is for h(Γ)) we know by theorem 2.15

that it is dual to a subdivision of the Newton polygon of trop f .

Note that the dual Newton subdivision depends only on the image h(Γ) of a parametrized

tropical curve, not on the parametrization. Therefore we need to study these images first.

Given an image h(Γ) ⊂ R

2, there can be several possibilities to parametrize it. The fol-

lowing picture shows such an image and several possibilities how it could be parametrized.

It could for example be parametrized by a graph with a 6-valent vertex (1), or by a dis-

connected graph with two 3-valent vertices (2). It is furthermore possible that the two

vertices from (2) are connected by an edge which is mapped to a point. In (3) and (4),

the connected components in the picture could also be linked by a contracted edge.

(1) (2) (3) (4)

To avoid this ambiguity, we will first make an assumption on the parametrized curves we

want to work with:

5.1 Definition

A parametrized tropical curve (Γ, h) is called simple if
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• Γ is 3-valent,

• h is injective on the set of vertices Γ0 of Γ,

• the images h(V ) and h(e) of a vertex V ∈ Γ0 and an edge e ∈ Γ1 are disjoint, that

is h(V ) ∩ h(e) = ∅,

• the images h(e1) and h(e2) of two edges e1, e2 ∈ Γ1, e1 6= e2, have at most one point

in common, that is #{h(e1) ∩ h(e2)} ≤ 1 and

• through each point p ∈ R2 pass at most 2 edges, that is #h−1(p) ≤ 2.

Note that each simple parametrized tropical curve is also relevant. There cannot be a

contracted edge, because else this edge and its adjacent vertices would be mapped to the

same image point. Also, there cannot be a vertex where two edges point in the same

direction. (The images of these two edges would have more than one point in common.)

5.2 Remark

Let h(Γ) be the image of a simple parametrized tropical curve. As we have already seen,

no edge of Γ can be contracted to a point by h. Due to the third and fourth property of

simple curves, no vertex can be mapped onto an edge and two edges cannot be mapped to

the same line segment. Therefore we can distinguish the images of the vertices and edges

in h(Γ) — each edge of Γ is mapped to a line segment of the image (and no two edges on

the same), and each vertex of Γ will be mapped to a point of the image where three line

segments come together.

5.3 Definition

Let (Γ, h) be a simple parametrized tropical curve. As (Γ, h) is simple, we can distinguish

the images of the edges in h(Γ) ⊂ R

2 (see 5.2). Associate to each edge h(e) of h(Γ) its

weight ω(e) (see 4.13). Then the image h(Γ) together with the associated weights is called

an unparametrized tropical curve C =
(
h(Γ), {

(
h(e), ω(e)

)
}
)
.

5.4 Example

The following picture shows an unparametrized tropical curve. The weights equal to 1 are

not marked in the picture. There are two edges of weight 2.

2

2

5.5 Remark

Let C be an unparametrized tropical curve. Then the simple parametrization (Γ, h) of C is

uniquely determined (up to isomorphism). This is true because by 5.2 we can distinguish

the images of the edges and vertices. Therefore the homeomorphism class of the graph Γ

is uniquely determined by C. As we know the lines to which the edges are mapped, we

can determine the primitive integral vectors u(F ) for each flag F . For each edge e, we

also know the weight ω(e) (as the weights are marked for each edge in C), hence we can

determine the directions v(F ) for each flag. The length l(e) of an edge e of the graph is

then determined by the length of its prescribed image h(e) and the direction. Therefore,
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not only the homeomorphism class, but also the graph Γ is uniquely given by C. The map

h is then uniquely given, too, as it is linear on each edge.

5.6 Definition

We define the genus and degree of an unparametrized tropical curve to be the genus and

degree of the unique simple parametrization (see 5.5).

Also, we define the multiplicity of an unparametrized tropical curve to be equal to the

multiplicity of the simple parametrization.

An unparametrized tropical curve is called irreducible, if the graph Γ of the unique simple

parametrization is connected, and reducible otherwise.

A component of a reducible unparametrized tropical curve is the image of a connected

component of the graph Γ of the simple parametrization.

5.7 Remark

In all situations we will work with later on, the simple parametrization of an un-

parametrized tropical curve is unique also without the information about the weights

of the edges.

Given a component of an unparametrized tropical curve, the information of one weight

is enough to determine all other weights with the aid of the balancing condition: The

unparametrized tropical curve is given as the image of a simple parametrized curve. For

a simple parametrized tropical curve, we have only 3-valent vertices such that the three

edges adjacent span R2. If the weight of one edge is given, the two other weights can be

determined uniquely.

In our definition of unparametrized tropical curve, we need to associate these weights,

because otherwise there would be some ambiguity in the choice of a parametrization: we

could take a multiple of the weights of all edges which belong to the same component.

In the picture below, we could parametrize the image by curve of degree 3 or of degree

∆ := {(−2, 0), 2 · (−1, 0), (0,−2), 2 · (0,−1), (2, 2), 2 · (1, 1)}, for example.

Γ

Γ

h

h

A degree 3 parametrization

22

2

A degree ∆ parametrization
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Only if we fix the weights in the image as we have done it for unparametrized tropical

curves, then there is no choice left.

However, we will later on only prescribe degrees such that at least all the unbounded edges

which are mapped to lines of the primitive directions (0,−1) and (1, 1) are of weight 1.

In each component of an unparametrized tropical curve of such a degree, there has to be

an unbounded edge of weight 1. So at least one weight is prescribed in every component.

This weight determines the other weights as we have seen above.

Hence, in the cases we will work with later, we can uniquely parametrize an unparametrized

tropical curve, even without knowing the weights of the edges (that is, we can parametrize

an image h(Γ) ⊂ R2 of a simple curve uniquely).

By abuse of notation, we will in the following sometimes denote an unparametrized tropical

curve by h(Γ), neglecting the information about the weights.

Let us now come back to the dual Newton subdivisions.

First, we want to make precise what Newton subdivision should mean.

5.8 Definition

Let ∆ be a convex lattice polygon in R2. Let ∆1, . . . ,∆k be a collection of convex lattice

polygons (given as convex hulls of their vertices in Z2), such that their interiors do not

intersect (that is, for all i 6= j we have ∆◦
i ∩ ∆◦

j = ∅), and such that their union is equal

to ∆. Then Sub(∆) = {∆1, . . . ,∆k} is called a Newton subdivision of ∆.

A vertex of the Newton subdivision Sub(∆) is a point in Z2 which is a vertex of one of

the ∆i. An edge of the Newton subdivision is a line segment in R2 which is an edge of

some ∆i.

5.9 Example

The following picture shows two Newton subdivisions, the one on the left is a subdivision

of the triangle ∆4 (see 3.69). The vertices of the Newton subdivisions are drawn in bold.

Note that not all integer points in ∆ have to be vertices of the Newton subdivision.
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5.10 Remark

Not all subdivisions of a Newton polygon are dual to a tropical curve. As an example,

consider the following subdivision:

e

For the edge e in the picture, it is not clear whether we should draw one or two edges dual

to it.
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As a second example, take the following subdivision:

e2

e3e1

e4

E3

E4

E1

E2

It is not possible to draw a tropical curve dual to this subdivision. Trying, let us start

with the little square in the interior of this subdivision. It would be dual to a crossing of

two edges. Next, let us draw the dual of the edge E3 with direction (1,−2) — the edge

e3. Then, we draw the dual of E4 with direction (1, 1) - the edge e4. e4 has to meet e3.

This is only possible if the edge e2 is longer than the edge e1. But as the same argument

works for the other edges adjacent to the dual of the little square, each piece of the edges

that cross in the middle has to be longer than the piece counterclockwise next to it. This

is of course not possible.

5.11 Definition

A subdivision of a polygon will be called a regular subdivision if it is dual to a tropical

curve associated to a tropical polynomial as in 2.15.

Equivalently, we can require that the subdivision is induced by a polynomial as its Newton

subdivision as in definition 2.13.

Let us determine which Newton subdivisions are dual to unparametrized tropical curves,

which occur by our definition as images of simple parametrized tropical curves. Recall that

simple parametrized tropical curves are 3-valent, no two vertices are mapped to the same

point, no vertex is mapped onto the image of an edge, no edges are mapped to the same

line, and through each point pass at most 2 edges. In the dual image, we can therefore

only have triangles and parallelograms. (The parallelograms are dual to crossings of two

edges.)

5.12 Definition

A regular subdivision Sub(∆) of the Newton polygon ∆ is called simple, if it contains only

triangles and parallelograms.

5.13 Example

The following picture shows a regular simple Newton subdivision. Below, an un-

parametrized tropical curve dual to it is shown, together with its parametrization.

Sub(∆)
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2

2

Γ

h

5.14 Remark

Note that in the picture above the parallelogram is not dual to the image of a vertex of Γ,

just to a “crossing” of two edges. If we find a tropical polynomial which defines the same

curve as the unparametrized one on the right, then this “crossing” is considered to be a

vertex of the tropical curve associated to the tropical polynomial as in chapter 2.

Because our aim here is to describe tropical curves using their dual subdivisions, we will call

such a crossing of two edges a vertex of the unparametrized tropical curve. (Moreover,

all images h(V ) of vertices of Γ will be called vertices of the unparametrized tropical

curve.) Then we also distinguish four different edges adjacent to the “crossing-vertex” in

the unparametrized tropical curve, even though in the parametrized tropical curve, only

two different edges are mapped to this image.

����

Γ

e1

V

e2

h e′2

e′1

e′4

e′3

(For all edges of the parametrized tropical curve whose images do not have a common point

with another image of an edge, we call the images edges of the unparametrized tropical

curve.) That is, an unparametrized tropical curve can have more vertices and more edges

than its unique simple parametrization. Recall that unparametrized tropical curves are

images of simple parametrized tropical curves, therefore this definition of vertices and

edges of an unparametrized tropical curve is sufficient.

In this language, theorem 2.15 holds also if we replace “tropical curve associated to a

tropical polynomial” by “unparametrized tropical curve” and “the Newton subdivision of

F” by “a Newton subdivision” - each edge of the unparametrized tropical curve is dual to

an edge of the Newton subdivision, and each vertex dual to one of the polygons ∆i of the

subdivision. Recall that the integer length of an edge of the Newton subdivision is equal

to the weight of the dual edge of the tropical curve.

5.15 Definition

The degree of a regular Newton subdivision Sub(∆), deg(Sub(∆)), is defined to be the set

of vertices of Sub(∆) which are contained in the boundary of the polygon ∆.
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5.16 Example

For the following Newton subdivision, the degree is given by the 10 points (0, 0), (0, 2),

(0, 3), (0, 4), (1, 3), (2, 2), (3, 1), (4, 0), (2, 0) and (1, 0). They are marked in bold in the

picture.
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5.17 Remark

Let us compare this definition with the notions from chapter 4.

There we used the symbol ∆ for the degree of a parametrized tropical curve, given by

the unordered tuple of directions of the unbounded edges. Each unbounded edge of a

simple parametrized tropical curve is of course mapped to an unbounded image in the

unparametrized tropical curve. The latter is dual to an edge of the Newton subdivision in

the boundary of ∆. The integer length of this edge of the Newton subdivision is equal to

the weight of the unbounded edge of the unparametrized tropical curve. If there are no

unbounded edges of higher weight, then every integer point on the boundary of ∆ is also

part of the degree. Then we will by abuse of notation write ∆ instead of deg(Sub(∆)). In

this case, the number of unbounded edges — denoted #∆ in chapter 4 — is equal to the

number of integer points in the boundary of the polygon ∆, hence to #(∂∆ ∩Z2).

5.18 Remark

Assume we have a tropical curve C given by a tropical polynomial as in definition 2.7.

This polynomial defines a Newton polygon, too (see 2.10). This is the same polygon we

get when we draw the dual of the unbounded edges of the tropical curve C.

5.19 Example

We want to give an example which illustrates why we choose the triangle ∆d of 3.69 when

we want to count the tropical analogues of degree d curves in P2.

Let C be a curve of degree d in P2
K , where K denotes the completion of the field of Puiseux

series as in 2.1. Let C be given by a homogeneous polynomial f(x, y, z) in 3 variables, and

assume that the monomials xd, yd and zd appear in the sum f . Restrict C to the open

subset {z = 1}. Then C is given by the polynomial f(x, y, 1). Restrict C furthermore

to {x 6= 0, y 6= 0}, then this restriction can be interpreted as a curve in (K∗)2 and we

can consider the image Val(C). By theorem 2.9 the tropical curve Val(C) is equal to the

tropical curve associated to the tropical polynomial trop(f(x, y, 1)). Therefore its degree

will contain the endpoints (0, 0), (d, 0) and (0, d) of the triangle ∆d. If we want to count

complex projective curves of degree d, we can therefore instead count tropical curves such

that the dual Newton polygon is the triangle ∆d (see remark 4.15).
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Let us now come to the genus. To get an idea what the genus of the Newton subdivision

should be, consider a loop of an unparametrized tropical curve. It is dual to an interior

vertex of the Newton polygon:

��
��
��
��

However, if the Newton subdivision has a parallelogram next to that interior vertex, we

know that this does not come from a 4-valent vertex but from a crossing - hence this is

not really a loop then.
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These observations justify the following definition:

5.20 Definition

Let ∆ be a Newton polygon with a regular simple subdivision Sub(∆). Then the genus of

this subdivision is defined to be the number of interior vertices of this subdivision minus

the number of parallelograms.

5.21 Example

The following pictures show three subdivisions of degree ∆3. The one on the left is of genus

−1, because it contains no interior vertex, but a parallelogram. The two on the right are

of genus 0 — the one in the middle neither contains interior vertices nor parallelograms.

The one on the right has an interior vertex, but also a parallelogram. Below, the dual

tropical curves are shown.
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Now, we have to define the multiplicity of a Newton subdivision. We will also only define

it for simple subdivisions. To get an idea what it should be, recall the definition of
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multiplicity from 4.47. We defined first the multiplicity of a 3-valent vertex V . Assume

the three flags F1, F2 and F3 are mapped to V . Then the multiplicity of V is

multV = det
(
v(F1), v(F2)

)
,

that is, the area of the parallelogram spanned by the direction vectors of the two flags

F1 and F2. (The balancing condition shows that the multiplicity does not depend on the

choice of F1 and F2.) Now, dual to the image of the edge [F1] is a perpendicular edge

in the dual Newton subdivision, and the same for [F2]. The area of the parallelogram

spanned by the two direction vectors is equal to the area of the parallelogram spanned by

the duals of [F1] and [F2]. But this is the double area of the triangle dual to the vertex

V .

Recall that the multiplicity of a 3-valent parametrized tropical curve is defined as the

product of the multiplicities of its vertices (which are not adjacent to marked points, but

at the moment, we do not consider marked points).

5.22 Definition

Let Sub(∆) be a simple regular subdivision of the Newton polygon ∆. Then the multi-

plicity of this subdivision is defined to be the product of the double areas of all triangles

which are contained in the subdivision.

Finally, we have to define irreducibility of a Newton subdivision.

5.23 Remark

Given a Newton subdivision, it does not seem easy to determine whether an un-

parametrized tropical curve dual to this subdivision is reducible or not (that is, whether

it can be parametrized by a disconnected graph Γ or not) without drawing the dual curve.

Therefore, we have to use the dual curve to define irreducibility for Newton subdivisions:

5.24 Definition

A regular simple Newton subdivision Sub(∆) is called irreducible, if the dual un-

parametrized tropical curve is irreducible, and reducible otherwise.

We now “translated” most of the concepts we introduced for parametrized tropical curves

in chapter 4 to regular subdivisions. In the next chapter, we will turn to marked

parametrized tropical curves.

5.2. The dual of a marked parametrized tropical curve

So far we only considered parametrized tropical curves (Γ, h) without marked points, their

unparametrized images and dual Newton subdivisions. Now we want to come to marked

tropical curves. The basic properties like degree and genus will of course be defined as in

the previous section, also in the presence of marked points.
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We want to define an analogue of simple parametrized tropical curves also for marked trop-

ical curves. Again, this definition should be made in such a way that the parametrization

is unique for a given image h(Γ) together with the weights and the images of the marked

points on it. We do not want to allow that marked points are mapped to vertices of the

unparametrized tropical curve h(Γ) — that is, to images of vertices of Γ, respectively to

“crossings” of two edges, as they count as vertices of the unparametrized tropical curve,

too, by 5.14.

5.25 Definition

A marked parametrized tropical curve (Γ, h, x1, . . . , xn) is called simple if

• Γ is 3-valent,

• h is injective on the set of vertices Γ0 of Γ,

• the images h(V ) and h(e) of a vertex V ∈ Γ0 and an edge e ∈ Γ1 \ {x1, . . . , xn} are

disjoint, that is h(V ) ∩ h(e) = ∅,

• the images h(e1) and h(e2) of two edges e1, e2 ∈ Γ1, e1 6= e2, have at most one point

in common, that is #{h(e1) ∩ h(e2)} ≤ 1 and

• through each point p ∈ R

2 \ {h(x1), . . . , h(xn)} pass at most 2 edges, that is

#h−1(p) ≤ 2.

5.26 Remark

Note that for a simple marked curve (Γ, h, x1, . . . , xn) only the marked points xi can be

contracted by h because of the second property of simple curves. Also, no two edges can be

mapped to the same line segment, and no vertex to a nonmarked edge. As h is injective on

the set of vertices and as there are no 4-valent vertices, marked points cannot be mapped to

an image point where three line segments come together. As no vertex can be mapped to

a nonmarked edge, marked points cannot be mapped to an intersection point of two edges.

Therefore, we can as in 5.2 distinguish the images of the edges and of the vertices. Also, if

we think of h(Γ) as an unparametrized curve coming from (Γ \ {x1, . . . , xn}, h|Γ\{x1 ,...,xn})

(where we “straighten the divalent vertices of Γ \ {x1, . . . , xn} to get a 3-valent graph

again), then the marked points do not lie on the vertices (that is, images of vertices or

crossings of two edges) of the unparametrized curve h(Γ).

5.27 Definition

Let (Γ, h, x1, . . . , xn) be a simple marked parametrized curve. Associate the weights ω(e)

for e ∈ Γ1 \ {x1, . . . , xn} to the images of its edges h(e). Then the image h(Γ) together

with these weights and together with the images of the marked points pi = h(xi) is called

a marked unparametrized tropical curve C =
(
h(Γ), {

(
h(e), ω(e)

)
}, h(xi)

)
.

5.28 Example

The following picture shows a marked unparametrized tropical curve.

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
����
��
��
��2



101

5.29 Remark

Let C be a marked unparametrized tropical curve.

Recall that C is the image of a simple marked parametrized tropical curve

(Γ, h, x1, . . . , xn).

Now, remove the markings pi from C, then we get an unparametrized tropical curve C ′

without markings. By 5.5 we know that it has a unique simple parametrization (Γ1, h1).

As we have seen in remark 5.26, the markings pi are distinct from the vertices of the

(nonmarked) unparametrized tropical curve C ′. Therefore we can identify a unique edge

ei of Γ1 whose image meets pi. Hence there is only one way to add marked points xi to

the graph Γ1 in order to get a marked simple parametrization of C.

5.30 Definition

As before we want to specify what we denote by edges and vertices of a marked un-

parametrized tropical curve. We just remove the markings and consider it as an un-

parametrized tropical curve - for this, we specified what we denote by edges and vertices

in 5.14. More precisely, a vertex of the marked unparametrized tropical curve is the image

of a vertex of Γ which is not adjacent to a marked point, or a point h(e1) ∩ h(e2) in the

intersection of two images of nonmarked edges e1, e2 ∈ Γ1 \ {x1, . . . , xn}. The image of

a marked point is not called a vertex of the marked unparametrized tropical curve. As

before, because we call “crossings” of two edges a vertex, we also distinguish four edges

adjacent to that vertex. If e1 and e2 are two edges of Γ adjacent to a marked point xi, then

the image of e1, e2 and xi is a straight line with the marking pi = h(xi) on it. We call this

image one edge of the marked unparametrized tropical curve, even though it comes from

two edges of the graph Γ. The images of all edges whose images do not intersect with the

image of another edge and which are not adjacent to marked points are also called edges

of the marked unparametrized tropical curve.

Now we want to define the dual of a marked unparametrized tropical curve.

5.31 Definition

Let C be a marked unparametrized tropical curve. Forget the markings pi, then we get

an unparametrized curve C ′. By remark 5.14 we know that C ′ is dual to a subdivision

Sub(∆). In this subdivision, mark the edges which are dual to edges of C which pass

through a marked point pi.

The set consisting of these marked edges is denoted by Ξ.

The picture shows an example. The marked edges Ξ are drawn as thick lines in the dual

Newton subdivision.
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5.32 Remark

We can consider the Newton subdivision Sub(∆) together with the set Ξ as an analogue

of the combinatorial type of a tropical curve.

Given a Newton subdivision, we can choose a marked unparametrized tropical curve C

dual to it. (Recall that the weights are equal to the integer lengths of the dual edges.) We

can parametrize C by a unique graph (see 5.29). The primitive integral direction of each

edge of the graph is prescribed by the Newton subdivision: marked points are mapped

with direction 0, all other edges have the directions dual to the Newton subdivision. As

we know also the weights of the edges of C, we can determine the directions v(F ) for

each flag F of Γ. Hence the Newton subdivision together with the marked edges yield a

combinatorial type α. The type does not depend on the particular curve C we chose.

Given a (simple) type α, we can take a parametrized tropical curve C in Mα
trop, g,n(∆),

and the marked unparametrized tropical curve which is defined by it. Then we can draw

the dual Newton subdivision and Ξ. The Newton subdivision may however depend on

which edges have a point in common in the image.

Now we want to prescribe points P = (p1, . . . , pn) ∈ R

2n and want to count marked

unparametrized tropical curves with markings P = (p1, . . . , pn). As in chapter 4.5, we

do not allow all positions for the point configuration P, but we want them to be in

tropical general position (see 4.51). Tropical general position is defined with the aid of the

evaluation map: a configuration is called to be in tropical general position, if all preimages

in the relevant subset under the evaluation map are 3-valent and of genus g. But when

we count the preimages of P under the evaluation map, we count those curves of a type

α where the evaluation map restricted to Mα
trop, g,n(∆) is not injective with multiplicity

0 due to 4.49. Given a parametrized tropical curve of type α, there is no possibility to

check whether the evaluation map restricted to Mα
trop, g,n(∆) is injective or not at the

unparametrized tropical curve
(
h(Γ), {

(
h(e), ω(e)

)
}, h(xi)

)
. So actually we want to avoid

curves of such a type. Also, we want to restrict to simple parametrized tropical curves,

because then we can pass to marked unparametrized tropical curves. We therefore make

a more restrictive definition of general position for this chapter:

5.33 Definition

A configuration P ⊂ R

2n is defined to be in restricted (tropical) general position if all

relevant preimages under the evaluation map are 3-valent and of genus g, if for all types

α that occur in the preimage, the evaluation map restricted to Mα
trop, g,n(∆) is injective

and if all preimages are simple.

Note that the set of points in restricted general position consists still of regions of top

dimension: The highest dimension of a stratum Mα
trop, g,n(∆) that occurs in the relevant

subset is 2n. If the evaluation map is not injective on a stratum, it maps this stratum

to a region of at least codimension 1 in R2n. (See 4.41 and 4.45). If a 3-valent relevant

parametrized tropical curve is not simple, then either

• there are two vertices which are mapped to the same point,

• there is a vertex and a nonmarked edge whose images meet in one point,

• there are two edges which are mapped to the same line, or
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• there are three edges whose images have a point in common.

Recall that relevant curves do not have contracted bounded edges.

In the first case, the condition that the images of two vertices coincide is a linear condition

on the coordinates of Mα
trop, g,n(∆).

In the picture, the condition that the images of the two vertices V and V ′ coincide is a

linear condition on the lengths of the four edges e1, e2, e3 and e4:

h
V

e3

Γ

V ′

e1

e2e4

Hence, only a lower dimensional subset of Mα
trop, g,n(∆) fulfills this condition, and this

lower dimensional subset is of course also mapped to a region of codimension 1 in R2n by

the linear map ev.

