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Preface

Introduction

Enumerative geometry is concerned with counting curves in algebraic varieties that satisfy
certain conditions. Even though enumerative problems are easy to formulate, it is in gen-
eral very hard to solve them. The most important tools of modern enumerative geometry
are moduli spaces M, ,,(X, 3) of degree 3 stable maps from n-marked genus g curves into
a smooth projective variety X. Intersection theory on these moduli spaces has been used to
solve several difficult enumerative problems, such as determining the number of rational
curves of degree d in a quintic threefold ([Konl]) or the number of rational plane degree d
curves through 3d — 1 points in general position ([KM94]).

Tropical geometry is a branch of algebraic geometry, in which the so-called tropicalisation
transforms a scheme into a weighted, balanced polyhedral complex. These complexes,
the so-called tropical varieties, are combinatorial objects, which can be studied with non-
algebraic methods and can reveal new insights about algebraic geometry. Tropical geome-
try has proven to be useful in enumerative geometry in several circumstances. For exam-
ple, Mikhalkin proved in his famous "Correspondence Theorem" that the number of plane
curves of given genus and degree through some given points equals the number of certain
plane tropical curves through the same number of points, [Mik05]. Another example is the
computation of Welschinger invariants in real enumerative geometry by Shustin [Shu06].
From these results, a purely tropical enumerative geometry evolved, cf. [Mik06], [GMO07],
[GKMO09].

Following the ideas from algebraic geometry, tropical moduli spaces My ,(R™, A) of de-
gree A tropical stable maps from rational tropical curves with n» marked "points" into R™
have been introduced in [Mik06] or [GKMO09]. So far, there are no moduli spaces for ra-
tional stable maps into tropical varieties different from IR™. Therefore very interesting
algebraic enumerative problems, like counting lines in a cubic surface or rational curves in
a quintic threefold, are inaccessible to the tropical theory. The original aim of this thesis
was to construct moduli spaces M, (X, A) of degree A rational tropical stable maps into
a smooth tropical subvariety X C R™. This could only be achieved partially, as we will
explain below.

In the algebraic theory, it is possible to construct Mg ,(X,3) for a subvariety X C P™
essentially as a union of connected components of the zero locus of some global sections of
a certain vector bundle on My ,,(IP™, d), cf. [FP97]. Unfortunately, this approach does not
carry over to the tropical world for lack of a suitable tropical vector bundle.

Another approach would be to tropicalise the algebraic moduli space for a suitable choice
of coordinates. This has the major drawback that the algebraic space in general has several
components of different, not expected dimensions. It is therefore necessary to use the vir-
tual fundamental class instead of the usual one if one intends to do intersection theory. If
we tropicalise the irreducible components of the algebraic space separately, the tropicali-
sations would then also be of the wrong dimension and we would have to find a suitable
virtual fundamental class of the tropicalisation. On the other hand, the virtual fundamental
class of the algebraic space, which has the correct dimension, cannot be tropicalised.
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6 PREFACE

The approach of this thesis is to directly construct a virtual class Mo, (X, A), i.e. a tropical
variety of the correct dimension, consisting of curves satisfying easy local combinatorial
conditions. The price we have to pay is that it is extremely difficult to find the right weights
on this space and to show that they actually make Mg, (X, A) balanced. This has been
carried out successfully in the case where X' is a smooth curve and in the case of tropical
lines, when X C IR3 is a smooth surface, in this thesis.

The content of this thesis can be summarised as follows.

Chapter[T} The first four sections of Chapter[Ilprovide the basic notions and technical tools
which are needed in Section [I.5] which is the central part of the first chapter. In Section[L.6]
examples of our constructions are given. The main issues of Chapter[Iare the following.

We want to reduce the construction of Mg (X, A) for a general smooth X (which is a
hypersurface or curve) to the case where X is a fan. The idea is the following: For a tropical
stable map i : I' — X, where I is a metric graph of genus zero, of a given combinatorial
type we want to "cut" the abstract curve I' along all of its edges into local pieces I';,, which
are then in bijection with the vertices v of I'. We want to do this in a way such that » maps
', into a local part of X which looks like a fan. Knowing something about stable maps to
fans can yield information about stable maps into X. In this summary it will be outlined
how this can be done.

We would like to consider the local pieces I', together with the restriction of & as an element
of some tropical moduli space M,. As I';, has bounded leaves, we cannot obtain M, as a
subspace of the kind of moduli spaces from [[GKMU09], because they only allow unbounded
leaves.

Therefore we extend the moduli spaces My ,(IR™,A) to moduli spaces of stable maps
where some of the leaves are bounded. We also construct evaluation morphisms which
assign to a stable map the image in R™ of the endpoint of a bounded leaf. Additionally we
construct morphisms which forget the lengths of the bounded leaves letting them become
unbounded. This is done in Section As the lengths of the bounded leaves are always
positive, those moduli spaces will "end" where the length goes to zero. This is why we need
to define partially open tropical varieties in Section [Tl Furthermore, we also want to deal
with stable maps without marked points, i.e. elements of Mg o(R™, A). This is needed,
for example when we consider lines in a tropical cubic, cf. Section[3.3] but also to construct
M., as some of the local curve pieces from above might not have marked points. However,
dealing with M, o(IR™, A) is not possible with the approach from [GKMO09], as n > 1 is as-
sumed there. Thus we introduce new coordinates on M, ,,(IR™, A), using the barycentres
of the images of the curves, cf. Definition [[.2.15

Let us return to the local curve pieces. We will assume that every vertex v is good, cf.
Definition [I.5.12] One part of the condition of being good is, that we assume we already
constructed a moduli space M, of the correct expected dimension and equipped with suit-
able weights, cf. Definition which will be fixed in the last chapter. Furthermore, M,
has to satisfy an intrinsic compatibility condition, which we will explain in the paragraph
after next. We now want to "glue" the local curve pieces back to the original curve using
tropical intersection theory. For an edge of I" we obtain two bounded leaves from cutting.
So we can take the product of the evaluations at these two leaves, which then maps into
X?. We impose the condition that the two leaves fit together by pulling back the diagonal
via the product of evaluations to the product [, M,.

Unfortunately, tropical intersection theory does not provide a well-defined pull back for
arbitrary cycles, even if they are a product of Cartier divisors. To pull back the diagonal
in a way that satisfies all the properties one would expect, we have to do cumbersome
constructions and computations in Section [[.4l



INTRODUCTION 7

The tropical variety that we obtain after pulling back the diagonal for each edge still carries
the information of where we cut the edges. We want to get rid of this superfluous informa-
tion by dividing out a lineality space. To do this, we extend the notion of a lineality space
to partially open tropical varieties in Section [Tl After getting rid of the cutting points by
taking the quotient, we obtain a tropical variety in My, (R™, A), which we will call the
gluing cycle of the stable map (T, &), cf. Construction The gluing cycle will only
depend on the combinatorial type of the original stable map. If all vertices of all combina-
torial types are good, it turns out that all the gluing cycles fit together to the tropical variety
Mo (X, A). This is Theorem To prove this, we need the intrinsic compatibility of
M., which just means that the moduli space M,, can itself be obtained from gluing cy-
cles. Furthermore, the stable maps in M ,, (X, A) satisfy easy combinatorial conditions, cf.
Definition [[.5.10] and the variety M, ,,(X, A) will be of the correct expected dimension.

The more difficult, and mainly unsolved, problem is to show that the vertices v actually are
good. At the end of Section[I.5]we will reduce this problem to showing that M, (X, A) is
a moduli space obtained from gluing cycles, if its expected (and then by construction also
its actual) dimension is one and X is a fan.

Chapter[2t Even in this simplified situation from above, there seems to be no feasible purely
combinatorial description of the tropical stable maps into X’ that satisfy our local combina-
torial conditions. Of course it is then hard to show that My ,,(X, A) is balanced, as we do
not know its maximal cells. The idea of the second chapter is to translate both problems
into intersection theory on a suitable algebraic moduli space.

First we review certain aspects of toric geometry in Section2.1l Our main objective is toric
intersection theory, but we also explain a description of morphisms into smooth projective
toric varieties X (¥) given by Cox. In Section 2.2l we will focus on subvarieties Y C X (X)
which tropicalise to a subfan Y of 3. We will define a stack M y of all |A|-marked rational
stable maps into Y satisfying certain multiplicity conditions to the toric boundary given
by A at the marked points. Furthermore, we will define the substack Wa y of Ma y of
curves that are deformations of irreducible curves in Ma y. It turns out that the curves in
Ma .y and Wa y have a tropical meaning. In particular, the curves in W y correspond to
combinatorial types of degree A stable maps into Y, cf. Theorem 2.2.18 We will define a
boundary of Wa y and show that we can obtain specific elements in the tropical moduli
space from the multiplicities of certain Cartier divisors to this boundary. However, the
examples given in Section [2.2lshow that the combinatorial types of tropical curves that we
obtain this way, do not correspond to those which satisfy the local combinatorial conditions
from Chapter[Il Also, the dimension of W, y is not always equal to the expected one.

Therefore, we will construct a virtual fundamental class of Wa y in Section[2.3]in the case
of an integral hypersurface Y. This virtual fundamental class has the expected dimension
and will be obtained from the stack Wx x(x) as intersection with the top Chern class of
some vector bundle.

As the boundary of Wa y encodes information about tropical stable maps, we want to
study it in Section 2.4 We will mostly restrict to properties of the boundary of Wx x (s,
since this is much easier to understand. It turns out that the boundary can be stratified
by combinatorial types of degree A tropical stable maps into ¥. We will show that if a
combinatorial type satisfies certain conditions, the locus of stable maps in Wa x(x) corre-
sponding to it has a recursive structure, cf. Proposition We also describe how the
stacks Wx x(x) behave under refinements of the fan ¥, i.e. blow ups of the toric variety. We
can use this to show that one-dimensional combinatorial types define irreducible boundary
divisors of W x(x), cf. Corollary 2.4171 We conclude the second chapter by showing that
Wa, x(x) is unibranch around some of these irreducible boundary divisors, which enables
us to explicitly determine multiplicities of certain Cartier divisors along those boundary
divisors. Those are the multiplicities we need to obtain an element in the tropical moduli
space.
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Chapter[3l In the last chapter the results from the first two chapters are brought together. If
the expected dimension of My (Y, A) is one, we use the intersection theoretic results from
Chapter 2 to construct a one dimensional tropical fan in M ,(R™, A) whose elements
are stable maps to ). This is done in Section Unfortunately, it is not clear whether
this tropical variety obtained from intersection theory can also be obtained from gluing
as in Chapter [l or not. So the problem outlined above has not been solved completely.
However, the construction of a tropical fan with algebraic intersection theory seems to be
a promising approach, cf. Conjecture 3.1.71 In this conjecture we claim that the correct
weights of Mg (X, A) for a smooth hypersurface X' can be obtained from the degrees of
virtual fundamental classes of certain W y. To substantiate this claim, we determine a few
such degrees of virtual fundamental classes in Section[3.4l This sheds a new light on some
of the examples in Section 1.6l

In Section [3.2 we will use our methods to show that if we restrict X’ to smooth curves, all
vertices are good, cf. Theorem [L.5.21] The results from the first chapter yield a tropical
moduli space M (X, A) of rational covers of smooth tropical curves. It turns out that
the weights on this moduli space can be obtained from multi-point Hurwitz numbers, cf.
Definition

In Section B.3] we will construct tropical moduli spaces of lines in smooth surfaces in R3,
cf. Proposition In particular, as our spaces have the correct dimension, we obtain a
moduli space of lines in a given tropical cubic, which has dimension zero. So even though
smooth tropical cubics might contain infinitely many lines, cf. [Vigl0], our moduli spaces
always contain only a finite number of them. This allows for a virtual count of tropical
lines in smooth tropical cubics.

Results

In this thesis we extend the existing constructions of tropical moduli spaces of tropical ratio-
nal stable maps and relate these tropical moduli spaces to intersection theory on algebraic
moduli spaces. The main results are:

e We define a tropical structure on the moduli space of rational tropical stable maps
Mo, (R™, A) using the barycentre of the images of the maps. This is done in
Section[I.2land is also possible if n = 0 unlike the construction from [GKM09].

e We reduce the task of constructing My ,,(X,A) for arbitrary smooth X ¢ R™
(which is a hypersurface or curve) to the case where X is a fan and the expected
dimension of My, (X, A) is one. However, we need to make sure that My, (X, A)
has some additional properties in this case. This is the content of Section[L.5

e We construct tropical moduli spaces My, (X, A) of tropical covers, i.e. stable
maps that have a smooth tropical curve X as target. This is Corollary B.2.15 Our
methods also provide relations between multi-point Hurwitz numbers, which al-
low their recursive computation, cf. Remark[3.2.16

e We construct tropical moduli spaces of lines in smooth surfaces in R?, cf. Proposi-
tion[3.3.3 In particular, this includes smooth tropical cubic surfaces, which, even
though this is not expected, might contain infinitely many lines, cf. [Vig10]. How-
ever, our moduli space will allow a virtual count of lines for every smooth cubic.

e In Theorem[2.2.18we prove that deformations of irreducible algebraic stable maps
into smooth projective toric varieties correspond to combinatorial types of tropical
stable maps. In Lemmas [3.1.2]and we show that these combinatorial types
can be recovered from intersection multiplicities on a suitable moduli space of
algebraic stable maps.
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CHAPTER 1

Moduli spaces of tropical stable maps

The first chapter contains most of the tropical geometry part of this thesis. In Section[L.Twe
will recall tropicalisation of algebraic varieties and the definition of tropical varieties but
in a slightly more general way than usual, as we will allow them to be partially open. This
enables us to study tropical varieties locally. In Section[L.2lwe will describe moduli spaces
of rational tropical curves, but with the additional feature of bounded leaves, making the
moduli space partially open. Section[I.3ljust lists the tools from tropical intersection theory
that we will need, except for a well-defined pull back of the diagonal in a smooth tropical
fan, which will occupy Section [[.4l and is quite technical. We will bring all this together
in Section where we will use intersection theory to "glue" a moduli space of rational
curves in a smooth tropical variety from suitable "smaller" and easier to understand moduli
spaces. We will give several examples for this in the last section,

1.1. Introduction to tropical geometry

There are several approaches to tropical geometry. One is to use tropical geometry as a tool
in algebraic geometry via the so called "tropicalisation" and another one is to study tropical
varieties as purely combinatorial objects. A good reference for the algebro geometric point
of view is the book by B. Sturmfels and D. Maclagan [SM] which is still work in progress
but already covers a wide variety of topics that is otherwise scattered in the literature.
Good references for an overview of a purely combinatorial approach are the PhD theses
of G. Frangois [Fral2] and J. Rau [Rau09]. Most of the already existing definitions in this
section and Section[I.3are taken from these three sources.

Definition 1.1.1 (Fields and tropicalisation). Let £ be an algebraically closed field. Then
the Mal’cev-Neumann ring of generalised power series K = R((IR)) consists of all formal power
series ) _a.t® with coefficients in £ and ¢ € R such that {¢ € R|a. # 0} is well ordered.
This is also an algebraically closed field, containing the field R{{t¢}} of Puiseux series, which
is the algebraic closure of the field of the Laurent series (cf. Example 2.1.6 of [SM]). K (and
also R{{t}}) has a valuation given by

v:K* — R, Zaatar—>min{€€]R|a€7é0}.
g

We also denote the coordinate-wise valuation by v:
vi (KN — R, (21,0 Tm) — (V(Z1), oo, V(Z0)).

For any subvariety of the torus X C (K™*)™ we can define the set of all coordinate-wise
valuations as the tropicalisation of X

trop(X) := {v(z) |z € X}.
This defines the tropicalisation as a set. Usually the tropicalisation also involves weights,

cf. Theorem[1.1.4 For a definition of the weights of the tropicalisation we refer to Chapter
2 of [Spe05] or Definition 3.4.3 of [SM].

Remark 1.1.2 (Tropicalisation and field extensions). Let K [z*] denote the ring of Laurent
polynomials in 21, ..., z,, with coefficients in K. If I C K [z*] is an ideal with vanishing
locus Z(I) =: Xk, the Fundamental Theorem of Tropical Geometry (cf. [SM] Theorem 3.2.4, or

1



12 1. MODULI SPACES OF TROPICAL STABLE MAPS

[Dra08] Theorem 4.2) states that w € trop(Xx) if and only if in,, (1) # K [#¥]. Here in,,(I)
is the initial ideal with respect to w (cf. [SM], Section 2.5). The second condition can be
checked by a Grobner basis computation. Let now £ be an algebraically closed extension
field of R and L = £((R)). If I is generated by polynomials with coefficients only in &
(this is usually called the constant coefficient case), we have in,,(I) # K [z*] if and only if
in, (IL [z%]) # L [v*]. The reason for this is that all Grobner basis computations take place
in the field &. We conclude that trop(X k) = trop(Xy.), where X, := Z(IL [x*]) C (L*)™.

To formulate some results about the tropicalisation we should first recall a few definitions
concerning polyhedra.

Definition 1.1.3 (Notions from polyhedral geometry). Let A be a lattice, i.e. a group which
is isomorphic to some Z™, and consider the real vector space V' = A ®z R. Then a subset
of the form

1) o={zeVI|Viel: fi(z)>¢andVjeJ:gj(z)>d; } CV

for finite index sets I and J with f;, g; € AY and ¢;, d; € Ris called a rational polyhedron and
it is called a cone if all ¢; = 0 and d; = 0. A subset of ¢ that is obtained by replacing some
">"by "="in () is called a face of o, and it is denoted a facet if it is a face of codimension
one. If 7 is a face of o we write ¢ > 7. For a polyhedron o we define a subvector space
Vo :={(x —y|x,y € o)r. As lattice of V,, we take A, := A NV,. The relative interior c° is the
interior of o inside the affine linear subspace spanned by it, or equivalently o without all
its proper faces. A polyhedron o is called partially open if it is not closed in the affine linear
subspace spanned by it.

A finite collection X of rational polyhedra in V is called rational polyhedral complex if for
o € X all faces of ¢ lie in X and for any two 0,7 € & the intersection o N 7 is a face of &
and of 7, hence also in X. Furthermore, we require that for all o, 7 € X witha N7 # () we
already have o N7 # ). The elements of X" are called cells. We write X C V to indicate in
which vector space the polyhedra live. Note that all polyhedra and polyhedral complexes
in this thesis will be rational, and we will therefore omit the term "rational" from now on. A
polyhedral complex will be called partially open if it contains at least one partially open cell
and closed otherwise. Let dim X := max{dim o | o € X} and let X'(k) denote the set of all k-
dimensional cells of X. We call a polyhedral complex pure if all its inclusion maximal cells
are of the same dimension. If X is pure we denote by X*) the set of all cells of codimension
k, i.e of dimension dim X —k. For a cell o € X we define X(0) := |J,~, 7°. We define
Stary(c) as the fan in V/V, with lattice A/A,, consisting of cones 7 := Rxo((1 — P)/V,)
for all 7 € X with 7 > ¢ and some point P € o. The support of a polyhedral complex is
| X [poly = Uyex 0. We use the index "poly" in order to distinguish this from the support of
a weighted polyhedral complex, that is defined later on. A set X is called polyhedral set if it
is the support of some polyhedral complex & and we define dim X := dim &X', which clearly
does not depend on the choice of X with the property | X' |0y = X. For two polyhedral
complexes & and ) we say that ) is a subcomplex of X', written ) < X, if | Y |[po1y C [ X |poly
and for each o € Y we have a cell 7 € & such that ¢° = 7°. Note that a polyhedron ¢ is a
polyhedral set, it is the support of the polyhedral complex {7 |7 < o} which we will also
denote o by abuse of notation.

A polyhedral complex &' is called a fan if 0 € (,., 7. We call it an affine fan if it is a
translation of a fan by a vector in V, which is called an apex of the affine fan. For an affine
fan X we want to call the cell (" ., o the central cell of X. The central cell is the unique
inclusion minimal cell of the affine fan. Note that if X is a closed fan, i.e. all 0 € X are
closed polyhedra, then all o € X must be cones as in the usual definition of a fan from the
literature. This can be seen as follows. Let o = {x € V| fi(z) > ¢; for i € I} € X. Then for
every i € I replacing the inequality by f;(x) = ¢; defines a face of . By definition this face
must contain 0, hence 0 = f;(0) = ¢;.
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Let A’ be another lattice with vector space V' = A’ @z R and let g : V. — V' be an R-linear
map satisfying g(A) C A’. Then g is called integer linear. Any translation f = g+cforc e V'
is called affine integer linear and fi, := g is called the linear part of f. For any polyhedral
complex X C V' the preimage f~' X under an integer affine linear map is the polyhedral
complex {f~lo|o € X}. Note that this again consists of rational cells. Of course the set
theoretic preimage of a polyhedral set is again a polyhedral set.

