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Preface

Over the last decade Gromov-Witten invariants have become an invaluable tool in
modern enumerative geometry. The goal of the theory is to count curves with some
given conditions in a complex projective manifold, where the conditions are chosen
so that the expected number of curves satisfying them is finite and non-zero.

The most famous example of an enumerative problem has in fact been inspired by
physics: let X be a quintic threefold, i.e. a smooth hypersurface of degree 5 in
complex projective 4-space P4. For any g ≥ 0 and d > 0 a naı̈ve dimension count
shows that one expects a finite number Ng,d of curves of genus g and degree d on X .
In 1991 the string theorists Candelas et al. encountered this problem in their study
of conformal field theories, and their computations led them to predictions for the
numbers N0,d in genus zero [COGP]. Their main tool was a certain equivalence
of topological field theories that is known to physicists as “mirror symmetry”. The
discovery of this relation between physics and algebraic geometry was the starting
point of modern enumerative geometry.

The analysis of Candelas et al. showed already that in order to count curves embed-
ded in X it is actually more natural to study maps from a (varying) source curve to
the target X . These two notions are of course very much related as every map from
a curve to X determines an image curve, and conversely every curve in X arises as
the image of some map from a curve to X . There are subtle differences however:
the map could e.g. be a k-fold cover onto its image, in which case the degree of the
map is k times the degree of the set-theoretic image curve. In fact, the physicists’
mirror symmetry computations first led to a different set of numbers n0,d that are
supposed to count maps of degree d from a source curve of genus g = 0 to X . These
numbers are called the Gromov-Witten invariants. They are the coefficients of a
generating function that can be obtained from a certain hypergeometric series by
an explicit variable transformation. The enumerative numbers N0,d are then related
to the Gromov-Witten invariants n0,d by a correction formula that takes care of the
contributions from multiple covers. The precise form of this correction formula was
simply guessed by the time the paper by Candelas et al. was written.
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2 PREFACE

In the following years physicists have vastly generalized the above results. Ber-
shadsky et al. considered the case of higher genus. They conjectured a generating
function for the Gromov-Witten invariants n1,d in genus 1 [BCOV1] and an al-
gorithm that can in principle compute the invariants ng,d in any genus [BCOV2].
Gopakumar and Vafa have conjectured the general form of the transformation that
relates the Gromov-Witten invariants ng,d to the enumerative numbers Ng,d for any
g [GoV1, GoV2]. A non-trivial check for these conjectures is that the resulting
numbers Ng,d actually turned out to be positive integers as far as they have been
computed numerically — a statement that is far from being obvious from the arith-
metic of the algorithms.

In the meantime mathematicians were (and to a large extent still are) just puzzled
by the physicists’ results. To start from the very basics of the problem, it has not
even been proven yet that the enumerative number of genus-0 curves in a general
quintic threefold X is at all finite. For higher genus the numbers are most definitely
not finite since e.g. intersections of X with planes in P4 lead to infinite families
of curves. Neither are the numbers of maps from curves to X of given genus and
degree finite, not even in genus 0: multiple covers have ramification points whose
position on the curve can vary continuously. So before mathematicians could try
to compute the numbers ng,d or Ng,d their first problem was simply to define them
rigorously.

The problem of defining Gromov-Witten invariants mathematically has been solved
around 1995 by the theory of stable maps initiated by Kontsevich [K2]. For any
projective manifold X , genus g≥ 0, and homology class β of a curve in X , Behrend
and Manin have constructed a “nice” moduli space (read: separated and proper
Deligne-Mumford stack) that parametrizes curves of genus g together with a map
of class β to X [BM]. The dimension one would expect such a moduli space to have
by a naı̈ve dimension count is called its virtual dimension; it is zero for the quintic
threefold for any g and β. The actual dimension of the moduli space may in general
well be bigger. But in any case one can construct a so-called virtual fundamental
class of the moduli space: a cycle of the virtual dimension that replaces the ordi-
nary fundamental class in homology [BF, B, LT1]. The virtual fundamental class
thus makes the moduli space appear to have the virtual dimension for intersection-
theoretic purposes. The idea is roughly the same as that of an excess intersection
product: if Y and Z are subvarieties of X then the dimension of the intersection
Y ∩Z may be bigger than the expected (virtual) dimension dimY +dimZ−dimX ,
but in any case there is an intersection product Y ·Z: a homology class of the virtual
dimension in Y ∩Z.
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The Gromov-Witten invariants ng,d of a quintic threefold can now simply be defined
to be the degrees of the (zero-dimensional) virtual fundamental classes of the mod-
uli spaces of stable maps of genus g and degree d to the quintic. More generally, let
X be any projective manifold and pick a genus g and homology class β such that the
corresponding moduli space M of stable maps has non-negative virtual dimension.
Moreover, choose a cohomology class on M whose codimension is equal to the vir-
tual dimension of M. Usually this cohomology class is chosen so that it describes
the condition that the curves in X (or more precisely: stable maps to X) pass through
some fixed given subvarieties of X . Evaluating it on the virtual fundamental class
gives a zero-dimensional cycle whose degree we call again a Gromov-Witten in-
variant. It can be interpreted geometrically as the number of curves in X satisfying
the given conditions. (Note that this count may be virtual though in the cases when
the virtual fundamental class of M is not equal to the ordinary one.)

Having defined the Gromov-Witten invariants of a projective manifold X the next
questions are of course what their structure is and how they can be computed. In
general this question is very difficult however and far from being solved. The goal
of this thesis is to attack this problem in the case of hypersurfaces. More precisely,
our main question can be posed as follows:

Let Y be a smooth hypersurface of a complex projective manifold X.
Can we compute the Gromov-Witten invariants of Y from those of X?

This will mean two things: in a first step, we would like to find an algorithm that
can be programmed on a computer and that enables us to compute every possible
Gromov-Witten invariant of Y numerically if we know the invariants of X . A sec-
ond question is whether the relation between the invariants of X and Y can then
be phrased in some “nice” way, e.g. in the form of an explicit relation between the
generating functions of the invariants for the two spaces. Moreover, we will com-
pute all Gromov-Witten invariants of projective spaces directly. This way every
relation between the invariants of a hypersurface and the ambient space that we get
can be applied immediately to compute Gromov-Witten invariants of hypersurfaces
in projective spaces, including the most interesting case of the quintic threefold.

Before we sketch our strategy to compute the Gromov-Witten invariants of hyper-
surfaces let us briefly comment on the history of this problem. In 1995 Kontsevich
had the idea to apply the Atiyah-Bott localization formula to the natural (C∗)n+1

action on the moduli spaces of stable maps to Pn [K2]. He could thus reduce ques-
tions about curves in (hypersurfaces in) Pn to the study of the fixed point loci of this
group action. Even if the combinatorics of these fixed point loci are very compli-
cated the resulting integrals could be evaluated on a computer in some easy cases.
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Kontsevich was able to compute the first few rational Gromov-Witten invariants of
the quintic threefold numerically in this way. His results agreed with the conjecture
of the physicists.

The idea of using the Atiyah-Bott localization formula on moduli spaces of sta-
ble maps was quickly taken on. It was applied to slightly different group actions,
and the structure of the resulting fixed point loci was studied thoroughly. Using
these techniques several people were able to give proofs of the physicists’ con-
jectural “mirror formula” for the rational Gromov-Witten invariants of the quintic
threefold, and more generally to prove formulas for the rational invariants of hy-
persurfaces with non-negative anticanonical bundle in projective spaces [Be, Gi1,
LLY1, LLY2]. As expected, these methods generalized to hypersurfaces with non-
negative anticanonical bundle in general projective manifolds [L, LLY3]. Only very
modest results could be achieved however in the case of hypersurfaces with nega-
tive anticanonical bundle [J]. Some generalizations to curves of higher genus were
constructed, but none of them has been able yet to produce usable results in practice
[GP, LLY4].

Meanwhile a completely different technique emerged that was originally not even
meant to be applicable to Gromov-Witten invariants of hypersurfaces. Caporaso
and Harris were able to compute the Gromov-Witten invariants of P2 in any genus
by degenerating plane curves with given incidence conditions so that they split off
a given line in P2 as an irreducible component [CH]. The invariants could then
be computed recursively by applying the same techniques again to the remaining
components. It turned out that in order to obtain a closed recursion one needs
to consider additional invariants that are nowadays called relative Gromov-Witten
invariants. In the Caporaso-Harris case they can be thought of geometrically as the
numbers of plane curves of specified genus and degree that have given local orders
of contact to a fixed line.

Shortly afterwards these degeneration techniques have been generalized by Vakil
to rational and elliptic curves in projective spaces of higher dimension [Va1]. The
relative invariants in this case correspond to numbers of curves in Pn with given
local orders of contact to a fixed hyperplane. However, Vakil’s constructions did
not make use of virtual fundamental classes to arrive at well-defined invariants in
the case of moduli spaces of too big dimension. Instead, he analyzed the moduli
spaces directly and simply discarded the components that had too big dimension
and did not give rise to an enumerative contribution. As a consequence, Vakil’s
results are not the Gromov-Witten invariants but rather the enumerative numbers.
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Very recently Li has constructed relative Gromov-Witten invariants in full gener-
ality, i.e. for curves of any genus in a projective manifold X with fixed local or-
ders of contact to a given hypersurface Y ⊂ X [Li1, Li2]. Li’s construction fits
well in the original Gromov-Witten picture as he first defines moduli spaces of sta-
ble relative maps (which are separated and proper Deligne-Mumford stacks), then
constructs natural virtual fundamental classes on them, and finally defines relative
Gromov-Witten invariants to be intersection products on these spaces evaluated on
the virtual fundamental classes. For actual computations however his constructions
have some disadvantages. For example, the moduli spaces are not subspaces of
the spaces of ordinary stable maps to X , and moduli spaces for curves with several
connected components are not simply the products of the moduli spaces for the in-
dividual components. These disadvantages can be overcome by studying slightly
different moduli spaces that we will call moduli spaces of collapsed stable relative
maps. They can be obtained by a certain blow-down of Li’s moduli spaces. If the
hypersurface Y is very ample and the genus of the curves is zero then these moduli
spaces of collapsed stable relative maps can also be constructed directly without
Li’s machinery. This direct construction actually predates the work of Li. We will
present it in this thesis.

We will then apply the theory of stable relative maps to compute Gromov-Witten
invariants of hypersurfaces. The idea is still the same as in the starting work of
Caporaso and Harris: we degenerate curves in X so that they split off a component
contained in Y . This will give us relations between curves in X and curves in Y , i.e.
between the Gromov-Witten invariants of X and Y . In genus zero we will show that
these relations are always sufficient to compute the invariants of the hypersurface
from those of the ambient space. If the anticanonical bundle of Y is non-negative we
will use these relations to give an alternative proof of the “mirror theorem”, i.e. of
a closed formula that relates the generating functions for the invariants of X to that
of Y . The advantage of our methods is that they seem to generalize better to curves
of higher genus. In fact, we will show that the same ideas work in genus 1 as well,
yielding e.g. the elliptic Gromov-Witten invariants of the quintic threefold from
those of P4. A further generalization to curves of arbitrary genus seems possible.
In fact, some of our results are already statements about curves of any genus; the
relations just do not suffice yet to reconstruct the invariants from the hypersurface
from those of the ambient space.

We should mention that many constructions mentioned above have been studied
independently in the language of symplectic geometry. For example, moduli spaces
of stable maps have been constructed in [LT2], and moduli spaces of stable relative
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maps in [IP1, IP2, LR]. In this thesis we will only be concerned with the algebro-
geometric picture.

This thesis is organized as follows. In chapter 1 we will review the construction
of Gromov-Witten invariants and briefly prove their basic properties. Using the
Virasoro conditions and the topological recursion relations we will then state and
prove an explicit algorithm that computes all Gromov-Witten invariants of projec-
tive spaces. As an example, the resulting numbers are used to check an integrality
conjecture of Pandharipande concerning certain linear combinations of invariants
of P3.

Chapter 2 then starts with the study of relative Gromov-Witten invariants. Let Y ⊂X
be a very ample hypersurface. For curves of genus zero we construct the moduli
spaces of collapsed stable relative maps and their virtual fundamental classes. The
main theorem of this chapter describes how degenerations of curves in X to Y can
be used to relate the Gromov-Witten invariants of the two spaces. We prove that
these relations are sufficient to compute the rational invariants of Y from those of X
by an explicit algorithm.

In chapter 3 we then study this algorithm in more detail in the case when the anti-
canonical bundle of Y is non-negative. Organizing the invariants and equations in
a suitable way we are able to prove the “mirror formula” that relates the generating
functions for the invariants of X and Y through an explicit variable transformation.
In particular, this gives a proof of the formula for the rational Gromov-Witten in-
variants of the quintic threefold as conjectured by Candelas et al.

We have mentioned already that (relative) Gromov-Witten invariants are defined
using virtual fundamental classes. If these virtual fundamental classes are non-
trivial then the enumerative interpretation of the invariants is not a priori obvious. In
chapter 4 we will study the geometric meaning of relative Gromov-Witten invariants
in the special case of plane conics having prescribed local orders of contact to a
given curve. This example is particularly interesting because it allows to check
a conjecture concerning family Gromov-Witten invariants of K3 surfaces for non-
primitive homology classes.

Finally, chapter 5 gives some extensions of our earlier results to curves of higher
genus. We review the construction of the moduli spaces of (non-collapsed) stable
relative maps and prove some of their basic properties. Using virtual localization
techniques for these moduli spaces in the case of P1-bundles we arrive at equations
that can be used to relate Gromov-Witten invariants of hypersurfaces to those of
the ambient space in any genus. As an example, we show that these relations are
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sufficient to compute the elliptic Gromov-Witten invariants of the quintic threefold
from those of P4. The numbers that we obtain agree numerically with the conjecture
of Bershadsky et al. in [BCOV1].

Some parts of this thesis have already been published elsewhere. The algorithm in
chapter 1 to compute the Gromov-Witten invariants of projective spaces has been
described in [Ga4]. The main parts of chapters 2, 3, and 4 have appeared in [Ga1],
[Ga2], and [Ga3], respectively. The material of chapter 5 has not been published
elsewhere yet.

Some of the work contained in this thesis has been done at the Harvard University
and the Institute for Advanced Study in Princeton. The author is grateful to both
institutions for hospitality and financial support. In addition we would like to thank
T. Graber, J. Harris, E. Katz, E. Ionel, J. Kock, J. Li, R. Pandharipande, and R.
Vakil for numerous discussions. This work has partly been funded by the DFG
scholarships Ga 636/1–1 and Ga 636/1–2 as well as the NSF grant DMS 9729992.





CHAPTER 1

Gromov-Witten invariants of projective spaces

Let X be a smooth projective variety over the field of complex numbers. The first
thing we have to do to solve enumerative problems about curves in X is to construct
suitable moduli spaces that parametrize curves in X (or rather maps from curves to
X). In modern enumerative geometry the standard moduli spaces are the so-called
moduli spaces of stable maps. To construct them we need to fix integers g,n ≥ 0
and a homology class β of an algebraic curve in X . The corresponding moduli space
of stable maps M̄g,n(X ,β) can then be thought of as a compactification of the space
of all tuples (C,x1, . . . ,xn, f ), where

• C is a smooth curve of genus g;
• x1, . . . ,xn are distinct points on C;
• f : C→ X is a morphism of class f∗[C] = β.

In the beginning of this chapter we will give a short review of the construction of
these spaces. Roughly speaking the compactification is obtained by allowing C to
become a nodal curve with several irreducible components. The points in the moduli
space corresponding to such reducible stable maps are said to lie in the boundary of
M̄g,n(X ,β).

Enumerative problems on X now simply correspond to intersection products on
these moduli spaces. For example, let evi : M̄g,n(X ,β)→ X be the evaluation at
the i-th marked point, i.e. the morphism that sends a stable map (C,x1, . . . ,xn, f )
to f (xi). If V1, . . . ,Vn are subvarieties of X then the product ev∗1[V1] · · ·ev∗n[Vn] on
M̄g,n(X ,β) can be thought of as describing the curves in X that intersect all the Vi.
If the resulting cycle has dimension 0 then its degree should just give a count of the
curves in X passing through the Vi. (In practice things are not so simple because the
intersection product could get non-enumerative contributions from the boundary of
the moduli space.)

In addition to these evaluation conditions we will have to consider one more type
of cohomology classes on the moduli spaces. Namely, for 1 ≤ i ≤ n we let ψi ∈
A1(M̄g,n(X ,β)) be the first Chern class of the line bundle on M̄g,n(X ,β) whose
fiber at a point (C,x1, . . . ,xn, f ) is simply the cotangent space T∨C,xi

. The class ψi

9



10 1. GROMOV-WITTEN INVARIANTS OF PROJECTIVE SPACES

is called the i-th cotangent line class. We can use these classes in addition to the
above evaluation classes to form intersection products on the moduli spaces. If such
an intersection product has dimension 0 we will call its degree the corresponding
Gromov-Witten invariant.

After having defined moduli spaces of stable maps and Gromov-Witten invariants
we will briefly state and prove their main properties. Of particular importance to us
will be the so-called topological recursion relations: equations in the Chow group
of M̄g,n(X ,β) that express products of cotangent line classes in terms of boundary
classes (i.e. classes on moduli spaces of reducible stable maps).

It has been proven recently by E. Ionel that any product of at least g cotangent line
classes on M̄g,n(X ,β) is a sum of boundary cycles [I]. Unfortunately, the corre-
sponding topological recursion relations are not yet known explicitly for general g.
The g≤ 2 cases can be found in [Ge1]. In theory, it should be possible to derive the
equations for other (at least low) values of g from Ionel’s work. As g grows however,
the terms in the topological recursion relations become very complicated, and their
number seems to grow exponentially. Consequently, Ionel’s result is barely useful
for actual computations, although it is of course very interesting from a theoretical
point of view.

In this chapter we will use a much weaker topological recursion relation that ex-
presses only a product of at least 3g−1 cotangent line classes at the same point in
terms of boundary cycles. The idea to obtain this relation is simple: we just pull
back the obvious relation ψ

3g−1
1 = 0 on M̄g,1 to M̄g,n(X ,β) using the transformation

rule for cotangent line classes under forgetful maps. The result is a topological re-
cursion relation that is extremely easy to state and apply (see proposition 1.3.12). It
has appeared first in [EX, Ge2, Lu].

The application of this relation that we have in mind in this chapter is the Vira-
soro conditions for the Gromov-Witten invariants of projective spaces. It has been
proven recently by Givental that the Gromov-Witten potential of a projective space
Pr satisfies an infinite series of differential equations called the Virasoro condi-
tions [Gi2]. It is easily checked that these equations allow for recursion over the
genus and the number of marked points in the following sense: given g > 0, n≥ 1,
cohomology classes γ2, . . . ,γn ∈ A∗(X), and non-negative integers m2, . . . ,mn, the
Virasoro conditions can express linear combinations of genus-g degree-d invariants
(in dimension 0)

ev∗1 γ ·ψm
1 · ev∗2 γ2 ·ψm2

2 · · · · · ev∗n γn ·ψmn
n

(where m ≥ 0, γ ∈ A∗(X), and the degree d ≥ 0 vary) in terms of other invariants
with either smaller genus, or the same genus and smaller number of marked points.
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There is one such invariant for every choice of m, i.e. r + 1 invariants for every
choice of d. There is however only one non-trivial Virasoro condition for every
d. Consequently, the Virasoro conditions alone are not sufficient to compute the
Gromov-Witten invariants.

This is where the topological recursion relations come to our rescue. By inserting
them into the Virasoro conditions, we can effectively bound the value of m in the set
of unknown invariants above, leaving only the invariants with 0≤m < 3g−1. This
way we arrive at infinitely many linear Virasoro conditions (one for every choice of
d) for only 3g−1 invariants. It is now of course strongly expected that this system
should be solvable, i.e. that the coefficient matrix of this system of linear equations
has maximal rank 3g− 1. We will show that this is indeed always the case. In
fact, we will show that any choice of 3g−1 distinct non-trivial Virasoro conditions
leads to a system of linear equations that determines the invariants uniquely. We do
this by computing the determinant of the corresponding coefficient matrix: if we
pick the Virasoro conditions associated to the degrees d0, . . . ,d3g−2 and reduce the
cotangent line powers by our topological recursion relations, we arrive at a system
of 3g−1 linear equations for 3g−1 invariants whose determinant is

∏i> j(di−d j)

∏
3g−2
i=1 i!

·
3g−2

∏
i=1

(
i+

1
2

)3g−1−i

,

which is obviously always non-zero. Therefore the Virasoro recursion works, i.e.
we have found a constructive way to compute the Gromov-Witten invariants of Pr in
any genus. This is the main result of this chapter (see theorem 1.4.4). The emphasis
here lies on the word “constructive” as it has been shown earlier by Dubrovin and
Zhang that the Virasoro conditions together with the topological recursion relations
determine in principle all Gromov-Witten invariants [DZ].

We have written a C++ program that implements the algorithm mentioned above to
compute the Gromov-Witten invariants of projective spaces in any genus [Ga5]. At
the end of this chapter we will give several numerical examples. Of particular inter-
est are certain linear combinations of invariants of P3 that have been conjectured by
Pandharipande to be integers (and maybe to have an enumerative significance) as
a generalization of the Gopakumar-Vafa conjecture [P3]. Using our algorithm we
have verified this conjecture numerically up to genus 4 and degree 6.

This chapter is organized as follows. In section 1.1 we introduce the moduli spaces
of stable curves and stable maps, which will be the basic object of study in this
work. These moduli spaces are then used to define Gromov-Witten invariants in
section 1.2. We will list and prove their basic properties in section 1.3. Section 1.4
discusses the Virasoro conditions on Pr and describes how to combine them with the
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topological recursion relations to get systems of linear equations for the Gromov-
Witten invariants. The proof that these systems of equations are always solvable
(i.e. the computation of the determinant mentioned above) is given in section 1.5.
Finally, we will list some numerical results obtained with our method in section 1.6.

1.1. Stable curves and stable maps

DEFINITION 1.1.1. An (n-pointed) pre-stable curve is a tuple (C,x1, . . . ,xn) where

(i) C is a compact connected curve with at most nodes (i.e. ordinary double
points) as singularities,

(ii) x1, . . . ,xn are distinct smooth points of C, called the marked points of the
curve.

A morphism ϕ : (C,x1, . . . ,xn)→ (C′,x′1, . . . ,x
′
n) of n-pointed pre-stable curves is a

morphism ϕ : C→ C′ with ϕ(xi) = x′i for all i = 1, . . . ,n. An n-pointed pre-stable
curve is called stable if its group of automorphisms is finite. The genus of a pre-
stable curve is defined to be the arithmetic genus g(C) = h1(C,OC) of C. Curves of
genus 0 (resp. 1) are called rational (resp. elliptic).

We denote the set of all n-pointed stable curves of genus g by M̄g,n. The subset
of M̄g,n of all smooth stable curves is denoted Mg,n. Sometimes we will label the
marked points by a finite set I instead of by the numbers {1, . . . ,n}. In this case we
denote the corresponding spaces by M̄g,I and Mg,I , respectively.

REMARK 1.1.2. Every pre-stable curve can be obtained by the following procedure.
Let C1, . . . ,Cr be smooth compact connected curves, and denote their disjoint union
by C̃. Now let x1, . . . ,xn,y1, . . . ,ys,y′1, . . . ,y

′
s be distinct points on C̃, and let C be the

curve obtained from C̃ by identifying yi with y′i for all i = 1, . . . ,s. If C is connected
then (C,x1, . . . ,xn) is an n-pointed pre-stable curve of genus

s− r+1+
r

∑
i=1

g(Ci)

with s nodes yi = y′i. The curves Ci are called the components of the pre-stable
curve. The points x1, . . . ,xn,y1, . . . ,ys,y′1, . . . ,y

′
s (i.e. the marked points and the

nodes) are called the special points of the pre-stable curve. We say that C is ob-
tained by gluing the components Ci in the points yi = y′i.
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REMARK 1.1.3. Note that the automorphism group of a smooth curve of genus g
has dimension 3 for g = 0, 1 for g = 1, and 0 for g > 1. Hence a pre-stable curve is
stable if and only if every rational (resp. elliptic) component has at least three (resp.
one) special point lying on it. The following picture shows some examples. The
components of the curves are labeled by their genus.

The curves (A) and (B) are stable, whereas the curve (C) is not (as the middle
component has genus zero but only two special points). The genus of the curves is
2, 1, and 2, respectively.

Note that M̄g,n and Mg,n are empty if g = 0 and n < 3, or g = 1 and n < 1 (i.e. if
n≤ 2−2g). The space M̄0,3 is a single point.

CONSTRUCTION 1.1.4. Assume that n > 2− 2g, and let (C,x1, . . . ,xn) be a pre-
stable curve of genus g. Then we can construct an associated stable curve, called its
stabilization and denoted s(C,x1, . . . ,xn), as follows.

(i) Any rational component of C that has only one special point (which by the
assumption n > 2−2g must then be a node) is simply dropped.

(ii) Any rational component of C that has exactly two special points (at least one
of which must then be a node) is dropped, and the two special points are
identified.

For example, the curve (A) in remark 1.1.3 above is the stabilization of (C). We
say that s(C,x1, . . . ,xn) is obtained from (C,x1, . . . ,xn) by contracting the unstable
components.

REMARK 1.1.5. Similarly to remark 1.1.2 we can also glue a finite number of stable
curves in some marked points. The easiest case of this is the following. Let I1 ·∪ I2 =

{1, . . . ,n} be a partition, and let g1,g2 ≥ 0 be integers such that g1 +g2 = g. Then
there is an injective map

D(g1, I1 |g2, I2) := M̄g1,{0}∪I1× M̄g2,{0}∪I2 → M̄g,n

given by gluing a stable curve of genus g1 with marked points x0 and {xi ; i ∈ I1}
to a stable curve of genus g2 with marked points x0 and {xi ; i ∈ I2} in the point
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x0. By the criterion of remark 1.1.3 this new curve will be stable, so the above
map is well-defined. We can therefore regard the D(g1, I1 |g2, I2) as subsets of M̄g,n.
They describe the stable curves that are unions of two curves (that may themselves
be reducible) of genus g1 and g2 that are glued in one point and that contain the
marked points xi with i ∈ I1 and i ∈ I2, respectively.

THEOREM 1.1.6. For all g,n≥ 0 the space M̄g,n of stable curves is an irreducible,
smooth, proper, separated Deligne-Mumford stack of dimension 3g−3+n (unless
n ≤ 2− 2g, in which case it is empty). The subspace Mg,n of smooth stable curves
is a dense open substack of M̄g,n.

PROOF. See [DM]. �

REMARK 1.1.7. To be more precise, theorem 1.1.6 means the following. We say
that a family of n-pointed stable curves over a base scheme S is a flat morphism
π : X → S together with n sections σ1, . . . ,σn : S→ X such that the geometric fibers
(π−1(P),σ1(P), . . . ,σn(P)) are stable curves for all P ∈ S. Theorem 1.1.6 now as-
serts that the functor

Schemes→ Sets

S 7→ families of n-pointed (pre-)stable curves over S

is representable by a Deligne-Mumford stack with the stated properties.

After having defined the moduli spaces of stable curves let us now move on to stable
maps.

DEFINITION 1.1.8. Let X be a smooth projective variety. An (n-pointed) pre-
stable map to X is a tuple (C,x1, . . . ,xn, f ), where

(i) (C,x1, . . . ,xn) is a pre-stable curve,
(ii) f : C→ X is a morphism.

A morphism ϕ : (C,x1, . . . ,xn, f )→ (C′,x′1, . . . ,x
′
n, f ′) of n-pointed pre-stable maps

is a morphism ϕ of the underlying pre-stable curves such that f ◦ϕ = f ′. An n-
pointed pre-stable map is called stable if its group of automorphisms is finite. The
class of a pre-stable map (C,x1, . . . ,xn, f ) is defined to be the element f∗[C] ∈
H+

2 (X), where H+
2 (X) denotes the semigroup of homology classes of algebraic

curves modulo torsion.

We denote the set of all n-pointed stable maps to X of class β ∈ H+
2 (X) and genus

g by M̄g,n(X ,β). The subset of M̄g,n(X ,β) of all smooth stable maps (i.e. stable
maps whose underlying pre-stable curve is smooth) is denoted Mg,n(X ,β). In the
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same way as for stable curves we will write M̄g,I(X ,β) and Mg,I(X ,β) if the marked
points are labeled by a finite index set I instead of by {1, . . . ,n}.

When drawing stable maps we will often only draw the image curve in X , keeping
in mind that the abstract curve C and the morphism f are actually part of the data
needed to specify the stable map.

Sometimes stable maps will also be called stable absolute maps to distinguish
them from the stable relative maps that we will introduce in chapters 2 and 5.

REMARK 1.1.9. Note that M̄g,n(X ,β) = M̄g,n by definition if X is a point (and hence
β = 0). In other words, stable curves are special cases of stable maps.

REMARK 1.1.10. Note that the underlying pre-stable curve of a stable map need
not be stable. The following picture shows an example of this ( f is constant on the
middle elliptic component):

The left and right components of C are rational but have only two special points
each. Therefore (C,x1,x2) is not a stable curve. But nevertheless (C,x1,x2, f ) is a
stable map: if ϕ : (C,x1,x2, f ) 7→ (C,x1,x2, f ) is an automorphism then by definition
we must have ϕ◦ f = f . This means that ϕ must be the identity on the left and right
components of C. On the middle component (on which f is constant) ϕ need not
be the identity — but this component is stable as a curve, so there are only finitely
many automorphisms ϕ.

In general, we see that (similarly to remark 1.1.3) a pre-stable map (C,x1, . . . ,xn, f )
is stable if and only if every rational (resp. elliptic) component of C on which f is
constant has at least three (resp. one) special points.

In particular, M̄g,n(X ,β) and Mg,n(X ,β) are empty if β = 0 and n ≤ 2− 2g. Note
also that M̄g,n(X ,0) is just M̄g,n×X . In particular, M̄0,3(X ,0) = X .

CONSTRUCTION 1.1.11. Assume that β 6= 0 or n > 2−2g, and let (C,x1, . . . ,xn, f )
be a pre-stable map of genus g and class β. Then we can construct an associated sta-
ble map s(C,x1, . . . ,xn, f ) ∈ M̄g,n(X ,β) by “contracting the unstable components”,
i.e. by applying constructions 1.1.4 (i) and (ii) to the rational components of C with
at most two special points on which f is constant. The resulting stable map is called
the stabilization of (C,x1, . . . ,xn, f ).
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CONSTRUCTION 1.1.12. There are various maps related to the spaces of stable
maps:

(i) For any 1≤ i≤ n the map

evi : M̄g,n(X ,β) → X
(C,x1, . . . ,xn, f ) 7→ f (xi)

is called the evaluation map at the i-th marked point.
(ii) Assume that β 6= 0 or n > 3−2g. For any 1≤ i≤ n the map

πi : M̄g,n(X ,β) → M̄g,n−1(X ,β)

(C,x1, . . . ,xn) 7→ s(C,x1, . . . ,xi−1,xi+1, . . . ,xn)

is called a forgetful map (that forgets the i-th marked point and stabilizes the
result). Note that the stabilization is necessary because removing a marked
point may make the component on which it lies unstable.

(iii) Assume that n > 2−2g. The map

π : M̄g,n(X ,β) → M̄g,n

(C,x1, . . . ,xn, f ) 7→ s(C,x1, . . . ,xn)

is also called a forgetful map (that forgets the map and stabilizes the resulting
curve).

(iv) Let F : X →Y be a morphism of smooth projective varieties, and assume that
F∗β 6= 0 or n > 2−2g. Then there are functorial maps

F∗ : M̄g,n(X ,β) → M̄g,n(Y,F∗β)
(C,x1, . . . ,xn, f ) 7→ s(C,x1, . . . ,xn,F ◦ f ).

The maps of (ii) and (iii) can obviously be composed to obtain forgetful maps that
forget several of the marked points, and maybe also the map.

REMARK 1.1.13. Stable maps can be glued in points in the same way as stable
curves in remark 1.1.5, provided that the points to be identified map to the same
image point in X . This gives rise to injective gluing maps

D(g1, I1,β1 |g2, I2,β2) := M̄g1,{0}∪I1(X ,β1)×X M̄g2,{0}∪I2(X ,β2)→ M̄g,n(X ,β)

for all g1+g2 = g, I1 ·∪ I2 = {1, . . . ,n}, β1+β2 = β, where the two maps to X in the
fiber product are given by evaluation at the point x0.

THEOREM 1.1.14. Let X be a smooth projective variety, and let β∈H+
2 (X). For all

g,n≥ 0 the space M̄g,n(X ,β) is a proper and separated Deligne-Mumford stack. (It
is in general not smooth, irreducible, connected, reduced, or of constant dimension.)



1.1. STABLE CURVES AND STABLE MAPS 17

PROOF. The fact that M̄g,n(X ,β) is a Deligne-Mumford stack has been proven in
[BM] theorem 3.14. (Similarly to remark 1.1.7 one has to define families of sta-
ble maps over arbitrary base schemes, and then prove that the associated functor
from the category of schemes to the category of sets is representable by a Deligne-
Mumford stack.) It is proper and separated by [FP] section 4.2. �

PROPOSITION 1.1.15. The evaluation, forgetful, and functorial maps of construc-
tion 1.1.12, as well as the gluing map of remark 1.1.13, are actually morphisms of
Deligne-Mumford stacks.

PROOF. For the evaluation maps see [BM] proposition 5.5. The other cases are
included in the functoriality statement in the remark after theorem 3.14 in [BM].

�

EXAMPLE 1.1.16. Consider the forgetful map πn+1 : M̄g,n+1(X ,β)→ M̄g,n(X ,β)

that forgets the last marked point. It has been shown in [BM] corollary 4.6 that πn+1

is the universal curve over M̄g,n(X ,β) (and hence is a flat morphism). The section
σi : M̄g,n(X ,β) 7→ M̄g,n+1(X ,β) corresponding to the i-th marked point is given as a
special case of the gluing construction of remark 1.1.13: it is the composition of the
isomorphisms

M̄g,n(X ,β)
∼= M̄g,{0,1,...,i−1,i+1,...,n}(X ,β) (by relabeling xi 7→ x0)
∼= M̄g,{0,1,...,i−1,i+1,...,n}(X ,β)×X M̄0,{0,i,n+1}(X ,0) (as M̄0,3(X ,0)∼= X)
∼= D(g,{1, . . . , i−1, i+1, . . . ,n},β |0,{i,n+1},0) ⊂ M̄g,n+1(X ,β).

Geometrically, σi is given by replacing the i-th marked point by a contracted rational
component with the points xi and xn+1 on it:

We will denote the image of σi by

Di := D(g,{1, . . . , i−1, i+1, . . . ,n},β |0,{i,n+1},0).
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Obviously, πn+1 maps Di isomorphically to M̄g,n(X ,β).

1.2. Gromov-Witten invariants

The idea of Gromov-Witten invariants (and of enumerative geometry in general)
is to consider intersection products on the moduli spaces of stable maps that cor-
respond to certain geometric conditions on the curves. Usually one wants these
intersection products to have dimension 0, so that their degree is a rational number
that has a geometric interpretation as some number of curves in a given variety with
certain conditions.

REMARK 1.2.1. In order to make this idea work one first of all needs to know
the dimensions of the moduli spaces of stable maps. This is not so easy however,
as these moduli spaces usually have several components of different dimensions.
There is however a so-called virtual or expected dimension

vdimM̄g,n(X ,β) :=−KX ·β+(dimX−3)(1−g)+n

from the deformation theory of stable maps. The local dimension of the moduli
space is at least equal to this expected dimension at any point (C,x1, . . . ,xn, f ) ∈
M̄g,n(X ,β). If the deformation theory is unobstructed at a point then the local di-
mension is equal to the expected dimension, and the moduli space is smooth at this
point. This is e.g. the case if the cohomology group H1(C, f ∗TX) vanishes.

In any case there is a naturally defined virtual fundamental class [M̄g,n(X ,β)]virt ∈
A∗(M̄g,n(X ,β)) in the Chow group of the moduli space whose dimension is equal to
the virtual dimension (for intersection theory on Deligne-Mumford stacks we refer
to [Vi]). The idea is that in intersection-theoretic computations (that usually eval-
uate some product of cohomology classes on the fundamental class of the moduli
space) the fundamental class should be replaced by this virtual one. If the deforma-
tion theory is unobstructed for all stable maps in the moduli space then the virtual
fundamental class is equal to the usual one. This is e.g. the case for rational curves
in projective (or more generally homogeneous) spaces, but not very often for other
varieties and almost never for curves of positive genus. For details of the construc-
tion and properties of virtual fundamental classes we refer to [B], [BF], [LT1].

CONSTRUCTION 1.2.2. Let M̄g,n(X ,β) be a moduli space of stable maps. Fix an
integer 1≤ i≤ n. We consider the line bundle

Li = σ
∗
i ωM̄g,n+1(X ,β)/M̄g,n(X ,β)

where ωM̄g,n+1(X ,β)/M̄g,n(X ,β) denotes the relative dualizing sheaf of the universal
curve, and σi : M̄g,n(X ,β)→ M̄g,n+1(X ,β) is the section corresponding to the i-th
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marked point (see example 1.1.16). Geometrically, Li can be thought of as the line
bundle whose fiber at a stable curve (C,x1, . . . ,xn, f ) is the cotangent space T∨C,xi

to
C at xi.

The first Chern class c1(Li) ∈ A1(M) of this line bundle is called the i-th cotangent
line class or psi class, denoted ψi.

DEFINITION 1.2.3. Let M̄g,n(X ,β) be a moduli space of stable maps. For any coho-
mology classes γ1, . . . ,γn ∈ A∗(X) and non-negative integers m1, . . . ,mn we define
the Gromov-Witten invariant

〈τm1(γ1) · · ·τmn(γn)〉g,β := deg
(

ψ
m1
1 · ev∗1 γ1 · · ·ψmn

n · ev∗n γn · [M̄g,n(X ,β)]virt
)
∈Q,

where deg(α) is the degree of the dimension-0 part of the cycle α∈ A∗(M̄g,n(X ,β)).
If mi = 0 for some i we abbreviate τmi(γi) to γi within the brackets on the left hand
side. If g = 0 we will sometimes leave out the index g in the notation. A Gromov-
Witten invariant is called primary if it does not contain any cotangent line classes
(i.e. all mi are zero), and descendant otherwise. The Gromov-Witten invariants with
n marked points are sometimes called nnn-point invariants. Sometimes the above
invariants are called absolute Gromov-Witten invariants to distinguish them from
the relative Gromov-Witten invariants that we will introduce in chapters 2 and 5.

REMARK 1.2.4. As the Gromov-Witten invariants are multilinear in the cohomol-
ogy classes it suffices to pick the γi from among a fixed basis {Ta} of the cohomol-
ogy A∗(X) modulo numerical equivalence. We denote the Poincaré-dual basis by
{T a} and apply the summation convention (i.e. every variable occurring both as an
upper and lower index is summed over) unless stated otherwise. The fundamental
class of X and the class of a point will be denoted 1 and pt, respectively.

REMARK 1.2.5. In some cases the Gromov-Witten invariants have an enumerative
interpretation. For example, let X be a projective (or more generally homogeneous)
space, and let V1, . . . ,Vn be subvarieties of X in general position. Then the Gromov-
Witten invariant 〈[V1] · · · [Vn]〉0,β is equal to the number of rational curves of degree
β in X that intersect each of the given Vi, provided that the dimensions of the Vi are
chosen so that this number is finite (see [FP] lemma 14). For example, the invariant
〈pt2〉0,1 of PN is 1 as there is one line in PN through two points.

In general, a geometric interpretation of the invariants is not so easy however. For
some more examples see section 1.6.

PROPOSITION 1.2.6. Let X = Pr, and denote by Ta ∈ A∗(X) the class of a linear
subspace of X of codimension a. The rational 1-point and 2-point invariants of X
with at most one descendant class are given by the following generating functions:
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(i) 〈τm(Ta)〉0,d (with a+m = vdimM̄0,1(Pn,d)) is equal to the zr−a-coefficient of
the power series ∏

d
i=1

1
(z+i)r+1 .

(ii) 〈Tbτm(Ta)〉0,d (with a+b+m = vdimM̄0,2(Pn,d)) is equal to the zr−a-coeffi-
cient of the power series 1

(z+d)r+1−b ∏
d−1
i=1

1
(z+i)r+1 .

PROOF. See [P1] section 1.4. �

REMARK 1.2.7. It is often convenient to encode the Gromov-Witten invariants as
the coefficients of a generating function. So we introduce the so-called correlation
functions

〈〈τm1(γ1) · · ·τmn(γn)〉〉g := ∑
β

〈
τm1(γ1) · · ·τmn(γn)exp

(
∑
m

ta
mτm(Ta)

)〉
g,β

qβ

where the ta
m and qβ are formal variables satisfying qβ1qβ2 = qβ1+β2 . The corre-

lation functions are formal power series in the variables ta
m and qβ whose coeffi-

cients describe all genus-g Gromov-Witten invariants containing at least the classes
τm1(γ1) · · ·τmn(γn).

REMARK 1.2.8. Let M1 and M2 be Deligne-Mumford stacks over a smooth Deligne-
Mumford stack S. Let M = M1×S M2, so that we have a Cartesian diagram

M //

��

M1×M2

��
S

∆ // S×S

where ∆ is the diagonal. Now assume that we are given classes γ1 ∈ A∗(M1) and
γ2 ∈ A∗(M2) (usually thought of as virtual fundamental classes). Then the class
∆!(γ1⊗ γ2) in M will be called induced by γ1 and γ2.

In particular, we see that the substacks D(g1, I1,β1 |g2, I2,β2) ⊂ M̄g,n(X ,β) of re-
mark 1.1.13 carry natural virtual fundamental classes that are induced by the ones
of M̄g1,{0}∪I1(X ,β1) and M̄g2,{0}∪I2(X ,β2). Their dimensions are

(−KX ·β1 +(dimX−3)(1−g1)+1+#I1)

+(−KX ·β2 +(dimX−3)(1−g2)+1+#I2)−dimX

=vdimM̄g,n(X ,β)−1,

so the substacks D(g1, I1,β1 |g2, I2,β2) have virtual codimension 1 in M̄g,n(X ,β).
They are usually called boundary divisors.



1.3. BASIC RELATIONS AMONG GROMOV-WITTEN INVARIANTS 21

REMARK 1.2.9. To every boundary divisor D(g1, I1,β1 |g2, I2,β2) we can construct
an “associated Gromov-Witten invariant” by intersecting its virtual fundamental
class with evaluation and cotangent line classes. Let us assume for the moment
that all cohomology of X is algebraic. Then the class of the diagonal ∆X in X ×X
is given by

[∆X ] = ∑
a

Ta⊗T a ∈ A∗(X×X)

by [D] exercise VIII.8.21.2. Therefore we have

deg
(

ψ
m1
1 · ev∗1 γ1 · · ·ψmn

n · ev∗n γn · [D(g1, I1,β1 |g2, I2,β2)]
virt
)

=

〈
Ta ∏

i∈I1

τmi(γi)

〉
g1,β1

〈
T a

∏
i∈I2

τmi(γi)

〉
g2,β2

.

This formula is usually referred to as the diagonal splitting.

1.3. Basic relations among Gromov-Witten invariants

In this section we will list the basic relations among Gromov-Witten invariants that
we will need later. Although all of them are well-known, complete proofs in full
generality (including virtual fundamental classes and descendant invariants) can of-
ten not be found or are scattered in the literature. For convenience we will therefore
provide short proofs of these statements.

LEMMA 1.3.1. Let I ⊂ {1, . . . ,n} and consider the forgetful morphism

π : M̄g,n(X ,β)→ M̄g,I(X ,β) or π : M̄g,n(X ,β)→ M̄g,I

that forgets the points xi with i /∈ I, and maybe in addition the map. Then for all
i ∈ I

ψi · [M̄g,n(X ,β)]virt = π
∗
ψi · [M̄g,n(X ,β)]virt +∑[D(g, I1,β1 |0, I2,β2)]

virt

where the sum is taken over all splittings I1 ·∪ I2 = {1, . . . ,n} and β1 +β2 = β with
i∈ I2 such that the second component becomes unstable when applying the forgetful
map, i.e. such that the following two conditions hold:

(i) I2 ∩ I = {i} (i.e. the only marked point on the second component that is not
forgotten is xi),

(ii) if π does not forget the map then β2 = 0.



22 1. GROMOV-WITTEN INVARIANTS OF PROJECTIVE SPACES

PROOF. If π does not forget the map then the result follows by induction on the
number of forgotten points from [Ge1] proposition 11. The case when X is a point
(and thus π only forgets some of the marked points) has been proven in [Ge1]
theorem 8. The general statement is obtained by composition of these two results.

�

COROLLARY 1.3.2. Let π : M̄g,n+1(X ,β)→ M̄g,n be the universal curve over M̄g,n,
i.e. the morphism that forgets the last marked point and stabilizes the result. Pick
cohomology classes γ1, . . . ,γn ∈ A∗(X) and non-negative integers m1, . . . ,mn. Then
for any cohomology class α ∈ A∗(M̄g,n+1(X ,β)) we have

π∗(ψ
m1
1 · ev∗1 γ1 · · ·ψmn

n · ev∗n γn ·α · [M̄g,n+1(X ,β)]virt)

= ψ
m1
1 · ev∗1 γ1 · · ·ψmn

n · ev∗n γn ·π∗(α · [M̄g,n+1(X ,β)]virt)

+ ∑
i:mi>0

ψ
m1
1 · ev∗1 γ1 · · ·ψmi−1

i · ev∗i γi · · ·ψmn
n · ev∗n γn ·π∗(α · [Di]

virt)

in A∗(M̄g,n(X ,β)), where Di ⊂ M̄g,n+1(X ,β) denotes the divisor of example 1.1.16.