In the second case, it is for example possible that there is a double edge, and a vertex

adjacent to one of these edges which is mapped to the same image as the other edge. But

as we are in the relevant subset, double edges can only occur if there are 4-valent vertices,

so this can actually not happen. Else the condition that the image of a vertex meets the

image of a line is also a linear condition on the coordinates of Mα
trop, g,n(∆) which is only

fulfilled by a lower dimensional space. The same is true for the fourth case, too.

In the third case, there are two edges which are mapped to the same line. This is again

for example possible if there is a double edge. But as we are in the relevant subset, the

curve then has at least one 4-valent vertex.

The condition that two edges which are not linked are mapped to the same line is again

a linear condition which is only fulfilled by a lower dimensional space.

For example, in the picture the condition that e1 and e2 are mapped to the same line is a

condition on the lengths of the edges e3 and e4:

Γ

he2
e3

e1

e4

In any case, parametrized tropical curves which are not of genus g, not 3-valent or not

simple or where the evaluation map restricted to the corresponding stratum is not injective

are mapped to regions of lower dimension in R2n. Therefore the set of points in restricted

general position consists of regions of top dimension separated by these “walls”.
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5.34 Lemma

Fix a degree ∆ (of parametrized tropical curves, that is, an unordered tuple of directions)

and a genus g, and let n = #∆+g−1. Let P = (p1, . . . , pn) be a configuration in restricted

general position.

Then the numbers Ntrop(∆, g,P) of parametrized tropical curves through P (defined in

4.52) are equal to the numbers of unparametrized tropical curves of genus g and degree ∆

with markings pi counted with multiplicity (as defined in 5.27).

Proof:

Let us first determine the number Ntrop(∆, g,P). It is equal to the number of preimages

of P under ev in the relevant subset. Recall that P = {p1, . . . , pn} is in restricted general

position. Hence the set ev−1(P) is a finite set. This is true because ev is injective on each

of the finitely many strata which occur in the preimage. Also, each preimage is simple.

For each preimage, take the corresponding marked unparametrized tropical curve. It is of

course of genus g and degree ∆ and has the markings pi. This assignment is a bijection,

because by 5.29, there is a unique simple parametrization for a marked unparametrized

tropical curve.

Hence we get the same number Ntrop(∆, g,P) for the unparametrized tropical curves of

genus g and degree ∆ with markings pi.

5.35 Remark

If ∆ is a degree such that the only primitive directions which occur are (−1, 0), (0,−1) and

(1, 1), and such that for at least one of these primitive directions all direction vectors have

weight 1, then Ntrop(∆, g,P) is also equal to the number of images h(Γ) of parametrized

tropical curves of degree ∆ and genus g that pass through P (without the information

about the weights as it is needed for unparametrized tropical curves), counted with the

multiplicity of the parametrizations.

To see this, take the set of marked unparametrized tropical curves with markings pi

(of which we know by 5.34) that its number — counted with multiplicity — is equal to

Ntrop(∆, g,P)). Now forget the information about the weights, then we get a set of images

h(Γ) of parametrized tropical curves of degree ∆ and genus g that pass through P. We

want to show that this assignment is bijective, too. It is injective, because the weights

are uniquely determined due to remark 5.7. (This is a consequence of the choice of the

degree.)

To see that it is surjective, take the set of images h(Γ) of parametrized tropical curves of

degree ∆ and genus g that pass through P. Every image of a nonrelevant parametrized

curve is counted with multiplicity 0. So the number of these images is equal to the number

of images of relevant parametrized tropical curves of degree ∆ and genus g that pass

through P. But as P is in restricted general position, each relevant parametrized tropical

curve through P is simple. Therefore each such image is equal to a marked unparametrized

tropical curve of genus g and degree ∆ with markings pi, without the information about

the weights.
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5.36 Remark

Due to lemma 5.34 we are not going to define the numbers of unparametrized tropical

curves through a given configuration P separately. We know that if the configuration is

in restricted general position, this number is just Ntrop(∆, g) (respectively, N irr
trop(∆, g) if

we consider only irreducible curves).

5.3. Lattice paths

The idea how to translate the enumeration of tropical curves through points in general

position to Newton subdivisions is to choose in fact a very special (general) position for

the points. We will see that the marked edges Ξ dual to a tropical curve through that

special point configuration form a lattice path.

5.37 Definition

A path γ : [0, n] → R

2 is called a lattice path if γ|[j−1,j], j = 1, . . . , n is an affine-linear

map and γ(j) ∈ Z2 for all j = 0 . . . , n.

5.38 Definition

Let λ be a fixed linear map λ : R2 → R whose kernel has an irrational slope. (For

example, λ(x, y) = x − εy, where ε is a small irrational number. This map is in fact the

main example we will use in the following.) A lattice path γ is called λ-increasing if λ ◦ γ

is strictly increasing.

Let p and q be the points in ∆ where λ|∆ reaches its minimum (resp. maximum). Then

p and q divide the boundary ∂∆ into two λ-increasing lattice paths δ+ : [0, n+] → ∂∆

(going clockwise around ∂∆) and δ− : [0, n−] → ∂∆ (going counterclockwise around ∂∆),

where n± denotes the number of integer points in the ±-part of the boundary.

The following picture shows an example for the triangle ∆3 with vertices (0, 0), (3, 0) and

(0, 3) and the map λ(x, y) = x − εy. The image of the path δ− is drawn as a line, the

image of δ+ as a dotted line.

p

q

δ+ : [0, 3] → ∆

δ− : [0, 6] → ∆

We will now define the multiplicity of λ-increasing paths as in [23]:

5.39 Definition

Let γ : [0, n] → ∆ be a λ-increasing path from p to q, that is, γ(0) = p and γ(n) = q. The

(positive and negative) multiplicities µ+(γ) and µ−(γ) are defined recursively as follows:

(1) µ±(δ±) := 1.

(2) If γ 6= δ± let k± ∈ [0, n] be the smallest number such that γ makes a left turn

(respectively a right turn for µ−) at γ(k±). (If no such k± exists we set µ±(γ) := 0).

Define two other λ-increasing lattice paths γ′ and γ′′ as follows:
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• γ′
± : [0, n− 1] → ∆ is the path that cuts the corner of γ(k±), i.e. γ′

±(j) := γ(j)

for j < k± and γ′
±(j) := γ(j + 1) for j ≥ k±.

• γ′′
± : [0, n] → ∆ is the path that completes the corner of γ(k±) to a parallelo-

gram, i.e. γ′′
±(j) := γ(j) for all j 6= k± and γ′′

±(k±) := γ(k± − 1) + γ(k± + 1)−

γ(k±):

γ γ′

+ γ′′

+

γ′′

−
γ′

−
γ

γ(k+)

γ(k−)

Let T be the triangle with vertices γ(k± − 1), γ(k±), γ(k± + 1). Then we set

µ±(γ) := 2 · Area T · µ±(γ′
±) + µ±(γ′′

±).

As both paths γ′
± and γ′′

± include a smaller area with δ±, we can assume that their

multiplicity is known. If γ′′
± does not map to ∆, µ±(γ′′

±) is defined to be zero.

Finally, the multiplicity µ(γ) is defined to be the product µ(γ) := µ+(γ)µ−(γ).

Note that the only end path which does not count zero is the path δ+ : [0, n+] → ∆

(respectively δ−). Paths without a left or right, but not equal to δ±, or “faster” paths

δ′ : [0, n′] → ∆ such that δ+([0, n+]) = δ′([0, n′]) but n′ < n+ have multiplicity zero.

5.40 Remark

Let us interpret the recursion to compute the multiplicity of a path in terms of Newton

subdivisions of ∆. Let γ be a λ-increasing path from p to q. Let us first consider the

positive multiplicity. The two paths γ and γ′ enclose the triangle T . The two paths γ

and γ′′ enclose a parallelogram. Before we go on to compute the multiplicity of γ′ and

γ′′ recursively, we take two copies of the Newton polygon ∆ and mark the triangle in

one of them and the parallelogram in the other one. Continuing like this, we get several

subdivisions of ∆ (above the path γ) in triangles and parallelograms. Of course, we get

the same below γ when we perform the recursion for µ−. Any such subdivision above γ

can be combined with any other subdivision below γ. We will call the set of subdivisions

which arise like this the possible Newton subdivisions for γ. Note that the multiplicity µ

of a path γ is nothing else but the number of possible Newton subdivisions for γ counted

with their multiplicity as defined in 5.22. Note also that all subdivisions that arise like

that contain the edges which are in the image of γ and are simple.

5.41 Example

As an example, the following picture shows a λ-increasing path γ (where λ(x, y) = x− εy

as before) and the two possible Newton subdivisions for γ. Both possible subdivisions are

dual to tropical curves of multiplicity 4 (because both have two triangles of size 2). The

multiplicity of the path is 8.
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5.42 Definition

Let g be an integer and ∆ a convex polygon in Z2. Let e = #(∂∆ ∩ Z2). We denote by

Npath(∆, g) the number of λ-increasing lattice paths γ : [0, e + g − 1] → ∆ with γ(0) = p

and γ(e + g − 1) = q counted with their multiplicities as in definition 5.39.

Of course, it is not clear that this definition does not depend on the choice of λ. This will

follow from theorem 5.44 which is proved in the next section.

5.43 Example

The following picture shows all λ-increasing paths (where λ(x, y) = x − εy as before) in

∆3 with 8 steps. The sum of their multiplicities is Npath(∆3, 0) = 12.

µ = 2 µ = 3 µ = 4

µ = 1 µ = 2

5.4. The correspondence of tropical curves and lattice paths

The aim of this section is to prove the following theorem:

5.44 Theorem

For all ∆ and g we have Npath(∆, g) = Ntrop(∆, g) (where Npath(∆, g) is defined in 5.42

and Ntrop(∆, g) is defined in 4.73).

See [23] theorem 2.

In fact, we will not only prove that the two numbers coincide. We will choose a certain

configuration Pλ depending on λ, and then show that each possible Newton subdivision for

a λ-increasing path (see remark 5.40) is dual to an unparametrized curve passing through

Pλ. So in fact, we give a bijection between the unparametrized tropical curves passing

through Pλ and the set of possible Newton subdivisions for all paths.

A consequence of this proof is that the definition of Npath(∆, g) does not depend on the

choice of λ: We will show for the point configuration Pλ depending on λ that the number
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of λ-increasing paths is equal to Ntrop(∆, g). If we choose another map λ′, we also choose

a different point configuration Pλ′ . But by theorem 4.53 (respectively, remark 4.73) we

know that the number Ntrop(∆, g) does not depend on the point configuration the curves

are required to meet — and therefore we get the same number Npath(∆, g) of λ′-increasing

paths also for the different choice λ′.

5.45 Remark

We do not state an analogous theorem for the numbers N irr
trop(∆, g). As we have seen in

remark 5.23, there is no easy property of a Newton subdivision that decides whether the

dual curve is reducible or not. Even more, given a path γ in a Newton polygon ∆, some

of the possible Newton subdivisions for it can be dual to reducible curves and others not.

Also, given a Newton subdivision which is dual to a reducible curve, there is no better way

known to decide which part of the subdivision is dual to which component of the curve

than drawing the dual curve.

That is, we could define the numbers N irr
path(∆, g) in the following way: take all λ-increasing

paths, determine all possible Newton subdivisions for all paths, draw the dual curves, and

count only those which are irreducible. Then this number will obviously coincide with

N irr
trop(∆, g). However, this way to determine the number of irreducible possible Newton

subdivisions for all λ-increasing paths seems to be a bit complicated. And as we can

still not “divide” the Newton subdivisions corresponding to the components of the dual

curve, such a definition does not seem very helpful. Indeed, it is possible to reprove

the algorithm of Caporaso and Harris (which counts not necessarily irreducible curves)

in the dual setting (see chapter 9), but it does not seem so easy to do the same for

Kontsevich’s formula (which counts irreducible curves). (Another reason why it seems

not easy to reprove Kontsevich’s formula using lattice paths is that we need contracted

bounded edges in the tropical proof of Kontsevich’s formula (see chapter 7), which cannot

be seen in a dual subdivision.) Therefore we restrict to the numbers Npath(∆, g) and do

not worry about irreducible curves.

Let us now define the special point configuration we need for the proof of 5.44.

5.46 Definition

Choose a map λ : R2 → R as in definition 5.38. Choose a line H orthogonal to the kernel

of λ and n = #(∂∆ ∩ Z2) + g − 1 points p1, . . . , pn on H such that the distance between

pi and pi+1 is much bigger than the distance of pi−1 and pi for all i. The choice can in

fact be made in such a way that the point configuration is in restricted tropical general
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position (see [23], section 8.5). Define the λ-special configuration Pλ to consist of these n

points.

Note that the definition of a tropical curve, of a simple tropical curve and consequently, also

the definition of tropical general position is slightly different in [23]. Still, we have that any

parametrized tropical curve (as defined here in 4.10) that passes through a configuration

of points P in general position (as defined in [23]) is 3-valent, of genus g and simple, and

there is at most one curve of a given type through P. In fact, what we call “restricted

general position” is called “general position” in [23].

5.47 Lemma

Let C be an unparametrized tropical curve through Pλ as defined in 5.46. Then C intersects

the line H (on which the points Pλ = (p1, . . . , pn) lie) only in the points p1, . . . , pn.

Proof:

Due to the restricted general position of Pλ, we can conclude that C comes from a unique

simple parametrization (Γ, h, x1, . . . , xn), of type α. Again due to the restricted general

position we know that the evaluation map restricted to Mα
trop, g,n(∆) is injective, there-

fore by 4.49 the multiplicity of C is nonzero. Hence (Γ, h, x1, . . . , xn) contains no string.

Therefore Γ \
⋃

i xi consists of only rational components with one unbounded end (see

4.50). If C (and hence h(Γ)) intersects H also in the point p′ different from p1, . . . , pn,

there must be one component K of Γ \
⋃

i xi whose image intersects H in p′.

p1

p4

K

H

p3

p2

p′

But then K \h−1(H) consists of two components of which one needs to be compact, as K

has only one unbounded end. This is not possible due to the balancing condition.

5.48 Lemma

Let C be an unparametrized tropical curve through Pλ (see 5.46) of genus g and degree ∆.

As before, let Ξ ⊂ Sub(∆) denote the marked edges, which are dual to the edges passing

through Pλ (see definition 5.31).

Then Ξ is the image of a λ-increasing path γ : [0,#(∂∆ ∩ Z2) + g − 1] → ∆ from p to

q (where p and q are as in definition 5.38 the points of ∆ where λ attains its minimum

respectively maximum).

Proof:

First note that by lemma 5.47, the set Pλ coincides with C ∩ H. That is, we have to see

that the edges in Sub(∆) which are dual to edges of C which intersect H form a lattice

path.

Consider a vertex V of the Newton subdivision and the edges adjacent to it. Dual to these

edges is a chain of edges of C which encloses a convex polyhedron. Any line meets this
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chain of edges at most twice. We distinguish several cases depending on the position of

V .

• Assume first V is in the interior of ∆.

��

∆

H

V

Then the convex polyhedron is in fact bounded and H meets either none or two of

the dual edges. (It cannot meet a vertex, as Pλ is in restricted tropical general po-

sition. Therefore C can be parametrized by a simple marked parametrized tropical

curve, and hence none of the points pi can lie on a vertex of C.) Hence, either none

or two marked edges must be adjacent to V .

• Assume next that V = p. Recall how p was defined: it is the vertex of ∆ where λ

attains its minimum. If we draw a line parallel to the kernel of λ through p then

this line meets ∆ only in p. Even more, the edges adjacent to p in ∆ lie on one side

of the line parallel to ker λ. Assume H intersects two edges of C which are adjacent

to p. Change the coordinate system for a moment such that H is of slope 0. Then

the slope of one edge must be negative and the slope of the other edge must be

positive:

∆

H

But then the duals of these edges in the Newton polygon ∆ would not be on one

side of a line parallel to the kernel of λ. So it is not possible that H intersects more

than one of the dual edges to the edges adjacent to p.

Assume H intersects none of the dual edges to the interior edges adjacent to p.

Then either all those edges lie above H, or below H. Without restriction, assume

they lie above H. Then also the unbounded edges dual to the edges in the boundary

of ∆ adjacent to p lie above H. Also, as both of these edges lie on one side of the

line parallel to ker λ, one of the dual unbounded edges has to intersect H.

H

line parallel to ker λ

p

∆

Hence altogether H intersects precisely one of the duals of the edges adjacent to p.

So there is one marked edge adjacent to p.
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• Assume that V = q, then we get the same result as for p: there is one marked edge

adjacent to q.

• Assume finally that V is in the boundary of ∆, but neither equal to p nor q.

Then the edges adjacent to V do not lie on one side of a line parallel to ker λ

through V . Therefore we can see as before that H intersects two of these edges, if

it intersects any at all. So there are either two or no marked edge adjacent to V .

Altogether we have seen that at each vertex V — except p and q — there are either two

marked edges adjacent or no marked edge, while at p and q, there is one marked edge

adjacent. That is, Ξ is a path from p to q.

At last, we have to see that the path Ξ is λ-increasing. Assume the vertices a1, a2 and a3

are three consecutive vertices of Ξ, such that the step from a1 to a2 is λ-increasing, while

the step from a2 to a3 is not. But this means, that a1 and a3 lie on the same side of a

line parallel to ker λ through a2. By the above we have seen that then H cannot intersect

both dual edges, which contradicts the assumption that the two edges were part of Ξ.

Proof of theorem 5.44:

Take the point configuration Pλ as above in definition 5.46. We know that it is in restricted

tropical general position, therefore there are finitely many parametrized tropical curves in

ev−1(Pλ), and each counts with a nonzero multiplicity (see 4.49). Let (Γ, h, x1, . . . , xn) be

one of these curves. Recall that it is simple due to the restricted general position of Pλ.

Then h(Γ) is an unparametrized tropical curve of the right genus and degree through Pλ.

If we take the edges of h(Γ) that pass through Pλ and consider their dual edges in the

Newton subdivision then these dual edges form a λ-increasing path from p to q by lemma

5.48.

Let γ be a path. We are going to show that there are exactly mult(γ) unparametrized

tropical curves (counted with multiplicity) through Pλ, such that the marked points are

dual to Ξ = γ.

So interpret Im(γ) as a set of marked edges in Sub(∆), and try to draw a dual un-

parametrized tropical curve. For the edges passing through the points of Pλ, the direction

is prescribed by the path γ and a point through which they should pass is prescribed by

Pλ. Take the “first” marked edge of Ξ = Im(γ) — that is, the one starting at p — and

draw a line orthogonal to this marked edge through p1. Going on, draw a line dual to

the following marked edge of Ξ = Im(γ) through p2 and so on. We are going to complete

these edges to unparametrized tropical curves, counting the possibilities to do this. We

will find one unparametrized tropical curve dual to each possible Newton subdivision for

γ (see remark 5.40).

The multiplicity µ+ counts the possibilities to complete the edges dual to γ to a tropical

curve (times their multiplicity) in the half-plane above H, whereas µ− counts below H.

We are going to make this argument precise for µ+, for µ− it is analogous.

Let the first left turn of the path γ be enclosed by the edges E and E′ whose duals e and

e′ pass through pi and pi+1. The edges through the points p1, . . . , pi−1 do not intersect

above H, as this was the first left turn. The edges e and e′ will intersect above H, but
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below all other possible intersections of dual edges of Ξ = Im(γ). This is true due to the

chosen configuration of points: we wanted the distance of pj+1 and pj to be much bigger

than the distance of pj and pj−1. That is, we can draw a parallel line H ′ to H such that

H and H ′ enclose a strip in which only the intersection point of e and e′ lies. Passing from

γ to γ′ and γ′′ corresponds to moving the line H up to H ′. The path γ′ leaves a triangle

T out, and γ′′ completes the corner to a parallelogram. These two possibilities are in fact

dual to the two possibilities how an unparametrized tropical curve can look like at e ∩ e′:

it can either have a 3-valent vertex — in which case it is dual to the triangle T — or e

and e′ can just intersect — in which case it is dual to the parallelogram which is enclosed

by γ and γ′′. So the change from γ to γ′ and γ′′ describes the possibilities how a simple

unparametrized tropical curve through Pλ can look like in the strip enclosed by H and

H ′.

The following picture shows a path γ and the two paths γ′ and γ′′, together with the

triangle respectively parallelogram which they enclose with γ. Below, the dual curves in

the strip enclosed by H and H ′ are shown.

����
�
�
�
�

��
����

����
��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

γ γ′ γ′′

H

H ′

H

H ′

Recursively, we can see that there is in fact exactly one dual unparametrized tropical curve

C through Pλ to each possible Newton subdivision for γ. C is obviously of degree ∆, as we

end up with the two paths δ+ and δ− which are dual to the unbounded edges prescribed

by ∆ in our recursion. (Due to the restricted general position of Pλ, C is of genus g.)

Hence we constructed a bijection between the set of possible Newton subdivisions for a

λ-increasing path and the set of unparametrized tropical curves through Pλ. The latter

number is equal to Ntrop(∆, g) by lemma 5.34.

5.49 Example

The picture shows a λ-increasing path γ : [0, 8] → ∆3 (where λ(x, y) = x − εy as before).

Next to it, its two possible Newton subdivisions are shown, and below the dual curves

through the point configuration Pλ. (The distance between the points pi+1 and pi is not



113

so much bigger than the distance between pi and pi−1 in our picture here, just because

this cannot be drawn so easily. The picture should still be sufficient to give an idea on

how the special point configuration and the curves through it look like.)

(1) (2)

(1)
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6. The correspondence of complex curves and tropical curves

The aim of this chapter is to give a short overview of the proof of Mikhalkin’s Correspon-

dence Theorem:

6.1 Theorem (Mikhalkin’s Correspondence Theorem)

The numbers N irr
cplx(∆, g) as defined in 3.71 and N irr

trop(∆, g) as defined in 4.52 coincide.

Also, the numbers Ncplx(∆, g) from 3.71 and the numbers Ntrop(∆, g) from 4.73 coincide.

Even more, for a choice P of points in restricted tropical general position, there exists

a configuration Q ⊂ C

2 of points in general position (with Log(Q) = P) such that for

each tropical curve C through P there are mult C complex curves of genus g and degree ∆

through Q whose amoebas are contained in a neighborhood of C. These curves are distinct

for distinct C and irreducible if C is irreducible.

See [23], theorem 1.

In section 3.1 and in section 4.5 we set up enumerative problems both for complex and

tropical curves. Theorem 6.1 claims that these two problems coincide — if we want to

know one of these numbers, we can determine the other instead. An idea why this should

be true can be found in section 2.1: there we chose a different algebraically closed field

instead of the complex numbers, the field K which completes the field of Puiseux series.

We defined tropical curves as images of such curves over K, and we have seen in theorem

4.27 that the images h(Γ) of the parametrized tropical curves which we count in section

4.5 coincide with the closures the images of curves over K under Val (because we only

count regular curves). But the numbers N irr
cplx(∆, g) and Ncplx(∆, g) do not change if we

replace the ground field K by C.

However, the tropical curves in section 4.5 are counted with a multiplicity (defined in

4.47). We motivated this definition of multiplicity be saying that it should coincide with

the number of curves (either of curves in K2, or of complex curves) that are mapped

to a given tropical curve (either under the valuation map, or by taking logarithm and a

limiting process we are about to specify). But the definition we made then for multiplicity

was purely combinatorial and it is not obvious that it really coincides with the number of

curves (over C or K). So a main part of the proof of theorem 6.1 is to explain why the

multiplicity of a tropical curve coincides with the number of complex curves that map to

it.

In section 8.4 we want to generalize Mikhalkin’s Correspondence Theorem to tropical

curves that satisfy in addition tangency conditions of higher order to a line (a notion

which will be defined in section 8.1 and needed for the tropical proof of the algorithm

of Caporaso and Harris, given in section 8.2). The knowledge of the idea of the proof of

Mikhlakin’s Correspondence Theorem is important for our generalization.

6.2 Notation

Let ∆ define a toric surface and the class of a curve as in 3.68. Let g ∈ Z be given.
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During the whole section (x, y) will denote the coordinates of R2, and (z,w) will denote

the coordinates of (C∗)2.