A pair (X,wx) is called weighted polyhedral complex, if X is a pure polyhedral complex and
wy : XY — Qs a function. The rational number wy (0) € Q is called the weight of o.
We usually omit the function wy and denote a weighted polyhedral complex just by the
complex X. Note that in the literature one usually restricts to weights from Z, but we will
need rational weights on our moduli spaces Mg (X, A) in order to make them balanced
in a "nice" way. For a weighted polyhedral complex X we define the support | X | as the
union over all maximal cells with non-zero weight. If 7 is a facet of o then we can define
Us/r € Ay/A; to be the primitive integral vector lying in the same half line of V,,/V; as o.

We call a weighted polyhedral complex balanced if for all its facets 7 € X"
(2) Z wx(0)uy/r = 0.

UEX(U)
o>T

With these notions from polyhedral geometry we can state the following very important
theorem:

Theorem 1.1.4. If X C (K*)™ is an irreducible variety, then trop(X) is the support of a closed
polyhedral complex of pure dimension dim X. The maximal cells of this polyhedral complex also
come with intrinsic positive integer weights (depending on the ideal defining X, i.e. the scheme
structure of X) turning trop(X) into a weighted and balanced polyhedral complex.

PROOF. This can be found for example in [Spe05] Section 2.2 (polyhedral structure),
Proposition 2.4.5 (pure dimensionality) and Proposition 2.5.1 (balance). O

This theorem justifies the following definition of tropical subvarieties of some real vector
space:

Definition 1.1.5 (Tropical varieties). A tropical polyhedral complex is a weighted polyhedral
complex X C V = A®z R that is balanced. A refinement of X is another tropical polyhedral
complex X' C V with | X | = | X’| such that for all o/ € X’ with o’ C | X’ | thereisao € X
with ¢’ C ¢. For maximal cones we require wy'(¢’) = wx (o) in this case. Note that this
imposes no condition on the cells of weight zero. Two tropical polyhedral complexes that
have a common refinement are called equivalent. One can check that this in fact defines an
equivalence relation. We define a tropical cycle or tropical variety to be an equivalence class
[X] of tropical polyhedral complexes. Note that in the literature the term tropical variety is
usually reserved for a tropical cycle with only positive weights, but the space Mg ,, (X, A)
we are interested in will in general also have negative weights. A representative X" of a
tropical variety [X] is also called a polyhedral structure on [X]. We will usually just write
X for the tropical variety [X]. If we have two tropical polyhedral complexes X and ) we
usually write X = Y if they are representatives of the same tropical variety. Of course all
representatives of a tropical variety X’ live in the same vector space V' and we will write
X C V for this.

For tropical polyhedral complexes X the support | X' | is obviously well-defined on equiva-
lence classes. Therefore we can define the support of a tropical variety as the support of any
of its polyhedral structures. The dimension of X is then the dimension of | X' |. Note that
this is not well-defined for () and we want to consider () to have any dimension, because this
will be the zero element in the group of tropical cycles of dimension &, cf. Definition [[.3.1]
A tropical variety is called closed if | X' | is closed in V' and partially open otherwise. Note



14 1. MODULI SPACES OF TROPICAL STABLE MAPS

that each representative of a partially open tropical variety is a partially open polyhedral
complex. A tropical variety is an (affine) tropical fan if it admits a polyhedral structure which
is an (affine) fan. In this case the central cell of such a fan structure is called a central cell of
X. Another tropical variety Y is called a subvariety of X, if |} | C | X| is closed. We write
Y C X for this. A tropical variety X is called reducible if there exists a subvariety ) C X
with dim Y = dim X but | X' | # | Y |. It is called irreducible if it is not reducible.

Although tropicalisations of algebraic varieties are always closed we will need the slightly
more general notion of partially open tropical varieties as a technical tool for our construc-
tion of My (X, A). Also note that not every closed tropical variety is actually a tropicali-
sation of a subvariety in (K*)™. A tropical variety X C R™ is called realisable if there exists
anideal I C K [z%] with Z(I) = X C (K*)™ and trop(X) = | X | such that the weights
on X coincide with those defined by I which were already mentioned in Theorem[.1.4l To
determine whether a tropical variety is realisable or not is in general a very hard problem
which is known as tropical inverse problem, lifting problem or realisability problem in the litera-
ture. It is true that tropical hypersurfaces and rational tropical curves in R™ (with positive
integer weights) are always realisable. The case of rational curves is treated in Theorem
5.0.4 of [Spe05] and the case of hypersurfaces can be found in Theorem 3.15 of [Mik05].

Example 1.1.6 (The tropical linear spaces L}}). A basic but important example of tropical
varieties are the tropical linear spaces L}} C R™. Let ey, ..., e, be the standard basis vectors
and eg = —>_" ; ¢;. Then for any subset I C {0,...,n} we can define o; to be the cone
spanned by those e; with ¢ € I. As a fan L} consists of the cones o for all I C {0,...,n}
with |I| < k. The tropical variety L} is obtained by putting weight 1 on all maximal cells.
The picture below shows from the left to the right L7, L3 and L3.

0o g

g1

g1

02

Definition 1.1.7 (Morphisms). A morphism f : X — ) between two tropical varieties X C
V=A®zRand Y C V' = A’ ®z R is an affine integer linear map f : |X| — |V,
ie. f = g|jx| + c for a constant ¢ € V' and an integer linear map g : V' — V'. We call
fiin := g the linear part of the morphism f. We call the morphism f linear if ¢ = 0 and affine
linear else. In the literature a tropical morphism is usually a map that is only locally affine
integer linear. However, all morphisms in this thesis will be affine linear. We call a linear
morphism f quotient morphism if fi, is surjective and fin(A) = A’. A tropical isomorphism
is a morphism f : X — ) for which there exists an inverse morphism and such that the
weights of X and Y coincide for suitable polyhedral structures. Note that this definition
of morphisms is bad from a categorical point of view, as morphisms for which we have
inverse morphisms are not isomorphisms, since morphisms do not "see" the weights of the
tropical varieties.

Definition 1.1.8 (Abstract tropical varieties). We define a tropical topological space as a tuple
(X,U,w,®, A, X) where

(1) X is a topological space with a dense open subset U

(2) w:U — Q* is alocally constant function

(B) X €V =A®zRis a tropical variety

(4) ®: X — V is a homeomorphism onto its image ®(X) = | X'|
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(5) if o € X0 for some polyhedral structure, then w attains the constant value wx ()
on®~1(c°)NU.

Two tropical topological spaces (X,U,w, ®, A, X), (X,U’,w’,®, A’, X') are called equiva-
lent if there is an isomorphism f : X — X’ of tropical varieties such that ' = f o ®. We
want to call an equivalence class of tropical topological spaces an abstract tropical variety.
We also call (X,U,w,®, A, X) a tropical structure on X, and sometimes we just call ® the
tropical structure, if the rest is clear from the context. In the notation we will usually omit
the structure and denote an abstract tropical variety just by its underlying space X. Note
that every tropical variety X C A ®z R defines an abstract tropical variety in an obvious
way.

Identifying (X,U,w, ®, A, X) with X we can transfer all constructions from tropical vari-
eties inside a vector space to abstract tropical varieties. For example, an abstract tropical
variety (Y, V,w', ®', ', V) is a subvariety of (X,U,w, ®, A, X), if there are tropical structures
withY C X, A’ = A, @ = ®|y and Y a subvariety of X. A morphism between abstract
tropical varieties (X, U,w, ®, A, X) and (Y, V,w’,®',A’,Y)isamap f : X — Y for which
@' o f o ®~!is a morphism between the tropical varieties X and ).

Now we want to introduce tropical quotients, an important technical tool for gluing tropi-
cal moduli spaces.

Definition 1.1.9. Let L C V = A ®z R be a rational subvector space, i.e. it is defined by
elements in AV. A polyhedral complex X inside V is said to have lineality space L, if for
eacho € X and z € 0 we have that (z + L) N | & [0y = (2 + L) N o and that this set is open
in the induced subspace topology on = + L.

For an affine fan X we called the cell (., 7 = o the central cell of A" in Definition[I.1.3l In
this case V; is a lineality space of X" in the sense above.

A tropical variety X inside V' = A®z R has lineality space L, if it has a polyhedral structure
that has lineality space L. Such a polyhedral structure is called compatible with L.

Note that in most of the literature only a maximal L with this property is called a lineality
space. If X is a closed tropical variety, then for any polyhedral structure compatible with L,
every o € X is closed in V and hence also (z + L) N o is closed in « + L. As L is connected,
we conclude (x + L)No =x + L,i.e. x + L C o. This coincides with the usual definition of
a lineality space.

L >

Above we see two examples of partially open polyhedral complexes. The black lines in-
dicate lower dimensional faces. The complex on the left does not have lineality space L,
because there are translations of L having non-connected intersection with the support of
the complex. Furthermore the images of the cells in the quotient by L do not form a poly-
hedral complex. The polyhedral complex on the right has lineality space L.

Lemma 1.1.10. Let X be a polyhedral complex in V = A ®z R with lineality space L. Denote the
quotient map q : V. — V/L and let V/ L be equipped with the quotient lattice g(A) = A/(ANL).
Then for all cones o, 7 € X we have
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(a) q(o) is a polyhedron of dimension dim ¢(0) = dimo — dim L

() if T <o then q(r) < q(o)

(c) qlonT)=q(o)Nq(r)

(d) ifq(t) =q(o) then T =0

(e) Ag(o) = q(Ao). If T < o isafacet then Ay(o)/Ng(ry = Ao /A7 and ug(y) q(r) corresponds
to uy /- via this isomorphism.

PROOF. (a) Using induction it suffices to consider the case where dim L = 1. We want
to choose isomorphisms LNA =2 Z and ¢(A) = Z4™V~!, This induces an isomorphism V =
R%mV-1x R and we want to call the coordinates (z,y) € R4™ V1 xTR. In these coordinates
L = {(z,y) |y = 0}. In the defining inequalities of o we can assume that those involving
y are strict inequalities. Otherwise, for f(z,y) < c there would be some (zg,y0) € o with
f(zo,90) = c. As ((zo,y0) + L) N o is openin (xo, yo) + L, there must be a neighbourhood
U of yo in R with f(zo,y) < cforally € U, which is a contradiction. After dividing those
inequalities involving y by the absolute value of the coefficient of , we can write

3) o={(z,y)| hx(x) R cx and f;(x) +a; > yand g;(x) +b; <y foralli,j, k}

where R;, stands for one of the relations >, > or = and hy, f; and g; are linear forms. We
now want to show that

4) q(0) = {x | hx(z) Ry cx and f;(x) + a; > gj(x) + b, for all 4, j, k} .

" —n

The inclusion "C" is obvious. The other inclusion is true because we have only finitely
many ¢ and j and hence, for a fixed z satisfying the relations from (@), we can always find
a yo with fi(zo) + a; > yo > g;(x0) + b; for all ¢ and j. The claim about the dimension
follows from the assumption that for each = € ¢(o) the fibre (¢|,) ™' () is open in the fibre
q~1(z), which is just a translation of L. Hence every fibre (¢|,)~!(z) is of dimension dim L.

(b) If T < o, then 7 is given by replacing some of the R}, in (3) which stand for > by =. This
obviously carries over to ¢(7) and ¢(o) as in (@).

(c) Clearly g(c N7) C g(o)Ng(T), solet x € g(o) Ng(7). By the definition of a lineality space
we have that ¢~ ! (z) No = ¢ (z) N | X |poty = ¢~ (2) N7 # 0, therefore z € ¢(o N 7).

(d) By part (c) we have ¢(c N 7) = ¢q(0) = ¢(7) and as o N 7 is a face of o, it follows from the
dimension formula in (a) that 0 N 7 = ¢. By symmetry we obtain 7 = ¢.

(e) By definition A,y = Vy(»)Ng(A) and V() = q(V,). We conclude A,y = ¢(Vo)Ng(A) D
q(Vo N A) = g(A,), where the inclusion is actually an equality as we will see now. By the
definition of a lineality space, we have L C V,, and hence ¢~ *(¢(V,;)) = V,.. This implies that
forevery x € q(V;)Ng(A) any preimage y € A under ¢ must automatically also lie in V,,. We
have Ay(o)/Aqr) = 4(As)/q(A+) which is isomorphic to A, /A, after an application of the
homomorphism theorem. The vector uy(4)/q(-) corresponds to u,,, via this isomorphism
as there are only two primitive integral vectors in both lattices, so we only need to check the
sign. But its easy to see that the images of ¢ in V,,/V; and ¢(o) in ¢(V,,)/q(V;) correspond
via the isomorphism V,,/V. = ¢(V,)/q(V:), hence u,/, and u4(y)/q(r) correspond via the
isomorphism. O

Construction 1.1.11 (Tropical quotients). Let X C V' = A ®z R be a polyhedral complex
with lineality space L and let ¢ : V—V/L denote the quotient map. Furthermore, let V/L
be equipped with the lattice g(A). Define the quotient complex as

q(&X) ==X /L :={q(0)|o € X}.

That X /L is a polyhedral complex follows immediately from the previous lemma. The
map o — ¢(o) establishes a bijection between the cells of X and X /L which preserves the
lattice of faces by (a)-(d).

If X is a tropical polyhedral complex, we define weights wx /1.(¢(0)) = wx (o) on X' /L for
maximal cones ¢ € X. By (a) images of maximal cones are maximal cones as well, which is
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why the above definition of weights makes sense. These weights turn X' /L into a tropical
polyhedral complex by part (e) of the lemma. For a tropical variety [X] with lineality space
L, we choose a polyhedral structure X that is compatible with L and define [X] /L := [X /L]
as the tropical quotient variety. The tropical quotient variety is independent of the choice of
polyhedral structures on X which are compatible with L. A less general quotient working
only for closed tropical varieties was previously described in [FR10], Section 5.

We conclude this section with a few definitions that will be useful for our gluing construc-
tion in Section [L.5 and for the local study of tropical varieties. Furthermore we want to
define smooth tropical varieties, as they are the class of varieties for which we attempt to
construct moduli spaces of stable maps.

Construction 1.1.12 (Restriction of tropical varieties). Let A be a tropical varietyand Y C Z
polyhedral sets such that Y is openin Z and | X | C Z. We choose a polyhedral structure
on X and polyhedral complexes Y and Z such that Y = | YV |poly, Z = | Z |poly, Y < Z and
X < Z. This can be achieved by suitably refining all of them. For a cell o € X we have that
oNY is openin o and also a union of relative interiors of cells in X, soif e NY # () we must
have that o NY is just o without some of its proper faces, in particular ¢° C o NY. Now
we can define a weighted polyhedral complex

xXnNY :={onY|oeX}

with weights wxyny (0 NY) := wx (o) for maximal cells 0 € X withoNY # 0. XNY is
clearly balanced, as for some 7 € XM withtNY # 0wehaveo NY # @ forallo € x©
with 0 > 7 and hence 0° C Y. We call the tropical variety defined by X NY the restriction
of X to Y. This can be seen to be independent of the choice of polyhedral structures. If we
have a tropical variety ) such that | V| C Z is open, we define Y NY := X' N |V |.

The reason why we have Z in the definition, even though the restriction does not really
depend on it, is that we need to say c N'Y C o is open, so it is convenient to have a
topological space Z containing | X' | and Y such that Y C Z is open in it. Typical examples
are Z = V and Y an open polyhedron and Z = |X'| and Y C |X’| an open polyhedral
subset.

Construction 1.1.13 (Preimage variety). Let f be a quotient morphism from V' = A®z R to
V' = AN ®zRandlet Z C V' be a tropical variety. Fix a polyhedral structure on Z and con-
sider the preimage complex f~! Z = {f~'o |0 € Z}, whose cells are in an obvious inclu-
sion preserving bijection with those of Z. Hence we can define weights on the maximal cells
aswyi-1z(f 1o) :=wz(0). As in the proof of Lemma[[.T.I0 part (e) we can use the surjec-
tivity of f onto V' and f| onto A’ to show f(A;-1,) = A,. Using the homomorphism the-
orem this shows that if f~'c > f~'risa facet, then A1, /Ap-1, = Ay /A; and up-1,/ -1,
corresponds to u, /, via this isomorphism. This proves that the above weights make f~! Z
a balanced polyhedral complex, representing the preimage variety. Obviously this does not
depend on the choice of polyhedral structure. Note that f~* Z has lineality space L = ker f
and we have (f~' Z)/L =~ Z. Let X C V be a tropical variety with lineality space L,
| Z| C f|X|and denote g := f| x| It follows that g~ !| Z| = f~!|Z|n|X| C [ Z]is
open. Hence we can define g=! 2 := f~1 Zng~! Z|.

Definition 1.1.14 (Neighbourhood). Let X" be a tropical variety, fix a polyhedral structure
onitand let o € X' be a cell. We call an affine tropical fan F a neighbourhood of o° in X if the
following holds:

) o C|F[c|X]

(2) for every maximal 7 € X with 7 > o we have 7° N | F| # )

(3) for maximal cones 71 € & and 7 € F (in any polyhedral structure on ) we have
wx (1) = wr(r2) whenever 77 N 75 # (.
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Recall that by our definition of a fan (Definition [[.T.3), it can be bounded as in the picture
below. For example, the restriction X N X'(0) is always a neighbourhood of ¢ in X. In the
following picture F is a neighbourhood of the relative interior of the red cell ¢ in the grey
tropical variety.

-_— —

The blue fan F is a neighbourhood while the green one F is not, as it violates condition (2)
of the definition.

Definition 1.1.15 (Smooth tropical varieties). We call a tropical variety X' C V smooth if for
every P € | X' | there are open polyhedral sets U C | X' | and V C |L; x R™#| with P € U
and 0 € V such that X NU is isomorphic to (L7 x R™?) N V. Recall the meaning of "N"
from Construction

Note that this is much more restrictive than other definitions of smoothness in tropical
intersection theory. For example in [FR10] a variety is called smooth if it locally looks like
a matroid variety (cf. Section[I.4). As tropicalisations of linear subvarieties of a torus are
always matroid varieties, this is the same as to say A is locally tropical linear. Note that
a closed smooth tropical variety has a unique coarsest polyhedral structure, cf. the next
lemma. The picture below shows two smooth varieties.

The following lemma was proven in cooperation with Simon Hampe.

Lemma 1.1.16. A closed smooth tropical variety has a unique coarsest polyhedral structure.

PROOF. Let ¥ C V = A ®z R be a tropical polyhedral complex, such that [X] is a
smooth tropical variety. We want to find the coarsest polyhedral structure by removing all
superfluous subdivisions. For the moment we want to denote a cell 7 € X D) two-valent,
if it is a face of exactly two maximal cells of X. We want to call two cells 0,0’ € X®
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equivalent, if there exist cells o, ...,0, € X ©) and two-valent cells 71, ...,7, € X" such
thatog = 0,0, = 0’ and o; > 7341 < 0441 fori = 0,....,7 — 1. We then write ¢ ~ ¢’.
Note that wx (o) = wx(¢’) holds for o ~ ¢’ by the balancing condition. Fix a maximal cell
ceXandletS, := {0/ € XY |¢' ~o}land S, := |S, lpoly- We want to show that .S,
is a polyhedron, i.e. it is convex, and that arbitrary S, and S5 intersect in a common face.
Once we proved this, it is then clear that the set of all S, together with all of their faces
forms a tropical polyhedral complex X’ with weights wy'(S,) := wx(c). Furthermore, it
is obvious from the construction that {S, | o € X©'} is invariant under refinements of X.
Choosing a common refinement of two different polyhedral structures on [X], we conclude
that (X', wy) only depends on [X], which proves uniqueness. As the cells of X’ are unions
of cells of X, X is a refinement of X’. As this is true for every polyhedral structure of [X],
X’ must be the coarsest one.