PROOF. Applying lemma 1.3.1 to the morphism π we get

ψi · [M̄g,n+1(X ,β)]virt = π
∗
ψi · [M̄g,n+1(X ,β)]virt +[Di]

virt

for 1 ≤ i ≤ n. Note that ψi is zero when restricted to Di, as the i-th marked point
sits on a constant contracted rational 3-pointed component. Therefore it follows by
induction that

ψ
mi
i · [M̄g,n+1(X ,β)]virt = π

∗
ψ

mi
i · [M̄g,n+1(X ,β)]virt +π

∗
ψ

mi−1
i [Di]

virt

if mi > 0. Next, ψ j and π∗ψ j agree when restricted to Di with i 6= j, as forgetting
the (n+1)-st marked point only drops the contracted rational component but does
not change the curve in a neighborhood of the j-th marked point. So we get

ψ
m1
1 · · ·ψ

mn
n · [M̄g,n+1(X ,β)]virt

= π
∗(ψm1

1 · · ·ψ
mn
n ) · [M̄g,n+1(X ,β)]virt

+ ∑
i:mi>0

π
∗(ψm1

1 · · ·ψ
mi−1
i · · ·ψmn

n )[Di]
virt.

The corollary now follows from the projection formula, taking into account that π

commutes with the evaluation maps. �

COROLLARY 1.3.3 (The fundamental class equation / string equation). Any Gro-
mov-Witten invariant that has no conditions at one of the marked points is deter-
mined in terms of the others by

〈τm1(γ1) · · ·τmn(γn) 1〉g,β = ∑
i:mi>0

〈τm1(γ1) · · ·τmi−1(γi) · · ·τmn(γn)〉g,β,
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provided that n > 2−2g or β 6= 0.

PROOF. Set α = 1 in corollary 1.3.2. We have π∗([M̄g,n+1(X ,β)]virt) = 0 for di-
mensional reasons and π∗([Di]

virt) = [M̄g,n(X ,β)]virt by the construction of [Di]
virt,

so the result follows. (We need the condition that n > 2−2g or β 6= 0 as otherwise
there is no forgetful morphism to M̄g,n(X ,0) = /0.) �

COROLLARY 1.3.4 (The divisor equation). Any Gromov-Witten invariant that has
the class γ of a divisor at one of the marked points is determined in terms of the
others by

〈τm1(γ1) · · ·τmn(γn) γ〉g,β = (γ ·β) · 〈τm1(γ1) · · ·τmn(γn)〉g,β
+ ∑

i:mi>0
〈τm1(γ1) · · ·τmi−1(γ · γi) · · ·τmn(γn)〉g,β,

provided that n > 2−2g or β 6= 0.

PROOF. This time we set α = ev∗n+1 γ in corollary 1.3.2. To compute the expression
π∗(ev∗n+1 γ · [M̄g,n+1(X ,β)]virt) note that

(i) [M̄g,n+1(X ,β)]virt = π∗[M̄g,n(X ,β)]virt by axiom IV of [BM] definition 7.1,
proven in [B].

(ii) π∗(ev∗n+1 γ · π∗[(C,x1, . . . ,xn, f )]) = (γ · β) · [(C,x1, . . . ,xn, f )] for any stable
map (C,x1, . . . ,xn, f ) as there are precisely γ ·β choices for the point xn+1.

Combining these results we see that

π∗(ev∗n+1 γ · [M̄g,n+1(X ,β)]virt) = (γ ·β) · [M̄g,n(X ,β)]virt

by the projection formula. On the other hand we have evn+1 = evi on Di, so the
claim now follows from corollary 1.3.2. �

COROLLARY 1.3.5 (The cotangent line equation / dilaton equation). Any Gro-
mov-Witten invariant that has a pure cotangent line class at one of the marked
points is determined in terms of the others by

〈τm1(γ1) · · ·τmn(γn)τ1(1)〉g,β = (2g−2+n) · 〈τm1(γ1) · · ·τmn(γn)〉g,β,

provided that n > 2−2g or β 6= 0.

PROOF. The proof is very similar to that of corollary 1.3.4, but now we set α=ψn+1

in corollary 1.3.2. We claim that

π∗(ψn+1 ·π∗[(C,x1, . . . ,xn, f )]) = (2g−2+n) · [(C,x1, . . . ,xn, f )]
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for all stable maps (C,x1, . . . ,xn, f ). In fact, what we have to do is to compute
the degree of the divisor ψn+1 on the curve π−1(C,x1, . . . ,xn, f ) ∼=C. Any rational
section of the line bundle ωC gives rise to a rational section of O(ψn+1) on the curve
π−1(C,x1, . . . ,xn, f ). A simple computation in local coordinates shows that this
rational section has simple poles at the points xi, together with zeros and poles at the
same points as the section of ωC. So the degree of ψn+1 is deg(ωC)+n= 2g−2+n.

In the same way as in the proof of corollary 1.3.4 it follows now that

π∗(ψn+1 · [M̄g,n+1(X ,β)]virt) = (2g−2+n) · [M̄g,n(X ,β)]virt.

The claim now follows from corollary 1.3.2 and the observation that ψn+1 is zero
on Di. �

EXAMPLE 1.3.6. Let X be a point. Then the only Gromov-Witten invariants of X
are

〈τm1 · · ·τmn〉g,
where we write τm for τm(1). These invariants are computable by Witten’s conjec-
ture [W], which has been proven by Kontsevich [K1]. The case of genus zero is
simple: we claim that

〈τm1 · · ·τmn〉g =
(

n−3
m1, . . . ,mn

)
·δn−3,m1+···+mn .

In fact, the factor δn−3,m1+···+mn is clear by the dimension condition. But this di-
mension condition implies that every potentially non-zero invariant with more than
three marked points has at least one τ0 entry. Hence all rational Gromov-Witten
invariants of a point are determined recursively by the fundamental class equation
of corollary 1.3.3 and the trivial initial condition 〈τ3

0〉0 = 1. But it is checked imme-
diately that the above expression for the invariants satisfies the fundamental class
equation, so it must be the correct one.

EXAMPLE 1.3.7. The stable maps of class β = 0 are precisely the constant maps,
so M̄g,n(X ,0) ∼= M̄g,n×X . If moreover g = 0 then the virtual fundamental class of
M̄g,n(X ,0) is equal to the usual one, and consequently the Gromov-Witten invariants
reduce to ordinary integrals on M̄0,n and X . Consequently, one has

〈τm1(γ1) · · ·τmn(γn)〉0,0 =
(

n−3
m1, . . . ,mn

)
· (γ1 · · ·γn) ·δn−3,m1+···+mn,

where γ1 · · ·γn denotes the (zero-dimensional) intersection product on X .

PROPOSITION 1.3.8 (The WDVV equations). Let γ1, . . . ,γ4 ∈ A∗(X) be cohomol-
ogy classes, and let m1, . . . ,m4 ≥ 0. Then

〈〈τm1(γ1)τm2(γ2)Ta〉〉0〈〈τm3(γ3)τm4(γ4)T a〉〉0
=〈〈τm1(γ1)τm3(γ3)Ta〉〉0〈〈τm2(γ2)τm4(γ4)T a〉〉0.
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PROOF. The basic idea of this relation is the equation

D(0,{1,2}|0,{3,4}) = D(0,{1,3}|0,{2,4})

in A0(M̄0,4) = A0(P1) ∼= Z (both sides are equal to the class of a point in P1). For
any n≥ 4 we can now consider the pull-back of this equation by the forgetful maps
π : M̄0,n(X ,β)→ M̄0,4 that forget the map and all but the first four marked points.
This yields

∑
β1+β2=β

I1 ·∪I2={1,...,n}
1,2∈I1,3,4∈I2

[D(0, I1,β1 |0, I2,β2)]
virt = ∑

β1+β2=β

I1 ·∪I2={1,...,n}
1,3∈I1,2,4∈I2

[D(0, I1,β1 |0, I2,β2)]
virt

by [BF] axiom V of definition 7.1, proven in [B]. Intersecting these equations with
evaluation and cotangent line classes then gives the desired result by the diagonal
splitting of remark 1.2.9. �

PROPOSITION 1.3.9 (Topological recursion relations in genus 0). Let γ1,γ2,γ3 ∈
A∗(X) be cohomology classes, and let m1,m2,m3 ≥ 0. Then

〈〈τm1+1(γ1)τm2(γ2)τm3(γ3)〉〉0 = 〈〈τm2(γ2)τm3(γ3)T a〉〉0〈〈τm1(γ1)Ta〉〉0

PROOF. For n≥ 3 we apply lemma 1.3.1 to the forgetful map π : M̄g,n(X ,β)→ M̄0,3

that forgets that map and all but the first three marked points. Note that the psi
classes on M̄0,3 are trivial as M̄0,3 is just a point. So we get

ψ1 · [M̄g,n(X ,β)]virt = ∑[D(0, I1,β1 |0, I2,β2)]
virt

where the sum is taken over all splittings I1 ·∪ I2 = {1, . . . ,n} and β1 +β2 = β with
2,3 ∈ I1 and 1 ∈ I2. Intersecting these equations with evaluation and cotangent line
classes then proves the proposition by the diagonal splitting of remark 1.2.9. �

PROPOSITION 1.3.10. If the cohomology A∗(X) is generated by divisors then there
is an explicit algorithm to reconstruct all rational Gromov-Witten invariants from
the rational 1-point invariants.

PROOF. See [LP] theorem 2 (i). The computations work roughly as follows.

(i) Compute all primary 2-point invariants from the descendant 1-point invariants
using the WDVV equations of proposition 1.3.8.

(ii) Compute all primary invariants from the primary 2-point invariants using the
First Reconstruction Theorem of Kontsevich and Manin (see [KM] theorem
3.1).
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(iii) Compute all descendant invariants from the primary ones using the topolog-
ical recursion relations of proposition 1.3.9. If the descendant invariant has
fewer than 3 marked points so that proposition 1.3.9 cannot be applied di-
rectly, add marked points first using the divisor equation of corollary 1.3.4.

�

COROLLARY 1.3.11. There is an explicit algorithm to compute all rational Gromov-
Witten invariants of projective spaces.

PROOF. Combine proposition 1.3.10 with proposition 1.2.6 (i). �

PROPOSITION 1.3.12 (Topological recursion relations in any genus). For all g >

0, N ≥ 3g−1, m≥ 0, and γ ∈ A∗(X) we have

〈〈τN+m(γ)〉〉g = ∑
i+ j=N−1

〈〈τi(Ta)〉〉g〈〈τm(γ)T a〉〉 j,

where the auxiliary correlation functions 〈〈· · ·〉〉i are defined recursively by

〈〈τm(γ1)γ2〉〉i = 〈〈τm+1(γ1)γ2〉〉i−1−〈〈T a
τm(γ1)〉〉0〈〈Taγ2〉〉i−1

with the initial condition
〈〈· · ·〉〉0 = 〈〈· · ·〉〉0.

PROOF. Consider the forgetful morphism π : M̄g,n(X ,β)→ M̄g,1 that forgets the
map and all marked points except the first one. Similarly to the Gromov-Witten
invariants let us define

〈τm1,m′1
(γ1)τm2(γ2) · · ·τmn(γn)〉g,β :=

deg
(

ψ
m1
1 ·π

∗
ψ

m′1
1 · ev∗1 γ1 ·ψm2

2 · ev∗2 γ2 · · ·ψmn
n · ev∗n γn · [M̄g,n(X ,β)]virt

)
∈Q

and the corresponding correlation function

〈〈τm,m′(γ)〉〉g := ∑
β

〈
τm,m′(γ)exp

(
∑
m

ta
mτm(Ta)

)〉
g,β

qβ.

Now apply lemma 1.3.1 to the morphism π. We get

ψ1 = π
∗
ψ1 +∑[D(g, I1,β1 |0, I2,β2)]

virt

with the sum taken over all splittings β1 +β2 = β and all I1 ·∪ I2 = {1, . . . ,n} with
1 ∈ I2. Intersecting these equations with ψm

1 ·π∗ψm′
1 , as well as with evaluation and

cotangent line classes at the other marked points, we obtain

〈〈τm+1,m′(γ)〉〉g = 〈〈τm,m′+1(γ)〉〉g + 〈〈τ0,m′(Ta)〉〉g〈〈T a
τm(γ)〉〉0.
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Iterating this equation N times we get

〈〈τm+N(γ)〉〉g = 〈〈τm,N(γ)〉〉g + ∑
i+ j=N−1

〈〈τ0,i(Ta)〉〉g〈〈T a
τm+ j(γ)〉〉0 (1)

for all N ≥ 0. Note that dimM̄g,1 = 3g−2 and therefore π∗ψN
1 = 0 for dimensional

reasons if N ≥ 3g−1. Hence in this case we have 〈〈τm,N(γ)〉〉g = 0 by definition. So
to prove the proposition it only remains to be shown that

∑
i+ j=N−1

〈〈τ0,i(Ta)〉〉g〈〈T a
τm+ j(γ)〉〉0 = ∑

i+ j=N−1
〈〈τi(Ta)〉〉g〈〈τm(γ)T a〉〉 j

for all N ≥ 0.

We will prove this by induction on N. The equation is trivial for N = 0. Assuming
that it is true for some given N we now check that

∑i+ j=N〈〈τ0,i(Ta)〉〉g〈〈T aτm+ j(γ)〉〉0
= 〈〈τ0,N(Ta)〉〉g〈〈T aτm(γ)〉〉0

+∑i+ j=N−1〈〈τi(Ta)〉〉g〈〈τm+1(γ)T a〉〉 j by induction

= 〈〈τ0,N(Ta)〉〉g〈〈T aτm(γ)〉〉0
+∑i+ j=N−1〈〈τi(Ta)〉〉g〈〈T aτm(γ)〉〉 j+1

+∑i+ j=N−1〈〈τi(Ta)〉〉g〈〈T bτm(γ)〉〉0〈〈TbT a〉〉 j by definition of 〈〈· · ·〉〉 j+1

= ∑i+ j=N−1〈〈τi(Ta)〉〉g〈〈T aτm(γ)〉〉 j+1

+〈〈T aτm(γ)〉〉0 ·
(
〈〈τ0,N(Ta)〉〉g +∑i+ j=N−1〈〈τi(Tb)〉〉g〈〈TaT b〉〉 j)

= ∑i+ j=N−1〈〈τi(Ta)〉〉g〈〈T aτm(γ)〉〉 j+1

+〈〈T aτm(γ)〉〉0 ·
(
〈〈τ0,N(Ta)〉〉g +∑i+ j=N−1〈〈τ0,i(Tb)〉〉g〈〈T bτ j(Ta)〉〉0

)
by induction

= ∑i+ j=N−1〈〈τi(Ta)〉〉g〈〈T aτm(γ)〉〉 j+1

+〈〈T aτm(γ)〉〉0〈〈τN(Ta)〉〉g by equation (1)

= ∑i+ j=N〈〈τi(Ta)〉〉g〈〈T aτm(γ)〉〉 j.

This finishes the proof. �

REMARK 1.3.13. As in the case of the Gromov-Witten invariants we will expand
the correlation functions 〈〈· · ·〉〉i as a power series in qβ and ta

m and call the resulting
coefficients 〈· · · 〉i

β
according to the formula

〈〈τm1(γ1)γ2〉〉i = ∑
β

〈
τm1(γ1)γ2 exp

(
∑
m

ta
mτm(Ta)

)〉i

β

qβ.

Note however that, in contrast to the Gromov-Witten numbers, the invariants 〈· · · 〉i
must have at least two entries, of which the second one contains no cotangent line
class.
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1.4. The Virasoro relations

The Virasoro conditions are certain relations among Gromov-Witten invariants con-
jectured in [EHX] that have recently been proven for projective spaces by Givental
[Gi2]. For the rest of this chapter we will therefore restrict ourselves to the case
X = Pr. It is expected that the same methods would work for other Fano varieties
as well.

To state the Virasoro conditions we need some notation. We pick the obvious basis
{Ta} of A∗(X) where Ta denotes the class of a linear subspace of codimension a for
a = 0, . . . ,r. Let R : A∗(X)→ A∗(X) be the homomorphism of multiplication with
the first Chern class c1(X). In our basis, the p-th power Rp of R is then given by
(Rp)a

b = (r+1)p δa+p,b.

For any x ∈ Q, k ∈ Z≥−1, and 0 ≤ p ≤ k+ 1 denote by [x]kp the zp-coefficient of
∏

k
j=0(z+x+ j), or in other words the (k+1− p)-th elementary symmetric polyno-

mial in k+1 variables evaluated at the numbers x, . . . ,x+ k.

Then the Virasoro conditions state that for any k≥ 1 and g≥ 1 we have an equation
of power series in ta

m and qβ (see e.g. [EHX])

0 =−
k+1

∑
p=0

[
3− r

2

]k

p
(Rp)0

b〈〈τk+1−p(Tb)〉〉g (A)

+
k+1

∑
p=0

∞

∑
m=0

[
a+m+

1− r
2

]k

p
(Rp)a

bta
m〈〈τk+m−p(Tb)〉〉g (B)

+
1
2

k+1

∑
p=0

−1

∑
m=p−k

(−1)m
[

a+m+
1− r

2

]k

p
(Rp)a

b〈〈τ−m−1(T a)τk+m−p(Tb)〉〉g−1 (C)

+
1
2

k+1

∑
p=0

−1

∑
m=p−k

g

∑
h=0

(−1)m
[

a+m+
1− r

2

]k

p
(Rp)a

b〈〈τ−m−1(T a)〉〉h〈〈τk+m−p(Tb)〉〉g−h.

(D)

We should mention that there are more general versions of these relations for all
k ≥ −1 and g ≥ 0. The equations will then get additional correction terms that we
have dropped here for the sake of simplicity.

For future computations it is convenient to construct a minor generalization of the
topological recursion relations of proposition 1.3.12 that is mostly notational. Note
that all genus-0 degree-0 invariants with fewer than 3 marked points are trivially
zero, as the moduli spaces of stable maps are empty in this case. It is an important
and interesting fact that many formulas concerning Gromov-Witten invariants get
easier if we assign “virtual values” to these invariants in the unstable range:
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CONVENTION 1.4.1. For the rest of this chapter we will from now on allow formal
negative powers of the cotangent line classes (i.e. the index m in the τm(γ) can be any
integer). Invariants 〈· · · 〉g,β and 〈· · · 〉i

β
are simply defined to be zero if they contain a

negative power of a cotangent line class at any point, except for the following cases
of genus-0 degree-0 invariants with fewer than 3 marked points:

(i) 〈τ−2(pt)〉0,0 = 1,
(ii) 〈τm1(γ1)τm2(γ2)〉0,0 = (−1)max(m1,m2)(γ1 · γ2)δm1+m2,−1,

(iii) 〈τ−i−1(γ1)γ2〉i0 = (γ1 · γ2) for all i≥ 0.

The correlation functions 〈〈· · ·〉〉 are changed accordingly so that the equations of
remarks 1.2.7 and 1.3.13 remain true. In particular, these functions will now depend
additionally on the variables ta

m for m < 0.

REMARK 1.4.2. Note that convention 1.4.1 is consistent with the general formula
for genus-0 degree-0 invariants

〈τm1(γ1) · · ·τmn(γn)〉0,0 =
(

n−3
m1, . . . ,mn

)
(γ1 · · ·γn)δm1+···+mn,n−3,

as well as with the recursion relations for the 〈〈· · ·〉〉i of proposition 1.3.12.

Using this convention we can now restate our topological recursion relations as
follows:

COROLLARY 1.4.3 (Topological recursion relations). For all g > 0, N ≥ 3g− 1,
m ∈ Z, and γ ∈ A∗(X) we have

〈〈τN+m(γ)〉〉g = ∑
i+ j=N−1

〈〈τm(γ)Ta〉〉i〈〈τ j(T a)〉〉g,

where the auxiliary correlation functions 〈〈· · ·〉〉i are defined recursively by the for-
mulas given in proposition 1.3.12, together with convention 1.4.1.

PROOF. The equations in the corollary are the same as in proposition 1.3.12 if m≥
0. For m < 0 they reduce to the trivial equations 〈〈τN+m(γ)〉〉g = 〈〈τN+m(γ)〉〉g by
convention 1.4.1. �

Let us now apply convention 1.4.1 to the Virasoro relations. It is checked imme-
diately that this realizes the (A) and (B) terms as part of the (D) terms via the
conventions (i) and (ii), respectively. So by applying our convention we can drop
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the (A) and (B) terms if we allow arbitrary integers in the sum over m. We are thus
left with the equations

0 =
1
2

k+1

∑
p=0

∑
m
(−1)m

[
a+m+

1− r
2

]k

p
(Rp)a

b〈〈τ−m−1(T a)τk+m−p(Tb)〉〉g−1 (C)

+
1
2

k+1

∑
p=0

∑
m

g

∑
h=0

(−1)m
[

a+m+
1− r

2

]k

p
(Rp)a

b〈〈τ−m−1(T a)〉〉h〈〈τk+m−p(Tb)〉〉g−h. (D)

Let us now analyze how these equations can be used to compute Gromov-Witten
invariants. First of all we will compute the invariants recursively over the genus of
the curves. The genus-0 invariants of Pr are known by corollary 1.3.11. So let us
assume that we want to compute the invariants of some genus g > 0, and that we
already know all invariants of smaller genus. In the Virasoro equations above this
means that we know all of (C), as well as the terms of (D) where h 6= 0 and h 6= g.
Noting that the (D) terms are symmetric under h 7→ g−h we can therefore rewrite
the Virasoro conditions as

k+1

∑
p=0

∑
m
(−1)m

[
a+m+

1− r
2

]k

p
(Rp)a

b〈〈τ−m−1(T a)〉〉0〈〈τk+m−p(Tb)〉〉g

= (recursively known terms).

Next, we will compute the invariants of genus g recursively over the number of
marked points. So let us assume that we want to compute the n-point genus-g invari-
ants, and that we already know all invariants of genus g with fewer marked points. In
the equations above this means that we fix a degree d ≥ 0, integers m2, . . . ,mn, and
n− 1 cohomology classes Ta2, . . . ,Tan , and compare the

(
qd ·∏n

i=2 tai
mi

)
-coefficients

of the equations. By the recursion process we then know all the invariants in which
at least one of the marked points x2, . . . ,xn is on the genus-0 invariant. So we can
write

k+1

∑
p=0

∑
m

∑
d1+d2=d

(−1)m
[

a+m+
1− r

2

]k

p
(Rp)a

b·

· 〈τ−m−1(T a)〉0,d1〈τk+m−p(Tb)τm2(Ta2) · · ·τmn(Tan)〉g,d2

= (recursively known terms).

These are linear equations for the unknown numbers 〈τ j(Tb)τm2(Ta2) · · ·τmn(Tan)〉g,e,
where j, b, and e vary. Note that for a given j≥ 0 there is exactly one such invariant
〈τ j(Tb j)τm2(Ta2) · · ·τmn(Tan)〉g,e j : the values of b j and e j are determined uniquely by
the dimension condition

(r+1)e j +(r−3)(1−g)+n = j+b j +
n

∑
i=2

(mi +ai) (2)



1.4. THE VIRASORO RELATIONS 31

as we must have 0 ≤ b j ≤ r. Let us denote this invariant by x j. Of course it may
happen that e j < 0, in which case we set x j = 0. Our equations now read

k+1

∑
p=0

∑
m
(−1)m+p−k

[
a+m+ p− k+

1− r
2

]k

p
(Rp)a

bm〈τ−m−p+k−1(T a)〉0,d−em · xm

= (recursively known terms).

Let us now check how many non-trivial equations of this sort we get. Together with
(2) the dimension conditions

(d− em)(r+1)+ r−3+1 =−m− p+ k−1+ r−a

(for the genus-0 invariant) and a+ p = bm (from the Rp factor) give

k = d(r+1)+(r−3)(1−g)+n−1−
n

∑
i=2

(mi +ai), (3)

which means that the value of k is determined by d. To avoid overly complicated
notation we will denote the number k determined by (3) by k(d). Moreover, let δ be
the smallest value of d for which k(d) is positive. We are then getting one equation
for every degree d ≥ δ. As there are r+ 1 unknown invariants x j in every degree
however it is clear that our equations alone are not sufficient to determine the x j.

Let us now apply our topological recursion relations. In terms of the recursion
at hand, these relations can express every invariant xm as a linear combination of
invariants of the same form with m < 3g−1, plus some terms that are known recur-
sively because they contain only invariants with fewer than n marked points. More
precisely, we have

xm = ∑
i+ j=N−1

〈τm−N+2(Tbm)T
b j〉iem−e j

x j + (recursively known terms)

for all N ≥ 3g−1 by corollary 1.4.3. Inserting this into the Virasoro conditions we
get

k(d)+1

∑
p=0

∑
m

∑
i+ j=N−1

(−1)m+p−k(d)
[

a+m+ p− k(d)+
1− r

2

]k(d)

p
(Rp)a

bm·

· 〈τ−m−p+k(d)−1(T
a)〉0,d−em · 〈τm−N+2(Tbm)T

b j〉iem−e j
· x j

= (recursively known terms).
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Using the dimension conditions again, and noting that the sum over m is equivalent
to independent sums over bm and em, we can rewrite this as

k(d)+1

∑
p=0

∑
e

∑
i+ j=N−1

(−1)1−a−(d−e)(r+1)
[

3− r
2
− (d− e)(r+1)

]k(d)

p
(Rp)a

b·

· 〈τ•(T a)〉0,d−e · 〈τ•(Tb)T b j〉ie−e j
· x j

= (recursively known terms),

where the dots in the τ functions denote the uniquely determined numbers so that
the invariants satisfy the dimension condition.

We are thus left with infinitely many equations (one for every d ≥ δ) for finitely
many variables x0, . . . ,xN−1. It is of course strongly expected that this system of
equations should be solvable, i.e. that the matrix V (N) = (V (N)

d, j )d≥δ,0≤ j<N with

V (N)
d, j :=

k(d)+1

∑
p=0

∑
e
(−1)1−a−(d−e)(r+1)

[
3− r

2
− (d− e)(r+1)

]k(d)

p
(Rp)a

b·

· 〈τ•(T a)〉0,d−e · 〈τ•(Tb)T b j〉N−1− j
e−e j

(4)

has maximal rank N. This is what we will show in the next section. In fact, we will
prove that every N×N submatrix of V is invertible. So we have shown

THEOREM 1.4.4. The Virasoro conditions together with the topological recursion
relations of corollary 1.4.3 give a constructive way to determine all Gromov-Witten
invariants of projective spaces.

It should be noted that the calculation of some genus-g degree-d invariant usually
requires the recursive calculation of invariants of smaller genus with bigger degree
and more marked points. This is the main factor for slowing down the algorithm as
the genus grows.

Some numbers that have been computed using this algorithm can be found in section
1.6.

1.5. Proof of the Virasoro algorithm

The goal of this section is to prove the technical result needed for theorem 1.4.4:

PROPOSITION 1.5.1. Fix any N ≥ 1, and let V (N) = (V (N)
d, j )d≥δ,0≤ j<N be the matrix

defined in equation (4). Then any N×N submatrix of V (N), obtained by picking N
distinct values of d, has non-zero determinant.



1.5. PROOF OF THE VIRASORO ALGORITHM 33

We will prove this statement in several steps. In a first step, we will make the entries
of the matrix independent of N and reduce the invariants 〈· · · 〉i to ordinary rational
Gromov-Witten invariants:

LEMMA 1.5.2. Let W = (Wd, j)d≥δ, j≥0 be the matrix with entries Wd, j = V ( j+1)
d, j .

Then:

(i) For all d ≥ δ, N ≥ 1, and 0≤ j < N we have

V (N+1)
d, j =V (N)

d, j −〈TbN T b j〉N−1− j
eN−e j

·Wd,N .

(ii) For any N ≥ 1 and any N×N submatrix of W obtained by taking the first N
columns of any N rows, the determinant of this submatrix is the same as the
corresponding submatrix of V (N).

PROOF. (i): Comparing the qe−e j-terms of the recursive relations of proposition
1.3.12 we find that

〈τ•(Tb)T b j〉N− j
e−e j

= 〈τ•(Tb)T b j〉N−1− j
e−e j

−〈τ•(Tb)T bN 〉0,e−eN 〈TbN T b j〉N−1− j
eN−e j

,

from which the claim follows.

(ii): We prove the statement by induction on N. There is nothing to show for N =

1. Now assume that we know the statement for some value of N, i.e. any two
corresponding N×N submatrices of the matrices with columns

(W·,0, . . . ,W·,N−1) and (V (N)
·,0 , . . . ,V (N)

·,N−1)

have the same determinant. Of course, the same is then also true for any corre-
sponding (N +1)× (N +1) submatrices of

(W·,0, . . . ,W·,N−1,W·,N) and (V (N)
·,0 , . . . ,V (N)

·,N−1,W·,N).

But by (i), the latter matrix is obtained from

(V (N+1)
·,0 , . . . ,V (N+1)

·,N−1 ,W·,N) = (V (N+1)
·,0 , . . . ,V (N+1)

·,N )

by an elementary column operation, so the result follows. �

So by the lemma, it suffices to consider the matrix W . Let us now evaluate the
genus-0 Gromov-Witten invariants contained in the definition of W .

CONVENTION 1.5.3. For the rest of this section, we will make the usual convention
that a product ∏

i2
i=i1 Ai is defined to be ∏

i1−1
i=i2+1 A−1

i if i1 > i2.
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LEMMA 1.5.4. For all d ≥ δ and j ≥ 0 the matrix entry Wd, j is equal to the z j-
coefficient of

− ∏
k(d)
i=0
(
r+1+

(3−r
2 + i

)
z
)

(1+(d− e j)z)b j+1
∏

d−e j−1
i=0 (1+ iz)r+1

.

PROOF. Recall that by equation (4) the matrix entries Wd, j are given by

∑
e,p

[
3− r

2
− (d− e)(r+1)

]k(d)

p
(Rp)a

b

︸ ︷︷ ︸
(A)

(−1)1−a−(d−e)(r+1)〈τ•(T a)〉0,d−e︸ ︷︷ ︸
(B)

〈τ•(Tb)T b j〉0,e−e j︸ ︷︷ ︸
(C)

.

The three terms in this expression can all be expressed easily in terms of generating
functions. Recalling that (Rp)a

b =(r+1)pδa+p,b, the (A) term is by definition equal
to the zp-coefficient of

δa+p,b

k(d)

∏
i=0

(
(r+1)z+

3− r
2
− (d− e)(r+1)+ i

)
.

The (B) and (C) terms are rational 2-point invariants of Pr which are determined by
proposition 1.2.6: the Gromov-Witten invariant in (B) (without the sign) is equal
to the za-coefficient of ∏

d−e
i=1

1
(z+i)r+1 . So including the sign factor we get the za-

coefficient of −∏
d−e
i=1

1
(z−i)r+1 . The (C) term is again by proposition 1.2.6 equal to

the zr−b-coefficient of 1
(z+e−e j)

b j+1 ∏
e−e j−1
i=1

1
(z+i)r+1 .

Multiplying these expressions and performing the sums over a, b, and p, we find
that Wd, j is the zr-coefficient of

−∑
e

∏
k(d)
i=0
(
(r+1)z+ 3−r

2 − (d− e)(r+1)+ i
)

(z+ e− e j)b j+1
∏

d−e
i=1 (z− i)r+1 ·∏e−e j−1

i=1 (z+ i)r+1
,

which can be rewritten as the sum of residues

−∑
e

resz=0
∏

k(d)
i=0
(
(r+1)z+ 3−r

2 − (d− e)(r+1)+ i
)

(z+ e− e j)b j+1
∏

e−e j−1
i=e−d (z+ i)r+1

dz.

Note that this fraction depends on z and e only in the combination z+ e. Conse-
quently, instead of summing the above residues at 0 over all e we can as well set
e = d and sum over all poles z ∈ C of the rational function. So we see that Wd, j is
equal to

− ∑
z0∈C

resz=z0

∏
k(d)
i=0
(
(r+1)z+ 3−r

2 + i
)

(z+d− e j)b j+1
∏

d−e j−1
i=0 (z+ i)r+1

dz.
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By the residue theorem this is nothing but the residue at infinity of our rational
function. So we conclude that

Wd, j = resz=0
∏

k(d)
i=0
( r+1

z + 3−r
2 + i

)
(1

z +d− e j)b j+1
∏

d−e j−1
i=0 (1

z + i)r+1
d(

1
z
).

Finally note that by equations (2) and (3) we have the dimension condition

k(d)+1 = j+b j +(d− e j)(r+1),

so multiplying our expression with zk(d)+1 in the numerator and denominator we
get

Wd, j =− resz=0
∏

k(d)
i=0
(
r+1+

(3−r
2 + i

)
z
)

z j+1(1+(d− e j)z)b j+1
∏

d−e j−1
i=0 (1+ iz)r+1

dz.

This proves the lemma. �

To avoid unnecessary factors in the determinants, let us divide row d of W by the
non-zero number −(r+ 1)k(d)+1 and call the resulting matrix W̃ . So we will now
consider N×N submatrices of W̃ = (W̃d, j), obtained by picking the first N columns
of any N rows, where W̃d, j is the z j-coefficient of

∏
k(d)
i=0
(
1+
( 3−r

2r+2 +
i

r+1

)
z
)

(1+(d− e j)z)b j+1
∏

d−e j−1
i=0 (1+ iz)r+1

. (5)

The following technical lemma is the main step in computing their determinants.

LEMMA 1.5.5. Assume that we are given N,n ∈ N, M ∈ Z, q,c ∈ R, and distinct
integers a0, . . . ,aN . Set

f (z) =
N

∑
k=0

(
∏
i 6=k

1
ak−ai

·
nak

∏
i=M

(
1+

c+ i
n

z
)
· (1+akz)q ·

−1

∏
i=ak

(1+ iz)n

)
as a formal power series in z.

(i) For any i≥ 0 the zi-coefficient of the power series f (z) is a symmetric polyno-
mial in a0, . . . ,aN of degree at most i−N. (In particular, it is zero for i < N.)

(ii) The zN-coefficient of f (z) is equal to

1
N!

N

∏
i=1

(
c+q−N +

n+1
2

+ i
)
.

PROOF. In the following proof, we will slightly abuse notation and vary the argu-
ments given explicitly for the function f . So if we e.g. want to study how f (z)
changes if we vary c, we will write f (z) also as f (z,c), and denote by f (z,c+ 1)
the function obtained from f (z) when substituting c by c+1.
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(i): It is obvious by definition that f (z) is symmetric in the ai. We will prove the
polynomiality and degree statements by induction on N.

“N = 0”: In this case we have

f (z) =
na0

∏
i=M

(
1+

c+ i
n

z
)
· (1+a0z)q ·

−1

∏
i=a0

(1+ iz)n.

We have to show that the zi-coefficient of f (z) is a polynomial in a0 of degree
at most i. Note that this property is stable under taking products, so if we write
f (z) = ∏

n
j=0 f ( j)(z) with

f (0)(z) =
0

∏
i=M

(
1+

c+ i
n

z
)
· (1+a0z)q

and f ( j)(z) =
a0−1

∏
i=0

(
1+

c+ j
n

z
1+ iz

)
for 1≤ j ≤ n

then it suffices to prove the statements for the f ( j) separately. But the statement is
obvious for f (0), so let us focus on f ( j) for j > 0. Note that

f ( j)(z,a0 +1) = f ( j)(z,a0) ·
(

1+
c+ j

n
z

1+a0z

)
.

So if fi denotes the zi-coefficient of f (z) we get

f ( j)
i (a0 +1)− f ( j)

i (a0) =
c+ j

n

i−1

∑
k=0

(−a0)
k f ( j)

i−1−k(a0). (6)

The statement now follows by induction on i: it is obvious that the constant z-term
of f ( j)(z) is 1. For the induction step, assume that we know that f ( j)

i is polynomial
of degree at most i in a0 for i = 0, . . . , i0− 1. Then the right hand side of (6) is
polynomial of degree at most i0− 1 in a0, so f ( j)

i0 is polynomial of degree at most
i0. This completes the proof of the N = 0 part of (i).

“N→ N +1”: Note that

f (z,N +1,a0, . . . ,aN+1) =
f (z,N,a0, . . . ,aN)− f (z,N,a1, . . . ,aN+1)

a0−aN+1
. (7)

By symmetry we have f (z,N,a0, . . . ,aN) = f (z,N,a1, . . . ,aN+1) if a0 = aN+1. So
every zi-coefficient of this expression is a polynomial in the ak. Its degree is at most
(i−N)−1 by the induction hypothesis. This proves (i).

(ii): By (i) the zN-coefficient of f (z,N) does not depend on the choice of ak, so we
can set ak = a+ k for all k and keep only a as a variable. It does not depend on M
either, as a shift M 7→M±1 corresponds to multiplication of f (z) with (1+αz)∓1
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for some α, which does not affect the leading coefficient of f (z). So we can set
M = 1 without loss of generality.

The recursion relation (7) now reads

f (z,N +1,a) =
f (z,N,a+1)− f (z,N,a)

N +1
. (8)

By (i) the zi-coefficient of f (z) has degree at most i−N in a. So if we denote by fi

the ai−N-coefficient of the zi-coefficient of f (z,a), comparing the zi-coefficients in
(8) yields fi(N +1) = i−N

N+1 fi(N) and therefore

fN(N) =
1
n
· 2

n−1
· · · n

1
· fN(0) = fN(0).

In other words, instead of computing the zN-coefficient of f (z,N) we can as well
set N = 0 and compute the aN-coefficient (i.e. the leading coefficient in a) of the
zN-coefficient of f (z,N = 0). So let us set N = 0 to obtain

f (z) =
na

∏
i=1

(
1+

c+ i
n

z
)
· (1+az)q ·

−1

∏
i=a

(1+ iz)n,

and denote by gN the aN-coefficient of the zN-coefficient of f (z,a). Moreover, set
g(z) = ∑N≥0 gNzN . Our goal is then to compute g(z).

We will do this by analyzing how f (z) (and thus g(z)) varies when we vary q, c, or
n. To start, it is obvious that

g(z,q+α) = (1+ z)αg(z,q) (9)

for all α ∈ R. Next, note that

f (z,c+1) = f (z,c) ·
1+ c+1+na

n z

1+ c+1
n z

.

For g(z) we can drop all terms in which the degree in a is smaller than the degree in
z. So we conclude

g(z,c+1) = (1+ z)g(z,c).

Combining this with (9) we see that g(z) will depend on q and c only through their
sum q+ c. So in what follows we can set c = 0, and replace q by q+ c in the final
result.

Varying n is more complicated. We have

f (z,n+1) = f (z,n) ·
n

∏
j=0

a

∏
i=1

(
1+

j
n(n+1)

· z

1+(i− j
n)z

)
︸ ︷︷ ︸

=: f̃ (z)

.
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Recall that for g(z) we only need the summands in f̃ (z) in which the degree in a is
equal to the degree in z. So let us denote the aN-coefficient of the zN-coefficient of
f̃ (z,a) by g̃N , and assemble the g̃N into a generating function g̃(z) = ∑N≥0 g̃NzN , so
that g(z,n+1) = g(z,n) · g̃(z). To determine g̃(z) compare the aN-coefficient of the
zN-coefficient in the recursive equation

f̃ (z,a)− f̃ (z,a−1)
z

= f̃ (z,a−1) · 1
z

(
n

∏
j=0

(
1+

j
n(n+1)

· z

1+(a− j
n)z

)
−1

)
.

On the left hand side this coefficient is (N +1)g̃N+1. On the right hand side it is the
zN-coefficient of

g̃(z) ·

(
N

∑
j=0

j
n(n+1)

)
· 1

1+ z
= g̃(z) · 1

2
1

1+ z
.

So we see that
dg̃(z)

dz
=

1
2

1
1+ z

g̃(z).

Together with the obvious initial condition g̃(0)= 1 we conclude that g̃(z)=
√

1+ z,
and therefore

g(z,n+1) = g(z,n) ·
√

1+ z.
Comparing this with (9) we see that g(z) depends on n and q only through the sum
q+ n

2 . We can therefore set n = 1 and then replace q by q+ n−1
2 in the final result.

But setting n to 1 (and c to 0) we are simply left with

f (z) =
a

∏
i=1

(1+ iz) · (1+az)q ·
−1

∏
i=a

(1+ iz) = (1+az)q+1.

So it follows that g(z) = (1+ z)q+1 and therefore

gN =

(
q+1

N

)
=

1
N!

N

∏
i=1

(q+1−N + i).

Setting back in the c and n dependence, i.e. replacing q by q+ c+ n−1
2 , we get the

desired result. �

We are now ready to compute our determinant.

PROPOSITION 1.5.6. Let (W̃ )d≥δ, j≥0 be the matrix defined in equation (5). Pick
N distinct integers d0, . . . ,dN−1 with di ≥ δ for all i. Then the determinant of the
N×N submatrix of W̃ obtained by picking the first N columns of rows d0, . . . ,dN−1

is equal to
∏i> j(di−d j)

∏
N−1
i=1 i!

·
N−1

∏
i=1

(
i+

1
2

)N−i

.
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In particular, this determinant is never zero.

PROOF. We prove the statement by induction on N. The result is obvious for N = 1
as every entry in the first column (i.e. j = 0) of W̃ is equal to 1. So let us assume
that we know the statement for a given value N. We will prove it for N +1.

Denote by ∆(d0, . . . ,dN−1) the determinant of the N×N submatrix of W̃ obtained
by picking the first N columns of rows d0, . . . ,dN−1. Then by expansion along the
last column and the induction assumption we get

∆(d0, . . . ,dN) =
N

∑
k=0

(−1)k+NW̃dk,N ·∆(d0, . . . ,dk−1,dk+1, . . . ,dN)

=
∏i> j(di−d j)

∏
N−1
i=1 i!

·
N−1

∏
i=1

(
i+

1
2

)N−i

·
N

∑
k=0

(
∏
i 6=k

1
dk−di

·W̃dk,N

)
.

But by lemma 1.5.5, applied to the values n = r + 1, ak = dk− eN , q = −bN − 1,
M = (r+1)(dk− eN)− k(dk) = 1−N−bN , and c = 3−r

2 −M = 1−r
2 +N +bN , the

sum in this expression is equal to

1
N!

N

∏
i=1

(
i+

1
2

)
.

Inserting this into the expression for the determinant, we obtain

∆(d0, . . . ,dN) =
∏i> j(di−d j)

∏
N
i=1 i!

·
N

∏
i=1

(
i+

1
2

)N+1−i

,

as desired. �

REMARK 1.5.7. It should be remarked that the expression for the determinant in
proposition 1.5.6 is surprisingly simple, given the complicated structure of the Vi-
rasoro conditions and the topological recursion relations. It would be interesting to
see if there is a deeper relation between these two sets of equations that is not yet
understood and explains the simplicity of our results.

Combining the arguments of this section, we see that the systems of linear equations
obtained from the Virasoro conditions and the topological recursion relations in
section 1.4 are always solvable. This completes the proof of theorem 1.4.4.

1.6. Numerical examples and applications

In this section we will give some examples of invariants that can be computed using
the method of section 1.4. The computations have been performed using the C++
program GROWI [Ga5].
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EXAMPLE 1.6.1 (Hurwitz numbers). For g,d≥ 0 let Hg,d be the number of degree-d
coverings of P1 by a curve of genus g with simple ramification over 2d+2g−2 fixed
points in P1. These so-called Hurwitz numbers have been studied and computed
first in [Hu]. They have an easy interpretation as Gromov-Witten invariants of P1,
namely

Hg,d = 〈τ1(pt)2d+2g−2〉g,d.
To see this, note that the condition ev∗i pt ensures that the i-th marked point is
mapped to a given point in P1, and the additional condition ψi requires this marked
point to be a ramification point (as this is precisely the degeneracy locus of the in-
duced morphism TC,xi → TP1, f (xi) on the tangent spaces). It is easily checked that
the presence of virtual fundamental classes on boundary components of M̄g,n(P1,d)
does not give rise to a contribution to the Gromov-Witten invariants.

The following table shows the Hurwitz numbers, i.e. the Gromov-Witten invariants
mentioned above, in the cases when g≤ 4 and d ≤ 6.

d = 1 d = 2 d = 3 d = 4 d = 5 d = 6
g = 0 1 1

2 4 120 8400 1088640
g = 1 0 1

2 40 5460 1189440 382536000
g = 2 0 1

2 364 206640 131670000 100557737280
g = 3 0 1

2 3280 7528620 13626893280 24109381296000
g = 4 0 1

2 29524 271831560 1379375197200 5576183206513920

Recently a closed formula has been found that expresses all Hurwitz numbers Hg,d

in terms of certain integrals over the moduli spaces M̄g,n of stable curves. See
[ELSV], [FaP] for details.

EXAMPLE 1.6.2 (Plane curves through given points). For any g≥ 0,d > 0 consider
the invariant 〈pt3d−1+g〉g,d of P2. The first few numbers are given in the following
table.

d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7
g = 0 1 1 12 620 87304 26312976 14616808192
g = 1 0 0 1 225 87192 57435240 60478511040
g = 2 0 0 0 27 36855 58444767 122824720116
g = 3 0 0 0 1 7915 34435125 153796445095
g = 4 0 0 0 0 882 12587820 128618514477

It can be shown (see [Va2] section 4) that these numbers are all enumerative, i.e.
they are the numbers of genus-g degree-d plane curves through 3d− 1+ g points
in general position. The numbers for genus zero have been found by Kontsevich
(see [KM] claim 5.2.1), the numbers for general g some time later by Caporaso and
Harris [CH].
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EXAMPLE 1.6.3 (1-point invariants). Let X = Pr, and denote by Ta ∈ A∗(X) the
class of a linear subspace of X of codimension a. We have seen in proposition 1.2.6
(i) that the rational 1-point functions 〈τm(Ta)〉0,d of Pr (satisfying the dimension
condition a+m = vdimM̄0,1(Pr,d)) are given as the zr−a-coefficient of the gener-
ating function

d

∏
i=1

1
(z+ i)r+1 .

Similarly, it follows from the elliptic topological recursion relations (see [Ge1]
equation 3) that the elliptic 1-point functions 〈τm(Ta)〉1,d of Pr (satisfying the di-
mension condition a+m = vdimM̄1,1(Pr,d)) are the zr−a-coefficients of the gener-
ating function

(r+1)(2z+2d− r)
48(z+d)2

d−1

∏
i=1

1
(z+ i)r+1 .

For genus bigger than 1 no such generating functions for the 1-point invariants
are known. As a numerical example, we list in the following table some 1-point
invariants of P2, i.e. invariants of the form 〈τm(γ)〉g,d , where m is determined by the
dimension condition 3d +g = m+degγ.