Let Q be a set of n = #(∂∆ ∩ Z2) + g − 1 points in general position in (C∗)2 such that

P = Log(Q) is in restricted tropical general position in R2 (defined in 5.33) (where

Log : (C∗)2 → R

2 : (z,w) 7→ (log |z|, log |w|)

as in chapter 2).

We know that there are finitely many parametrized tropical curves of degree ∆ and genus

g through P, and each has a nonzero multiplicity. Call these tropical curves C1, . . . , Cr.

(Note that r need not be equal to Ntrop(∆, g), and it can differ for different configurations

P.)

Note that by lemma 5.34 it makes no difference whether we consider the curves Cj as

parametrized tropical curves or as unparametrized tropical curves.

Mikhalkin’s proof is divided into two main parts: In the first part he considers Jt-

holomorphic curves, which are in some sense limits of complex curves, and he proves that

the amoebas of these limits of complex curves of degree ∆ and genus g passing through

Q lie within a small neighborhood of Cj for some j. In the second part he proves that for

each Cj there are mult Cj amoebas of Jt-holomorphic curves in a neighborhood of Cj.

Sections 6.2 and 6.3 will each deal with one of these parts of the proof. Section 6.1 starts

with some general notions.

6.1. Jt-holomorphic curves

Recall the notion of an amoeba from the beginning of chapter 2:

6.3 Definition

Let V be a curve in (C∗)2. Recall that the amoeba of V is defined to be the image Log(V )

in R2.

There, we have seen that a tropical curve looks like an amoeba “from far away” — like

the limit of an amoeba in some sense. In the following, we will specify this limiting

process. We need to shrink the amoeba, until we come from something 2-dimensional to

the 1-dimensional “skeleton”. This process of shrinking is done with the map

(z,w) 7→ (logt |z|, logt |w|)

where we let t → ∞. Note that the image of a given point (z,w) ∈ (C∗)2 under this map

moves towards the origin if we let t → ∞. In this sense the map “shrinks” the whole plane

in the direction of the origin. Applying this map for a big t to a complex line as in chapter

2 will yield a “thinner” amoeba - something closer to the tropical line. However, we are

going to shift this “shrinking” process, we are not going to shrink the real plane, but we

are going to shrink the curves in (C∗)2, before we apply the map Log to get the amoeba

in the real plane. This is done by the following map:
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6.4 Definition

Let t > 1 be a real number. Define

Ht : (C∗)2 → (C∗)2 : (z,w) 7→

(
|z|

1
log t

z

|z|
, |w|

1
log t

w

|w|

)
.

A Jt-holomorphic curve Vt is the image Vt = Ht(V ) of a holomorphic curve V . The degree

and genus of Vt are defined as the degree and genus of V . A Jt-holomorphic curve Vt is

called irreducible if its preimage V is irreducible, and reducible else.

Note that

Log ◦Ht(z,w) = Log

(
|z|

1
log t

z

|z|
, |w|

1
log t

w

|w|

)

=
(
log |z|

1
log t , log |w|

1
log t
)

=

(
log |z|

log t
,
log |w|

log t

)

=
(
logt |z|, logt |w|

)
.

So the map Ht really shifts our shrinking process from above to the curves in (C∗)2.

What is important about Jt-holomorphic curves is that we can count these instead of

“normal” holomorphic curves. This is the result of the following proposition:

6.5 Proposition

For almost all t > 1 there are Ncplx(∆, g) Jt-holomorphic curves of degree ∆ and genus g

through Q.

N irr
cplx(∆, g) of these Jt-holomorphic curves are irreducible.

Proof:

The number of Jt-holomorphic curves through Q with the required properties is equal

to the number of holomorphic curves with the same properties through H−1
t (Q). But

H−1
t (Q) is in general position for almost all t.

The statement about the irreducibility follows by definition.

So to prove theorem 6.1, we need to show that Ntrop(∆, g) (respectively, N irr
trop(∆, g)) is

equal to the number of (irreducible) Jt-holomorphic curves of genus g and degree ∆ that

pass through Q. This will be shown with the following two lemmata:

6.6 Lemma

Let ε > 0 be given. Then there exists a T > 1 such that for all t > T and for all Jt-

holomorphic curves V of genus g and degree ∆ that pass through Q, the amoeba Log(V )

is contained in an ε-neighborhood of Cj for some j = 1, . . . , r (where Cj is defined in 6.2).

See lemma 8.3 of [23].

6.7 Lemma

Let ε > 0 be small and t > 0 be large. Then the multiplicity mult Cj as defined in 4.47 is

equal to the number of Jt-holomorphic curves V of genus g and degree ∆ passing through

Q and such that Log(V ) is contained in the ε-neighborhood of Cj.
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Furthermore, if Cj is irreducible any such V is irreducible as well, while if Cj is reducible,

any such V is reducible.

See lemma 8.4 of [23]. The following two sections will deal with the proofs of these two

lemmata. Using the two statements, we can give a proof of theorem 6.1:

Proof of theorem 6.1:

By proposition 6.5 we know Ncplx(∆, g) (respectively, N irr
cplx(∆, g)) is equal to the number

of Jt-holomorphic curves of genus g and degree ∆ that pass through Q. By lemma 6.6,

the amoebas of all Jt-holomorphic curves of genus g and degree ∆ that pass through Q

lie each in a small neighborhood of one of the tropical curves C1, . . . , Cr through P (see

6.2). For each Cj , there are in fact multCj such Jt-holomorphic curves whose amoeba lie

in the neighborhood of Cj by lemma 6.7. As the number Ntrop(∆, g) is counted with just

that multiplicity, the result follows.

The statement about N irr
cplx(∆, g) follows because any irreducible Jt-holomorphic curve

projects to an irreducible tropical curve (and the same for a reducible curve) by lemma

6.7.

6.2. The “limit” of an amoeba — amoebas of Jt-holomorphic curves

The aim of this section is to give an idea of the proof of lemma 6.6.

There are two ways of associating a tropical curve to a given Jt-holomorphic curve V

— we can associate its tropicalization to it, or the spine of the amoeba Log(V ). Both

concepts will be needed to prove that the amoeba of a Jt-holomorphic curve of genus g

and degree ∆ through Q lies in a small neighborhood of a Cj . These two tropical curves

will be defined in the following:

6.8 Definition

Let V be a (holomorphic) complex curve. It is given by a polynomial f =
∑

i aiz
biwci .

Its tropicalization F = max{log |ai| + bi · x + ci · y} defines a tropical curve V trop (see

definition 2.7) (we can think of it as an unparametrized tropical curve) that we call the

tropicalization of V .

Let Vt be a Jt-holomorphic curve. It is then given as the image of a complex curve V

under the map Ht of 6.4. We take the tropicalization V trop of V and scale it by the factor
1

log t . The scaled tropical curve V trop
t is called the tropicalization of Vt.

Note that unlike the situation in section 2.1 (where we dealt with curves over the field K,

the completion of the Puiseux series) the tropicalization of V , that is, the tropical curve

associated to F , is not equal to the image of V under Log — the latter is a 2-dimensional

object, the amoeba.

6.9 Remark

Let V be a Jt-holomorphic curve and A = Log(V ) its amoeba. By proposition 8.2 of [23],

there is a (unparametrized) tropical curve which is contained in the amoeba A (it can be

given by a tropical polynomial whose coefficients depend on the polynomial which defines

V ). We call this tropical curve the spine of the amoeba.
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6.10 Example

Here is a picture of an amoeba and its spine:

6.11 Remark

Note that the spine and the tropicalization of a Jt-holomorphic curve can be different.

Take for example the complex curve V given by the polynomial

f(z,w) = 3z + 3zw + 2z2 + w2 + 2w + 1

= 3z + 3zw + 2z2 + (w + 1)2.

Then V has a point of contact order 2 with the line {z = 0}. Recall the considerations at

the beginning of chapter 2: a common point of V and {z = 0} leads to a tentacle of the

amoeba in direction x → −∞. As V has a point of contact order 2, it does not have a

second intersection with {z = 0}. Therefore the amoeba Log(V ) has only one tentacle in

this direction. As the spine of Log(V ) is contained in the amoeba, also the spine has only

one unbounded edge in direction (−1, 0).

the spine
the tentacle of the amoeba

For the tropicalization of V , we can consider the logarithms of the coefficients of the

polynomial as “heights” as in 2.13 and project the upper faces of the convex hull of these

points to R2 to get the dual Newton subdivision of V trop. Doing this, we note that V trop

has 2 unbounded edges of direction (−1, 0).

V trop

0

0

log 3log 2

log 3 log 2
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6.12 Notation

Let (Vk)k∈N be a sequence of curves of genus g and degree ∆ passing through Q such that

Vk is a Jtk -holomorphic curve, where tk → ∞ for k → ∞. Let Ak denote the amoeba

Log(Vk), and Sk the spine of the amoeba Log(Vk).

Our aim is to see that there is a subsequence of the sequence of the amoebas (Ak)k which

converges to one of the tropical curves Cj (see 6.2). Both the spines and the tropicalizations

of the Jtk -holomorphic curves Vk will be needed to prove this. The following definition is

needed to specify the convergence.

6.13 Definition

Let X be a metric space. For two closed subsets A,B ⊂ X define the distance of A and

B to be

d(A,B) := max{ sup
a∈A

d(a,B) , sup
b∈B

d(A, b) },

where d(a,B) denotes the usual distance of a point to a closed set:

d(a,B) := min
b∈B

{ d(a, b) }

and d(a, b) denotes the distance.

Let {Ak} be a family of closed subsets of X. We say that the family converges in the

Hausdorff metric to another closed subset A if for every compact set D ⊂ X there exists

a neighborhood U of D such that limk→∞ d(Ak ∩ U,A ∩ U) = 0.

The following lemma is needed to prove that the amoebas Ak get “thinner”, the higher k

gets.

6.14 Lemma

The amoeba of a Jt-holomorphic curve V is contained in the δ-neighborhood of the tropi-

calization V trop, where δ = logt(#(∆ ∩Z2) − 1).

See lemma 8.5 and corollary 8.6 of [23]. Note that V trop is not one of the curves Cj - it

does not need to pass through P, for example.

Idea of the proof:

Assume first V is a holomorphic curve given by the polynomial f =
∑

i aiz
biwci .

Assume a point (x′, y′) ∈ R2 is not contained in the δ-neighborhood of V trop, but in the

amoeba Log(V ). Recall that V trop is given as the tropical curve associated to the tropical

polynomial F = max{log |ai|+ bi ·x + ci · y}, where the maximum is taken over all integer

points (bi, ci) ∈ ∆. V trop is the set of points where the maximum is attained by at least

two terms. If (x′, y′) is not contained in V trop, the maximum max{log |ai|+ bi ·x
′ + ci · y

′}

is attained by one single term. Assume it is attained by the term log |ai′ | + bi′x
′ + ci′y

′.

Because we assume that (x′, y′) is not even contained in the δ-neighborhood of V trop, we

can in fact conclude that

log |ai′ | + bi′x
′ + ci′y

′ > log |ai| + bi · x
′ + ci · y

′ + δ

for all i 6= i′.
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But (x′, y′) is contained in Log(V ), therefore there is a point (z′, w′) ∈ V such that

Log(z′, w′) = (x′, y′). As (z′, w′) ∈ V , we have f(z′, w′) = 0. The triangle inequality

implies

|ai′z
′bi′w′ci′ | ≤

∣∣∑

i6=i′

aiz
′biw′ci

∣∣.

We apply log to both sides of this inequality and get

log |ai′ | + bi′x
′ + ci′y

′

= log |ai′z
′bi′w′ci′ |

≤ log
∣∣∑

i6=i′

aiz
′biw′ci

∣∣

≤ log
(
(#(∆ ∩Z2) − 1) · max

i6=i′
{|aiz

′biw′ci |}
)

= δ + max
i6=i′

{log |ai| + bix
′ + ciy

′}.

Hence we get a contradiction to the above.

The case of a Jt-holomorphic curve follows from the result for the holomorphic preimage

under Ht.

6.15 Proposition

Take the sequence (Vk)k of Jtk -holomorphic curves from 6.12. Let (Sk)k denote the corre-

sponding sequence of spines. Then there is a subsequence of (Sk)k which converges in the

Hausdorff metric to one of the tropical curves Cj (see 6.2).

See proposition 8.7 of [23].

Idea of the proof:

Recall that the spine of an amoeba can be given by a tropical polynomial which depends

on the amoeba. Hence for the sequence (Sk)k of spines, we also get a sequence of tropical

polynomials describing the spines. Then there is a subsequence which converges to a

tropical curve which is given by the “limit” of these tropical polynomials — for a detailed

description of this limit (there is some ambiguity in the coefficients of the polynomials)

and for a proof of this statement, see proposition 3.9 of [23].

It remains to show that the limit of the converging subsequence is a tropical curve of genus

g and degree ∆ that passes through P — hence one of the curves Cj. This is done in

proposition 8.7 of [23].

Idea of the proof of 6.6:

Take again the sequence (Vk)k of Jtk -holomorphic curves from 6.12. Corollary 8.8 of [23]

shows that the corresponding sequence of spines (Sk)k is a union of subsequences, each of

which consists either of finitely many terms, or converges to one of the curves Cj from 6.2.

Lemma 6.14 is needed to prove that not only the spines Sk, but also the amoebas Ak

converge. Of course, the amoeba surrounds the spine, and if the spines converge to Cj ,

then the amoeba has to be close to Cj , too. However, the amoeba is a 2-dimensional

object which has a “thickness”, and just that Sk is close to Cj does not imply that Ak
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is indeed contained in a small neighborhood. But in 6.14 we have seen that it is in the

δ-neighborhood of another tropical curve, of the tropicalization of Vk. In particular this

means that its thickness cannot be bigger than 2δ. The number δ depends on tk, for the

Jtk -holomorphic curve Vk it is δ = logtk(#(∆ ∩ Z2) − 1). As tk → ∞ when k → ∞, the

thickness of the amoebas Ak gets smaller, the higher k gets. In particular, Ak is contained

in a small neighborhood of Cj.

Note that a spine Sk which is contained in the sequence that converges to Cj can have

more edges than Cj , but these edges vanish in the limit. All other edges of Sk tend to

a parallel edge of Cj. More precisely, proposition 8.9 of [23] yields a small value δ̃(tk)

depending on tk such that all edges of the spine Sk are in a δ̃(tk)-neighborhood of the

corresponding edge of Cj . (The proof of 8.9 of [23] uses — among others — lemma 6.14

again: the spine Sk is contained in Ak. We know Ak = Log(Vk) contains the points P,

because Vk contains the points Q. An edge of Sk which corresponds to an edge e of C

that passes through some pi cannot have bigger distance from e than δ, because both pi

and Sk are contained in Ak.) As furthermore by 6.14, the thickness of the amoeba Ak

is smaller than δ = logtk
(#(∆ ∩ Z2) − 1), we can conclude that Ak is contained in a

δ̃(tk) + 2δ-neighborhood of Cj .

6.3. The number of complex curves whose limit is a given tropical

curve

The aim of this section is to give an overview of the proof of the lemma 6.7.

For the whole section, let C = Cj be one of the tropical curves through P as in 6.2.

The proof works in two steps — we are going to define complex tropical curves (they can

be thought of as J∞-holomorphic curves) and show how many complex tropical curves

project to C under Log in 6.22. Then we are going to show how many Jt-holomorphic

curves are contained in a neighborhood of each such complex tropical curve that projects

to C in 6.24 and 6.25.

6.16 Definition

Let (Vk)k be a sequence of Jtk -holomorphic curves, where tk → ∞ for k → ∞. Assume the

sequence converges in the Hausdorff metric to V∞. Then V∞ is called a complex tropical

curve.

V∞ is defined to be of genus g, if it is the limit of a sequence of Jtk -holomorphic curves of

genus g and cannot be presented as the limit of a sequence of Jtk -holomorphic curves of

smaller genus. The degree of V∞ is defined to be the degree of the tropical curve Log(V∞).

There are other ways to characterize a complex tropical curve, see proposition 6.1 of [23].

The definition includes the claim that Log(V∞) is in fact a tropical curve. This follows

from one of the other characterizations of complex tropical curves (see definition 6.17

below) and Kapranov’s theorem (see proposition 6.3 of [23] and 2.9). We are going to

present this different characterization of a complex tropical curve, and leave the proof

that it coincides with definition 6.16 to proposition 6.1 of [23].
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Recall the completion K of the field of Puiseux series defined in section 2.1 with the

valuation val : K → R ∪ {−∞}. To a Puiseux series

p(t) = a1t
q1 + a2t

q2 + a3t
q3 + . . .

(where ai ∈ C and q1 < q2 . . .) the valuation associates the rational number −q1.

This valuation can be “complexified” to give a map

w : p(t) 7→ e−q1+i·arg(a1).

In fact, the valuation can be complexified to w on the whole completion K, not only for

the Puiseux series.

Applying this map componentwise, we get a map W : (K∗)2 → (C∗)2 such that Log ◦W =

Val.

6.17 Definition

Let V ⊂ (K∗)2 be a curve. Then the image W (V ) ⊂ (C∗)2 is defined to be a complex

tropical curve.

6.18 Definition

Let C = Cj be one of the tropical curves through P from 6.2. Think of C =

(Γ, h, x1, . . . , xn) as a parametrized tropical curve. Each edge of Γ has a certain weight

which is equal to the factor with which we need to multiply the primitive integer vector

u to get the direction v (see remark 4.13). We define the edge multiplicity of C and P

µedge(C,P) to be the product of all those weights.

6.19 Remark

Note that it is important for definition 6.18 that we think of C as a parametrized tropical

curve. Each marked point is adjacent to two other edges of Γ which are mapped to the

same edge of the unparametrized tropical curve as in 5.30. Therefore, when computing

the edge multiplicity of C, we multiply twice with the weight of the direction of this line.

If we think of C as an unparametrized tropical curve, we have to multiply with the square

of the weights of those edges which pass through a point of P instead. This justifies

the notation µedge(C,P) — considered as an unparametrized tropical curve, the edge

multiplicity depends not only on C but also on the position of the points P on C.

6.20 Example

The edge multiplicity of the following tropical curve through the points p1, p2 and p3 is

2 · 2 = 4:

Γ

h

2 2 2

6.21 Proposition

Let ∆′ be a lattice triangle. Let q1 and q2 in (C∗)2 be two points in general position,
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such that p1 = Log(q1) and p2 = Log(q2) are in restricted tropical general position (with

respect to degree ∆′ and genus 0). There is exactly one rational tropical curve C (with

only one vertex) dual to ∆′ through p1 and p2. Assume the two edges that pass through p1

respectively p2 are of weight ω1 respectively ω2.

Then there are
2Area(∆′)

ω1ω2

rational complex tropical curves that pass through q1 and q2 and project to C under Log.

For a proof, see proposition 6.17 of [23].

The following picture shows an example. The area of ∆′ is 3. The weights of the two

edges that pass through the two points are 2 and 1. So the proposition claims that there

are 3 complex tropical curves through q1 and q2 that project to this tropical curve under

Log.

∆′

6.22 Proposition

Let C = Cj be one of the tropical curves through P as in 6.2.

Then there are
multC

µedge(C,P)

complex tropical curves in (C∗)2 of genus g and degree ∆ that pass through Q and project

to C under Log.

See proposition 6.18 of [23].

Proof:

As P is in restricted tropical general position, we know that C contains no string (4.49).

Think of C = (Γ, h, x1, . . . , xn) again as a parametrized tropical curve. Then by 4.50

Γ\
⋃

i xi consists of only rational components each of which contains precisely one un-

bounded edge.

h(K)

h(V )

pi pj

Let K be such a component. Let xi and xj be two marked points which are adjacent to

two edges of K that are adjacent to the same 3-valent vertex V . Let pi and pj in P be the
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two points to which the two marked points xi and xj are mapped. Let ∆′ be the triangle

dual to the vertex V . Then there are 2 · Area(∆′)/(ω1ω2) complex tropical curves that

pass through qi and qj and project to the dual of ∆′. The result follows by induction.

To prove lemma 6.7, it remains to show that there are µedge(C,P) Jt-holomorphic curves

of genus g and degree ∆ passing through Q in the neighborhood of each complex tropical

curve which maps to C under Log. This is the hardest part of the proof of theorem 6.1.

We will only give a short overview of the proof. The main idea is to prove the statement

separately for each polygon in the Newton subdivision of ∆ dual to C — for each edge,

triangle and parallelogram — and to “glue” the Jt-holomorphic curves corresponding to

each such polygon using Viro’s Patchworking method (see proposition 8.12 of [23]).

C can be considered as an unparametrized tropical curve. Also, we can find a tropical

polynomial which defines C. (That this is indeed possible is a consequence of theorem

4.27: C comes from a curve over the completion K of the field of Puiseux series, which is

given by a polynomial f . Then trop(f) is a suitable tropical polynomial which defines C

(see 2.9).)

So we can think of C as given by a tropical polynomial F = max{ai + bix + ciy}, where

the sum is taken over all i such that (bi, ci) is an integer point in the polygon ∆. There is

in fact some ambiguity in the choice of the coefficients ai — for more details, we refer to

[23].

Now let V∞ be one of the complex tropical curves which maps to C under Log. By

the second characterization of complex tropical curves (see definition 6.17) we know that

V∞ = W (V ), where V is a curve over the completion of the field of Puiseux series K. V

is given by a polynomial over K. The coefficients a′i of this polynomial can be mapped

to (C∗)2 by the map w. These images w(a′i) are then in fact determined (up to some

ambiguity) by the complex tropical curve V∞ to which V is mapped via W .

That is, given C and given a complex tropical curve V∞ that maps to C, we get two sets

of coefficients: a set of real coefficients ai (for the tropical polynomial defining C) and

a set of complex coefficients w(a′i) (for the images under w of the coefficients a′i of the

polynomial which defines the curve V over K that is mapped to V∞ under W ).

Let f ζ
t =

∑
arg(ζi)t

log ζizbiwci (where the sum is again taken over all i such that (bi, ci) is

an integer point in the polygon ∆) be a polynomial depending on t and a set of complex

coefficients ζ.

Now assume Vt is a Jt-holomorphic curve in the neighborhood of V∞.

Then Vt = V ζ
t can be presented as V ζ

t = Ht

(
{f ζ

t = 0}
)
, and the set of coefficients ζ has

to satisfy a condition given by the two sets of coefficients ai and w(a′i) we just described.

(For a proof of this statement and for more detailed descriptions on the conditions and

the two sets of coefficients, see proposition 8.11 of [23].)

The aim is now to count those Jt-holomorphic curves V ζ
t in the neighborhood of V∞ which

are suitable — that is, which are of the right genus and degree, and pass through Q. We

call a set ζ of complex coefficients which define such a suitable Jt-holomorphic curve a

suitable set ζ.
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To count the suitable sets ζ, we work with a version of Viro’s patchworking method.

We cover the tropical curve C by small neighborhoods around the vertices, edges and

crossings of two edges. Each vertex, edge or crossing of two edges is dual to a polygon ∆′

— edge, triangle or parallelogram — of the Newton subdivision Sub(∆) dual to C.

The patchworking principle roughly states now that if we change the coefficients ζi cor-

responding to points (bi, ci) which do not belong to the polygon ∆′ of Sub(∆), then this

change has little effect on the curve V ζ
t restricted to the open subset around the edge,

vertex or crossing dual to ∆′ (see proposition 8.12 of [23]).

Proposition 8.14 of [23] describes how the curves V ζ
t restricted to the open subset around

the dual of each polygon ∆′ have to look like topologically in order to have a curve of

genus g in total.

6.23 Remark

A corollary of this proposition (corollary 8.15 of [23]) is then that each such curve V ζ
t of

genus g which is irreducible maps to an irreducible tropical curve C, and each reducible

V ζ
t maps to a reducible C.

The lemmata 8.16, 8.17 and 8.21 of [23] count for each polygon ∆′ of Sub(∆) the numbers

of suitable coefficients ζ (which satisfy that the curve V ζ
t — restricted to the open subset

around the dual of ∆′ — fulfills the conditions of 8.14, and passes through Q). That is,

these lemmata count the numbers of suitable coefficients ζ for each polygon separately,

for which the “glued” curve, V ζ
t , is indeed a suitable curve.