Assume that S, is not convex. Then there are two points x,y € S, such that the straight
line segment [z, y] between them is not contained in S,. Let 7 : [0, 1] — S, be a piecewise
affine linear, continuous path from z to y. Let s = sup{t € [0,1] | [y(¢),y] ¢ S»} and let
¢ > 0 such that v|[,_. 4 is affine linear. The points y, y(s — ¢) and (s) span a plane triangle
T as in the following picture.

Then S, N T is not convex, as by definition of s we have [y(s — ¢),v(s)|U[y(s),y] C S; NT,
but [y(s —¢€),y] ¢ So. As S, N T is a closed plane polyhedral set, the following statement
follows easily: There is a point z € S, N T such that for every open cube Q C V which
is centred at z the set S, N @ is not convex. By choosing () sufficiently small, we can
assume that Y NQ = {¢' N Q|o’ € X} is an affine fan and that there is an isomorphism
f:XNQ = (L x R™)NU with f(z) = 0 for a suitable open polyhedron U, as [X] is
smooth. Since f is an isomorphism, two-valent cells of f(XNQ) and X NQ correspond
to each other. Therefore f(S,NQ) is a union of equivalence classes with respect to ~.
For L} x R™ the existence of a coarsest polyhedral structure is obvious. As U is convex,
this coarsest structure carries over to (L} x R™) N U. So we conclude that the support
of f(S5NQ) must be a union of maximal cells of (L} x R™)NU. By construction and
balancing, S, is contained in an affine linear subspace of V' of dimension dim S, = dim X' =
k + m. Hence the same is true for f(S, N @) and we conclude that this must be a single
maximal cell, thus convex. But as f is an isomorphism, also S, N @) must be convex which
is a contradiction. Therefore S, must be convex.

Let S, NSs = Fi. By what we already proved, this is a polyhedron. Hence there is an inclu-
sion minimal face F' of S, that contains F;. Assume that F} is not a face of S,. If dim F; =
dim F, there are points z € F°\ Fy and y € FY. Let s = sup{t € [0,1] | (1 —¢)z +ty & F1}
and let z = (1 — s)x + sy. Furthermore let Q) be, as above, a sufficiently small open cube
which is centred at z, such that X NQ is an affine fanand f : X NQ — (L} x R™) N U,
with f(z) = 0 for a suitable open polyhedron U. We conclude that f(S,N @) and f(S5N Q)
are maximal cells of (L} x R™) N U. Now f([z,y] N Q) is a line segment through 0 which
is contained in the maximal cell f(S, N Q), therefore it is contained a lineality space of
(LY x R™) N U. Hence it must also be contained in f(Ss N Q) and thus [z,y] N Q C Fi,
which is a contradiction. Now we consider dim F; < dim F. As F is inclusion minimal,
Fy is not contained in a proper face of F. Hence there are A € AY and z,y € F such that
Alr, =0, A(z) > 0and A(y) < 0. If we define z as before, the same arguments will lead to
a contradiction. So we conclude that F' = F is a face of S,. By symmetry, this must then
also be a face of S5. O
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Remark 1.1.17. Note that a smooth tropical variety that is not closed does not need to admit
a unique coarsest polyhedral structure. For example consider the following picture of the
support of a partially open tropical variety, where we suppose that the gray set is open in
the plane.

It is smooth, as it is locally isomorphic to IR?, but since it is not convex, it has to be subdi-
vided to equip it with a polyhedral structure. However, such a subdivision is not unique.

1.2. Introduction to tropical moduli spaces

In this section we want to review the construction of the well known tropical moduli spaces
Mo, of n-marked abstract tropical curves and M (IR™, A) of tropical stable maps of de-
gree A, cf. [GKMO09]. This is necessary, as we intend to construct the space M (X, A) of
curves in X as a tropical subvariety of My(R™, A). Additionally we want to construct
similar spaces with the new additional feature of a set I of bounded leaves for the abstract
curves, 1 Mg, and ; Mo(R™, A), which we will use to glue tropical curves from local
pieces in Section[L.5l

We will begin with a definition of a graph which is very useful to describe dual graphs
of marked stable curves, as it comes from a paper of K. Behrend and Y. Manin on moduli
spaces of stable maps, [BM96]. We adapt the definitions of metric graphs and tropical
curves to this graph definition, as tropical curves are (almost) dual graphs of stable maps

in a natural way (cf. Theorem[2.2.18).

Definition 1.2.1 (Graphs). A graphisatuple G = (V, F, j, 0) such that V is a finite set whose
elements are called vertices, F' is a finite set whose elements are called flags, 0 : F' — V is
amap and j : F' — F an involution. This definition is from [BM96]. We will usually use
the notation Vi :=V, Fg := F, g := 0 and ji = j. The set of edges of G will be denoted
Eg := {{f1, f2} C Fa|jc(f1) = fo # f1}. For a vertex v € Vg we call val(v) := 05" (v)|
the valence of v. If the graph G is clear from the context we will usually use the notation
Fv = 95" (v). We say that vertices v and w are adjacent if there is an edge { f, f'} € E¢ with
Oc(f) = vand 9¢(f') = w. We say that v € Vi and f € Fg are incident to each other if
0c(f) = v, similarly v € Vg and e = {f, f'} € Eg are incident if Oc(f) = v. We call a flag f
leaf if je(f) = f or 95 (0c(f)) = {f}. Let L C Fg denote the set of leaves.

A connected component of G is given by a graph H where Vj7 is a subset of Vg, which is
maximal with the property that for any two v, w € Vy there exist edges { f1, f1}, ... {fr, f1}
of G with 0¢(f1) = v, 0c(f.) = wand Iz (f!) = da(fi+1) fori = 1,...,r — 1. Furthermore
H shall satisfy Fp = 8&1(VH), Jjo = ja|ry and Ox = Og|r,. The genus of a graph is the
number |Eq| — |Vg| + ¢, where c is the number of its connected components. A graph is
called free if is connected (i.e. it has only one connected component) and of genus zero. If
G is of genus zero, we will usually also write an edge { f1, f2} as {9c(f1), 0a(f2)}

We call a bijection l¢ : Lg — K a K-labelling of G and the pair (G,l¢) a K-labelled
graph. An isomorphism of K-labelled graphs (G1,lq,), (G2,lq,) is a pair (¢v, ¢r) such that
¢v : Vg, — Vg, and ¢F : Fg, — Fg, are bijections satisfying 0g, o ¢ = ¢v 0 Oz, and
¢r o ja, = ja, o ¢r and lg, (z) = lg,(¢r(x)) for all leaves = € L¢, .

We will usually omit the labelling in the notation and just write G for a labelled graph
(G,lg), if it the labelling is clear from the context.

Definition 1.2.2 (Metric graphs). A metric graphis a tuple I' = (G, (If) fer,) where G is a
graph and the Iy = [0,1;) C R are intervals such that [; = oo if f is a leaf with jo(f) = f
and Iy € (0,00) else. Furthermore we require Iy, = Iy, if {fi, fa} € Eg. We say a leaf is
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FIGURE 1. In the picture a flag f is represented by the half open interval
Iy associated to it, with a fat point as boundary. The graph has vertices u, v
and w and flags x1, z2, x3, 24, f1, f2 and f3, where the z; are the leaves of
which only x; is bounded. 9y maps a flag to the vertex next to the fat
point on it and jg(r) maps a flag to the flag lying parallel next to it. Hence
the graph has the two edges {z1, f1} and { f2, f3}.

bounded if it is an edge and unbounded else. We call G(I') := G the underlying graph of T.
Define an equivalence relation on [[ ;.. Iy as P ~ Q if and only if one of the following
conditions holds

e Pely and @ € I}, for some edge {f1, fo} € Ecand P =1y, —Q € Iy,
e P € 0l and Q € 09Iy, for flags f1 and fo with 0g(f1) = 0a(f2).

We then define the support of I' as the metric topological space [I'| = ([;cp, If)/ ~ and
we denote the natural map qr : [y, Iy — |T'|. See Figure[llfor an example of how this
works. A metric graph I' is called connected if |I'| is, which is the case if and only if the un-
derlying graph is connected. We define its genus to be the first Betti number dim H' (||, Z),
which equals the genus of the underlying graph. When we talk about a verfex of I' we
mean a vertex v € Vi or the associated point ¢r(9I) € |T'| for some f € Fg with dg(f) = v,
which we will also denote v by abuse of notation. Similarly a flag of I' denotes a flag f € Fg¢
and its image gr(/}) in |T'[ alike. Furthermore an edge of I' denotes an edge e = {f1, f2} of
the underlying graph and its image gr(/3,) = gr(I},) in [I'|. The length of e is the length of
the edge in the metric of |T'|, i.e. Iy,. An unbounded edge of I" denotes an unbounded leaf f
and also its image gr(/}) in |I'[.

Note that by our definition edges and flags are open in |I'|. The reason for this will be
explained in Definition [[.5.1]

Definition 1.2.3 (Abstract tropical curves). A K-marked abstract tropical curve is a connected
metric graph I' together with a K-labelling I of its underlying graph G(T"). For such an
object we will usually write the set of leaves as Ly = {z;|i € K}, where lgr)(z;) = 1.
We then write (T, (x;);ex) for the K-marked abstract tropical curve. We say the curve is
n-marked if K = [n] := {1, ...,n}, which is often the case.

Let (T, (z)iex) and (I, (z})icx ) be two K-marked abstract tropical curves such that I’ =
(G,(If)fers) and IV = (G',(Iy/)yer., ). An isomorphism between these two K-marked
abstract tropical curves is an isometric isomorphism ¢ : |[I'| — |I'| such that for each leaf
x; there exists an open interval J; C I, with (¢ o qr)(J;) C qrs(I,). Here gr and gr- are as

’
i
in the previous definition.

This definition of abstract tropical curves slightly differs from the one in [GKMAO09]. This is
because we will also need curves with only two leaves and the information of an underly-
ing graph will be useful when we cut and glue tropical curves in Section[I.5 Furthermore
we can easily compare the underlying graph of a tropical curve to the dual graphs of stable
curves in Chapter[2l
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Definition 1.2.4 (The tropical moduli space ; My ,). Let I C K and |K| + |I| > 3. Let
1 Mo, ik denote the set of all isomorphism classes of K-marked abstract tropical curves of
genus zero, where a leaf is bounded if and only if its label is in I. If I = () we denote
the space just M x and if I = K we denote it by M, . We usually consider n-marked
abstract tropical curves, i.e. K = [n], in which case we replace K by n in the notation. When
we write (T, (z;)iex) € 1 Mo,k we always mean the isomorphism class of (T, (z;)ic k).

Note that a K-marked abstract tropical curve of genus zero has no non-trivial automor-
phisms if | K| + |I| > 3. The condition |K| + |I| > 3 also implies |K| > 2.

Definition 1.2.5 (Combinatorial types). A combinatorial type of K-marked abstract tropical
curves is an isomorphism class a of connected K-labelled graphs such that if |K| > 3 the
elements of o have no two-valent vertices and if | K| = 2 the elements of o have exactly one
two-valent vertex.

Now we want to assign combinatorial types to tropical curves. We assign the same combi-
natorial type to K-marked abstract tropical curves which are isomorphic. Every K-marked
abstract tropical curve (T, (z;);cx ) is isomorphic to a tropical curve (I'°, (z});c i) such that
the number of two-valent vertices of the underlying graph G(I'°) is minimal. For |K| > 3
this means that G(I'°) has no two-valent vertex. For | K| = 2 there is exactly one two-valent
vertex, which is necessary to separate the two leaves. We define the combinatorial type of
(I'%, (2})ic k) to be the isomorphism class of the K-labelled graph G(I'?).

Before we endow ; Mg g with the structure of an abstract tropical variety, we want to
define three important maps which will then turn out to be tropical morphisms.

Definition 1.2.6 (Forgetful map). Let I ¢ K’ C K with |K'| + |I| > 3 and let (T, (z;)ick) €
1 Mo,k be of combinatorial type «, such that ' = (G, (If)fer,) and G € a. Let H denote
the graph that is obtained from G by deleting the flags {z; |i € K \ K’} and restricting the
maps ¢ and jg. Define the metric graph T := (H, (If)cr, ) and the forgetful map

ftge : 1 Mo,k — 1 Mok, e (T, (zi)iex) = (T, (2i)ick:)-

This is a tropical morphism as we will see in Construction[I.2.91 For example f~t{17 3,4} of the
abstract tropical curve in Figure[dlyields the following picture:

u
Ty f1
f3
'U.i w
f2

r 9 T

Definition 1.2.7 (Forgetting the length of a bounded leaf). Let J C I C K with |K|+|J| > 3.
Let (T, (z;:)icx) € 1Mo,k be of combinatorial type «, such that I' = (G, (If)fer,) and
G € o. We define a graph H = (Vy, Fy, ju, On) where
Vi =V \O0c({zi|i € I\ J}) and Fy := Fg\ jec ({z:i|i €I\ J}),
Ou(z;) = 0a(ja(z;:)) fori € I\J and Ox (f) := Oc(f) for all other flags in Fiy. Furthermore
Jju(z;) ==wx;fori € I\ J and ju(f) := ja(f) for all other flags f in F;. We define intervals
Jp:=1[0,00) for f € {z;|i € I\ J}and Jy := I for Fy \ {z;|i € I\ J}. Note that G and
H have the same leaves, so we can keep the K-labelling. Let " := (H, (Jf) e, ) and define
il 1Mok — g Mok, G (T, (xi)icx) == (T, (z:)ick)-

This is a quotient morphism, as we will see in Construction If J = () we abbreviate

the map by (j? =: qr. If we take for example (1} of the abstract tropical curve in Figure[I]
we obtain the following picture:
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Definition 1.2.8 (The distance map). Let (|K|,|I|) # (2,1) and i,j € K. Let (I, (x:)ick) €
1 Mo,k such that G(T') is in a combinatorial type of K-marked abstract tropical curves.
We define d;; (T, (z;)ic i) as the distance between the vertices Oc(ry(4) and Jg(ry(z;) mea-
sured in |T'|. If (|K|, |I|) = (2,1), this map would still depend on the representative of the
element in ; Mg k. We therefore define aij = 0 for K = {i,j} in this case, which is the
suitable choice to obtain an embedding in the next construction.

The picture below shows all cases for |K| = 2 with underlying graph in a combinatorial
type. In the first picture we see that ¢ (r)(z2) can move and hence change the distance.

Og(ry(z1) Og(ry(x2)
(1K1, 11) = 2.1) e
9a(r)(21) 9 (r)(2)
(1K1, 111) = (2.2 .
Og(ry(x2)
(1, 11) = (2,0) L L
1 Og(ry(x1) 2

The map d;; will turn out to be a tropical morphism if 4, j € I, cf. Construction

Construction 1.2.9 (Tropical structure of My ,,). Assume |K|+ |I| > 3, let () denote the
set of all two-element subsets of K and for ¢ € K let u; denote the image of the standard

basis vector e; € R¥ under the linear embedding RX — IR(I;), (ai)i — (a;+a;)( 5 Let
K

Uk, := (u; | ¢ ¢ I) and consider the quotient ¢ : IR( ) — IR(I;)/UK7[ =: Qk,1- Then

dg,r:=gqo H dij | : iMox — Qr1
{i.ire(%)

embeds ; My k as support of a partially open simplicial fan of pure dimension |K|—3+||.
For |K| > 3 this is a slight modification of Theorem 4.2 of [SS04]. The cases with |K| = 2
are easy to see. For simplicity we will also write u; for ¢(u;) in the following.

For 2 < |J| < |K| — 2 we define the vector v; as follows: Let (I's, (z;);cx) denote a K-
marked tropical curve where all bounded leaves are of length one and there is exactly one
additional edge, also of length one, such that all leaves z; with i € J are on one side of
this edge and the rest lies on the other. Then v; is the unique vector in @k ; such that
aK_’](F.], (7i)iex) = vy + > _;c; wi- Note that in general v; ¢ aK_J(]MoyK) and that vy =
VR\J- The following picture shows an example of the curve represented by vy +uq +u4+us
iny MozforI ={1,4,5}and J = {5,6,7}.
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We define the underlying lattice of Qx r as
Ar,i=(uj, vr|tel, JC Kwith2 <|J| <|K|-2),.

In the special case I = () we abbreviate Ax := Ag,; and Qx = Qk,; and for I = K we
write A = Ag x and Q% = Qx x = R(%).

Each chain of subsets 7 = (J1 € ... € J, C K) with 2 < |J;| and |J,| < |K| — 2 defines a
cone

<j> = Z o505, + Zﬂzuz | a; € ]RZO and ﬂz S ]R>0
j=1 i€l
in Q1. The following is also a slight modification of [SS04], Theorem 4.2 if | K| > 3. For
|| = 2 it will be easy to see. The collection of all such cones (7) defines a polyhedral

complex F g, ; with support d k,1(1Mo, ). The interior (7)° corresponds to all K-marked
abstract tropical curves with bounded leaves I of a certain combinatorial type, i.e. ; Mg
has a stratification by combinatorial types. If we assign weight one to each maximal cone,
we obtain a tropical polyhedral complex and hence a tropical variety which we also want
to denote F i ; for the moment.

We want to equip ; Mo,k with the topology induced by the euclidean topology on Qg r

and the embedding d ;. If U is the preimage under dg ; of the union of the relative
interiors of all maximal cones of Fx ; and w : U — Q is constant one,

(tMo,x, U, w, dk,1, Ax,1, FK.1)
is an abstract tropical variety.

Note that I = () is the only case where ; M x is a closed tropical variety and where the
vectors v are actually contained in d; x (1Mo, k). Also note that if | K| = n there is a natu-
ral bijection identifying ; Mg x with 1 My ,, which is an isomorphism of abstract tropical
varieties.

Let us explain shortly why the three maps from Definitions [L2.7 and are mor-
phisms.

For J C I with |K| + |J| > 3themap ¢} : 1 Mo x — ;Mo i is a morphism, because
the quotient map § : Qr. 1 — Qr,g = Qr.1/(u;|i € I\ J)r satisfies G(Ax ;) = Ak, s and
il = a;” o G o d.;. By abuse of notation we will also denote § by 7.

Consider the forgetful map ftyer 1Mo,k — 1 Mo,k forany I C K’ C K with |K'|+|I] >
3. The projection pr : R(2) 5 R(%) satisfies pr(Uk,1) = Ukr,1 and hence it induces
a linear map pr : Qg1 — Qk/,1. One can check that pr(Ax ;) C Ags; and ftgr =
a; ; oprodg.z, cf. Proposition 3.12 in [GKM09]. Hence ftx- is a morphism. By abuse of
notation we also denote pr by ftx.

For a pair i, j € I consider the distance map d;;. The projection pr : R(2) — R = (egi 1R
satisfies pr(Uk,r) = 0 and herlce induce§ a linear map pr : Qk,;r — R. This map has the
properties pr(Ax ;) C Z and d;; = pr o di, ;. Hence d;; is a morphism.
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Remark 1.2.10. In the following we will usually identify ; Mo x with its image under d s,
i.e. the tropical variety F g, in the notation from the previous construction.

Now we state a lemma which will play a key role in the later chapters.

Lemma 1.2.11. Let the notation be as in Construction[L.2Z.9 A vector x € Qx is zero if and only
if ftg/(x) =0 forall K' C K with |K'| = 4.

PROOF. As fty: is linear, one direction is obvious. We denote the standard basis vectors
K K ~
of R(%) by e;;. Let & € R(%) denote a vector satisfying ¢(Z) = «. The assumption ftx () =
0 means that for = > ;. Ajje;; and every K’ C K with |K'| = 4, it follows that there is a
vector i € RX’ such that Xij = pi+pj forallé, j € K/ with i # j. Thus Aik + A\j; = Aij + At
for arbitrary four different indices 1, j, k, . This means that the assignment

1
A= 5()\” + Nk — )\]k) for any ik 7& )
is well-defined because if m is another index we have
1 1 1
§(>\ij + ik — Ajk) = §(>\im + Aik — Amk) + 5()\@' = Xim + Amk — Ajk)
1
= §(>\im + ik — Amik)-

We also have that A\; + A; = \;;, but this means just that & € Uk g, s0 = 0in Q.
O

Definition 1.2.12 (Tropical stable maps). Let K be a finite set with |K| > 2,let I C K and
A = (6;)icx € (Z™)X. Por a K-marked abstract tropical curve (I, (z;);cx) with bounded
leaves I we define |I'|° as |I'| without its one-valent vertices. A tuple (T, (z;)ick,h) is
called tropical stable map (of degree A) if (I, (z;)ick ) is a K-marked abstract tropical curve
with bounded leaves I and & : |[I'|° — R™ is a continuous map. Furthermore, if I' =
(G, (If) fer.) and gr as in Definition[1.2.2] we require for flags f € Fg \ {z;|i € I} that

hoqp|1f Iy — R™, t—ayp +tv(f)

foran ay € R™ and v(f) € Z™ such that

(1) fori € K wehave v(x;) =6;if i ¢ T and v(jg(z;)) = d;ifi €
(2) for all vertices w of G with val(w) > 1 we have > ;. v(f) = 0.