γ = pt γ = H γ = 1
d = 0 d = 1 d = 2 d = 0 d = 1 d = 2 d = 0 d = 1 d = 2

g = 0 − 1 1
8 − −3 − 9

16 − 6 3
2

g = 1 − 0 1
32 −1

8
1
8 − 3

32
1
8 −1

4
23

128

g = 2 0 − 1
240 − 1

960 − 1
960 − 1

960
13

1536
7

640
1

128 − 27
1280

g = 3 0 1
3360 −

1
16128 − 1

40320 0− 163
645120

41
161280 −

97
161280

43
36864

g = 4 0− 1
80640

11
1075200 −

1
1075200 −

1
153600 −

1
147456

127
12902400

173
4300800 −

4567
103219200

EXAMPLE 1.6.4 (Invariants of P3). The expected dimension of genus-g degree-d
curves in P3 is 4d for all g. So given integers a,b≥ 0 with a+2b = 4d we can ask
for the number of degree-d space curves of genus g that intersect a given lines and b
given points in general position. Of course the naı̈ve expectation is that this number
corresponds to the Gromov-Witten invariant

ng,d(a,b) := 〈Laptb〉g,d
where L denotes the class of a line.

It follows from remark 1.2.5 that this interpretation is indeed correct for rational
curves. In higher genus however this is no longer true for two reasons:

(i) In general the number of genus-g degree-d space curves through a general
lines and b general points (with a + 2b = 4d) is not finite. For example,
consider curves of genus 3 and degree 4 through 10 lines L1, . . . ,L10 and 3
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points P1,P2,P3. The three given points span a plane P2 ⊂ P3. In this plane
we have a family of genus-3 degree-4 curves of dimension

(4+2
2

)
− 1 = 14.

Hence there is a one-dimensional family of such plane curves that intersect
the 13 points L1∩P2, . . . ,L10∩P2,P1,P2,P3. The answer to our enumerative
problem is therefore not finite.

(ii) Even if the enumerative number is finite it will in general not be equal to
the Gromov-Witten invariant ng,d(a,b). The reason for this is that there are
genus-g degree-d stable maps that consist of a degree-d component of some
genus g′ < g and various contracted components whose genera add up to the
difference g−g′. These stable maps (that correspond geometrically to space
curves of genus g′) will give a non-enumerative contribution to the Gromov-
Witten invariants. Consequently, the invariants ng,d(a,b) should be some lin-
ear combinations of the corresponding enumerative numbers for all genera
g′ ≤ g with the same incidence conditions.

As a generalization of the Gopakumar-Vafa conjecture [GoV1, GoV2] Pandhari-
pande has conjectured a general formula that should compute the enumerative num-
bers (if they are finite) in terms of the Gromov-Witten invariants. More precisely,
let us fix d,a,b ≥ 0 with a+ 2b = 4d and set ng := ng,d(a,b). Define numbers
Ng := Ng,d(a,b) by the equation of formal power series in z

∑
g≥0

ngz2g−2 = ∑
g≥0

Ngz2g−2
(

sin z
2

z
2

)4d+2g−2

.

Then the numbers Ng are conjectured to be integers for all g. Moreover, if the
number of genus-g degree-d curves through a lines and b points is finite then this
number should be equal to Ng,d(a,b). The conjecture has been proven for g ≤ 2 in
[P2] theorem 3, with the invariants being enumerative in all cases. For more details
about the conjecture see [P3] section 3 and the references therein.

The following table lists the numbers Ng,d(a,b) for g≤ 4 and d ≤ 6. The numbers
are all integers and thus support the conjecture. Note however that some of them
are negative.

d = 1 n0 = N0 n1 N1 n2 N2 n3 N3 n4 N4

L0pt2 1 − 1
12 0 1

360 0 − 1
20160 0 1

1814400 0
L2pt1 1 − 1

12 0 1
360 0 − 1

20160 0 1
1814400 0

L4pt0 2 −1
6 0 1

180 0 − 1
10080 0 1

907200 0
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d = 2 n0 = N0 n1 N1 n2 N2 n3 N3 n4 N4
L0pt4 0 0 0 0 0 0 0 0 0
L2pt3 1 −1

4 0 7
240 0 − 2

945 0 13
120960 0

L4pt2 4 −1 0 7
60 0 − 8

945 0 13
30240 0

L6pt1 18 −9
2 0 21

40 0 − 4
105 0 13

6720 0

L8pt0 92 −23 0 161
60 0 −184

945 0 299
30240 0

d = 3 n0 = N0 n1 N1 n2 N2 n3 N3 n4 N4

L0pt6 1 − 5
12 0 1

12 0 − 43
4032 0 713

725760 0

L2pt5 5 −25
12 0 5

12 0 − 215
4032 0 713

145152 0

L4pt4 30 −25
2 0 5

2 0 −215
672 0 713

24192 0

L6pt3 190 −469
6 1 46

3 0 −19207
10080 0 8701

51840 0

L8pt2 1312 −1598
3 14 307

3 0 −30997
2520 0 46517

45360 0
L10pt1 9864 −3960 150 747 0 −1219

14 0 23077
3360 0

L12pt0 80160 −31900 1500 5930 0 −56585
84 0 19099

378 0

d = 4 n0 = N0 n1 N1 n2 N2 n3 N3 n4 N4

L0pt8 4 − 4
3 1 − 1

180 0 103
1080 0 − 26813

907200 0

L2pt7 58 − 179
6 4 2491

360 0 − 1927
2160 0 94343

1814400 0

L4pt6 480 −248 32 58 0 − 343
45 0 727

1512 0

L6pt5 4000 − 6070
3 310 4090

9 0 − 2923
54 0 9179

4536 0

L8pt4 35104 − 51772
3 3220 164486

45 0 − 49522
135 0 − 82603

16200 0

L10pt3 327888 −156594 34674 155518
5 27 − 49029

20 −1 − 6294731
25200 0

L12pt2 3259680 −1515824 385656 847322
3 792 − 715949

45 −28 − 31738771
7560 0

L14pt1 34382544 −15620216 4436268 41109847
15 15498 − 4210961

45 −526 − 4459477639
75600 0

L16pt0 383306880 −170763640 52832040 85167148
3 258300 − 3408023

9 −8460 − 743152381
945 0

d = 5 n0 = N0 N1 N2 N3 N4
L0pt10 105 42 0 0 0
L2pt9 1265 354 8 0 0
L4pt8 13354 3492 128 0 0
L6pt7 139098 38049 1776 0 0
L8pt6 1492616 441654 24252 0 0
L10pt5 16744080 5378454 335580 10 0
L12pt4 197240400 68292324 4742064 648 0
L14pt3 2440235712 901654884 68549424 28951 −636
L16pt2 31658432256 12358163808 1014183168 913930 −30624
L18pt1 429750191232 175599635328 15361183296 23427930 −920208
L20pt0 6089786376960 2583319387968 238229466240 530660500 −22421040
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d = 6 n0 = N0 N1 N2 N3 N4
L0pt12 2576 2860 312 11 0
L2pt11 44416 30470 4367 171 0
L4pt10 573312 366120 59004 2832 0
L6pt9 7200416 4647564 828798 45166 64
L8pt8 91797312 61777480 12040292 724268 2048
L10pt7 1207360512 855953100 180487314 11810592 48384
L12pt6 16492503552 12328963680 2788102824 196520672 1031760
L14pt5 234526910784 184285049520 44340020688 3340214784 21101700
L16pt4 3472451647488 2854482435648 725356675584 58003817136 424528824
L18pt3 53486265350784 45759236016480 12197239929576 1028899986730 8512493205
L20pt2 855909223176192 758233413373440 210683581713696 18637079002808 171326389452
L22pt1 14207926965714432 12970894985136000 3735671208730416 344593423079268 3473410465074
L24pt0 244274488980962304 228804132309160320 67948997430660192 6501236425429816 71052031752988



CHAPTER 2

Relative Gromov-Witten invariants in genus zero

Having computed the Gromov-Witten invariants of projective spaces we will now
move on to the study of hypersurfaces. Much work has in fact been done recently
on Gromov-Witten invariants related to hypersurfaces. There are essentially two
different problems that have been studied. The first one is simply the question
how to compute the Gromov-Witten invariants of a hypersurface from those of the
ambient space [Be, Gi1, K2, Ki, L, LLY1]. The second one is the theory of relative
Gromov-Witten invariants, i.e. the enumeration of curves in a manifold with given
local orders of contact to a fixed hypersurface [IP1, IP2, LR, Li1, Li2, R, Va1].
The goal of this thesis is to show that these two problems that have been studied
almost independently so far are in fact very closely related. In this chapter we will
restrict ourselves to the case of very ample hypersurfaces and curves of genus zero.
We will discuss some generalizations in chapter 5.

Let us start by giving a very short description of the ideas of this chapter, skipping
all technical details. Let Y be a smooth very ample hypersurface in a complex
projective manifold X . Our goal is to compute the Gromov-Witten invariants of
Y from those of X . To do so, fix n ≥ 1 and β ∈ H+

2 (X). For m ≥ 0 we let M̄(m)

(the official notation will be M̄Y
0,(m,0,...,0)(X ,β)) be a suitable compactification of

the moduli space of all irreducible stable maps (P1,x1, . . . ,xn, f ) to X such that f
has multiplicity at least m to Y at the point x1. Obviously, M̄(0) should be just the
ordinary moduli space of stable maps to X . On the other hand, M̄(Y ·β+1) should
correspond to the moduli space of stable maps to Y , as all irreducible curves in X
having multiplicity Y ·β+1 to Y must actually lie inside Y . Moreover, M̄(m+1) is a
subspace of M̄(m) of (expected) codimension one for all m.

The strategy is now obvious: if we can describe the (virtual) divisor M̄(m+1) in M̄(m)

intersection-theoretically in terms of known classes (and our main theorem 2.2.6
does precisely this) then we can compute intersection products on M̄(m+1) if we can
compute them on M̄(m). Iterating this procedure for m from 0 to Y · β this means
that we can compute the Gromov-Witten invariants of Y if we can compute the
Gromov-Witten invariants of X .

45
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Let us make the step from multiplicity m to m+ 1 a bit more precise. It is easily
seen that there is a section of a line bundle L(m) on M̄(m) whose zero locus describes
exactly the condition that f vanishes to order at least m+ 1 along Y at x1. Hence
one would naı̈vely expect that M̄(m+1) is just the first Chern class of L(m), which
turns out to be mψ1 + ev∗1Y . However, this intuition breaks down for those stable
maps where x1 lies on a component that is completely mapped to Y by f (see the
picture in construction 2.2.1), as f actually has infinite multiplicity to Y at x1 in this
case. Thus we get correction terms from reducible curves of that kind in our final
equation. These correction terms are quite complicated, but they can be recursively
computed as they are made up of invariants of smaller degree.

In this chapter we will define more general spaces than the M̄(m) mentioned above.
Namely, we will allow the specification of multiplicities to Y not only at the point
x1 but at all marked points. We call those moduli spaces the spaces of stable rela-
tive maps, and equip them with virtual fundamental classes. Intersection products
on them are then called relative Gromov-Witten invariants. Of course, they have
the obvious (possibly virtual) geometric interpretation as numbers of curves having
given multiplicities to Y and satisfying some additional incidence conditions.

A few remarks seem in order how this work is related to the existing literature. The
original ideas and motivation for our work came from the work of Vakil [Va1] who
proved our main theorem under the following restrictions: Y ⊂ X is a hyperplane in
PN , the sum of the prescribed multiplicities is equal to the degree of the curves, and
one of the multiplicities is raised from zero to one. It is interesting to note that he
used the main theorem in the opposite direction, namely to compute the invariants
of X from those of Y . But the algorithm used there is very specific to the case of a
hyperplane in PN ; it does not work for general Y ⊂ X .

Other methods to compute rational Gromov-Witten invariants of hypersurfaces do
exist in the literature [Be, L, LLY1, LLY4, Gi1]. All of them have two properties
in common though that are not shared by our methods:

• They use the technique of equivariant cohomology and fixed point localiza-
tion for torus actions. The first papers therefore required X to be a manifold
with a suitable torus action or even a projective space [Be, LLY1, Gi1]. Our
method does not use localization techniques and therefore does not need any
torus action. After the work of this chapter had been published the localiza-
tion methods were generalized to the cases when X can be embedded in a
manifold with a torus action, i.e. to all projective manifolds X [L, LLY4].
• They are only applicable if the anticanonical bundle of Y is non-negative. Our

methods work without any restriction on the canonical bundle of Y (although
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we will see in chapter 3 that they do not give rise to a nice “mirror formula”
in the case of a positive anticanonical bundle).

The construction of the moduli spaces of stable relative maps (or rather their virtual
fundamental classes) that we give in this chapter is only applicable to very ample
hypersurfaces and curves of genus 0. Very recently Li has generalized the construc-
tion to arbitrary hypersurfaces and any genus of the curves [Li1, Li2]. We will
present and use this generalized construction in chapter 5.

Relative Gromov-Witten invariants have also been considered in symplectic geom-
etry by Li and Ruan [LR] as well as Ionel and Parker [IP1, IP2]. They have been
defined for any codimension two symplectic submanifold Y of a symplectic mani-
fold X .

Let us briefly sketch the outline of this chapter. In section 2.1 we define the mod-
uli spaces of stable relative maps and define their virtual fundamental classes. The
construction of the line bundles L(m) and the moduli spaces for the correction terms
mentioned above is given in section 2.2. At the end of this section we state the
main theorem 2.2.6 of this chapter that describes how the moduli spaces of relative
invariants change if one of the multiplicities is raised by one. The proof of this the-
orem is done in two steps. In the first step in section 2.3 we look at the special case
when Y ⊂ X is a hyperplane in projective space. In this case no virtual fundamen-
tal classes are needed, and the main theorem is established by a purely geometric
analysis. The ideas for the main proofs of this section are taken from [Va1]. In the
second step in section 2.4 we prove the general case by “pulling back” the result for
hyperplanes in PN along the morphism M̄0,n(X ,β)→ M̄0,n(PN ,d) induced by the
complete linear system |Y |. Finally, in section 2.5 we prove that the main theorem
can be used to compute the Gromov-Witten invariants of Y (as well as the relative
invariants) in terms of the Gromov-Witten invariants of X . We will also discuss
some numerical examples. The computer program GROWI can be used to compute
all absolute and relative Gromov-Witten invariants of projective spaces and their
hypersurfaces using the methods of this chapter [Ga5].

2.1. Moduli spaces of stable relative maps

We begin with the description of the set-up and the definition of the moduli spaces
of stable relative maps. Let X be a complex projective manifold and Y ⊂X a smooth
very ample hypersurface.

Let α = (α1, . . . ,αn) be an n-tuple of non-negative integers. As usual, for such
an n-tuple we define |α| := n and ∑α := ∑

n
i=1 αi. If α = (α1, . . . ,αn) and α′ =
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(α′1, . . . ,α
′
m), we write α∪α′ for (α1, . . . ,αn,α

′
1, . . . ,α

′
m). For 1 ≤ k ≤ n, we write

α± ek for (α1, . . . ,αk±1, . . . ,αn).

Let β ∈H+
2 (X) be a non-zero class, and let g be a non-negative integer. The moduli

space M̄Y
g,α(X ,β) that we want to construct should be thought of as a compactifica-

tion of the space of all irreducible stable maps (C,x1, . . . ,xn, f ) to X of genus g and
class β that meet Y in the points xi with multiplicity αi for all i. We define it first as
a subset of the set of geometric points of M̄g,n(X ,β), but we will see later that it has
the structure of a closed substack of M̄g,n(X ,β).

DEFINITION 2.1.1. With notations as above, we define M̄Y
g,α(X ,β) to be the locus

in M̄g,n(X ,β) of all stable maps (C,x1, . . . ,xn, f ) such that

(i) f (xi) ∈ Y for all i with αi > 0,
(ii) f ∗Y −∑i αixi ∈ A0( f−1(Y )) is effective.

REMARK 2.1.2. Condition (i) is obviously necessary for (ii) to make sense. The
cycle class f ∗Y ∈ A0( f−1(Y )) is well-defined by [F] chapter 6 as the refined inter-
section product Y ·C in Y ×X C = f−1(Y ). Note that the Chow groups of a scheme
are equal to the Chow groups of its underlying reduced scheme (see [F] example
1.3.1 (a)), so we may replace f−1(Y ) by its underlying reduced scheme above. So,
by abuse of notation, if we talk about connected (resp. irreducible) components of
f−1(Y ) in the sequel we will always mean connected (resp. irreducible) components
of the underlying reduced scheme of f−1(Y ).

REMARK 2.1.3. In this chapter we will only be concerned with curves of genus
zero. Hence we will assume g = 0 from now on and abbreviate M̄Y

0,α(X ,β) as
M̄Y

α(X ,β) or M̄α(X ,β) if there is no risk of confusion. We will also write M̄n(X ,β)

for the space M̄0,n(X ,β) of rational stable maps.

The case of curves of higher genus will be discussed in chapter 5.

REMARK 2.1.4. For degree reasons, the space M̄α(X ,β) is obviously empty if ∑α>

Y ·β. So we will tacitly assume from now on that ∑α≤ Y ·β.

REMARK 2.1.5. The Chow group A0 of a point as well as of (connected but not
necessarily irreducible) genus-zero curves is just Z. So condition (ii) in definition
2.1.1 can be reformulated as follows: for any connected component Z of f−1(Y ) we
must have

(i) if Z is a point it is either unmarked or a marked point xi such that the multi-
plicity of f at xi along Y is at least αi;
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(ii) if Z is one-dimensional let C(i) for 1 ≤ i ≤ r be the irreducible components
of C not in Z but intersecting Z, and let m(i) be the multiplicity of f |C(i) at
Z∩C(i) along Y . Then we must have

Y · f∗Z +
r

∑
i=1

m(i) ≥ ∑
xi∈Z

αi.

EXAMPLE 2.1.6. Let X = P3, Y = H a plane, β = 5 · [line], and α = (1,2). In the
following picture the curve on the left is in M̄(1,2)(X ,β), whereas the one on the
right is not (condition (ii) of remark 2.1.5 is violated for the line marked Z since
1+1 6≥ 2+1).

The first thing we will do is to study the space M̄α(X ,β) in the special case where
X =PN and Y =H is a hyperplane. In this case we will write M̄α(X ,β) as M̄α(PN ,d)
with d = H · β. The main result of this section is that the general element of
M̄α(PN ,d) corresponds to an irreducible stable map whose image is not contained
in H, i.e. that the curves in M̄α(PN ,d) are exactly those that can be deformed to an
irreducible curve that still satisfies the given multiplicity conditions and that is not
contained in H. (Here and in the following, by “the curve C can be deformed to a
curve satisfying a property P” we mean that there is a family of stable maps such
that the central fiber is C and the general fiber has P.)

DEFINITION 2.1.7. We define Mα(PN ,d) to be the subset of M̄α(PN ,d) of all stable
maps (C,x1, . . . ,xn, f ) with C ∼= P1 and f (C) 6⊂ H.

REMARK 2.1.8. We will often consider first the easier case of the spaces M̄α(PN ,d)
with the additional condition that ∑α = d. (This is the situation that has been
studied in [Va1].) In this case condition (ii) in definition 2.1.1 actually means that
f ∗H−∑i αixi = 0 ∈ A0( f−1(H)). Correspondingly, the conditions in remark 2.1.5
read as follows: for any connected component Z of f−1(H) we must have

(i) if Z is a point it is a marked point xi with αi being equal to the multiplicity of
f at xi along H;
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(ii) if Z is one-dimensional let C(i) for 1 ≤ i ≤ r be the irreducible components
of C not in Z but intersecting Z, and let m(i) be the multiplicity of f |C(i) at
Z∩C(i) along H. Then we must have

deg f |Z +
r

∑
i=1

m(i) = ∑
xi∈Z

αi.

LEMMA 2.1.9. The space Mα(PN ,d) has the structure of an irreducible and locally
closed substack of M̄n(PN ,d).

PROOF. The locus of irreducible stable maps (P1,x1, . . . ,xn, f ) ∈ M̄n(PN ,d) such
that f (P1) 6⊂ H can be written as Mn(PN ,d)\M̄n(H,d), so it is open in M̄n(PN ,d).
On the other hand, the condition that f vanishes to order at least αi along H at xi

is closed, so Mα(PN ,d) is the intersection of a closed subset with an open subset in
M̄n(PN ,d). It is irreducible as there is a surjective rational map

C2n×H0(P1,O(d−∑α))×H0(P1,O(d))N 99K Mα(Pn,d)
(a1,b1, . . . ,an,bn, f0, f1, . . . , fN) 7→ (P1,(a1 :b1), . . . ,(an :bn), f )

where

f (z) = f (z0 : z1) = ( f0(z) ·
n

∏
i=1

(z1ai− z0bi)
αi : f1(z) : · · · : fN(z))

whose domain space is irreducible. �

LEMMA 2.1.10. The closure of Mα(PN ,d) in M̄n(PN ,d) is contained in M̄α(PN ,d).

PROOF. This follows from the continuity of intersection products. To be more pre-
cise, let C be a point in the closure of Mα(PN ,d). By lemma 2.1.9 there is a family
φ : T → M̄n(PN ,d) of stable maps over a smooth curve T with a distinguished point
0 ∈ T such that φ(0) = C and φ(t) ∈ Mα(PN ,d) for t 6= 0. We have to prove that
φ(0) ∈ M̄α(PN ,d). As it is obvious that φ(0) satisfies condition (i) of definition
2.1.1 it remains to show (ii).

The family φ is given by the data (C,x1, . . . ,xn, f ) where π : C→ T is a curve over
T , the xi : T → C are sections of π, and f : C → PN is a morphism. Set CH =

f−1(H) and consider the 1-cycles f ∗H and ∑i αixi(T ) in A1(CH). By assumption
the cycle γ := f ∗H−∑i αixi(T ) is effective (it might however have components over
0 ∈ T coming from f ∗H). Applying [F] proposition 11.1 (b) to the cycles f ∗H and
γ+∑i αixi(T ) we see that the specialization of f ∗H at t = 0 is equal to the limit
cycle of γ+∑i αixi(T ) as t → 0. As the limit cycle of γ for t → 0 is effective we
have shown that φ(0) satisfies (ii). This shows the lemma. �
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DEFINITION 2.1.11. Let C = (C,x1, . . . ,xn, f ) ∈ M̄α(PN ,d) be a stable map. An
irreducible component Z of C is called an internal component of C if f (C) ⊂ H,
and an external component otherwise. A subcurve of C is a stable map C ′ =
(C′,x′1, . . . ,x

′
m, f ′) ∈ M̄α′(PN ,d′) constructed from C as follows. Let C′ be any

proper connected subcurve of C, and let f ′ = f |C′ . The marked points x′1, . . . ,x
′
m

are the marked points xi contained in C′, together with all the intersection points
of C′ with the other irreducible components of C. We assign multiplicities α′ =

(α′1, . . . ,α
′
m) to the points x′1, . . . ,x

′
m as follows: The points xi on C′ will have their

given multiplicity αi. The intersection points with other irreducible components of
C will be assigned the multiplicity of f ′ along H at that point if the point lies on
an external component of C′, and 0 otherwise. Let d′ be the degree of f ′ on C′.
The following picture shows an example of this construction (the marked points are
labeled with their multiplicities).

LEMMA 2.1.12. Let C ∈ M̄α(PN ,d) be a stable map and assume that ∑α = d. Let
C ′ = (C′,x′1, . . . ,x

′
n, f ′) be a subcurve of C with the following property: if Z is an

internal irreducible component of C contained in C′ then any adjacent irreducible
component of Z in C is also contained in C′. (For example, the subcurve in the
picture above satisfies this property.) Then ∑α′ = d′.

PROOF. The condition ∑α = d means that f ∗H −∑αixi = 0 ∈ A0( f−1(H)). We
claim that also f ′∗H−∑α′ix

′
i = 0∈ A0( f ′−1(H)), which then implies that ∑α′ = d′.

In fact, this can be checked on the connected components of f ′−1(H). Let Z be a
connected component of f ′−1(H). By assumption, there are only two possibilities:

• C and C′ are locally isomorphic in a neighborhood of Z, i.e. Z is also a con-
nected component of f−1(H). Therefore ( f ′∗H−∑α′ix

′
i)|Z = 0 ∈ A0(Z).

• Z is an intersection point of C′ with C\C′ that lies on an external component
of C′. Then by definition of a subcurve Z is a marked point of C ′ with mul-
tiplicity equal to the multiplicity of f ′ along H at Z. In particular, we have
again that ( f ′∗H−∑α′ix

′
i)|Z = 0 ∈ A0(Z).

This proves the lemma. �
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LEMMA 2.1.13. A stable map C = (C,x1, . . . ,xn, f ) ∈ M̄α(PN ,d) can be deformed
to an irreducible curve in M̄α(PN ,d) if one of the following conditions is satisfied:

(i) C has only internal components.
(ii) ∑α = d, and C consists exactly of one internal component C(0) and r external

components C(1), . . . ,C(r) intersecting C(0) for some r≥ 0 (i.e. C is a “comb”
with the central component being internal and the teeth external; see the pic-
ture in construction 2.2.1). Moreover, in this case C can even be deformed to
an irreducible curve that is not contained in H (which is then obvious unless
r = 0).

(iii) ∑α = d, and C has exactly two irreducible components C(1) and C(2), both
being external.

PROOF. To show (i) note that by definition every curve with f (C) ⊂ H lies in
M̄α(PN ,d), so M̄n(H,d) ⊂ M̄α(PN ,d). But it is well-known that the space of ir-
reducible curves inside M̄n(H,d) is dense. So C can be deformed to an irreducible
curve in M̄α(PN ,d).

(ii) has been shown in [Va1] theorem 6.1. (In fact, in the notations used in [Va1],
our curve C is an element of a space Y with suitable decorations as introduced in
[Va1] definition 3.7.)

Finally, in the case (iii) it is easy to construct an explicit deformation. Choose
homogeneous coordinates z0, . . . ,zN on PN such that H is given by the equation
z0 = 0. The map f : C→ PN is then given by sections s0, . . . ,sN of a suitable line
bundle L on C. We may assume that the coordinates are chosen such that the si do
not vanish at C(1)∩C(2) (as for s0 note that s0(C(1)∩C(2)) = 0 would mean that the
intersection point lies on H, so it must be a marked point by remark 2.1.8 (i), hence
it must be non-singular, which is a contradiction). Let Di = (si) be the associated
divisors, in particular D0 = ∑αixi.

Now let W be the blow-up of C× P1 at the point (0,0), considered as a one-
dimensional family of curves by the projection map π : W →C. We can identify the
fiber π−1(0) with C(1)∪C(2). The points xi ∈ π−1(0) can be extended to sections x̃i
of π, giving rise to an extended divisor D̃0 = ∑αix̃i. In the same way one can find
divisors D̃i on W such that D̃i|π−1(0) = Di for all i. As PicW = PicC, these divisors
will be linearly equivalent and define a line bundle L̃ on W such that L̃ |π−1(0) = L .
Moreover, after possibly restricting the base C to a smaller open neighborhood of
0 we can assume that the D̃i are base-point free. Finally, we can choose sections
s̃i of L̃ such that (s̃i) = D̃i and s̃i|π−1(0) = si. Then (W, x̃0, . . . , x̃n,(s̃0 : · · · : s̃N)) is
a family of stable maps whose central fiber is C and whose general element is in
Mα(PN ,d). �
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LEMMA 2.1.14. Let C = (C,x1, . . . ,xn, f ) ∈ M̄α(PN ,d) be a reducible stable map
and assume that ∑α = d. Then C can be deformed to a stable map in M̄α(PN ,d)
with fewer nodes.

PROOF. This is essentially obtained from lemma 2.1.13 by gluing. Pick a node
P ∈ C and a subcurve C (0) = (C(0),x(0)1 , . . . ,x(0)

n(0)
, f (0)) ∈ M̄

α(0)(PN ,d(0)) of C as
follows:

(i) If C has a node connecting two internal components of C, let P be this node
and let C(0) be the connected component of f−1(H) containing P.

(ii) Otherwise, if C has a node connecting an internal component Z to an external
component of C, let P be this node and let C(0) be Z together with all adjacent
(necessarily external) components of C.

(iii) Otherwise, let P be any node of C (necessarily connecting two external com-
ponents of C) and let C(0) be the two irreducible components of C meeting at
P.

Let C(1), . . . ,C(r) with r ≥ 0 be the connected components of C\C(0).

In any case, we can deform C (0) to an irreducible map in M̄
α(0)(PN ,d(0)) by lemma

2.1.13 (in the cases (ii) and (iii) it follows from lemma 2.1.12 that ∑α(0) = d(0)).
So let φ : T → M̄

α(0)(PN ,d(0)) be a deformation of C (0) for some smooth pointed
curve (T,0), i.e. φ(0) = C (0) and for all 0 6= t ∈ T the curve φ(t) is irreducible. This
deformation is given by a family π : C̃→ T of curves, sections x̃1, . . . , x̃n of π and a
map f̃ : C̃→ PN . For all 1≤ i≤ r the intersection point of C(0) and C(i) is one of the
marked points of C(0), hence corresponds to a marked point of φ, say x̃i. Note that
in all cases (i) to (iii) above the deformation φ has the property that f̃ (x̃i(t)) ∈H for
all t ∈ T if this is true for t = 0. In particular, there are T -valued projective auto-
morphisms ψi : T → PGL(N) keeping H fixed such that ψi(t)( f̃ (x̃i(0))) = f̃ (x̃i(t)).
The induced action of PGL(N) on the moduli spaces M̄

α(i)(PN ,d(i)) makes ψi into a
deformation of C (i) over T such that for all t ∈ T the marked point corresponding to
C(0)∩C(i) is mapped to the same point in PN by the families φ and ψi. This means
that the families φ and ψi can actually be glued to give a deformation of the original
curve C . This deformation smoothes the node P. �

PROPOSITION 2.1.15. The closure of Mα(PN ,d) in M̄n(PN ,d) is M̄α(PN ,d). In
particular, M̄α(PN ,d) has the structure of an irreducible, proper, reduced substack
of M̄n(PN ,d).

PROOF. “⊂” has been shown in lemma 2.1.10, so it remains to show “⊃”. Let
C ∈ M̄α(PN ,d) be a stable map. Assume first that ∑α = d. Using lemma 2.1.14
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inductively we can deform C to an irreducible curve in M̄α(PN ,d). If this irreducible
curve does not lie inside H then we are done, otherwise use the r = 0 case of lemma
2.1.13 (ii).

If k = d−∑α > 0 let α′ = α∪ (1, . . . ,1) such that ∑α′ = d. By adding marked
points (and possibly introducing new contracted components) it is easy to find a
stable map C ′ ∈ M̄α′ that maps to C under the forgetful morphism M̄n+k(PN ,d)→
M̄n(PN ,d). By the above C ′ can be deformed to an irreducible curve in Mα′(PN ,d).
This induces a deformation of C to an irreducible curve in Mα(PN ,d).

Hence we have finally shown that M̄α(PN ,d) is closed. So by giving it the reduced
substack structure we get a proper, reduced substack of M̄n(PN ,d) which is irre-
ducible by lemma 2.1.9. �

LEMMA 2.1.16. The moduli space M̄α(PN ,d) has the following properties:

(i) If k = d−∑α > 0 and we let α′ = α∪ (1, . . . ,1) such that ∑α′ = d, then
there is a degree-k! generically finite cover M̄α′(PN ,d)→ M̄α(PN ,d), given
by forgetting the last k marked points and stabilizing.

(ii) M̄α∪(0)(PN ,d) is the universal curve over M̄α(PN ,d). In particular, if α =

(0, . . . ,0) then M̄α(PN ,d) = M̄|α|(PN ,d).
(iii) The moduli space M̄α(PN ,d) is purely of the expected dimension, which is

dimM̄|α|(PN ,d)−∑α = d(N +1)+N−3+ |α|−∑α.

PROOF. To show (i) note that from the parametrization of Mα(PN ,d) given in the
proof of lemma 2.1.9 one can see that the general element of Mα(PN ,d) corre-
sponds to a stable map (P1,x1, . . . ,xn, f ) such that f ∗H is equal to ∑i αixi plus a
union of k = d−∑αi distinct unmarked points with multiplicity one. Obviously,
the map M̄α′(PN ,d)→ M̄α(Pn,d) is finite over these elements, and it has degree k!,
corresponding to the choice of order of the k added marked points.

As in the proof of (i), the statement of (ii) is obvious on the dense open subset of
M̄α(PN ,d) described above, and it extends to the closures because of the flatness of
the map M̄n+1(PN ,d)→ M̄n(PN ,d).

Finally, (iii) has been shown in [Va1] proposition 5.7 if ∑α = d. Otherwise use (i)
first. Alternatively, (iii) can be read off from the parametrization given in the proof
of lemma 2.1.9. �

REMARK 2.1.17. The stack M̄α(PN ,d) is in general singular, even in codimension
1 (see [Va1] corollary 4.16). However, it is smooth at all points (P1,x1, . . . ,xn, f ) ∈
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Mα(PN ,d). In fact, for these curves the obstruction space for deformations inside
M̄α(PN ,d) is H1(P1, f ∗T ′PN ), where f ∗T ′PN is the kernel of the composite map

f ∗TPN → f ∗NH/PN → ( f ∗NH/PN )|Z
with Z being the zero-dimensional subscheme of P1 having length αi at the point
xi for all i. But as both these maps are surjective on global sections (for the second
one note that f ∗NH/PN = O(d) and ∑α≤ d) it follows that H1(P1, f ∗T ′PN ) = 0.

However, we will not need any smoothness results here.

Now we return to the general case of the moduli space M̄Y
n (X ,β) where X is any

smooth projective variety and Y ⊂ X a smooth very ample hypersurface. One of the
main problems is that these spaces will in general not have the expected dimension.
This means in particular that we need virtual fundamental classes, which cannot
be obtained using the techniques above. To overcome this problem we use the
linear system |Y | to get a map X → PN and consider the space M̄Y

α(X ,β) as the
“intersection” of two problems we already know: (a) stable maps in X and (b)
stable maps in PN with given multiplicities to the hyperplane H ⊂ PN induced by
Y .

We fix the following notation: let ϕ : X → PN be the morphism determined by |Y |,
and let H ⊂ PN the hyperplane such that Y = ϕ−1(H). As d := Y ·β > 0 the map ϕ

induces a morphism φ : M̄n(X ,β)→ M̄n(PN ,d).

REMARK 2.1.18. Let C ∈ M̄n(X ,β). As the conditions (i) and (ii) of definition 2.1.1
pull back nicely, it is obvious that C ∈ M̄Y

α(X ,β) if and only if φ(C ) ∈ M̄H
α (PN ,d).

DEFINITION 2.1.19. By the previous remark the space M̄Y
α(X ,β) has the structure

of a proper closed substack of M̄n(X ,β) by requiring the diagram of inclusions

M̄Y
α(X ,β) //

��

M̄H
α (PN ,d)

��

M̄n(X ,β)
φ

// M̄n(PN ,d)

to be Cartesian. We define the virtual fundamental class [M̄Y
α(X ,β)]virt to be the one

induced by the virtual fundamental class of M̄n(X ,β) and the usual fundamental
class of M̄H

α (PN ,d), in the sense of remark 1.2.8.

By lemma 2.1.16 (iii) the virtual fundamental class of M̄Y
α(X ,β) defined above has

dimension dimM̄n(X ,β)−∑α, which is the expected dimension of M̄Y
α(X ,β). If

X is a projective space and Y ⊂ X a hyperplane it is obvious by definition that the
virtual fundamental class of M̄Y

α(X ,β) is equal to the usual one.
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2.2. Raising the multiplicities

By construction, the space M̄α+ek(X ,β) is a closed substack of M̄α(X ,β) of expected
codimension one. The main goal of this chapter is to compute [M̄α+ek(X ,β)]virt as
a cycle in the Chow group of M̄α(X ,β). We start with the following naı̈ve approach
describing the transition from multiplicity αk to αk +1 at the point xk.

CONSTRUCTION 2.2.1. Consider a moduli space M = M̄n(X ,β) and let C → M
be the universal curve, with evaluation map ev : C → X . Fix k with 1 ≤ k ≤ n
and let sk : M → C denote the section corresponding to the marked point xk. Let
y ∈H0(OX(Y )) be the equation of Y . Choose an integer m≥ 0. We pull y back to C
by ev, take the m-jet relative to M of it, and pull this back to M by sk to get a section

σ
m
k := s∗kdm

C/M ev∗ y ∈ H0(M,s∗kP m
C/M(ev∗OX(Y ))),

where P m
C/M(ev∗OX(Y )) denotes relative principal parts of order m (or m-jets) of

the line bundle ev∗OX(Y ), and dm
C/M is the derivative up to order m (see [EGA4]

16.3, 16.7.2.1 for precise definitions). Geometrically, σm
k vanishes precisely on the

stable maps that have multiplicity at least m+ 1 to Y at the point xk. By [EGA4]
16.10.1, 16.7.3 there is an exact sequence

0→ L⊗m
k ⊗ ev∗k OX(Y )→ s∗kP m

C/M(ev∗OX(Y ))→ s∗kP m−1
C/M (ev∗OX(Y ))→ 0

where we set P−1
C/M(ev∗OX(Y )) = 0, and where Lk = s∗kωC/M is the k-th cotangent

line, i.e. the line bundle on M whose fiber at a point (C,x1, . . . ,xn, f ) is T∨C,xk
. Note

that the last map in this sequence sends σm
k to σ

m−1
k for m > 0. Now restrict these

bundles and sections to M̄α(X ,β). As all stable maps in M̄α(X ,β) have multiplicity
(at least) αk at xk, the restriction of σ

αk
k to M̄α(X ,β) defines a section

σk := σ
αk
k |M̄α(X ,β) ∈ H0(L⊗αk

k ⊗ ev∗k OX(Y )) = H0(O(αkψk + ev∗k Y ))

on M̄α(X ,β).

The vanishing of this section describes exactly the condition that a stable map in
M̄α(X ,β) vanishes up to order αk + 1 at xk. Hence naı̈vely one would expect that
M̄α+ek(X ,β) is described inside M̄α(X ,β) by the vanishing of this section, and that
[M̄α+ek(X ,β)]virt is given by

(αk ψk + ev∗k Y ) · [M̄α(X ,β)]virt. (10)

This is not true however because of the presence of stable maps with the property
that the component on which xk lies is mapped entirely into Y . Of course the section
σk vanishes on those stable maps, but they are in general not in M̄α+ek(X ,β). Hence
these stable maps will also contribute to the expression (10). We will now introduce
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the moduli spaces of the stable maps occurring in these correction terms. Informally
speaking, generic stable maps in these correction terms have r+1 irreducible com-
ponents C(0), . . . ,C(r) for some r ≥ 0, where C(0) (called the internal component)
is mapped into Y , and all C(i) for i > 0 (called the external components) intersect
C(0) and have a prescribed multiplicity m(i) to Y at this intersection point (see the
picture below, where m(1) = 1 and m(2) = 2). The point xk has to lie on C(0). The
initial multiplicity conditions α as well as the homology class β get distributed in
all possible ways to the components C(i).

We now describe this more formally.

DEFINITION 2.2.2. Consider a moduli space M̄α(X ,β) and 1 ≤ k ≤ n as above.
Let r be a non-negative integer. Choose a partition A = (α(0), . . . ,α(r)) of α such
that αk ∈ α(0). Let B = (β(0), . . . ,β(r)) be an (r+1)-tuple of homology classes with
β(0) ∈H+

2 (Y ) and β(i) ∈H+
2 (X)\{0} for i> 0 such that i∗β(0)+β(1)+ · · ·+β(r) = β,

where i : Y → X is the inclusion. Finally, choose an r-tuple M = (m(1), . . . ,m(r)) of
positive integers. With these notations we define the moduli space Dk(X ,A,B,M)

to be the fiber product

Dk(X ,A,B,M) := M̄|α(0)|+r(Y,β
(0))×Y r

r

∏
i=1

M̄
α(i)∪(m(i))(X ,β(i))

where the map from the first factor to Y r is the evaluation at the last r marked points,
and the map from the second factor to Y r is the evaluation at the last marked point
of each of its factors. We define the virtual fundamental class of Dk(X ,A,B,M) to
be m(1)···m(r)

r! times the class induced by the virtual fundamental classes of its factors,
in the sense of remark 1.2.8. The reason for the unusual multiplicity will become
clear in the proof of proposition 2.3.3.

DEFINITION 2.2.3. With notations as in the previous definition, let Dα,k(X ,β) be
the disjoint union of the Dk(X ,A,B,M) for all possible A, B, and M satisfying

Y · i∗β(0)+∑
i

m(i) = ∑α
(0) (11)
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(the reason for this condition will become clear in the following lemma). The virtual
fundamental class of Dα,k(X ,β) is defined to be the sum of the virtual fundamental
classes of its components Dk(X ,A,B,M).

LEMMA 2.2.4. In the case where X = PN and Y = H is a hyperplane the mod-
uli spaces Dk(PN ,A,B,M) satisfying equation (11) of definition 2.2.3 are proper
irreducible substacks of M̄α(PN ,d) of codimension one.

PROOF. Considering the definition of the space Dk(X ,A,B,M), the fact that it is
irreducible follows from the following three observations:

(i) M̄|α(0)|+r(H,d(0)) is irreducible,

(ii) the evaluation maps M̄
α(i)∪(m(i))(P

N ,d(i))→H at the last marked point are flat
and surjective (this follows from the action of the group of automorphisms of
PN keeping H fixed on the space M̄

α(i)∪(m(i))(P
N ,d(i))),

(iii) the fibers of the maps in (ii) are irreducible (by the Bertini theorem, as the
spaces M̄

α(i)∪(m(i))(P
N ,d(i)) itself are irreducible by proposition 2.1.15).

Moreover, these arguments show that the dimension of Dk(PN ,A,B,M) is equal to

dimM̄|α(0)|+r(H,d(0))+
r

∑
i=1

dimM̄
α(i)∪(m(i))(P

N ,d(i))− r · (N−1).

By a quick computation using lemma 2.1.16 (iii) this is equal to

dimM̄α(PN ,d)+∑α
(0)−d(0)−∑

i
m(i)−1,

so the dimension statement follows from equation (11) of definition 2.2.3.

The stack Dk(PN ,A,B,M) is visibly a closed substack of

M̄|α(0)|+r(P
N ,d(0))×(PN)r

r

∏
i=1

M̄|α(i)|+1(P
N ,d(i)),

which in turn is a closed substack of M̄n(PN ,d). To prove that it is contained
in M̄α(PN ,d) it suffices to show that a general element C = (C,x1, . . . ,xn, f ) ∈
Dk(PN ,A,B,M) satisfies the conditions of remark 2.1.5. As C is general, we have
C =C(0)∪·· ·∪C(r) where C(0) ∈Mr+|α(0)|(H,d(0)) and C(i) ∈M

α(i)∪(m(i))(P
N ,d(i)).

The condition of remark 2.1.5 is obvious for all connected components of f−1(H)

besides C(0). As for C(0), the condition is exactly the “≥” part of equation (11) of
definition 2.2.3. �
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REMARK 2.2.5. We will see in proposition 2.4.4 that even for general X the moduli
spaces Dk(X ,A,B,M) satisfying equation (11) of definition 2.2.3 are proper sub-
stacks of M̄α(X ,β) of expected codimension one. Thus we can view the virtual
fundamental class of the Dk(X ,A,B,M) as well as of Dα,k(X ,β) as cycles in the
Chow group of M̄α(X ,β) whose dimension is equal to the expected dimension of
M̄α(X ,β) minus one.

We can now state the main theorem of this chapter.

THEOREM 2.2.6. With notations as above, we have

(αk ψk + ev∗k Y ) · [M̄α(X ,β)]virt = [M̄α+ek(X ,β)]virt +[Dα,k(X ,β)]virt

in the Chow group of M̄α(X ,β) for all 1≤ k ≤ n.

The proof will be given at the end of section 2.4.

2.3. Proof of the main theorem for hyperplanes in PN

In this section we will prove the main theorem 2.2.6 in the case where X = PN and
Y = H is a hyperplane. Most of the proofs are generalized versions from those
in [Va1], where the generalizations are quite straightforward. Recall that in con-
struction 2.2.1 we defined a section σk of a suitable line bundle on M̄α(PN ,d) such
that the zero locus of σk has class αk ψk + ev∗k H and describes exactly those stable
maps (C,x1, . . . ,xn, f ) where f vanishes to order at least αk +1 along H at xk. For
simplicity we will restrict ourselves first to the case ∑α = d (note that the term
[M̄α+ek(PN ,d)]virt in the main theorem is then absent for degree reasons). We begin
by proving a set-theoretic version of the main theorem.

LEMMA 2.3.1. Assume that ∑α = d. Then the zero locus of the section σk on
M̄α(PN ,d) is equal to Dα,k(PN ,d).

PROOF. By construction it is obvious that σk vanishes on Dα,k(PN ,d), so let us
prove the converse. Let C = (C,x1, . . . ,xn, f ) ∈ M̄α(PN ,d) be a stable map with
σk(C ) = 0.

Assume first that xn is an isolated point of f−1(H). As f vanishes to order at least
αk +1 along H at xk this is a contradiction to remark 2.1.8 (i).

So xn is not an isolated point of f−1(H). Let C(0) be the connected component of
f−1(H) containing xk, and let C(1), . . . ,C(r) be the connected components of C\C(0).
Let m(i) be the multiplicity of f |C(i) at C(0)∩C(i) along H, let d(i) be the degree of
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f on C(i), and let α(i) be the collection of the multiplicities α j such that x j ∈C(i).
Then it is obvious that C ∈ Dk(PN ,A,B,M) with A, B, M as in definition 2.2.2.
Moreover, equation (11) of definition 2.2.3 is satisfied by remark 2.1.8 (ii) applied
to C(0), hence it follows that C ∈ Dα,k(PN ,d). �

REMARK 2.3.2. As the spaces Dk(PN ,A,B,M) are irreducible and of codimension
one by lemma 2.2.4, lemma 2.3.1 tells us that in the case ∑α = d we must have

(αk ψk + ev∗k H) · [M̄α(PN ,d)] = ∑λA,B,M [Dk(PN ,A,B,M)]virt

for some λA,B,M, where the sum is taken over all A,B,M for which Dk(PN ,A,B,M)

occurs in Dα,k(PN ,d). Note that the virtual fundamental class of Dk(PN ,A,B,M)

was defined to be m(1)···m(r)

r! times the usual one (where r = |M|), but that on the other
hand every irreducible component of the zero locus of σk (which is of the form
Dk(PN ,A,B,M) for some A, B, M) gets counted r! times in the above sum, corre-
sponding to the choice of order of the external components C(1), . . . ,C(r). Hence, to
prove the main theorem for hyperplanes in PN in the case ∑α = d, we have to show
that σk vanishes along Dk(PN ,A,B,M) with multiplicity m(1) · · ·m(r).