However, integer points of ∆ may belong to several polygons — edges, triangles or par-

allelograms — of Sub(∆). So it is not clear if we can choose the suitable ζ for each ∆′

separately. Therefore, we have to choose an order on the polygons ∆′. Then we choose

the coefficients ζ for each ∆′ one after the other following this order.

It is still not easy to show how many possibilities there are to choose the new coefficients

in each step such that they are compatible to the old coefficients. In fact, the following

proposition (see 8.23 of [23]) shows this only for the case that Sub(∆) contains no edge

of a higher integer length. That is, C contains no edge of a higher weight, and the edge

multiplicity of C and P is 1.

6.24 Proposition

Let C be a tropical curve through P such that C contains no edge of weight greater 1. Let

V∞ be a complex tropical curve that maps to C. Then there is one suitable choice for ζ

such that V ζ
t is a Jt-holomorphic curve of degree ∆ and genus g passing through Q.

In particular, there is 1 = µedge(C,P) Jt-holomorphic curve of degree ∆ and genus g

passing through Q in the neighborhood of V∞.

For a proof, see proposition 8.23 of [23]. It uses the three lemmata 8.16, 8.17 and 8.21

which count the suitable coefficients separately for each ∆′, and the chosen order on the

∆′ that guarantees that we make compatible choices.

It remains to prove the analogous statement for the case that C contains edges with higher

weights. As we chose n = #(∂∆∩Z2)+g−1 points P, the unbounded edges of C all need
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to have weight 1. So only an interior edge can have a higher weight. Assume e is an edge

(of the unparametrized tropical curve C) of weight ω. Assume e is dual to the edge ∆′ of

the dual Newton subdivision of C which then has integer length ω. If e is disjoint from

the points P, it contributes ω to the edge multiplicity, else, it contributes ω2. So in order

to see that there are µedge(C,P) Jt-holomorphic curves contained in the neighborhood of

each complex tropical curve which projects to C, we have to show that there are ω choices

for suitable coefficients for ∆′ if e is disjoint from P, and ω2 else.

6.25 Lemma

Let C be a tropical curve through P with a bounded edge e of weight ω > 1. Let e be dual

to the edge ∆′ of the dual Newton subdivision of C.

Then we have

• ω suitable choices for the coefficients ζ of ∆′ if e does not pass through one of the

points of P (that is, if ∆′ * Ξ), and

• ω2 suitable choices if e passes through one of the points of P (that is, if ∆′ ⊂ Ξ).

Recall that suitable means in this context: compatible with the choices we already made

for polygons which occurred earlier in our order, passing through Q, and such that V ζ
t

restricted to the open subset around e is of the right form to guarantee that the complete

curve V ζ
t is of genus g (where the “right form” is specified in proposition 8.14 of [23]). For

more details see lemma 8.24 of [23].

Idea of the proof:

By the patchworking principle we can conclude that it is not important which Newton

polygon ∆ surrounds the edge ∆′ of integer length ω. Therefore we can assume that ∆′

lies in a special polygon.

We are also going to assume that ∆′ * Ξ and that ω is odd. The other cases work

analogously.

So we can assume ∆′ lies in the parallelogram with the vertices (0, 0), (0,−1), (ω, 0) and

(ω, 1).

∆

The tropical curve C dual to this Newton subdivision has 4 unbounded edges and is

rational — therefore it is fixed by 3 points p1, p2 and p3. We can choose p1, p2 and p3 so

that there is only one rational tropical curve of degree ∆ passing through the three points

— the curve C — and such that Ξ is equal to three edges of the boundary:

∆
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Also, choose preimages q1, q2 and q3 under Log in general position.

We can furthermore choose a different set of points p′1, p′2 and p′3 (and preimages q′1, q′2
and q′3) such that the only tropical curve C ′ of degree ∆ and genus 0 that passes through

p′1, p′2 and p′3 has the following Newton subdivision (and the same marked edges Ξ):

∆

Note that C ′ has no edge of a higher weight. We know mult C ′ = ω2 and

µedge(C
′, {p′1, p

′
2, p

′
3}) = 1. Therefore by 6.22, there are ω2 complex tropical curves that

project to C ′.

As C ′ has no edge of a higher weight we can apply proposition 6.24 and see that there is

one suitable Jt-holomorphic curve in the neighborhood of each of the ω2 complex tropical

curves.

We have chosen the point configuration such that C ′ is the only rational tropical curve of

degree ∆ that passes through it. Therefore, the amoebas of all rational Jt-holomorphic

curves of degree ∆ passing through q′1, q′2 and q′3 have to lie in the neighborhood of C ′ by

6.6. That is, Ncplx(∆, 0) (respectively N irr
cplx(∆, 0)) is equal to ω2.

For C, we have mult C = ω2 and µedge(C, {p1, p2, p3}) = ω, therefore by 6.22, there are ω

complex tropical curves that project to C.

Again, because C is the only rational tropical curve of degree ∆ that passes through p1,

p2 and p3, every rational Jt-holomorphic curve of degree ∆ passing through q1, q2 and q3

has to map to a neighborhood of C under Log.

Therefore, there have to be altogether Ncplx(∆, 0) Jt-holomorphic curves in the neighbor-

hoods of these ω complex tropical curves. We computed this number with the help of C ′,

it is ω2. By symmetry, there have to be ω Jt-holomorphic curves in the neighborhood of

each complex tropical curve that projects to C.

6.26 Remark

Note that for this proof it is indeed necessary that e is a bounded edge of C. The proof

cannot be generalized to the case of a tropical curve which has unbounded edges of a

higher weight.

6.27 Remark

Another way of explaining the result of 6.25 is the following:

Let e again be an edge of C of weight ω, and ∆′ the dual edge in Sub(∆). Let A and B

be the two vertices adjacent to e, and ∆A and ∆B be the two triangles in Sub(∆) dual to

A and B.

As in remark 3.68, the triangles ∆A and ∆B describe a toric surface, and the edge ∆′ which

belongs to both triangles (respectively, another edge of integer length ω if ∆′ belongs to a

parallelogram) defines a divisor D∆′ on each toric surface.
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The suitable curves V ζ
t restricted to the neighborhood around A (respectively B) approx-

imate curves which have tangency order ω with the divisor D∆′ in the respective toric

surface (see [23], remark 8.25). The curves cannot have more intersection points with this

divisor, as otherwise the genus of the whole curve V ζ
t (after gluing each little piece) would

be too big.

We can think of the two curves on the toric surfaces for ∆A and ∆B as two annuli which

are circled almost around themselves ω times. There are ω ways to identify them. If there

is in addition a point qi, there are also ω choices for the sheet on which qi lies.

Let us sum up the contents of this section to prove lemma 6.7:

Idea of the proof of lemma 6.7:

Let C be one of the tropical curves through P (as in 6.2). By proposition 6.22 we know

that there are mult C/µedge(C,P) complex tropical curves which project to C under Log.

By 6.24 and 6.25 we know that there are µedge(C,P) Jt-holomorphic curves of genus g and

degree ∆ through Q in a neighborhood of each such complex tropical curve. Altogether

we have multC Jt-holomorphic curves of genus g and degree ∆ through Q whose amoebas

lie in a neighborhood of C.

The statement about the irreducibility follows due to remark 6.23.
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7. A tropical proof of Kontsevich’s formula

As we have seen in chapter 6, the numbers N irr
cplx(d, g) and N irr

trop(d, g) coincide. For rational

curves, we know an algorithm — Kontsevich’s formula (see section 3.2) — which allows

to compute the numbers N irr
cplx(d, 0) recursively. Hence we can conclude that the tropical

numbers N irr
trop(d, 0) must fulfill the same recursion formula. The aim of this section is to

find a reason in the tropical world why the numbers N irr
trop(d, 0) satisfy Kontsevich’s for-

mula. More precisely, the aim of this chapter is to prove the following theorem tropically:

7.1 Theorem

The numbers N irr
trop(d, 0) (defined in 4.52) satisfy Kontsevich’s formula (as defined in 3.30).

Our tropical proof of Kontsevich’s formula contributes to the “translation” of complex

geometry to tropical geometry. Furthermore, it shows that the two fields are very much

related: we will see that the tropical proof follows essentially the same ideas as the classical

one (see section 3.2).

7.2 Remark

Using theorem 7.1 and theorem 3.31 we can in fact give an alternative proof of Mikhalkin’s

Correspondence Theorem 6.1 for rational curves: knowing that both the numbers

N irr
cplx(d, 0) and N irr

trop(d, 0) satisfy the same recursion formula, and knowing that there

is one tropical as well as one complex line through two points, we can conclude recursively

that N irr
cplx(d, 0) = N irr

trop(d, 0).

In section 7.1, we reconsider the moduli space of tropical curves. In the case of rational

curves, we can in fact choose an easier definition of the moduli space than the one we

used in chapter 4: we do not need to pass to the relevant subset. In section 7.2, we define

tropical analogues of an important tool used in the classical proof: forgetful maps. The

most important forgetful map forgets the map h and all marked points but the first four.

(If we do not specify in the following which forgetful map we are talking about, this is the

one.) We cannot work with divisors and intersection theory as these concepts are not yet

fully developed in the tropical world. Therefore, we have to replace the statement that the

two boundary divisors D1,2/3,4 and D1,3/2,4 in the moduli space of stable maps are linearly

equivalent somehow in the tropical world. To do this, we combine the forgetful map with

the evaluation map: we impose the incidence conditions we need for Kontsevich’s formula

(that is, we will require the tropical curves to meet two lines and 3d − 2 points just as in

the classical proof) and we require that the curves map to a given point in Mtrop, 0,4 under

the forgetful map. We show in proposition 7.14 that the number of curves satisfying these

conditions does not depend on the special choice of the point in Mtrop, 0,4. The idea to

prove this is the same as for theorem 4.53 which shows that the number of tropical curves

passing through a given set of points, N irr
trop(∆, g), does not depend on the special choice

of points (although the multiplicity with which the curves have to be counted is not the

same).

In section 7.3 we will choose two special points in Mtrop, 0,4 — namely two points where

the length of the bounded edge which links the four markings x1, . . . , x4 is very large.
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Using proposition 7.14 we know that the numbers of tropical curves which satisfy the

incidence conditions and map to the two special points in Mtrop, 0,4 are equal for both

points. Finally, we have to interpret these two numbers in terms of reducible curves

consisting of two components of lower degree. We will see that the two numbers can be

interpreted as sums just analogously to the classical case.

The tropical proof of Kontsevich’s formula shows that it is possible to carry many concepts

from classical complex geometry over to the tropical world: moduli spaces, morphisms,

divisors and divisor classes, intersection multiplicities, and so on. Even if we only make

these constructions in the specific cases we need, we hope that our work will be useful to

find the correct definitions of these concepts in the general tropical setting.

Note that it is not straightforward to generalize the methods used in this chapter to curves

of arbitrary degree: the special degree is needed in proposition 7.15.

The result we describe in this chapter was achieved in joint work with Andreas Gathmann

and published as preprint in [13].

7.1. The enumerative problem for rational parametrized tropical

curves

In chapter 4 we decided to work with the subset of relevant tropical curves (see definition

4.36). The reason is that restricting to relevant curves we were able to give a good

bound on the dimensions of the strata Mα
trop, g,n(∆) (see proposition 4.41). We needed

the knowledge about these dimensions in order to prove the main theorem of chapter 4,

theorem 4.53. We will see that for rational curves, this reason is absent.

7.3 Lemma

A rational parametrized tropical curve C is regular, that is, the dimension of the stra-

tum Mα
trop, 0,n(∆) (where α denotes the combinatorial type of C) is equal to the expected

dimension (defined in 4.24).

Proof:

Recall that by lemma 4.21 the strata Mα
trop, g,n(∆) are given as the subset of R2+#Γ1

0

where the coordinates given by the lengths are positive and the conditions that the loops

close up are satisfied. For rational curves, there are of course no loops and hence we have

dimMα
trop, 0,n(∆) = 2 + #Γ1

0 = edimMα
trop, 0,n(∆).

In particular, we can determine the dimensions of all strata Mα
trop, 0,n(∆).

So the reason for which we passed to the relevant subset in chapter 4 has become ab-

sent when we work with rational curves. Therefore, we want to work with the space

Mtrop, 0,n(∆) here instead of M̃trop, 0,n(∆). This is important, because we need to con-

sider curves with contracted bounded edges later on.
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7.4 Notation

For the whole chapter, we work with the space Mtrop, 0,n(∆) as moduli space of tropical

curves. We denote by

ev : Mtrop, 0,n(∆) → R

2n : (Γ, h, x1, . . . , xn) 7→ (h(x1), . . . , h(xn))

the evaluation map now starting from this space.

Analogously to 4.45, the evaluation map is a linear map restricted to each stratum

Mα
trop, 0,n(∆).

7.5 Lemma

Let n = #∆ − 1. Then Mtrop, 0,n(∆) is a polyhedral complex of pure dimension 2n and

ev is a morphism of polyhedral complexes of the same dimension.

The proof is analogous to the proof of 4.56. We can determine the dimensions of the strata

Mα
trop, 0,n(∆) even without using 4.41, because rational curves are regular. (For the proof

of 4.41 it was necessary to pass to the relevant subset, and we can therefore not use it

here.)

Let us next come to the multiplicity. Note that a 3-valent nonrelevant curve either has a

vertex V adjacent to a contracted bounded edge, or a vertex V where two edges point in

one direction and the other in the opposite:

In both cases, the multiplicity of V is 0 by definition, and thus so is the multiplicity of the

curve. In particular, Mtrop, 0,n(∆) \ M̃trop, 0,n(∆) consists of curves which do not count

anyway. That is, when we count tropical curves, we have

N irr
trop(∆, g,P) =

∑

C∈ev−1(P)

mult(C)

also if we now use the evaluation map starting from the bigger space Mtrop, 0,n(∆) as

defined in 7.4.

In 4.49 we have seen that the multiplicity of a relevant curve is 0 if and only if the evaluation

map is not injective restricted to the corresponding stratum Mα
trop, 0,n(∆). This statement

is also true for nonrelevant (rational) curves.

7.6 Proposition

Let C be a 3-valent curve of type α in Mtrop, 0,n(∆), and let n = #∆−1. Then mult C = 0

if and only if the evaluation map restricted to Mα
trop, 0,n(∆) is not injective.

Proof:

As the statement holds for relevant curves by 4.49, we can assume that C =

(Γ, h, x1, . . . , xn) is not relevant. Assume first that C has a contracted bounded edge.

Then both its multiplicity is 0, and the evaluation map is not injective on the correspond-

ing stratum. So the claim holds in this case. Assume next that C has a vertex V as above,

where the edges adjacent to it do not span R2. In particular, we have multC = 0. So

we have to see that ev |Mα
trop, 0,n(∆) is not injective. Note that the image of V and the

three edges adjacent to V is just a straight line. Assume all three edges adjacent to V
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are unbounded. Then V is the only vertex of the curve. Therefore V has to be the root

vertex and the position h(V ) is a coordinate of the space Mα
trop, 0,n(∆). But then we can

vary this coordinate without changing the image h(Γ) of the curve. Assume not all three

edges adjacent to V are unbounded. Then we can vary the length of the bounded edge

adjacent to V without changing the image h(Γ) of the curve. In both cases, we can see

that ev |Mα
trop, 0,n(∆) is not injective.

The converse holds of course, too: for every nonrelevant curve C for which ev |Mα
trop, 0,n(∆)

is not injective we have mult C = 0, already just because it is not relevant.

7.7 Remark

Note that for rational curves the sets M̂α
trop, 0,n(∆) defined in 4.62 are equal to the sets

Mα
trop, 0,n(∆) and the map fα defined in 4.63 is equal to a matrix representation of the

evaluation map. In particular, lemma 4.68 shows in this case that multev C = mult C (see

remark 4.69). (We required the curves to be relevant in the statement of lemma 4.68,

but this requirement was only needed because we applied proposition 4.49 for the case

that mult C = 0. But we have seen above in 7.6 that the analogous statement of this

proposition holds for rational nonrelevant curves, too.)

That is, for rational curves we have

N irr
trop(∆, g,P) =

∑

C∈ev−1(P)

mult(C) =
∑

C∈ev−1(P)

multev C = degev(P).

In particular, we have a different formulation of theorem 4.53: for rational curves, it states

that the map P 7→ degev(P) is constant. Lemma 4.58, remark 4.59 and lemma 4.72 are

enough to prove that degev(P) does not depend on P for rational curves.

7.2. Tropical forgetful maps

Having defined the moduli space we want to work with in this chapter and reconsidered

the results of chapter 4 for this space, we can now define tropical forgetful maps.

As in the context of stable maps there are many forgetful maps: for a tropical curve

(Γ, h, x1, . . . , xn) we can forget the map h to R2, or some of the marked points, or both.

7.8 Definition

Let n′ ≤ n and let C = (Γ, h, x1, . . . , xn) ∈ Mtrop, 0,n(∆) be an n-marked tropical curve.

Let C(n′) be the minimal connected subgraph of Γ that contains the unbounded edges

x1, . . . , xn′ . Note that C(n′) cannot contain vertices of valence 1. So if we “straighten”

the graph C(n′) at all 2-valent vertices (that is, we replace the two adjacent edges and the

vertex by one edge whose length is the sum of the lengths of the original edges) then we

obtain an element of Mtrop, 0,n′ that we denote by ftn′(C).
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So we can define the tropical forgetful map (which forgets some marked points and the

map)

ftn′ : Mtrop, 0,n(∆) → Mtrop, 0,n′ : C 7→ ftn′(C).

(Of course, we can also forget any subset of {x1, . . . , xn} different from {xn′+1, . . . , xn}.)

7.9 Definition

Let n′ ≤ n and let C = (Γ, h, x1, . . . , xn) ∈ Mtrop, 0,n(∆) be an n-marked tropical curve.

Let C̃(n′) be the minimal connected subgraph of Γ that contains all unmarked ends as well

as the marked points x1, . . . , xn′ . Again, C̃(n′) cannot have vertices of valence 1. If we

straighten C̃(n′) as in 7.8 we obtain an abstract tropical curve Γ̃ with #∆+n′ unbounded

edges. Note that the restriction of h to Γ̃ still satisfies the requirements for a parametrized

tropical curve, that is (Γ̃, h|Γ̃, x1, . . . , xn′) is an element of Mtrop, 0,n′(∆). We denote it by

f̃tn′(C).

Again, we define the tropical forgetful map (which forgets only some marked points)

f̃tn′ : Mtrop, 0,n(∆) → Mtrop, 0,n′(∆) : C 7→ f̃tn′(C).

(As before, any other subset of {x1, . . . , xn} can also be forgotton.)

7.10 Example

The following picture shows a parametrized tropical curve C = (Γ, h, x1, . . . , x6) of degree

2. The subgraph C(4) is indicated in bold in the graph Γ. Below, the “straightened”

version is shown, that is, the image ft4(C) ∈ Mtrop, 0,4.

x4

x5

h

C

x3

x6

V

l4

l9
l8

x2

x1

h(x3)
h(x5)

h(x4)

h(x6)

h(x1)

h(x2)

l1

l2
l3

l5

l6
l7
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x3

x4

ft4(C)

x1

x2
l4 + l5

7.11 Lemma

The forgetful maps from definition 7.8 and 7.9 are morphisms of polyhedral complexes.

Proof:

By 7.5 we know that Mtrop, 0,n(∆) is a polyhedral complex. The cells are given by the

sets Mα
trop, 0,n(∆) depending on the combinatorial type α. For an abstract tropical curve,

the combinatorial type is given by the homeomorphism class of the graph Γ. We conclude

that the set of all abstract tropical curves of the same combinatorial type α is also a

polyhedron, where the coordinates are given by the lengths of the bounded edges. (There

is no coordinate of the position of the root vertex here, because we do not have a map to R2

but only an abstract tropical curve.) Hence it can be shown analogously that Mtrop, 0,n is

a polyhedral complex. Obviously, a forgetful map (no matter of which type — if it forgets

points and map or only points) maps a stratum Mα
trop, 0,n(∆) into a cell of curves of the

same combinatorial type. The map is furthermore linear, because the coordinates of the

target space — the length of the bounded edges of the graph ftn′(C) (respectively, f̃tn′(C))

— are given as sums of the coordinates of Mα
trop, 0,n(∆) by construction.

In contrast to the classical proof of Kontsevich’s formula, we cannot pullback two divisors

of Mtrop, 0,4 here, as the concept of tropical divisors is not yet fully developed. Instead,

we will combine the evaluation map (which sends two marked points to lines and the other

ones to points) with the forgetful map to Mtrop, 0,4. We will show that the degree of this

combined evaluation and forgetful map is constant. This statement (see proposition 7.14)

replaces the equivalent divisors which we received by pulling back in the classical proof.

The combination of evaluation and forgetful maps we need to consider for Kontsevich’s

formula is the following:

7.12 Definition

Fix d ≥ 2, and let n = 3d. We set

π := ev1
1 × ev2

2 × ev3 × · · · × evn × ft4 : Mtrop, 0,n(d) → R

2n−2 ×Mtrop, 0,4,

that is π describes the first coordinate of the first marked point, the second coordinate of

the second marked point, both coordinates of the other marked points, and the point in

Mtrop, 0,4 defined by the first four marked points. Obviously, π is a morphism of polyhedral

complexes of pure dimension 2n − 1.

Note that the first two evaluations — the first coordinate of the first marked point and

the second coordinate of the second marked point — determine two lines to which the
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first two marked points shall be mapped: the first one parallel to the y-axis, the second

one parallel to the x-axis.

7.13 Example

Let us determine the last row of the matrix representing π on the subset of types as in

example 7.10 (that is, the row corresponding to the coordinate of Mtrop, 0,4). It measures

the length of the bounded edge of ft4(C). We straightened the two bounded edges l4 and

l5 to come to the curve ft4(C). Hence the last row is

(0 0 0 0 0 1 1 0 0 0 0).

As a complete example, let us consider the following 4-marked tropical curve with 4

nonmarked ends.

x4

x3

l3
V

l2

x1

l1

x2

h h(x3)

h(x2)

h(x4)

l4
l5

h(x1)

Let us find a matrix representation of π for the stratum of tropical curves of the same

type. (We choose a curve of another degree than d here in order to keep the matrix not

too big. The construction for π from Mtrop, 0,n(∆) for some ∆ 6= ∆d (see definition 3.69)

is analogous.) The root vertex and the length coordinates are indicated in the picture.

We get the following matrix:



1 0 0 −1 0 0 0

0 1 1 0 0 0 1

1 0 1 0 0 1 0

0 1 1 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 −1 0 0

0 0 1 0 0 0 0




Note that the determinant of the matrix representation of π has nothing to do with the

multiplicity (in contrast to the determinant of a matrix representation of ev) due to the

presence of the last row corresponding to Mtrop, 0,4 and because we evaluate the first two

points at lines only.

Now we come to the central result of this section, the statement that the degrees degπ(P)

(see definition 4.55) of π do not depend on P. Here, P denotes an element of the space
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R

2n−2 ×Mtrop, 0,4. That is, P = (a, b, p3, . . . , pn, C ′) where a denotes the x-coordinate of

a line parallel to the y-axis, b the y-coordinate of a line parallel to the x-axis, p3, . . . , pn

denote 3d − 2 points and C ′ an element in Mtrop, 0,4.

7.14 Proposition

The degrees degπ(P) of the map π defined in 7.12 do not depend on P (as long as P is in

π-general position).

Proof:

The proof is analogous to the proof of theorem 4.53 which shows that the number

N irr
trop(∆, g,P) (which is here in the case of rational curves equal to degev(P), see remark

7.7) does not depend on P. An essential ingredient for this proof was lemma 4.72. The

analogous idea will be used here, too. Analogously to 4.58, degπ(P) is locally constant on

the set of points in π-general position. So with the same arguments as in remark 4.59, we

only have to consider a general point of the subset of points which are not in π-general

position. Such a point is the image under π of a curve C which is not in general position

in Mtrop, 0,n(d), that is, a curve of codimension 1. As we are working with rational curves,

the only type of codimension 1 is a type with exactly one 4-valent vertex. Let C be such

a curve and let P ′ = π(C). Analogously to 4.72 we know the three types α1, α2 and α3

which have C in their boundary:

V

V

V

e
V

e

e4

e2

e1
e3

e

α1α α2 α3

To check that degπ(P) is constant, we only have to see that the sum of the π-multiplicities

of the inverse images of a point configuration P ′′ near P ′ in the strata Mαi

trop, 0,n(d),

i = 1, 2, 3, does not depend on P ′′. Let Ai be a matrix representation of π|Mαi
trop, 0,n(d).