It might seem unnatural to distinguish between ¢ € I and ¢ € K\ I in that way, but note that
v(f) always points away from the boundary point of the flag and the leaves z; are "pointing
inwards" for i € I and "outwards" otherwise, cf. to Figure[ll Note that it follows from the
above conditions that for all edges { f1, f2} of G we have v(f1) = —v(f2). For every flag f
we can write v(f) = myuy, where uy is a primitive integral vector and my € Z>(. We then
call my the weight of the flag, respectively leaf if f is a leaf, or edge e if e = {f, f'} for some

flag f’.

For a vertex w of G with val(w) > 1 we call the collection A, := (v(f)) ferw the local degree
of h at w.

Two tropical stable maps (T, (z;)ick, h) and (I, (z})ick, h') are called isomorphic if there
is an isomorphism ¢ : (T, (z;)iex) — (I, (2})ic k) of K-marked abstract tropical curves
such that i = h’ o ¢||r|o. The leaves z; for i € K¢ will be called marked points, as their images
under h are just points.
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The above picture shows an example of a tropical stable map of degree A = (e1, g, €2,0,0).

Note that the above definition slightly differs from the definitions in [GKMUO09] or [Rau09],
because those ¢; which are zero do not belong to the degree A there. For the purpose of
this thesis it will be more convenient to treat all leaves alike, as we will cut parameterised
tropical curves along bounded edges in Section[I.5l This introduces a lot more leaves and
it is easier to keep track of what is going on if we consider the marked points as part of the
degree.

Definition 1.2.13 (Abstract curves as abstract varieties). For an n-marked abstract tropical
curve (I',z1,...,z,) of genus zero we can easily equip |I'|° from the previous definition
with the structure of an abstract tropical variety. For this we define an injective tropical
stable map ¢ : |['|° < R"~! of degree A’ := (ey, ..., en—1, €9), where e, ..., e,,—1 denotes
the standard basis of R"~! and ¢y := — Z;:ll e;. Note that I" and the degree A’ already
uniquely determine ¢ up to translations. The image +(|T'|°) € R™~! is now the support of
a partially open tropical variety X, having weight 1 on every maximal cell. If we let U be
|T'| without all of its vertices, and w : U — Q constant one, we obtain an abstract tropical
variety
(r°, U, w, v, Z™1, X).

We also want to denote this abstract tropical variety I' in the following, if confusion with
the metric graph is unlikely. If we have another tropical stable map A : [I'|° — R™ of
degree A = (41, ...,0,), then f := ho.™! : X — R™ is an affine linear tropical morphism
whose linear part fi, satisfies fin(e;) = d; fori = 1,....n — 1 and fin(eo) = J,. Hence
h:T'— R™ is a morphism of tropical varieties.

Definition 1.2.14 (The tropical moduli space ; Mo(R™, A)). Let 1 Mo(R™, A) denote the
set of all isomorphism classes of tropical stable maps into R™ of degree A, where the ab-
stract tropical curves are K-marked, of genus zero and with bounded leaves I C K. Again
we denote this space by Mo(R™, A) if I = ) and by M{(R™, A) if I = K. When we write
(T, (xi)iek, h) € 1 Mo(R™, A) we always mean the isomorphism class of (T, (z;)icx, ).

As a next step we will first define a few maps which will then be used to define several
structures of a tropical topological space on ; Mg (IR, A). Then we will show that they are
all equivalent, hence they define the same abstract tropical variety.

Definition 1.2.15 (Barycentre). Let |K|—|I| # 2and C = (T, (2;)ick,h) € 1 Mo(R™, A).
We define the barycentre of C to be

B(C) ;:m S (val(v) — 2)h(v).

vEVa(r)

As two-valent vertices do not contribute to B, the definition is independent of the under-
lying graph of I'. Additionally we want to define

be(C) := (IK[ = [1] = 2)B(C),

which we denote the barycentre morphism as this will turn out to be a morphism. This
morphism will be quite convenient to work with when gluing curves.
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Above we see an example for the barycentre, which might look a bit misplaced at a first
glance but the one-valent vertex incident to z3 contributes with mass —1 while all other
vertices contribute with mass 1.

Definition 1.2.16 (Evaluation). For C = (T, (z;)ick,h) € 1 Mo(R™, A) with metric graph
I' = (G, (If)ser,) we can define several evaluation maps, which are in fact tropical mor-
phisms as we will see in Construction[1.2.21] For ¢r as in Definition[[.2.2land i € Ko UI we
define

evy(C) = lim A(qr(t)

which is a well-defined point in R™, i.e. it does not depend on the underlying graph.
We need the limit here as & is by definition not defined at the one-valent vertices. If
i€ K\ (KoUI)letU C R™ be asubvector space with §, € U and let gy : R™ — R™ /U
denote the quotient map. We define

evy (C):= lim qu(h(qr(t)))

Iz, 5t—0

which also does not depend on the underlying graph. We take the quotient here, as there
is no canonical point on an unbounded leaf x; whose image under h we could take, except
8g(p) (x;), but this depends on the representative of an isomorphism class of tropical stable
maps and hence does not define a map on the moduli space.

Definition 1.2.17 (Forgetful maps). Let I C K such that |K| + |I| > 3. Then we define
ft : [MO(RW,A) — ]MO,K as ft(F, (mi)ie}(,h) = (F, (mi)ie}(). For I ¢ K' ¢ K with
|K'| + |I| > 3 we can furthermore define ftg: : 1 Mo(R™,A) — ;1 My k' as

ftK/ = ftK/ e} ft.

There are also maps forgetting marked points and keeping the map h and the remaining
part of the metric graph, but those will be unnecessary in this thesis and quite cumbersome
to write down with our definition, as they change A.

Definition 1.2.18 (Forgetting the length of a bounded leaf). Let / C I C K and assume
that (G7 o ft)(T, (zi)iex,h) = (T, (2i)icx). Then there is a natural isometric embedding
IT| < |T'| and a unique way to extend h from |I'|° to & on |T'|° such that (T, (z;)ick, h) is a
tropical stable map. We then define

qf 1 Mo(R™, A) — ; Mo(R™, A), (T, (zi)icx, h) = (T, (zi)icx, 1),

which will turn out to be a tropical quotient morphism in Lemma [1.2.22l As before, we
abbreviate gq; := q?.

Definition 1.2.19 (The distance map). For any pair i,j € K we have the distance map
d;j : 1 Mo(R™,A) — R defined as d;; := d;; o ft. This will turn out to be a morphism for
i,j € I because ft and d;; are morphisms then.

Lemma 1.2.20. Let |[K|— |I| =2 #0, |K| > 3and §; € A withi € I or §; = 0. Then there is a
linear map b; : Q.1 — R™ such that b; odg 1 = B —ev; on  Mo(R™, A).
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PROOF. Without loss of generality we can assume K = [N]and i = 1. Let A = (0;);¢[n]
and abbreviate b; = b. Consider the following minimal linearly dependent set of generators
of Q N,I:

(5) L={vs|SC[N],|S|=2and 1¢ S} U{u;|ie I},
cf. [KMO09Y]], Section 2. We define b as
b(vs) = =SS5 for g € L, b(ug) = -4, for i€ 1\ {1}
,US_N*|I|*21_€SZ Us ) Ui) = N*|I|721 1
_ N1
and b(uy) = N—|I|—261'

In order to prove that this really defines a linear map, we need to check that this is compat-
ible with the only relation

(6) szzulJr(Nf?))Zui
vs€L 14iel

among the elements in L, cf. Lemma 2.4 in [KM09]. Recall that u; = 0if 1 ¢ I, but then
also §; = 0 by assumption. Let us first consider the case 1 ¢ I. We obtain

> b(vs) = III 5 Z —1snipy s Y- I T 2 i Y 4

vs€L €S ZEI 1#£i¢ T
(b) def.
III _225 -3) 1;616)(1“)
where equality (a) is obtained by an easy computation distinguishing between the three
possibilities 1 — |S N I| € {—1,0,1} and (b) is obtained by adding 0 = Nlllml 5 Die(n] 0i
and balancing. Similarly, in case 1 € I we obtain

I
2 M) = |I|—2Z(S e 22"

vseL 1£4iel
(© |I| def.
(©) 7 25 - E §; = b(ur) + (N =3) > blus)
—i= | | 2\ 1£i€l

where we add — 2= ‘lﬂ ; > ie(v) 9 = 0 to obtain equality (c). So we see that the definition

of bis compatlble with the relation (6) in each case. Therefore b can be extended from L
to @, as a linear map. We now want to compute its values on the other generators v
of ; My n where without any restriction 1 ¢ J. By [KM09] Lemma 2.7, we have v; =
Yvserscs Vs — (|1 =2) 3y wi and therefore

blos)= D bls) = (7] =2) Y blui)

vs€L:SCJ elnJ
1
SN C-2 —(InJl-1) Z 6+ (|J\ 1] - 1) Z 6+ (171 =2) Z d;
ielng i€\ ielnJg
|J\I|
] 722‘5

We will prove the rest of the claim by induction on the number of non-two-valent vertices.
LetC = (T, z1,...,xn,h) € 1 Mo (R™, A) such that G(T") has no two-valent vertices and
only one vertex of valency bigger than one, i.e. |G(I')| = 14 |I|. Then dn},;(C) = >_;c; Aius
for some \; > 0. We have to distinguish between 1 ¢ I and 1 € I again. Both situations are
depicted below, where the coordinates of the images of the vertices are indicated in blue
and the relevant masses in red.
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—18X;0; — X101

In case 1 ¢ I we easily see that (B — evi)(C) = —x—=g Lics Nidi = b(X,ec; Niwi),
and a short computation shows (B — evy)(C) = —\; %:H:;él - N7‘1]‘72 D isier Nidi =

b(> ;e Aiug) incasel € I.

Sonow let C = (T, z1, ..., xn, h) be a stable map such that G(I') has no two-valent vertices
and |G(T')| = k + |I|, where k& > 1. Let v denote a vertex of G(I") with val(v) > 3, which is
neither incident to 1 nor to jg(ry (1), and such that there is exactly one edge e = {v, v’} in
G(T) with val(v") > 1. We now want to shrink the edge e to a point. Let A be the length of
e and let .J be the set of leaves x; with either d¢g(r)(z;) = v or g(r) (o) (zi)) = v. If we
abbreviate djy ;(C) =: vc, there is a representative of an isomorphism class of stable maps
C'= (I, 2}, ..., xly, W) € t Mo(R™, A) with djn,;(C") = ve — Avy =: ver. We assume that
G(I") has no two-valent vertices. By the choice of v we have evy(C) = evy(C’) and by the
choice of A we have |G(I")| = k—1+|!|. By induction we can assume (B—ev1)(C’) = b(ve/).
We will abbreviate the mass w,, = val(u) — 2 for all vertices.

There is natural map f from the vertices of G(I") to the vertices of G(I") such that f is
injective away from {v,v'} and f({v,v’'}) = {w} for some vertex w of G(I"). This is because
(' is obtained from C by shrinking the edge e to length zero. Let T be the set of all vertices of
G(T') which are neither v nor adjacent to v. Then #/(f(u)) = h(u) forallu € T, as evy(C) =
evy(C'). Shrinking the length of e to zero, the only vertices of the curve that move are v and
9 (r)(z;) for i € I'NJ. To be precise, we have h(dgr)(z:)) = I (9g ) (27)) + A>_ ¢ ; J; for
i € INJ.Sowe obtain

(N —I| —2)(B —ev1)(C) = wy(h(v) —evi(C)) + wy (h(v') —evi(C))

— Y h(Oary(x;)) —evi(C)) + Y wu(h(u) —evi(C))

jeindJd ueT

and (N — |I| = 2)(B —evy1)(C') = wy (W (w) —evi(C")) — Z (W (Do) (x)) — evi(C"))

jerng

+ 3wl (f(u) —eva(C)

ueT
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where we multiplied by the total mass to make the formulas look a little nicer. Using the
above formulas and also taking into account that w,, = w, + wy, ' (w) = h(v'), h(v) =
h(v') + A s 6iand w, — [JNI| = |J\ I| — 1 we can see that

(B—evy)(C)— (B—ev)({C') =\ |J\|II||226 = b(Avy).

Thus it follows that (B —ev1)(C) = (bodnj,7)(C). This proves the induction step and hence
the claim. O

Construction 1.2.21 (Tropical structure of ; M(R™, A)). We will now define several em-
beddings of ; Mo(R™, A) into Qk ;1 x R™ for |K| + |I| > 3. We define

dr,r: t Mo(R™,A) — Qk,1

asdg = dgsoft. Let Ko = {i € K|0 = 6, € A}. Letk,l € K such that 6,6, € A
are linearly independent. Furthermore, let U and W be two subvector spaces defined over
Z with R™ = U @ W such that §;, € U and §; € W. We obtain natural isomorphisms
Yw : R™/W = U and ¢y : R™/U — W.

Similar to [GKMU09], Proposition 4.7 we obtain that each

(1) (I)é’l :=dg,; xBif |K| —|I| — 2 # 0, where B is as in Definition [[.2.15
@) o' :=dgxev;ifie KgUI
(3) <I>kA,l’ =dg 1 x(Wyoevy +vwoevV)ifk,l € K\ (KoUI) asabove

defines an embedding ; My(R™, A) — Qx,; x R™ with image |; Mg x | x R™. The idea is
that the abstract tropical curve (i.e. the image of dx ;) and the degree A already uniquely
determine the map into R™ up to translations. The second factor then fixes the translation.

Now we define a lattice inside Q x,; x R™. For this let AAT Mo(R™, A) be the subset
of all (T, (z;)iek, h) with h(v) € Z™ for all vertices v of G(I') with val(v) # 2 and such that
every pair of non-two-valent vertices of G(I') has integral distance in |I'|. Then we define

1) AT = <<I>§’I(AAJ)>Z if |[K|—|[I]—2#0
@) AT = <<I>Z.A’I(AAJ)>Z ific KogUT
(3) AL = <q>,§lvf(AAJ)>Z if k,l € K\ (Ko UI) asabove.

In the following let % € {B,4,kl}. In each of the above cases ; Mo x xIR™ is a tropical
variety in Qx,; x R™ with respect to the lattice Aﬁ’l, since (Qk,; x 0) N Aﬁ’l =Ag x0.
As in Construction[[.2Z.9we can now define tropical topological spaces

(IMo(R™, A), Ug, wa, @577, ALY, 1 Mo e xR™),

where the topology on ; M(R™, A) is the one induced by @ﬁ’l from the euclidean topol-
ogy on Q.1 x R™. The open set Uy is the preimage of the union of the relative interiors
of the maximal cones of some polyhedral structure on ; Mg g xR™ and wy : Uy — Qis
constant one. It can be shown that whenever we can define two of the these structures for
fixed values of K, I and A, they are equivalent and therefore define the same abstract tropi-
cal variety. We will only prove the equivalence between % = i and % = B. For |K| > 3and
i € KoU I Lemmal[l.2.20 provides a linear map b; : Qx,; —> R" with b, odg,; = B —ev;
on ;1 My(IR™, A). We obtain an equivalence

) Fh=idg,, x(b; +idrn) : Qk,1 x R™ — Qg1 x R™,

ie. @g’l =Fbo CIDiA’I , which by definition also respects the lattices. It is an isomorphism
because we can easily define an inverse with —b; instead of b;. In the case |K| = 2 the

relation between ev; and B is easy to see. A proof of the equivalence of &5 and <I>jA’I for
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i,j € KoUI canbe found in [GKM09], Remark 4.11. The equivalence of ®5 or &2/ with
@kAl’I works by considering the proofs for the above cases modulo U and W'.

Now we come to the case A = (41, d2) and I = (). Clearly (61)r = (J2)r =: U and we can see
thatevy =evl : Mo(R™,A) — R™/U is a bijection. R™ /U is a tropical variety equipped
with lattice Z™ /U and as above this information turns Mo (R™, A) into an abstract tropical
variety.

The combinatorial type of a stable map of degree A will be defined in Definition [[.5.1} In
case of stable maps into R™ this will be just the combinatorial type of the abstract tropical
curve plus some (in this case) redundant data. Therefore also ; Mo(R™, A) has a stratifi-
cation by combinatorial types, which is just the stratification of ; M x times R™. In the
symbol ; My(IR™, A) we do not see the set which labels the abstract curves, as this is hid-
denin A = (&;)icx € (Z™)". For a bijection f : K — [N]thereisa A’ = (§})1<j<n €
(Zz™)N with 6; = 5}(1.) for all i € K and a natural isomorphism between ; M(IR™, A) and
71y Mo(R™, A"). Thus we will not distinguish between these spaces.

After we equipped ; Mo(IR™, A) with the structure of an abstract tropical variety, we want
to see why the maps from the previous definitions are morphisms.

For i € Ko U I consider ev; : 1 Mo(R™,A) — RR™. Using the tropical structure given by
&1 it becomes just a projection onto the factor R™ and it respects the lattices as A2/ is
chosen exactly in the way to make this work. Hence ev; is a morphism. In the same way
ev? . | Mo(R™,A) — R™/U for 6; € U C R™ is a morphism, if we use (I)kAl"I instead.

For |K|—|I| —2 # 0 the map bc : ; My(R™, A) — R™ from Definition[1.2.15is actually a
morphism. This can be seen using the tropical structure (I)g’l. We need to multiply by the
total mass of the curves in order to make this compatible with the lattices.

Consider ft : ; Mo(R™, A) — ; My i from Definition [.2.17 which forgets about the
map. If we use any tropical structure (I)ﬁ’l this map just becomes a projection onto ; Mg x
which is compatible with the lattices. Hence ft is a morphism. This also makes ftx: a
morphism for each I C K’ C K with |K’| + |I| > 3, because it is the composition of two
morphisms.

As it is a little more cumbersome to write down why ¢/ from Definition [.2.T8is a quotient
morphism, we want to state this as a separate lemma.

Lemma 1.2.22. For J C I the map qf : 1 Mo(R™,A) — 5 Mo(R™,A) is a quotient
morphism, i.e. there is a linear surjection q : Qx 1 X R™ — Qg x R™ such that ¢} =
((I)ﬁ"])—l ogo @f’l and q(Af’I) = Aﬁ’Jfor suitable tropical structures.

PROOF. Firstassume J # () and letq := ((j{ opry, I) X prrm. This is a linear surjection
satisfying ¢/ = (®27)"2 o go ®™>' If J = § and |K| — |I| # 2, we define

K2

- 1 . N
a:= (@ ovray,) % =g | (K1 =11~ 2)pran o i+ 3 (7))
Jel

where FJ is the linear map from (7). Also in this case we obtain a linear surjection. We have
prrm 0 @57 = B and prgm o (F4)~! o @57 = ev; and as h(da(z;)) for j € I contributes
with mass —1 to B(C), we see that the expression in the second factor of ¢ gives us B(q{ (C)).
So we obtain g7 = (#57)~! o g o ®5'". This implies the claim about the lattices using the
observation g7 (AA1) = A&7,

If |[K| —|I] = 2and J = 0, but |[K| > 4 we have |I| > 2 so we can choose any () # I' C I
and we have that ¢; = gy o q{, has all the claimed properties as a composition. For |K| <3
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there remains only one special case with J = ), namely |K| = 3 and |I| = 1 which is easy
to describe explicitly. O

Remark 1.2.23. In the following chapters we will usually identify ; Mo (IR™, A) with its
image under @ﬁ’j. This way we obtain an isomorphism ; Mo(R™, A) = ; Mo x xR™. We
will say that we have barycentric coordinates if % = B, we have root vertex z; if % = i and
we have root leaves x;, and x; if % = kl.

We adopted the term "root vertex" from [GKMO09]. As in that paper we do of course not
mean that z; is the vertex, we mean the position of the image of the vertex which is incident
to the leaf ;.