We will now prove the main theorem for X = P1 and Y = H a point, in the case
where ∑α = d. The proof is very similar to the proof of [Va1] proposition 4.8, in
fact (modulo notations) identical up to the end where the section σk comes into play.
So we will only sketch these identical parts and refer to [Va1] for details.

PROPOSITION 2.3.3 (Main theorem for H ⊂ P1,∑α = d). If ∑α = d then

(αk ψk + ev∗k H) · [M̄α(P1,d)] = [Dα,k(P1,d)]virt

for all 1≤ k ≤ n in the Chow group of M̄α(P1,d).

PROOF. Let Dk(P1,A,B,M) be a component of Dα,k(P1,d). By equation (11) of
definition 2.2.3 we know that ∑α(0) = ∑i m(i). Call this number d′. Moreover, we
must obviously have r > 0.

We start by defining two easier moduli spaces that model locally the situation at
hand (in a sense that is made precise later). Fix a point P ∈ P1 distinct from H. Let
M ⊂ M̄|α(0)|+r(P

1,d′) be the closure of all degree-d′ irreducible stable maps

(P1,(xi)1≤i≤|α(0)|,(yi)1≤i≤r, f )

such that
f ∗H = ∑

i
α
(0)
i xi and f ∗P = ∑

i
m(i)yi.
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Let D⊂ M̄|α(0)|+r(P
1,d′) be the closure of all degree-d′ reducible stable maps

(C(0)∪·· ·∪C(r),(xi)1≤i≤|α(0)|,(yi)1≤i≤r, f )

with r+1 components such that

• f contracts C(0) to H, and C(i)∩C(0) 6= /0 for all 1≤ i≤ r,
• xi ∈C(0) for all 1≤ i≤ |α(0)|,
• ( f |C(i))∗H = m(i)(C(i)∩C(0)) and ( f |C(i))∗P = m(i)yi for all 1≤ i≤ r.

General elements of these moduli spaces look as follows (the picture represents the
case α = (0,4,1) and M = (2,3)):

In short, in addition to our usual multiplicity requirements for f ∗H we require mul-
tiplicities m(i) over the point P (so that the curves C(i) in D are ramified completely
over H and P for i > 0).

We are now ready to compute the multiplicity of σk to Dk(P1,A,B,M) at a general
element C ′ = (C′,x′1, . . . ,x

′
n, f ′). Let C = (C,(xi),(yi), f ) be the unique stable map

in D whose internal component C(0) is equal to the internal component of C ′, viewed
as a marked curve whose marked points are the xi and the points C(0)∩C(i).

By construction, the stable maps C and C ′ are étale locally isomorphic around C(0),
so let (U,(xi), f |U) be a sufficiently small common étale neighborhood of C(0). By
[Va1] proposition 4.3 the deformation spaces of C in M and C ′ in M̄α(P1,d) are
products one of whose factors is the deformation space of (U,(xi), f |U), viewed as
a map from U to P1 satisfying the given multiplicity conditions at the points xi. As
the section σk is defined on this common factor, the order of vanishing of σk along
Dk(P1,A,B,M) in M̄α(P1,d) at the point C ′ is equal to its order of vanishing along
D in M at the point C .

To simplify the calculations even further let us fix the marked curve (C,(xi),(yi)).
Consider the morphism π : M→ M̄|α(0)|+r given by forgetting the map f and stabi-
lizing if necessary. Note that π will contract all external components of C as they
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only have two special points, so π maps C to a general point of M̄|α(0)|+r. Denote
by M′ ⊂M and D′ ⊂D the fibers of this morphism over π(C ). Then the multiplicity
we seek is equal to the multiplicity of σk along D′ in M′ in the point C .

But general elements in M′ are actually easy to describe explicitly: choose g1,g2 ∈
OP1(d′) with associated divisors

(g1) = ∑
i

α
(0)
i xi and (g2) = ∑

i
m(i)yi

where xi and yi are now fixed points in P1, determined by the element π(C ) ∈
M̄|α(0)|+r. Then a general stable map in M′ is of the form

Cλ = (P1,(xi),(yi), f ) where f : P1→ P1,x 7→ (λg1(x) : g2(x))

for λ ∈C∗. (Here we have chosen coordinates on the target P1 such that H = (0 : 1)
and P = (1 : 0).) The locus D′ ⊂M′, which is set-theoretically the zero locus of σk,
corresponds to the degeneration λ→ 0.

After a finite base change we can extend the family {Cλ} to λ = 0. The central fiber
C0 of this extended family is equal to C .

Let z be a local coordinate around xk ∈ P1. This means that z is a local coordinate
around xk on all Cλ with λ 6= 0, and in fact it extends to a local coordinate around
xk for λ = 0. Consider the local trivialization of the line bundle L⊗αk

k ⊗ ev∗k O(H)

given by dz(xk)
⊗αk ⊗h(xk) 7→ 1 (where h ∈ H0(P1,O(H)) is the section vanishing

at H that is used to define σk). Then by construction the section σk on the family
Cλ is given by λ 7→ ∂

αk
∂zαk λg1(z)|z=xk in this local trivialization. In particular, this has

a zero of first order in λ at λ = 0. This means that the class of the zero locus of σk

on M′ is
(αk ψk + ev∗k H) · [M′] = 1 · [Cλ]

for general λ.

Finally, as the automorphism group of a general Cλ is trivial, whereas the automor-
phism group of C is Zm(1)×·· ·×Zm(r) , we conclude that

(αk ψk + ev∗k H) · [M′] = m(1) · · ·m(r) · [C ].

Hence the statement of the proposition follows from remark 2.3.2. �

COROLLARY 2.3.4 (Main theorem for H ⊂ PN ,∑α = d). If ∑α = d, then

(αk ψk + ev∗k H) · [M̄α(PN ,d)] = [Dα,k(PN ,d)]virt

for all 1≤ k ≤ n in the Chow group of M̄α(PN ,d).
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PROOF. (Compare to [Va1] theorem 6.1.) By the previous proposition we can as-
sume that N ≥ 2. Consider a general element C = (C,x1, . . . ,xn, f ) of a component
Dk(PN ,A,B,M) of Dα,k(PN ,d). Let A ⊂ H be a general (N− 2)-plane. The pro-
jection from A in PN induces a rational map ρA : M̄n(PN ,d) 99K M̄n(P1,d). By
[Va1] proposition 5.5 the map ρA is defined and smooth at C . Moreover, ρA maps
Dk(PN ,A,B,M) to Dk(P1,A,B,M) at the points of Dk(PN ,A,B,M) where it is de-
fined, and the section σk on M̄α(P1,d) pulls back along ρA to the section σk on
M̄α(PN ,d). Hence the multiplicity of σk on M̄α(PN ,d) along Dk(PN ,A,B,M) is the
same as the multiplicity of σk on M̄α(P1,d) along Dk(P1,A,B,M). The corollary
then follows from proposition 2.3.3 and remark 2.3.2. �

COROLLARY 2.3.5 (Main theorem for H ⊂ PN). We have

(αk ψk + ev∗k H) · [M̄α(PN ,d)] = [M̄α+ek(P
N ,d)]+ [Dα,k(PN ,d)]virt

for 1≤ k ≤ n in the Chow group of M̄α(PN ,d).

PROOF. Let s = d−∑α, and let α′= α∪(1, . . . ,1) such that ∑α′= d. By corollary
2.3.4 we know that

(α′k ψ
′
k + ev′k

∗H) · [M̄α′(PN ,d)] = [Dα′,k(PN ,d)]virt (12)

for 1≤ k≤ n, where ψ′k is the k-th cotangent line class on M̄n+s(PN ,d), and ev′k the
evaluation map M̄n+s(PN ,d)→ PN at the k-th marked point. We will show that the
push-forward of this equation along the morphism φ : M̄α′(PN ,d)→ M̄α(PN ,d) that
forgets the additional s marked points is exactly the statement of the corollary.

First note that α′k = αk and ev′k = evk ◦φ. For the computation of the push-forward
of ψ′k we may assume that αk > 0, as otherwise there is no ψ′k-term in (12). It
is well-known that ψ′k = φ∗ψk + γ, where the correction term γ is the class of the
locus of those stable maps C = (C,x1, . . . ,xn+s, f ) where φ contracts the irreducible
component Z of C on which xk lies, i.e. where Z is an unstable component of the
prestable map (C,x1, . . . ,xn, f ). This can only happen if Z is contracted by f , in
particular σk(C ) = 0, so by lemma 2.3.1 the cycle γ must be a union of some of
the components of Dk(PN ,A,B,M) of Dα′,k(PN ,d). To determine which of them
occur in γ, we can assume that C is a generic element of some Dk(PN ,A,B,M). It
is easy to see that φ contracts Z = C(0) if and only if r = |M| = 1, d(0) = 0, and
the marked points on Z are xk and at least one of the points xn+1, . . . ,xn+s. If there
is more than one of these points on Z, the map φ has positive-dimensional fibers
on Dk(PN ,A,B,M), and hence φ∗[Dk(PN ,A,B,M)] vanishes, hence we can assume
that the marked points on Z are exactly xk and one of the forgotten points. Then
φ(C ) contracts Z, so by remark 2.1.8 the stable map φ(C ) will be irreducible with
multiplicity αk +1 at xk to H. This means that φ(Dk(PN ,A,B,M)) = M̄α+ek(PN ,d).
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As there is an s!-fold choice of order of the forgotten marked points, we have shown
that

φ∗γ · [Mα′(PN ,d)] = s! · [M̄α+ek(P
N ,d)]

and that therefore the left hand side of the push-forward of (12) by φ is equal to

s! · (αk ψk + ev∗k H) · [M̄α(PN ,d)]+αks! · [M̄α+ek(P
N ,d)]. (13)

Now we look at the right hand side of the push-forward of (12) by φ. Consider
a component Dk(PN ,A,B,M) of Dα′,k(PN ,d) and let C = (C,x1, . . . ,xn+s, f ) be a
generic element of this component. For the push-forward of this component by φ

to be non-zero the fibers of φ have to be zero-dimensional, i.e. there must not be
a deformation of C inside Dk(PN ,A,B,M) that changes nothing but the position of
the points xn+1, . . . ,xn+s. In particular this means that we must have one of the
following two cases:

• C(0) contains none of the points xn+1, . . . ,xn+s, i.e. the points xn+1, . . . ,xn+s

are just the s unmarked transverse points of intersection of φ(C ) with H. In
this case the map φ does not contract any components of C, and it changes
no multiplicities to H. Hence the push-forward by φ of all these components
together is just s! · [Dα,k(PN ,d)]virt.
• C(0) is a contracted component, i.e. d(0) = 0, r = |M| = 1, and the marked

points on C(0) are exactly xk and one of the points xn+1, . . . ,xn+s. As above,
the push-forward of such a component yields M̄α+ek(PN ,d), and it occurs with
multiplicity (αk +1) s!, where the factor αk +1 comes from the definition of
the virtual fundamental class of Dk(PN ,A,B,M).

Putting everything together we have shown that the push-forward of the right hand
side of (12) by φ is equal to

s! · [Dα,k(PN ,d)]virt +(αk +1) s! · [M̄α+ek(P
N ,d)].

Combining this with (13) we get the desired result. �

2.4. Proof of the main theorem for very ample hypersurfaces

Let X be a complex projective manifold and Y a smooth very ample hypersur-
face. We fix the following notation. Let i : Y → X be the inclusion map. For
β ∈H+

2 (X) we denote by M̄n(Y,β) the disjoint union of all moduli spaces M̄n(Y,β′)
for β′ ∈H+

2 (Y ) such that i∗β′= β. Consider the embedding ϕ : X→ PN given by the
complete linear system |Y | and let H ⊂ PN be the hyperplane such that ϕ−1(H) =Y .
There is an induced morphism φ : M̄n(X ,β)→ M̄n(PN ,d), where d = Y ·β. In this
section we will show that the “pull-back” of the main theorem for H ⊂ PN by φ
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yields the main theorem for Y ⊂ X . The most difficult part of the proof is to show
that the spaces Dα,k(PN ,d) pull back to Dα,k(X ,β) (proposition 2.4.4). Recall that
curves in Dα,k(X ,β) are reducible curves with one component in Y (and some mul-
tiplicity conditions). Hence we will show first that the moduli spaces of curves in
Y (lemma 2.4.2) and those of reducible curves in X (lemma 2.4.3) pull back nicely
under φ.

CONVENTION 2.4.1. In this section all occurring spaces are equipped with virtual
fundamental classes as follows.

• The moduli spaces M̄α(·, ·), Dk(. . .), and Dα,k(. . .) have virtual fundamental
classes constructed in definitions 2.1.19, 2.2.2, and 2.2.3, respectively.
• The varieties Y , X , H, and PN are equipped with their usual fundamental

class.
• The virtual fundamental class of a disjoint union of spaces is the sum of the

virtual fundamental classes of its components.
• In any fiber product V1×V V2 occurring in this section V will always be smooth

and equipped with the usual fundamental class. The virtual fundamental class
of the fiber product is then taken to be the one induced by the virtual funda-
mental classes of V1 and V2 in the sense of remark 1.2.8.

When we say that two spaces V1 and V2 are equal we will always mean that V1 and
V2 are isomorphic and that [V1]

virt = [V2]
virt under this isomorphism. We will write

this as V1 ≡V2.

LEMMA 2.4.2. For any n≥ 0 and β ∈ H+
2 (X) we have

M̄n(Y,β)≡ M̄n(H,d)×M̄n(PN ,d) M̄n(X ,β).

PROOF. As Y = H ∩X ⊂ PN it follows from the definitions that the diagram of
inclusions

M̄n(Y,β) //

��

M̄n(X ,β)

��

M̄n(H,d)
ψ

// M̄n(PN ,d)

(14)

is Cartesian. We denote by πX : M̄n+1(X ,β)→ M̄n(X ,β) the universal curve and
by fX : M̄n+1(X ,β)→ X its evaluation map, and similarly for the moduli spaces of
maps to Y , H, and PN . Applying the functor RπY ∗ f ∗Y to the distinguished triangle

LX |Y → LY → LY/X → LX |Y [1] (15)
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on Y , we get the distinguished triangle

RπY ∗( f ∗X LX)|M̄n+1(Y,β)→ RπY ∗ f ∗Y LY → RπY ∗( f ∗HLH/PN )|M̄n+1(Y,β)

→ RπY ∗( f ∗X LX)|M̄n+1(Y,β)[1]

on M̄n(Y,β). By [B] proposition 5 the vector bundle f ∗X LX is quasi-isomorphic to
a complex K of vector bundles on M̄n+1(X ,β) such that RπX∗K is also a complex
of vector bundles. As πX is flat it follows from the theorem on cohomology and
base change that (RπX∗K)M̄n(Y,β) = RπY ∗(K|M̄n+1(Y,β)). The same argument applies
to f ∗HLH/PN instead of f ∗X LX , so we arrive at the distinguished triangle

(RπX∗ f ∗X LX)|M̄n(Y,β)→ RπY ∗ f ∗Y LY → (RπH∗ f ∗HLH/PN )|M̄n(Y,β)

→ (RπX∗ f ∗X LX)|M̄n(Y,β)[1].
(16)

Starting with the distinguished triangle of LH/PN instead of LY/X in (15), the same
calculation as above shows that we also have a distinguished triangle on M̄n(H,d)

(RπPN ∗ f ∗PN LPN )|M̄n(H,d)→ RπH∗ f ∗HLH → RπH∗ f ∗HLH/PN

→ (RπPN ∗ f ∗PN LPN )|M̄n(H,d)[1].

But the first and second term in this sequence are just LM̄n(PN ,d)/Mn
|M̄n(H,d) and

LM̄n(H,d)/Mn
, where Mn denotes the stack of pre-stable n-pointed rational curves.

Hence we see that RπH∗ f ∗HLH/PN = LM̄n(H,d)/M̄n(PN ,d). So (16) becomes

(RπX∗ f ∗X LX)|M̄n(Y,β)→ RπY ∗ f ∗Y LY → LM̄n(H,d)/M̄n(PN ,d)|M̄n(Y,β)

→ (RπX∗ f ∗X LX)|M̄n(Y,β)[1].

Note that the first two terms in this sequence are the relative obstruction theories of
M̄n(X ,β) and M̄n(Y,β) over Mn, respectively. So we get a homomorphism of this
distinguished triangle to

LM̄n(X ,β)/Mn
|M̄n(Y,β)→ LM̄n(Y,β)/Mn

→ LM̄n(Y,β)/M̄n(X ,β)

→ LM̄n(X ,β)/Mn
|M̄n(Y,β)[1].

Hence, by [BF] proposition 7.5 it follows that ψ![M̄n(X ,β)]virt = [M̄n(Y,β)]virt in
(14). This proves the lemma. �

LEMMA 2.4.3. Let n(i) ≥ 0 and d(i) ≥ 0 such that ∑i n(i) = n and ∑i d(i) = d. Then

·⋃
(β(i))

(
M̄n(0)+r(X ,β(0))×X r

r

∏
i=1

M̄n(i)+1(X ,β(i))

)
≡

(
M̄n(0)+r(P

N ,d(0))×(PN)r

r

∏
i=1

M̄n(i)+1(P
N ,d(i))

)
×M̄n(PN ,d) M̄n(X ,β),
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where the union is taken over all (β(i)) with Y ·β(i) = d(i) for all i, and where the
maps to X r and (PN)r are given in the same way as in definition 2.2.2.

PROOF. In the language of [BM] let τ be the graph corresponding to rational curves
with components C(0), . . . ,C(r) such that C(0)∩C(i) 6= /0 for all i > 0 and C(i) has n(i)

marked points for i≥ 0. Let Mn be the stack of pre-stable n-pointed rational curves,
and let Mτ ⊂Mn be the substack of τ-marked pre-stable curves as defined in [BM]
definition 2.6. Moreover, we will abbreviate the moduli spaces in the large brackets
in the statement of the lemma as M̄τ(X ,(β(i))) and M̄τ(PN ,(d(i))), respectively.

Consider the commutative diagram

M̄τ(X ,(β(i))) //

��

M̄τ(PN ,(d(i))) //

��

Mτ

ψ

��

M̄n(X ,β) // M̄n(PN ,d) // Mn

where none of the maps involves stabilization of the underlying pre-stable curves.
By [B] lemma 10 the right square and the big square are Cartesian, so the left
one is also Cartesian. Moreover, by the same lemma we have ψ![M̄n(X ,β)]virt =

[M̄τ(X ,(β(i)))]virt. �

PROPOSITION 2.4.4. For any 1≤ k ≤ n we have

Dα,k(X ,β)≡ Dα,k(PN ,d)×M̄n(PN ,d) M̄n(X ,β).

In particular, the moduli spaces Dk(X ,A,B,M) satisfying equation (11) of definition
2.2.3 are proper substacks of M̄α(X ,β) of virtual codimension one.

PROOF. We consider a component Dk(PN ,A,(d(i)),M) of Dα,k(PN ,d) and show
that the fiber product of this component with M̄n(X ,β) over M̄n(PN ,d) is the union
of all Dk(X ,A,(β(i)),M) such that Y ·β(i) = d(i).

We start with the pull-back compatibility statement for general curves of the form
C(0) ∪ ·· · ∪C(r) with C(0) ∩C(i) 6= /0, as given in lemma 2.4.3. Taking the fiber
product of this equation with M̄n(0)+r(H,d(0)) over M̄n(0)+r(P

N ,d(0)) (i.e. requiring
the central component C(0) to lie in H) and using lemma 2.4.2 on the left hand side
yields

·⋃
(β(i))

(
M̄n(0)+r(Y,β

(0))×X r

r

∏
i=1

M̄n(i)+1(X ,β(i))

)
≡

(
M̄n(0)+r(H,d(0))×(PN)r

r

∏
i=1

M̄n(i)+1(P
N ,d(i))

)
×M̄n(PN ,d) M̄n(X ,β).
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This can obviously be written in a more complicated way as

·⋃
(β(i))

(
M̄n(0)+r(Y,β

(0))×Y r

(
Hr×(PN)r

r

∏
i=1

M̄n(i)+1(X ,β(i))

))
≡

(
M̄n(0)+r(H,d(0))×Hr

(
Hr×(PN)r

r

∏
i=1

M̄n(i)+1(P
N ,d(i))

))
×M̄n(PN ,d) M̄n(X ,β).

Note that

H×PN M̄n(i)+1(P
N ,d(i))≡ M̄

α̃(i)(PN ,d(i))

for all i > 0, where α̃(i) = (0, . . . ,0,1). So we get

·⋃
(β(i))

(
M̄n(0)+r(Y,β

(0))×Y r

r

∏
i=1

M̄
α̃(i)(PN ,d(i))×M̄

n(i)+1
(PN ,d(i)) M̄n(i)+1(X ,β(i))

)
≡

(
M̄n(0)+r(H,d(0))×Hr

r

∏
i=1

M̄
α̃(i)(PN ,d(i))

)
×M̄n(PN ,d) M̄n(X ,β).

Finally, we take the fiber product of this equation with M̄
α(i)∪(m(i))(P

N ,d) over

M̄
α̃(i)(PN ,d) for all i > 0, yielding the same equation with the α̃(i) replaced by

α(i) ∪ (m(i)). By definition this is then exactly the equation stated in the propo-
sition. �

We are now ready to give the proof of our main theorem.

PROOF OF THEOREM 2.2.6. Consider the Cartesian diagram

M̄α(X ,β) //

��

M̄α(PN ,d)

��

M̄n(X ,β)
φ

// M̄n(PN ,d).

The main theorem for H ⊂ PN (see corollary 2.3.5) gives an equation in the Chow
group of M̄α(PN ,d). We pull this equation back by φ to get an equation in the
Chow group of M̄α(X ,β). As the morphism φ does not involve any contractions
of the underlying pre-stable curves, the cotangent line class ψk on M̄n(PN ,d) pulls
back to the cotangent line class ψk on M̄n(X ,β). So by definition the left hand side
of corollary 2.3.5 pulls back to (αkψk + ev∗Y ) · [M̄α(X ,β)]virt. In the same way
[M̄α+ek(PN ,d)] pulls back to [M̄α+ek(X ,β)]virt. Finally, proposition 2.4.4 shows that
[Dα,k(PN ,d)]virt pulls back to [Dα,k(X ,β)]virt. �
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2.5. Enumerative applications

As usual, the first thing to do to get enumerative results from moduli spaces of maps
is to define invariants by intersecting the virtual fundamental class of the moduli
space with various cotangent line classes and pull-backs of classes via evaluation
maps. For simplicity let us assume first that all evaluation maps are taken to map to
X . The corresponding invariants will then be called the restricted invariants. For a
generalization see remark 2.5.2 and proposition 2.5.9.

DEFINITION 2.5.1. Let β ∈ H+
2 (X), n ≥ 0, k1, . . . ,kn ≥ 0, and γ1, . . . ,γn ∈ A∗(X).

Then the restricted Gromov-Witten invariants of Y are defined as

〈τk1(γ1) · · ·τkn(γn)〉Yβ = deg
(

ev∗1 γ1 ·ψk1
1 · · ·ev∗n γn ·ψkn

n · [M̄n(Y,β)]virt
)
∈Q

if ∑i(codimγi + ki) = vdimM̄n(Y,β), and where the evi denote the evaluation maps
to X . Similarly, for any α = (α1, . . . ,αn) the restricted relative Gromov-Witten
invariants of X relative Y are defined as

〈τα1
k1
(γ1) · · ·ταn

kn
(γn)〉β = deg

(
ev∗1 γ1 ·ψk1

1 · · ·ev∗n γn ·ψkn
n · [M̄α(X ,β)]virt

)
∈Q

if ∑i(codimγi + ki) = vdimM̄α(X ,β). We will often leave out the αi exponents and
ki indices that are zero.

REMARK 2.5.2. This definition can obviously be generalized in the following two
ways:

(i) We can take cohomology classes γ̃k ∈ A∗(Y ) and the evaluation maps ẽvk to Y
instead of γk ∈ A∗(X) and evk (provided that αk > 0 in the case of the relative
invariants). We will apply the same notation in this case and just mark the
cohomology classes that are pulled back from Y by a tilde.

(ii) For the absolute invariants we could use a homology class on Y instead of
summing over all homology classes on Y that push forward to a given class
on X .

The invariants obtained in this way are called the (unrestricted) Gromov-Witten
invariants of Y , or relative Gromov-Witten invariants of X relative Y , respectively.
In most cases we can compute these unrestricted (relative) Gromov-Witten invari-
ants as well; see proposition 2.5.9.

REMARK 2.5.3. If we intersect the main theorem 2.2.6

(αk ψk + ev∗k Y ) · [M̄α(X ,β)]virt = [M̄α+ek(X ,β)]virt +[Dα,k(X ,β)]virt
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with suitably many cotangent line classes or pull-backs from classes on X or Y by
the evaluation maps, we obviously get many relations among the relative Gromov-
Witten invariants of X relative Y , the Gromov-Witten invariants of X (for α =

(0, . . . ,0)), and the Gromov-Witten invariants of Y (as the moduli spaces of sta-
ble maps to Y are included as factors in the spaces Dα,k(X ,β)). As for Dα,k(X ,β)

one uses the usual “diagonal splitting” of remark 1.2.9 to express a component

Dk(X ,A,B,M) = M̄|α(0)|+r(Y,β
(0))×Y r

r

∏
i=1

M̄
α(i)∪(m(i))(X ,β(i))

(and its virtual fundamental class) by the Cartesian diagram

Dk(X ,A,B,M) //

��

M̄|α(0)|+r(Y,β
(0))×∏

r
i=1 M̄

α(i)∪(m(i))(X ,β(i))

ev
��

Y r ∆r
// Y r×Y r,

i.e. intersection products on Dk(X ,A,B,M) become intersection products of the
same classes on products of moduli spaces of stable (absolute and relative) maps,
with additional classes coming from the diagonal. So the term [Dα,k(X ,β)]virt in the
main theorem will turn into a sum of products of Gromov-Witten invariants of Y
and relative Gromov-Witten invariants of X relative Y .

For simplicity we first want to look only at the restricted (relative) Gromov-Witten
invariants. It is not obvious that this is possible, as even if we only use pull-backs of
classes from X at the marked points x1, . . . ,xn the classes from the diagonal splitting
in the terms Dα,k(X ,β) (see above) will throw in classes from Y . To see that these
do not do any harm we will first show in the next two lemmas that absolute as well
as relative invariants vanish if they contain exactly one class from Y and this class
lies in the orthogonal complement A∗(X)⊥ of i∗A∗(X) in A∗(Y ).

LEMMA 2.5.4. Let γ̃1 ∈ A∗(X)⊥ and γ2, . . . ,γn ∈ A∗(X). Then for any β ∈ H+
2 (X)

we have 〈τk1(γ̃1)τk2(γ2) · · ·τkn(γn)〉Yβ = 0.
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PROOF. (This is a variant of proposition 4 in [P1].) Consider the Cartesian diagram
(see lemma 2.4.2)

Y
i // X

M̄n(Y,β) //

��

M̄α̃(X ,β) //

��

ẽv1

OO

M̄n(X ,β)

φ

��

ev1

OO

M̄n(H,d) // M̄α̃(H,d)
j // M̄n(PN ,d)

where α̃ = (1,0, . . . ,0). Let π : M̄n+1(PN ,d)→ M̄n(PN ,d) be the universal map and
f : M̄n+1(PN ,d)→ PN its evaluation map. Let E be the kernel of the surjective bun-
dle morphism π∗ f ∗O(H)→ ev∗1 O(H) given by evaluation. By [P1] construction 2.1
and proposition 4 we have that [M̄n(H,d)] = j∗(ctop(E) · [M̄n(PN ,d)]). Intersecting
with [M̄n(X ,β)]virt yields by lemma 2.4.2

[M̄n(Y,β)]virt = i!(φ∗ctop(E) · [M̄n(X ,β)]virt)

on M̄α̃(X ,β). Moreover, the class γ = ψk1 · ev∗2 γ2 ·ψk2 · · ·ev∗n γn ·ψkn is actually de-
fined on M̄n(X ,β). Therefore we get

IY
n,β(γ̃1ψ

k1,γ2ψ
k2, . . . ,γnψ

kn) = γ̃1 · ẽv1∗i!(γ ·φ∗ctop(E) · [M̄n(X ,β)]virt)

= γ̃1 · i∗ ev1∗(γ ·φ∗ctop(E) · [M̄n(X ,β)]virt)

= 0

as γ̃1 ∈ A∗(X)⊥. �

LEMMA 2.5.5. Assume that α1 > 0. Let γ̃1 ∈ A∗(X)⊥ and γ2, . . . ,γn ∈ A∗(X). Then
〈τα1

k1
(γ̃1)τ

α2
k2
(γ2) · · ·ταn

kn
(γn)〉β = 0.

PROOF. We prove the statement by induction on d =Y ·β, n, and ∑α, in that order.
This means: if we want to prove the statement for an invariant with certain values
of d, n, and ∑α, we assume that it is true for all invariants having

(i) smaller d, or
(ii) the same d and smaller n, or

(iii) the same d, the same n, and smaller ∑α.

For ∑α = 1, i.e. α = (1,0, . . . ,0), the statement follows by exactly the same calcu-
lation as in the proof of lemma 2.5.4, just leaving out the factor ctop(E). So we can
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assume that ∑α > 1. If α1 > 1 set k = 1, otherwise choose any k > 1 with αk > 0.
By the main theorem 2.2.6 we have

((αk−1)ψk + ev∗k Y ) · [M̄α−ek(X ,β)]virt = [M̄α(X ,β)]virt +[Dα−ek,k(X ,β)]virt.

Intersect this equation with ẽv∗1γ̃1 ·ψk1 · ev∗2 γ2 ·ψk2 · · ·ev∗n γn ·ψkn . The first term on
the right hand side is then exactly the desired invariant. We will show that all other
terms vanish.

The term on the left hand side has the same d and n, and smaller ∑α. The invariant
coming from the ψk-summand has exactly one class in A∗(X)⊥ and hence vanishes
by the induction hypothesis. The same is true for the invariant coming from the
ev∗k Y -term if k> 1. If k= 1 all classes in the invariant come from X , but the invariant
contains the class ev∗1Y · ẽv∗1γ̃1 = ẽv∗1(γ̃1 · i∗Y ), which is zero as γ̃1 ∈ A∗(X)⊥. Hence
the left hand side of the equation vanishes.

Now we look at the terms Dk(X ,A,B,M) on the right hand side that give products
of (relative) invariants by the diagonal trick as described in remark 2.5.3. Note that
the class of the diagonal in Y ×Y is ∑i Ti⊗T∨i , where {Ti} is a basis of A∗(Y ). If
we choose this basis such that it respects the orthogonal decomposition A∗(Y ) =
i∗A∗(X)⊕A∗(X)⊥, then Ti ∈ A∗(X)⊥ if and only if T∨i ∈ A∗(X)⊥. Hence the i-th
diagonal (where 1 ≤ i ≤ r) will contribute one class each to the invariants for C(0)

and C(i), and either both of them are in A∗(X)⊥ or none of them.

For a given term Dk(X ,A,B,M) the components C(i) for i > 0 all have either smaller
d, or the same d and smaller n (the latter happens only if r = 1 and β(0) = 0). Hence
by induction hypothesis (i > 0) or lemma 2.5.4 (i = 0) we know for any i ≥ 0 that
the invariant for C(i) vanishes if it contains exactly one class from A∗(X)⊥. We show
that this has always to be the case for at least one i. Assume that this is not true. We
distinguish two cases:

(i) x1 ∈C(0). Then the external components C(i) can have at most one class from
A∗(X)⊥, namely the class from the diagonal. Hence by our assumption they
have no such class, i.e. the diagonal contributes a class from i∗A∗(X) to C(i)

and hence also to C(0). But then the invariant for C(0) has exactly one class
from A∗(X)⊥, namely γ̃1, which is a contradiction.

(ii) x1 ∈ C(i) for some i > 0. Then by our assumption, the diagonals must con-
tribute a class from A∗(X)⊥ to C(i), and a class from i∗A∗(X) to all other C( j)

with j > 0. But then we have again exactly one class from A∗(X)⊥ in C(0),
namely the one from the i-th diagonal. This is again a contradiction.

This shows the lemma. �
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COROLLARY 2.5.6. Let X be a smooth projective variety and Y ⊂ X a smooth very
ample hypersurface. Assume that the Gromov-Witten invariants of X are known.
Then there is an explicit algorithm to compute the restricted Gromov-Witten invari-
ants of Y as well as the restricted relative Gromov-Witten invariants of X relative
Y .

PROOF. This is now straightforward. We will compute the absolute and relative
invariants at the same time, and we will use recursion on the same variables as in
the previous lemma.

Assume that we want to compute a relative invariant 〈τα1
k1
(γ1) · · ·ταn

kn
(γn)〉β. If ∑α =

0 then this is a Gromov-Witten invariant on X and therefore assumed to be known.
So we can assume that ∑α > 0. On the other hand we can also assume that ∑α ≤
Y ·β = d, as otherwise the invariant is zero by definition.

Choose k such that αk > 0 and intersect the main theorem 2.2.6

((αk−1)ψk + ev∗k Y ) · [M̄α−ek(X ,β)]virt = [M̄α(X ,β)]virt +[Dα−ek,k(X ,β)]virt (17)

with ev∗1 γ1 ·ψk1 · · ·ev∗n γn ·ψkn . Then the first term on the right hand side is the
invariant that we want to compute. We will show that all other terms in the equation
are recursively known.

This is obvious for the invariants on the left hand side, since they have the same d,
same n, and smaller ∑α. Now look at a term coming from Dk(X ,A,B,M) on the
right hand side, it is a product of invariants for the components C(i) for i = 0, . . . ,r.
First we will show that we only get products of restricted invariants. The invariant
for the components C(i) for i > 0 can have at most one class from A∗(X)⊥, namely
from the diagonal. But if it has exactly one it vanishes by lemma 2.5.5, so it has
none. This means that it is a restricted invariant, and moreover that the diagonal
contributes only classes from A∗(X) to the invariant for C(0). This means that the
invariant for C(0) is also a restricted one.

Now, as in the previous lemma, the invariants for the components C(i) for i > 0 all
have either smaller d, or the same d and smaller n, and are therefore recursively
known. The Gromov-Witten invariant for the component C(0) can certainly have
no bigger d. We will show now that it cannot have the same d either. Assume the
contrary, then we must have r = 0. But then the dimension condition says

vdimM̄α(X ,β) = vdimM̄n(Y,β)

⇐⇒ vdimM̄n(X ,β)−∑α = vdimM̄n(X ,β)−d−1,
(18)
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i.e. ∑α = d + 1 > d, which is a contradiction. Hence also the invariant for C(0)

has smaller d. In summary, we have seen that we can compute the desired relative
Gromov-Witten invariant.

Now we compute the absolute Gromov-Witten invariants for the same values of d
and n. Assume that there is such an invariant 〈τk1(γ1) · · ·τkn(γn)〉Yβ . Without loss
of generality we may assume that n > 0 (if n = 0 we can just add one marked
point and require it to be on Y , which changes the invariant only by a factor of d
according to the divisor equation). Set α = (d +1,0, . . . ,0). Now consider exactly
the same equation (17) as above and intersect it again with ev∗1 γ1 ·ψk1 · · ·ev∗n γn ·ψkn .
The dimension calculation (18) above then shows that the term [M̄n(Y,β)]virt and
hence the desired Gromov-Witten invariant will appear on the right hand side of our
equation as one term among the Dk(X ,A,B,M). The term coming from M̄α(X ,β)

will vanish as ∑α > d, and all other terms are known recursively by exactly the
same arguments as above for the relative invariants. �

REMARK 2.5.7. Although we have just shown that all restricted relative Gromov-
Witten invariants of X relative Y can be computed from the Gromov-Witten in-
variants of X , only a very small subset of them is needed if one is only inter-
ested in the Gromov-Witten invariants of Y . First of all, analyzing the algorithm
given above one sees that it is sufficient to consider relative invariants of the form
I(α1,0,...,0),β(γ1ψ

k1
1 ,γ2, . . . ,γn), i.e. we need multiplicities and cotangent line classes

at only one of the marked points. In fact, in many cases it will be sufficient to
look at invariants with only one marked point at all as the other ones can then be
reconstructed from these 1-point invariants by proposition 1.3.10.

EXAMPLE 2.5.8 (Rational curves in a quintic threefold). Let Y ⊂ X = P4 be a quin-
tic threefold. Let us first consider lines. To compute the invariants in degree 1 we
start with the moduli space M̄1(P4,1) of 1-pointed lines in P4 and raise the multi-
plicity from 0 to some value m by the equation of the main theorem 2.2.6. Note that
there can be no correction terms from reducible curves: every external component
must have positive degree, so in case of reducible curves the internal component
would have to be contracted. But this internal component could only have two spe-
cial points (the marked point and the node where it connects to the external line)
and thus would not be stable.



2.5. ENUMERATIVE APPLICATIONS 75

Repeated application of the main theorem thus shows that the number of lines in Y
is given by raising the multiplicity from 0 to 6:

〈H〉Y1 = deg

(
ev∗1 H ·

5

∏
i=0

(iψ1 + ev∗1 5H) · [M̄1(P4,1)]virt

)
= 28125 · 〈τ3(H4)〉P

4

1 +6850 · 〈τ4(H3)〉P
4

1 +600 · 〈τ5(H2)〉P
4

1

= 28125 ·1+6850 · (−5)+600 ·15

= 2875,

where H denotes the class of a hyperplane. In the same way we get the relative
Gromov-Witten invariants without correction terms, namely

〈τ5(H2)〉1 = deg

(
ev∗1 H2 ·

4

∏
i=0

(iψ1 + ev∗1 5H) · [M̄1(P4,1)]virt

)
= 1250 · 〈τ3(H4)〉P

4

1 +120 · 〈τ4(H3)〉P
4

1

= 650

and

〈τ4(H3)〉1 = deg

(
ev∗1 H3 ·

3

∏
i=0

(iψ1 + ev∗1 5H) · [M̄1(P4,1)]virt

)
= 30 · 〈τ3(H4)〉P

4

1

= 30.

These are the only primary invariants in degree 1 with only one marked point.

Let us now turn to conics in Y . We start with the moduli space M̄1(P4,2) of 1-
pointed conics in P4 and raise the multiplicity to Y at the marked point from 0 to
11. So we evaluate the Gromov-Witten invariant of P4

deg

(
ev∗1 H ·

10

∏
i=0

(iψ1 + ev∗1 5H) · [M̄1(P4,1)]virt

)
= · · ·= 21040875

4

using our main theorem 2.2.6. This time we get correction terms from reducible
curves in the last three steps (the small numbers in the picture at the curves denote
the local orders of contact to Y ):
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(In the pictures where we have drawn a marked point on a node there is in fact a
contracted component with 3 special points: the marked point and two nodes that
attach to the external components.)

As an example let us evaluate the correction term (A). The contribution from the
external invariants is 〈τ4(H3)〉1 · 〈τ4(H3)〉1. The internal component is a moduli
space M̄3(Y,0) that receives 1

5 times the fundamental class of Y from the diagonal
splitting at both node points. Consequently, the moduli space in (A) has dimension
vdimM̄3(Y,0) = 3, and we have to intersect the internal component with the class
ev∗H · (ev∗ 5H +9ψ)(ev∗ 5H +10ψ). Hence the term (A) contributes

16
2
· 〈τ4(H3)〉1 · 〈τ4(H3)〉1 · 〈1 H3 1〉Y0 =

16
2
·302 ·5 = 36000.

In the same way we can compute the other correction terms. The result that we get
for the Gromov-Witten invariant 〈H〉Y2 of the quintic is

〈H〉Y2 =
21040875

4
− (A)− (B)− (C)− (D)− (E)

=
21040875

4
−36000−690000−390000−1868750−1056250

=
4876875

4
.

Continuing this way we can compute all Gromov-Witten invariants of Y . In the
following table we list the first few rational Gromov-Witten invariants n0,d := 〈 〉Yd
of the quintic, together with the 1-point relative invariants of X relative Y . We also
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list the integers N0,d obtained from the n0,d by the multiple cover correction

n0,d = ∑
k|d

N0,d/k

k3

(see e.g. [P3] section 3). The numbers have been computed using the C++ program
GROWI [Ga5].

n0,d N0,d

d = 1 2875 2875

d = 2 4876875
8 609250

d = 3 8564575000
27 317206375

d = 4 15517926796875
64 242467530000

d = 5 229305888887648 229305888887625

d = 6 248249742157695375 248249742118022000

d = 7 101216230345800061125625
343 295091050570845659250

〈τ5d−1(H3)〉d 〈τ5d(H2)〉d
d = 1 30 650

d = 2 4860 583125
2

d = 3 2804480 2512685000
9

d = 4 2638743330 2943566903125
8

d = 5 3227732820000 579271009849776

d = 6 4653354055079000 3065135330975414950
3

d = 7 7509544856282388480 95562541976247985920000
49

A closed formula for these Gromov-Witten invariants (the “mirror formula”) will
be proven in example 3.2.1.

Let us now turn to the unrestricted Gromov-Witten invariants. In fact, we can com-
pute these invariants in most cases as well:

PROPOSITION 2.5.9. Let Y be a smooth very ample hypersurface in a projective
manifold X. Assume that the Gromov-Witten invariants of X are known. Let s be
the minimum intersection product of a curve in X with Y . Then there is an explicit
algorithm to compute the unrestricted Gromov-Witten invariants of Y as well as
the unrestricted relative Gromov-Witten invariants of X relative Y as long as they
contain at most s+1 evaluation classes from Y .
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PROOF. As in the proof of corollary 2.5.6 we will reconstruct the invariants recur-
sively on the same variables as in 2.5.5.

Let us consider a relative invariant

〈τα1
k1
(γ̃1) · · ·τ

αp
kp
(γ̃p)τ

αp+1
kp+1

(γp+1) · · ·ταn
kn
(γn)〉β

first, i.e. an invariant in which the first p evaluation classes come from Y and the
remaining ones from X . As usual we apply our main theorem 2.2.6 p to raise the
multiplicities at the marked points from 0 to the values αi:

n

∏
k=1

αk−1

∏
i=0

(ev∗k Y + iψk) · [M̄n(X ,β)]virt = [M̄α(X ,β)]virt + (correction terms), (19)

where the correction terms are all certain intersection products on various moduli
spaces Dα′,k′(X ,β). Note that in all terms of this equation the first p marked points
are restricted to lie on Y , either by a multiplicity of at least 1 or by an evaluation
condition ev∗Y . So using refined intersection products in the proof of theorem 2.2.6
it is checked immediately that equation (19) does not only hold in the Chow group
of M̄n(X ,β), but in fact also in the Chow group of the subspace Z of M̄n(X ,β) of
all stable maps (C,x1, . . . ,xn, f ) such that f (xi) ∈ Y for all 1≤ i≤ p. But Z admits
evaluation maps to Y at the first p marked points. Hence it makes sense to intersect
equation (19) with evaluation classes from Y at these points. So we can compute
our given relative invariant recursively using (19) as the left hand side is an invariant
of X and the correction terms are known recursively in the same way as in corollary
2.5.6 (note that no component in a correction term can have more than p evaluation
classes from Y ).

Now assume that we want to compute an absolute invariant

〈τk1(γ̃1) · · ·τkp(γ̃p)τkp+1(γp+1) · · ·τkn(γn)〉Yβ
with p > 0 evaluation classes from Y . The number m = Y ·β+2− p is positive by
assumption. Now instead of equation (19) raise the multiplicities to m at the first
marked point and to 1 at the points x2, . . . ,xp to get

ev∗2Y · · ·ev∗pY ·
m−1

∏
i=0

(ev∗1Y + iψ1) · [M̄n(X ,β)]virt

= [M̄n(Y,β)]virt + (reducible correction terms).

The rest of the argument is now the same as for the relative invariants above. �

REMARK 2.5.10. Throughout this chapter we could have used homology groups
instead of Chow groups with no significant changes in the statements or proofs of
our propositions. In particular, if the hypersurface Y has non-algebraic cohomology
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classes (which must be in the middle dimension by the Lefschetz theorem) then
proposition 2.5.9 can be used to compute Gromov-Witten invariants using these
classes as well.

Even if our primary interest is only in algebraic classes, non-algebraic ones will in
general appear if we consider diagonal splittings as in remark 1.2.9: by [D] exercise
VIII.8.21.2 the class of the diagonal ∆Y in Y ×Y is

[∆Y ] = ∑
a
(−1)dimTa ·Ta⊗T a ∈ H∗(Y ×Y ),

where the sum is taken over a basis {Ta} of H∗(Y ), and {T a} denotes the Poincaré-
dual basis. In this formula we are not allowed to leave out the non-algebraic classes.
In other words, in Chow theory the class of the diagonal [∆Y ] ∈ A∗(Y ×Y ) is in gen-
eral not in the image of the natural homomorphism A∗(Y )⊗A∗(Y )→ A∗(Y ×Y ).
This will become important when we compute the elliptic Gromov-Witten invari-
ants of the quintic threefold in corollary 5.5.1; see also examples 2.5.11 and 5.5.2.

EXAMPLE 2.5.11. Let Y ⊂ X = P4 be a quintic threefold, and consider the moduli
space M̄(1,4)(P4,1) of lines in P4 with two points of local multiplicities 1 and 4 to Y ,
respectively. The virtual dimension of this moduli space is vdimM̄2(P4,1)−1−4=
3. We want to compute the intersection product

I := deg
(

ev∗[∆Y ] · [M̄(1,4)(P4,1)]virt
)
,

where ev : M̄(1,4) → Y ×Y denotes the evaluation morphism at the two marked
points.

We use the diagonal splitting

[∆Y ] =
3

∑
i=0

1
5
· ev∗1 H i · ev∗2 H3−i−∑

a
ẽv∗1γ̃a · ẽv∗2γ̃

a

of remark 2.5.10, where the γ̃a run over a basis of the 204-dimensional space H3(Y ).

The first terms involving evaluation classes from X are computed in the standard
way using corollary 2.5.6. We get

1
5
·

3

∑
i=0
〈τ1(H i)τ4(H3−i)〉Y1 =

30+805+1330+480
5

= 529.