As in the proof of 4.72, the first step is to prove that the sum det A1 +detA2 +det A3 = 0

and the second step is to show which types can occur in a preimage.

The following table represents all three matrices A1, A2 and A3.

h(V ) l1 l2 l3 l4 lα1 lα2 lα3

points behind e1 E2 v1 0 0 0 0 0 0

points behind e2 E2 0 v2 0 0 0 v2 + v3 v2 + v4

points behind e3 E2 0 0 v3 0 v3 + v4 v2 + v3 0

points behind e4 E2 0 0 0 v4 v3 + v4 0 v2 + v4

coordinate of Mtrop, 0,4 0 ∗ ∗ ∗ ∗ ∗∗ ∗∗ ∗∗

Each matrix contains the first block of columns, and the i-th of the last three columns.

The first columns represent the coordinate h(V ) of the root vertex, the following four the

coordinates of the lengths of the edges e1, . . . , e4. The last three correspond to the length
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of the new edge e in the three different types. The last row corresponds to the coordinate

in Mtrop, 0,4. Each ∗ and ∗∗ stands for 0 or 1 (which will be explained further below).

To look at the entries marked ∗ further we will distinguish several cases depending on how

many of the edges e1, . . . , e4 of C are contained in the subgraph C(4) of definition 7.8:

(1) 4 edges: Then ft4(C) — the last coordinate of P ′ — is the curve (4) of example

4.9 (that is, all four unbounded edges x1, . . . , x4 come together at a vertex), and

the three types α1, α2, α3 are mapped precisely to the three other types (1), (2),

(3) of Mtrop, 0,4 by ft4 (that differ by which of the four unbounded edges x1, . . . , x4

come together at the two 3-valent vertices — see example 4.9). Hence the three

types α1, α2, α3 are mapped to the three cells of R2n−2×Mtrop, 0,4 around P ′ by π.

For these three types the length parameter in Mtrop, 0,4 is simply the length of the

newly inserted edge e. Hence the entries ∗ in the matrix above are all 0, whereas the

entries ∗∗ are all 1. It follows that the three matrices A1, A2, A3 have in the last row

a one as the bottom right entry and only zeroes else. Therefore their determinants

do not depend on the last column. But this is the only column that differs for the

three matrices. Hence A1, A2 and A3 all have the same determinant. The last

coordinate (the Mtrop, 0,4-coordinate) C ′′ of a point configuration P ′′ near P ′ is a

curve of precisely one of the types (1), (2) or (3) of 4.9. Hence also precisely one of

the types α1, α2, α3 occurs in the preimage under π of P ′′. As the π-multiplicity

of all three types is equal, it follows that degπ is locally constant around C. This

completes the proof of the proposition in this case.

(2) 3 edges: The following picture shows what the combinatorial types α, α1, α2, α3

look like locally around the vertex V in this case. As in example 7.10 we have drawn

the edges belonging to C(4) bold.

V

e4

e2

e1

e3

α1α α2 α3

x1

x2

x3

x4

We can see that exactly one edge ei (e4 in the picture above) counts towards the

length parameter in Mtrop, 0,4, and that the newly inserted edge counts towards this

length parameter in exactly one of the combinatorial types αi (α1 in the picture

above). Hence in the table showing the matrices Ai, exactly one of the entries ∗

and exactly one of the entries ∗∗ is 1, whereas the others are 0.

(3) 2 edges: Assume first that 2 marked points lie behind one ei and 2 behind another.

V

e4

e2

e1

e3

α1α α2 α3

x1

x3

x4

x2
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Then we can see that two edges (e1 and e4 in the picture) contribute to the length

parameter in Mtrop, 0,4, and the inserted edge contributes in two of the combinato-

rial types (α1 and α3). That is, 2 of the entries ∗ and also 2 of the entries ∗∗ above

are 1, whereas the others are 0. If there are three marked points behind one of the

ei and one behind another, then none of the edges contributes, and all ∗ and ∗∗

entries are 0.

(4) 1 edge: It is not possible that exactly one of the edges ei is contained in C(4).

(5) 0 edges: Then neither the edges e1, . . . , e4 nor the newly inserted edge contribute

to the length parameter in Mtrop, 0,4. That is, all the ∗ and ∗∗ entries are 0.

To sum up, we have seen in any case that there are equally many entries ∗∗ equal to 1

as there are entries ∗ equal to 1. So using the same operations as in 4.72 — adding the

last three columns to get a matrix whose determinant is equal to det A1 +detA2 +det A3,

subtracting the four li-columns and v1 times the h(V )-columns — we can see that det A1+

detA2 +detA3 is equal to the determinant of a matrix with a 0-column, hence is 0. Using

the same analysis as in 4.72 we can also see that the question whether there is a point in

π|−1
M

αi
trop, 0,n(d)

(P ′′) or not depends only on the sign of detAi. Hence P 7→ degπ(P) is locally

constant at P ′.

7.3. Reducible curves and Kontsevich’s formula

We have seen in 7.14 that the degrees of the morphism π defined in 7.12 do not depend on

the chosen point configuration on the target R2n−2×Mtrop, 0,4. Now we want to apply this

result by taking two different point configurations P1 and P2 and equating the two degrees

degπ(P1) = degπ(P2). We want to choose P1 and P2 such that the Mtrop, 0,4-coordinate is

very large, but corresponds to curves of different types, namely to (1) and (2) in example

4.9. That is, if we consider the abstract tropical curve ft4(C) for a curve C in π−1(P1),

then the two ends x1 and x2 come together at a 3-valent vertex, whereas for a curve in

π−1(P2), the ends x1 and x3 come together.

First, we need to see that a very large Mtrop, 0,4-coordinate implies that the curves in

π−1(P) contain a contracted bounded edge, that is, an edge which is mapped to a point

by h.

7.15 Proposition

Let d ≥ 2 and n = 3d, and let P ∈ R2n−2 × Mtrop, 0,4 be a point in π-general position

whose Mtrop, 0,4-coordinate is very large (so that it corresponds to a 4-marked curve of

type (1), (2), or (3) as in example 4.9 with a very large length l of the bounded edge).

Then every tropical curve C ∈ π−1(P) with multπ(C) 6= 0 has a contracted bounded edge.

This contracted edge is contained in the subgraph C(4).

Proof:

We have to show that the set of all points ft4(C) ∈ Mtrop, 0,4 is bounded in Mtrop, 0,4,

where C runs over all curves in Mtrop, 0,n(d) with non-zero π-multiplicity that have no

contracted bounded edge and where the marked points are mapped as required to the two
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lines and 3d−2 points of P. As there are only finitely many combinatorial types by lemma

4.30 we can restrict our considerations to curves of a fixed (but arbitrary) combinatorial

type α. Since P is in π-general position we can assume that the codimension of α is 0,

that is C is 3-valent.

Let C1 ∈ Mtrop, 0,n−2(d) be the curve that is obtained from C by forgetting the first

two marked points as in definition 7.9. We claim that C1 has exactly one string (see

definition 4.46). (As C1 is rational, this string will then in fact be a path connecting two

unbounded edges.) C1 must have at least one string by remark 4.50, because C1 has less

than 3d−1 = n−1 marked points. So assume C1 has two or more strings. Then C1 would

move in an at least 2-dimensional family with the images of x3, . . . , xn fixed. Hence also C

moves in an at least 2-dimensional family with the x-coordinate of h(x1), the y-coordinate

of h(x2), and both coordinates of h(x3), . . . , h(xn) fixed. As Mtrop, 0,4 is one-dimensional

this means that C moves in an at least one-dimensional family with the image point under

π fixed. Hence π is not a local isomorphism and so multπ(C) = 0 which contradicts our

assumption.

So let Γ1 be the unique string in C1. The deformations of C1 where the images of the

marked points are fixed are then precisely the ones of the string described in the proof of

proposition 4.49. The edges adjacent to Γ1 must be bounded since otherwise there would

be two strings. So if there are edges adjacent to Γ1 to both sides of Γ1 as in picture

(a) below (note that there are no contracted bounded edges by assumption) then the

“movement” of the string is bounded. (This is true because if we move the string to either

side, we can only move until the length of one of the adjacent bounded edges shrinks to

0, leading to a different combinatorial type.) That is, the deformations of C1 with fixed

combinatorial type and fixed images of the marked points are bounded on both sides. Now

let us consider the deformations of C again, where we fix the combinatorial type and ask

the marked points to map to the first coordinates (a, b, p3, . . . , pn) of P under π — that is,

the first two to the two lines which are fixed by P, and the others to the fixed points. For

these deformations of C we have that the lengths of all inner edges are bounded except

possibly the edges adjacent to x1 and x2. This is true, because the bounded edges adjacent

to x1 and x2 may have become unbounded when forgetting x1 and x2. However, this only

happens if one of the edges adjacent to x1 is unbounded, too. No two of the marked

points x1, . . . , x4 can be adjacent to the same vertex, because otherwise C would have a

contracted edge — the third edge adjacent to the same vertex would be of direction 0 due

to the balancing condition. Hence if x1 is adjacent to another unbounded edge, then this

is not one of the marked points. But then the length of the bounded edges adjacent to x1

and x2 cannot contribute to the length parameter. As all other lengths are bounded, the

image of these deformations of C under ft4 is bounded in Mtrop, 0,4 as well.

So we only have to consider the case when all adjacent edges of Γ1 are on the same side

of Γ1, say on the right side as in picture (b) below. Label the edges of Γ1 (respectively,

their direction vectors) by v1, . . . , vk and the adjacent edges of the curve by w1, . . . , wk−1

as in the picture. As above the movement of the string of C1 to the right within its

combinatorial type is bounded. If one of the directions wi+1 is obtained from wi by a left

turn (as it is the case for i = 1 in the picture) then the edges wi and wi+1 meet on the left
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of Γ1. This restricts the movement of the string of C1 to the left within its combinatorial

type, too, since the corresponding edge vi+1 then shrinks to length 0. Therefore we have

again as in case (a) above that the image of these curves under ft4 in Mtrop, 0,4 is bounded.

(a) (b)

w3

v1

w2

w3

(c)

v4

v3

v2

v1

w1
v1

v4 w3

w2

w1

(d)

v1

v2

w1

(e)

v4

w1

w2v2

v3

Γ1 Γ1

Γ1

So we can assume that for all i the direction wi+1 is either the same as wi or obtained

from wi by a right turn as in picture (c). The balancing condition then shows that for all

i both the directions vi+1 and −wi+1 lie in the angle between vi and −wi (shaded in the

picture above). Therefore, all directions vi and −wi lie within the angle between v1 and

−w1. In particular, the image of the string Γ1 cannot have any self-intersections in R2.

We can therefore pass to the (local) dual picture (d) (see 2.15) where the edges dual to

wi correspond to a concave side of the polygon whose other two edges are the ones dual

to v1 and vk.

But note that there are no such concave polygons with integer vertices if the two outer

edges (dual to v1 and vk) are two of the vectors ±(1, 0), ±(0, 1), ±(1,−1) that can occur

as dual edges of an unbounded edge of a tropical curve of degree d. Therefore the string

can consist at most of the two unbounded ends v1 and v2 that are connected to the rest

of the curve by exactly one bounded edge w1. This situation is shown in picture (e).

In this case the movement of the string is indeed not bounded to the left. Note that then

w1 is the only internal edge whose length is not bounded within the deformations of C1.

But this unbounded length of the edge w1 cannot count towards the length parameter

in Mtrop, 0,4 for the deformations of C as this would require two of the marked points

x1, . . . , x4 to lie on v1 or v2 for all curves in the deformation, which is incompatible with

the lines and points given by P that C is required to meet. Therefore the image of these

curves under ft4 is bounded in Mtrop, 0,4, too.

As the set of points ft4(C) in Mtrop, 0,4 is bounded, where C goes over all curves without

contracted bounded edges, we can conclude that for a very large length parameter in

Mtrop, 0,4, the preimages have to contain a contracted bounded edge e. The edge e must

be contained in the subgraph C(4) that we straightened to get ft4(C) = C ′ (see definition

7.8), because otherwise we could not have a very large length parameter in Mtrop, 0,4.

So we know that for the two configurations P1 and P2, for which we want to compare the

degrees of π, the inverse images under π are curves which contain a contracted bounded

edge. Let us describe what a curve with a contracted bounded edge looks like.
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7.16 Remark

Let C = (Γ, h, x1, . . . , xn) be a tropical curve with a contracted bounded edge e, and

assume that there is at least one more bounded edge on both sides of e. Then we can

cut Γ at e in the same way as in the proof of lemma 4.68 — we replace e on both sides

by an unbounded edge which is then also contracted to a point. Let us consider these

two new contracted unbounded edges as new marked points xn+1 and xn+2. Restricting

h to the two graphs ΓA and ΓB we obtain in this way, we get two tropical curves CA

and CB . They are then curves of degree dA respectively dB , where dA + dB = d and

dA, dB < d. This is true due to the balancing condition. We will say in this situation that

C is obtained by gluing CA and CB along the identification xn+1 = xn+2, and that C is a

reducible tropical curve that can be decomposed into CA and CB (even though the graph

Γ is not really disconnected here, it can only be made disconnected). For the image in

R

2 we obviously have h(Γ) = h(ΓA) ∪ h(ΓB). That is, when we consider the image h(Γ)

as an unparametrized tropical curve, then it is indeed reducible (see 5.6). This is true

because the unique simple parametrization will consist of the two connected components

ΓA and ΓB , and will not contain the contracted bounded edge e. That is, C considered

as unparametrized tropical curve is in fact just the union of the two curves CA and CB of

smaller degree.

h
e h(e)

By 7.15 we know that each curve in the preimage π−1(P1) respectively π−1(P2) contains

an edge which is contracted to a point. That is, by remark 7.16 there will be reducible

curves in such a preimage. Let us describe the preimage of P1 more detailed. The situation

for P2 is analogous.

7.17 Lemma

Let P1 = (a, b, p3, . . . , pn, C ′) ∈ R2n−2 × Mtrop, 0,4 be a point in π-general position such

that C ′ ∈ Mtrop, 0,4 is of type (1) (that is, in C ′ the two marked ends x1 and x2 come

together at a 3-valent vertex — see example 4.9) with a very large length parameter.

Then for every tropical curve C in π−1(P1) with non-zero π-multiplicity we have exactly

one of the following cases:

(1) x1 and x2 are adjacent to the same vertex (that maps to (a, b) under h);

(2) C is reducible and decomposes uniquely into two components CA and CB (as in

7.16) of some degrees dA and dB with dA + dB = d such that the marked points x1

and x2 are on CA, the points x3 and x4 are on CB, and exactly 3dA −1 of the other

points x5, . . . , xn are on CA.
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Proof:

By 7.15 we know that any curve C ∈ π−1(P1) with non-zero π-multiplicity has at least

one contracted bounded edge. In fact, C cannot have more edges which are contracted:

if C had at least two contracted edges, then there would be 2n − 2 coordinates in the

target of π (the evaluation maps) that depend only on 2n − 3 variables (namely the root

vertex and the lengths of all but the two contracted of the 2n − 3 bounded edges), hence

we would have multπ(C) = 0.

So let e be the unique contracted bounded edge of C. Recall that e must be contained in

the subgraph C(4) that we straightened to get ft4(C) = C ′ (see definition 7.8), because

else we could not have a very large length parameter in Mtrop, 0,4. As the point C ′ is of

type (1) the two ends x1 and x2 must be to one side, and x3 and x4 to the other side of

e. Denote these sides by CA and CB, respectively.

Assume first that there are no bounded edges in CA. Then C is not reducible as in remark

7.16. Instead CA consists only of e, x1 and x2. This means we are in case 1. The incidence

conditions then require that all of CA must be mapped to the intersection point (a, b) of

the two lines {x = a} and {y = b} that were prescribed by P1. (Note that it is not possible

that there are no bounded edges in CB , because else x3 and x4 would be mapped to the

same point in R2.)

Now assume that there are bounded edges to both sides CA and CB of e. In this case C is

reducible as in remark 7.16, so we are in case 2. First we claim that the two marked points

x1 and x2 are not adjacent to the same vertex V . If they were, the third edge adjacent to

V would be mapped to a point due to the balancing condition, which contradicts the above

where we have seen that e is the only contracted edge. Now let n1 (and n2) be the number

of marked points x5, . . . , xn on CA (respectively CB). We have to show that n1 = 3dA − 1

and n2 = 3dB − 3. So assume that n1 ≥ 3dA. Then at least 2n1 + 2 ≥ 3dA + n1 + 2 of the

coordinates of π (the images of the n1 marked points, the first image coordinate of x1 and

the second of x2) would depend only on 3dA + n1 + 1 coordinates (2 for the root vertex

and one for each of the 3dA + (n1 + 2) − 3 for the bounded edges which are part of CA),

leading to a zero π-multiplicity. Hence we have n1 ≤ 3dA−1. Analogously, we can see that

n2 ≤ 3dB−3. As the total number of marked points is n1+n2 = n−4 = (3dA−1)+(3dB−3),

we must therefore have n1 = 3dA − 1 and n2 = 3dB − 3.

Lemma 7.17 tells us that we can interpret the inverse images π−1(P1) — at least under

some assumptions — as reducible curves, just as we can interpret the stable maps in the

divisor D1,2/3,4 =
∑

dA+dB=d

∑
A,B D(dA, dB , A,B) defined in 3.28 as reducible curves.

The idea of the “tropical” proof of Kontsevich’s formula is indeed quite analogous to the

classical situation described in section 3.2. As in the classical situation, we would like to

count the components of the reducible curves in π−1(P1) separately, and the number of

ways two such components can be attached to each other. Before we can do this, we have

to study whether each choice of two components CA and CB and a way to attach them to

each other really yields a curve C in π−1(P1). This is shown in the following remark:
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7.18 Remark

As in lemma 7.17 let P1 = (a, b, p3, . . . , pn, C ′) ∈ R2n−2×Mtrop, 0,4 be a point in π-general

position such that C ′ ∈ Mtrop, 0,4 is of type (1) (that is, in C ′ the two marked ends x1

and x2 come together at a 3-valent vertex — see example 4.9) with a very large length

parameter. Let CA and CB be two unmarked tropical curves of degree dA respectively

dB with dA + dB = d such that the image of CA passes through the lines L1 := {x = a},

L2 := {y = b} and 3dA − 1 of the points p5, . . . , pn, and the image of CB through p3, p4,

and the remaining 3dB − 3 of the points p5, . . . , pn.

Then for each choice of points xn+1 ∈ CA and xn+2 ∈ CB that map to the same image

point in R2, and for each choice of points x1, . . . , xn on CA and CB that map to L1,

L2, p3, . . . , pn, respectively, we can make CA and CB into marked tropical curves by

adding marked unbounded edges at the points xi. Then, we can replace the two marked

unbounded edges xn+1 and xn+2 by one contracted bounded edge e and glue in that

way the two curves CA and CB together to a reducible n-marked curve C in π−1(P1) —

“converse” to what we have done in remark 7.16. (The length of the contracted edge e is

determined by C ′, hence we really get one single reducible curve C in that way.)

As P1 is required to be in π-general position we can never construct a curve C in this way

which is not 3-valent. In particular, CA and CB are 3-valent. Moreover, a point that is

in the image of both CA and CB cannot be a vertex of one of the curves. Hence it is not

possible that CA and CB share a common line segment in R2. In the same way we can see

that the image of CA cannot meet L1 or L2 in a vertex or have a line segment in common

with L1 or L2, and cannot meet L1 ∩ L2 at all.

To sum up, we have seen that after choosing the two curves CA and CB as well as the

points x1, . . . , xn and xn+1, xn+2 on them, there is a unique curve C in π−1(P1) obtained

from this data. In order to compute the degree of π at P1, we have to sum over all points

in π−1(P1). Instead, for the curves of type 2 in lemma 7.17 we can as well sum over all

choices of CA, CB , x1, . . . , xn, xn+1, xn+2 as above.

Before we can really count the curves C ∈ π−1(P1) (respectively, the choices of CA, CB ,

x1, . . . , xn, xn+1, xn+2 as in remark 7.18) we have to compute the multiplicity of π at the

curve C, and compare it with the multiplicities of CA and CB which we would like to

count instead. As already mentioned in remark 7.18, we want to sum over all choices of

CA, CB , x1, . . . , xn, xn+1, xn+2, where xn+1 = xn+2 is a common point of CA and CB , and

(for i = 1, 2) xi is a common point of CA and Li. Analogously to the classical situation,

an intersection point of CA and CB (respectively, of CA and Li) can have a multiplicity

which we need to consider when we want to count the possibilities to choose xn+1 = xn+2

respectively xi. Therefore, we introduce the notion of intersection multiplicity and cite

the tropical Bézout’s theorem, before we compare the multiplicities of C, CA and CB in

proposition 7.21.

7.19 Definition

Let CA and CB be two (parametrized) tropical curves and let p ∈ CA ∩ CB be a common

point of the images of both curves in R2. Assume #h−1
A (p) = #h−1

B (p) = 1 and both

preimages are distinct from the vertices of CA respectively CB . We define the intersection
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multiplicity of CA and CB at the point p to be

(CA · CB)p = |det(v,w)|

where v and w are the direction vectors of CA and CB at p. (The directions at p are well-

defined (up to sign), because for both curves, h−1(p) lies on a single edge (of a well-defined

direction) by assumption.)

For a line Li and a marked point xi (i = 1, 2) of CA (which is adjacent to a 3-valent

vertex and) which is mapped to Li we define (CA ·Li)xi
to be the first respectively second

coordinate of the direction vector of CA at xi. (Again, this direction vector is well-defined

(up to sign), because the two edges which are adjacent to the same vertex as xi are mapped

to the same line due to the balancing condition.)

7.20 Theorem (Bézout’s theorem)

Let CA and CB be two (parametrized) tropical curves of degree dA and dB, such that the

intersection CA ∩ CB is finite, for each p ∈ CA ∩ CB we have #h−1
A (p) = #h−1

B (p) = 1,

and the preimages are distinct from the vertices of CA respectively CB.

Then the number of intersection points of CA and CB, counted with the intersection mul-

tiplicity as defined in 7.19, is equal to the product of the degrees,
∑

p∈CA∩CB

(CA · CB)p = dA · dB .

For a proof, see [25] theorem 4.2. The idea of the proof is to consider first a special position

for the two tropical curves CA and CB : Assume that the only intersection points of CA

and CB lie on the unbounded edges of CA of direction (−1, 0) and the unbounded edges

of CB of direction (0,−1).

It is easy to see that each intersection point is of intersection multiplicity 1. Second, it

can be shown that the sum
∑

p∈CA∩CB
(CA ·CB)p stays constant when we move CA. This

is true because the balancing condition is fulfilled at each vertex.

Now we are ready to compare the multiplicity of the curves C ∈ π−1(P1) with the multi-

plicities of the components CA and CB :

7.21 Proposition

With the notations as in lemma 7.17 and remark 7.18, let C be a point in π−1(P1). Then
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(1) if C is of type 1 as in lemma 7.17 its π-multiplicity is multev(CA), where CA denotes

the curve obtained from C by forgetting x1, and ev is the evaluation at the 3d − 1

points x2, . . . , xn;

(2) if C is of type 2 as in lemma 7.17 its π-multiplicity is

multπ(C) = multev(CA) · multev(CB)·

(CA · CB)xn+1=xn+2 · (CA · L1)x1 · (CA · L2)x2 ,

where multev(CA) (respectively multev(CB)) denotes the multiplicities of the evalu-

ation map at the 3di −1 points of x3, . . . , xn that lie on the respective curve (for the

definition of the intersection multiplicities, see 7.19).