1.3. A brief review of tropical intersection theory

For convenience of the reader we will shortly recall a few definitions of the basic notions
from tropical intersection theory as it is presented in [AR10], [Rau09], [Fral12] and [FR10].

Definition 1.3.1 (Tropical cycle groups and Weil divisors). If X is a tropical variety in some
vector space V, we denote by Z;(X) the group whose elements are tropical subvarieties
Z of X with only integer weights and dim Z = k. Furthermore, let [(] € Z,(X) which
will become the zero cycle. We define the sum of [Z1] and [Z3] in Z,(X) as follows, cf.
Construction 5.14 of [AR10]. There is a pure polyhedral complex Z of dimension k and
weight functions w1, ws : Z(k) — Z such that [(Z,w1)] = [Z1] and [(Z,w2)] = [Z2]. We
then define [Z1] + [Z3] := [(Z, w1 + w2)]. It is easy to see that this defines an abelian group
structure on Z(X). The elements of Zgim, x —1(X) are called Weil divisors on X. If we allow
arbitrary k-dimensional subvarieties of X we denote the resulting group by Z;(X)q.

Definition 1.3.2 (Rational functions and their Weil divisors). If ¥ € V = A ®z Ris a
tropical variety, a rational function on X is a continuous piecewise affine linear function
¢ : | X| — R, ie. there is a polyhedral structure on X' such that ¢ is integer affine linear
on cells. This means for each cell o there is some ¢, € AY and a constant ¢, € R such
that ¢, = ¢s|e + co. We call ¢ a fan function if the polyhedral complex consisting of the
domains of affine linearity of ¢, is an affine fan. We can associate a Weil divisor ¢. X to every
rational function ¢ as follows: Choose a polyhedral structure such that ¢ is affine linear on
the cells of X and define

0. X ={r|7¢ X} andfor 7 € XM .

(8)
W x(T) = > wolwx(0)ve/r) —or | 20 wx(0)ve)r
ey ocx

where v,/ is an arbitrary preimage of the primitive integral vector u,,, in A. Sometimes
the Weil divisor is also denoted by div(y). The pull back of a rational function ¢ on a tropical
variety along an affine integer linear morphism f : X — Yis givenby f*¢ := ¢o f, which
is clearly a rational function on the tropical variety X'.

A function ¢ : | X | — R which is the pointwise product of rational functions ¢1, ..., ¢,
on X is a cocycle (of codimension r). We refer to [Fral2], Section 2.3 for a definition of
cocycles. If 9 = ¢1---¢, is a codimension 7 cocycle, there is an intersection product
Y. X = 1.+ ... X which is a codimension 7 cycle in X. Obviously, cocycles can be
pulled back along morphisms. If f : X — Y is a morphism, we define f*1) := 1) o f which
is again a cocycle.

Definition 1.3.3 (Cartier divisors). A representative of a Cartier divisor on a tropical variety
X is a finite collection of pairs (U, ¢;)ic1, where each U; C | X'| is an open polyhedral set,
such that (U;);cr covers | X | and ¢; is a rational function on X NU; such that ¢; — ¢; is
the restriction of an affine linear function on each connected component of U; N U;. Let
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(Vj,14) e be another representative of a Cartier divisor. Then (U;, ¢;)icr and (V;, ;) e
are called equivalent if p; — 1; is the restriction of an affine integer linear function on each
connected component of U; N V;. A Cartier divisor is an equivalence class of representatives
of Cartier divisors. For a Cartier divisor D with representative (U;, ¢;)icr we obtain a Weil
divisor D. X as the Weil divisors ¢;.(X NU;) agree on U; N U;, because ¢; — ¢; is affine
integer linear there. Hence the ,.(X NU;) fit together to a Weil divisor D. X’ on X, which
is independent of the choice of representative by the same reasons. The pull back f*D
of a Cartier divisor D along a morphism f can be constructed by locally pulling back the
rational functions defining it.

The properties of cycles, rational functions, Cartier divisors and pull back which have been
established in [[AR10] also hold for partially open tropical varieties. The proofs are exactly
the same.

Definition 1.3.4 (Push forward). If we have a morphism between closed tropical varieties
f: X — Y we can define a push forward. For this we choose a suitable polyhedral struc-
ture on both varieties such that for each 0 € X we have f(o) € Y, cf. Construction 7.3 of
[AR10]. Such polyhedral structures are called compatible with f. Then we want to equip the
polyhedral subcomplex

f« X :={f(0)|o € X is contained in a maximal cell on which f is injective}

of Y with the weight function
wroalo) = D wal(o)|AL : fin(Ao)|

cEX; f(o)=0'
where fiin denotes the linear part of f.

If X is partially open and f is injective, the above definition also yields a well-defined, i.e.
balanced, push forward f. X'. Note that f. X does not have to be a subvariety of J, e.g. this
is not the case if we embed a bounded open interval into RR.

This construction might cause problems for partially open tropical varieties if we do not
require f to be injective. For example, let e1, e2 denote the standard basis of R? and consider
X = Rej U (ea + Rsper) € R? with weight one on every cell, Y = R and f as projection
onto Re; = IR. One can see that for any choice of tropical structure on X’ there is always
one partially open cell ¢ € X, namely the one with (0,1) € 7. Hence also f(o) is partially
open, but all cells of every polyhedral structure on R have to be closed. Thus there cannot
be polyhedral structures which are compatible with f.

Properties of the push forward which have been proved in [AR10] can be proved the same
way for partially open tropical varieties and injective morphisms.

Definition 1.3.5 (Canonical divisor). For a closed tropical hypersurface X C R™ with inte-
ger weights we want to define a canonical divisor in the following two cases.

(1) dimX = m — 1, i.e. X is a hypersurface. It is known, e.g. from Theorem 2.25 of
[Frald], that there is a unique Cartier divisor D with D.R™ = X. If we denote the
embedding ¢ :=id || x| : & — R, then we define Ky := /*D.

(2) dimX = 1, i.e. X is a curve, and let X be smooth and irreducible. Choose any
polyhedral structure on X" and equip X'(0) with weights

wV)={oceX(1)|V e} -2

This defines a unique Weil divisor Z on X and as X is smooth, there is a unique
Cartier divisor Ky such that Kx. X = Z by Corollary 3.8 of [Frall].

In both cases, we call Ky the canonical divisor of X.
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In the following we will make use of the concept of rational equivalence of tropical divisors
and cycles. We refer to [ARO8] for details and just note that the degree of rationally equiv-
alent zero dimensional cycles is the same. Furthermore every tropical cycle Z is rationally
equivalent to a fan 6(Z), the recession fan of Z which is defined in [AR08], Definition 8. The
recession fan is more or less what we obtain if we shrink all bounded cells of Z to a point
and translate this to the origin.

Remark 1.3.6. Let X C R™ be as in the previous definition. For a curve (I', z1, ...,zn, h) €
Mo(R™, A) with A(|]T|) C |X| we can consider the pull back h*Kx and the degree of
h*K x.I', which turns out to depend only on A and X

(1) Letdim X = m—1. Thendeg h* Kx.I' = deg K x.h.I" by the projection formula. As
X is a hypersurface, it is cut out by a Cartier divisor D. It follows from |h.I'| C | X |
that Kx.h.I' = D.h,I' = h, ' .gm X, where -grm denotes the intersection product
in R™ defined in [AR10], Section 9. In order to compute the degree we can use ra-
tional equivalence and recession fans as defined in [AR08]. Theorem 12 of [ARO08]
yields

degh*Kx.I' = deg 0(h.I' -gm X) = deg [§(h. ") -rm (X)] = deg [A rm 6(X)]

where A means the canonical tropical fan cycle defined by the tuple A. In partic-
ular, the degree deg h* K x.I' does not depend on our choice of the curve, only on
the degree A and on X.

(2) Let dim X = 1 and let X be smooth and irreducible. As X is smooth, every Weil
divisor is the intersection of a Cartier divisor with the curve. For the Weil divisor
of a point P € |X | we will denote such a Cartier divisor also by P. As X is
irreducible, we have h,I' = m [X] for some integer m. For every point P € | X' | we
obtain m = deg h* P.I" by the projection formula, in particular this is independent
of the point P. We have that K x. X is rationally equivalent to (deg Kx. X')P for
every point P, as on a rational curve any two points are rationally equivalent. If
we choose a point P far out on an unbounded cell o of X where h is locally a
cover of o by leaves of I', we see that m = deg h* P.I" only depends on A and X,
therefore also deg h* Kx.I' = m deg Kx. X only depends on A and X'.

In the two cases above we define the number deg h* Ky .I' =: Kx.A.

Definition 1.3.7. For a tropical curve C and a Cartier divisor D on C we have D.C =
Y. pmpP € Zy(C) and we we call (D.C)p := mp the local intersection multiplicity at
P. In the special case where X is as in (1) or (2) of the previous remark, we abbreviate
(h*KXr)p =: (K/'\(A)p for P € |F|

In the following let ¥ be a complete unimodular fan in R™.

Definition 1.3.8 (Minkowski weights). We want to define the group of Minkowski weights
on X as

) Mp(%) = {(a,)r € Z"® | (a,), turns U Y (n) into a tropical polyhedral complex}

n<k

which is obviously a group with respect to coordinatewise addition. These groups have
been introduced in [FS97] by Fulton and Sturmfels in order to study the Chow cohomology
of the toric variety X (X), which is the reason why we consider this here (cf. the introduction
into toric geometry in Section [2.T).

Definition 1.3.9. For each ray p € X(1) let u, denote the primitive integral vector on it.
Then we can define a rational function ¥, on R™ by ¥,(u,) = 1 and ¥,(u,) = 0 for
p # p' € X(1) and extending this linearly onto the cones of . For a cone 7 € ¥ we define
the cocycle U7 =[] (1) ¥,. See also Notation 2.7 in [Fral1].
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Now we want to assign a Minkowski weight on X to every element in Z;(R™). For each
tropical curve C € Z;(R™) we have that deg(¥,.C) = deg(¥,.A), where C is rationally
equivalent to the fan A = ¢(C) in R™. Let 4, ..., d; denote the primitive integral vectors
of the rays of A multiplied by the weight of the ray. If §; € o; for some o; € %, there are
unique non-negative integers a/, with §; = > peo; (1) adu, since ¥ is unimodular. We then
define Oz% = 0 for p ¢ 0;(1). Using () it can be seen that deg(¥,.A) = 3~ a{; =:d,. As
A is balanced, so is the 1-skeleton of ¥ with the collection of weights (d,),. Hence we can
associate to every tropical curve C € Z;(IR™) a Minkowski weight via

(10) C s [C1M*) = (deg(¥,.C)), € My(%).

In this tropical picture the divisors ¥, play the role of the toric boundary divisors D,. In the
same way, we can associate to every k-dimensional tropical cycle Z € Z;(R"™) a Minkowski
weight by

Z 5 [Z]MP) = (deg (U,. 2)), € My(D).
We will not prove that this actually is a Minkowski weight, as we will not need this. The

idea of a proof is the following: For a common unimodular refinement of ¥ and the reces-
sion fan §(Z), the statement reduces to toric intersection theory.

We conclude this review of tropical intersection theory with technical lemmas concerning
quotient varieties, push forward and pull back. These will be very useful later on.

Lemma 1.3.10. Let X C V be a tropical variety with lineality space L and let ¢ : V. — V/L de-
note the quotient map. Then for any rational function p on X /L we have (¢*¢. X)/L = ¢.(X /L).

PROOF. This is obvious from the definitions. O

Lemma 1.3.11. Let X be a tropical variety with lineality space L and let Y be a tropical variety
with lineality space Lo. Let Ly C L be a rational subvector space and assume that we have injective
morphisms f and g

X xn, Ly 2y, Lz,
for a tropical variety Z. Assume furthermore that also f, [X /L+] has lineality space Lo, dim L =
dim Ly + dim Lo and that there is an injective morphism F with

x Lx/Lthz
and F o @Q = go g o f o qi. Then we have
9« [f« [X /L] [ Lo] = Fu [X /L].

PROOF. Assume that the polyhedral structures of all cycles are sufficiently fine to be
compatible with all of the morphisms and the lineality spaces. Both cycles have the same
dimension dim X — dim L = dim X — dim L; — dim Ly, so we have to show that the weights
on the maximal cells coincide. One can easily check that the linear parts of the morphisms
also satisfy Fiino @ = giin© g2 fiino¢1. If 0 is a cell of FQ(X) = ggafq1(X) of full dimension
and p € X such that p = Q(p), p = q1(p) and f(p) = 7, T = ¢g2(7) and ¢(7) = o, we obtain

~ (a
wr. (1)) = wx ;(3) IAZ : Fin(AX ) 2 wa(p) [AZ : FinQ(AY))

b _
® 1, (7) MY Fingt(AD)] |AZ : ginga(AY))

D w0, () INY ¢ fin(AX /D] |AZ ¢ ginga(AY)]
= w2 /0 (T) IAZ : Ging2(AY)| = wy.(x 711)/2.(F) [AZ + gun(

= Wy (f. (X /L1)/L2)(0)-

Here the upper indices at the lattices shall indicate to which tropical variety they belong.
Equality (a) is just the definition of the quotient lattice and the quotient variety. The same

AF )
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holds for equality (c). For equality (b) we need to take care of the lattice indices. We have
AZ D ging2(AY) D FlinQ(Af ) and therefore

IAZ : FinQ(A))] = |AZ : ging2(AY)] |ging2(AY) : FinQ(AY )]
We want to see that giing2(AY)/FinQ(A ) = AY/ fiing1 (A7), for which we have to show that
(g1in © ¢2) ' (FinQ(AY)) = fiing1(Ay). But this is clear as ging2 fiinq1 (A} ) = FiinQ(AY), Giin

is injective and ¢ is surjective. So the claim about the isomorphism is proven and gives us
equality (b). O

1.4. Pulling back the diagonal of L{

In Section [1.5] we will need to pull back the diagonal of smooth tropical fans in order to
glue tropical moduli spaces. So for every smooth tropical fan ) and tropical morphism
f:X—YxY we want to define a cycle f*Ay in X such that |[f*Ay| C f~!|Ay|. This
is quite technical and will be the content of this section. Even though for smooth ) the
diagonal is a product of Cartier divisors, tropical intersection theory unfortunately does
not provide a well-defined pull back for this yet, as the pull back could depend on the
choice of Cartier divisors which cut out Ay. The pull back cycle f*Ajy is known to be
independent of the choice of Cartier divisors which cut out Ay if dimY =1 or if Y = R™.

Definition 1.4.1 (Diagonal). For every tropical variety ), the diagonal Ay is defined as
Ay =1, Y,where::Y — Y x YVis givenby z — (z,z).

First we briefly review some facts about matroids and matroid fans, the basic reference for
what we will do now is [FR10]. For the precise definitions of matroids and rank functions
we refer to [Ox192]. Let us just note that a matroid M is a structure on a finite ground set
E, which is uniquely determined by a function ry; : 2¥ — Z > having certain properties,
cf. [Ox192] Section 1.3. Here 2F denotes the power set of E. The function ;s is called rank
function of M. A flat of M is a subset F' C E such that ry;(F) < ra(F U {z}) for every
z € E\ F. Given two matroids M and M’ on ground sets £ and E’, we can define a
matroid M & M’ on the disjoint union £ Ul E’. In terms of rank functions it is defined as
rvuem (AU B) :=ry(A) + ry (B) for A C E and B C E’. Note that the flats of M & M’
are exactly the disjoint unions of flats of M and M’.

Let now M be a loopfree matroid on the ground set E, i.e. rps({z}) = 1 for every = € E.
To every flat ' of M we associate a vector ep € RE with ep = Zie r €i, Where the e; are
the standard basis vectors. To every chain of flats ) C F; C --- C F; = E we assign a cone,
spanned by ep,, ...,er, and —ep,. Let B(M) denote the collection of all these cones, where
the maximal ones are equipped with weight one. This is a tropical polyhedral complex
called the fine subdivision of the matroid variety B(M), which is the tropical variety defined
by B(M). We have dim B(M) = ry(E), which is called the rank of M. By definition, B(M)
has lineality space Reg. Furthermore, note that B(A/) x B(M') = B(M & M’).

Of special interest to us is the uniform matroid Uy41 r41 on a ground set E of cardinality g+ 1
with rank function r(A4) = |A| if |[A] <r+ 1and r(A4) = r + 1 else. We are interested in this
matroid because B(U41,4+1) = LI x R.

In Section 4 of [FR10] it is explained how to cut out the diagonal Ag(s) in B(M) x B(M) by
a product of rational functions: If r is the rank of M/, we obtain the diagonal as intersection
product Ag(ps) = @1.- - .. B(M)? with

. =1 ifry(A)+rm(B) —ru(AUB) >
(11) Soz(eA7eB) - { 0 else

for flats A, B of M. The functions ¢; are linear on the cones of B(M @& M). Note that
recursively intersecting with the ¢; yields a matroid fan in each intermediate step, hence a
locally irreducible tropical variety. This will be important in the construction.
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The following construction was suggested to me by Georges Frangois.

Construction 1.4.2 (Pulling back the diagonal). Let f: X — Y x ) be a morphism to an
affine smooth tropical fan ).

Let first J be closed. Then there is an isomorphism 6 : Y xR — B(Q) x R™, where Q =
Ur+1,q+1 and 6 maps the central cell of the coarsest polyhedral structure of ) onto R™. The
additional factor R is introduced to deal with the lineality space of B(Q). Consider the
following commutative diagram

) fxid
X xR (Y xR) x (¥ xR)

M QJGXH

B(Q)? x (R™)?

and let 91, ..., %, cut out the diagonal in (R™)2. Furthermore denote the projections by
7 : B(Q)? x (R™)? — B(Q)? and 7 : B(Q)? x (R™)? — (R™)%. We define a cocycle

ok * * *
Dy =1 T Qr 1T T,

where the ¢; are the functions from (II). One can see that the cycle (f; x f2)*®y.(X xR?)
has the lineality space L = 0 x Agr. So we can mod out L and then project onto X' by p. We
then define

FPAy = fFAy. X = p, [((f1 X f2)" ®y.(X xR?))/L].
Note that this definition is independent of the choice of the functions ; by Theorem 2.25

of [Frall] and of the choice of § (cf. the next lemma) but it might depend on the choice of
the rational functions ;.

If Y is any smooth affine tropical fan (not necessarily closed), it is isomorphic to a restriction
of L x R™ to an open polyhedral subset U of its support which intersects 0 x R™. In this
case we restrict ®j, from above to U and then proceed the same way. By the next lemma
this is invariant under translations by vectors in 0 x R™.

The reason for choosing these functions and this somewhat unnatural construction is, that
we want to ensure |f*Ay. X | C f~!|Ay| which is not a priori clear if we choose arbitrary
functions cutting out the diagonal. But this is true for the pull back of a rational function
from a locally irreducible variety as in our case. This can be found in [Fral2], Lemma 3.8.13.

Note that once it is known that cycles on a matroid fan admit a well-defined pull back, our
definition will coincide with this.

Lemma 1.4.3. Thecycle f*Ay. X is independent of the choice of isomorphism )) xR = B(Q)xR™
as long as it maps the central cell of the coarsest polyhedral structure of Y onto R™.

PROOF. Let the notation be as in Construction[I.4.2 If we choose another such isomor-
phism ¢’ which maps the central cell of the coarsest polyhedral structure of ) onto R™, this
induces an automorphism ¥ = ¥ x ¥ of B(Q) x R™. By the conditions on # and ¢’ we have
9(0 x R™) = 0 x R™, s0 ¥2]|oxrm induces an automorphism U5 of R™ and Y1loxrm = 0.
The automorphism ¥ is affine linear, hence ¥ — ¥(0, 0) is linear. But as ©¥(0,0) € 0 x R™,
we conclude that ¥, is already linear, and as 91 [oxrm = 0 we obtain that 1 [g(g)xo induces
a linear automorphism 9; on B(Q). One can check that the only possibility for this is that
9(ej,0) = (er(;),0) for some permutation 7 of the ground set I of @, so we conclude that
(151 X 191)*%- = ;. On the second factor also the (152 X ﬁg)*wi cut out Agr and as already
mentioned the pull back from R™ is independent of the choice of functions. Hence we
conclude that also ¢’ leads to the same cycle f*Ay. X. O
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Lemma 1.4.4 (Lineality space). Let f : X — ) x Y be a morphism and ) an affine smooth
tropical fan. Let o be a central cell of ), such that a lineality space L of X gets mapped into it, i.e.
f(L) C Ay C o x o (where f also denotes the extension of f to an affine integer linear map on the
ambient vector spaces). Then L is a lineality space of f*Ay. X

PROOF. Let the notation be as in Construction and assume without loss of gener-
ality that ) = L2 x R™ is closed. Let L denote the maximal lineality space of the matroid
variety B(Q), then 6(c x R) C Lg x R™. So for an affine linear extension of f1 x fs to the
ambient vector spaces, we have

(f1 X f2)(L x AR) C A, X Aem.