For the second terms we apply the method of proposition 2.5.9. We raise the multi-
plicities in M̄2(P4,1) to 1 and 4, respectively: we get that

ev∗1Y · ev∗2Y · (ev∗2Y +ψ2) · · ·(ev∗2Y +3ψ2) · [M̄2(P4,1)]virt (20)

is equal to M̄(1,4)(P4,1) plus the following correction term:
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We will now intersect this equation with ẽv∗1γ̃a · ẽv∗2γ̃a. Note that (20) then vanishes
because

ev∗1Y · ẽv∗1γ̃a = ev∗1(i∗γ̃a) = 0,
where i : Y → X is the inclusion. So we see that 〈τ1(γ̃a)τ

4(γ̃a)〉Y1 is equal to the
negative of the correction term in the picture above. But this correction term is
simply 〈τ4(1

5H3)〉Y1 as γ̃a · γ̃a is the class of a point. So we get by example 2.5.8

〈τ1(γ̃a)τ
4(γ̃a)〉Y1 =−4 · 1

5
· 〈τ4(H3)〉Y1 =−24,

and therefore
I = 529−204 · (−24) = 5425.



CHAPTER 3

The mirror theorem

Let Y be a smooth very ample hypersurface of a projective manifold X . We have just
seen in chapter 2 that the theory of relative Gromov-Witten invariants gives rise to
an algorithm that allows one to compute the genus-zero Gromov-Witten invariants
of Y from those of X . We now want to show that in the case when−KY is nef this al-
gorithm can be “solved” explicitly to obtain a formula that expresses the generating
function of the 1-point Gromov-Witten invariants of Y in terms of that of X . This
so-called “mirror formula” (also denoted “quantum Lefschetz hyperplane theorem”
by some authors) has already been known for some time [Be, Gi1, Ki, L, LLY1].
Our approach is entirely different however and essentially “elementary” in the sense
that it does not use any of the special techniques that have been used in the previous
proofs, as e.g. special torus actions or moduli spaces other than the usual spaces
of stable maps to X and their subspaces. This does not only make our proof much
simpler than the previous ones but also hopefully easier to generalize. In fact, we
hope that the generalizations of relative Gromov-Witten theory that we will present
in chapter 5 will give rise to “mirror symmetry type formulas” at least in genus 1.

Let us briefly recall the ideas and results from chapter 2 in the form we will need
them now. For n≥ 0 and a homology class β ∈ H+

2 (X) we denote by M̄n(X ,β) the
moduli space of n-pointed rational stable maps to X of class β. For any m≥ 0 there
are closed subspaces M̄(m)(X ,β) of M̄1(X ,β) that can be thought of as parametriz-
ing 1-pointed rational curves in X having multiplicity (at least) m to Y at the marked
point. (For simplicity, we suppress in the notation the dependence of these spaces
on Y .) These moduli spaces have expected codimension m in M̄1(X ,β). In fact, they
come equipped with natural virtual fundamental classes [M̄(m)(X ,β)]virt of this ex-
pected dimension. If X is a projective space and Y a hyperplane, then these moduli
spaces do have the expected dimension, and their virtual fundamental classes are
equal to the usual ones.

The idea is now to raise the multiplicity m of the curves from 0 up to Y ·β+ 1 by
one at a time. Curves with multiplicity (at least) 0 are just unrestricted curves in X ,
whereas a multiplicity of Y ·β+1 forces at least the irreducible curves to lie inside
Y . In other words, we consider the chain of inclusions

M̄1(Y,β)⊂ M̄(Y ·β)(X ,β)⊂ M̄(Y ·β−1)(X ,β)⊂ ·· · ⊂ M̄(0)(X ,β) = M̄1(X ,β)

81
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of “virtual codimension one”. The main theorem 2.2.6 of chapter 2 describes each
of these inclusions explicitly in terms of intersection theory. This gives us a way to
describe M̄1(Y,β) inside M̄1(X ,β), and hence to compute Gromov-Witten invariants
of Y in terms of those of X .

It is easy to write down a naı̈ve guess what these inclusions should look like. A
stable map in X has multiplicity at least m to Y if and only if the (m− 1)-jet of
ev∗Y vanishes, where ev : M̄1(X ,β)→ X denotes the evaluation map. Hence the
cycle M̄(m+1)(X ,β) inside M̄(m)(X ,β) should just be the first Chern class of the
line bundle of m-jets modulo (m− 1)-jets of ev∗O(Y ). This Chern class is easily
computed to be ev∗Y +mψ, where ψ is as usual the cotangent line class, i.e. the first
Chern class of the line bundle whose fiber at a stable map (C,x, f ) is the cotangent
space of C at the point x.

However, our above informal description of M̄(m)(X ,β) as the space of curves with
multiplicity at least m to Y at the marked point breaks down at the “boundary”, i.e.
at those curves where the marked point lies on a component of the curve that lies
completely inside Y , so that the multiplicity becomes “infinite”. Hence the above
calculation receives correction terms from these curves. Their explicit form is given
by theorem 2.2.6. This theorem is in fact all we need from chapter 2 for the proof
of the mirror formula. So for convenience we will restate it here together with the
definitions of the notations used.

THEOREM 3.0.1. For all m≥ 0 we have

(ev∗Y +mψ) · [M̄(m)(X ,β)]virt = [M̄(m+1)(X ,β)]virt +[D(m)(X ,β)]virt.

Here, the correction term D(m)(X ,β) = ·∪r ·∪B,M D(X ,B,M) is a disjoint union of
individual terms

D(X ,B,M) := M̄1+r(Y,β(0))×Y r

r

∏
i=1

M̄(m(i))(X ,β(i))

where r ≥ 0, B = (β(0), . . . ,β(r)) with β(i) ∈ H2(X)/torsion and β(i) 6= 0 for i > 0,
and M = (m(1), . . . ,m(r)) with m(i) > 0. The maps to Y r are the evaluation maps
for the last r marked points of M̄1+r(Y,β(0)) and each of the marked points of
M̄(m(i))(X ,β(i)), respectively. The union in D(m)(X ,β) is taken over all r, B, and
M subject to the following three conditions:

r

∑
i=0

β
(i) = β (degree condition),

Y ·β(0)+
r

∑
i=1

m(i) = m (multiplicity condition),

if β(0) = 0 then r ≥ 2 (stability condition).



3. THE MIRROR THEOREM 83

In the equation of the theorem, the virtual fundamental class of the summands
D(X ,B,M) is defined to be m(1)···m(r)

r! times the class induced by the virtual fun-
damental classes of the factors M̄1+r(Y,β(0)) and M̄(m(i))(X ,β(i)). We can consider
the spaces D(X ,B,M) to be subspaces of M̄1(X ,β) (see below), so the equation of
the theorem makes sense in the Chow group of M̄1(X ,β).

Geometrically speaking, the moduli spaces D(X ,B,M) in the correction terms de-
scribe curves with r+1 irreducible components C(0), . . . ,C(r) with homology classes
β(0), . . . ,β(r), such that C(0) lies inside Y , and the C(i) for i > 0 intersect C(0) in a
point where they have multiplicity m(i) to Y . The marked point is always on the
component C(0). Using this description the spaces D(X ,B,M) can be considered
as subspaces of M̄1(X ,β). The multiplicity condition ensures that they are actually
subspaces of M̄(m)(X ,β) and have the correct expected dimension. The factor 1

r! in
the definition of the virtual fundamental class of the correction terms is just com-
binatorial and corresponds to the choice of order of the components C(1), . . . ,C(r).
In contrast, the factor m(1) · · ·m(r) is of geometric nature and somewhat tricky to
derive.

As an example of the theorem consider the case where X = P3, Y = H is a hyper-
plane, and β is the class of cubic curves in X . Then the equations of the theorem for
m = 0, . . . ,3 can be pictured as follows (where we set M̄(m) := M̄(m)(P3,3)):
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(Of course, in the pictures where we have drawn the marked point on a node of the
curve, the corresponding stable maps have a contracted component, i.e. we have
β(0) = 0.)

So we see that M̄1(H,3) is equal to ∏
3
i=0(ev∗H + iψ) · M̄1(P3,3) plus a bunch of

correction terms coming from reducible curves as shown in the picture. This is
an equation of 9-dimensional cycles in M̄1(P3,3). To make this into equations for
the Gromov-Witten invariants of H we have to intersect it with some cohomology
class γ of codimension 9 that is a polynomial in ev∗H and ψ. Note that in the
correction terms this will impose 9 conditions on the component C(0) contained in
H. However, in all the terms where the degree of C(0) is at most 2 the moduli space
for this component has dimension smaller than 9. Hence all these terms vanish,
and it follows that the 1-point Gromov-Witten invariants of H (of degree 3 in this
example) are expressible in terms of those of P3 as

γ · [M̄1(H,3)]virt = γ ·
3

∏
i=0

(ev∗H + iψ) · [M̄1(P3,3)]virt.

The same argument works for higher degree of the curves.

Now let us come back to the case of general X and Y . Can we still hope that the
correction terms vanish when we compute the Gromov-Witten invariants? Recall
that the reason for the vanishing above was that the dimension of the moduli space
of curves in Y quickly gets bigger when the degree of the curves goes up (in the
example the 9 conditions that were needed for Gromov-Witten invariants for cubics
in Y were “too many” for lines and conics in Y ). Hence, as the (virtual) dimension
of the moduli space of stable maps to Y is vdimM̄1(Y,β) =−KY ·β+dimY −2, we
see that we need that −KY is sufficiently positive.

If −KY is negative basically all correction terms that could appear in the compu-
tation of the Gromov-Witten invariants will do so. The main nuisance about this
is that the correction terms contain the full n-point Gromov-Witten invariants of Y
(namely, n= 1+r in each of the correction terms), and not just the 1-point invariants
that we originally wanted to compute. There would be two ways to proceed:

• Use the version of theorem 3.0.1 for n-point invariants as proven in chapter 2.
• Use the WDVV equations to compute the n-point invariants of Y in terms of

1-point invariants whenever they occur (see proposition 1.3.10).

Both methods can be used without problems to write down an algorithm to compute
the Gromov-Witten invariants of Y in terms of those of X . However, we do not know
at the moment how to express the result in a nice closed form.
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Most interesting are the cases where −KY is nef, but yet not “positive enough” to
ensure the vanishing of all correction terms. We will show that whenever −KY is
nef the only n-point invariants of Y that might occur in the algorithm are those with
fundamental or divisor classes at all but the first marked point. These invariants can
of course be reduced immediately to 1-point invariants using the fundamental class
and divisor equations for Gromov-Witten invariants. Thus we arrive at recursion
formulas that involve only 1-point invariants. Solving them directly we obtain a
nice expression for the invariants of Y : the “mirror formula”.

The necessary computations to achieve this are performed in section 3.1. In section
3.2 we apply the results to two examples. First of all we rederive the expression
for the genus zero Gromov-Witten invariants of the quintic threefold. Secondly,
we prove a similar expression for the (virtual) numbers of plane rational curves
of degree d having contact of order 3d to a smooth cubic. These numbers play a
role in local mirror symmetry [CKYZ, T]. They are a by-product of our work, as
they are just simple examples of relative Gromov-Witten invariants. The two main
computational lemmas (that have nothing to do with algebraic geometry, but rather
are formal statements about certain power series occurring in the calculation) are
proved in section 3.3.

3.1. The mirror transformation

Let X be a smooth complex projective variety, and let Y be a smooth very ample
hypersurface such that −KY is nef. By abuse of notation we denote by H∗(X) and
H∗(X) the groups of algebraic (co-)homology classes modulo torsion. For a class
β∈H2(X) we write β≥ 0 if β is effective, and β > 0 if β≥ 0 and β 6= 0. To keep the
notation as simple as possible we will assume in the following computations that
the class of Y generates H2(X) over Q (see remark 3.1.14 for the changes needed
in the general case).

For any β > 0 we denote by M̄n(X ,β) the space of n-pointed rational stable maps of
class β to X . It is usual and convenient to encode all the 1-point invariants of class
β in a single cohomology class

IX
β

:= ev∗

(
1

1−ψ
· [M̄1(X ,β)]virt

)
=∑

i, j
〈τ j(T i)〉X

β
·Ti ∈ H∗(X),

where ev = ev1, {T i} is a basis of H∗(X)⊗Q, and {Ti} is the dual basis. Note that
the dimension condition ensures that for each i at most one j contributes a non-zero
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term to the sum above, so all 1-point invariants of X of class β can be reconstructed
from the cohomology class IX

β
.

We define the invariants IY
β

of Y in the same way, replacing M̄n(X ,β) by M̄n(Y,β),
but keeping the evi to denote the evaluation maps to X . Note that β is still a homol-
ogy class in X ; so strictly speaking M̄n(Y,β) is the space of stable maps to Y of all
homology classes whose push-forward to X is β.

For β = 0, we set IX
0 := 1 and IY

0 := Y .

Now consider the moduli spaces M̄(m)(X ,β) of 1-pointed stable relative maps to X
with multiplicity m to Y at the marked point (see definition 2.1.1). In the same man-
ner as above these spaces together with their virtual fundamental classes of defini-
tion 2.1.19 give rise to invariants 〈τm

k (γ)〉β that can be assembled into a cohomology
class

Iβ,(m) = ev∗

(
1

1−ψ
· [M̄(m)(X ,β)]virt

)
∈ H∗(X).

REMARK 3.1.1. For future reference let us note that (as expected from geometry)
Iβ,(0) = IX

β
and Iβ,(m) = 0 for m > Y ·β.

Finally, let D(m)(X ,β) be the correction terms defined in theorem 3.0.1, and set

Jβ,(m) = ev∗

(
1

1−ψ
· [D(m)(X ,β)]virt

)
+m · ev∗[M̄(m)(X ,β)]virt ∈ H∗(X). (21)

The surprising additional term will appear in the proof of the following lemma. Ge-
ometrically, it corresponds to unstable maps that have two irreducible components
C(0) and C(1), where C(0) is contracted to a point in Y and contains the marked point,
and C(1) is a curve with multiplicity m to Y at this point (see the end of the proof of
lemma 3.1.8).

The first thing to do is to rewrite theorem 3.0.1 in the new simplified notation.

LEMMA 3.1.2. For all β > 0 and m≥ 0 we have

(Y +m) · Iβ,(m) = Iβ,(m+1)+ Jβ,(m) ∈ H∗(X).

PROOF. Intersect the equation of theorem 3.0.1 with 1
1−ψ

and push it forward by
the evaluation map to get

ev∗

(
(ev∗Y +mψ) · 1

1−ψ
· [M̄(m)(X ,β)]virt

)
= ev∗

(
1

1−ψ
· [M̄(m+1)(X ,β)]virt

)
+ ev∗

(
1

1−ψ
· [D(m)(X ,β)]virt

)
.
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As ψ

1−ψ
= 1

1−ψ
−1, the left hand side of this equation can be rewritten as

(Y +m) · ev∗

(
1

1−ψ
· [M̄(m)(X ,β)]virt

)
−m · ev∗[M̄(m)(X ,β)]virt.

Taking into account the definitions of Iβ,(m) and Jβ,(m), we arrive at the equation
stated in the lemma. �

REMARK 3.1.3. In particular,
Y ·β

∏
i=0

(Y + i) · IX
β
=

Y ·β

∑
m=0

Y ·β

∏
i=m+1

(Y + i) · Jβ,(m).

This follows from a recursive application of lemma 3.1.2, with the start and the end
of the recursion given by remark 3.1.1.

The next thing to do is to evaluate the Jβ,(m) explicitly.

REMARK 3.1.4. Let us first consider the first summand ev∗
(

1
1−ψ
· [D(m)(X ,β)]virt

)
in the definition (21) of Jβ,(m). Using the definition of D(m)(X ,β) and its virtual
fundamental class given in theorem 3.0.1 we see that this first summand is a sum of
individual terms, each of which has the form

〈τ j(T i)γ1 · · ·γr〉Yβ(0) ·
1
r!

r

∏
k=1

(
m(k) · 〈τm(k)

(γ∨k )〉β(k)

)
·Ti, (22)

where γ∨ denotes the dual of a class γ in Y . These terms are summed over all i,
j ≥ 0, r ≥ 0, β(k) (with β(0) ≥ 0 and β(k) > 0 if k > 0), and m(k) > 0, subject to the
conditions

(i) β(0)+ · · ·+β(r) = β (degree condition),
(ii) Y ·β(0)+m(1)+ · · ·+m(r) = m (multiplicity condition),

(iii) if β(0) = 0 then r ≥ 2 (stability condition).

Moreover, the γk have to run over a basis of H∗(Y )⊗Q (actually it is sufficient to
let them run over a basis of the part of H∗(Y )⊗Q induced by X , see section 2.5).

The main simplification of this huge sum is due to the following lemma, which
follows from a simple dimension count. It is the only point in our computations
where we need that −KY is nef.

LEMMA 3.1.5. The above expression (22) can only be non-zero if all γk are funda-
mental or divisor classes. Moreover, for all k we must have

m(k) = Y ·β(k)−KY ·β(k)−1 if γk is the fundamental class,
m(k) = Y ·β(k)−KY ·β(k) if γk is a divisor class.
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PROOF. As the invariants 〈τm(k)
(γ∨k )〉β(k) must have dimension zero for all k it fol-

lows that

codimγk = dimY − codimγ
∨
k

= dimY −dimM̄(m(k))(X ,β(k))

= dimY − (−KX ·β(k)+dimX−2−m(k))

=−Y ·β(k)+KY ·β(k)+1+m(k) (by adjunction).

This shows the equation for the m(k). Moreover, as −KY is nef and we must have
m(k) ≤Y ·β(k) for the relative invariant to be non-zero (see remark 3.1.1), it follows
that codimγk ≤ 1, as desired. �

REMARK 3.1.6. Obviously, in the same way one can show that:

• If −KY · β ≥ 1 for all β > 0 then all the γk have to be fundamental classes.
(In the following computations this would mean that all rβ = 0, which greatly
simplifies the calculation.) This is e.g. the case if Y is a hypersurface in X =

Pn of degree at most n.
• If −KY · β ≥ 2 for all β > 0 then no γk can exist, i.e. we must always have

r = 0. Hence in this case we conclude that there are no correction terms in
the computation of the Gromov-Witten invariants. The only term on the right
hand side of remark 3.1.3 is IY

β
(for r = 0 and m =Y ·β), so it follows that the

“naı̈ve” formula

IY
β
=

Y ·β

∏
i=0

(Y + i) · IX
β

is true (as in the case considered in the introduction where Y ⊂ X is a plane
in P3). This is e.g. the case if Y is a hypersurface in X = Pn of degree at most
n−1.

REMARK 3.1.7. As we have assumed that the class of Y generates H2(X) over Q,
lemma 3.1.5 states that the only factors that can occur in the k-product in (22) are
the numbers

sβ := (Y ·β−KY ·β−1) · 〈τY ·β−KY ·β−1(1∨)〉β
and rβ := (Y ·β−KY ·β) · 〈τY ·β−KY ·β(Y∨)〉β

for some β > 0. Thus we can then rewrite (22) using multi-index notation as fol-
lows. For a multi-index µ = (µβ) of non-negative integers indexed by the positive
homology classes β of H2(X), we apply the usual notations

∑µ := ∑β µβ, sµ := ∏β s
µβ

β
,

µ! := ∏β µβ!, |µ| := ∑β µβ ·β.
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Then we can rewrite (22) as

〈τ j(T i) 1 · · · 1︸ ︷︷ ︸
∑µ times

Y · · · Y︸ ︷︷ ︸
∑ν times

〉Y
β(0) ·

1
r!
· sµrν ·Ti, (23)

where µ and ν are the multi-indices such that the factors sβ and rβ appear in (22) µβ

and νβ times, respectively. In particular, r = ∑µ+∑ν is the number of nodes of the
curves under consideration.

We are now ready to evaluate the Jβ,(m) explicitly in terms of the 1-point Gromov-
Witten invariants IY

β
of Y and the relative 1-point invariants sβ and rβ.

LEMMA 3.1.8. With the notation of remark 3.1.7,

Jβ,(m) = ∑
µ,ν

(
Y +Y ·β(0)

)
∑ν

· s
µ

µ!
rν

ν!
· IY

β(0)

for all β > 0 and m≥ 0, where the sum is taken over all multi-indices µ and ν such
that β(0) := β−|µ|−|ν| ≥ 0 (degree condition) and m =Y ·β−KY · (|µ|+ |ν|)−∑µ
(multiplicity condition).

PROOF. Inserting expression (23) for (22) in remark 3.1.4 we see that the first sum-
mand in the definition (21) of Jβ,(m) is

ev∗

(
1

1−ψ
· [D(m)(X ,β)]virt

)
= ∑

i, j
∑
µ,ν
〈τ j(T i)1 · · · 1︸ ︷︷ ︸

∑µ

Y · · · Y︸ ︷︷ ︸
∑ν

〉Y
β(0) ·

sµ

µ!
rν

ν!
·Ti,

where the sum is taken over all i, j,µ,ν such that

(i) β(0) := β−|µ|− |ν| ≥ 0 (degree condition),
(ii) Y ·β−KY · (|µ|+ |ν|)−∑µ = m (multiplicity condition — here we inserted

the expression of lemma 3.1.5 for the m(i)),
(iii) if β(0) = 0 then ∑µ+∑ν≥ 2 (stability condition).

Now we compute the Gromov-Witten invariant IY
β(0)(· · ·) in terms of 1-point invari-

ants of Y . We claim that for β(0) > 0

∑
i, j
〈τ j(T i)1 · · · 1︸ ︷︷ ︸

∑µ

Y · · · Y︸ ︷︷ ︸
∑ν

〉Y
β(0) ·Ti = (Y +Y ·β(0))∑ν · IY

β(0). (24)
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In fact, this follows from the fundamental class equation of corollary 1.3.3

∑
i, j
〈τ j(T i) 1 · · · 〉Y

β(0) ·Ti = ∑
i, j 6=0
〈τ j−1(T i) · · · 〉Y

β(0) ·Ti

= ∑
i, j
〈τ j(T i) · · · 〉Y

β(0) ·Ti

and the divisor equation of corollary 1.3.4

∑
i, j
〈τ j(T i) Y · · · 〉Y

β(0) ·Ti = ∑
i, j
(Y ·β(0)) · 〈τ j(T i) · · · 〉Y

β(0) ·Ti

+ ∑
i, j 6=0
〈τ j−1(T i ·Y ) · · · 〉Y

β(0) ·Ti

= ∑
i, j
(Y ·β(0)) · 〈τ j(T i) · · · 〉Y

β(0) ·Ti

+ ∑
i, j 6=0
〈τ j−1(T i) · · · 〉Y

β(0) · (Ti ·Y )

= (Y ·β(0)+Y ) ·∑
i, j
〈τ j(T i) · · · 〉Y

β(0) ·Ti,

where the dots denote any cohomological entries (i.e. not including cotangent line
classes). In fact, the same formula (24) is also true for β(0) = 0, as in this case

∑
i, j
〈τ j(T i)1 · · · 1︸ ︷︷ ︸

∑µ

Y · · · Y︸ ︷︷ ︸
∑ν

〉Y0 ·Ti = (Y ∑ν) ·Y

= Y ∑ν · IY
0

by example 1.3.7. Hence the first summand in the definition (21) of Jβ,(m) is

ev∗

(
1

1−ψ
· [D(m)(X ,β)]virt

)
= ∑

µ,ν

(
Y +Y ·β(0)

)
∑ν

· s
µ

µ!
rν

ν!
· IY

β(0) (25)

with the sum taken over all µ,ν satisfying the degree, multiplicity, and stability
conditions. The second summand is

m · ev∗[M̄(m)(X ,β)]virt = m ·∑
i
〈τm(T i)〉β ·Ti

= sβ ·Y ·δm,Y ·β−KY ·β−1

+ rβ ·Y 2 ·δm,Y ·β−KY ·β

by lemma 3.1.5. As we have defined IY
0 = Y , this adds exactly the terms with

β(0) = 0 and ∑µ+∑ν = 1 to the sum in (25) that were excluded because of the
stability condition. It follows that

Jβ,(m) = ∑
µ,ν

(
Y +Y ·β(0)

)
∑ν

· s
µ

µ!
rν

ν!
· IY

β(0),
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with the sum taken over all µ,ν satisfying the degree and multiplicity conditions.
�

REMARK 3.1.9. The multiplicity condition in lemma 3.1.8 can be replaced by

m = Y ·β− ε∑µ,

where ε∈ {0,1} depends only on Y . To see this recall that the multiplicity condition
was obtained from the original one

m = Y ·β(0)+∑m(k) (26)

by inserting the expressions m(k) = Y · β(k)−KY · β(k) (for every r
β(k)) or m(k) =

Y ·β(k)−KY ·β(k)− 1 (for every s
β(k)), respectively. But by remark 3.1.1 we have

r
β(k) = 0 if m(k) = Y ·β(k)−KY ·β(k) > Y ·β(k). So (as KY is nef) r

β(k) can only be
non-zero if m(k) = Y ·β(k). Hence we can insert this simplified expression for m(k)

in (26).

In the same way s
β(k) can only be non-zero if m(k) =Y ·β(k)−1 (in the case KY = 0)

or m(k) = Y · β(k) (in the case KY > 0). In other words, m(k) = Y · β(k)− ε with
ε ∈ {0,1} depending only on Y .

If we now take the original multiplicity condition (26) and insert the new simplified
expressions m(k) = Y ·β(k) (for every r

β(k)) and m(k) = Y ·β(k)− ε (for every s
β(k)),

respectively, we arrive at the desired multiplicity condition m = Y ·β− ε∑µ.

REMARK 3.1.10. Now we can insert the expression of lemma 3.1.8 (with the mul-
tiplicity condition from remark 3.1.9) into the formula of remark 3.1.3. Thus we
obtain

Y ·β

∏
i=0

(Y + i) · IX
β
= ∑

µ,ν

Y ·β

∏
i=Y ·β−ε∑µ+1

(Y + i) ·
(

Y +Y ·β(0)
)

∑ν

· s
µ

µ!
rν

ν!
· IY

β(0)

= ∑
µ,ν

ε∑µ−1

∏
i=0

(Y +Y ·β− i) ·
(

Y +Y ·β(0)
)

∑ν

· s
µ

µ!
rν

ν!
· IY

β(0),

where the sum is now taken over all µ,ν satisfying the degree condition β(0) :=
β−|µ|− |ν| ≥ 0. Note that this equation is trivially true in the case β = 0 as well
(both sides are equal to Y in this case).
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To get rid of the degree condition we multiply these equations with qY ·β (where q is
a formal variable) and add them up; so we get

∑
β

Y ·β

∏
i=0

(Y + i) · IX
β
·qY ·β

= ∑
β(0)

∑
µ,ν

ε∑µ−1

∏
i=0

(Y +Y ·β− i) ·
(

Y +Y ·β(0)
)

∑ν

· s
µ

µ!
rν

ν!
· IY

β(0) ·qY ·β, (27)

where the sum now runs over all multi-indices µ,ν (and β = β(0)+ |µ|+ |ν|).

Although this equation looks quite complicated, note that all geometric ideas in
its derivation are still visible: the left hand side is the “naı̈ve” expression for the
Gromov-Witten invariants of Y that we already encountered in the introduction and
remark 3.1.6. The product ∏

Y ·β
i=0(Y + i) here corresponds to the process of raising

the multiplicity of the curves from 0 to Y ·β+ 1. The right hand side of the equa-
tion describes the correction terms. They correspond to reducible curves with one
component in the hypersurface (IY

β(0)) and various others in the ambient space with

specified multiplicities to the hypersurface (sµrν). The factor (Y +Y ·β(0))∑ν comes
from the (∑ν)-fold application of the divisor equation that we used to describe the
component in the hypersurface by a 1-point invariant instead of by a (1+ r)-point
invariant.

All that remains to be done to arrive at the “mirror formula” is to simplify the right
hand side of equation (27). To do so define P(t) to be “the right hand side with
Y ·β(0) replaced by a formal variable t”:

DEFINITION 3.1.11. Let

P(t) := ∑
µ,ν

ε∑µ−1

∏
i=0

(Y +Y · (|µ|+ |ν|)+ t− i) · (Y + t)∑ν · s
µ

µ!
rν

ν!
·qY ·(|µ|+|ν|),

so that (27) can be written as

∑
β

Y ·β

∏
i=0

(Y + i) · IX
β
·qY ·β = ∑

β

P(Y ·β) · IY
β
·qY ·β. (28)

LEMMA 3.1.12. The power series P(t) of definition 3.1.11 satisfies the differential
equation d2

dt2 lnP = 0. In particular, if P(t) = P0+P1 · t+ · · · is the Taylor expansion
of P then P(t) = P0 exp(P1

P0
t).

PROOF. This can be checked directly from the definition of P(t). The statement
does not depend on the special values of rβ and sβ; it is equally true if the rβ and sβ
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are considered to be formal variables. We give a proof of the statement in appendix
3.3 (apply lemma 3.3.1 with the collection of variables xi being the union of the rβ

and sβ, z = 0, and t replaced by t +Y ). �

COROLLARY 3.1.13 (The mirror formula). If we formally set q̃ = q · exp P1
P0

with P0

and P1 as in lemma 3.1.12 then

∑
β

Y ·β

∏
i=0

(Y + i) · IX
β
·qY ·β = P0 ·∑

β

IY
β
· q̃Y ·β,

i.e. the generating function ∑β IY
β
·qY ·β of the 1-point Gromov-Witten invariants of Y

can be obtained from the “naı̈ve” expression ∑β ∏
Y ·β
i=0(Y + i) · IX

β
·qY ·β by a formal

change of variables (q 7→ q̃) and a scaling factor (·P0).

PROOF. Immediately from (28) and lemma 3.1.12. �

REMARK 3.1.14. In the above computations we assumed that the class of Y gen-
erates H2(X) over Q. In fact, this is not essential. All that happens for higher
dimension of H2(X) is that the notation becomes more complicated at some steps
of the calculation. Most importantly, in remark 3.1.7 there are now more factors
that can occur in the k-product of (22). Namely, instead of the rβ we now have

ri,β = (Y ·β−KY ·β) · 〈τY ·β−KY ·β(γ∨i )〉β

for i = 1, . . . ,dimH2(X)⊗Q, where the γi form a basis of H2(X)⊗Q chosen such
that γ1 = Y . Correspondingly, lemma 3.1.8 becomes

Jβ,(m) = ∑
µ,νi

∏
i

(
γi + γi ·β(0)

)
∑νi
· s

µ

µ!
·∏

i

ri
νi

νi!
· IY

β(0)

where the νi are multi-indices. In the alternative multiplicity condition of remark
3.1.9 the number ε will now depend on β (it is 1 if KY ·β = 0 and 0 if KY ·β > 0).
Hence the multiplicity condition is now m = Y · β− εµ, where ε is a multi-index
with entries 0 and 1. Finally, we need a formal variable qi for each γi to replace the
expression qY ·β by qβ := ∏i qγi·β

i . Definition 3.1.11 then becomes

P({ti}) :=∑
µ,νi

εµ−1

∏
j=0

(Y +Y · (|µ|+∑
i
|νi|)+ t1− j) ·∏

i
(γi + ti)∑νi

· s
µ

µ!
·∏

i

ri
νi

νi!
·q|µ|+∑i |νi|,



94 3. THE MIRROR THEOREM

with which we obtain the equation (compare to (28))

∑
β

Y ·β

∏
i=0

(Y + i) · IX
β
·qβ = ∑

β

P({γi ·β}) · IY
β
·qβ. (29)

The same proof as for lemma 3.1.12 works to show that ∂ti∂t j lnP = 0 for all i, j, so
it follows that P(t) = P0 exp(∑Piti

P0
), where P({ti}) = P0 +∑i Pi · ti + · · · is the linear

expansion of P. Hence the mirror formula of corollary 3.1.13 holds in the same way

∑
β

Y ·β

∏
i=0

(Y + i) · IX
β
·qβ = P0 ·∑

β

IY
β
· q̃β,

where q̃i = qi · exp Pi
P0

.

3.2. Examples

EXAMPLE 3.2.1 (Application to the quintic threefold). Let X = P4, and let Y ⊂ X
be a smooth quintic hypersurface. Henve Y = 5H ∈ H∗(X), where H is the class of
a hyperplane. We are interested in the genus zero Gromov-Witten invariants of Y ,
i.e. in the numbers nd = 1

d 〈H〉
Y
d . As this is the H3-coefficient of IY

d (up to a scaling
factor), we consider the equation (28) modulo H4. (This discards the invariants
〈τ1(1)〉Yd .)

Since the only Gromov-Witten invariants of Y are 〈H〉Yd (and 〈τ1(1)〉Yd ) the polyno-
mials IY

d have no H0, H1, and H2 terms for d > 0. Hence as

IX
d =

d

∏
i=1

1
(H + i)5 ,

by proposition 1.2.6 (i) it follows from (28) that

∑
d≥0

5H ·∏
5d
i=1(5H + i)

∏
d
i=1(H + i)5

q5d = 5H P0 (mod H3).

This is sufficient to reconstruct P: if we expand

∑
d≥0

∏
5d
i=1(5H + i)

∏
d
i=1(H + i)5

q5d =: F0 +F1H +F2H2 + · · · (30)

then P|t=H=0 = F0 and ∂HP|t=H=0 = F1. So as P is a function of t+5H and satisfies
∂2

t lnP = 0, it follows that ∂tP|t=H=0 =
1
5 F1, and hence

P = F0 · exp
(( t

5
+H

)
· F1

F0

)
.
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In particular,

P0 = F0 · exp
(

H
F1

F0

)
= F0 +H F1 +

H2

2
F2

1
F0

+ · · · .

So by comparing the H3-coefficient of (28) we get

F2 =
1
2

F2
1

F0
+

1
5 ∑

d>0
dndq5dF0 exp

(
d

F1

F0

)
.

Together with (30), this equation determines the nd recursively and gives the well-
known numbers that we have listed already in example 2.5.8.

EXAMPLE 3.2.2 (Application to plane elliptic curves). We want to compute the
(virtual) numbers of rational plane curves of degree d having multiplicity 3d to a
smooth elliptic plane cubic, i.e. the relative Gromov-Witten invariants 〈τ3d(1)〉d =
3
d rd in the case when X = P2 and Y is a smooth elliptic cubic. According to [T]
remark 1.11 these numbers are related to the local mirror symmetry of [CKYZ].

The computation of the numbers rd is very similar (yet not identical) to that of the
Gromov-Witten invariants of Y in section 3.1. This time we apply lemma 3.1.2
recursively only up to multiplicity 3d instead of 3d +1, so we get

3d−1

∏
i=0

(3H + i) IX
d = Id,(3d)+

3d−1

∑
m=0

3d−1

∏
i=m+1

(3H + i) Jd,(m).

Note that IY
d = 0 for d > 0, as there are no rational curves in Y . So if we insert the

expression for Jd,(m) of lemma 3.1.8, we get in the same way as in remark 3.1.10

∑
d>0

3d−1

∏
i=0

(3H + i) IX
d q3d = ∑

d>0

3H2

d
rdq3d

+∑
µ,ν

3d−1

∏
i=3d−∑µ+1

(3H + i) (3H)∑ν · s
µ

µ!
rν

ν!
·3H q3d (31)

where we already inserted the expression m = 3d−∑µ for Calabi-Yau hypersur-
faces (see remark 3.1.9). Here, in the second line we set d = |µ|+ |ν|, and we
obviously only sum over those µ with ∑µ≥ 1.

Similar to definition 3.1.11 let us set

Q(t) := ∑
µ

∑µ−1

∏
i=1

(3H · |µ|+ t− i)
sµ

µ!
q3H·|µ| t,
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where the sum is now taken over all µ — not only those with ∑µ ≥ 1. The µ = 0
term contributes a 1 (together with the factor t). The definition of Q(t) is so that
Q(3H)−1 yields exactly the ν = 0 terms in the second line of (31).

Similarly to lemma 3.1.12 the power series Q(t) satisfies a differential equation: by
lemma 3.3.2 lnQ(t) is linear in t, i.e. Q(t) = exp(c · t). To compute c, we expand as
in example 3.2.1 the left hand side of (31)

∑
d>0

3H ·∏
3d−1
i=1 (3H + i)

∏
d
i=1(H + i)3

q3d =: F1H +F2H2 + · · ·

(in [T] F1(q3) is called I(0)2 (z), and F2(q3) is called I(0)3 (z)). As the t-expansion of
Q(t) is

Q(t) = 1+ ct +
1
2

c2t2 + · · · ,

comparison of the H1 terms in (31) gives F1 = (the H1 term of Q(3H)) = 3c; so
Q(t) = exp(F1·t

3 ).

Now compare the H2 term in (31). Note that we must have ∑ν ≤ 1 because of
the factor (3H)∑ν+1. The ν = 0 term is exactly the second coefficient of Q(3H) as
remarked above, i.e. 1

2 F2
1 . The terms with ∑ν = 1 can be written as a sum over d,

where d is the index of the one non-zero entry of ν. The contribution for a given
d is exactly 9rdq3d Q(3d)

3d = 3
d rdq3d exp(d F1), with the µ = 0 term in Q(3d) coming

from the right hand side of the first line of (31). Thus we get the equation

F2 =
1
2

F2
1 + ∑

d>0

3
d

rd q3d exp(dF1),

which determines the numbers 3
d rd = 〈τ3d(1)〉d . The first few numbers are given in

the following table.

d 1 2 3 4 5 6 7 8
〈τ3d(1)〉d 9 135

4 244 36999
16

635634
25 307095 193919175

49
3422490759

64

This equation is equivalent to the conjecture of remark 1.11 in [T]. Together with
[T] theorem 2.1 it proves that 〈τ3d(1)〉d = (−1)d3dKd , where Kd is the top Chern
class of the rank-(3d−1) bundle on M̄0(P2,d) with fiber H1(C, f ∗KP2) at the point
(C, f ) ∈ M̄0(P2,d). At the moment we do not know of a geometric proof of this
statement.
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3.3. Proof of the main technical lemmas

The goal of this section is to show that the power series P(t) and Q(t) of definition
3.1.11 and example 3.2.2 satisfy certain differential equations.

LEMMA 3.3.1. Let xi be a collection of variables (possibly infinite), and let ai,bi ∈
N, ci ∈ C. Define

P(t,z) = ∑
k

xk

k!
tak

bk−1

∏
i=0

(ck+ z+ t− i),

where k is a multi-index, and where we used the usual multi-index notations ak =

∑i aiki, xk = ∏i xki
i , k! = ∏i ki!. Assume that, for every i, the pair (ai,bi) is (0,0),

(1,0), or (0,1). Then

∂
2
t lnP = ∂

2
z lnP = ∂t∂z lnP = 0.

PROOF. Step 1. We consider the ci to be formal variables and show by induction on
n that for every i and every n≥ 0

if ∂2
t lnP|ci=0 = ∂2

z lnP|ci=0 = ∂t∂z lnP|ci=0 = 0
then ∂n

ci
∂2

t lnP|ci=0 = ∂n
ci

∂2
z lnP|ci=0 = ∂n

ci
∂t∂z lnP|ci=0 = 0.

So assume that

∂
j
ci

∂
2
t lnP|ci=0 = ∂

j
ci

∂
2
z lnP|ci=0 = ∂

j
ci

∂t∂z lnP|ci=0 = 0

for j ≤ n. Note that by definition of P we have ∂ciP = xi∂xi∂zP. Let ∂1 and ∂2

denote either ∂t or ∂z. Then it follows that (everything in the following calculation
is evaluated at ci = 0):

∂
n+1
ci

∂1∂2 lnP = ∂
n
ci

∂1∂2
∂ciP

P

= xi∂
n
ci

∂1∂2
∂xi∂zP

P

= xi∂
n
ci

∂1∂2

(
∂xi

∂zP
P
−∂zP ·∂xi

1
P

)
= xi∂

n
ci

∂1∂2

(
∂xi

∂zP
P

+
∂zP
P
· ∂xiP

P

)
= xi∂xi∂z ∂

n
ci

∂1∂2 lnP︸ ︷︷ ︸
=0

+xi∂
n
ci

∂1∂2(∂z lnP ·∂xi lnP)

= xi∂
n
ci
(∂1∂2∂z lnP ·∂xi lnP+∂1∂z lnP ·∂2∂xi lnP

+∂2∂z lnP ·∂1∂xi lnP+∂z lnP ·∂1∂2∂xi lnP)

= 0
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(for the last step note that every summand has a factor that contains a ∂2
t lnP, ∂2

z lnP,
or ∂t∂z lnP that gets at most n ∂ci’s, so it vanishes by the induction assumption).

Step 2. By step 1 it suffices to prove the lemma in the case c = 0. Note that then P
becomes a product of two terms of the form

R = ∑
k

xk

k!
tak and S = ∑

k

xk

k!

bk−1

∏
i=0

(z+ t− i)

where the first term contains all the xi with (ai,bi) = (0,0) or (ai,bi) = (1,0), and
the second term all the xi with (ai,bi) = (0,1). Obviously, it suffices to prove the
lemma for R and S separately. But

R = ∑
k

∏
i

(xita
i )

ki

ki!
= exp

(
∑

i
xitai

)
and

S = ∑
k

xk

k!

(
z+ t
∑k

)
(∑k)! =

(
1+∑

i
xi

)z+t
,

and in both cases it is obvious that the lemma holds. �

LEMMA 3.3.2. Let xi be a collection of variables (possibly infinite), and let ci ∈ C.
Define

Q(t) = ∑
k

xk

k!
t

∑k−1

∏
i=1

(ck+ t− i)

in multi-index notation, where k is a multi-index. Then lnQ(t) is linear in t, i.e.

(t∂t−1) lnQ = 0.

PROOF. The proof is very similar to that of lemma 3.3.1.

Step 1. We consider the ci to be formal variables and show by induction on n that
for every i and every n≥ 0

if (t∂t−1) lnQ|ci=0 = 0 then ∂
n
ci
(t∂t−1) lnQ|ci=0 = 0.

So assume that ∂
j
ci(t∂t − 1) lnQ|ci=0 = 0 for j ≤ n. By definition of Q we have

∂ciQ= xi∂xi(∂t− 1
t )Q. Hence it follows that (everything in the following calculation
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is evaluated at ci = 0):

∂
n+1
ci

(t∂t−1) lnQ = ∂
n
ci
(t∂t−1)

xi∂xi(∂t− 1
t )Q

Q

= xi(t∂t−1)

∂
n
ci

(
∂t−

1
t

)
∂xi lnQ︸ ︷︷ ︸

=0

+∂
n
ci

∂t lnQ ·∂xi lnQ


= xi∂

n
ci
(∂t lnQ ·∂xi(t∂t−1) lnQ+∂t(t∂t−1) lnQ ·∂xi lnQ)

= 0

(for the last step note that every summand has a factor that contains a (t∂t −1) lnQ
that gets at most n ∂ci’s, so it vanishes by the induction assumption).

Step 2. By step 1 it suffices to prove the lemma in the case c = 0. But then

Q(t) = ∑
k

xk

k!

∑k−1

∏
i=0

(t− i) =
(

1+∑
i

xi

)t
,

which obviously satisfies the statement of the lemma. �





CHAPTER 4

The number of plane conics 5-fold tangent to a given curve

In the last chapters we have explained how the rational relative Gromov-Witten
invariants of a projective manifold X relative a smooth very ample hypersurface Y
can be computed. We now want to address a different question, namely that of the
enumerative significance of the invariants. Recall that the relative Gromov-Witten
invariants can be thought of as the numbers of curves in X having given local orders
of contact to Y . But as the invariants are defined using a virtual fundamental class
it may of course happen that the invariant is not the correct enumerative answer. In
this chapter we will study this relation between the invariants and the enumerative
numbers in a specific example.

The set-up of our example is as follows. Let Y ⊂ P2 be a generic plane curve of
degree d ≥ 5. We want to consider smooth plane conics that are 5-fold tangent to
Y . As the space of all plane conics is 5-dimensional and each tangency imposes one
condition on the curves, we expect a finite number of such 5-fold tangent conics. It
will be easy to see that this number is indeed finite; let us call it nd . The goal of this
chapter is to compute it.

Of course this is a classical problem, and attempts have been made to solve it using
classical methods of enumerative geometry. I. Vainsencher [V] tried to use various
blow-ups of the ordinary P5 of conics as moduli spaces, but the intersection of the
five tangency conditions in this moduli space always resulted in a scheme with many
non-enumerative components, most of which were non-reduced with a multiplicity
that could not be computed explicitly. Their geometry was so complicated that the
problem could not be solved that way.

In this chapter we want use the moduli spaces of stable relative maps to solve
the problem. We consider the moduli space M̄Y

(2,2,2,2,2)(P
2,2) ⊂ M̄0,5(P2,2) that

parametrizes rational stable maps to P2 of degree 2 (i.e. conics) with 5 marked
points such that the stable map is tangent to Y at all these points. It comes equipped
with a 0-dimensional virtual fundamental class whose degree Nd can be computed
explicitly using the methods of chapter 2.

101
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We can interpret the number Nd as the “virtual number” of conics that are 5-fold
tangent to Y . It is only virtual because it contains — just as in Vainsencher’s clas-
sical computations — non-enumerative contributions from the “boundary” of the
moduli space. These contributions are quite simple however. It is not hard to see
that the only degree-2 rational stable maps f : C→ P2 that satisfy the tangency con-
ditions at the 5 marked points are all double covers of a bitangent of Y , and have the
marked points distributed in one of the following two ways:

There are only finitely many stable maps with marked points as in this picture on
the left, so we just have to count them and subtract their number from the virtual
invariant Nd . The picture on the right however shows a 1-dimensional family of
stable maps (the unmarked ramification point of f can move). We will use equations
from relative Gromov-Witten theory to compute the degree of the 0-dimensional
virtual fundamental class of the moduli space on this 1-dimensional component. By
subtracting both correction terms we finally arrive at the enumerative numbers nd .
They are

nd =
1
5!

d (d−3)(d−4)(d7 +12d6−18d5−540d4 +251d3 +5712d2−1458d−14580).