Proof:

We know that any curve C ∈ π−1(P1) (which counts with a nonzero π-multiplicity) has

to be of type 1 respectively 2 as in 7.17. In particular, C contains exactly one contracted

bounded edge e which is part of the subgraph C(4) we straightend in order to get ft4(C) =

C ′ as in 7.8. In order to prove the statement about the multiplicities, we have to set up

the matrix for π and compute its determinant. First note that in both cases 1 and 2 the

length of the edge e does not contribute to the evaluation of any marked point, because it

is contracted. It contributes with a factor of 1 to the Mtrop, 0,4-coordinate of π, because

it is part of C(4). Hence in the matrix for π, the column corresponding to the contracted

bounded edge e has only one entry 1 and all others zero. To compute the determinant of

this matrix we may therefore drop both the Mtrop, 0,4-row and the column corresponding

to e.

Let us first consider case 1. Then, in the curve C, the marked points x1 and x2 are both

adjacent to e and mapped to the same point (a, b) by h. The matrix that we obtain when

we delete the Mtrop, 0,4-row and the e-column is exactly the same as if we had only one

marked point instead of x1 and x2 and evaluate this point for both coordinates in R2

(instead of evaluating x1 for the first and x2 for the second). This proves case 1.

In case 2 we know that C is reducible with components CA and CB by 7.17. Let us first

consider the marked point x1, where we only evaluate the first coordinate. Let e1 and e2

be the two adjacent edges and assume first that both of them are bounded.

As indicated in the picture below, denote the direction vector of e1 by −v = (−v1,−v2).

Due to the balancing condition, the direction of e2 is v. Denote the lengths of the two

bounded edges e1 and e2 by l1 and l2. Assume that the root vertex is on the e1-side of x1

— it is also shown in the picture.

V

−vv

e2
e1

x1
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Then the entries of the matrix for π corresponding to l1 and l2 are as shown in the following

table:

↓ evaluation at. . . l1 l2

x1 (1 row) v1 0

points reached via e1 from x1 (2 rows each, except only 1 for x2) 0 0

points reached via e2 from x1 (2 rows each, except only 1 for x2) v v

We see that after subtracting the l2-column from the l1-column we again get one column

with only one non-zero entry v1. So for the determinant we get v1 = (CA · L1)x1 as a

factor, dropping the corresponding row and column (which simply means forgetting the

point x1 as in definition 7.9). Essentially the same argument holds if one of the adjacent

edges — say e2 — is unbounded: in this case there is only an l1-column which has zeroes

everywhere except in the one x1-row where the entry is v1.

The same is of course true for x2 and leads to a factor of (CA · L2)x2 .

Next we consider the contracted bounded edge e at which we split the curve C into the

two parts CA and CB . Choose one of its boundary points as root vertex V . Denote the

adjacent edges and their directions as in the following picture:

V
e

−w

−v

e2

e3

e4

v

e1

w

CA side CB side

First assume that all edges e1, . . . , e4 are bounded. Let li = l(ei). We assume as before

that there are n1 of the marked points x5, . . . , xn on CA and n2 on CB . (Recall that we

have forgotten the two marked points x1 and x2 already, and cancelled the corresponding

columns and rows of the matrix of π, leaving a matrix of size 2n − 4 altogether. We also

cancelled the e-column and the Mtrop, 0,4-row.)

Then the remaining matrix (of size 2n − 4) reads

lengths in CA lengths in CB

root (2n1 − 3 cols) l1 l2 l3 l4 (2n2 + 1 cols)

(2n1 points behind e1 E2 ∗ v 0 0 0 0

rows) points behind e2 E2 ∗ 0 −v 0 0 0

(2n2 + 4 points behind e3 E2 0 0 0 w 0 ∗

rows) points behind e4 E2 0 0 0 0 −w ∗
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where E2 is the 2 × 2 unit matrix and ∗ denotes arbitrary entries. We know already that

n1 = 3dA − 1 and n2 = 3dB − 3 due to lemma 7.17. That is, we have n1 +1 marked points

on CA (counting xn+1, too) and n2 + 3 on CB (counting x3, x4 and xn+2 as well). Hence

there are (n1+1+3dA)−3 = 2n1−1 bounded edges on CA and (n2+3+3dB)−3 = 2n2+3

bounded edges on CB. In the table, we show the columns for l1, . . . , l4 separately, so there

are 2n1 − 3 other columns for the bounded edges of CA and 2n2 + 1 other columns for the

bounded edges of CB .

Add v times the root columns to the l2-column, subtract the l1-column from the l2-

column and the l4-column from the l3-column to obtain the following matrix with the

same determinant:

lengths in CA lengths in CB

root (2n1 − 3 cols) l1 l2 l3 l4 (2n2 + 1 cols)

(2n1 points behind e1 E2 ∗ v 0 0 0 0

rows) points behind e2 E2 ∗ 0 0 0 0 0

(2n2 + 4 points behind e3 E2 0 0 v w 0 ∗

rows) points behind e4 E2 0 0 v w −w ∗

Note that this matrix has a block form with a zero block at the top right. Denote the top

left block (of size 2n1) by A1 and the bottom right (of size 2n2 + 4) by A2, so that the

multiplicity that we are looking for is |det A1 · detA2|.

The matrix A1 is precisely the matrix for the evaluation map of CA if we forget the

marked point xn+1 that replaces e after cutting. Note that forgetting this marked point

means we have to straighten the two edges e1 and e2 to get one edge e′1. The column

in A1 corresponding to e′1 is the column still denoted with l1. (Of course, V can no

longer be the root vertex, as we straightened the graph at V . We have to take the other

end point of e2 instead, which is then also a vertex of the straightened graph.) Hence

|det A1| = multev(CA). In the same way the matrix for the evaluation map of CB is the

matrix A′
2 obtained from A2 by replacing v and w in the first two columns by the first

and second unit vector, respectively. (As before, we have to forget the unbounded edge

xn+2 which replaces the cut edge e, straighten the graph to make e3 and e4 to one edge

with column corresponding to l4 and choose the root vertex to be the other end point of

e3.) The matrix A2 is obtained from A′
2 by right multiplication with the matrix


 v w 0

0 0 E2n2−4




which has determinant det(v,w). So we conclude that

|det A2| = |det(v,w)| · |det A′
2| = (CA · CB)xn+1=xn+2 · multev(CB).
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Altogether we have

multπ(C) = (CA · L1)x1 · (CA · L2)x2 · |det A1| · |det A2|

= (CA · L1)x1 · (CA · L2)x2 · multev(CA) · |det(v,w)| · |det A′
2|

= (CA · L1)x1 · (CA · L2)x2 · multev(CA) · (CA · CB)xn+1=xn+2 · multev(CB)

which completes the proof of case 2. We assumed that all edges e1, . . . , e4 are bounded. If

one of the edges e1 and e2 (and/or one of the edges e3 and e4) is unbounded, the proof is

essentially the same. If for example e2 is unbounded, we do not have the l2-column, but

there are also no marked points that can be reached from V via e2.

Of course there are completely analogous statements to lemma 7.17, remark 7.18, and

proposition 7.21 if the Mtrop, 0,4-coordinate of the curves in question is of type (2) instead

of type (1) (that is, the two marked ends x1 and x3 come together at a 3-valent vertex

— see example 4.9). However, there are no curves such that x1 and x2 are adjacent to

the same vertex (as in part 1 of lemma 7.17) in this case, because x1 and x3 would have

to map to L1 ∩ p3, which is empty. Note that this is analogous to the classical case:

there we had the two divisors D1,2/3,4 and D1,3/2,4 which (after intersecting them with the

evaluations) correspond to stable maps where the underlying curve has a node. The two

components of the underlying curves are mapped with degree dA and dB to P2, leading to

reducible image curves of degree dA respectively dB . In D1,2/3,4 it is possible that dA = 0

— the corresponding component with x1 and x2 is then mapped to the intersection point

of the two lines which x1 and x2 are required to meet. The other component leads to a

degree dB = d image curve. In D1,3/2,4 neither dA nor dB can be 0, because x1 and x3

(respectively, x2 and x4) cannot be mapped to the same point, because L1∩p3 (respectively,

L2 ∩ p4) is empty (see section 3.2).

We are now ready to prove theorem 7.1. Note that the idea of this last proof is also the

same as in the classical situation: all combinatorial factors we have to count arise for the

same reasons — for the possibilities to arrange the points x5, . . . , xn on CA and CB , and

for the possibilities that CA intersects CB or the two lines.

Proof of theorem 7.1:

We compute the degree of the map π of definition 7.12 at two different points. First

consider a point P1 = (a, b, p3, . . . , pn, C ′) ∈ R2n−2 ×Mtrop, 0,4 in π-general position with

Mtrop, 0,4-coordinate C ′ of type (1) (that is, x1 and x2 come together at a 3-valent vertex

— see example 4.9) with a very large length. We have to count the curves in π−1(P1)

with their respective π-multiplicity. Starting with the curves of type 1 in lemma 7.17 we

see by proposition 7.21 that they count curves of degree d through 3d − 1 points with

their ev-multiplicity. Recall that lemma 4.68 shows in the case of rational curves that

multev C = mult C (see remark 7.7). So these curves are counted with their ordinary

multiplicity and give a contribution of N irr
trop(d, 0). For the curves of type 2 remark 7.18

tells us that we can as well count tuples (CA, CB , x1, . . . , xn, xn+1, xn+2), where

(1) CA and CB are tropical curves of degrees dA and dB with dA + dB = d;

(2) x1, x2 are marked points on CA that map to L1 and L2, respectively;

(3) x3, x4 are marked points on CB that map to p3 and p4, respectively;
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(4) x5, . . . , xn are marked points that map to p5, . . . , pn and of which exactly 3dA − 1

lie on CA and 3dB − 1 on CB ;

(5) xn+1 ∈ CA and xn+2 ∈ CB are points with the same image in R2;

where each such tuple has to be counted with the multiplicity computed in proposition

7.21.

Fix dA and dB with dA + dB = d. There are
( 3d−4
3dA−1

)
choices to split up the points

x5, . . . , xn as in (4). Then we have N irr
trop(dA, 0) · N irr

trop(dB , 0) choices for CA and CB in

(1). (As above, we have to count them with their multiplicity which is by 4.68 equal to

their ev-multiplicity. The ev-multiplicity is the correct factor with which we have to count

them due to proposition 7.21).

By Bézout’s theorem (see 7.20) there are dA possibilities for x1 in (2) — namely the

intersection points of CA with L1 — if we count each of them with its local intersection

multiplicity (CA · L1)x1 as required by proposition 7.21. In the same way there are again

dA choices for x2 and dA · dB choices for the gluing point xn+1 = xn+2 as in (5). (Note

that we can apply Bézout’s theorem without problems since we have seen in remark 7.16

that CA intersects L1, L2, and CB in only finitely many points.)

Altogether the degree of π at P1 is

degπ(P1) = N irr
trop(d, 0) +

∑

dA+dB=d
dA,dB>0

d3
AdB

(
3d − 4

3dA − 1

)
N irr

trop(dA, 0)N irr
trop(dB , 0).

Repeating the same arguments for a point P2 with Mtrop, 0,4-coordinate of type (2) (that

is, x1 and x3 come together at a 3-valent vertex as in example 4.9) we get

degπ(P2) =
∑

dA+dB=d
dA,dB>0

d2
Ad2

B

(
3d − 4

3dA − 2

)
N irr

trop(dA, 0)N irr
trop(dB , 0).

Equating these two expressions by proposition 7.14 now gives the desired result.
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8. The tropical Caporaso-Harris algorithm

In section 3.3 we described a way to compute the numbers Ncplx(d, g) (which did not only

work for rational curves as Kontsevich’s formula) — the algorithm of Caporaso and Harris.

In this recursion there are other numbers which we have to take into account: the numbers

Nα,β
cplx(d, g) (defined in 3.35) of complex curves which satisfy tangency conditions (of higher

order) to a given line in addition to passing through a set of given points. (Example 3.33

shows why we have to deal with these numbers in the recursion process.) In this chapter,

we want to describe the tropical analogue of the Caporaso-Harris algorithm. That is, we

want to prove that the numbers Ntrop(d, g) satisfy the same recursion formula. Before we

can prove this tropically, we have to define tropical analogues for the numbers Nα,β
cplx(d, g),

that is, we have to count tropical curves which satisfy tangency conditions (of higher order)

to a given line. This will be done in section 8.1. The main theorem of this chapter — the

theorem that the numbers Nα,β
trop(d, g) satisfy the Caporaso-Harris formula can of course

only be formulated after these numbers have been defined (see theorem 8.6). It will be

proved in section 8.2. An advantage of the tropical proof will be that we do not need to

work with a moduli space. Instead, we can count the possibilities for the tropical curves

satisfying our conditions purely combinatorially.

8.1 Remark

Note that analogously to remark 7.2, theorem 3.38 (which states that the numbers

Nα,β
cplx(d, g) satisfy the Caporaso-Harris formula) together with theorem 8.6 (which states

the same for the tropical numbers) can be used to give an alternative proof of Mikhalkin’s

Correspondence Theorem 6.1: knowing that both the numbers Ncplx(d, g) and Ntrop(d, g)

satisfy the same recursion formula, and knowing that there is one tropical as well as one

complex line through two points, we can conclude that Ncplx(d, g) = Ntrop(d, g). We

can even prove a generalized Correspondence Theorem, which states that also the num-

bers Nα,β
cplx(d, g) and Nα,β

trop(d, g) coincide. This proof of the Correspondence Theorem has

of course the disadvantage that it does not give an intuitive idea why the two numbers

should coincide, and also, it does not give a bijection from one set of curves to the other.

However, at least the tropical side of this proof is much simpler as we will see in section

8.2. (But the classical proof of the Caporaso Harris algorithm is complicated.)

Beyond this implicit proof that Nα,β
cplx(d, g) = Nα,β

trop(d, g) we want to give a direct proof of

the generalized Correspondence Theorem analogous to Mikhalkin’s proof that we described

in chapter 6. The generalized Correspondence Theorem will be formulated and proved in

a direct way in section 8.4.

In remark 3.51 we have seen that Caporaso and Harris also gave a recursion formula for

irreducible curves. We can prove that the same recursion holds for the tropical numbers,

too. This will be done in section 8.3.

In the whole chapter, we choose the point configurations in restricted general position.

Therefore, we only have to deal with simple parametrized curves. Instead, we will work

with unparametrized tropical curves. (We know that we can count these instead of the

parametrized tropical curves by 5.34.)
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Note that the methods used here do not necessarily require that we work with tropical

curves of degree d. The results of this chapter can for example be generalized to tropical

curves dual to a d × d′-rectangle - that is to tropical curves which come from complex

curves on P1 × P1. For the recursive formula for curves on P1 × P1, see remark 9.14.

In order to generalize theorem 8.6 to curves dual to other polygons, the combinatorial

possibilities for those curves have to be studied in more detail.

The results of this chapter were achieved in joint work with Andreas Gathmann and

published as preprint in [12].

8.1. Tropical curves that satisfy higher order tangency conditions

to a line

Before we define the numbers Nα,β
trop(d, g) we want to give a motivation of our definition.

These numbers shall count the numbers of tropical curves which satisfy tangency condi-

tions to a given line. The notion of tangency does not seem to have an easy analogue

in the tropical world. Of course, we defined the tropical intersection multiplicity of two

tropical curves in 7.19, and we could have the idea to define that a tropical curve is tangent

to a line if this intersection multiplicity is bigger 1 at the intersection point. However,

the following picture shows that then it would in general not be possible to draw a line

tangent to a curve C in a given point p ∈ C. The picture shows two different tropical lines

through p - none intersects with higher order.

p

If this point lies on an edge of direction (−1, 0) as in the picture, then no tropical line

intersects it with a higher intersection multiplicity. Also, if this point lies on an edge of

direction (2, 0), then every tropical line through p intersects with multiplicity 2 - so every

line through p would be tangent. A solution for this problem might be to extend the

definition of intersection multiplicity to intersection points which lie on a vertex of one of

the curves.

Here, we want to work with another notion of tangency. The idea why we choose it is

motivated by complex curves: Recall that our aim is to count complex curves with the aid

of tropical geometry. As in chapter 6, we would like to count the images of complex curves

under the map Log and the limit process instead of the complex curves themselves. So we

have to find out what happens to a complex curve which satisfies tangency conditions to a

given line under the map Log and the limit process. It is easier to find this out if we choose

a special line, namely a coordinate line. As an example, let C be a complex conic which

has a point of contact order 2 to the line {z = 0}. (As in chapter 6, notation 6.2, let (z,w)

denote the coordinates of C2 and (x, y) the coordinates of R2.) That is, C intersects the
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line only in one point p. We have seen in the beginning of chapter 2 that each intersection

point of C with {z = 0} corresponds to a tentacle of the amoeba to the left — if we move

on C towards the intersection point with {z = 0}, the coordinate of the image under Log

tends to −∞. (We have also seen an example for this in 6.11.) With the amoeba of C,

also the spine of the amoeba has only one unbounded edge to the left. If we take the

limit — that is, if we pass to Jt-holomorphic curves and let t → ∞ — all spines of these

Jt-holomorphic curves have only one unbounded end to the left. Hence also the tropical

curve to which C is projected, the limit of these spines, has only one unbounded edge to

the left. But as the tropical curve is of degree 2, this unbounded edge must have weight

2. So our idea is that tangency conditions (of higher order) to the special coordinate line

{z = 0} correspond to ends of a higher weight to the left.

This motivates the following definition.

Recall the notations from 3.34.

8.2 Definition

Let d ≥ 0 and g be integers, and let α and β be sequences with Iα + Iβ = d. Let C be a

simple (unparametrized) tropical curve of genus g and degree

{(αi + βi) · (−i, 0), d · (0,−1), d · (1, 1)| i ∈ N}.

That is, C has αi + βi unbounded ends to the left of weight i for all i. Let αi of these

unbounded edges have a fixed position, that is, their y-coordinate is fixed. (We can think

of this for example as follows: if we take the unique simple parametrization of C (see 5.29),

then we can add a marked point adjacent to each of the corresponding ends and require

this marked point to meet an image point with the prescribed y-coordinate and which lies

far left of all other points.)

We define the (α, β)-multiplicity of C to be

multα,β(C) :=
1

Iα
· mult(C)

where mult(C) is the usual multiplicity as in definition 4.47.

Furthermore, define Nα,β
trop(d, g) to be the number of tropical curves of genus g and degree

{(αi + βi) · (−i, 0), d · (0,−1), d · (1, 1)| i ∈ N}

with αi fixed and βi non-fixed unbounded ends to the left of weight i for all i that pass

in addition through a set P of 2d + g + |β| − 1 points in restricted general position. The

curves have to be counted with their respective (α, β)-multiplicities.

8.3 Example

The following picture shows a curve of degree {(−2, 0), (−1, 0), 3 · (0,−1), 3 · (1, 1)}. The

end of weight 1 to the left is fixed — we have indicated this in the picture by a point.

There are 6 more points through which the curve passes. As we have one fixed end of

weight 1 and one nonfixed of weight 2, the sequences α and β are α = (1) and β = (0, 1).

The (α, β)-multiplicity of C is equal to the multiplicity of C.
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ω = 2

8.4 Remark

Note that dual to the unbounded ends of such a curve is the Newton polygon ∆d (see

definition 3.69). For the curve in example 8.3, we have for example the following Newton

polygon:

The ends of higher weight to the left correspond to steps of higher integer length in the

boundary of the Newton polygon (see definition 5.15). Still, we have the same Newton

polygon as for a curve of degree d. Also, the sum of the directions with primitive integral

vector (−1, 0) is d · (−1, 0), because we assumed that Iα + Iβ = d. Therefore, we will by

abuse of notation speak of curves of degree d, even though there are ends of higher weight.

This justifies also the notation Nα,β
trop(d, g) for the numbers of curves of degree

{(αi + βi) · (−i, 0), d · (0,−1), d · (1, 1)| i ∈ N}

and genus g with the right ends and passing through the prescribed points.

8.5 Remark

Analogously to theorem 4.53 one can show that the numbers Nα,β
trop(d, g) (respectively,

N
irr,(α,β)
trop (d, g)) do not depend on the choice of fixed and nonfixed unbounded edges and

points through which they shall pass. We have to evaluate only the y-coordinates of the

unbounded edges which shall be fixed (together with the remaining marked points) then.

In the following section we will see that the definition of the numbers Nα,β
trop(d, g) is ap-

propriate for our means: we will show that these numbers satisfy the Caporaso-Harris

formula. As we have seen in remark 8.1, this tells us that they are equal to the corre-

sponding complex numbers.

8.2. The tropical Caporaso-Harris algorithm

Having defined the numbers Nα,β
trop(d, g) we now want to prove the central result of this

chapter. Note that the main idea of the proof is analogous to the classical case: there

we specialized one point to lie on the line L to which also the tangency conditions are

imposed (see section 3.3). Here, the complex line {z = 0} that we choose is mapped by

Log to the far left of the real plane. Hence, we will also move a point to the far left. A

difference to the classical proof is that the curves we are counting do not really split into
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two components. (Also, there is not a contracted bounded edge that we can cut as we

have done it in remark 7.16 to interpret the cut curve as reducible. In fact, we decided

to work with unparametrized tropical curves here which come from simple parametrized

curves, so we do not have contracted bounded edges at all.) Having moved a point to the

far left, the curves through the new point configuration can still be irreducible. However,

we can consider two parts, one which corresponds to a line and which lies on the far left,

and one on the right which will be a tropical curve of a lower degree.

8.6 Theorem

The numbers Nα,β
trop(d, g) defined in 8.2 satisfy the Caporaso-Harris formula (see definition

3.37).

Proof:

First, we choose a special point configuration through which the curves are required to

pass. (As always, we require that the configuration is in restricted general position. We

know that the numbers Nα,β
trop(d, g) do not depend on the chosen point configuration by

8.5.) Let ε > 0 be a small and N > 0 a large real number. We choose the fixed unbounded

left ends and the set P = {p1, . . . , pn} so that

• the y-coordinates of all pi and the fixed ends are in the open interval (−ε, ε);

• the x-coordinates of p2, . . . , pn are in the open interval (−ε, ε);

• the x-coordinate of p1 is less than −N .

That is, we keep all points in a small horizontal strip and move p1 very far to the left.

2

ε−N

ε

−ε

p1

a b −ε

Let us consider an (unparametrized) tropical curve C satisfying the given conditions. We

want to show that C must “look as in the picture above”, that is, that the curve “splits”

into two parts joined by only horizontal lines. As we chose our point configuration in

restricted general position, we can conclude that C is simple, and that both mult C and

the (α, β)-multiplicity of C are nonzero. By definition 4.47 it follows that the unique

parametrization of C is rigid (see 5.29). Therefore, we know that there is no string. In

particular, there is no path from one unbounded edge to another without meeting a marked

point (see 4.46). Of course, also in the unparametrized tropical curve C there is no such

path. (Note that a “crossing” of the images of two edges of the parametrized tropical

curve is no connection.) We will use this in the following several times.
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First we want to show that no vertex of C can have its y-coordinate below −ε. To see this,

assume V is a vertex with lowest y-coordinate, and assume it is below −ε. By the balancing

condition there must be an edge pointing downwards from V . As there is no vertex below

V this must be an unbounded edge. As we prescribed the degree we know that this end

must have direction (0,−1) (especially, weight 1), and it must be the only edge pointing

downwards. By the balancing condition it follows that at least one other edge starting at

V must be horizontal: If not, both direction vectors of the other two edges adjacent to V

would have a nonzero y-coordinate, and so the sum of these two directions could not be

equal to (0, 1) which is necessary by the balancing condition. Along this horizontal edge

we can go (again due to the balancing condition) from V to another unbounded edge in

the region {y ≤ −ε}. As there are no marked points in this region this means that there

are two unbounded edges that we can reach from V without meeting a marked point (the

one pointing downwards from V and the horizontal one). This is a contradiction to the

above as C must be rigid.

Analogously, we can see that no vertex of C can have its y-coordinate above ε.

Next, consider the rectangle

R := {(x, y); −N ≤ x ≤ −ε,−ε ≤ y ≤ ε}.

We want to study whether there can be vertices of C within R. Let C0 be a connected

component of C ∩R. Note that any edge of C0 leaving R at the top or bottom edge must

be unbounded as we have just seen that there are no vertices of C above or below R. If

there are edges of C0 leaving R at the top and at the bottom then we could again go

from one unbounded edge of C to another without passing a marked point, which is not

possible by the above. So we can assume without loss of generality that C0 does not meet

the top edge of R.