We are free to choose functions ; cutting out the diagonal on R™, so we take for example
¥; = min(z; — y;, 0) where = and y are the coordinates in the two copies of R™. These func-
tions are fan functions, such that Ag~ is contained in the central cell of the fan consisting
of the domains of affine linearity of ;. Therefore (f1 x f2)*751; is a fan function, such that
L x Ap is contained in the central cell of the fan consisting of the domains of affine linear-
ity. Similar arguments apply to the functions ¢; from (1], which are also fan functions, and
AL, = R(eg, eg). Therefore (f1 x f2)*®y.(X xIR?) has L x AR as a lineality space. The
quotient by 0 x AR and push forward along p make this become a lineality space L. O

In the following four proofs we will for simplicity assume that for a smooth affine tropical
fan Y we have Y xR = B(Q) x R™, where Q = Ugy1,r+1. Replacing ®y by (6 x §)*®y and
restricting to an open polyhedral subset of the support will then always yield the general
case.

Lemma 1.4.5 (Projection formula). Let ) be a smooth affine tropical fan, g : Z — X an injective
morphism and f : X — Y x Y a morphism. Then

9« [(fog)"Ay. 2] = f*Ay.g.(2).

PROOF. Denote the ambient vector space of Z by Vi and of X by Va. Let L; = 0 x Ar C
V; x R? for i = 1,2 and ®y be as in Construction [.42] We denote the quotient maps
¢i : V; x RZ — (V; x R?)/L; and the projections by p; : (V; x R?)/L; — V; fori = 1,2.
The morphism g xid : Z xR? — X xIR? obviously factors as g0(gxid) = gogqi. Applying
Lemma[T.3.17]to the morphisms § o ¢; = ido gz o (g x id) o id we obtain

3. [[(( 0 9) x id)*®y.(Z xR?)] /L]
= [(g % id).((f o g) x id)*®y.(Z xR?)] /L,
@ [(f x id)*®y.(9.(Z) x R)] /Lo

where (a) holds by the projection formula for cocycles, cf. [Fralll], Proposition 2.24 (3).
Furthermore we have g o p1 = ps o g and by definition

= g+ [(P1) [[((f 0 9) x id)"®y.(Z xR*)] /L1]]
D+ [[((f 0 g) xid)"®y - (2 xIR*)] /L1]
)« [[((f 0 g) xid)* ‘1>y (2 xR?)] /L]
« |9+ [((fog) xid)* ‘I)y (2 ><1R2)/L 1]

(
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Lemma 1.4.6 (Commutativity). If J and Z are smooth affine tropical fans and f: X — Y x Y
and g : X — Z x Z are morphisms, then

f*Ay. [g*Az. X] = g*AZ. [f*Ay X] .

PROOF. Let @y and @z be as in Construction .42 let V; = R? = V, and denote the
projection pry : X XV, x Vy — & xVy. Furthermore let id y denote the identity on Vy and
let Ay denote the diagonal inside V. Similarly, we define pr,, id, and Ag. Then

C=pry(f xids) ®y. [X xVy x Vo] = [(f x idf) @y. [X x V]| x V
by Proposition 2.24 (4) of [Fra11l.
If we denote L := 0 x A x 0, there is a canonical isomorphism
Y (X XVy xVy)/Ly — (X xVy)/(0x Af) x V.
Using this isomorphism we obtain that
Ga(C/Lg) = [((f x idy) Dy [X x VA /(0 x Ap)] x V.

If we denote by py : (X xVy)/(0 x Ay) — X the projection, then push forward under
py x id, yields (f*Ay. X) x V, by definition. Hence

(py xidg)uths (C/Lg) = (f*Ay. X) X V.

Now we intersect both sides with (g xid,)*® z and apply the projection formula for cocycles
twice on the left hand side, once for ) and once for p; x id,. For this we abbreviate ¥ :=
Y*(py xidg)* (g x idy)*®z and we obtain

(py xidg)uthe [U.(C/Ly)] = (g x idg) @z [(f*Ay. &) X V].

If we denote the quotient map g, : X xVy x V;, — (X xV; x V;)/Ls, we obtain pr, =
(py x idg) o9 o qr,. Using this and Lemma[.3.10, we obtain

(12)  (ps xidg)uthu [(pry(g x idy)*@z.C)/Ly] = (g x idg)"®z. [(f*Ay. X) x V].
We want to abbreviate C" := pr}(g x idy)*®z.C and let
Gy : (9 xidg) @z [(f"Ay. X) x Vo] — [(g x idg)" Pz [(["Ay. &) x V(][ /(0 x Ay)

and Q : C' — C' /(0 x Ay x Ay) denote the quotient maps. Furthermore, let

Py (X XVy)/(0x Ag) — X and P: (X xVy xVy)/(0x Ay x Ay) — X
be the obvious projection maps. Applying Lemma[I.3.1T]to the cycle C" and the morphisms
PoQ=pgoqgo((psxidy)o)oqr, together with equation (12) yields

P, [(pr;(g X idg)* ®z. prs(f x idy)*®y. [X XV x Vg]) /(0 x Ay x Ag)}

On the left hand side the product of cocycles commutes. Then repeating all the above
computations with f and g swapped shows that the expression on the left hand side also
equals f*Ay. [¢g*Az. X]. O

Lemma 1.4.7 (Quotients). Let X be a tropical variety with a lineality space L, ) a smooth affine
tropical fan and f : X /L— Y x Y be a morphism. Then

q[(foq)"Ay. X] = frAy. [X /L],

where ¢ : X — X /L denotes the quotient map.
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PROOF. Let ®y be as in Construction 42 Let g7, : X xR? — (X xR?)/(0 x AR)
and g, : X /L x R* — (X /L x R?)/(0 x AR) denote the quotient maps and denote the
projections by p : (X xR?)/(0 x Ag) — X andp: (X /L x R?)/(0 x Ag) — X /L. If we
abbreviate QQ = G;, o (¢ x id), we obtain

q[(foq)"Ay. X]
E g [pe (a2 ((f 0 @) x id)* @y.(X xR?)))]
P, [Q[((f o g) x id)*®y.(X xIR?)]]
P, [@r, [(¢ xid) [((f o g) x id)*®y.(X xR?)]]]
25, (2, [(f xid) @y.(X /L x R?)]]
et Ay [X /L]

—

a

|

—

Equality (a) is an application of Lemma[[.3.1Tlto idy ;0 go po gL = P o Q and equality (b)
is an application of Lemma[1.3.10/to ¢ x id. O

Lemma 1.4.8. Let X and Y be tropical varieties, let pr : X x Y — X denote the projection and
let f: X — Z x Z be a morphism, where Z is a smooth affine tropical fan. Then

(fopr) Az.(X xY) = (F*Az.X) x V.

PROOF. Let @z be as in Construction[LZ2 Let ¢; : X xR? — (X xRR?)/(0 x AR) and
g2t X xYxR? — (X xYxR?)/(0 x 0 x Ag) denote the quotient maps. Furthermore
let p; : (X xR?)/(0 x AR) — X and ps : (X x Y xR?)/(0 x 0 x AR) — X x Y be the
projections.

These maps satisfy (p1 x idy) o (¢1 x idy) = p2 o g2. Furthermore the map pr x idg2 is a
projection, satisfying (f o pr) x idgz = (f x idgz2) o (pr x idg=). We obtain

(fopr)*Az.(X x D)

E (p2)ua2 [((f opr) x idg2)*®z.(X x Y xR?)]

@ (p2)ags [[(f x idge)*®z.(X xR2)] x V]

© (1 % idy)u(ar x idy) [[(f % idge)*®z.(X xR)] x V]
= (p1)+q1 [(f x idR2)*®z.(X xR?)] x Y
Ch Az X)X Y,

where equality (a) follows from Proposition 2.24 (4) of [Frall] and equality (b) is an appli-
cation of Lemma[L.3.1T]for (p; x idy) o (¢1 x idy) =id oid o ps o go. a

Lemma 1.4.9. Let X'y and X5 be tropical varieties and let Y be a smooth affine tropical fan. Fur-
thermorelet f : X1 — Y x Yand g : X3 — RF x R¥ be two morphisms. Then

(f X g)*Ay X]I{k-(Xl X XQ) = (f*AyXl) X (g*A]RkXQ)

PROOF. Without loss of generality we can assume that ) is closed. Then the morphism
fxid : X3 xR? — Y? xIR? induces a morphism f; x fo : X1 xR? — B(Q)? x (R™)?
as in Construction[I.4.2l Let also @y be as in that construction. Let the rational functions
Y}, ..., ¥}, cut out the diagonal Agx in (R¥)2. As mentioned in Construction[[.4.2] we have
g*ARk. Xy = g*’L/Jll . g*’lbij Xso. Let L1 =0 x Ag, let q1 X1 xR? — (Xl XRQ)/Ll denote
the quotient map and let p() : (X; xIR?)/L; — X be the projection. Furthermore let
Ly =0x0xAg,letgs : X1 x X9 xR? — (X1 x X3 xIR?)/ Ly denote the quotient map and



1.4. PULLING BACK THE DIAGONAL OF L¥ 41

let p : (X x Xy xIR?)/Ly — X1 x X2 be the projection. Finally, denote the projection
from X x X5 xIR? onto X; xIR? by pr; and the projection onto X' by pr,. We then obtain

(f*Ay Xl) X (g*A]Rk. Xg)

o [((f % o) By (X1 XR?)) /L] X (6704970} Xo)

&P [[((f2 % f2) By (X1 xR)) x (g4 - 9"} X2)] /Lo]

(b) * * * % * ok
= p? [[pri(fr x f2)" ®y. pry g ] -+ pry g* . (X1 x Xy xR?)] /Lo]

= (f x g)"Ay xrr-(X1 X Xg).

Equality (a) is Lemma [[.3.17] applied to (p1 x idx,) o (¢1 % idx,) = p2 0 g2 0 idoid and
equality (b) is Proposition 2.24 (4) of [Fralll]. The last equality follows from the definition
of the pull back of the diagonal in Construction and the fact that this is independent
of the choice of rational functions that cut out the diagonal in (R™ x R¥)2. O

Let Y be a smooth affine tropical fan that has a coarsest polyhedral structure with the fol-
lowing property: There is an embedding + : Y < L% x R™ such that for every 7 € L}} x R™
(in the coarsest polyhedral structure), there is a unique o € ) with ¢(¢°) C 7°. The particu-
lar example we have in mind is X N X (o), for a closed smooth tropical variety X, equipped
with its coarsest polyhedral structure and o € X. If we have a morphism f: X — YV x ),
Construction [[L4.2] provides a pull back cycle f*Ay. X. For every cone o € Y we can also
consider the restriction ), := YN Y(o), which is also a smooth affine tropical fan. There-
fore Construction also provides a pull back cycle f*Ay_. [X¥Nf~ V2 |] and we can
ask for the relation between these two cycles.

Corollary 1.4.10. Let Y be as above and let f : X — Y x Y be a morphism. Then for any o € Y
there exists a neighbourhood F of ° in Y such that

(fFAy. X)N fHF? | = frAr [Xnf Y F2]

and o° is a central cell of F. Note that F will in general be "smaller” than ), from above, cf.
Example[L4.12]

We postpone the proof to the end of this section. In the following let @) be the uniform ma-
troid Uy41,4+1 on the ground set E and let R C E be of cardinality m < r. Let U C | B(Q)|
be the complement of the union over all maximal cones of B(() which have a generator ep
for which ' ¢ Rand R ¢ F'. We want to define a partially open smooth affine tropical fan
F := B(Q) N U. Note that | F| is also contained in | B(Q/R)| x RF ¢ RF\? x RE = RF,
where /R denotes the contraction of @ by R. @/R is a matroid on F \ R and its rank
function is defined as 7g/r(A) = rQ(AU R) — rq(R) for A C E \ R, in terms of the
rank function of Q. Let ; ,i = 1,...,7 + 1, denote the functions from (1) which cut out
the diagonal in B(Q)? and let ¢;, i = 1,...,7 + 1 — m, be the functions cutting out the di-
agonal in B(Q/R)?. Denote the projections 7\ g : B(Q/R)* x (Rf)> — B(Q/R)? and
7r : B(Q/R)? x (REF)? — (RE)2.

Lemma 1.4.11. With the notation from above we have ¢;|r2 = WE\R@,MP for i > m and

Qilr2 = Thti| 2 for i < m, where the v; are rational functions on RE x R cutting out the
diagonal.

PROOF. Recallthatrg/p(A) = rq(AUR)—rq(R) for A C E\R. Inparticularrg,r(A) =
rq(A) for AC E\ Rwith [A| <r+1—-mandrg/r(A) =rg/r (£\ R) =rq(E) —m else.
S0 Q/R = Urt1—m q+1—m. We want to abbreviate

Rq(A,B) :=rq(A) +rq(B) —rq (AUB)
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for A, B C E and similarly R, r(A, B) for A, B C E\ R with rg,p instead of rq (cf. the
definition of ¢; and ¢; in (II)). After a few simple computations, we obtain that

(13) Ro/r(A,B) =Ro(AUR,BUR) —m forallflats A, B of Q/R.

The support of the tropical fan F is a common subset of | B(Q/R)| x R? and | B(Q)|. We
want to denote the generators of B(Q/R) by f4 € RP\E for flats A of Q/R and the standard
basis of R* by (I;)icr. Letls =Y ,.gli for S C R.

In the following let A and B be flats in Q/R. Let now ¢ > m and note that Rg(R, R) = m.
From (13) we directly obtain

pi(eaur, €BuR) = Pi—m(fa, fB) = Mg\ gPi-m(€AUR, €BUR)-
Furthermore R¢g(S1,52) = |S1 N S2| < m for S1,S52 C R, hence

pi(es;,es,) =0=@;i—m(0,0) = FE\RSZ’i—m(eéH ,€5,),

which proves the claim for i > m.
Every 2m-dimensional cone o of B(Q @ Q) that is contained in (0 x R)?, contains the ray
R>o(er, er). Furthermore, the cones o +R(eg, er) cover the whole of (0 x R¥)2. So we can
linearly (for each domain of linearity) extend the restriction of ¢; onto | B(Q)?| N (0 x RF)?

to a rational function 1@- on (0xRf)?, fori = 1,....,m. Clearly 1; induces a rational function
on R? x R® with lineality space R(Ig, [R).

If i < m we obtain

def. .
vi(eaur,epur) = —1 = gi(er,er) = Yi(lr,lr) = Thti(eaur, €BUR)

for all flats A, B of Q/R, because by (13) we have R /r(A4,B) + m = Ro(AUR,BUR)
and R,/ r(A, B) > 0. For S1,S> C R we obtain

def. %
901'(651’652) = 1/11'(151,152) = WRwi(esl’eSQ)'

We know that Agg) = 1.+ .or11. B(Q)? by Corollary 4.2 of [FR10] and we have

TR TR Um T gP1- - T gPat1-m- [B(Q/R)? x (R®)?] = Apq/r) x Z

where Z is the cycle cut out by the functions ;. Restricting the above intersection products
to J* we obtain (Ap(g/ry X Z)NF> = Ar by the computations from above. As the 1; have
lineality space R(Ig,[r), so has the cycle Z. Therefore Z is already uniquely determined
by ZN(R%,)% = Agz . Hence we conclude that Z = Agr, which completes the proof. [

PROOF OF COROLLARY [1.4.T0l Without loss of generality we assume that J = L7 x
R™. Let E ={1,...,q + 1} and let (&});=1,... ; denote the standard basis of R?, ({;);=1

basis of R™, e the standard basis of R and (e;);c ¢ denotes the standard basis in R”. Then
we can explicitly give the isomorphism 0 : Y xR — B(Q) x R™ as (e}, 0,0) = (e;,0) for
i=1,...,q,000,1;,0) = (0,1;) fori =1,...,mand 6(0,0,¢) = (eg, 0).

.....

If dimo = k 4+ m, we can assume that o = {Zle Aiej | Ni € Rsgfori=1,...k} x R™in
Y xR and define R = {1, ..., k}. Then 0(o x0) intersects several cones of the fine subdivision
of the matroid variety. Let F := F xIR"™, where F is the tropical fan from the previous
lemma. We can use the projection pr : Y xR — Y to obtain a neighbourhood F' =
YN (prod=1)|F| of o° in Y. By definition of 7 we have 6. (F xR) = F. In Construction
[L42the cycle f*Ay is defined via the pull back

(14) (f xid)" (711 - - T rghy - - T

where 1 : B(Q)? x (R™)? — B(Q)? and 72 : B(Q)? x (R™)? — (R™)? denote the
projections, the ; are the functions from (1) and 91, ..., ¥, cut out the diagonal of (R™)2.
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Furthermore, as | F | C |B(Q/R)| x R® and 0.(F xR) = F = F xR™, Construction [[4.2
defines f*A z/ via the pull back

(15) (f x id)* (7} @1 -+ 5 GropT3tn - - T3mar)

where the @; are the functions from (TT) for Q/ R, the ¢); cut out the diagonal of (R x R™) ?
and

71 :B(Q/R)?* x (R®)? x (R™)? — B(Q/R)* and
2 1 B(Q/R)* x (R)? x (R™)* — (RF)? x (R™)?
denote the projections. If we denote the projection 7 : (R¥)? x (R™)? — (R™)?, we can

assume without loss of generality that 1@- = w*¢; for ¢ = 1,...,m, as Construction [[.4.2]is
independent of the choice of these functions. Applying Lemma [LATTlto 7{ep1 - - - 75, we

see that (I4) and (I5) coincide on fQ, for a suitable choice of Y1, ..., Uik, but f*Az
does not depend on this choice. O

Example 1.4.12. The picture below illustrates the situation from Corollary Here )
is the grey fan, the cone ¢ is indicated in red. The blue fan is a fan for which the corollary
holds, and its right boundary is coming from the fine subdivision of the matroid variety
B(Us.4).

1.5. Gluing moduli spaces

In this section we want to define a polyhedral complex Mq(X,A) of degree A tropical
stable maps whose image lies in a smooth and closed tropical curve or hypersurface X' C
R™. We will describe how to equip this complex with weights which make it a tropical
polyhedral complex. Unfortunately this is only possible under certain local assumptions
on the tropical stable maps until now. However, we can prove that these local assumptions
are true in the case where X is a curve and also for tropical lines in surfaces in R? later on
in Chapter 8l Throughout this section let X be always closed and let the abstract tropical
curves of stable maps in My(R™, A) be always N-marked.

Definition 1.5.1 (Curves in X and their combinatorial types). Let X’ be a tropical polyhedral
complex. A tropical stable map (I, z},...,2y, ') € Mo(R™, A) with A'(|T’|) C |X]is
called a curve in X (of degree A). Assume that |A| > 2 or that thereisno o € X with '(|T"|) C
o. Then (I', 2}, ..., 'y, h') is isomorphic (as stable map) to a curve (I'Y, z1,...,zn, k) in X
such that

(1) if h=1(0) is discrete for some o € X, it is a subset of the vertices of I'¥
(2) if v is a two-valent vertex of 'Y, there is a cell ¢ € X such that h~1(o) is discrete
and v € h™1(0).



44 1. MODULI SPACES OF TROPICAL STABLE MAPS

If |A| = 2 and #/(]I]) C o for some ¢ € X, then (I, 2], ..., 2y, k') is isomorphic (as stable
map) to a curve (I'", 21, ...,z y, h) in X such that G(I'") has exactly one two-valent vertex.

The picture below shows an example for I'" and I'" in the case of X = L3.