Our (as well as Vainsencher’s) motivation for studying this problem came from
a question concerning rational curves in K3 surfaces. If X is a K3 surface and
β ∈ H2(X ,Z) the homology class of a holomorphic curve in X then various authors
[BL, Bv, Gö, YZ] have shown that the number of rational curves in X of class β is
equal to the qd coefficient of the series

G(q) = ∏
i>0

1
(1−qi)24 = 1+24q+324q2 +3200q3 +25650q4 +176256q5 + · · ·

with d = 1
2β2+1 if the class β is primitive, i.e. not a non-trivial multiple of a smaller

integral homology class. There is a well-defined “K3 invariant” (using a modified
obstruction theory on the moduli spaces of stable maps to X) for non-primitive β

too [BL]; it is however not known yet how this invariant relates to the above series
G(q) or to the enumerative number.

The result of this chapter allows us to study this question in a non-trivial example:
we let X be the double cover of P2 branched along a sextic curve Y , and take β to
be the pull-back of the class of conics in P2. Our work allows us to compute the
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enumerative number of rational curves in X of class β, which we can then compare
to the corresponding number of the series G(q). The result is that the “K3 invariant”
is equal to the corresponding term in the G(q) series, plus a double cover correction
term that is equal to 1

8 times the number of rational curves in X of class 1
2β. Note

that this is the same sort of correction term as for multiple covers of rational curves
in Calabi-Yau threefolds. We conjecture that this pattern continues for classes β of
higher divisibility.

This chapter is organized as follows. In section 4.1 we show how to compute the rel-
ative Gromov-Witten invariant Nd . We analyze the moduli space M̄Y

(2,2,2,2,2)(P
2,2)

and its virtual fundamental class in sections 4.2 and 4.3, respectively, leading to
the final result for nd in corollary 4.3.6. Section 4.4 contains the application to K3
surfaces mentioned above.

4.1. The Gromov-Witten approach

In this section we will show how to compute the relative Gromov-Witten invariant
that corresponds to the number of conics that are 5-fold tangent to a given smooth
plane curve. We will use the notations and results from chapter 2, to which we also
refer for further details.

DEFINITION 4.1.1. Let Y ⊂ P2 be a smooth curve of degree d, and let m1, . . . ,mn

be non-negative integers. We denote by M̄(m1,...,mn) = M̄Y
(m1,...,mn)

(P2,2) the moduli
space of n-pointed stable relative maps of degree 2 to P2 relative to Y with multi-
plicities m1, . . . ,mn as of definition 2.1.1. Its virtual fundamental class defined in
2.1.19 is denoted [M̄(m1,...,mn)]

virt.

REMARK 4.1.2. The moduli space M̄(m1,...,mn) can be thought of as a compacti-
fication of the space of irreducible plane conics together with n distinct marked
points on them at which the conic has the prescribed local intersection multiplic-
ities m1, . . . ,mn with Y . In particular, the moduli space M̄(2,2,2,2,2) corresponds to
conics 5-fold tangent to Y .

REMARK 4.1.3. For future reference let us unwind the construction from defini-
tion 2.1.19 in our specific example. Consider the degree-d Veronese embedding
i : P2 → PD with D =

(D+2
2

)
− 1. We have i(Y ) = i(P2)∩H in PD for a suitable

hyperplane H ⊂ PD. The inclusion morphism i induces an inclusion of moduli
spaces M̄0,n(P2,2) ⊂ M̄0,n(PD,2d). Moreover, let M̄H

(m1,...,mn)
(PD,2d) be the clo-

sure in M̄0,n(PD,2d) of all stable maps (C,x1, . . . ,xn, f ) such that C is irreducible,
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f (C) 6⊂ H, and the divisor f ∗Y on C contains the points xi with multiplicities mi.
Then we define

M̄(m1,...,mn) := M̄0,n(P2,2)∩ M̄H
(m1,...,mn)

(PD,2d)

(with the intersection taken in M̄0,n(PD,2d)). The virtual fundamental class is the
corresponding refined intersection product

[M̄(m1,...,mn)]
virt := [M̄0,n(P2,2)] · [M̄H

(m1,...,mn)
(PD,2d)] ∈ A∗(M̄(m1,...,mn)).

The virtual dimension of M̄(m1,...,mn) is 5−∑i(mi−1). By abuse of notation we will
always drop the superscript virt from the notation of the virtual fundamental class
from now on, as we do not need the ordinary fundamental classes of these spaces.

REMARK 4.1.4. From remark 4.1.3 we get immediately the following statement:
let C = (C,x1, . . . ,xn, f )∈ M̄(m1,...,mn) be an automorphism-free stable map such that
C ∼= P1 is irreducible and f (C) 6⊂ Y . Then, locally around this point, M̄(m1,...,mn) is
scheme-theoretically the subscheme of M̄0,n(P2,2) given by the ∑i mi equations that
describe the vanishing of the mi-jets of ev∗i Y at the points xi. If moreover M̄(m1,...,mn)

has the expected dimension at this point C , then this point lies on a unique irre-
ducible component of M̄(m1,...,mn), and the virtual fundamental class on this compo-
nent is just the ordinary scheme-theoretic fundamental class, i.e. the length of the
scheme M̄(m1,...,mn) at this irreducible component.

REMARK 4.1.5. Recall from remark 2.1.5 that there is an easier description of
M̄(m1,...,mn) as a set. Namely, it is the subspace of M̄0,n(P2,2) of all n-pointed ra-
tional stable maps (C,x1, . . . ,xn, f ) of degree 2 to P2 such that the following two
conditions are satisfied:

(i) f (xi) ∈ Y for all i such that mi > 0,
(ii) f ∗Y −∑i mixi ∈ A0( f−1(Y )) is effective.

As mentioned above, the moduli space M̄(2,2,2,2,2) has virtual dimension zero and
corresponds to conics 5-fold tangent to Y (together with a labeling of the five tan-
gency points). Hence we define:

DEFINITION 4.1.6. The number

Nd :=
1
5!
·deg[M̄(2,2,2,2,2)] ∈Q

will be called the virtual number of conics 5-fold tangent to Y .

The number Nd is only virtual because it receives correction terms from double
covers of lines (see sections 4.2 and 4.3). In the rest of this section we will show
how to compute the number Nd . Obviously, we can assume that d ≥ 5.
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The computation is done using the main theorem 2.2.6 of chapter 2 that tells us
“how to raise the multiplicities of the moduli spaces”: it says that

(ev∗nY +mnψn) · [M̄(m1,...,mn)] = [M̄(m1,...,mn−1,mn+1)]+ correction terms, (32)

where evn : M̄(m1,...,mn)→ P2 is the evaluation map at the last marked point, and ψn

is the first Chern class of the cotangent line bundle Ln, i.e. of the bundle whose fiber
at a stable map (C,x1, . . . ,xn, f ) is the cotangent space T∨C,xn

. The correction terms
are as follows. Every correction term corresponds to a moduli space of reducible
curves with r+1 components C0, . . . ,Cr, where C0 is contracted1 to a point of Y , and
the other components Ci intersect C0 in a point where they have local intersection
multiplicity µi to Y . We get such a correction term for every r, every choice of the
µi, and every splitting of the total homology class and the marked points onto the
components Ci, such that the following two conditions are satisfied:

(a) the last marked point xn lies on the component C0,
(b) the sum of all the µi is equal to the sum of those mi such that xi ∈C0.

These correction terms appear in the above equation with multiplicity ∏
r
i=1 µi.

EXAMPLE 4.1.7. Here is an example of equation (32). In the case

(ev∗5Y +ψ5) · [M̄(2,2,2,2,1)] = [M̄(2,2,2,2,2)]+ correction terms

we want to figure out the correction terms. As this is an equation in (virtual) dimen-
sion 0, the contracted component C0 must have exactly 3 special points (it would
not be stable if it had fewer, and it would have moduli if it had more). Hence the
correction terms fall into these two categories:

(i) r = 1 (in the above notation), C1 is a conic, and C0 is a contracted component
with three special points x5, the intersection point with C1, and one other xi

for i = 1, . . . ,4,
(ii) r = 2, C1 and C2 two lines, and C0 is a contracted component with three

special points x5 and the two intersection points with C1 and C2.

Actually, case (ii) cannot occur because condition (b) above cannot be satisfied: the
sum µ1 +µ2 is at least 2, whereas m5 is only 1. Hence the only correction terms are
of type (i). We get four of them: one for each choice of the point xi that is to lie on
the contracted component C0. We have µ1 = mi +m5 = 3 in each of these cases by
condition (b). All four correction terms appear with multiplicity µ1 = 3. Pictorially,
the equation reads

1This uses the fact that the curve Y has positive genus, and that therefore every rational stable map
to Y must be constant. In general, C0 can be a curve with any homology class in Y .
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Here the dotted curve is the fixed curve Y , and the solid curve is the moving conic C.
In the four correction terms the component with x5 on it is meant to be contracted.
Written down as an equation of virtual fundamental classes of moduli spaces, the
formula reads

(ev∗5Y +ψ5) · [M̄(2,2,2,2,1)] =[M̄(2,2,2,2,2)]+3[M̄(3,2,2,2)] (33)

+3[M̄(2,3,2,2)]+3[M̄(2,2,3,2)]+3[M̄(2,2,2,3)].

REMARK 4.1.8. The correction terms in equation (32) are themselves products of
moduli spaces of stable relative maps of the form M̄Y

(m′1,...,m
′
k)
(P2,d′) with d′ ≤ 2

and m′1 + · · ·m′k ≤ m1 + · · ·mn. In other words, this equation expresses invariants
(i.e. intersection products of ev∗i H and ψi classes, where H is a line in P2) on the
relative moduli space M̄(m1,...,mn+1) in terms of other invariants on relative moduli
spaces M̄Y

(m′1,...,m
′
k)
(P2,d′) whose “total multiplicity” ∑i m′i is smaller than the total

multiplicity 1+∑i mi of M(m1,...,mn+1). Hence, applying equation (32) recursively
m1 + · · ·+mn times we can express every invariant on M̄(m1,...,mn) in terms of in-
variants on M̄(0,...,0), which are just ordinary Gromov-Witten invariants of P2. As
the Gromov-Witten invariants of P2 are well-known we can thus compute all rel-
ative Gromov-Witten invariants recursively, in particular Nd . Example 4.1.7 is the
first step in this recursion process; it expresses the invariant M̄(2,2,2,2,2) (with total
multiplicity 10) in terms of invariants with total multiplicity 9.

Without actually carrying out the recursion we can see the following.

LEMMA 4.1.9. The function d 7→ Nd is a polynomial of degree 10 with leading
coefficient 1

5! .

PROOF. Using equation (32) it is easy to show by induction that every invariant
(i.e. intersection product of ev∗i H and ψi classes) on a moduli space M̄(m1,...,mn) is
a polynomial in d of degree (at most) m1 + · · ·+mn. In fact, this is obvious for
m1 + · · ·+mn = 0, as we then just have ordinary Gromov-Witten invariants of P2

(that do not depend on Y ). Equation (32) reads

[M̄(m1,...,mn−1,mn+1)] = (d ev∗n H +mnψn) · [M̄(m1,...,mn)]− correction terms.
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All correction terms have total multiplicity at most m1 + · · ·+mn, so by induction
hypothesis they contribute a polynomial in d of degree at most m1 + · · ·+mn. The
same is true for the ψn summand on the right hand side. Hence, as every invariant
on M̄(m1,...,mn) is a polynomial in d of degree at most m1+ · · ·+mn by assumption, it
follows that every invariant on M̄(m1,...,mn+1) is a polynomial in d of degree at most
m1 + · · ·+mn +1.

It can be seen from the same recursive formula that the d10 coefficient of the invari-
ant deg[M̄(2,2,2,2,2)] is just

5

∏
i=1

ev∗i H2 · [M̄0,5(P2,2)],

i.e. the number of conics through 5 general points in the plane. This number is 1,
proving the statement of the lemma about the leading coefficient. �

The precise form of the polynomial Nd is quite complicated and can only be ob-
tained by carrying out the full recursion as described above. We only give the result
here; a Maple program to compute it can be obtained from the author on request.

PROPOSITION 4.1.10. For d ≥ 5 the virtual number of conics 5-fold tangent to Y
is

Nd =
1
5!

d (d−3)(d−4)(d7 +12d6−18d5−540d4 +311d3 +5457d2−2133d−12690).

REMARK 4.1.11. The first few values of Nd are given in the following table.

d 5 6 7 8 9 10
Nd 1985 71442 687897 3893256 16180398 54679380

REMARK 4.1.12. In this section we have only used equation (32) in the Chow ring
of the moduli space of stable maps M̄0,n(P2,2). In fact, there is a refined version of
this equation that we will need in section 4.3. If Pk denotes the rank-(k+1) bundle
of (relative) k-jets of ev∗n O(Y ), there is a section σ of the line bundle Pmn/Pmn−1

on M̄(m1,...,mn) whose vanishing describes precisely the condition that the map f of
a stable map (C,x1, . . . ,xn, f ) has multiplicity (at least) mn +1 to Y at xn. The first
Chern class of this line bundle is ev∗nY +mnψn. (In fact, this is the idea how equation
(32) is proven.) The refined version of equation (32) now states that this equation
also holds in the Chow group of the zero locus of the section σ on M̄(m1,...,mn).
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4.2. The components of M̄(2,2,2,2,2)

Having just computed the invariant Nd , we will now study its enumerative signifi-
cance. To do this, we have to identify the components of M̄(2,2,2,2,2) and compute
their virtual fundamental classes. We will assume from now on that Y is generic of
degree d ≥ 5. The equation of Y is F = ∑I aIzI = 0, where I runs over all multi-
indices (i0, i1, i2) with i0+ i1+ i2 = d, and z0,z1,z2 are the homogeneous coordinates
on P2. We start with irreducible stable maps whose image is a smooth conic.

LEMMA 4.2.1. Let m1, . . . ,mn be non-negative integers such that ∑mi ≤ 10, and let
C ∈ M̄(m1,...,mn) be an irreducible stable map that is not a double cover of a line.
Then:

(i) The moduli space M̄(m1,...,mn) is smooth of dimension 5−∑i(mi − 1) at C
(which is the expected dimension).

(ii) If this expected dimension is negative, then there is no such point C .

PROOF. The plane degree-d curves are parametrized by a projective space PD with
D= 1

2d(d+3), whose coordinates are the coefficients aI of F . Let Z⊂ M̄0,n(P2,2)×
PD be the closed substack of pairs ((C,x1, . . . ,xn, f ),Y ) such that the pull-back by
f of the equation of Y vanishes at the points xi to order mi for all i. We claim that Z
is smooth of the expected dimension at every point ((C,x1, . . . ,xn, f ),Y ) such that
C is irreducible and f is not a double cover of a line.

To prove this, we have to show that the matrix of derivatives of the equations de-
scribing Z has maximal rank at the given point ((C,x1, . . . ,xn, f ),Y ). By a projective
coordinate transformation of P2 and choosing homogeneous coordinates on C∼= P1,
we can assume that the map f is given by (s : t) 7→ (s2 : st : t2), and the n marked
points are (1 : λi) with pairwise distinct λi.

Let us now write down the derivatives of the multiplicity equations with respect to
the first m :=∑i mi of the variables a(d,0,0), a(d−1,1,0), a(d−1,0,1), a(d−2,1,1), a(d−2,0,2),
a(d−3,1,2), a(d−3,0,3), a(d−4,1,3), a(d−4,0,4), a(d−5,1,4) (remember m ≤ 10 and d ≥ 5).
These coordinates are chosen to be the coefficients of s2d−it i for i = 0, . . . ,9 when
we substitute the map f into F .

Multiplicity mi at the point (s : t) = (1 : λi) means that F |s=1,t=λi+ε has no ε terms of
order less than mi. So the rows of the derivative matrix are just (

( i
k

)
λ

i−k
j )i=0,...,m−1,

for 0≤ k < m j and 1≤ j ≤ n. For example, for m1 = m2 = m3 = m4 = m5 = 2 we
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get the matrix 
1 λ1 λ2

1 · · · λ
9
1

0 1 2λ1 · · · 9λ8
1

...
...

...
...

...
1 λ5 λ2

5 · · · λ
9
5

0 1 2λ5 · · · 9λ8
5

 .

By subtracting λ1 times the i-th column from the (i+ 1)-st column for 1 ≤ i < m
and using induction, we see that the determinant is ∏i< j(λi−λ j)

mim j . In particular,
it is not zero, so Z is smooth of the expected dimension at ((C,x1, . . . ,xn, f ),Y ).

By remark 4.1.4, the statement of the lemma is just that the fiber of Z over a general
point of PD is smooth of the expected dimension around a point considered above.
This follows now from the Bertini theorem. �

Using remark 4.1.4 again, the following two corollaries are immediate.

COROLLARY 4.2.2. Every irreducible stable map in M̄(m1,...,mn) whose image in
P2 is a smooth conic lies in a unique irreducible component of M̄(m1,...,mn) of the
expected dimension. The virtual fundamental class of this component is equal to
the usual one.

COROLLARY 4.2.3. The number of smooth plane conics 5-fold tangent to Y is finite.
We denote it by nd .

We will now study the additional non-enumerative contributions to the virtual in-
variant Nd .

LEMMA 4.2.4. The moduli space M̄(2,2,2,2,2) has the following connected compo-
nents:

(A) 5! points for every smooth conic 5-fold tangent to Y .
(B) 5! · (d− 4)(d− 5) points for every bitangent of Y , corresponding to double

covers of the bitangent, with marked points as in the picture below on the
left, i.e. the map is ramified over two transverse intersection points of the
bitangent with Y , and the five marked points are the two ramification points,
both inverse image points of one bitangency point, and one inverse image
point of the other bitangency point.
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(C) 1
4 ·5! · (d−4) smooth rational curves for every bitangent of Y , corresponding
to double covers of the bitangent, with marked points as in the picture above
on the right, i.e. (for a general stable map in this smooth rational curve)
the map is ramified over one transverse intersection point of the bitangent
with Y and one other arbitrary point, and the five marked points are the first
ramification point, and the four inverse image points of the two bitangency
points.

PROOF. Case 1: the image of the stable map is a smooth conic. If the five marked
points are distinct in P2, we get the components (A) by lemma 4.2.1, with the 5!
corresponding to the labeling of the marked points. If two of the points coincide in
P2 (i.e. lie on a contracted component of the stable map), then by the description of
M̄(2,2,2,2,2) in remark 4.1.5 the conic must have contact of order (at least) 4 to Y at
this point, i.e. it lies in M̄(4,2,2,2). But this space is empty by lemma 4.2.1.

Case 2: the image of the stable map is a union of two (distinct) lines. It is easy to
see that the conditions of remark 4.1.5 cannot be satisfied in this case.

Case 3: the stable map is a double cover of a line. There are six possible points
of tangency to Y : the four inverse image points of the bitangency points, and the
two ramification points if they are mapped to points of Y . For the stable map in
M̄(2,2,2,2,2) we can pick any five of these six points. If we leave out one of the points
over the bitangency points, we arrive at the components (B), otherwise we get the
components (C).

In case (B) we get a factor of 5! for the choice of labeling of the marked points,
a factor of

(d−4
2

)
for the choice of two transverse intersection points of Y with the

bitangent, and a factor of 2 for the choice of bitangency point over which we take
only one inverse image point to be marked. In case (C) the second ramification
point is not fixed, so we get one-dimensional families of such curves. Every such
family has a 2:1 map to the bitangent given by the image of the moving ramification
point; the two stable maps in a fiber of this map differ by exchanging the marked
points over one bitangency point. The map is simply ramified over the two stable
maps where the moving ramification point is one of the bitangency points. Hence
every such family is a P1. The number of such families is d− 4 (for the choice of
transverse intersection point of the bitangent with Y ) times 1

4 ·5! (for the labeling of
the marked points, taking into account that exchanging the marked points over the
bitangency points does not give us a new family). �

Of course, the virtual fundamental class of M̄(2,2,2,2,2) splits naturally into a sum of
virtual fundamental classes on each of the connected components that we have just
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identified. As it is well-known that the number of bitangents of Y is 1
2d(d +3)(d−

2)(d−3) (see e.g. [H] exercise IV.2.3 f), we get the following corollary.

COROLLARY 4.2.5. We have

Nd = nd +
1
2

d(d +3)(d−2)(d−3)(d−4)(d−5)bd +
1
8

d(d +3)(d−2)(d−3)(d−4)cd ,

where bd is the degree of the part of the virtual fundamental class of M̄(2,2,2,2,2)
supported on the point M̄B ∈ M̄(2,2,2,2,2) below, and cd is the corresponding degree
supported on the smooth rational curve M̄C ⊂ M̄(2,2,2,2,2) below.

4.3. Computation of the virtual fundamental classes

In this section we will do the necessary computations to determine the numbers bd

and cd of corollary 4.2.5. Most of them are simple calculations in local coordinates,
so we will only sketch these parts and leave the details to the reader.

The computation of bd is quite simple, as the component M̄B of M̄(2,2,2,2,2) has the
expected dimension.

LEMMA 4.3.1. bd = 1 for all d.

PROOF. By remark 4.1.4 we just have to show that the 10 equations of vanishing
of the 1-jets of ev∗i F for i = 1, . . . ,5 locally cut out the point M̄B in M̄0,5(P2,2)
scheme-theoretically with multiplicity 1. Let us start with the 1-jets at the points
x1,x2,x3, i.e. with the space M̄(2,2,2). We can choose the coordinates on P2 such that
the bitangent is {z2 = 0}⊂ P2 and the bitangency points are (1 : 0 : 0) and (0 : 1 : 0).
This means that

a(d,0,0) = a(d−1,1,0) = 0, a(d−1,0,1),a(d−2,2,0) 6= 0 (tangency at (1 : 0 : 0)),

a(0,d,0) = a(1,d−1,0) = 0, a(0,d−1,1),a(2,d−2,0) 6= 0 (tangency at (0 : 1 : 0)).

Moreover, we can choose coordinates on the source P1 such that the stable map
M̄B is given by (s : t) 7→ (s2− t2 : st : 0), and the marked points are x1 = (1 : 0),
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x2 = (0 : 1), x3 = (1 : 1). Local coordinates of M̄0,3(P2,2) around this point are then
ε1, . . . ,ε8, where the stable map is given by

(s : t) 7→ (s2− t2 + ε1s2 + ε2st + ε3t2 : st + ε4s2 + ε5t2 : ε6s2 + ε7st + ε8t2).

The three tangency equations are that F |s=1,t=ξ, F |s=ξ,t=1, and F |s=1,t=1+ξ have no
constant and linear ξ terms. It is an easy computation to see that these 6 equations,
linearized in the εi, give

ε1 + ε2 + ε3 = ε4 = ε5 = ε6 = ε7 = ε8 = 0,

so M̄(2,2,2) is smooth of dimension 2 at the point M̄B (with the points x4 and x5

forgotten).

Now let us consider the two other tangency conditions at the points x4 and x5. As
the four coordinates of M̄(2,2,2,0,0) around M̄B we can choose the images of the
ramification points and a point in the domain of the stable map in the neighborhood
of each ramification point. Considering only one ramification point for now, the two
corresponding local coordinates are ε̃1 and ε̃2, where the stable map is given locally
in affine coordinates as t 7→ t2+ ε̃1, and the marked point is t = ε̃2. Tangency means
that the constant and linear ξ terms of (ε̃2 +ξ)2 + ε̃1 vanish, so linearly in the ε̃i we
get ε̃1 = ε̃2 = 0. The same is true for the other ramification point, so we see that M̄B

is a smooth point of M̄(2,2,2,2,2). �

To study the space M̄C, we need a lemma that tells us how the stable maps in M̄C

can be deformed if we relax some of the multiplicity conditions.

LEMMA 4.3.2. Let H be a line in P2, and let P∈H be a point where Y is simply tan-
gent to H. Let C = (C,x1,x2, f ) ∈ M̄(2,2) be a (possibly reducible) double cover of
H, such that f−1(P) = {x1,x2}. Then every stable map in M̄(2,2) in a neighborhood
of C is also a double cover of a (maybe different) line.

PROOF. It is obvious that C cannot be deformed into a union of two distinct lines
in M̄(2,2). So we have to show that C cannot be deformed to an irreducible smooth
conic in M̄(2,2).

We use the classical space of complete conics (which is isomorphic to M̄0,0(P2,2)).
Recall that this space is the closure in P5× (P5)∨ of the set (C,C∨), where C is an
irreducible conic and C∨ its dual. For our given point C (with the two marked points
forgotten for the moment), C is the double line H, and C∨ is the union of the two
lines in P∨ that correspond to the two ramification points of f in P2. Assume that
we can deform (C,C∨) in the space of complete conics to an irreducible conic that
is still tangent to Y at two points in the neighborhood of P. In particular, we would
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then deform C∨ to an irreducible conic that is tangent to the dual of Y (or more
precisely if H is a bitangent of Y : to the branch of the dual of Y that corresponds
to the point P) at two points in this neighborhood. By the continuity of intersection
products this means that both lines of C∨ must actually be the line corresponding to
the point P. Hence both ramification points of f would have to be P. This means
that C must have a contracted rational component over P, in contradiction to the
assumption f−1(P) = {x1,x2}. �

We want to reduce the computation of cd to spaces that have the expected dimen-
sion. To do this we use equation (33) from example 4.1.7. Note that by remark
4.1.12 this equation is true in the Chow group of the geometric zero locus of the
section σ (that describes the tangency condition and whose zero locus has class
ev∗5Y +ψ5), so it makes sense to restrict the equation to a connected component of
this zero locus. Using lemma 4.3.2 it is easy to see that M̄C is such a connected
component, so we will restrict equation (33) to M̄C and denote this restriction by
|M̄C

.

Note first that on M̄C the point x5 can only come close to x4, but never to the other
three marked points. Hence equation (33) restricted to M̄C reads(

(ev∗5Y +ψ5) · [M̄(2,2,2,2,1)]
)
|M̄C

= cd +3 [M̄(2,2,2,3)]|M̄C
. (34)

Let us first compute the virtual fundamental classes occurring in this equation.

LEMMA 4.3.3.

(i) The (one-dimensional) virtual fundamental class of M̄(2,2,2,2,1) on M̄C is twice
the usual one.

(ii) The degree of the (zero-dimensional) virtual fundamental class of M̄(2,2,2,3)
on M̄C is 3.

PROOF. We will only sketch the computations.

(i): It is enough to do the computation at a general point of M̄C. We have seen in the
proof of lemma 4.3.1 that M̄(2,2,2,2,0) is smooth of dimension 2 at a general point of
M̄C. But requiring multiplicity 1 at the point x5 gives us a factor of 2 (i.e. ev∗5Y cuts
out M̄C in M̄(2,2,2,2,0) with multiplicity 2) because x5 lies on a tangency point of the
stable map with Y .

(ii): The only point of M̄(2,2,2,3) in M̄C is the stable map in the following picture on
the left:
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Its multiplicity can be computed using remark 4.1.4. Let us study the space M̄(2,2,2,2)
at this point first. By lemma 4.3.2 every stable map in M̄(2,2,2,2) in a neighborhood of
this point must also be a double cover of a line. It follows easily that, locally around
this point, M̄(2,2,2,2) is reducible, with two smooth one-dimensional components
coming together: one of them is keeping the image line f (C) to be the bitangent and
moving the ramification point at x4, while keeping x4 on an inverse image point of
the bitangency point (picture in the middle). A local coordinate for this component
is ε, where the stable map is given locally in affine coordinates as t 7→ z = t(t + ε),
and the marked point x4 has coordinate t = 0. Now the equation F of Y vanishes
on the bitangent with multiplicity 2 in z, so this equation pulled back to the curve
is locally t2(t + ε)2. Its t2 coefficient vanishes to order 2 in ε, so this component
contributes 2 to the virtual fundamental class of M̄(2,2,2,3). The other component
is deforming the line in P2 away from the bitangent, with marked points as in the
picture above on the right. Requiring multiplicity 3 at x4 now restricts the line
back to the bitangent with multiplicity 1. Hence the total degree of the virtual
fundamental class of M̄(2,2,2,3) on M̄C is 2+1 = 3. �

To evaluate the left hand side of equation (34) it is not enough to compute the
integral of ev∗5Y +ψ5 on M̄C. There may also be contributions from components of
M̄(2,2,2,2,1) that just intersect M̄C if the section σ above (whose zero locus has class
ev∗5+ψ5) vanishes on them at a point of M̄C. Let us compute these contributions.

LEMMA 4.3.4. The only component Z of M̄(2,2,2,2,1) that meets M̄C but is not M̄C

itself corresponds to double covers of simple tangent lines of Y , with ramification
and marked points as in the picture on the left:
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Its virtual fundamental class is equal to the usual one. It intersects M̄C in the point
C in the picture on the right. The section σ on Z vanishes at C with multiplicity 4.

PROOF. By lemma 4.3.2 (applied to the two marked points x1 and x2) no stable
map in M̄C can be deformed into an element in M̄(2,2) that is not itself a double
cover of a line. So the only possible deformation is that we still have a double
cover, however not of the bitangent but rather a nearby line. It is now easy to see
that such a deformation is only possible for the stable map C ∈ M̄C in the picture
above on the right, and that the deformation has to be the one in the picture on the
left.

The computation of the virtual fundamental class on this component Z is completely
analogous to similar calculations in previous lemmas and is therefore omitted. It
remains to compute the order of vanishing of the section σ on Z at C . Let us forget
for a moment that the stable map splits off a contracted rational component at this
point. Let P = f (x4) = f (x5) be the bitangency point of C . Choose local affine
coordinates z1,z2 of P2 around P such that the local equation of Y is z2 = z2

1+O(z3
1),

and z2 = 0 is the bitangent. As a local coordinate for Z around C we can choose ε,
where the stable map is given locally around P by t 7→ (z1 = t2− 1

2ε2,z2 =
1
4ε4 +

O(ε5)+ t2 O(ε4)), and the marked points x4 and x5 are t = 0 and t = ε. (Note that
this stable map is still a double cover of a line, t = 0 is a ramification point that
maps to Y , and t = ε another point that maps to Y .)

Now actually the stable map splits off a rational contracted component at C , which
corresponds to blowing up the point (ε = 0, t = 0) in our family of stable maps.
Hence the true local coordinates of this family of stable maps are the coordinates of
this blow-up, i.e. t/ε and ε instead of t and ε. So the marked points x4 and x5 have
coordinates t = 0 and t/ε = 1; in particular they do not coincide any more at ε = 0.

The vanishing of the section σ is the condition of tangency of f to Y at x5. So to
compute its order of vanishing at C we have to look at the linear ξ coefficient of the
equation of Y evaluated at the point t/ε = 1+ξ, i.e. of

z2− z2
1 +O(z3

1) =
1
4

ε
4− (

1
2

ε
2 +ξε

2)2 +O(ε5) =−ξε
4−ξ

2
ε

4 +O(ε5).

Hence the linear ξ coefficient vanishes with multiplicity 4 at ε = 0, which proves
the lemma. �

We can now assemble the results of our local calculations to compute the number
cd .

LEMMA 4.3.5. cd =−1 for all d.
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PROOF. We will evaluate equation (34)(
(ev∗5Y +ψ5) · [M̄(2,2,2,2,1)]

)
|M̄C

= cd +3 [M̄(2,2,2,3)]|M̄C
.

The right hand side is cd + 9 by lemma 4.3.3 (ii). The left hand side gets a con-
tribution from the components of M̄(2,2,2,2,1) that intersect M̄C, and a contribution
from M̄C ⊂ M̄(2,2,2,2,1) itself. The former is 4 by lemma 4.3.4. The latter is twice
the degree of ev∗5Y +ψ5 on M̄C by lemma 4.3.3 (i). Note that the degree of ev∗5Y on
M̄C is zero, as the image point of x5 is fixed in M̄C.

To compute the integral of ψ5 on M̄C we will give a section of the cotangent line
bundle L5 and compute its zero locus. Let z be a local coordinate around the bitan-
gency point f (x4) = f (x5). Then f ∗dz defines a section of L5. This section vanishes
only at the point where the moving ramification point comes to x4 and x5, i.e. at the
point C in the picture of lemma 4.3.4 on the right. The computation of the order of
vanishing is very similar to the calculation in lemma 4.3.4. Ignoring the fact that C
splits off a rational contracted component for x4 and x5, a local coordinate for M̄C

around C is ε, where the stable map is given locally by t 7→ z = t(t− ε), the points
x4 and x5 are t = 0 and t = ε, and the moving ramification point is at t = 1

2ε. Now,
as in the proof of the previous lemma, taking into account the contracted rational
component of C means that we have to blow up the point (t = 0,ε = 0), and the
coordinates are actually t/ε and ε. Now we see that

f ∗dz =
∂

∂
t
ε

(
ε

2 · t
ε

( t
ε
−1
))

d
t
ε
= ε

2
(

2
t
ε
−1
)

d
t
ε
,

which vanishes with multiplicity 2 in ε around 0 at the point x5. Hence the integral
of ψ5 over M̄C is 2.

Putting everything together we get 4+2 ·2 = cd +9, and therefore cd =−1. �

We can now insert the values for Nd , bd and cd from proposition 4.1.10, lemma
4.3.1, and lemma 4.3.5, respectively, into the equation from lemma 4.2.5, and get
the following final result.

COROLLARY 4.3.6. For d ≥ 5 the enumerative number of conics 5-fold tangent to
Y is

nd =
1
5!

d (d−3)(d−4)(d7 +12d6−18d5−540d4 +251d3 +5712d2−1458d−14580).

REMARK 4.3.7. The first few values of nd are given in the following table.

d 5 6 7 8 9 10
nd 2015 70956 684222 3878736 16137873 54575640
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4.4. Application to rational curves on K3 surfaces

Let X be a K3 surface, and let β⊂ H2(X ,Z) be the class of a holomorphic curve in
X . The moduli space of stable maps to X of class β has virtual dimension −1, so
there is no corresponding Gromov-Witten invariant of X . However, we have chosen
X such that it contains rational curves of class β, and we would like to count them.
The reason for the mismatch in the virtual dimension is that, in the space of all K3
surfaces, only a 1-codimensional subset of K3 surfaces contains curves in the class
β at all. So, if X is a general 1-dimensional family of K3 surfaces with X as central
fiber, and β̃ ∈ H2(X ,Z) is the class induced by β via the inclusion X ⊂ X , then the
only rational curves in X of class β̃ are in fact curves of class β in X . But now the
virtual dimension of the space of stable maps to X of class β is 0, hence there is a
corresponding Gromov-Witten invariant. This invariant counts curves in X of class
β̃ and therefore curves in X of class β; so we would like to call this number nβ “the
number of rational curves in X of class β”. A rigorous definition of the invariant nβ

of X along these lines has been given in [BL]. The number nβ does not depend on
a family X chosen to define it.

The numbers nβ have been computed in various papers ([BL, Bv, Gö, YZ]) under
the assumption that the class β is primitive, i.e. not a non-trivial multiple of a smaller
integral homology class. The result is that nβ is equal to the qd coefficient in the
series

G(q) = ∏
i>0

1
(1−qi)24 = 1+24q+324q2 +3200q3 +25650q4 +176256q5 + · · ·

=: ∑
d≥0

Gdqd.

where d = 1
2β2 +1. It is not known yet what the numbers are if β is not primitive.

The results of this chapter allow us to compute the number nβ explicitly in a case
where β is not primitive. Let Y ⊂ P2 be a general sextic curve, and let π : X→ P2 be
the double cover of P2 branched along Y . It is well-known that X is a K3 surface.
Let us start by considering curves on X in the (primitive) class β = π∗`, where `

is the class of a line. The pull-back of a general line in P2 will be a 2:1 cover of
P1, branched along the 6 intersection points of Y with the line, hence it is a curve
of genus 2. We get a rational curve (with 2 nodes) on Y as a pull-back of a line if
and only if the line is a bitangent of Y : the pull-back is then again a 2:1 cover, but
with 2 nodes (the bitangency points), and only 2 ramification points (the remaining
2 intersection points of Y with the line). So we see that nπ∗` has to be the number of
bitangents of Y . In fact, this number is 324 (see e.g. [H] exercise IV.2.3 f), which is
equal to G2 (note that 1

2(π
∗`)2 +1 = 2).
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Now let us consider rational curves in X of class 2π∗`, i.e. pull-backs of conics —
this class is not primitive any more. The pull-back of a general conic will be a 2:1
cover of the conic ramified at 12 points, so it is a curve of genus 5. We can get
rational curves in the following ways:

(i) Pull-backs of (smooth) conics that are 5-fold tangent to Y . These will be
2:1 covers of the conic, with 5 nodes over the tangency points, and only 2
ramification points (the remaining 2 intersection points of Y with the conic).
By corollary 4.3.6, there are 70956 such curves.

(ii) Pull-backs of unions of two distinct lines: these give a rational curve only if
the pull-backs of both lines are rational, i.e. they are both bitangents. The
pull-back is then a union of two (2-nodal) rational curves on X that intersect
in 2 points. To make this into a rational stable map we can glue these two
components at either intersection point. Hence there are 2 ·

(324
2

)
= 104652

such stable maps.
(iii) Double covers of pull-backs of a line, necessarily again of a bitangent. The

pull-back of such a bitangent is a 2-nodal rational curve C. There are two
possible ways of double covers of such a curve:
(a) Double covers that factor through the normalization of C. The space of

these curves is the same as that of double covers of a smooth rational
curve; it has dimension 2.

(b) Double covers that do not factor through the normalization. They have
two components that are both mapped to C with degree 1, and glued
over one of the nodes of C in such a way that locally around this node
the morphism of the stable map is an isomorphism onto C. There are
2 ·324 = 648 such curves.

Adding up just the numbers from (i), (ii), and (iii b), we get

70956+104652+648 = 176256,

which is exactly G5 (and 1
2(2π∗`)+ 1 = 5). So we see that, for our non-primitive

class β, the corresponding invariant from the series G(q) does give the correct num-
ber, except for a correction (iii a) for double covers of curves of class 1

2β that factor
through the normalization of these curves. Let us compute what this correction term
is.

LEMMA 4.4.1. With notations as above, the double covers of type (iii a) of the
pull-back of a bitangent contribute 1

8 to the invariant n2π∗`.

PROOF. Let D ∼= P1 be the normalization of the nodal rational curve in X . The
moduli space of the double covers that factor through the normalization is then just
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M̄0,0(D,2), which has dimension 2. As the normal bundle of the (local) immersion
D→ X is O(−2), the rank-3 obstruction bundle for the corresponding Gromov-
Witten invariant would be R1π∗ f ∗O(−2), where π : M̄0,1(P1,2)→ M̄0,0(P1,2) is
the forgetful map and f : M̄0,1(P1,2)→ P1 the evaluation.

As explained above, the K3-invariants of X are defined as the ordinary Gromov-
Witten invariants of a 1-dimensional family X of K3 surfaces in which X is the only
surface that contains rational curves in the given homology class. This means that
the obstruction bundle for the K3 invariants is obtained from the usual Gromov-
Witten obstruction bundle by taking the quotient with π∗ f ∗NX/X = π∗ f ∗O = O. So
the integral that we want to compute is

ctop(R1
π∗ f ∗O(−2)/O) · [M̄0,0(P1,2)].

This is easily done: from the two exact sequences on M̄0,1(P2,2)

0→ f ∗O(−1)→ f ∗O→ f ∗OP→ 0

0→ f ∗O(−2)→ f ∗O(−1)→ f ∗OP→ 0

(where P∈P1 is a point) we get the exact sequences of vector bundles on M̄0,0(P2,2)

0→ O→ π∗ f ∗OP→ R1
π∗ f ∗O(−1)→ 0

0→ π∗ f ∗OP→ R1
π∗ f ∗O(−2)→ R1

π∗ f ∗O(−1)→ 0

from which it follows that

c2(R1
π∗ f ∗O(−2)/O) = c2(R1

π∗ f ∗(O(−1)⊕O(−1))),

i.e. the contribution of the double covers under consideration is the same as the dou-
ble cover contribution for rational curves on Calabi-Yau threefolds with balanced
normal bundle. This contribution is well-known to be 1

8 , see e.g. chapter 3. �

So we see that
n2π∗` = G5 +

1
8
·G2.

We conjecture that this pattern continues, i.e. that the numbers nβ receive multiple
cover corrections similarly to the case of Gromov-Witten invariants of Calabi-Yau
threefolds:

nβ = ∑
k

1
k3 ·G 1

2 (
β

k )
2+1,

where the sum is taken over all k > 0 such that β

k is an integral homology class.





CHAPTER 5

Relative Gromov-Witten invariants in higher genus

So far we have only considered Gromov-Witten invariants in genus zero. In this
last chapter we want to generalize our earlier techniques to higher genus of the
curves. As an example we will then apply these techniques to compute the elliptic
Gromov-Witten invariants of a quintic threefold.

The first step in the generalization of our earlier techniques must of course be the
construction of the moduli spaces of stable relative maps and their virtual funda-
mental classes in any genus. Recall that our construction of the virtual fundamental
class for moduli spaces of rational stable relative maps in chapter 2 was quite ad
hoc: we started from the case of Pn relative a hyperplane where the moduli spaces
have the expected dimension, and then intersected this space with the virtual funda-
mental class of the moduli space of stable absolute maps to X ⊂ Pn. But in higher
genus the moduli spaces never have the expected dimension, not even for Pn. Hence
we cannot generalize our old trick to higher genus.

The solution to this problem has recently been given by Li [Li1, Li2]. He constructs
moduli spaces of stable relative maps with virtual fundamental classes in any genus
and for any smooth hypersurface Y in a projective manifold X . His construction
uses certain blow-ups of the moduli spaces of definition 2.1.1 on which he can
then define virtual fundamental classes using a suitable obstruction theory. Blowing
the result down again one can then also get virtual fundamental classes on our old
moduli spaces of definition 2.1.1. If we want to distinguish between our old spaces
and the new blown-up ones we will call the former the moduli spaces of collapsed
stable relative maps (see definition 5.1.10 and lemma 5.1.12).

The main property of the moduli spaces of stable relative maps proven in [Li2] is the
so-called splitting formula. In our case at hand the idea of this formula is as follows.
Let Z be the blow-up of X×P1 in Y×{0}. The natural projection morphism Z→P1

has general fiber X and central fiber X∪Y P, where P=P(N∨Y/X⊕OY ) is a P1-bundle
over Y . We can therefore regard X ∪Y P as a degeneration of X .

121
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The idea is now simply that the Gromov-Witten invariants of X and X ∪Y P should
be the same (as Gromov-Witten invariants are constant in families), and that the
invariants of X ∪Y P should be expressible in terms of invariants of the two factors
X and P. More precisely, the splitting formula of [Li2] asserts that the (absolute)
Gromov-Witten invariants of X are computable as a product of the relative Gromov-
Witten invariants of X and P relative Y .

It is obvious how this picture is related to our degeneration methods of chapter 2:
we simply have to push the splitting formula forward along the blow-down map
Z→ X×P1 (and then further to X). The stable relative maps to P are then projected
down to (absolute) stable maps to Y . So we get relations between the absolute
invariants of X , the absolute invariants of Y , and the relative invariants of X relative
Y . In fact, we will see that in genus 0 the relations that we get are precisely the same
as in chapter 2. In higher genus one gets similar relations, and one can hope that
these relations can be used to compute Gromov-Witten invariants of Y from those
of X in the same way as in section 2.5.

There is only one point in the above argument that needs some more explanation:
we have to describe the projection map p from stable relative maps in P to stable
absolute maps in Y explicitly, or in other words we must be able to compute the
relative invariants of P relative Y in terms of the absolute invariants of Y . In fact,
the major part of this chapter discusses this problem. We compute the push-forward
by p of any intersection product of evaluation and cotangent line classes under the
condition that this push-forward has (virtual) codimension 0 or 1 in the target space
of stable absolute maps to Y . The main tool in the computation is the technique
of virtual localization that has been established recently for moduli spaces of stable
relative maps in [GV]. We show that these formulas together with the above ideas
are sufficient to compute the elliptic Gromov-Witten invariants of the quintic three-
fold from the invariants of P4. It is expected that similar reconstruction statements
hold for other varieties as well, and that our methods can be extended to higher
genus by a more careful analysis of the push-forward by p. We would also expect
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that the methods of chapter 3 can be extended at least to the elliptic case to arrive at
a mirror type formula for the invariants of certain hypersurfaces.

Let us give a short outline of this chapter. In section 5.1 we review Li’s construction
of stable relative maps. We extend this construction to the so-called non-rigid stable
maps to P1-bundles that have already been mentioned in [GV]. The most important
technical property of relative invariants of P1-bundles that we need is the virtual
push-forward property that we prove in section 5.2. It asserts that the push-forward
by p of all relevant intersection products is zero if their dimension is bigger than
the virtual dimension of the target, and a multiple of the virtual fundamental class
if their dimension is equal to the virtual dimension of the target. We will then apply
this theorem and its corollaries to compute the push-forwards by p explicitly in the
cases when these push-forwards have codimension 0 (section 5.3) or 1 (section 5.4)
in the target. As a simple consequence we reprove the algorithm of chapter 2 for
the computation of Gromov-Witten invariants of very ample hypersurfaces in our
new set-up. Finally, the results are applied to compute the elliptic Gromov-Witten
invariants of the quintic threefold in section 5.5. To the best of our knowledge this
is the first mathematical verification of these numbers. I have been informed by Li
however that he has recently computed the same numbers using different methods
[Li3].

5.1. Stable relative and non-rigid maps

Let us start by recalling Li’s construction of stable relative maps [Li1]. The main
idea of this new construction is that stable relative maps to X relative Y are in general
not just stable maps to X with some properties, but rather stable maps to some
degenerations of X . Let us introduce these degenerations first.

DEFINITION 5.1.1. Let Y be a smooth hypersurface in a smooth projective variety
X . We denote by P=P(N∨Y/X⊕OY ) the projective closure of the dual normal bundle
of Y in X . It comes equipped with a natural C∗ action that rescales the fibers by
acting with weights 1 and 0 on NY/X and O, respectively. The fixed point locus of
this C∗ action consists of two components: the zero section Y0 := P(0⊕O)∼=Y ⊂ P
and the infinity section Y∞ := P(N∨Y/X ⊕0)∼=Y ⊂ P. Note that the normal bundle of
Y0 (resp. Y∞) in P is N∨Y/X (resp. NY/X ).

For any k≥ 0 we define a normal crossing scheme Xk, called the k-th degeneration
of X , as follows. It consists of k+1 irreducible components that will also be called
levels and that are numbered from 0 to k. Level 0 is isomorphic to X , whereas all
other levels are isomorphic to P. These components are glued transversally in the
following way:



124 5. RELATIVE GROMOV-WITTEN INVARIANTS IN HIGHER GENUS

• we glue Y ⊂ X in level 0 to Y0 ⊂ P in level 1,
• we glue Y∞ ⊂ P in level i to Y0 ⊂ P in level i+1 for i = 1, . . . ,k−1.