Again due to the balancing condition the edges of C0 ∩ R that are not horizontal must

then project to the x-axis to a union of two (maybe empty) intervals [−N,x1] ∪ [x2,−ε].

(Otherwise, there would also be an edge which meets the top edge of R.) But the number

of edges of C as well as the minimum slope of an edge (and hence the maximum distance

an edge can have within R) are bounded by a constant that depends only on the degree

d of the curves. So we can find a, b ∈ R, −N ≤ a < b ≤ −ε (that depend only on d)

such that the interval [a, b] is disjoint from [−N,x1] ∪ [x2,−ε], or in other words such

that for any curve C which satisfies the conditions, there are no non-horizontal edges in

[a, b] × [−ε, ε]. Also, there are then no vertices of C in [a, b] ×R. Hence we can see that

the curve C must look as in the picture above: we can “cut” it at any line x = x0 with

a < x0 < b and obtain curves on both sides of this line that are joined only by horizontal

lines.

There are now two cases to distinguish, corresponding to the two types of summands which

appear in the Caporaso-Harris formula:

(1) p1 lies on a horizontal non-fixed end of C. Then the region where x ≤ −ε consists

of only horizontal lines. (If not, there would be at least two unbounded edges of

direction (0,−1) and (1, 1) in this region, and we would have a path from one to

the other without meeting a marked point.) We can hence consider C as having
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one more fixed end at p1 and passing through P \ {p1}. We just have to multiply

with the weight of this end, as the multiplicity of curves with fixed ends is defined

as 1
Iα · mult(C) by 8.2. Therefore the contribution of these curves to Nα,β

trop(d, g) is

∑

k:βk>0

k · Nα+ek,β−ek
trop (d, g).

Note that this is the first type of summands that occur in the Caporaso-Harris

formula.

(2) p1 does not lie on a horizontal end of C (as in the picture above). Then there must

also be unbounded edges of direction (0,−1) and (1, 1) in this region. Due to the

balancing condition we must have as many of direction (0,−1) as of (1, 1). But as

there is only one marked point — namely p1 — to separate the unbounded edges

in this region, there cannot be more than two. So the left part has exactly one end

in direction (0,−1) and (1, 1) each, together with some more horizontal ends.

Hence the curve on the right must have degree d − 1. Let us denote this curve by

C ′.

How many possibilities are there for C ′? Assume that α′ ≤ α of the fixed horizontal

ends only intersect the part C \ C ′ and are not adjacent to a 3-valent vertex of

C \ C ′. Then C ′ has α′ fixed horizontal ends. There are
(α
α′

)
possibilities for this

case. C ′ has d − 1 − Iα′ non-fixed horizontal ends. Let β′ be a sequence which

fulfills Iβ′ = d − 1 − Iα′, hence a possible choice of weights for the non-fixed ends

of C ′. Assume that β′′ ≤ β′ of these ends are adjacent to a 3-valent vertex of C \C ′

whereas β′−β′′ ends intersect C \C ′, that is, just cross. The connected component

of C \ C ′ which contains p1 has to contain the two ends of direction (0,−1) and

(1, 1) due to the balancing condition. (Recall that connected component means:

the image of a connected component of a parametrization of smallest genus.) Also,

it can contain some ends of direction (−1, 0) — but this have to be fixed ends then,

as p1 cannot separate more than two (nonfixed) ends. So all the β nonfixed ends

of direction (−1, 0) have to intersect C \ C ′ - therefore they have to be ends of C ′.

That is, β′ − β′′ = β. There are
(β′

β

)
possibilities for this. Furthermore, we have

multα,β(C) =
1

Iα
mult(C) =

1

Iα
· Iα−α′

· Iβ′−β · mult(C ′)

=
1

Iα′
· Iβ′−β · mult(C ′) = Iβ′−β · multα′,β′(C ′)

where the factors Iα−α′

and Iβ′−β arise due to the 3-valent vertices which are not

part of C ′. The genus g′ of C ′ is equal to g′ = g−(|β′−β|−1) since we cut |β′−β|−1

loops as in the picture above (at least if C and C ′ are both irreducible. If not, the

number of loops is equal to |β′ − β| − 1 minus the number of components of C ′,

but the genus of C ′ is the number of loops of C ′ minus the number of components

plus 1 too by remark 4.4, and therefore the equation is still fulfilled). Furthermore,

g − g′ ≤ d − 2 as at most d − 2 circles may be cut.

The sum of these two contributions gives the required Caporaso-Harris formula.
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Note that similarly to the tropical proof of Kontsevich’s formula (see chapter 7), the

combinatorial factors that arise in this formula here arise due to similar reasons as in the

classical proof. For example, we get the factor
(

α
α′

)
, because we have as many possibilities

to have fixed unbounded edges (that is, fixed tangency conditions) on the curve C ′. In the

classical case, we get the same factor, because there are as many possibilities to arrange

the marked points which shall satisfy the tangency conditions on the components of the

curve.

Also, in the classical case, we get the factor Iβ′−β, because the corresponding component

in the moduli space occurs with the higher multiplicity Iβ′−β (see 3.48). Here the “corre-

sponding component” — that is, the set of all curves which have β′ ends of which β just

intersect C \C ′ — has to be counted with the factor Iβ′−β, because this is the multiplicity

of the left part C \ C ′, to which the β′ − β ends are adjacent. So, here the argument is

purely combinatorial, contrary to the classical proof. That is, using the generalized Cor-

respondence Theorem 8.9, we can give an alternative and much easier proof of theorem

3.38 stating that the complex numbers Nα,β
trop(d, g) satisfy the Caporaso Harris formula.

8.3. The tropical Caporaso-Harris algorithm for irreducible curves

As mentioned in remark 3.51, Caporaso and Harris also gave an algorithm to compute

the numbers N
irr,(α,β)
cplx (d, g) of irreducible complex curves satisfying tangency conditions

(of higher order) to a line in addition to passing through some given points. So far, we

worked with unparametrized tropical curves, and we know that they can be reducible if

they allow a parametrization where the underlying graph is not connected. Here, we want

to prove that also the irreducible Caporaso-Harris formula is satisfied by the analogous

tropical numbers. The proof is analogous to the proof of theorem 8.6 — we will also

choose the special point configuration and divide the curve into two parts. However, it

is harder to control that we actually count only irreducible curves when we cut the curve

into two parts. Note that an unparametrized curve C as in the proof of theorem 8.6

is irreducible if and only if every connected component of C ′ is linked to C \ C ′. That

is, for every connected component there has to be an unbounded edge of C ′ which does

not only pass through C \ C ′, but is adjacent to a 3-valent vertex. Also, as we want to

construct a recursive formula for the numbers of irreducible curves, we cannot just count

the possibilities for the curve C ′, because it might be reducible. Instead, we have to count

the connected components of C ′ separately. (Note that by connected components of C ′ we

denote the connected components of a graph of least possible genus which parametrizes

C ′.)

8.7 Definition

Let N
irr,(α,β)
trop (d, g) be the number of irreducible (simple unparametrized) tropical curves of

degree of genus g and degree

{(αi + βi) · (−i, 0), d · (0,−1), d · (1, 1)| i ∈ N}
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with αi fixed and βi non-fixed horizontal left ends of weight i for all i that pass in addition

through a set of |β| + 2d + g − 1 points in general position. Again, the curves have to be

counted with their (α, β)-multiplicity as in definition 8.2.

Analogously to remark 8.5 we can conclude that these numbers do no depend on the

special choice of fixed ends and points.

Recall that irreducible means here: the graph of a parametrization of least possible genus

is connected (see definition 5.6).

8.8 Theorem

The numbers N
irr,(α,β)
trop (d, g) satisfy the recursion relations from remark 3.51 known for the

numbers N
irr,(α,β)
cplx (d, g).

Proof:

The proof is analogous to that of theorem 8.6. Fix a set P = {p1, . . . , pn} with p1 very far

left as in the proof of theorem 8.6. Let C be an irreducible tropical curve with the right

properties through the points. The first term in the recursion formula (that corresponds

to curves with only horizontal lines in the area where x ≤ −ε) follows in the same way as

in theorem 8.6. So assume that p1 does not lie on a horizontal end of C. As before we get a

curve C ′ of degree d−1 to the right of the cut. The curve C ′ does not need to be irreducible

however. That is, the graph of a parametrization of least possible genus is not connected

and decomposes into k connected components Γ1, . . . ,Γk. As the balancing condition must

be fulfilled for each connected component, we can conclude that Ci = h|Γi
(Γi) is a curve

of degree di. (As before, by abuse of notation we speak of degree di here even if there are

ends of a higher weight, see 8.4.) Then d1 + . . . + dk = d − 1. How many possibilities

are there for C1, . . . , Ck? Assume that αj of the fixed horizontal ends only intersect the

part C \ C ′ and are not adjacent to a 3-valent vertex of C \ C ′, but are adjacent to a

3-valent vertex of Cj . Then the irreducible tropical curve Cj has αj fixed horizontal ends.

Furthermore, α1 + . . . + αk ≤ α, and there are
(

α
α1,...,αk

)
possibilities for this. Let Cj have

βj more horizontal ends satisfying |βj |+ |αj | = dj . Then Cj is fixed by 2dj + gj + |βj | − 1

points, where gj denotes the genus of Cj . Therefore, there are

(
2d + g + |β| − 2

2d1 + g1 + |β1| − 1, . . . , 2dk + gk + |βk| − 1

)

possibilities to distribute the points p2, . . . , pn on the components C1, . . . , Ck. Assume

that βj′ of the βj ends are adjacent to a 3-valent vertex of C \ C ′ whereas βj − βj′

ends just intersect C \ C ′. There are
( βj

βj−βj′

)
possibilities for this, and the product of

the multiplicities of the 3-valent vertices of C \ C ′ is Iβj′

. As C is irreducible we must

have |βj′ | > 0: That is, each component Cj has to be linked to C \ C ′ at a 3-valent

vertex. It is not possible that each end of Cj just intersects C \ C ′, because then Cj

would be a component of C. But C is assumed to be irreducible. For each Cj we see

that |βj′ | − 1 circles are cut (as in the picture in the proof of theorem 8.6). Hence,
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g =
∑

gj +
∑

(|βj′ | − 1) =
∑

gj +
∑

|βj′ | − k. Furthermore,

2d + g + |β| − 1 − 1 =
∑

2dj + gj + |βj | − 1

⇒ 2(d − 1) +
∑

gj +
∑

|βj′ − k + |β| = 2(d − 1) +
∑

gj − k +
∑

|βj |

⇒ |β| +
∑

|βj′ | =
∑

|βj |

⇒ β +
∑

βj′ =
∑

βj .

This proves the recursion formula except for the factor 1
σ . This factor is needed because

up to now we count different curves if two components Ci and Cj of C ′ are identical,

depending on whether Ci is the i-th component or Cj is the i-th component. Therefore

we have to divide by σ.

8.4. The correspondence of complex curves tangent (of higher or-

der) to a line and tropical curves with ends of higher weight

Of course, the tropical proofs for both Caporaso-Harris algorithms (the one for not neces-

sarily irreducible curves as well as the one for irreducible curves) together with Caporaso’s

and Harris’ original proofs of the algorithms for the complex numbers tell us that we have

Nα,β
cplx(d, g) = Nα,β

trop(d, g) and N
irr,(α,β)
cplx (d, g) = N

irr,(α,β)
trop (d, g) by using the recursion and

the initial value of one complex as well as one tropical line through two given points (see

remark 8.1). However, here we would like to give a more direct proof of the correspondence

Nα,β
cplx(d, g) = Nα,β

trop(d, g) and N
irr,(α,β)
cplx (d, g) = N

irr,(α,β)
trop (d, g) that shows us which complex

curves project to which tropical curves.

8.9 Theorem (“Generalized Correspondence Theorem”)

For the numbers Nα,β
cplx(∆, g) defined in 3.35, N

irr,(α,β)
cplx (∆, g) defined in 3.51, Nα,β

trop(∆, g)

defined in 8.2 and N
irr,(α,β)
trop (∆, g) defined in 8.7 we have:

Nα,β
trop(d, g) = Nα,β

cplx(d, g) and

N
irr,(α,β)
trop (d, g) = N

irr,(α,β)
cplx (d, g)

for all d, g, α, β.

The proof we are going to present here is related to the proof of Mikhalkin’s Correspon-

dence Theorem 6.1. Let Q be a set of n = |β| + 2d + g − 1 points in general position in

(C∗)2 such that P = Log(Q) is in restricted tropical general position in R2 (defined in

5.33). We know that there are finitely many parametrized tropical curves of genus g and

degree

{(αi + βi) · (−i, 0), d · (0,−1), d · (1, 1)| i ∈ N}

through P, where αi of the unbounded edges to the left are fixed, and each has a nonzero

multiplicity. Call these tropical curves C1, . . . Cr. Note that by lemma 5.34 it makes no

difference whether we consider the Cj as parametrized tropical curves or as unparametrized

tropical curves.

First, we generalize lemma 6.6:
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8.10 Lemma

If t is large enough then for all Jt-holomorphic curves V of genus g and degree d passing

through Q and with contact order i with the line {z = 0} in αi fixed and βi arbitrary points

the amoeba Log(V ) is contained in a small neighborhood of Cj for some j.

The proof of this lemma follows from 8.12 and the following considerations. In order to

prove this lemma we only need to see that the amoebas of Jt-holomorphic curves with

the right properties are close to tropical curves with αi fixed and βi non-fixed horizontal

ends of weight i. With the help of the proof of 6.6 it then follows that the tropical curves

are of the right genus and degree and pass through P (and must therefore be one of the

Cj). If (Vk)k∈N is a sequence of curves with the right properties and such that Vk is Jtk -

holomorphic (tk → ∞) then Cj is actually the limit of the spines of a subsequence of Vk

(see 6.15). Therefore we only need to see that the spines of the amoebas of Jt-holomorphic

curves with the right properties have αi fixed and βi non-fixed horizontal ends of weight

i. This will be shown in 8.12.

In 6.9 we introduced the spine of an amoeba A as a tropical curve S which lies inside the

amoeba. In particular, every connected component of R2 \ A corresponds to a connected

component of R2 \S. That is, if we draw the dual Newton subdivision of the spine, there

is an integer point in ∆d (see definition 3.69) for each connected components of R2 \ A.

This integer point in ∆d is called the order of the connected component of the complement

of A (for a precise definition, see [8]). Let V be a Jt-holomorphic curve. Then V is given

by a polynomial f(z,w). The contact order conditions for V at {z = 0} tell us that there

exists a polynomial g such that

f(z,w) = z · g(z,w) +
r∏

j=1

(w − pj)
mj

where the (0, pi) are the points of higher contact order with the line {z = 0}, sorted so

that |p1| < . . . < |pr|, and the mj are the contact orders. The amoeba Af is given as

Log({f(z,w) = 0}). Let K be a connected component of the complement R2 \ Af . Then

the order ν(K) is a lattice point in ∆d. We are going to use the following lemma (2.2) of

[8]:

8.11 Lemma

Let u be a point in a connected component K of the complement of an amoeba Af , K ⊂

R

2 \ Af , choose c such that Log(c) = u, and denote by ν(K) the order of the complement

containing u. For all integer vectors v ∈ Z2 with positive entries v1, v2 the canonical scalar

product 〈v, ν(K)〉 is equal to the number of zeros of the polynomial w 7→ f(c1w
v1 , c2w

v2)

in the disc |w| < 1.

8.12 Lemma

Let V be a Jt-holomorphic curve with αi fixed and βi non-fixed points of contact order i

with {z = 0}. Then the spine of the amoeba of V has αi fixed and βi non-fixed horizontal

ends of weight i.

Proof:

As V intersects {z = 0} in |β| + |α| points the amoeba has |β| + |α| tentacles in the
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direction of Log({z = 0}) = {x → −∞}, and the tentacles are close to y = log(|pj |).

Therefore there are |β|+ |α|+1 connected components of the complement on the left part

of the amoeba. We compute the order of each of these components with the help of lemma

8.11. Let K be the component between the tentacles close to log(|pk|) and log(|pk+1|).

Let c = (c1, c2) ∈ (C∗)2 be a point such that Log(c) ∈ K. We can choose c1 close to zero

so that Log(c) is a point on the far left. Furthermore, |pk| < |c2| < |pk+1|. Let v = (1, 0)

and v′ = (0, 1). The number of zeros of f(c1w
v1 , c2w

v2) in |w| < 1 is

#{zeros of f(c1w
v1 , c2w

v2)} = #{zeros of f(c1w, c2)}

= #{zeros of c1w · g(c1w, c2) +
∏

(c2 − pj)
mj} = #{zeros of

∏
(c2 − pj)

mj}

as c1 is close to zero. But c2 is not equal to any of the pj, so this polynomial does not have

any zeros, and therefore the first component of the order is zero. The number of zeros of

f(c1w
v′1 , c2w

v′2) is

#{zeros of f(c1w
v′1 , c2w

v′2)} = #{zeros of f(c1, c2w)}

= #{zeros of c1 · g(c1, c2w) +
∏

(c2w − pj)
mj} = #{zeros of

∏
(c2w − pj)

mj}.

This polynomial has mj zeros at w =
pj

c2
, and we have |w| < 1 if j = 1, . . . , k and |w| > 1 if

j = k + 1, . . . , r. So the polynomial has m1 + . . . + mk zeros in |w| < 1. Hence the second

component of the order is m1 + . . . + mk by 8.11.

(0, m1)

(0, 0)

(0, m1 + m2)

(0, m1 + m2 + m3)

the amoeba
one side of the

Newton polygon
the dual ends

ω = m1

ω = m3

ω = m2

The picture above then shows that the dual tropical curve (that is the spine) has the right

number of horizontal ends of weight i. Furthermore, if pj was a fixed point then also the

end at y = log(|pj |) is fixed.

Now, we generalize lemma 6.7. It shows that for each Cj there are
mult(Cj)

µedge(Cj ,P) complex

tropical curves (see 6.18 and 6.22) projecting to Cj, and that for each of these complex

tropical curves there are µedge(Cj,P) (see 6.24 and 6.25) Jt-holomorphic curves nearby.

In order to generalize these ideas to our case we first need to generalize the definition of

edge multiplicity.

8.13 Definition

Let C = Cj be one of the tropical curves through P. Think of C = (Γ, h, x1, . . . , xn) as

a parametrized tropical curve. Each edge of Γ has a certain weight which is equal to the

factor with which we need to multiply the primitive integer vector u to get the direction



162

v (see remark 4.13). We define the edge multiplicity of C and P, µedge(C,P), to be the

product of the weights of all bounded edges.

If we think of C as an unparametrized tropical curve, then the edge multiplicity µedge(C,P)

is equal to the product of the weights of all edges that are bounded and disjoint from P

or unbounded and not disjoint from P, times the product of the squares of the weights of

all edges that are bounded and not disjoint from P.

The following proposition generalizes 6.22.

8.14 Proposition

Let C = Cj be one of the tropical curves through P. Then there are mult(C)
µedge(C,P) different

complex tropical curves V (see 6.16) of the same degree and genus as C through Q and

such that Log(V ) = C.

Proof:

The idea of the proof is the same as for 6.22. Let (Γ, h, x1, . . . , xn) be a parametrization

of C. We know that multC 6= 0 as we chose P in restricted general position. Therefore

C is rigid and each connected component of Γ\
⋃

i xi is rational and contains exactly one

unbounded edge by 4.50. Let K ′ be one of these components. Let pi, pj ∈ P be the

endpoints of two edges adjacent to the same 3-valent vertex V , and let ∆′ ⊂ ∆d be the

triangle dual to V .

pi pj

h(V )

K ′

Then 6.21 tells us that there are 2Area(∆′)
ωiωj

complex tropical curves such that their image

under Log is dual to ∆′, where ωi and ωj denote the weights of the edges through pi and

pj respectively. The result now follows by induction.

Now analogously to Mikhalkin’s proof we have to see that for each of these complex tropical

curves there are µedge(C,P) Jt-holomorphic curves with the required properties nearby.

Recall that this is the most difficult part of the proof of the Correspondence Theorem.

It is proved first for the case that there are no edges of a higher weight (see 6.24), and

then separately for the case that there are edges of higher weight (see 6.25). Recall that

by remark 6.26 it is essential for the proof of 6.25 that we allow only bounded edges of

higher weight. Because we have also unbounded edges of higher weight here, it is not

straightforward to generalize this idea for our case. Instead, we use the Correspondence

Theorem for curves without ends of higher weight. To be able to use it we need to modify

the Newton polygon such that there are no edges of integer length bigger than 1 in the

boundary. The polygon ∆d has βi + αi edges of length i at {x = 0}.

8.15 Lemma

Let C be one of the tropical curves Cj through P. If t is large enough then for each of
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the complex tropical curves V projecting to C there are exactly µedge(C,P) Jt-holomorphic

curves of genus g and degree d through Q and with the right contact orders to the line

{z = 0} in a small neighborhood of V .

Proof:

We enlarge ∆d to a polygon ∆′ by adding another point such that ∆′ has no edges of

higher integer length.

∆1

∆3

∆2

∆′ = ∆d ∪ ∆1 ∪ ∆2 ∪ ∆3

∆d

For this new polygon ∆′ and for all tropical curves C ′ dual to ∆′ we know that

µedge(C
′,P ′) = µedge(C,P) ·

∏
(Iβi · Iαi)

because we transferred the unbounded edges of weight i to bounded edges (P ′ is P plus

another point condition on the new edges, such that we have finitely many tropical curves

of ∆′, plus a point condition for each of the fixed ends). The multiplicity of C ′ is

mult(C ′) =
∏

(Iβi · Iαi) · mult(C)

as we add triangles of these areas. Therefore there are

mult(C ′)

µedge(C ′,P ′)
=

mult(C)

µedge(C,P)

complex tropical curves projecting to C ′. By 6.24 and 6.25 each of these complex tropical

curves give rise to

µedge(C
′,P ′) = µedge(C,P) ·

∏
(Iβi · Iαi)

Jt-holomorphic curves of genus g and passing through Q′ in a neighborhood. These Jt-

holomorphic curves arise as the gluing of little pieces corresponding to subpolygons of ∆′.

If we set the gluing of the pieces corresponding to the new triangles of ∆′ aside (that

is, corresponding to ∆1, . . . ,∆m) we get Jt-holomorphic curves near the complex tropical

curves projecting to C. Furthermore, these Jt-holomorphic curves have the right contact

orders to the toric divisor corresponding to the left side {x = 0} of ∆d, as otherwise

the genus would not be correct (see remark 6.27). So for each complex tropical curve V

projecting to C we have µedge(C
′,P ′) of these Jt-holomorphic curves with the right prop-

erties. However we count some of them too often: when gluing the pieces corresponding

to the new triangles ∆1, . . . ,∆m there are different possibilities to glue. Assume ∆i has

a side of integer length l on the left. Then we have l different ways of gluing the piece

corresponding to ∆i to the Jt-holomorphic curve near a complex tropical curve projecting
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to C (see 6.27). Therefore, in order to get the number of different Jt-holomorphic curves

near V we have to divide by
∏

(Iβi · Iαi). So we get

µedge(C
′,P ′)∏

(Iβi · Iαi)
= µedge(C,P)

different Jt-holomorphic curves with the right properties in a neighborhood of V .

Analogously to the proof of theorem 6.1, we can sum up the arguments in order to prove

8.9.
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9. The Caporaso-Harris algorithm in the lattice path setting

In chapter 5 we have seen that there is a third way to determine the numbers Ncplx(d, g)

— we can also count lattice paths instead. Analogously to the previous chapter, our aim

here is to reprove the algorithm of Caporaso and Harris in the lattice path setting, that is,

for the numbers Npath(d, g). Before we can do that, we need of course again a definition

of Nα,β
path(d, g). We will deal with these numbers of generalized lattice paths in section

9.1. In fact, the definition is motivated by considering the duals of the tropical curves

with ends of higher weights as we defined them in section 8.1. The theorem that the

numbers Nα,β
path(d, g) satisfy the Caporaso-Harris formula (theorem 9.13) is again proved

with completely different methods — it uses the definition of multiplicity of a lattice path

and counts purely combinatorially the possibilities for our generalized lattice paths. This

theorem is formulated and proved in section 9.2. The main idea is to count the possible

Newton subdivisions for a path γ differently from how we have defined them in 5.40. In

fact, we show that the number of possible Newton subdivisions is equal to the number of

column-wise Newton subdivisions, a notion which will be made precise in section 9.2. These

column-wise Newton subdivisions can now be counted column by column — therefore we

get a recursive formula by dropping the first column and counting the possibilities in the

triangle ∆d−1 corresponding to curves of lower degree.