]

We now want to define combinatorial types of curves in X'. Consider tuples
ai = (Gi ((07) peomt (v 0 weve, ) for i =1,2,

where G; is an N-labelled graph, 5? € Z™ and of,i) € X. Then o; and as are called
equivalent if there is an isomorphism (¢v, ) of N-labelled graphs from G, to G such that

02y =00 and o) = ot! holds for all v € Vg, and f € Fa,.

For a stable map (I'*, z1, ..., zn, h) as above, each vertex v of I'* is mapped into the relative
interior of a unique cell o, € X. Let A, be the local degree of h at v, cf. Definition [1.2.12]
We call the equivalence class of (G(I'V), (A,, Tu)veVy )) in the sense from above the com-
binatorial type of (T*,z1,...,xn, h) as curve in X. As for K-marked abstract tropical curves,
we define that curves in X which are isomorphic as stable maps, have the same combinatorial

type. In particular this defines a combinatorial type for curves in My(R™, A) if ¥ = R™.

A combinatorial type of degree A curves in X is an equivalence class « from above for which
there exists a degree A tropical stable map (T, z1, ..., zn, h), which is of combinatorial type
a. In the following we will usually write o = (G, (Ay, 0v)vevy ), Wwhen we mean that « is
the equivalence class of (G, (Ay, 0y)veve)-

If o is a combinatorial type of degree A curves in &, it will be convenient to talk about
vertices, flags, edges and leaves of « in order to have a uniform way of addressing these
objects in tropical curves which look "similar". We fix an element (G, (A, 0y)vevy ) in @, for
which G obviously has vertices, flags, edges and leaves. We define V,, := Vg, F,, := Fg and
E, = Eq. If (I, 2}, ...,2'y, k') is a curve in X’ of combinatorial type «, it is isomorphic to
a stable map (I'Y, z1, ..., zn, h) as above, via some isometric isomorphism ¢ : [I”| — [['¥].
Each vertex v € V,, gets identified with a vertex v’ of G(I'Y). We want to address the vertex
v, its image in [T | and also ¢~ *(v') in |[I”| by v. In the same way, a flag f € F, is identified
with a flag f’ of G(I'Y). We will address f’, its image in |I'*| and the preimage in |I| under
¢ by f. We do the same for edges and leaves. Note that since edges and flags of metric
graphs are open by Definition we conclude that for every combinatorial type o and
f € F,, there is a unique cell oy such that h maps f into o} for every curve (I', 21, ...,z h)
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of combinatorial type . If f is part of an edge e = {f, f'} € E,, the same of course also
holds for e.

If X is an affine fan with central cell o, we have a trivial combinatorial type of degree A curves
in X. The trivial combinatorial type is given by (the class of) (G, (A, 0)), where G is a graph
having one vertex and |A| flags incident to it.

Definition 1.5.2 (Cells and resolutions). We denote by Ma x C | Mo(IR™, A)| the set of all
curves in X of degree A. Let M(«) denote the set of all curves in X’ of degree A of com-
binatorial type «, which is a partially open polyhedron inside Ma x without any proper
faces. We call dim M () the geometric dimension of a.. The closures M(a) equip Ma » with
the structure of a polyhedral complex M x.

Furthermore we want to write 5 > « for two combinatorial types of degree A curves in X

if M(B) D M(«) and we want to call 3 a resolution of « if § > « and 8 # «. Furthermore
we define N'a x (@) := <5 M(B)-

For the quotient map qn] : M{(R™,A) — My(R™, A) which forgets the length of all
leaves (cf. Definition [[.Z18), we want to define M’'(«a) = q[;vl] (M(a)) and Ny y(a) =
GV ax(@).

Definition 1.5.3 (Vertex type and vertex resolutions). Consider tuples (X, d1, ..., 05) where
X C V = A®zRis a closed affine tropical fan such that its translation X +P by some P
is a tropical fan, and 61, ...,0, € (| X |+ P) N A. We say two such tuples (X, d1,...,d5) and
(X',04,...,8.), are equivalent if there is an isomorphism f : X — X’, whose linear part
fiin satisfies fiin(9;) = d; for 1 < i < s. An equivalence class of such tuples is called a vertex
type. When we say that (X, d1,...,d,) is a vertex type, we actually mean the equivalence

class [(X, 01, ..., 05)].

Let & be a tropical polyhedral complex, let o = (G, (Ay, 0v)vev, ) be a combinatorial type
of degree A curves in X’ and let v be a vertex of . Let P € ¢ and consider the closed affine
fan

(16) Xy :={R>¢(c — P)+ P|o € X witho > 0,}.

Furthermore, let a maximal R>q (o — P) + P inherit the weight wx (o). This turns X, into a
tropical polyhedral complex. By construction we have X', N X (0,) = X N X(0,). We then
say that v is of vertex type [v] := (X,,A,). A combinatorial type v of degree A, curves in
X, is called a resolution of v. Note that we do not require it to be non-trivial, as otherwise
Construction [.5.5 would not yield resolutions of vertices.

Construction 1.5.4 (Cutting edges of graphs). Let G be a graph and E C Eg a collection
of edges of G. We now want to "cut" the graph G along the edges in E. Define the graph
H = (VH,FH,jH,aH> where VH = Vg, FH = Fg, aH = aG but ]H(f) = f if there is
some other flag f’ with {f, f'} € E and ju(f) := je(f) else. The collection of connected
components of H is denoted G(G, E).

Construction 1.5.5 (Cutting combinatorial types). Let X’ be a tropical polyhedral complex
and 8 = (Gg, (Ay, Jv)vev%) be a combinatorial type of degree A curves in X. Choose a
subset £ C Eg, of edges and let G(Gg, E) = {G41,...,G;}. Assume furthermore that for
each i = 1,...,r there is some cell o; € X such that 0, > o; for all v € Vj,. In this case
let X; be the affine fan defined exactly as X, in ([{6), but with v replaced by i. For the cell
o, € X we then denote the unique cell in X'; corresponding to it by &,. We then call the
Bi := (Gi, (Av, Gv)vevs, ) fori = 1, ..., r the pieces of 3 obtained by cutting the edges in E. The
piece f3; is a combinatorial type of curves in &X';.

Let o = (Ga, (Aw, 0w)wevs, ) be another combinatorial type of degree A curves in A’ such
that 3 > «. There is a natural inclusion of the sets of edges E¢, — Eg,, as the length of

an edge of 3 is linear on M(3) and hence might become zero on the face M(«). If we cut
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B along E¢,, the pieces will be in bijection to the vertices v of « and we will denote them
by f,. To check the condition about the fan from above, note that for any vertex w of 3 that

is also a vertex of 3,, the position h(w) € R™ is linear on M(f) and it equals h(v) on the

face M(a). As h(w) € o, for each curve in M() and h(v) € o for the curves in M(a), we
conclude that o, > o,,.

B1 B2

The picture above shows an example for a combinatorial type which gets cut along the red
edge e into two pieces 1 and fs.

Definition 1.5.6. First let X’ be a tropical polyhedral complex which is an affine fan and
either a hypersurface or a curve. For any vertex type (X, A) we want to define the virtual
dimension as

vdim(X, A) := |A| — Kx.A +dim X —3.
The virtual dimension is the expected dimension of the corresponding algebraic moduli
space, cf. Section[2.3]

For a vertex type [(X,A)] = [(LE x R™, A")], so dim X =1 or ¢ — 1 = r, we want to define
the resolution dimension as the number

rdim(X,A) := |A] — Ky .A+r — 3.
Furthermore we define the classification number of the vertex type as
N[(X,A)] = |A| + Ky . A+

Note that the polyhedral complex M/ axgm has an m-dimensional lineality space con-
sisting of the curves of trivial combinatorial type. As rdim(X,A) = vdim(X,A) — m, the
resolution dimension measures "how many" resolutions the trivial combinatorial type has.
The classification number is just a tool for inductive proofs in this context, cf. the next
lemma.

Now let X be a smooth tropical hypersurface or curve equipped with its unique coarsest
polyhedral structure. For a vertex v of a combinatorial type a of degree A curves in X, we
want to write vdim(v) := vdim([v]), rdim(v) := rdim([v]) and N, := N[.

Lemma 1.5.7. Let X be a smooth affine tropical fan equipped with its unique coarsest polyhedral
structure. Let T be the trivial combinatorial type of degree A curves in X and w its unique vertex.
Then for any resolution o of T and any vertex v of & we have N,, > N,,.
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PROOF. First note that Ky .A = (Kx.A)y =Y, (Kx.A),, where the sum runs over all
vertices of v of a.. As the local intersection multiplicity at v is always a non-negative integer
in this case, we conclude that (Kx.A),, > (Kx.A), holds for all vertices of «. Furthermore,
if val(v) = 2 we must have (Kx.A), > 0. For a vertex v that is mapped into the relative
interior of a cone ¢,, the number r from the definition of the classification number is just
ry = dim X —dim o,. And as oy, is the central cell of X, i.e. the unique cell of X’ of smallest
dimension, we conclude r,, > r, for all vertices of a.

Let v be a vertex of @ with val(v) < val(w). By the above considerations we conclude
Ny < Ny.

Now assume that there is a vertex v of « with val(w) = val(v). Then all other vertices
u of o must satisfy val(u) = 2. Furthermore, we have A,, = A, for the local degrees.
If additionally r, = r,, we must have o, = o, and we conclude Kx.A = (Kx.A), =
(Kx.A),. This means (Kx.A), = 0 for the two-valent vertices of o, which is impossible.
If there are no two-valent vertices, we must have a = 7, which is also a contradiction. We
conclude r, < r,, and hence N, < N,,. O

For the rest of this section let now X C R be a smooth tropical hypersurface or curve
equipped with its unique coarsest polyhedral structure, except in Lemma Note that
we only restrict to curves and hypersurfaces here, because these are the only cases where
we defined a canonical divisor. However for "obvious" generalisations of the canonical di-
visor to arbitrary smooth tropical varieties, we cannot show that for a curve (T, z1, ..., zn, h)
in X' the degree of the pull back deg h* K x.I" only depends on X and A.

Definition 1.5.8. An admissible combinatorial type of degree A curves in X is a combina-
torial type « such that for all vertices v of o we have rdim(v) > 0. These are exactly the
combinatorial types which we would expect to be "locally realisable", cf. Section 2.3l

We denote by M“A‘% x the polyhedral complex consisting of those cones M («) such that « is

admissible, and all faces M(3) C M(«) also belong to admissible combinatorial types 5.

For the rest of this section we will only consider admissible combinatorial types of curves
in X, except for Lemma Furthermore let A be a fixed degree of tropical curves in X
In order to define our moduli space My(X, A) as a tropical cycle we will need to specify
some additional data as in the following definition. Also we will need to require some kind
of compatibility condition for this data, as we will do in Definition [[.5.12] Then we will be
able to "glue" My(X, A) from this information in Construction

Definition 1.5.9. Moduli data for curves (respectively hypersurfaces) are a collection of
weights (wy(x/,a7))[(a’,a from Q for every vertex type [(X’, A’)] with rdim(&X’, A") = 0.
Here X' is a smooth tropical fan which is a curve (respectively hypersurface) in some am-
bient vector space. Furthermore, in the hypersurface case we want to require that for the
projection pr : L x R™ — L we have wy1axrm A7) = W[(L%,pr(ar)))- A promising choice
of moduli data for the hypersurface case seem to be the numbers from Conjecture
The correct choice for the curve case is Definition

Definition 1.5.10 (The moduli space M(X', A)). We want to define M (X, A) as the poly-
hedral complex consisting of all cells M («) of M“A‘% x such that

dim M(«o) = dim X +|A| —3 — Kx.A
together with all of their faces. So My(X,A) is pure by definition. The dimension of
Mo(X, A) is exactly the expected dimension of the corresponding algebraic moduli space.
Furthermore, if (X', A) is a vertex type, then dim My (X, A) = vdim(X, A).
For a cell M(a) € Mo(X, A) define N (a) := Mo(X,A)(M(a)) and V() = gi(V(a))
for the quotient morphism gy : Mo(R™, A) — Mo(R™,A). If M(a) ¢ Mo(X,A), we
set V() := N'(a) := 0.
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We postpone the definition of weights on M (X, A) to Definition [1.5.20 as this involves
results from later in this chapter, except for the special case of the next construction.

Note that in general there are also admissible combinatorial types of too high dimension,
cf. Example[1.6.4 It is not known to the author if there are cases where all admissible com-
binatorial types are of too small dimension. Furthermore, the weights on Mo (X, A) will in
general not be integral and M (X', A) does not have to be irreducible, cf. the examples in
the next section

Note that all following constructions and definitions in this section will depend on the
choice of moduli data.

Construction 1.5.11. Let (X', A’) be a vertex type with rdim(X’, A’) = 0, where X' is a
closed smooth affine tropical fan which is either a hypersurface or a curve. Then by Defi-
nition Mo(X', A’) consists of exactly one cell, the cell M(7) belonging to the trivial
combinatorial type 7. We want to equip the cell Mo(X’, A”) with the weight wj(x/ A/ from
the moduli data, turning M (X', A’) into a tropical variety.

Unfortunately, the following definition recursively uses Construction [I.5.13]and Definition
[1.5.20/from later in this chapter. However, this is possible by induction on the classification
number.

Definition 1.5.12 (Good vertices). Let a be a combinatorial type of degree A curves in X.
We want to define when a vertex v of « is good. For this we assume that the notion of
a good vertex is already defined for all vertices with classification number strictly smaller
than N,. We will now state the definition and afterwards explain why the occurring objects
are well-defined. The vertex v is called good if the following holds:

(1) if v is a non-trivial resolution of v with dim M(y) < vdim(v), all vertices of ~ are
good vertices

(2) the space Mo(X,,A,) from Definition is a tropical variety, with weights
from Construction [L5.17] if rdim(v) = 0 and weights from Definition if
rdim(v) > 0

(3) Mo(Xy,Ay) N N(y) = Z(v) for every non-trivial resolution v of v such that
dim M(v) < vdim(v), where Z(7) is the cycle defined in Construction[1.5.13

Let us see why this is well-defined. If w is a vertex of a non-trivial resolution of v, then
N, < N, by Lemma[I.5.71 Hence it is by assumption already defined what it means that
w is a good vertex, so condition (1) makes sense. In condition (2) we only have to take care
what happens if rdim(v) > 0. If this is the case, we can apply Definition because
condition (1) is satisfied. Also in condition (3) the cycle Z(v) is well-defined as by (1) the
vertices of 7y are good. Therefore we can also say what it means for v to be good.

The definition of a good vertex seems to be quite messed up because of the recursion and
because it involves the gluing construction, which also relies on good vertices. After Con-
struction [[.5. 13 we will explain in Example[[.5.14 why this is necessary.

We will see in Lemma([IL.5.]5 that the property of being a good vertex actually only depends
on the vertex type of the vertex.

Note that if rdim(v) = 0 then v is always good, as conditions (1) and (3) are trivially satisfied
and condition (2) is satisfied by Construction [[.5.111

Now we can can describe how we want to glue moduli spaces from these building blocks.

Construction 1.5.13 (Gluing). Fix a combinatorial type o = (G, (A,, 04)vevy ) Of degree A
curves in X' and assume all its vertices are good. We now want to cut « along all its edges
as in Construction [[.5.5]and obtain pieces «,, for all vertices v of c. In the following let F"*
denote the flags of o which are incident to v, i.e. the leaves of «,,. Furthermore, the graphs
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of a combinatorial type need to be labelled graphs, and we want to label the graphs in «,
by F" in the obvious way.

We want to associate a local moduli space M, to each vertex v as follows. For a vertex
v we have an affine tropical fan X, with X, NX(0,) = XN X(0,) as in ([I6). Now the
space Mo(X,,A,) is a tropical variety as the vertex is good. We can now make all leaves
bounded by taking the preimage variety (cf. Construction [L.T.I3) under g+ (cf. Definition
[[2.18), and we obtain M{(X,, A,) with the polyhedral structure induced by M(X,, A,).

e

Let U C | My(X,, A,)| be the subset of all curves (T, (z/)epo, h) such that h(|T]°) C
X(o,). This is an open polyhedral subset of | M{(X,, A, )| which intersects every cell of
M(Xy,Ay). The reason is that on each cell of M((X,,A,) the position of the image of
a vertex is linear. Hence we can require that all vertices are mapped into X(o,), which is
openin | X, |. The edges are then also mapped into X(o,) as the cells of X are convex. We
define the local moduli space of v as the restriction

(17) My = MG(X,, Ay) NU
which is a partially open affine tropical fan.

Now we want to glue the pieces M, back together. Consider an edge e = {fi, fo} =
{v1,v2} of a which is mapped into the relative interior of o.. We denote X, := X N X (o)
and we evaluate
eve := (evy, X evy,)opr: H M,y — X2
vEVy

where pr denotes the projection onto M, x M,,. Then we want to impose the condition
that the leaves fit together to the edge e by pulling back the diagonal Ay, via ev. with
Construction .42 This pull back is contained in the set ev_ ! |Ay,|. We abbreviate

(H ev;AXe). I Mo=ev:Ax. ] M..

e€l, vEVy vEV,
By Lemma [1.4.6]this does not depend on the order of the edges.

We define ev™' Ay :=.cp ev. ' |Ax,|. Soev ! Ax C [],ey. | My | consists of all curve
pieces that fit together to a curve of degree A, but it also carries the superfluous information
about the position of the gluing points which we want to get rid of by taking a quotient.
Furthermore we have

ev' Ay. H M, Cev i Ay,

vEVy
as this is the case for each intersection of a diagonal pull back by Construction [[.4.2]

Now we want to describe the lineality space that we have to mod out in order to forget the
gluing points. Each cycle M, lies in a vector space U, := Q. x R™, cf. Constructions[1.2.9
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FIGURE 2. Here we see an example for the map D24 which measures the
distance between the leaves 5 and z4. It is the sum of the maps dj,, d5,
and d3, which measure the length of the coloured path in the graph.

and[[.2.27] If v is at least trivalent and f’ € FV, we have a vector uy € U, whose coefficient
records the length of the bounded leaf f’, cf. Construction If v is two-valent, incident
to f1 and fs, then the coefficient of uy, = uy, € U, records the distance between these two
leaves. We define

(18) Lo = (ug, —up, |[{f1, fo} € Ea)g  [] U
vEVy

For each edge e of a the evaluation ev, maps L,, into A, a central cell of Ay, . Therefore
L, is a lineality space of the pull back by Lemma [[.44 Hence L, is a lineality space of
ev* Ax.[[,cy, Mo. So as in Construction [LT.TTlwe can mod out L, and we denote the
quotient map ¢ : [[,ey. Us — (Il,ev, Uv)/La- The quotient does no longer carry the
information about the position of the gluing points.

Now we want to obtain elements in Mg(R™, A) = M x xRR™ in barycentric coordinates,
via a morphism f which we want to describe in the following. In order to do this, we
identify Q' = R(). Let ; and xj be two leaves of o and denote by dj; : M, — R
the morphism that measures the distance between the two unique leaves in M, which lie
on the path from z; to x; in «. If v does not lie on the path from z; to x;, we set d;fj =0.

Furthermore denote the composition of d;; with the projection pr,, : [[,,cy,, Mw — M, by
(Ntlf] We can define the total distance between z; and z; as D;; :== ), v, d;., cf. Figure[2 It

can be checked that this factors uniquely through the quotient by L, as D;; = Dj;0q. For all

157

vertices v of aletbc” : M,, — IR™ be the barycentre morphism and let be :=bc’ o pr,. We
can define a morphism B := " . b’ +2 (1. fo1eB. (€V5, tevy,). The second sum deletes
the contribution of the gluing points to the barycentre. Hence also B factors uniquely as
B = B’ 0 ¢. As the total mass of the glued curve is —2 we want to define f as

(19) f=T[D, x (—%B’) g [ev Ax] — M), (R™, A).

i<j

It is not difficult to see that the factor —1 is compatible with the lattices and hence f is a
morphism. This morphism maps a tuple of curve pieces to the unique curve in Mg (R™, A)
which is glued from these pieces. Hence f is injective on this set and we can now define
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the push forward

(20) feq [ev* Ax. [ Mo

vEVy

=: Z'(a) C [ Mp,,(R™, A)].