The infinity section Y∞ of Xk is defined to be the infinity section of the last level k.

Note that there is a projection morphism π : Xk→ X by collapsing the fibers in all
levels greater than 0. Moreover, the C∗ action on the k copies of P makes the group
(C∗)k into a group of automorphisms of Xk. We will call these automorphisms
the allowed automorphisms of Xk. When drawing pictures we will indicate their
presence by two-sided arrows pointing along the fiber directions.

REMARK 5.1.2. Note that X0 = X . Moreover, Xk+1 is in fact a degeneration of Xk

for all k in the following sense: if Z denotes the blow-up of Xk×P1 in Y∞×{0} then
Z→ P1 is a flat family with general fiber Xk and zero fiber Xk+1. The singular locus
of Xk consists of k disjoint copies of Y .

We will now use these degenerations of X to construct stable relative maps. Fol-
lowing [Li1] we will only do this in the case when “all intersection points with Y
are marked”, i.e. if the sum of the prescribed local orders of contact is equal to the
intersection product of Y with the homology class of the curve. The construction
that we give here differs slightly from the one that we introduced in chapter 2 in
the cases when both definitions are applicable. We will see in lemma 5.1.12 how
the two constructions are related: in fact our old construction yields precisely the
moduli spaces of collapsed stable relative maps that we will introduce in definition
5.1.10. So from now on we will refer to the construction of chapter 2 as collapsed
stable relative maps.

DEFINITION 5.1.3. An (n-pointed) pre-stable relative map to X (relative Y ) is an
n-pointed pre-stable map (C,x1, . . . ,xn, f ) to some degeneration Xk such that:

(i) No irreducible component of C maps entirely to Y∞ ⊂ Xk or to the singular
locus of Xk.

(ii) Every point that maps to Y∞ ⊂ Xk is a marked point.
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(iii) Every point of C that maps to the singular locus of Xk is a node with the
property that the two local branches around the node map to the two different
local components of Xk with the same orders of contact to the singular locus
on both sides.

The integer k is then called the level of the pre-stable relative map. The level-i part
of a pre-stable relative map is its restriction to the closed subset of C that maps to
the level-i component of Xk.

A morphism (C,x1, . . . ,xn, f )→ (C′,x′1, . . . ,x
′
n, f ′) of n-pointed pre-stable relative

maps of the same level k is a pair (ϕ, ϕ̃) where

• ϕ : C→C′ is a morphism of the underlying curves,
• ϕ̃ : Xk→ Xk is an allowed automorphism in the sense of definition 5.1.1,

such that ϕ̃ ◦ f ◦ϕ = f ′. In other words, applying an allowed automorphism to Xk

will result in an isomorphic pre-stable relative map. Again we indicated this by the
two-sided arrow in the picture above.

A pre-stable relative map is called stable if its group of automorphisms is finite. The
class of a pre-stable relative map is defined to be the element π∗ f∗[C] ∈ H+

2 (X).

REMARK 5.1.4. A pre-stable relative map (C,x1, . . . ,xn, f ) of level k is stable if and
only if

(i) it is stable as a pre-stable map to Xk, i.e. every rational (resp. elliptic) compo-
nent of C that is mapped to a point by f has at least three (resp. one) special
points, and

(ii) for all 1 ≤ i ≤ k the level-i part is not invariant under the allowed isomor-
phisms of P, i.e. it is not a disjoint union of smooth rational components that
are all multiple covers of fibers of P totally ramified over Y0 and Y∞ and with
no special points away from Y0 and Y∞.
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DEFINITION 5.1.5. Let (C,x1, . . . ,xn, f ) be a pre-stable relative map of level k to X
relative Y . For i = 1, . . . ,n we define the multiplicity αi of the i-th marked point
xi to be the multiplicity of the point xi in the divisor f ∗Y∞. The collection of these
multiplicities will be denoted α = (α1, . . . ,αn).

EXAMPLE 5.1.6. The pre-stable relative map in the picture of definition 5.1.3 has
multiplicities α = (α1, . . . ,α5) = (0,0,1,1,1). Note that we must have ∑

n
i=1 αi =

Y ·β for all pre-stable relative maps of class β.

DEFINITION 5.1.7. Fix integers g,n ≥ 0, a homology class β ∈ H+
2 (X), and a col-

lection of non-negative integers α = (α1, . . . ,αn) such that ∑i αi =Y ·β. We denote
by M̄ Y

g,α(X ,β) the set of (isomorphism classes of) all stable relative maps (of any
level) to X relative Y of genus g and class β whose multiplicities are α. If no confu-
sion can result we will also denote this space by M̄g,α(X ,β).

THEOREM 5.1.8. The moduli spaces M̄ Y
g,α(X ,β) of stable relative maps are sepa-

rated and proper Deligne-Mumford stacks of expected dimension

vdimM̄ Y
g,α(X ,β) = vdimM̄g,n(X ,β)−∑αi

=−KX ·β+(dimX−3)(1−g)+∑
i
(1−αi).

Moreover, there is a naturally defined virtual fundamental class [M̄ Y
g,α(X ,β)]virt ∈

A∗(M̄ Y
g,α(X ,β)) of this dimension.

PROOF. See [Li1] and [Li2]. �

EXAMPLE 5.1.9. Note that the level is not fixed in the moduli spaces of stable rel-
ative maps. The idea is that a level is added whenever a component of the curve
would otherwise lie in Y∞ or the singular locus of Xk. The following picture illus-
trates this: if the marked point x3 on the level-0 stable relative map on the left is
moved towards the point x2, the limit will be the level-1 stable relative map on the
right. In this limit, x2 and x3 lie on a two-to-one cover of a fiber of P ramified over
Y0 and Y∞. The position of the point x3 on this cover is not fixed because of the
allowed automorphisms of P. Note that the multiplicities α = (1,2,0) remain the
same in the limit.
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Let us now sketch how our new construction of stable relative maps is related to the
old one from chapter 2.

DEFINITION 5.1.10. The projection maps π : Xk→ X give rise to morphisms

π∗ : M̄ Y
g,α(X ,β)→ M̄g,n(X ,β)

that simply collapse all higher levels to the hypersurface Y . We denote the image of
this morphism (with the reduced closed substack structure) by M̄Y

g,α(X ,β) and call
this the moduli space of collapsed stable relative maps. The virtual fundamental
class of M̄g,α(X ,β) is simply defined to be π∗[M̄g,α(X ,β)]virt.

REMARK 5.1.11. Note that M̄g,α(X ,β) is not a “nice” moduli space in the usual
sense: it does not represent a moduli functor, it does not have a naturally defined
structure of stack (the choice of reduced substack structure in definition 5.1.10 is
somewhat artificial), and there is no canonical obstruction theory on it that gives
rise to its virtual fundamental class. Nevertheless, the spaces of collapsed stable
relative maps are sometimes preferred for enumerative purposes for a number of
reasons, e.g.

(i) they are subspaces of the well-known moduli spaces of stable maps that are
reasonably easy to describe (see definition 2.1.1 and lemma 5.1.12),

(ii) they behave nicely for disconnected curves (see remark 5.1.13, proposition
5.2.8, and conjecture 5.2.9),

(iii) they are sufficient to apply the “splitting theorem” (see remark 5.1.14).

LEMMA 5.1.12. Let Y ⊂ X be a smooth hypersurface of a smooth projective variety
X. Let g,n ≥ 0 be non-negative integers, and let β ∈ H+

2 (X) be a homology class.
Pick non-negative integers α = (α1, . . . ,αn) with ∑i αi = Y ·β. Then the definitions
2.1.1 and 5.1.10 of M̄Y

g,α(X ,β) agree. Moreover, if g = 0 and Y ⊂ X is a very
ample hypersurface then definitions 2.1.19 and 5.1.10 give rise to the same virtual
fundamental class on M̄Y

g,α(X ,β).

PROOF. We will only sketch the argument and leave the details to the reader.

By definition, the statement about the spaces M̄Y
g,α(X ,β) is purely set-theoretic. So

let (C,x1, . . . ,xn, f ) be a stable map to X of genus g and class β, and let Z ⊂C be
a connected component of f−1(Y ). By definition 2.1.1 the stable map will be in
M̄Y

g,α(X ,β) if and only if for all such Z we have

( f |Z)∗Y = ∑
i:xi∈Z

αixi−∑
j

m( j)y j

in A0(Z), where y1, . . . ,yr are the intersection points of Z with the components of
C not contained in Z, and m( j) are the multiplicities of f to Y at y j at the branch
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of C that is not in Z. But by definition of rational equivalence this is precisely
the condition that the morphism f |Z : Z → Y lifts to a morphism Z → P with the
required multiplicity conditions at Y0 and Y∞, which means that the stable map is in
the image of the projection map π : M̄g,α(X ,β)→ M̄g,α(X ,β).

To prove the statement about the virtual fundamental classes, consider the embed-
ding i : X ↪→ PN given by the complete linear system |Y |, and let H ⊂ PN be the
hyperplane such that X ∩H = Y in PN . Note that we have a Cartesian diagram

M̄ Y
0,α(X ,β) //

π∗
��

M̄ H
0,α(PN ,d)

π′∗
��

M̄Y
0,α(X ,β) //

��

M̄H
0,α(PN ,d)

��

M̄0,n(X ,β)
i∗ // M̄0,n(Pn,d)

where d = Y ·β, and where all morphisms except π∗ and π′∗ are closed immersions.
Let us compute the virtual fundamental class of M̄Y

0,α(X ,β) using definition 5.1.10.
By the explicit description of the obstruction theory of M̄ Y

g,α(X ,β) in [GV] section
2.8 we see that i!∗[M̄ H

g,α(PN ,d)]virt = [M̄ Y
g,α(X ,β)]virt. Moreover, π′∗[M̄

H
0,α(PN ,d)]virt

must be a multiple of [M̄H
0,α(PN ,d)]virt since the dimensions of these two cycles

agree and the latter one is just the ordinary fundamental class of an irreducible
space (see lemma 2.1.15 and lemma 2.1.16 (iii)). In fact, this multiple must be
1 since it is checked immediately (using again the description of the obstruction
theory of M̄H

0,α(PN ,d) in [GV] section 2.8) that the obstruction space vanishes at a
general element in M̄H

0,α(PN ,d). An application of [F] theorem 6.2a thus shows that

π∗[M̄Y
0,α(X ,β)]virt = π∗i!∗[M̄

H
0,α(PN ,d)]virt

= i!∗p
′
∗[M̄

H
0,α(PN ,d)]virt

= i!∗[M̄
H
α (PN ,d)]virt,

which is definition 2.1.19 of the virtual fundamental class of M̄Y
g,α(X ,β). �

REMARK 5.1.13. Moduli spaces for stable curves, stable maps, and stable relative
maps can of course be defined in the very same way for disconnected curves. In this
case we have to fix the number of connected components as well as the data of the
curves (number of marked points, genus, class, and maybe multiplicities) for every
such component. To avoid overly clumsy notation we will usually denote such a
moduli space simply by M̄Γ, M̄Γ(X), or M̄Y

Γ
(X), where Γ denotes the collection of

the data mentioned above.
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For stable curves and stable maps it is obvious by definition that these moduli spaces
of disconnected curves (and their virtual fundamental classes) are simply the prod-
ucts of the moduli spaces (resp. their virtual fundamental classes) for the individual
connected components. The situation for stable relative maps is a little more subtle
however, because the allowed automorphisms in the higher levels in definition 5.1.3
act globally on the curve and not on each connected component separately. The
moduli spaces for disconnected stable relative maps are thus not just the products
of the moduli spaces for the factors. This difference occurs only in higher levels
though, so we would expect that the product property does hold for collapsed stable
relative maps. In fact, we will prove this in proposition 5.2.8, at least in genus 1.

REMARK 5.1.14. The main property of stable relative maps is the “splitting the-
orem” proven in [Li2]. The idea of this theorem is to compute Gromov-Witten
invariants of a smooth projective variety by degenerating it into a normal crossing
scheme with two components intersecting transversally in a divisor. We will state it
here only in the case that we will need later.

Let X be a smooth projective variety, and let Y ⊂ X be a smooth hypersurface. Let
Z be the blow-up of X ×P1 in Y ×{0}, so that the general fiber of the projection
Z → P1 is isomorphic to X , whereas the fiber over zero is the normal crossing
scheme X1 = X ∪Y P. Now fix non-negative integers g,n ≥ 0 and fix a homology
class β ∈ H+

2 (X). Let M be the moduli space of n-pointed stable maps of genus
g to Z whose class is β in a (general) fiber of the morphism Z → P1. Then M
has a projection morphism to the base P1 as well, and the general fiber of this
morphism is simply M̄g,n(X ,β). We can therefore think of the virtual fundamental
class [M̄g,n(X ,β)]virt as being a cycle in A∗(M).

Now we consider the fiber of M over the zero point in P1. Roughly speaking, this is
the space of stable maps to X1 = X ∪Y P, which should be expressible as a product
of moduli spaces of stable maps to X and P. The precise formula is

[M̄g,n(X ,β)]virt = ∑
Γ1,Γ2

m(Γ1,Γ2) · [M̄Y
Γ1
(X)]virt� [M̄Y

Γ2
(P)]virt



130 5. RELATIVE GROMOV-WITTEN INVARIANTS IN HIGHER GENUS

in A∗(M), where we have used the following notation. The spaces M̄Y
Γ1
(X) (resp.

M̄Y
Γ2
(P)) are moduli spaces of (possibly disconnected) stable relative maps to X

(resp. P) relative Y , where Γ1 (resp. Γ2) denotes the collection of the following
data:

(i) the number of connected components of the stable relative maps,
(ii) the genus and homology class of all connected components (where every ho-

mology class must be non-zero),
(iii) for every connected component the subset of {1, . . . ,n} of the marked points

lying on it, where all these points have multiplicity 0 (i.e. do not lie on Y ),
(iv) for every connected component a collection of additional marked points {yi}

lying on Y with associated positive multiplicities αi.

The sum in the above formula is taken over all pairs of data (Γ1,Γ2) such that

• the glued stable map is connected and has the correct genus and homology
class, and
• the additional marked points yi are labeled on both the X and the P side by

the same index set {1, . . . ,r} for some r, and the multiplicities αi associated
to these points agree on both sides.

To explain the rest of the notation in the above formula, the coefficient m(Γ1,Γ2)

is defined to be α1···αr
r! divided by the order of the automorphism group of the data

(Γ1,Γ2). The notation � means that we take the moduli spaces of collapsed stable
relative maps on both sides and take their fiber product over the r-fold evaluation
map to Y at the points yi.

We should mention that the same formula also holds if the starting curve (i.e. the
left hand side in the above equation) is already disconnected. The only difference
is then that we have to sum over all pairs (Γ1,Γ2) of data such that gluing the parts
along Y reproduces the combinatorics of all these components correctly.

For our applications we will need another variant of stable relative maps. Intuitively
speaking it corresponds to stable relative maps without the level-0 part, so that we
consider maps to a chain of P1-bundles where we then fix multiplicities both to Y0

and to Y∞.

DEFINITION 5.1.15. Let L be a line bundle on a smooth projective variety Y , and
denote by X = P(L⊕OY ) the projective closure of L. We can consider Y ∼= Y∞ =

P(L⊕ 0) as a divisor in X . In definition 5.1.1 we then have P = X , so that Pk is a
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chain of k+1 copies of P. We denote by Y0 ⊂ Pk the zero section in the first copy
of P.

An (n-pointed) pre-stable non-rigid map to P is an n-pointed pre-stable map
(C,x1, . . . ,xn, f ) to some degeneration Pk such that:

(i) No irreducible component of C maps entirely to Y0, Y∞, or to the singular
locus of Pk.

(ii) Every point that maps to Y0 or Y∞ is a marked point.
(iii) Every point of C that maps to the singular locus of Xk is a node with the

property that the two local branches around the node map to the two different
local components of Xk with the same orders of contact to the singular locus
on both sides.

Morphisms of pre-stable non-rigid maps are defined in the same way as for pre-
stable relative maps, however allowing automorphisms of P in every copy of P
(including the first one). A pre-stable non-rigid map is called stable if its group of
automorphisms is finite. For i = 1, . . . ,n we define the multiplicity αi of the i-th
marked point xi to be the multiplicity of the point xi in the divisor f ∗Y∞− f ∗Y0.

Fix integers g,n ≥ 0, a homology class β ∈ H+
2 (P), and a collection of integers

α = (α1, . . . ,αn) such that

∑
i:αi>0

αi = Y∞ ·β and ∑
i:αi<0

(−αi) = Y0 ·β.

We denote by M̄g,α(P,β)∼ the set of (isomorphism classes of) all stable non-rigid
maps (of any level) to P of genus g and class β whose multiplicities are α.

THEOREM 5.1.16. The moduli spaces M̄g,α(P,β)∼ of stable non-rigid maps are
separated and proper Deligne-Mumford stacks of expected dimension

vdimM̄g,α(P,β)∼ = vdimM̄g,n(Y, p∗β)−g,
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where p : P→ Y denotes the projection. Moreover, there is a naturally defined
virtual fundamental class [M̄g,α(P,β)∼]virt ∈ A∗(M̄g,α(P,β)∼) of this dimension.

PROOF. See [GV] section 2.4. �

CONSTRUCTION 5.1.17. Let (C,x1, . . . ,xn, f ) be a stable non-rigid map to P of
level k, given by a morphism f : C→ Pk. Let xi be a marked point with positive
multiplicity αi. As f has multiplicity exactly αi at xi to Y∞ there is an induced iso-
morphism T⊗αi

C,xi
→ NY∞/P, f (xi). Note however that this isomorphism is not preserved

under isomorphisms of the stable non-rigid map, since the allowed isomorphisms
of P act on the normal space NY∞/P, f (xi) of the target, but not on the tangent space
TC,xi . To obtain a well-defined isomorphism that is invariant under automorphisms
of the stable non-rigid map we have to take two marked points xi and x j with pos-
itive multiplicities and consider the “quotient” of the above constructions at these
two points: the isomorphism

T⊗αi
C,xi
⊗T∨⊗α j

C,x j
→ NY∞/P, f (xi)⊗N∨Y∞/P, f (x j)

is well-defined on isomorphism classes of stable non-rigid maps. Consequently,
there is an equality of cohomology classes

α jψ j−αiψi = ev∗i c1(L∨)− ev∗j c1(L∨)

in A1(M̄g,α(P,β)∼). In other words, we conclude that the cohomology class

Ψ∞ := αiψi + ev∗i c1(L∨) ∈ A1(M̄g,α(P,β))

is independent of the choice of marked point xi as long as it is a point that maps to
Y∞, i.e. a point with positive multiplicity. The class Ψ∞ is called ψ in [GV] section
2.5.

Note that by symmetry the same construction can be made for the marked points
that map to Y0, leading to a cohomology class Ψ0 ∈ A1(M̄g,α(P,β)).

REMARK 5.1.18. Similarly to remark 5.1.13, moduli spaces of stable non-rigid
maps can be defined for disconnected curves as well. In contrast to stable (ordinary
or relative) maps there is no relation however between moduli spaces for discon-
nected curves and the moduli spaces for their connected components.

5.2. The virtual push-forward theorem

The goal of this section is to prove an important technical result about the behavior
of virtual fundamental classes under certain push-forward maps. The results are not
surprising — in fact they are trivial in the cases when the virtual fundamental classes
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are equal to the ordinary ones. But we cannot assume this here as the moduli spaces
of stable maps are essentially never of the expected dimension for higher genus of
the curves.

DEFINITION 5.2.1. Let p : M → M′ be a morphism of moduli spaces of stable
(absolute, relative, or non-rigid) maps. We say that p satisfies the virtual push-
forward property if for every (homogeneous) cohomology class γ ∈ A∗(M) that
is made up from evaluation classes, cotangent line classes, and classes pulled back
from M′ by p, the following two conditions hold:

(i) If the dimension of the cycle γ · [M]virt is bigger than the virtual dimension of
M′ then p∗(γ · [M]virt) = 0.

(ii) If the dimension of the cycle γ · [M]virt is equal to the virtual dimension of M′

then p∗(γ · [M]virt) is a scalar multiple of [M′]virt.

REMARK 5.2.2. Note that property (i) of definition 5.2.1 is trivial if the dimension
of M′ is equal to its virtual dimension, since then p∗(γ · [M]virt) is a cycle in a Chow
group that is zero for dimensional reasons. In the same way, property (ii) is obvious
if in addition M′ is irreducible, since then p∗(γ · [M]virt) is a cycle in a Chow group
that is generated by [M′]virt = [M′].

We now want to prove the virtual push-forward property for some morphisms that
will occur later in this chapter. Actually we would expect that the virtual push-
forward property holds for all “natural” morphisms of moduli spaces of stable maps,
but we do not know a way to prove this statement (or even to formulate it in a
rigorous way).

REMARK 5.2.3. To show the virtual push-forward property for a morphism p it is
sufficient to check conditions (i) and (ii) of definition 5.2.1 for cohomology classes
that are products of evaluation and cotangent line classes. In fact, let γ = γ′ · p∗δ
be a cohomology class such that γ′ is made up from evaluation and cotangent line
classes, and δ is non-trivial. If the dimension of the cycle γ · [M]virt is at least equal
to the virtual dimension of M′ then the dimension of the cycle γ′ · [M]virt is bigger
than the virtual dimension of M′. So if we know that condition (i) of definition 5.2.1
holds for γ′ it follows by the projection formula that

p∗(γ · [M]virt) = δ · p∗(γ′ · [M]virt) = δ ·0 = 0,

i.e. conditions (i) and (ii) hold for the class γ as well. Moreover, this argument shows
that a morphism satisfying the virtual push-forward property satisfies the following
extension of condition (ii) as well:
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(iii) If the dimension of the cycle γ · [M]virt is equal to the virtual dimension of
M′ and γ contains a non-trivial factor pulled back from M′ by p then p∗(γ ·
[M]virt) = 0.

LEMMA 5.2.4. Every forgetful morphism p : M̄g,n(X ,β)→ M̄g,n−m(X ,β) that for-
gets a given subset of the marked points of n-pointed stable maps to a smooth pro-
jective variety X satisfies the virtual push-forward property.

PROOF. We will prove the statement by induction on the number m of forgotten
marked points.

Let γ ∈ A∗(M̄g,n(X ,β)) be a product of evaluation and cotangent line classes. Note
that the morphism p forgets m points and has relative dimension m. So if the dimen-
sion of γ · [M̄g,n(X ,β)]virt is to be at least equal to the virtual dimension of M̄g,n(X ,β)

then there must be at least one marked point that is forgotten by p and at which we
specify a class of codimension at most 1. We can assume without loss of generality
that this is the point xn. Factor p as p = p′ ◦ pn, where pn forgets the marked point
xn, and p′ the other m−1 marked points forgotten by p. We then must have one of
the following three cases:

• γ has no class at xn: if γ=∏
n−1
i=1 (ev∗i γi ·ψki

i ) then by the arguments of corollary
1.3.3 we have

pn∗(γ · [M̄g,n(X ,β)]virt)

=
(

∑
i:ki>0

ev∗1 γ1 ·ψk1
1 · · ·ev∗i γi ·ψki−1

i · · ·ev∗n−1 γn−1 ·ψkn−1
n−1

)
· [M̄g,n−1(X ,β)]virt.

• γ has an evaluation class at a divisor at xn: if γ = ev∗n δ ·∏n−1
i=1 (ev∗i γi ·ψki

i ) for
a divisor δ then by the arguments of corollary 1.3.4 we have

pn∗(γ · [M̄g,n(X ,β)]virt)

=
(
(δ ·β) · ev∗1 γ1 ·ψk1

1 · · ·ev∗n−1 γn−1 ·ψkn−1
n−1

+ ∑
i:ki>0

ev∗1 γ1 ·ψk1
1 · · ·ev∗i (δ · γi) ·ψki−1

i · · ·ev∗n−1 γn−1 ·ψkn−1
n−1

)
· [M̄g,n−1(X ,β)]virt.

• γ has a single cotangent line class at xn: if γ = ψn ·∏n−1
i=1 (ev∗i γi ·ψki

i ) then by
the arguments of corollary 1.3.5 we have

pn∗(γ · [M̄g,n(X ,β)]virt)

=
(
(2g+n−3) · ev∗1 γ1 ·ψk1

1 · · ·ev∗n−1 γn−1 ·ψkn−1
n−1

)
· [M̄g,n−1(X ,β)]virt.
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In all three cases the statement then follows from the induction hypothesis applied
to p′. �

COROLLARY 5.2.5. Let M be a moduli space of stable maps to a smooth projective
variety X, possibly with several connected components. Let p : M→ M′ be a for-
getful morphism that forgets a given subset of the marked points and / or connected
components. (M′ is thus also a moduli space of stable maps to X, with in general
fewer marked points and connected components.)

Then p satisfies the virtual push-forward property.

PROOF. This follows immediately from lemma 5.2.4, taking into account that the
moduli spaces of disconnected stable maps are simply the products of the moduli
spaces for the components. �

REMARK 5.2.6. For our main virtual push-forward theorem we will need the tech-
nique of virtual localization for moduli spaces of stable relative maps. This tech-
nique has been established in [GV] section 3. We will give a short review here.

Let L be a line bundle on a smooth projective variety Y , and denote by P = P(L⊕
OY ) its projective closure. Consider a moduli space M̄Γ(P) of stable relative maps
to P (relative Y∞). The C∗ action in the fibers of P induces a C∗ action on the moduli
space M̄Γ(P). Then we have the virtual localization formula

[M̄Γ(P)]virt = ∑
F

[F ]virt

e(Nvirt
F/M̄Γ(P)

)

in the equivariant Chow group of M̄Γ(P), where the sum is taken over all connected
components F ⊂ M̄Γ(P) of the fixed point locus of the C∗ action, and e(Nvirt

F/M̄Γ(P)
)

denotes the Euler class of the virtual normal bundle of F .

The fixed point locus of the C∗ action on the moduli space is easy to describe. In
level 0 (where the group acts in the fibers) all components of the curve must be of
one of the following two types:

• curves contained in Y0,
• rational curves that are multiple covers of a fiber of P totally ramified over Y0

and Y∞ and that have no marked points away from Y0 and Y∞.

In the higher levels (where the group acts trivially) there are no restrictions.
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Every component F of the fixed point locus is therefore an étale quotient of the form
(M0�M1)/G, where

• M0 is a moduli space of stable maps to Y (in Y0 in level 0), including in the set
of marked points the nodes yi where the rational fibers in level 0 are attached;
• M1 is a moduli space of stable non-rigid maps to P (for the positive levels),

including in the set of marked points the nodes yi where the rational fibers in
level 0 are attached;
• � denotes a fiber product over evaluation maps to Y at the gluing points yi (in

the intersection of the levels 0 and 1),
• G is the group of permutations of the points yi that leaves the multiplicities at

these points unchanged.

The virtual fundamental class of F is simply the one induced by this product struc-
ture.

To be able to apply the virtual localization formula it remains to describe the virtual
normal bundle of the fixed point loci. Denote the generator of H∗C∗(pt) by h̄. Then
e(Nvirt

F/M̄Γ(P)
) is a product of the following terms:
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(i) moving the M0 part out of Y0 while keeping the structure of the singularities:
the term that we get from these deformations is simply the equivariant Euler
class of H0/H1( f ∗NY0/P) = H0/H1( f ∗L) on M0.

(ii) deforming the m-th order ramification points at Y0 in level 0: these terms have
been evaluated in [GP] section 4.
(a) Every marked point xi that lies over Y0 on a multiple cover of degree m

in level 0 contributes a product ∏
m
k=1

k(h̄+ev∗xi
c1(L))

m .
(b) Every marked point yi in M0 that connects to a multiple cover of degree

m in level 0 contributes a product ∏
m−1
k=1

k(h̄+ev∗yi
c1(L))

m . (The k = m term
corresponds to simply moving the ramification point in the fiber direction
without changing the ramification structure. We have already taken care
of this for the points yi in (i), so we have to leave the k = m term out for
them now.)

(c) Every smooth unmarked point over Y0 on a multiple cover of degree m
in level 0 contributes a product ∏

m
k=2

k(h̄+ev∗ c1(L))
m . (The k = 1 term cor-

responds to moving the marked point on the curve without changing the
curve or the map. As we do not have a marked point now we have to
leave the k = 1 term out in this case.)

(iii) smoothing the nodes yi at Y0: As usual the contribution for such a deformation
is the first Chern class of the tensor product of the tangent spaces of the two
components that meet at the node. So every marked point yi in M0 gives rise

to a factor
h̄+ev∗yi

c1(L)
m −ψyi .

(iv) deforming the target singularity to obtain level-0 maps: the contribution of
this term has been computed in [GV] section 3.3 to be −h̄−Ψ0, where Ψ0 is
the class on M1 introduced in construction 5.1.17.

Note that these contributions respect the product structure of F : parts (i), (ii) for the
yi, and (iii) act on M0 only, whereas (ii) for the xi and (iv) act on M1. We will denote
these parts by e0(Nvirt

F/M̄Γ(P)
) and e1(Nvirt

F/M̄Γ(P)
) respectively, so that the term in the

virtual localization formula corresponding to a fixed point locus F = (M0�M1)/G
reads

1
|G|
·

 [M0]
virt

e0(Nvirt
F/M̄Γ(P)

)
�

[M1]
virt

e1(Nvirt
F/M̄Γ(P)

)

 .
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For example, the contribution to the virtual localization formula of the fixed point
locus shown in the picture above is

1
2
·

(
[M0]

virt

( h̄1
2 −ψy1)(

2h̄1
2 )( h̄2

2 −ψy2)(
2h̄2
2 )(h̄3−ψy3)e(H0/H1( f ∗L∨))

�
[M1]

virt

(h̄+ ev∗x2
Y0)(−h̄−Ψ0)

)
where h̄i := h̄+ ev∗yi

c1(L), and where the fiber product � is taken over the three
diagonals ∆Y ⊂ Y ×Y at the marked points y1,y2,y3.

THEOREM 5.2.7. Let L be a line bundle on a smooth projective variety Y , and
denote by P = P(L⊕OY ) its projective closure. Let M be a moduli space of stable
relative maps (relative to Y∞ =P(L⊕0)⊂P) or stable non-rigid maps to P, possibly
with several connected components.

Let p : M → M be the morphism that projects the curves in P down to the base
Y , forgets a given subset of the marked points and / or connected components, and
stabilizes the result. (M is thus a moduli space of stable absolute maps to Y , with
the combinatorial data determined by M .) We are assuming that p is well-defined,
i.e. that every rational (resp. elliptic) connected component that is not forgotten by
p and whose homology class is a multiple of a fiber of P has at least 3 (resp. 1)
special points that are not forgotten by p.

Then p satisfies the virtual push-forward property.

PROOF. Let M be one of the moduli spaces mentioned in the the theorem, i.e.

(a) the moduli space of stable non-rigid maps to P with r connected components,
where the i-th component has genus g(i), class β(i), and n(i) marked points
with multiplicities α(i) = (α

(i)
1 , . . . ,α

(i)
n(i)

) where α
(i)
j ∈ Z; or

(b) the moduli space of stable relative maps to P relative Y∞ with r connected
components, where the i-th component has genus g(i), class β(i), and n(i)

marked points with multiplicities α(i) = (α
(i)
1 , . . . ,α

(i)
n(i)

) where α
(i)
j ≥ 0.

Let γ ∈ A∗(M ) be a product of evaluation and cotangent line classes at the marked
points such that dim(γ · [M ]virt)≥ dim[M]virt, and let p : M →M be a morphism as
in the statement of the theorem.

The proof of the theorem will be given by induction. So we assume that the state-
ment is known already for all moduli spaces M , cohomology classes γ, and mor-
phisms p with source M where
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(i) the sorted collection of classes (β(i)) is smaller in the lexicographical ordering
(here we are picking an ordering of homology classes such that an equality
β = β1 +β2 of non-zero effective classes implies β1 < β and β2 < β); or

(ii) the β(i) are the same, and the sorted collection of genera (g(i)) is smaller in
the lexicographical ordering; or

(iii) the β(i) and g(i) are the same, and the sorted collection of numbers (n(i)) is
smaller in the lexicographical ordering.

We will now treat the two cases (a) and (b) in turn.

Case (a): stable non-rigid maps. Let M̄Γ(P) be the moduli space of stable relative
maps with the same number of connected components as M , the same g(i) and n(i),
and multiplicities max(α(i)

j ,0). There is a morphism M̄Γ(P)→M that projects the
curves to Y and forgets the same data as p. By abuse of notation we will denote this
morphism also by p. Moreover, by construction 5.1.17 we can rewrite γ as Ψk

0 · γ′,
where γ′ contains no cotangent line classes at the points with α

(i)
j < 0.

We want to use the virtual localization theorem of remark 5.2.6. Replace γ′ by a C∗-
equivariant cohomology class that maps to the given one in ordinary cohomology.
In addition, consider the C∗-equivariant class

γ̃ = ∏
i, j:α(i)

j <0

−α
(i)
j −1

∏
k=0

(kψ
(i)
j + ev(i)j

∗Y0)

on M̄Γ(P). Now intersect the virtual localization formula of remark 5.2.6 with γ̃ and
γ′, push the result forward to M by p, restrict to ordinary cohomology, and collect
the terms of dimension dim(γ · [M ]virt). First of all note that the result must be zero
for dimensional reasons, since

dim(γ̃ · γ′ · [M̄Γ(P)]virt) = dim(γ · [M ]virt)+ k+1

6= dim(γ · [M ]virt).

Now evaluate the right hand side of the virtual localization formula. Consider a
fixed point locus F = (M0�M1)/G as in remark 5.2.6. Note that the classes γ̃ and
γ′ can be written as products γ̃0 · γ̃1 and γ′0 · γ′1 where γ̃0 and γ′0 (resp. γ̃1 and γ′1) act
on M0 (resp. M1) only. In the same way the push-forward p acts on the two factors
separately, so that the contribution of F can be written as

1
|G|
· p0∗

γ̃0 · γ′0 ·
[M0]

virt

e0(Nvirt
F/M̄Γ(P)

)

� p1∗

γ̃1 · γ′1 ·
[M1]

virt

e1(Nvirt
F/M̄Γ(P)

)

 (35)
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where p0 (resp. p1) project M0 (resp. M1) down to the corresponding moduli space
of stable maps to Y . (Note: If p forgets some marked points it may happen that
some components of the elements in M0 or M1 become unstable after forgetting
these points. In this case p0 or p1 is taken to forget these entire components, and it
may thus happen that in some diagonals of the fiber product� both evaluation maps
come from the same factor. Our arguments that follow are not affected by this.)

We know by corollary 5.2.5 that p0 satisfies the virtual push-forward property. Let
us assume for a moment that p1 does so too. Then the dimension of the cycle (35)
can be at most the virtual dimension of the subspace of M consisting of stable maps
with node structure given by the fiber product �. If this fiber product contains at
least one diagonal, i.e. there is at least one node, then the virtual dimension of this
subspace is smaller than that of M, so (35) must be zero since dim(γ · [M ]virt) ≥
vdimM. Otherwise there is only one component, and (35) must be a scalar multiple
of [M]virt. So all terms for which we know that p1 satisfies the virtual push-forward
property are zero or a multiple of [M]virt.

Finally let us check for which terms (35) we do not know yet by induction that p1

satisfies the virtual push-forward property. By induction assumptions (i) and (ii)
there must then be exactly r components in level 1 of degrees β(i) and genera g(i).
By (iii) all marked points x(i)j with non-negative multiplicities must be in these level-
1 components, and the remaining points must be over Y0 in rational fibers in level
0, with at most one marked point on every such component. The following picture
shows an example of these curves (in the case of only one connected component).
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For the points x(i)j over Y0 denote by m(i)
j the degree of the cover of the fiber of P at

x(i)j . As the class γ̃ = γ̃1 restricts to

∏
i, j:α(i)

j <0

−α
(i)
j −1

∏
k=0

(
1− k

m(i)
j

ψ
(i)
j

)(
h̄+ ev(i)j

∗c1(L)
)

on this fixed point locus, we must have m(i)
j ≥−α

(i)
j at all these points. But the sum

of all ramification orders at Y0 must be equal to the intersection product Y0 · β(i),
which in turn is equal to ∑ j:α(i)

j <0
(−α

(i)
j ). So we conclude that all rational fibers

in level 0 must have a marked point over Y0, and m(i)
j = −α

(i)
j for all i and j with

α
(i)
j < 0. In other words, the moduli space M1 is precisely M , and the term (35) is

p∗

γ̃ · γ′ · [M ]virt

e1(Nvirt
F/M̄Γ(P)

)

 .

Now the term γ̃1 cancels precisely the terms (ii) of e1(Nvirt
F/M̄Γ(P)

) in remark 5.2.6.
So we get

p∗

(
γ
′ · [M ]virt

−h̄−Ψ0

)
.

Finally, expanding the geometric series 1
−h̄−Ψ0

and taking only the h̄-independent
terms of the correct dimension gives (up to sign) the desired term p∗(γ · [MM]virt).
So we have shown that this expression is either zero or a multiple of [M]virt. This
finishes the proof of the theorem in case (a).

Case (b): stable relative maps. This time we set M̄Γ(P) = M . Another application
of the virtual localization theorem expresses the class p∗(γ · M̄Γ(P)) in terms of
contributions from fixed point loci

1
|G|
· p0∗

γ0 ·
[M0]

virt

e0(Nvirt
F/M̄Γ(P)

)

� p1∗

γ1 ·
[M1]

virt

e1(Nvirt
F/M̄Γ(P)

)


similarly to (35) in case (a) above, where γ0 (resp. γ1) denotes the part of γ that
acts on M0 (resp. M1). By corollary 5.2.5 and case (a) we know that both p0 and
p1 satisfy the virtual push-forward property. The conclusion that the above term is
zero or a multiple of [M]virt now works in the same way as in case (a). �

Recall from remark 5.1.13 that the moduli spaces of disconnected stable relative
maps are not just the products of the individual moduli spaces for the connected
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components. Using our virtual push-forward theorems we now want to show how-
ever that this product property is satisfied for the moduli spaces of collapsed stable
relative maps (at least in genus 1).

PROPOSITION 5.2.8 (Product property for elliptic curves). Let r > 0 be an inte-
ger. Pick non-negative integers g(1), . . . ,g(r),n(1), . . . ,n(r) and classes β(1), . . . ,β(r) ∈
H+

2 (X). Choose collections of multiplicities α(i) = (α
(i)
1 , . . . ,α

(i)
n(i)

) for i = 1, . . . ,r.
Denote by M̄Y

Γ
(X) the moduli space of collapsed stable relative maps with r con-

nected components such that the i-th component has genus g(i), class β(i), and mul-
tiplicities α(i).

Assume that the total genus ∑i g(i) is at most 1. Then we have

M̄Y
Γ(X) = M̄Y

g(1),α(1)(X ,β(1))×·· ·× M̄Y
g(r),α(r)(X ,β(r)).

Moreover, there is an equality of cycles

[M̄Y
Γ(X)]virt = [M̄Y

g(1),α(1)(X ,β(1))]virt×·· ·× [M̄Y
g(r),α(r)(X ,β(r))]virt

in the Chow group of the subspace of ∏
r
i=1 M̄g(i),n(i)(X ,β(i)) where all marked points

with positive multiplicity map to Y .

PROOF. The statement about the spaces follows immediately from their description
in definition 2.1.1. To prove the product property for the virtual fundamental classes
in higher genus we will use the splitting theorem of remark 5.1.14 together with the
virtual push-forward theorem 5.2.7. Let us assume for a moment that X itself is
a P1-bundle (and thus equal to P). The moduli spaces occurring in the splitting
formula are then the spaces of stable relative maps to X relative Y0 or Y∞. So we
will prove the following statement: For X a P1-bundle, Y = Y0 or Y = Y∞, and g(i),
n(i), β(i), α(i) as above, we have

[M̄Y
Γ(X)]virt =

r

∏
i=1

[M̄Y
g(i),α(i)(X ,β(i))]virt. (36)

As in the proof of theorem 5.2.7 we will proceed by induction. So we assume that
the statement is known already for any given data where

(i) the sorted collection of classes (β(i)) is smaller in the lexicographical order-
ing; or

(ii) the β(i) are the same, and the sorted collection of genera (g(i)) is smaller in
the lexicographical ordering; or

(iii) the β(i) and g(i) are the same, and the sorted collection of numbers (n(i)) is
smaller in the lexicographical ordering.
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Now let M = ∏
r
i=1 M̄g(i),n(i)(X ,β(i)) be the moduli space of stable absolute maps to

X with r connected components of the given classes and genera and with the given
number of marked points. Consider the cohomology class

γ̃ =
r

∏
i=1

n(i)

∏
j=1

α
(i)
j −1

∏
k=0

(ev(i)j
∗Y + kψ

(i)
j )

on M that describes the condition that the stable map has order at least α
(i)
j to Y at

the marked points x(i)j . Applying the splitting theorem of remark 5.1.14 to M we
obtain

γ̃ · [M]virt = ∑
Γ1,Γ2

m(Γ1,Γ2) · [M̄Y
Γ1
(X)]virt� (γ̃ · [M̄Y

Γ2
(P)]virt)

with the notation used there. (Note that the conditions in γ̃ restrict the marked
points with positive multiplicities to lie over Y∞ in the Γ2 factor.) Recall that this is
an equation in a moduli space of stable maps to the blow-up of X ×P1 in Y ×{0}.
We can push it forward along the blow-up map to obtain

γ̃ · [M]virt = ∑
Γ1,Γ2

m(Γ1,Γ2) · [M̄Y
Γ1
(X)]virt� p∗(γ̃ · [M̄Y

Γ2
(P)]virt) (37)

where p projects the stable relative maps to P down to stable absolute maps in Y (and
forgets connected components in fibers that become unstable by the projection).

On the other hand we can equally well apply the splitting theorem to the individual
factors M̄g(i),n(i)(X ,β(i)) of M and then take the product of the resulting equations.
If we knew already that statement (36) is true for M̄Y

Γ1
(X) and M̄Y

Γ2
(P) then the

result of this alternative application of the splitting theorem would be term-by-term
the same as in (37). In other words, if we can show that (36) is true by induction
hypothesis for all terms occurring in the right hand side of (37) except one, then
statement (36) must hold in the remaining term as well. This would then complete
the proof of the proposition in the case when X is a P1-bundle.

So let us examine the terms M̄Y
Γ1
(X) and M̄Y

Γ2
(P) in (37) for which statement (36)

is not yet known by induction. By induction assumptions (i) and (ii) one of these
spaces must then be a moduli space of stable relative maps with exactly r compo-
nents of degrees β(i) and genera g(i). Let us assume that the moduli space M̄Y

Γ2
(P) is

of this form. Then the dimension of the cycle γ̃ · [M̄Y
Γ2
(P)]virt is equal to the virtual

dimension of a moduli space of stable relative maps to P relative Y0 and Y∞, which
in turn is equal to the virtual dimension of the corresponding moduli space of stable
non-rigid maps to P. So we get

dim(γ̃ · [M̄Y
Γ2
(P)]virt) = dim[M′]virt +∑

i
(1−g(i))
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where M′ is the moduli space of stable absolute maps to Y to which p in (37)
projects. But by our assumption on the genus we have

∑
i
(1−g(i)) = r−∑

i
g(i) ≥ r−1.

As the statement of the proposition is trivial for r = 1 we can assume that this
number is positive. But then (37) is zero by the virtual push-forward theorem 5.2.7
applied to p. So we can neglect these terms and hence assume that it is the moduli
space M̄Y

Γ1
(X) that describes curves with exactly r components of degrees β(i) and

genera g(i).

The connected components of the curves in the moduli space M̄Y
Γ2
(P) must now all

be multiple covers of fibers. By induction assumption (iii) all marked points whose
multiplicities are zero must be in the Γ1 component. The others have to be in the
Γ2 component because of the class γ̃, and by induction assumption (iii) there may
be at most one such point on each multiple cover of a fiber. The class γ̃ forces the
degree of the cover to be at least α

(i)
j at the component of the point x(i)j . As the

sum of all these degrees must be the intersection product Y∞ ·β(i) it follows that the
degree of the cover at x(i)j is exactly α

(i)
j , and that all fibers in the Γ2 space carry

a marked point x(i)j . In other words, M̄Y
Γ1
(X) is precisely the given moduli space

M̄Y
Γ
(X). The Γ2 part and the fiber product � are then trivial, so the corresponding

contribution to (37) is just M̄Y
Γ
(X). This is the only term in (37) for which we do not

yet know by induction the statement of the proposition. Hence, as remarked above,
the splitting theorem applied to the r components of the curves in M̄Y

Γ
(X) implies

that the proposition holds for M̄Y
Γ
(X) as well. �

CONJECTURE 5.2.9. We expect the following generalizations of proposition 5.2.8
to hold:

(i) The equation that determines the virtual fundamental class [M̄Y
Γ
(X)]virt is ex-

pected to hold in the Chow group of M̄Y
Γ
(X).

(ii) The statement of the proposition should hold in any genus. Note that for dis-
connected curves the left hand side of the splitting theorem of remark 5.1.14 is
manifestly the product of the corresponding terms for the individual compo-
nents, whereas this would not be the case on the right hand side if proposition
5.2.8 did not hold in general.

Unfortunately we do not know how to prove these statements at the moment. In
what follows we will only need the statement of proposition 5.2.8.
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5.3. Push-forwards in codimension 0

Let P = P(L⊕O) be a P1-bundle over a smooth projective variety Y . Recall that
the relative Gromov-Witten invariants of P relative Y∞ occur in the splitting formula
of remark 5.1.14. We would like to express these invariants in terms of absolute
invariants of Y , so that the splitting formula gives relations between the absolute
invariants of X , the absolute invariants of Y , and the relative invariants of X relative
Y , in the same way as in chapter 2. To do so we have to consider the projection
P→Y and study the associated morphism that projects stable maps in P down to Y .
Before we can do this for stable relative maps we need a result on stable non-rigid
maps first.