Knowing that both the numbers Nα,β
path(d, g) and the numbers Nα,β

trop(d, g) satisfy the

Caporaso-Harris formula, we can of course conclude by induction that Nα,β
path(d, g) =

Nα,β
trop(d, g) (and also Nα,β

path(d, g) = Nα,β
cplx(d, g)). However, we want to give a direct proof

here, too, using the methods of chapter 5, where we cited Mikhalkin’s proof of theorem

5.44 that Npath(d, g) = Ntrop(d, g). The theorem that Nα,β
path(d, g) = Nα,β

trop(d, g) (see 9.15)

will be proved in section 9.3. As there is no analogue to irreducible curves in the lat-

tice path setting (see remark 5.45), we do not study the Caporaso-Harris algorithm for

irreducible curves here.

The results of this chapter were achieved in joint work with Andreas Gathmann and

published as preprint in [12].

9.1. Generalized lattice paths

Our aim is now to slightly generalize the definitions of section 5.3 in order to allow more

lattice paths and arrive at lattice path analogues of the numbers Nα,β
cplx(d, g). The idea

what the general lattice path should look like arises after reconsidering the tropical curves

that satisfy tangency conditions to a line as defined in 8.1. These were tropical curves with

ends of higher weights to the left. Dual to such a tropical curve is a Newton subdivision of

the triangle ∆d (see definition 3.69), that does not contain all points of the left boundary.

Instead, there have to be steps of bigger integer length:

3

1

2
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Following the ideas of chapter 5, the tropical curves we count are dual to the possible

Newton subdivisions of a path γ. The generalized paths that we need to allow here

must therefore have the corresponding steps of bigger integer lengths at the left side of

the boundary of ∆d in their possible Newton subdivisions. This motivates the definition

below.

9.1 Notation

For the whole chapter, choose the function λ(x, y) = x − εy where ε is a small number.

Choose two sequences α and β with Iα + Iβ = d. Let γ : [0, n] → ∆d be a λ-increasing

path with γ(0) = (0, d − Iα) = (0, Iβ) and γ(n) = q = (d, 0). We are going to define a

multiplicity for such a path γ. Again this multiplicity will be the product of a “positive”

and a “negative” multiplicity that we define separately.

9.2 Definition

Let δβ : [0, |β|+d] → ∆d be a path such that the image δβ([0, |β|+d]) is equal to the piece

of boundary of the triangle ∆d (see definition 3.69) between (0, Iβ) and q = (d, 0), and

such that there are βi steps (i.e. images of a size one interval [j, j + 1]) of integer length

i at the side {x = 0} (and hence at {y = 0} only steps of integer length 1). We define

the negative multiplicity µβ,−(δβ) of all such paths to be 1. For example, the following

picture shows all paths δβ for β = (2, 1) and d = 5:

Using these starting paths the negative multiplicity µβ,−(γ) of an arbitrary path as above

is now defined recursively by the same procedure as in definition 5.39 (2).

9.3 Definition

To compute the positive multiplicity µα,+(γ) we extend γ to a path γα : [0, |α| + n] → ∆d

by adding αi steps of integer length i at {x = 0} from γα(0) = p to γα(|α|) = (0, Iβ).

Then we compute µ+(γα) as in definition 5.39 and set µα,+(γ) := 1
Iα · µ+(γα).

9.4 Remark

Note that definition 9.3 seems to depend on the order in which we add the αi steps of

lengths i to the path γ to obtain the path γα. It will follow however from the alternative

description of the positive multiplicity in proposition 9.10 (2) that this is not the case.

We can now define the analogues of the numbers Nα,β
trop(d, g) in the lattice path setting.

9.5 Definition

Let d ≥ 0 and g be integers, and let α and β be sequences with Iα + Iβ = d. We define

Nα,β
path(d, g) to be the number of λ-increasing paths γ : [0, 2d + g + |β| − 1] → ∆d that start

at (0, d−Iα) = (0, Iβ) and end at (d, 0), where each such path is counted with multiplicity

µα,β(γ) := µα,+(γ) · µβ,−(γ).
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Note that as expected (that is as in the complex case) we always have Npath(d, g) =

N
(0),(d)
path (d, g) by definition.

9.6 Example

The following picture shows that N
(0,1),(1)
path (3, 0) = 4 + 2 + 1 + 1 + 2 = 10:

µ(0,1),+ = 2

µ(1),− = 2

µ(0,1),(1) = 4

µ(0,1),+ = 2

µ(1),− = 1

µ(0,1),(1) = 2

µ(0,1),+ = 1

µ(1),− = 1

µ(0,1),(1) = 1

µ(0,1),+ = 1

µ(1),− = 1

µ(0,1),(1) = 1

µ(1),− = 2

µ(0,1),+ = 1

µ(0,1),(1) = 2

9.2. The Caporaso-Harris algorithm for generalized lattice paths

Our next aim is to reprove the Caporaso-Harris formula for the numbers Nα,β
path(d, g) of

definition 9.5. The idea of this proof is to count the possibilities of the first step of each

path γ, and to multiply this with the number of possibilities how the path can go on. If

the first step of the path ends in the second column of ∆d (see definition 3.69), we want to

understand the end of the path as a new path in the smaller triangle ∆d−1. For this, we

first need to express the negative and positive multiplicities of a generalized lattice path

in a different, non-recursive way. We start with an easy preliminary lemma:

9.7 Lemma

Let α and β be two sequences with Iα + Iβ = d, and let γ be a generalized lattice path

as in section 9.1. If γ has a step that “moves at least two columns to the right”, that is,

that starts on a line {x = i} and ends on a line {x = j} for some i, j with j − i ≥ 2 then

µβ,−(γ) = µα,+(γ) = µα,β(γ) = 0.

Proof:

Let γ be a generalized path with a step that moves at least two columns to the right. Then

both paths γ′
± and γ′′

± of definition 5.39 also contain such a step. Hence the lemma follows

by induction, because the only end paths δβ (see definition 9.2) and δ+ (see definition

5.39) of the recursion to compute the multiplicity of γ which do not have multiplicity 0

do not contain such a step.

9.8 Remark

We can therefore conclude that any generalized lattice path with non-zero multiplicity has

only two types of steps: some that go down vertically and others that move exactly one

column to the right (with a simultaneous move up or down):
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9.9 Notation

For a path as in remark 9.8 we fix the following notation for the whole chapter: for the

vertical line {x = i} in the triangle ∆d (see definition 3.69) we let h(i) be the highest

y-coordinate of a point of γ on this line. By αi we denote the sequence describing the

lengths of the vertical steps of γ on this line. For example, for the path shown above we

have h(0) = 1, h(1) = 3, h(2) = 2, h(3) = 1 and α0 = (0), α1 = (1, 1), α2 = (1), α3 = (0).

We are now ready to interpret both the positive and negative multiplicity of a generalized

lattice path “column-wise”:

9.10 Proposition

Let α and β be two sequences with Iα + Iβ = d, and let γ be a generalized lattice path as

in definition 9.5.

(1) The negative multiplicity of γ is given by the formula

µβ,−(γ) =
∑

(β0,...,βd)

(
d−1∏

i=0

Iαi+1+βi+1−βi

·

(
αi+1 + βi+1

βi

))

where the sum is taken over all (d + 1)-tuples of sequences (β0, . . . , βd) such that

α0 + β0 = β and Iαi + Iβi = h(i) for all i.

(2) The positive multiplicity of γ is given by the formula

µα,+(γ) =
1

Iα
·
∑

(β0,...,βd)

(
d−1∏

i=0

Iαi+βi−βi+1
·

(
αi + βi

βi+1

))

where the sum is taken over all (d + 1)-tuples of sequences (β0, . . . , βd) such that

β0 = α and d − i − Iβi = h(i) for all i.

9.11 Remark

Before proving this proposition we would like to interpret its statement geometrically.

The formula of proposition 9.10 (1) counts the number of ways to arrange triangles and

parallelograms in ∆d below γ such that

• the subdivision contains all vertical lines {x = i} below γ; and

• each triangle in the subdivision “is pointing to the left”, that is the vertex opposite

to its vertical edge lies to the left of this edge,

where each such subdivision is counted with a multiplicity equal to the product of the

double areas of its triangles. We will call such a subdivision a column-wise Newton subdi-

vision.

The sequences βi describe the lengths of the vertical edges in the subdivisions below γ.

The binomial coefficients
(αi+1+βi+1

βi

)
in the formula count the number of ways to arrange

the parallelograms and triangles, and the factors Iαi+1+βi+1−βi
are the double areas of the

triangles. As an example let us consider the path of remark 9.8 with β = (1). In this case

there is only one possibility to fill the area below γ with parallelograms and triangles as

above. This is shown in the following picture:
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(corresponding to β0 = β2 = β3 = (1), β1 = (0)). As there is one triangle in this

subdivision with double area 2 we see that µβ,− = 2.

Note that the original definition of the negative multiplicity of a path (see 5.39) also

counts Newton subdivisions together with their multiplicity. We called those the possible

Newton subdivisions for γ in remark 5.40. But the possible Newton subdivisions do not

have to be column-wise. In fact, if we reconsider the path from above and compute the

possible Newton subdivisions below it, we will also get one of multiplicity 2, but it is not

column-wise:

We can see that the column-wise subdivision of the path γ from above does not corre-

spond to an actual tropical curve through the special point configuration Pλ (see section

5.4), whereas the subdivision here does. Therefore we can interpret proposition 9.10 as

the combinatorial statement that the number of column-wise subdivisions as described

above is equal to the number of possible Newton subdivision for a path γ (counted with

multiplicities), and with that equal to the number of tropical curves through Pλ.

Note that for the positive multiplicity there is in fact no such difference between the

possible and the column-wise Newton subdivisions: it can be checked that the possible

Newton subdivisions for a path γ above γ all contain the vertical lines {x = i} above γ

and are in fact column-wise.

What is important about proposition 9.10 is that in the column-wise subdivisions we can

split off the first column to obtain a similar subdivision of ∆d−1. This will be the key

ingredient in the proof of the Caporaso-Harris formula in the lattice path set-up in theorem

9.13.

Proof of proposition 9.10:

We start with part (1). The proof is an induction on the recursive definition of µβ,− in

definition 9.2. It is obvious that the end paths in this recursion (the paths that go from

(0, Iβ) to (d, 0) along the border of ∆d) satisfy the stated formula: all these paths have

β0 = (0), so the condition α0 + β0 = β requires α0 = β. But then the path is one of the

paths δβ of definition 9.2.

Let us now assume that γ : [0, n] → ∆d is an arbitrary generalized lattice path. By

induction we can assume that the paths γ′ and γ′′ of definition 5.39 satisfy the formula of

the proposition. Recall that if k ∈ [1, n − 1] is the first vertex at which γ makes a right
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turn then γ′ and γ′′ are defined by cutting this vertex γ(k) (respectively completing it to

a parallelogram). By lemma 9.7 we know that γ(k − 1) (respectively γ(k + 1)) can be at

most one column to the left (respectively right) of γ(k). But γ(k − 1) cannot be in the

same column as γ(k) as otherwise the λ-increasing path γ could not make a right turn at

γ(k). Therefore γ(k − 1) is precisely one column left of γ(k). There are two possibilities

where γ(k + 1) can lie:

• γ(k + 1) can be in the same column i as γ(k); or

• γ(k + 1) can be one column right of γ(k).

We will prove the statement for these two cases separately.

Starting with the first case, assume that γ(k + 1) is in column i as γ(k). That is, locally

the paths γ, γ′ and γ′′ look as in the following picture:

h(i)

γ γ′ γ′′

γ(k)

s

s

h(i) − s h(i) − s

γ(k − 1)

γ(k + 1)

Then the path γ′ has the same values of h(j) and αj (see notation 9.9) as γ, except for

h(i) being replaced by h(i)− s and αi by αi − es, where s is the length of the vertical step

from γ(k) to γ(k + 1). The path γ′′ has the same values of h(j) and αj as γ except for

h(i) being replaced by h(i) − s, αi by αi − es, and αi−1 by αi−1 + es.

Using the formula of the proposition for γ′ and γ′′ (which holds by induction) we compute

µβ,−(γ′) =
∑

(β0,...,βd)




d−1∏

j=0

Iαj+1+βj+1−βj−δi,j+1es ·

(
αj+1 + βj+1 − δi,j+1es

βj

)


=
1

s
·
∑

(β0,...,βd)




d−1∏

j=0

Iαj+1+βj+1−βj

·

(
αj+1 + βj+1 − δi,j+1es

βj

)


(where the sum is taken over the same β as in the proposition); and

µβ,−(γ′′) =
∑

(β0,...,βd)




d−1∏

j=0

Iαj+1+βj+1−βj

·

(
αj+1 + βj+1 + δi−1,j+1es − δi,j+1es

βj

)


where the conditions on the summation variables βi are α0 + δi−1,0es + β0 = β and

I(αj − δi,jes + δi−1,jes) + Iβj = h(j) − sδi,j. We can make these conditions the same as

in the proposition by replacing the summation variables βi−1 by βi−1 − es, arriving at the

formula

µβ,−(γ′′) =
∑

(β0,...,βd)




d−1∏

j=0

Iαj+1+βj+1−βj

·

(
αj+1 + βj+1 − δi,j+1es

βj − δi,j+1es

)
 .
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Plugging these expressions into the defining formula

µβ,−(γ) = s · µβ,−(γ′) + µβ,−(γ′′)

we arrive at the formula of the proposition (where we use the standard binomial identity(
n−1

k

)
+
(
n−1
k−1

)
=
(
n
k

)
).

For the second case, assume γ(k + 1) is one column right of γ(k). The idea for this case

is the same as for the previous case. But the computation is simpler, because the path

γ′ does not give a contribution due to lemma 9.7. First note that neither the step from

γ(k − 1) to γ(k) nor the step from γ(k) to γ(k + 1) can have a negative slope. This is

true because otherwise the paths γ′′ would also have this negative slope, as we complete

the corner to a parallelogram. But the end paths δβ do not have a step of negative slope,

so the claim follows by induction. That is, the heights h(i) of γ in the three columns of

γ(k − 1), γ(k) and γ(k + 1) increase.

Hence locally at k, the paths γ, γ′ and γ′′ look as in the following picture:

γ

h(i)

γ′′

h(i) − s + ts
t

sγ(k)

γ(k + 1)

γ(k − 1)

t

The path γ′′ has the same values of h(j) and αj as γ, except for h(i) being replaced by

h(i)− s+ t, where i is the column of γ(k), and s and t are the vertical lengths of the steps

before and after γ(k). (By the above we know that s, t ≥ 0.) So using the formula of the

proposition again for γ′′ (which holds by induction) we have

µβ,−(γ′′) =
∑

(β0,...,βd)




d−1∏

j=0

Iαj+1+βj+1−βj

·

(
αj+1 + βj+1

βj

)


where the conditions on the βj are α0 + β0 = β and Iαj + Iβj = h(j) − (s − t)δi,j . Note

that s − t > 0 since γ makes a right turn. As in the previous case we can make the

conditions on the βj the same as in the proposition by replacing the summation variables

βi by βi − es−t. Then we have

µβ,−(γ′′) =
∑

(β0,...,βd)




d−1∏

j=0

Iαj+1+βj+1−βj

·

(
αj+1 + βj+1 − δi,j+1es−t

βj − δi,jes−t

)
 .

This is already the formula of the proposition except for the factors
(

αi + βi

βi−1

)(
αi+1 + βi+1

βi

)
being replaced by

(
αi + βi − es−t

βi−1

)(
αi+1 + βi+1

βi − es−t

)

But these terms are the same by the identity
(
n+k+l
n+k

)(
n+k

n

)
=
(
n+k+l

n+l

)(
n+l
n

)
(note that

αi = (0) for our path γ). This completes the proof.

The proof of case (2) works analogously. However, note that a step of the second type

(that is, which passes over two columns) can never be the first left turn, because the path
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starts at p in the first column. This is the reason why the subdivisions above γ are indeed

column-wise (see remark 9.11).

9.12 Remark

Note that it is important for the second step of the proof above that the two boundary

lines of ∆d below and above γ — the line {y = 0} respectively the diagonal line from (0, d)

to (d, 0) — are indeed straight lines. We cannot generalize the proof to polygons which

contain a vertex above respectively below γ, because then the heights of the three columns

of γ(k− 1), γ(k) and γ(k + 1) cannot be described as h(i), h(i)+ s and h(i)+ s + t. So we

cannot use the identity
(n+k+l

n+k

)(n+k
n

)
=
(n+k+l

n+l

)(n+l
n

)
. The picture below shows a polygon

for which the formula of proposition 9.10 does not hold. The column-wise subdivisions

would predict 0 as negative multiplicity for the path. However, the path γ′′ is a valid end

path, so we get 1.

The proof can be generalized to polygons where the boundaries above and below γ are

straight lines, for example to rectangles.

We are now ready to prove the Caporaso-Harris formula in the lattice path setting:

9.13 Theorem

The numbers Nα,β
path(d, g) satisfy the Caporaso-Harris formula (see definition 3.37).

Proof:

The idea of the proof is to list the possibilities of the first step of the path γ. Let γ

be a λ-increasing path from (0, Iβ) to q = (d, 0). As we have seen in remark 9.8 (using

lemma 9.7), there are two cases for the first step of γ (corresponding to the two types of

summands in the Caporaso-Harris formula):

• The point γ(1) is on the line {x = 0}.

• The point γ(1) is on the line {x = 1}.

In the first case the point γ(1) must be (0, Iβ − k) for some βk 6= 0 as otherwise the

multiplicity µβ,−(γ) would be 0. It follows that the restriction γ|[1,2d+g+|β|−1] is a path

from (0, d − I(α + ek)) and with µα+ek,β−ek
(γ|[1,2d+g+|β|−1]) = k · µα,β(γ). Therefore the

paths γ with γ(1) ∈ {x = 0} contribute

∑

k:βk>0

k · Nα+ek,β−ek

path (d, g)

to the number Nα,β
path(d, g).

In the second case, we can use proposition 9.10 to compute both the negative and the

positive multiplicity as a product of a factor coming from the first column and the (neg-

ative respectively positive) multiplicity of the restricted path γ̃ := γ|[1,2d+g+|β|−1]. More
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precisely, we have

µα,β(γ) = µβ,−(γ) · µα,+(γ)

=
∑

β′

Iβ′−β

(
β′

β

)
µβ′,−(γ̃) ·

∑

α′

(
α

α′

)
µα′,+(γ̃)

=
∑

α′,β′

Iβ′−β

(
β′

β

)(
α

α′

)
· µα′,β′(γ̃).

So the contribution of the paths with γ(1) /∈ {x = 0} to Nα,β
path(d, g) is

∑
Iβ′−β

(
β′

β

)(
α

α′

)
· Nα′,β′

path (d − 1, g′)

where the sum is taken over all possible α′, β′ and g′. Let us figure out what these possible

values are. It is clear that α′ ≤ α and β ≤ β′. Also, Iα′ + Iβ′ = d − 1 must be fulfilled.

As γ̃ has one step less than γ we know that 2d + g + |β| − 1 − 1 = 2(d − 1) + g′ + |β′| − 1

and hence g − g′ = |β′ − β| − 1. A path ǫ : [0, n] → ∆ from (0, Iβ) to q that meets

all lattice points of ∆ has |β| + d(d + 1)/2 steps. As γ has 2d + g − 1 + |β| steps,

|β| + d(d + 1)/2 − (2d + g − 1 + |β|) = (d − 1)(d − 2)/2 − g lattice points are missed by

γ. But γ̃ cannot miss more points, therefore (d − 2)(d − 3)/2 − g′ ≤ (d − 1)(d − 2)/2 − g,

that is d − 2 ≥ g − g′.

9.14 Remark

The same argument can also be applied to other polygons ∆. For example, the analogous

recursion formula for P1 × P1, that is for a d′ × d rectangle ∆(d′,d) reads

Nα,β
path((d′, d), g) =

∑

k:βk>0

k · Nα+ek,β−ek

path ((d′, d), g)

+
∑

Iβ′−β

(
α

α′

)(
β′

β

)
Nα′,β′

path ((d′ − 1, d), g′)

for all α, β with Iα + Iβ = d, where the second sum is taken over all α′, β′, g′ such that

α ≤ α, β′ ≥ β, Iα′ + Iβ′ = d, g − g′ ≤ d − 1 and |β − β′| = g′ − g − 1.

9.3. The correspondence between tropical curves with ends of higher

weight and generalized lattice paths

As we have already seen in the previous section, the numbers Nα,β
path(d, g) satisfy the

Caporaso-Harris formula. By induction we can conclude the Nα,β
path(d, g) = Nα,β

trop(d, g) =

Nα,β
cplx(d, g), because both the numbers Nα,β

trop(d, g) and Nα,β
cplx(d, g) satisfy the same recursion

formula by 3.38 and 8.6. However, here we prefer to give a direct proof of the statement

Nα,β
trop(d, g) = Nα,β

path(d, g), which gives more intuition. The idea of the proof is analogous to

Mikhalkin’s proof of theorem 5.44 stating that Ntrop(d, g) = Npath(d, g) (see section 5.4).

9.15 Theorem

For all d, g, α, β we have Nα,β
trop(d, g) = Nα,β

path(d, g), where Nα,β
trop(d, g) is defined in 8.2 and

Nα,β
path(d, g) in 9.5.
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Proof:

As usual we choose λ(x, y) = x − εy. Similar to definition 5.46, let Pλ be a set of

2d+ g + |β|−1 points in restricted general position on the line H orthogonal to the kernel

of λ, such that the distance between pi and pi+1 is much bigger than the distance of pi−1

and pi for all i, and such that all points lie below the fixed ends. In other words, if the

fixed ends have the y-coordinates y1, . . . , y|α| then the y-coordinates of pi are chosen to be

less than all y1, . . . , y|α|. Our aim is to show that the number of tropical curves through

this special configuration is equal to the number of lattice paths as in section 5.4. Let C

be an (unparametrized) tropical curve with the right properties through this set of points.

Mark the points where H intersects the fixed ends. Then lemma 5.48 tells us that the

edges in ∆ dual to the edges of the curve where they meet Pλ and the new marked points

form a λ-increasing path from p = (0, d) to q = (d, 0). The fact that the fixed ends lie

above all other points tells us that the path starts with αi steps of lengths i. So we can

cut the first part and get a path from (0, Iβ) to q with the right properties.

Next, let a path γ : [0, 2d + g + |β| − 1] → ∆d be given that starts at (0, d − Iα) and ends

at q. Extend γ to a path γα : [0, |α| + n] → ∆d by adding αi steps of integer length i

at {x = 0} from γα(0) = p to γα(|α|) = (0, Iβ). Add the steps of integer lengths i in an

order corresponding to the order of the fixed ends. As in the proof of theorem 5.44, the

recursive definition of µβ,−(γα) corresponds to counting the possibilities for a dual tropical

curve in the half plane below H through Pλ. Passing from γα to γ′
α and γ′′

α corresponds to

counting the possibilities in a strip between H and a parallel shift of H. We end up with

a path δ− which begins with αi steps of length i and continues with βi steps of lengths

i. This shows that all possible dual curves have the right horizontal ends. Furthermore,

µβ,−(γα) coincides with the number of possible combinatorial types of the curve in the

half plane below H times the multiplicity of the part of the curve in the half plane below

H. With the same arguments we get that µα,+(γα) is equal to the number of possibilities

for the combinatorial type times the multiplicity in the upper half plane. Altogether, we

have

Nα,β
path(d, g) =

∑

γ

multα,β(γ)

=
1

Iα

∑

γ

multβ,−(γα) · multα,+(γα)

=
1

Iα

∑

C

mult(C) =
∑

C

multα,β(C)

= Nα,β
trop(d, g),

where C runs over all tropical curves with the right properties and γ runs over all paths

with the right properties.
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