LEMMA 5.3.1. Let P=P(L⊕O) be a P1-bundle over a smooth projective variety Y .
Let M be the moduli space of stable non-rigid maps to P with r connected rational
components such that for i = 1, . . . ,r the i-th component is of the following type:

• it has homology class d(i) times a fiber,
• it has n(i)+1 marked points y(i),x(i)1 , . . . ,x(i)

n(i)
, where y(i) has multiplicity d(i)

(and thus maps to Y∞) and the x(i)j have negative multiplicities (and thus map
to Y0) satisfying

d(i)+
n(i)

∑
j=1

α
(i)
j = 0.

The moduli space M has virtual dimension

vdimM =−1+
r

∑
i=1

(dimY +n(i)−1).

Let Ψ0 ∈ A1(M ) be the class defined in construction 5.1.17, and let γ(i) ∈ A∗(Y ).
Denote by ev(i) : M → Y the evaluation map in the i-th component.
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(i) If all γ(i) are the class of a point then

ev(1)
∗
γ
(1) · · ·ev(r)

∗
γ
(r) ·ΨN

0 · [M ]virt =
r

∏
i=1

(
d(i)
)n(i)−2

where N = ∑
r
i=1 n(i)− r−1.

(ii) If γ(1) is the class of a curve and all other γ(i) are the class of a point then

ev(1)
∗
γ
(1) · · ·ev(r)

∗
γ
(r) ·ΨN+1

0 · [M ]virt

= (n(1)−1) · (c1(L) · γ(1)) ·
r

∏
i=1

(
d(i)
)n(i)−2

.

PROOF. Let M Y
Γ
(P) be the moduli space of stable relative maps to P relative Y∞

with r connected rational components such that for i = 1, . . . ,r the i-th component
is of the following type:

• it has homology class d(i) times a fiber,
• it has n(i)+1 marked points y(i),x(i)1 , . . . ,x(i)

n(i)
, where y(i) has multiplicity d(i)

(and thus maps to Y∞) and the x(i)j have multiplicity 0.

This moduli space has virtual dimension

vdimM Y
Γ (P) =

r

∑
i=1

(dimY +d(i)−1+n(i)).

Now consider the equivariant cohomology class

γ̃ =
r

∏
i=1

ev(i)
∗
γ
(i) ·

n(i)

∏
j=2

(α
(i)
j ψ

x(i)j
) ·

n(i)

∏
j=1

−α
(i)
j −1

∏
k=0

(kψ
x(i)j

+ ev∗
x(i)j

Y0)


on M Y

Γ
(P). We will compute the integral γ̃ · [M Y

Γ
(P)]virt using virtual localization.

Note that the integral is of dimension ∑
r
i=1 dimγ(i), i.e. of dimension 0 in case (i)

and of dimension 1 in case (ii).

Let us check which fixed point loci contribute to the integral. By the k = 0 terms
in the above product all points x(i)j have to map to Y0. We claim that there can be
no component that maps to Y0. In fact, if we had such a component then it would
have to be a contracted rational component. It could have at most one node since
there is only one marked point over Y∞ in each connected component. So if such a
contracted rational component has n special points then n− 1 of them are marked
points. As γ̃ contains a cotangent line class for every marked point but one it follows
that this component has at least n−2 cotangent line classes on it. But the product of
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n− 2 cotangent line classes on M̄0,n vanishes for dimensional reasons. Hence this
cannot happen, and we conclude that there can be no components of the curves in
the fixed point locus that map to Y0.

The marked points x(i)j must therefore all be on multiple covers of the fibers in level
0. As in the proof of theorem 5.2.7 the classes kψ

x(i)j
+ ev∗

x(i)j

Y0 in γ̃ force these

multiple covers to have degree −α
(i)
j for all i, j. So there is only one fixed point

locus which is isomorphic to our given moduli space M of stable non-rigid maps:

On this fixed point locus the kψ
x(i)j

+ ev∗
x(i)j

Y0 terms in γ̃ cancel exactly the virtual

normal bundle terms (ii) of remark 5.2.6. The classes α
(i)
j ψ

x(i)j
in γ̃ pull back to

h̄+ ev(i)
∗
c1(L). So we see that

γ̃ · [M Y
Γ (P)]virt =

r

∏
i=1

(
ev(i)

∗
γ
(i) · (h̄+ ev(i)

∗
c1(L))n(i)−1

)
· [M ]virt

−h̄−Ψ0
. (38)

Using this formula we can now prove the lemma:

(i): Note that we can drop the ev(i)
∗
c1(L) terms on the right hand side of (38)

because γ(i) ·c1(L) = 0 if γ(i) is the class of a point. The non-equivariant dimension-
0 part of the right hand side is therefore (up to a factor of (−1)N+1) the number
that we want to compute. First of all note that this result must be symmetric under
permutations of the marked points x(i)1 , . . . ,x(i)

n(i)
of a connected component. The left

hand side must therefore be symmetric too, which means that in the ∏
n(i)
j=2(α

(i)
j ψ

x(i)j
)

term in γ̃ it does not matter whether we leave out the first marked point or any other.
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Combining this with the remark that

ev(i)
∗
γ
(i) · (α(i)

2 ψ
x(i)2

) ·
−α

(i)
1 −1

∏
k=0

(kψ
x(i)1

+ ev∗
x(i)1

Y0) ·
−α

(i)
2 −1

∏
k=0

(kψ
x(i)2

+ ev∗
x(i)2

Y0)

= ev(i)
∗
γ
(i) · ((α(i)

1 +1)ψ
x(i)1

) ·
−α

(i)
1 −2

∏
k=0

(kψ
x(i)1

+ ev∗
x(i)1

Y0) ·
−α

(i)
2

∏
k=0

(kψ
x(i)2

+ ev∗
x(i)2

Y0)

(if−α
(i)
1 > 1) we conclude that the result we are looking for does not depend on the

α(i) (but only on the d(i) and n(i)). We can therefore choose α(i) so that α
(i)
1 = −1.

Then the marked point x(i)1 occurs only with a single divisor evaluation class in γ̃.
As the class γ̃ fixes the image points of all x(i)j (and these points can be taken to be
distinct and not on Y0 or Y∞) we can apply the divisor equation and conclude that the
left hand side is multiplied by d(i) compared to the one for n(i)− 1 marked points
and the class γ̃ that has

ev(i)
∗
γ
(i) ·

n(i)

∏
j=2

(α
(i)
j ψ

x(i)j
) ·

n(i)

∏
j=2

−α
(i)
j −1

∏
k=0

(kψ
x(i)j

+ ev∗
x(i)j

Y0)

=−ev(i)
∗
γ
(i) ·

n(i)

∏
j=3

(α
(i)
j ψ

x(i)j
) ·
−α

(i)
2

∏
k=0

(kψ
x(i)2

+ ev∗
x(i)2

Y0) ·
n(i)

∏
j=3

−α
(i)
j −1

∏
k=0

(kψ
x(i)j

+ ev∗
x(i)j

Y0)

in the i-th component. In other words, raising an n(i) by 1 multiplies the dimension-
0 part of the left hand side by −d(i). But N is then raised by 1 as well, so (as the
number we are looking for is (−1)N+1 times the left hand side) we see that the
desired number is multiplied by d(i) when we raise n(i) by 1. Part (i) of the lemma
now follows by induction from the initial value 1

d(2)···d(r) in the case when n(1) = 2
and n(2) = · · ·= n(r) = 1 (and thus N = 0).

(ii): The non-equivariant dimension-0 part of the left hand side of (38) is then zero
for dimensional reasons. Collecting the same terms on the right hand side we get

0 =

(
r

∏
i=1

ev(i)
∗
γ
(i)

)
·
(

Ψ
N+1
0 − (n(i)−1) · ev(1)

∗
c1(L) ·ΨN

0

)
· [M ]virt.

Hence the statement of (ii) follows from (i). �

We are now ready to study a morphism that projects stable relative maps to P down
to stable absolute maps to Y . In our first proposition we will simply compute the
push-forward of a specific integral that has codimension 0 in the target. We will see
soon however that this single result is enough e.g. to reproduce our earlier results of
chapter 2.
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PROPOSITION 5.3.2 (Push-forwards in codimension 0). Let p : P = P(L⊕O)→
Y be a P1-bundle over a smooth projective variety Y . Let M = Mg,α(P,β) be a
moduli space of stable relative maps to P relative Y∞. Denote the marked points by
y1, . . . ,yn,x1, . . . ,xN , where yi are the points with positive multiplicity and xi are the
points with zero multiplicity (so that α = (α1, . . . ,αn,0, . . . ,0)). Let p∗ : M →M :=
M̄g,n+N(Y, p∗β) be the morphism that projects the curves in P to stable maps to Y .
Assume that p∗ is well-defined, i.e. that n+N ≥ 3 if g = 0 and β is a multiple of the
class of a fiber. Pick non-negative integers m1, . . . ,mN with ∑i mi = Y0 ·β+ 1− g.
Then

p∗

(
N

∏
i=1

mi−1

∏
k=0

(kψxi + ev∗xi
Y0) · [M ]virt

)
= [M]virt.

PROOF. We will compute the expression using the virtual localization of remark
5.2.6. By the virtual push-forward theorem 5.2.7 for p we know already that the
result must be a scalar multiple of [M]virt. So we only have to consider the fixed
point loci F = (M0�M1)/G that give rise to a contribution that is a multiple of
[M]virt. We then have to add up these contributions and show that the result is 1.

If the contribution of a fixed point locus is to be a multiple of [M]virt then either M0

or M1 must be a moduli space of connected curves of genus g and class β. We can
thus distinguish the following two cases:

(a): M1 is a moduli space of stable relative maps of genus g and class β, with
multiplicities α1, . . . ,αn to Y∞. We must then have F = M1, i.e. in level 0 we only
have multiple covers of fibers of P that have at most one marked point xi over Y0 on
them.

As usual, the conditions ∏
mi−1
k=0 (kψxi + ev∗xi

Y0) in the cohomology class require the
degree of the multiple cover to be at least mi at the component that has the marked
point xi on it. As the mi sum up to Y0 ·β+1−g there can be at most g−1 components
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in level 0 that do not have a marked point xi on it. (If g = 0 then this is impossible,
so there are no contributions from these fixed point loci.) The contribution of F is
thus computed by

• projecting (some integral on) M1 down to the space of stable maps to Y ,
giving rise to a class of virtual codimension (at least) g; and then
• forgetting the marked points that had mapped to Y0 but did not have a marked

point xi attached. As there are at most g−1 such points we are thus left with
a class of virtual codimension at least g− (g− 1) = 1 in M. In other words,
these fixed point loci can not give rise to a multiple of [M]virt.

So we conclude that the fixed point loci of type (a) do not give any contribution.

(b): M0 = M, so we have a connected stable map of genus g and class β with N +n
marked points on it in Y0 in level 0. The remaining parts of the curve can then only
be rational multiple covers of fibers of P. The structure of these fibers is still a
little bit complicated though. To be precise, at every marked point yi in M0 there is
attached in level 0 a totally ramified rational cover of a fiber of P of some degree
Mi ≤ mi. In level 1 we then have a stable non-rigid map with

• one marked point of multiplicity mi mapping to Y∞;
• one marked point mapping to Y0 with some multiplicity mi ≤ di and connect-

ing through a cover of the fiber in level 0 to the curve in M0;
• some marked points mapping to Y0 whose multiplicities to Y0 sum up to some

number mi− di. At every such point there is attached in level 0 a totally
ramified rational cover of the fiber of P of the corresponding multiplicity.

In what follows we will call such a structure a rational fiber tail of type (mi,di)

attached to the marked point yi in M0. The additional marked points over Y0 in level
1 whose multiplicities add up to mi−di will be called the loose marked points.
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Let us now compute the contribution of these fixed point loci. As the result has
virtual codimension 0 in M we can ignore cohomological terms in the equivariant
integral and only need to compute the coefficients of the pure weight terms. The
contribution of a fixed point locus is easily determined from the description of the
virtual normal bundle in remark 5.2.6:

(i) The class given in the proposition is just ∏
N
i=1 ∏

mi−1
k=0 (kψxi + h̄+ ev∗xi

c1(L))
on the fixed point locus. The pure weight term of this is 1.

(ii) The inverse virtual normal bundle terms H1/H0( f ∗NY0/P) from remark 5.2.6
(i) have pure weight contribution 1 since the group C∗ acts on NY0/P simply
by multiplication.

(iii) The multiple cover of degree d that attaches to the M0 part contributes a factor
∏

d−1
k=1

d
k(h̄+ev∗yi

c1(L))
coming from the inverse virtual normal bundle terms of

remark 5.2.6 (ii)(a). The pure weight term of this is dd

d! .
(iv) Every loose marked point of multiplicity s contributes ∏

s
k=2

s
k(h̄+ev∗yi

c1(L))
to

the inverse virtual normal bundle terms by remark 5.2.6 (ii)(c). The pure
weight term of this is ss−1

s! . If several loose marked points have the same
multiplicity we have to divide by the order of the group of permutations of
the loose marked points that keeps the multiplicities unchanged.

(v) Smoothing the node where the rational fiber tail attaches to the M0 part con-
tributes a factor of 1

h̄+ev∗yi c1(L)
d −ψ

to the inverse virtual normal bundle by remark

5.2.6 (iii). The pure weight coefficient of this is just d.
(vi) Smoothing the target node contributes a factor of 1

−h̄−Ψ0
to the inverse virtual

normal bundle by remark 5.2.6 (iv). Note that this term is not a priori a
product of contributions for the individual rational fiber tails. But every such
component receives an evaluation at a point class from the diagonal splitting,
so the M1 invariant is given by the result of lemma 5.3.1 (i), which does
happen to be a product of terms for the individual components. So we can say
that the inverse virtual normal bundle terms of remark 5.2.6 (iv) contribute a
factor of (−m)a−1 for every rational fiber tail, where a denotes the number
of loose marked points. (The sign arises because we need the correct Ψ0

coefficient of 1
−h̄−Ψ0

given by the value of N in lemma 5.3.1 (i).)

We now have to multiply all these contributions, and then sum the result up over
all fixed point loci. As we have just seen, all contributions are products of terms
for the individual rational fiber tails. So it suffices to prove the proposition in the
case of only one rational fiber tail (i.e. n = 1). Let us first fix its type (m,d). We
then get a fixed point locus for every partition of m−d, corresponding to the choice
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of multiplicities for the loose marked points. Of the above terms only (iv) and (vi)
depend on this partition. Their sum over all partitions of m− d is obviously the
qm−d coefficient of

1
m
· exp

(
−m ∑

k

kk−1

k!
qk

)
=−

∞

∑
k=0

(k−m)k−1 · q
k

k!
.

As the remaining non-trivial factors (iii) and (v) are dd+1

d! and we have to sum over
all 0≤ d ≤ m we conclude that the result is the qm coefficient of

−

(
∞

∑
k=0

(k−m)k−1 · q
k

k!

)(
∞

∑
k=0

kk+1 · q
k

k!

)
, (39)

which is
(−1)m

m!

m

∑
k=0

(−1)k
(

m
k

)
km = 1.

�

Let us now restrict to the case where we impose evaluation and cotangent line con-
ditions at only one of the marked points. The following important corollary shows
that in genus 0 we can then compute invariants in any codimension:

COROLLARY 5.3.3. Let p : P = P(L⊕O)→ Y be a P1-bundle over a smooth pro-
jective variety Y , and assume that L is nef. Let M = M0,α(P,β) be a moduli space
of rational stable relative maps to P relative Y∞ such that the first marked point
has multiplicity α1 = 0. Let p∗ : M → M := M̄0,|α|(Y, p∗β) be the morphism that
projects the curves in P to stable maps to Y . Assume that p∗ is well defined, i.e. that
|α| ≥ 3 if g = 0 and β is a multiple of the class of a fiber. Then we have for all m≥ 0

p∗

(
m

∏
k=0

(kψ1 + ev∗1Y0) · [M ]virt

)

=

0 if m < Y0 ·β,(
∏

m
k=Y0·β+1(kψ1 + ev∗1 c1(L))

)
· [M]virt if m≥ Y0 ·β.

PROOF. The statement for m < Y0 · β follows immediately from the virtual push-
forward theorem 5.2.7. For m ≥ Y0 ·β recall that the class ∏

Y0·β
k=0(kψ1 + ev∗1Y0) re-

quires the curve to have contact of order at least Y0 ·β+1 to Y0 at x1. As L is nef this
means that a neighborhood of the curve around x1 has to map into Y0 ∼=Y . But then
the projection p : P→Y restricted to the curve is trivial around x1, which means that
the cotangent line class at x1 pulls back unchanged. The statement of the corollary
then follows from proposition 5.3.2 and the projection formula. �
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There is a simple extension of this corollary to the “unstable case”, i.e. to the case
when there morphism p∗ would have to project to M̄0,2:

COROLLARY 5.3.4. Let p : P=P(L⊕O)→Y be a P1-bundle over a smooth projec-
tive variety Y . Let M = M0,(0,α2)(P,β) be a moduli space of rational stable relative
maps to P relative Y∞ such that β is a multiple of the class of a fiber. Let p∗ : M →Y
be the obvious projection morphism. Then we have for all m≥ 0

p∗

(
m

∏
k=0

(kψ1 + ev∗1Y0) · [M ]virt

)

=

{
0 if m 6= α2−1,
1

α2
· [Y ] if m = α2−1.

PROOF. Let us assume first that m = α2−1. Again we compute the integral using
virtual localization. It is easy to see that there is only one relevant fixed point locus,
namely a degree-α2 multiple cover of a fiber of P that is totally ramified over Y0

and Y∞ in level 0 and has one marked point over each ramification point. Using a
computation similar to that in the proof of proposition 5.3.2 it is easily checked that
the pure weight coefficient of the resulting equivariant integral is 1

α2
.

If m > α2−1 then there are no relevant fixed point loci at all, so the result is 0. If
m < α2−1 then the statement follows for dimensional reasons. �

REMARK 5.3.5. Corollaries 5.3.3 and 5.3.4 imply that all rational relative Gromov-
Witten invariants of P relative Y∞ such that

• there is a marked point of multiplicity 0,
• the invariant contains a class ev∗Y0 at this point,
• there are only evaluation classes from Y at the other marked points

are immediately computable in terms of rational Gromov-Witten invariants of Y .

In fact, this follows from the projection formula since all relative Gromov-Witten
invariants with the above properties are linear combinations of the ones computed
in the corollaries (with coefficients pulled back from the base Y ).

REMARK 5.3.6. Let us now describe how the result of corollaries 5.3.3 and 5.3.4
can be used to reprove the algorithm of section 2.5 to compute the rational Gromov-
Witten invariants of a hypersurface in terms of those of the ambient space.

Let Y be a smooth very ample hypersurface of a projective manifold X . Pick a
homology class β ∈ H+

2 (X). Recall that the method of section 2.5 was to evaluate
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the integral
m

∏
k=0

(kψ1 + ev∗1Y ) · [M̄n(X ,β)]virt (40)

for all m by an (m+1)-fold application of the main theorem 2.2.6. The result is that
this integral is equal to

[M̄(m+1,0,...,0)(X ,β)]virt +
m

∑
k=0

m

∏
i=k+1

(iψ1 + ev∗1Y ) · [D(k,0,...,0),k(X ,β)]virt (41)

with the D(k,0,...,0),k(X ,β) as in definition 2.2.3. Roughly speaking they are (unions
of) moduli spaces of reducible stable maps to X , with one “internal component” that
lies in Y and contains the marked point x1, and several “external components” that
intersect the internal one and that have specified multiplicities at these intersection
points. This equation can then be used recursively to compute the 1-point relative
invariants (if m < Y · β) and the invariants of Y (if m = Y · β and thus one of the
correction terms is isomorphic to M̄n(Y,β)).

Now consider the new picture that we have developed in this chapter. We compute
the same integral (40) using the splitting theorem of remark 5.1.14. The result is a
sum of terms, each of which is a product of relative invariants of X and P relative
Y . More precisely, we get

∑
Γ1,Γ2

m(Γ1,Γ2) · [M̄Y
Γ1
(X)]virt�

(
m

∏
k=0

(kψ1 + ev∗1Y∞) · [M̄Y
Γ2
(P)]virt

)
(42)

with the notation of remark 5.1.14. Both moduli spaces M̄Y
Γ1
(X) and M̄Y

Γ2
(P) can

a priori describe stable relative maps with several connected components, but the
total glued curve must be connected and of genus 0. By the product property of
proposition 5.2.8 we can think of them as products of the corresponding moduli
spaces for the individual connected components.

We claim that the old expression (41) is simply the push-forward of the new expres-
sion (42) by the morphism p∗ that projects stable maps to X ∪Y P down to X . This
projection obviously forgets fibers in P without marked points, so let us ignore such
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components from now on. Note that any other component in P that does not have
the marked point x1 on it is projected to 0 by p∗ for dimensional reasons. So there
can be only one component in P. Let us distinguish two cases:

(i) The component in P is a D-fold cover of a fiber for some D, it meets the
singular locus Y of X ∪Y P in exactly one point, and it has no other marked
points except x1. Then this component is forgotten by p∗, and there is only
one component in X . The integral ∏

m
k=0(kψ1 + ev∗1Y∞) · [M̄Y

Γ2
(P)]virt can be

evaluated using corollary 5.3.4: it is zero unless m = D−1, in which case it
is 1

D · [Y ]. The factor of D is canceled by the multiplicity factor in (42), and
the one external component must have multiplicity D = m+ 1 to Y . So this
term gives precisely the first summand [M̄(m+1,0,...,0)(X ,β)]virt of (41).

(ii) In any other case there is a well-defined projection morphism p∗ that projects
the component in P down to a stable absolute map to Y . As the resulting curve
must be connected and of genus 0 the components in X must all be glued to
the component in P in exactly one point. So the curves that we get from these
terms have the same topological type as the curves in the correction terms
in (41). In fact, corollary 5.3.3 shows that the push-forward p∗(∏m

k=0(kψ1 +

ev∗1Y∞) · [M̄Y
Γ2
(P)]virt) gives precisely the correction terms ∑

m
k=0 ∏

m
i=k+1(iψ1+

ev∗1Y ) · [D(k,0,...,0),k(X ,β)]virt of (41).

So we have seen that our old method of chapter 2 to compute rational Gromov-
Witten invariants of very ample hypersurfaces is essentially the “collapsed version”
of the new method based on corollaries 5.3.3 and 5.3.4.

REMARK 5.3.7. There is an easier proof of proposition 5.3.2 that works roughly
as follows. We have seen that in the equivariant integral we can neglect all co-
homological terms; the result is in fact just a combinatorial statement about the
various possible fixed point loci. It is therefore sufficient to compute the coeffi-
cient of [M]virt in the case when Y is a point (and hence L is trivial). The result can
then be obtained by a simple local multiplicity computation similar to the proof of
proposition 2.3.3.

The reason why we have preferred the more complicated explicit evaluation of the
equivariant integral is that we will need these computations in the analogous proof
for the codimension-1 case in proposition 5.4.1.

5.4. Push-forwards in codimension 1

We have seen in remark 5.3.6 that corollary 5.3.3 (together with corollary 5.3.4) is
sufficient to compute the rational Gromov-Witten invariants of Y from those of X .
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Recall the idea of the proof of corollary 5.3.3: the expression ∏
m
k=0(kψx1 + ev∗x1

Y0)

can be computed. . .

• for m≤ Y0 ·β−g by proposition 5.3.2;
• for m > Y0 · β from the corresponding result for m ≤ Y0 · β as the condition

∏
Y0·β
k=0(kψx1 + ev∗x1

Y0) ensures that further ψ1 classes are pulled back from the
base.

For curves of genus 0 these two cases cover every possibility. For higher genus
there is a gap however: for genus 1 for example we are not yet able to compute the
above integral if m = Y0 ·β, i.e. when the push-forward by p∗ has codimension 1 in
the base. In this section we want to fill this gap.

PROPOSITION 5.4.1 (Push-forwards in codimension 1). Let the notations be the
same as in proposition 5.3.2, except that ∑i mi = Y0 ·β+ 2− g. Assume that g ≤ 1
or that conjecture 5.2.9 (ii) holds. Then we have

p∗

(
N

∏
i=1

mi−1

∏
k=0

(kψxi + ev∗xi
Y0) · [M ]virt

)

=

(
N

∑
i=1

((
mi

2

)
ψxi +mi ev∗xi

c1(L)
)

+
n

∑
i=1

((
αi +1

2

)
ψyi−αi ev∗yi

c1(L)
))
· [M]virt

+
K1−K2

2
−λ+∑

∆

(
m∆

2

)
[∆]virt

where we used the following notation:

• K1 = π∗(ω ·ev∗ c1(L) · [C ]virt) and K2 = π∗(ev∗ c1(L)2 · [C ]virt), where π : C →
M is the universal stable map and ω its relative dualizing sheaf;
• −λ is the first Chern class of the vector bundle on M whose fiber at a point
(C,y1, . . . ,yn,x1, . . . ,xN , f ) is H1(C,OC);
• ∑∆ denotes the sum over all non-looping codimension-1 boundary strata ∆ of

M (i.e. the locus of 1-nodal curves with two connected components, with the
sum taken over all splittings of the genus, the homology class, and the marked
points). For such a boundary stratum ∆ we denote by m∆ the absolute value
of the integer

c1(L) ·β1 +∑
j

α j−∑
i

mi +1−g1,
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where β1 and g1 are the homology class and genus of one of the components,
and the sums over i and j are taken over the marked points that lie on this
component. (The resulting value for m∆ does not depend on the chosen com-
ponent.)

PROOF. Again we will compute the expression using virtual localization. We now
have to consider fixed point loci though that push forward to M to classes of virtual
codimension 0 or 1.

(a): Fixed point loci that push forward to M to classes of virtual codimension 0.
We have considered all these fixed point loci already in the proof of proposition
5.3.2. The difference is that in the old proof we only had to collect the pure weight
terms, whereas now we have to add up the terms whose cohomological part is of
codimension 1. The contribution from these fixed point loci will then be the sum of
all these cohomological terms, evaluated on [M]virt.

Recall that in the proof of theorem 5.3.2 we had two types of fixed point loci, de-
pending on whether the component of genus g and degree β sits in level 1 (type
(a)) or in Y0 in level 0 (type (b)). It is checked immediately that the proof that the
type (a) fixed point loci do not contribute carries over to our new situation. So let
us consider the fixed point loci of type (b). Their contribution was computed in the
proof of proposition 5.3.2 as a product of six factors (i),. . . ,(vi). The one cohomo-
logical term that we now need can come from any of these factors. Let us consider
all possibilities in turn.

• The terms from (i). The given class is ∏
N
i=1 ∏

mi−1
k=0 (kψxi + h̄+ ev∗xi

c1(L)) on
the fixed point loci. The terms in this that are of cohomological codimension
1 replace one h̄ by

N

∑
i=1

mi−1

∑
k=0

(kψxi + ev∗xi
c1(L)) =

N

∑
i=1

((
mi

2

)
ψxi +mi ev∗xi

c1(L)
)

relative to the computation in the old proof. Hence from these terms we are
getting this codimension-1 class evaluated on the old result (i.e. [M]virt).
• The terms from (ii). The cohomological codimension-1 part of the expression

H1/H0( f ∗NY0/P) replaces one h̄ by c1(H1/H0( f ∗c1(L))), which can be com-
puted by the Grothendieck-Riemann-Roch theorem applied to the universal
curve over M. We get

c1(H1/H0( f ∗c1(L))) = c1(H1/H0(O))+
K1−K2

2
=−λ+

K1−K2

2
.
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• The evaluation terms from (iii),. . . ,(vi). The contributions (iii),. . . ,(vi) contain
a certain number of factors 1

h̄+ev∗yi
c1(L)

that replace one h̄ by −c1(L) in coho-
mological codimension 1. More precisely, the contributions (iii), (iv), (v), (vi)
contain d−1, m−d−a, 1, a of these factors, respectively (with the notations
used there). Here we have used lemma 5.3.1 (ii) for (vi). The sum of these
numbers is just m, i.e. the multiplicity given at the point yi. So the evaluation
terms from (iii),. . . ,(vi) give a total contribution of −∑

n
i=1 αi ev∗yi

c1(L).
• The cotangent line terms from (v). In addition, the contribution (v) replaces

one h̄ by dψyi in cohomological codimension 1. So to compute the coefficient
of ψyi we have to redo the sum of proposition 5.3.2 (b) with an additional
factor of d from (v). Hence instead of the qm term of (39) we now need the
qm term of

−

(
∞

∑
k=0

(k−m)k−1 · q
k

k!

)(
∞

∑
k=0

kk+2 · q
k

k!

)
,

which is
(−1)m

m!

m

∑
k=0

(−1)k
(

m
k

)
km+1 =

(
m+1

2

)
.

So the total contribution from these terms is ∑
n
i=1
(

αi+1
2

)
ψyi .

(b): Fixed point loci that push forward to M to classes of virtual codimension 1, i.e.
to loci of 1-nodal curves in M. Such a fixed point locus F = (M0�M1)/G must
then be of one of the following types:

(A) There are two connected components in M0 that are projected non-trivially
by p (drawn in bold in the picture above). These two components must then
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be connected through a component in M1. But this component in M1 must
be projected non-trivially by p as well: if it does not have positive homology
class in Y then it must be a multiple of a fiber, in which case it must have a
marked point over Y∞ (and thus a total of at least three marked points). So
the resulting curve in M has at least three components. But the locus of such
stable maps has virtual codimension 2, so we do not get a contribution in
codimension 1 from these fixed point loci.

(B) There is one connected component in M0 that is projected non-trivially by
p, and this component has two marked points that are connected by a loop
through M1. These fixed point loci do not contribute for the same reason as
in (A).

(C) There are two connected components in M1 that are projected non-trivially
by p. These components must then be connected through level 0, but this
connection must become unstable when projected by p for the same reason as
in (A). The connection can therefore only be a union of two multiple covers of
a fiber without marked points that are glued over Y0. Moreover, there must not
be any component in M0 that is projected non-trivially by p. The argument
of the proof of proposition 5.3.2 (a) now shows that this cannot give rise to a
non-zero contribution.

(D) There is one connected component in M1 that is projected non-trivially by p,
and this component has two marked points over Y0 that are connected by a
loop through level 0. These fixed point loci do not contribute for the same
reason as in (C).

(E) There is one component each in M0 and M1 that is projected non-trivially by
p. This is in fact the only case that gives a contribution, and that we will study
now in detail.
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We will call the two components the absolute and the non-rigid component, respec-
tively. The absolute component can obviously have some of the marked points xi on
it. Moreover, it can connect to marked points yi through rational fiber tails as in the
proof of proposition 5.3.2 (b). The non-rigid component can obviously have marked
points yi on it, but it can also connect to some marked points xi through multiple
covers of a fiber in level 0. The homology class and the genus can obviously split
in any way onto the two components. So in the result we will get every possible
non-looping codimension-1 boundary stratum of M with some coefficient.

Let us fix such a stratum ∆ now and compute its coefficient. For simplicity let us
first assume that the two components of the curves in ∆ are labeled, so that it makes
sense to talk about the first and second component of the curves. We then just fix
splittings g = g0 +g1, p∗β = β0 +β1, I0 ·∪ I1 = {1, . . . ,N}, J0 ·∪ J1 = {1, . . . ,n} and
require that the absolute (resp. non-rigid) component has genus g0, homology class
β0, and marked points {xi ; i∈ I0} and {y j ; j ∈ J0} (resp. genus g1, homology class
β1 in Y , and marked points {xi ; i ∈ I1} and {y j ; j ∈ J1}). The two components
have to be connected by a multiple cover of a fiber in level 0 of some degree D > 0.
We will call this the connecting fiber. Let us fix the value of D for a moment and
only add up the contributions from the fixed point loci where D has this given value.
We will later add up the contributions for all possible values of D.

Note that the projection p maps our fixed point loci to a codimension-1 stratum in
M, and we are computing an integral in codimension 1. So we can ignore cohomo-
logical terms in the equivariant integral and only compute the pure weight terms.
The sum of the pure weight terms over all fixed point loci as above will be the
coefficient of [∆]virt in the final result.

The trick to compute this sum is to set up a different equivariant integral that yields
exactly the same fixed point loci and the same pure weight terms, and that we have
essentially computed already. To do so let M ′ be the moduli space of stable relative
maps to P relative Y∞ with two connected components, where

• the first component has genus g0, marked points {y j ; j ∈ J0} with multiplic-
ities α j and z0 with multiplicity 0, and homology class β′0 that projects to β0

in Y and intersects Y∞ with multiplicity ∑ j∈J0 α j;
• the second component has genus g1, marked points {xi ; i ∈ I1} with multi-

plicity 0, {yi ; i ∈ J1} with multiplicities α j, and z1 with multiplicity 0, and
homology class β′1 that projects to β1 in Y and intersects Y∞ with multiplicity
∑ j∈J1 α j.
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For this moduli space we compute the equivariant integral p∗(γ · [M ′]virt) by local-
ization, where

γ =
N0−1

∏
k=0

(kψz0 + ev∗z0
Y0)·

Dψz1 · ∏
0≤k<N1,k 6=D

(kψz1 + ev∗z1
Y0) ·∏

i∈I1

mi−1

∏
k=0

(kψxi + ev∗xi
Y0)

with N0 =Y0 ·β′0+1−g0 and N1 =Y0 ·β′1−∑i∈I1 mi+1−g1, and where p : M ′→M′

denotes again the projection to the corresponding space of stable maps to Y . For
dimensional reasons the result must be a multiple of [M′]virt by the virtual push-
forward theorem 5.2.7. To compute this multiple we have to evaluate the pure
weight terms of the relevant fixed point loci in the same way as we did in proposition
5.3.2. We claim that these relevant fixed point loci are in one-to-one correspondence
with the ones for our original problem on M , and that the coefficients of the pure
weight terms agree up to a constant factor for every such fixed point locus. In fact,
this is obvious by the description of the fixed point loci and their contributions in
remark 5.2.6, except for the part concerning the connecting fiber:

• In the original integral on M the connecting fiber contributes pure weight
coefficients of DD

D! for changing the ramification structure by remark 5.2.6 (ii)
(b) and D for smoothing the node by remark 5.2.6 (iii).
• In the new integral on M ′ the product

Dψz1 · ∏
0≤k<N1,k 6=D

(kψz1 + ev∗z1
Y0) ·∏

i∈I1

mi−1

∏
k=0

(kψxi + ev∗xi
Y0)
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in γ forces the marked point z1 to lie over Y0 on a multiple cover of a fiber
in level 0 of degree D: first of all all marked points xi and z1 must lie on
a multiple cover of a fiber of P as otherwise the fixed point locus would be
projected by p to stable maps with a node. The condition above then forces
the degrees of these covers to be at least mi at xi, and at least N1 at z1 unless
it is equal to D. By the same dimension counting argument as in the proof
of proposition 5.3.2 (a) we see that only the case of multiplicity D at z1 is
possible.
The pure weight coefficients are then

− ∏
0≤k<N1,k 6=D

(1− k
D
)

from the class γ, and DD

D! for changing the ramification structure by remark
5.2.6 (ii) (a).

Comparing these two computations we see that the coefficient of ∆ in our original
expression arising from fixed point loci with connecting fiber of degree D is equal
to

−D · ∏
0≤k<N1,k 6=D

(
D

D− k

)
= (−1)D+N1 · DN1

D!(N1−D−1)!

times the coefficient of [M′]virt in p∗(γ · [M ′]virt). But the latter is easily computed:
simply note that the result does not change if we replace Dψz1 by Dψz1 +ev∗z1

Y0 in γ

since a factor of ev∗z1
Y 2

0 would result in a class that is projected by p to codimension
at least 1. It then follows immediately by the product property of proposition 5.2.8
(resp. conjecture 5.2.9 (ii)) and proposition 5.3.2 that p∗(γ · [M ′]virt) = 1 · [M′]virt.

We therefore conclude that the total contribution of ∆ in our original expression is
equal to

∑
D>0

(−1)D+N1 · DN1

D!(N1−D−1)!
=−max

((
N1

2

)
,0
)

where

N1 = Y0 ·β′1−∑
i∈I1

mi +1−g1

= Y∞ ·β′1 + c1(L) ·β1−∑
i∈I1

mi +1−g1

= c1(L) ·β1 + ∑
j∈J1

α j−∑
i∈I1

mi +1−g1.

Finally, recall that this is the result for a boundary stratum with two labeled com-
ponents. So for simplicity we should add to this result the number that we get
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by exchanging the two components, and then only sum (as usual) over strata with
unlabeled components. Exchanging the two factors replaces N1 by

c1(L) ·β0 + ∑
j∈J0

α j−∑
i∈I0

mi +1−g0 = (c1(L) ·β+
n

∑
j=1

α j−
N

∑
i=1

mi +2−g)−N1

=−N1.

So the coefficient of a boundary stratum ∆ is just

−max
((

N1

2

)
,0
)
−max

((
−N1

2

)
,0
)
=−

(
|N1|

2

)
,

as we have claimed in the proposition. �

COROLLARY 5.4.2. Let p : P = P(L⊕O)→ Y be a P1-bundle over a smooth pro-
jective variety Y , and assume that L is nef. Let M =M1,α(P,β) be a moduli space of
elliptic stable relative maps to P relative Y∞ such that the first marked point has mul-
tiplicity α1 = 0. Let p∗ : M →M := M̄1,|α|(Y, p∗β) be the morphism that projects
the curves in P to stable maps to Y . Then we have for all m≥ 0

p∗

(
m

∏
k=0

(kψ1 + ev∗1Y0) · [M ]virt

)

=


0 if m < Y0 ·β−1,

[M]virt if m = Y0 ·β−1,(
∏

m
k=Y0·β+1(kψ1 + ev∗1 c1(L))

)
·Γ if m≥ Y0 ·β,

where Γ denotes the expression of proposition 5.4.1. In particular, all elliptic rela-
tive Gromov-Witten invariants of P relative Y∞ such that

• there is a marked point of multiplicity 0,
• the invariant contains a class ev∗Y0 at this point,
• there are only evaluation classes from Y at the other marked points

are immediately computable in terms of elliptic (and rational) Gromov-Witten in-
variants of Y .

PROOF. The proof is the same as that of corollary 5.3.3, now using proposition
5.4.1 in addition to proposition 5.3.2. �
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5.5. Elliptic Gromov-Witten invariants of the quintic threefold

COROLLARY 5.5.1. Let Y ⊂ X = P4 be a smooth quintic threefold. There is an
explicit algorithm to compute the rational and elliptic Gromov-Witten invariants of
Y from those of P4.

PROOF. By the results of section 2.5 we can assume that the rational Gromov-
Witten invariants of Y are known, as well as the relative invariants of X relative
Y with at most two marked points (including invariants with primitive cohomology
classes). The elliptic Gromov-Witten invariants of P4 are known e.g. by theorem
1.4.4.

We will describe an algorithm that determines recursively the following four elliptic
invariants in every degree d:

(i) the Gromov-Witten invariant 〈H〉1,d of Y ;
(ii) the relative Gromov-Witten invariant 〈τ5d−2(H3)〉1,d;

(iii) the relative Gromov-Witten invariant 〈τ5d−1(H2)〉1,d;
(iv) the relative Gromov-Witten invariant 〈τ5d(H)〉1,d .

In fact, these are the only primary 1-point absolute and relative elliptic invariants of
the quintic threefold.

The strategy to compute these numbers is very similar to that of remark 5.3.6: on
the moduli space of 1-pointed stable maps of degree d to X we compute the 0-
dimensional integrals

ev∗1 Hm ·
5d−m

∏
k=0

(kψ1 + ev∗1Y ) · [M̄1(X ,d)]virt

for m = 0, . . . ,3 using the splitting theorem of remark 5.1.14. We claim that the four
resulting equations determine the four invariants listed above.

In fact, let us investigate the terms that occur in the splitting equation. It is clear
that we only get invariants of genus 0 and 1. The invariants of P are projected down
to Y by corollary 5.3.3 and 5.4.2, giving rise to absolute invariants of Y . All these
invariants can be computed immediately in terms of the basic invariants 〈 〉1,d as
the moduli spaces of (0-pointed) curves in Y all have expected dimension 0. The
invariants of X give rise to elliptic relative invariants with one marked point without
cotangent line classes (and rational relative invariants which may have two marked
points and primitive cohomology classes in case of a loop). So it is clear that the
four invariants mentioned above are the only unknown invariants occurring in the



5.5. ELLIPTIC GROMOV-WITTEN INVARIANTS OF THE QUINTIC THREEFOLD 165

four splitting equations. It is also clear that the unknown invariants must occur
linearly in the equations.

It only remains to compute which of the four invariants occurs in which equations
with non-zero coefficient. The case of the relative invariants is simple: they occur
in the same way as in remark 5.3.6, so we get (ii), (iii), (iv) only in the equation for
m = 3, m = 2, m = 1, respectively (and it occurs with coefficient 1). The absolute
invariant (i) can occur in the equations for m= 0 and m= 1 only as higher powers of
ev∗1 H are necessarily zero on moduli spaces of stable maps to Y . So it only remains
to show that the coefficient of the absolute invariant (i) in the equation for m = 0 is
non-zero. But this follows from proposition 5.4.1:

p∗

(
5d

∏
k=0

(kψ1 + ev∗1Y ) · [M ]virt

)

=

((
5d +1

2

)
ψ1 +(5d +1)ev∗1(5H)

)
· [M̄1,1(Y,d)]virt

= 5d(5d +1)〈 〉1,d,

where M is the corresponding moduli space of stable relative maps to P.

Hence we have shown that the four equations from the splitting theorem for m =

0, . . . ,3 are uniquely solvable for the four invariants (i),. . . ,(iv). �

EXAMPLE 5.5.2. As an example of the algorithm described in corollary 5.5.1 let
us compute the first invariant n1,1 = 〈 〉1,1 of the quintic threefold explicitly. We
compute the invariant

5

∏
k=0

(kψ1 + ev∗1 5H) · [M̄1,1(P4,1)]virt = · · ·= 250

(i.e. the m = 0 case in the proof of corollary 5.5.1) using the splitting theorem of
remark 5.1.14. We get the following terms (the components in the pictures are
labeled by their genus):
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(A) We have a rational multiple cover of a fiber in P, glued to an elliptic compo-
nent of degree 1 in X . These terms do not give any contribution as corollary
5.3.4 would require the degree of the multiple cover (and hence the multiplic-
ity of the component in X to Y ) to be 6, which is impossible.

(B) We have an elliptic multiple cover of a fiber in P, glued to a line in X .
There are two non-zero degree-1 rational relative invariants 〈τ4(H3)〉0,1 and
〈τ5(H2)〉0,1, so the multiplicity at the gluing point can be 4 or 5. Let us con-
sider the case of multiplicity 4, so that the invariant from X is 〈τ4(H3)〉0,1 = 30
(see example 2.5.8). The elliptic component in P then gets an evaluation class
1
5 · ev∗y1

1 from the diagonal splitting. So the elliptic invariant from P is given
by corollary 5.4.2 by

(5ψ1 + ev∗1 5H) ·
((

5
2

)
ψx1 +5ev∗x1

5H +

(
5
2

)
ψy1−4ev∗y1

5H−λ

)
· [M̄1,2(Y,0)]virt.

Note that M̄1,2(Y,0) = M̄1,2×Y , and

[M̄1,2(Y,0)]virt = c3(X)−λc2(X) =−40H3−10λH2

using this decomposition. Inserting this in the above expression gives the re-
sult−12625

12 . Together with a multiplicity factor of 4 from the splitting theorem
we conclude that the total contribution from these curves is

−12625
12
·4 · 1

5
·30 =−25250.

In the same way we find a contribution of−40625 for the case of multiplicity
5 at the gluing point. Altogether we therefore get a contribution of −65875
from the curves of type (B).
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(C) Pushing this term forward to Y gives the invariant that we would like to com-
pute. We get 30n1,1 by the calculation at the end of the proof of corollary
5.5.1.

(D) We have a rational multiple cover of a fiber in P, glued at two points (hence
forming a loop and yielding genus 1) to a line in X . The two multiplicities
at the gluing point can be any numbers m1,m2 with m1 +m2 ≤ 5; we get a
contribution for every such choice. As an example let us consider the choice
m1 = 1, m2 = 4, so that the multiple cover in P has degree 5. We have com-
puted the corresponding invariant in X already to be 5425 in example 2.5.11.
The invariant in P is given by corollary 5.3.3 by 1

5 ev∗H3 (from the diagonal
splitting) on M̄0,3(Y,0), which is 1. Together with a multiplicity factor of 1 ·4
from the splitting theorem we thus get a contribution of 21700.
The contributions for the other multiplicities (m1,m2) are computed in a sim-
ilar way. We list them in the following table.

(1,1) (1,2) (1,3) (2,2) (1,4) (2,3)
625

2 1250 1875 1250 21700 32550

Their sum is 117875
2 , so this is the contribution that we get from the terms of

type (D).

Altogether we now arrive at the equation

250 =−65875+30n1,1 +
117875

2
,

from which we deduce that n1,1 =
2875

12 .

EXAMPLE 5.5.3. The following table lists the four primary elliptic 1-point invari-
ants of the quintic threefold that occur in the proof of corollary 5.5.1. They have
been computed with the C++ program GROWI [Ga5]. The numbers n1,d = 〈 〉1,d
are the elliptic absolute invariant of the quintic. They agree numerically with the
prediction of Bershadsky et al. in [BCOV1]. The numbers N1,d are the integral in-
variants obtained from the n1,d by the Gopakumar-Vafa correction of [P3] section
3.

〈τ5d−2(H3)〉1,d 〈τ5d−1(H2)〉1,d 〈τ5d(H)〉1,d
d = 1 −55

12 −2425
24 −10375

24

d = 2 −2130 −258525
2 −1604750

d = 3 −1739835 −681816425
4 −96167766875

24

d = 4 −1104866000 −139084431500 −96981145446875
12

d = 5 2929112127165
2

1254446774084025
4 −254143882366065725

24

d = 6 10649810105988480 2492419792539577700 70171494491795157875
6

d = 7 40406603028060820650 32828999580140417044075
3

1350565740517460928228375
8



168 5. RELATIVE GROMOV-WITTEN INVARIANTS IN HIGHER GENUS

n1,d N1,d

d = 1 2875
12 0

d = 2 407125
8 0

d = 3 243388750
9 609250

d = 4 382833353125
16 3721431625

d = 5 93716201322650
3 12129909700200

d = 6 103669556513320375
2 31147299733286500

d = 7 8078223459917903604625
84 71578406022880761750
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