Note that | Z'(a)| C (f o q)(ev™' Ax), so the cycle Z'(a) consists of degree A curves in
X with bounded leaves. It is very easy to obtain a cycle Z(a) in My(R™, A), by just di-
viding Z'(«) by the lineality space U}y via the quotient map ¢(y). Then by construction
| Z(a)|] C | /\/lfyd A |poty- The cells of maximal dimension come with a natural weight in this
construction, which we will call gluing weight. It is not clear a priori that this weight is
independent of the choice of «, but it will turn out to be so in Theorem [1.5.21]

Example 1.5.14. Consider the tropical degree A = (3e1, 2eg + e3, 2e2 + e3, eg + €3, €2)
of curves in L3. In the picture below the leaf x; is black while z2 and z3 are red and 4
and x5 are green. We have rdim(L3, A) = 1, and one possible combinatorial type « of
degree A curves in L3 of geometric dimension one is depicted below. The vertices v and
u are of resolution dimension zero, but we have rdim(w) = vdim(w) = 1. In order to
define Z(«), we need local moduli spaces M,, M, and M,, as in (IZ). While M,, and M,,
are already defined in Construction [L.5.11} M,, is a one-dimensional affine tropical fan by
Definition whose weights are defined by gluing resolutions of w (also cf. Example
[[6.3). Therefore we need to construct M(L3, A) inductively from vertices with smaller
classification number. In particular this example also shows that the resolution dimension

does not strictly decrease in resolutions.
v
L1
u
h
PR LR

Let A = (61,...,0n). Then every automorphism ¢ : R™ — R™ induces an isomor-
phism between moduli spaces ¢ : My(R™, A) — Mo(R™, pA) via ¢(T, z1,...,xn,h) =
(T, 21,...,xNn, ¢ 0 h), where oA := (¢1n(01), ..., ¢uin(0n)) is the image of A under the linear
part of ¢. We now want to see that Construction [[.5. 13 behaves well under automorphisms
of R™.

Lemma 1.5.15. Assume that all vertices of a combinatorial type o of degree A curves in X are
good. For an automorphism ¢ : R™ — IR™ the induced isomorphism between the moduli spaces
@ Mo(R™, A) — Mo(R™, pA) satisfies

¢ Z(@) = Z(p(a)).
Here for a combinatorial type o = (G, (0v, Av)vevy) the combinatorial type ¢(«) is given by
(G, (w(ow), pAy)vevy ). In particular the property that a vertex is good only depends on its vertex

type.
PROOF. The automorphism ¢ also induces isomorphisms
¢t Mo(R™, Ay) — Mu(R™, 0, ).

We want to denote the local moduli space (as in {I7)) of v in a by M, and the one of v in
¢(a) by My, Strictly speaking, the existence of a moduli space M., is not clear yet
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as we do not know that the vertex v is also a good vertex in (), but this will be proven
below. We want to denote the quotient maps by

g: [[Mo — <HMU> /Lo and G: [[Mpw) — (H MW(U)> /Lo(a)-

As we clearly have (][], ¢") (La) = Ly(a) there is an isomorphism ¢ with pogq = o
(IT, ¢¥). For each edge e of o (and hence also ¢(«)), we obtain an evaluation morphism
eve : [[, My — X g as in Construction The same way we obtain an evaluation
eVe : [[, Mpw) — (g« Xe)?, satisfying eve = ev o ([], ¢”). We want to denote the
embeddings as in ([9) into M{(IR™, A) by f and the one into M{(IR™, pA) by f.

First we assume that X’ is an affine tropical fan and rdim (X, A) > 0. If rdim (X, A) = 0, the
statement ¢. M(X,A) = Mo(ps X, pA) is just Construction by the definition of a
vertex type.

So let w denote the unique vertex of the trivial combinatorial type 7 of degree A curves
in X. Assume that « is a non-trivial combinatorial type of degree A curves in X. Then
we have N,, > N, for the classification numbers of the vertices v of a. If rdim(v) = 0 we
have ¢} M, = M, as above, in particular v is also good in ¢(c). The smallest possible
classification number is 3, which is attained only for (R¥, A’), where |A’| = 3. In this case
we have rdim(R¥, A’) = 0. So by induction on the classification number we can assume
that ¢. M, = M, and that v is also good in ¢ () for all vertices v of . We obtain

sl
(1) (1o ) 112
([ ) (11 o

L 2 (p().

O Z/(O‘) = ¢u frq

AX.HMU] D fbug

Here equality (1)~holds because ¢ o f = f o ¢ and equality (2) holds by an application of
Lemma topoqg=qgo(]],¢")cidoid. Equality (3) is then just the projection formula
from Lemma[I.4.5 applied several times. Applying this to all combinatorial types « yields

Gu Mo (X, D) = e M(X, A) = Mo(x X, 08) = Mo (0 X D).
In particular the vertex w is also good in (7).

If there is only the trivial combinatorial type 7, the same also holds for ¢, X and pA. Then
[2(7)] = [Mo(X,A)] = [0] and also [0] = [Mo(p. X, pA)] = [2(p(7))] = 6. [Z(7)] by
Definition [[.5.100 In particular, also in this case w is a good vertex of ¢(7).

Therefore we can assume ¢} M, = M, holds for all vertices (vertex types) and we can
use the above computation to obtain the claim for general smooth X'. O

Now we will state a lemma which deals with arbitrary combinatorial types in an arbitrary
tropical polyhedral complex, as we will need this to relate combinatorial types to boundary
strata of an algebraic moduli space in Section [2.4]

Lemma 1.5.16. Let X' be an arbitrary tropical polyhedral complex. Furthermore let o and [ be
arbitrary combinatorial types of degree A curves in X. Suppose there is a choice E of edges in (3
such that the pieces obtained from cutting (3 along E are in bijection to the vertices of o and call
these pieces (By)v. If By is a resolution of v for every vertex v of c, then 3 > c.
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PROOF. By assumption each f, is a combinatorial type of degree A, curves in X,
where X, is as in (I6). This proof will be very similar to Construction the only
difference is that we do not have local moduli spaces as tropical varieties, so we will re-
place My (X, Ay) by the polyhedral complex My, a,. Given a cone M(vy) € My, a, let
M (7) = q[jvl] (M(7)), where gy is as in Definition [.2.18 Let o, (y) C M (7) be the subset
of all curves (T, (x/) s, h) with h(|T'|°) C X(0,). We define M, as the collection of cones
oy (7) for all (not only admissible ones) combinatorial types v of degree A, curves in X,,.
This is an affine fan with central cell o, (7, ), where 7, denotes the trivial combinatorial type
of degree A, curvesin X',,.

v

For a polyhedral complex Z we want to define the diagonal to be the polyhedral complex
Az ={i(0)| o € Z} where 1(z) = (x,x).

Each edge e € E is mapped into the relative interior of a cell o, € &". Define a polyhedral
complex X, := {o N X(0.)|o € X} and a linear evaluation map

ev : H My, — | X, |}2301y - |X|}2Joly’
vEVy

for every e € E as in Construction We now want to consider the set

G := ﬂ ev, " |Ax, [poly

eckE

The set G consists of curve pieces that glue to curves of degree A. Let L., ¢ and the
embedding f : ¢(G) — My(R™,A) be as in Construction Obviously M, :=
(f oq)~' M'(a) is a polyhedron with M, C [], 0,(7,). Now we want to find a polyhedral
complex G with | G |poy = G. We start with Gy := [], M,. By replacing | = c with I > ¢
and —! > —c we can assume that all defining relations of a polyhedron are inequalities. Let
E ={ey,...,es} and let ] > ¢! fori = 1,...,r; be all those defining inequalities of all cells of
A X, which are not strict. We then define

Gl i={on{lloev,, >cl},on{lloev., =cl},on{lloev., <cl}|oeGl }
and

Gl ={on{lloev,, >cl},on{lloeve, =c},on{lloev., <cl}|oegGi "}

Tj—1

It is clear from the construction, that G is a union of cones in G; . Let G be the set of these
cones.

Now we want to show that each G/ is an affine fan which contains M, in its central cell.
This can be seen by induction. The claim is clearly true for Gg. Assume that the partially
open polyhedron M, is a subset of every o € G;. By definition we have ev,, (M,) C A, .

But as o¢, is the central cell of X'c;, we have that (1 o eve, ) (M) = {]}. Soif M, is

contained in every cell of G/, it is also contained in every cell of G/ 41, Tespectively GIif
i = ;. This means that also G’ 41 (respectively GIT!if i = r;) is an affine fan such that
each of its cells contains M,. Hence this also holds for G. By definition of M, we have
(x —ylz,y € Ma)r D Lq. So the affine fan G has lineality space L, and hence also ¢(G) is
an affine fan. As f is injective, we conclude that (f o ¢)(G) is an affine fan, such that each of

its cells contains M’ ().

As (3 is a combinatorial type of degree A curves in X', we must have a cell o € G such that
o C1l,0u(By). Then (foq)(o) C M/(B) and as M'(a) C (f o ¢)(o), we conclude 3 > a.

In particular the preceding arguments also show that (f o q) (G) C Ny y(a). Given a cell
o € G there must be a combinatorial type v of degree A curves in X such that (f o ¢)(c) C
ﬂl(v). As before, we conclude v > a, hence (f o ¢)(0) C Ny x (). O



54 1. MODULI SPACES OF TROPICAL STABLE MAPS

Lemma 1.5.17. Assume that all vertices of a combinatorial type o of degree A curves in X are good.
Then the gluing cycle Z(«) is an affine tropical fan containing M(«) in a central cell, furthermore

| Z(a)| C Nax(a).

PROOF. Let the notation be as in Construction Consider the set of all curve
pieces that glue to combinatorial type «, i.e. M, = ¢~ f~1(M'(a)) C ev'! Ax. Then
eve(My) C Age C 0f x of, for every edge e of a.

Let Z be an affine tropical fan that is a subvariety of [ [, .y, M, and contains M,, in a central
cell. As in Construction [[.4.2] let ff x f§ : Z xR?* — B(Q)? x (R™)? be the morphisms
induced by ev, xid : Z xR?> — X? xR? and an embedding 0 : X, xR — B(Q) x R™,
where (@ is some uniform matroid. As in Construction [[.4.2lwe also call the projections to
the factors 71 : B(Q)? x (R™)? — B(Q)? and 75 : B(Q)? x (R™)? — (R™)2.

The functions ¢; and ¢; used for cutting out the diagonal in Construction [.4.2]are all fan
functions. If L is the maximal lineality space of B(QR), the fan consisting of the domains
of affine linearity of y; contains Ay, in its central cell. Similarly, the fan consisting of the
domains of affine linearity of ; contains Agr in its central cell. As

0x0: Az X AR = A, X ARm,

we conclude that (f§)*n}p; is a fan function, such that M,, x A is contained in the central
cell of the fan of domains of affine linearity. Similarly, also (f5)* 73, is a fan function, such
that M, x AR is contained in the central cell of the fan of domains of affine linearity. Hence,
by construction also ev} Ay, . Z is an affine tropical fan with M, contained in a central cell.
Inductively, we obtain the same for ev* Ax.[[, M,. All these properties are preserved
under taking quotient by L, and push forward with the injective map f, hence M'(«) is
contained in a central cell of the affine tropical fan Z’(«).

The set G from the previous lemma consists of all curve pieces that glue to degree A pieces
in X, therefore ev—! A » from Construction [[.5.13is contained in G. Hence this set satisfies
(foq)(ev'Ax) C N 'A,x (@), by the last paragraph of the proof of the previous lemma.
This implies | Z(a)| C Na x (). a

Lemma 1.5.18. Assume that all vertices of a combinatorial type o of degree A curves in X are
good, then
dim Z(o) = dim X +|A| — 3 — Kx.A.

PROOF. Let the notation be as in Construction By definition we have

ev' Ay. Hle .

If s denotes the number of vertices v of «, then s — 1 is obviously the number of edges of
a. As the push forward preserves dimensions, we only have to compute the dimension of
q(ev* Ax.T[, M.,). We have that

dim [[ M, = (vdim(v) + val(v))

Z'(a) = fuq

=> (2val(v) — (Kx.A), + dim X —3)

=sdimX —Ky.A+Y (val(v) —3) + > val(v)

=sdimX —Kx.A+2|A| —4+s,

where we take into account that for a tree the number of vertices satisfies s = |A] — 2 —
>, (val(v) —3)and ) val(v) = [A]|+2(s—1). The cycleev* Ax.[], M, has codimension
(s —1)dim X and taking the quotient via ¢ eliminates another s — 1 dimensions. Passing
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from M{(R™, A) to Mo(R™, A) reduces the dimension by |A|. From this the claim easily
follows. H

Corollary 1.5.19. Assume that all vertices of a combinatorial type o of degree A curves in X are
good, then

| Z(a)] € [Mo(X; A)lpoly,
In particular | Z(a)] C N(a).

PROOF. If dim M(a) > dim X +|A] — 3 — Kx.A it follows from Lemmas [[.5.17 and
that [Z(a)] = 0 - [M(«a)]. The second part of the statement follows from N (a) =
NA,X(O‘) n | Moy (X, A)|poly- ]

Definition 1.5.20 (Weights on M(X', A)). Assume that all vertices of all combinatorial
types of degree A curves in X are good. Then we can equip the maximal cells of My (X, A)

with weights as follows. Let M («) be a maximal cell. Then the gluing cycle Z(«a) defined
in Construction equals the cell M(a) with some weight w, by Lemma [[.5.17 and

Corollary[1.5.19 We define w, as the weight of M(«) in My(X, A). We will see in Theorem
[L.52T]that M (X, A) is balanced with these weights.

What is left to show is that M (X, A) becomes a tropical variety if we equip it with weights
from the previous definition. The idea of the proof is that M (X, A) is locally given by glu-
ing cycles Z(«) for non-maximal combinatorial types, which are balanced by construction.
We then have to show that the weights of two gluing cycles Z(«) and Z(3) coincide where
they are both defined, i.e. the gluing weights are well-defined.

Theorem 1.5.21. Assume that all vertices that can possibly occur in combinatorial types of degree
A curves in X are good vertices and let 8 be a resolution of . If | Z(8)| = 0 we have | Z(a)| N
M(B) = 0. If| Z(B)| # 0, there is an open polyhedral subset U C | Z(8)| which is also an open
subset of | Z(«v)| such that M(8) C U and

Za)NU = Z(B)NU.
In particular Mo (X, A) is a tropical variety and Z(a) = Mo(X, A) NN («).
PROOF. For each vertex v in « there is a unique resolution /3, of v which is the piece
of 8 obtained by cutting § along all edges inherited from «, cf. Construction We
now want to describe the gluing cycle for the combinatorial type 3. For a vertex u of 8 we

want to denote the local moduli space from ([I7) by AV, in order to distinguish it from those
belonging to vertices of a. Let

Q- I[ II Nu—><H 11 Nu)/LB

wWEVa u€Vpg,, weVy u€Vp,,

denote the quotient map and let EV* A x denote the product that glues all bounded edges
in 8 as in Construction [1.5.13] We call the embedding into the moduli space

F:Q

EV:ax. [ TI Nu] — M{(R™,A).

weVy uEVL—)y

Let the gluing cycle of o be given by

Z/(O‘) = fxq

ev” A,'y. H Mv]

vEV,
with all the notation as in Construction

Let o be the cell of & into whose relative interior the flag f’ of « is mapped. Similarly,
for an edge e = {fi, f2} of @, o denotes the cell into whose relative interior the edge
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is mapped. Obviously, o, = o = o0y, in this case. In a resolution 5 of «, each flag
will degenerate into the relative interior of a possibly bigger cell a?/ > o4. By Corollary
[[.4.10 there exists a neighbourhood F ?, of (o?,)o inXnNx (a?, ), such that pulling back the
diagonal is compatible with restrictions, cf. Figure 3l We choose these neighbourhoods
such that F” L =F ?2 —: FPife = {f1, f2} is an edge of a, and such that the relative interior

B B

of 0 := o} =0/ isa central cell of 2. For every vertex u of 3 we want to define
e f1 fo e

(21) NG =Nun(Nevy! | FY |
f/

where the intersection runs over all flags f’ of o which are incident to u and element of an
edge of a. For edges e of « we define X. := X NX(o,) as in Construction In the
same way we define X, for those edges of 3 which are not edges of a. If we consider the
edges of a as edges in f3, they are mapped into (¢7)° and we define X* := x n F~.

Now we have to define some maps in order to do computations. For each edge e = { f1, f2}
of 3, let as in Construction
evy := (evy, X evy,)opr: H Ny — &2,
ueVs,

where pr denotes the projection onto M, x M,,, with u; incident to f; for i = 1,2. For
each vertex v of a and each edge e of 3, denote by ev, the composition of ev? with the
projection pr, : [T ,ev,, Iluev,, Nu — [luev, Nu- Denote the quotient map for gluing of

By by
q": H Ny —( H Nu)/Lg,

u€Vg, u€Vsg,

and let f¥ denote the embedding into My(R™, A,), as in (I9). Abbreviate the product
maps ¢ = [[, ¢" aswell as f =[], f". Furthermore, let ev, = ev.of and ev, = ev. o G.

Now we are prepared for the computations:

U:=F.Q |EV* Ay. H H NE

weVy u€Vp,,

(;)f*q f*(j EV* Ax. H H NZ

wEVy u€Vp,,

def. 7o~ ~ ~ v\ %
= I+q | f«q <H eV:AX§>- H H (eve)"Ax, : H H NG
eeE, veEVL \e€Eg, wEVy u€Vp,,
®) 3 . ~ SR
| |( T s ) a| | TL{ T @ora )| T T
ecE,, L veEVL \e€Eg, wEVy u€Vp,,
(c) * Fo~ ~ *
= fuq ( evg Axf)- AT U IT evorax )| I T e
ecE, | [vEVa \ce€Eps, weVy ueVg,,
d * r o~ *
D g ( ev? AXE>. q| 1 II evorax |- IT ~:
e€E, veVa [ \e€Eg, u€Vg, ]
< fiq ( evy A&)- e || I evrax, |- TT M
e€bq veVy L ecEpg, u€Vg, ]
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Equality (a) follows from Lemma [[.3.11) we just have to check that Fo Q = foqo fog
holds on the cycle EV*(Ax).[],ev, [l.ev, Nu- The map g forgets the gluing points for

all edges of g that did not occur in «. The map f measures distances between the leaves
of the pieces 3, and computes the barycentre of each of these pieces. Then ¢ forgets the
gluing points for the edges inherited from « and f adds all the distances measured by
f to the total distances between leaves in a. Furthermore f computes the barycentre of
the whole curve. This is the same as F' does, while () forgets all gluing points at once.
Also dim L, +dim ][], Lg, = dim Lg by counting the number of edges involved. These are
exactly the lineality spaces that we mod out by ¢, § and @ respectively. Hence the premises
of Lemma([I.3.1T] are satisfied.

Equality (b) follows from Lemma [[.4.71and equality (c) is an application of the projection
formula For equality (d) we used the choice of N, in (2I) and Corollary [1.4.10l Fur-
thermore, we apply Lemma several times. Equality (e) follows from the properties of
push forward under a product morphism.

In (I7) we defined the local moduli space M, of v as the restriction of My (X, A,) to the
set of curves which are mapped into X'(c,). Now | F % | ¢ X(0,) and we want to further
restrict M, to
MG =M, N (BN () evi | FF .
freFv

We have Z'(8,) = My(Xy,Ay) N N'(By) if dimM(B,) < vdim(v), as v is a good vertex
by assumption. If dim M(3,) > vdim(v) all vertices of 3 and thus also of 3,, are good by
assumption. Therefore we can define a gluing cycle, which then satisfies [Z(8,)] = 0 as
in Corollary [[.5.19 Furthermore N’(3,) = 0 by definition. Hence Z'(3,) = My (X, Ay) N
N’(B,) holds in every case. From the definition of Z'(3,) and M: we conclude that

M = g [( 11 <ev:>*AXe). 11 Ni]-

eckg, u€Vg,

If we use this to continue the above computation, we see that

(22) U=fq [( H (eVZ)*AXE> : H Mi} :

e€Eq vEVy

By Lemma[[.5.171 Z(3) contains M’ () in a central cell. Recall that (07)° is a central cell of
FB. Therefore also U contains M’(f3) in a central cell, which can be seen exactly as in the
proof of Lemma Obviously | Z(8)| = 0 implies that |¢/| = 0 and by definition of
Z(a) we obtain | Z(a)| N M(B) = 0.

If | Z(B)| # 0 we conclude that |U/| C | Z'(3)] is open, since for each vertex u of 3 the
support | N5, | is open in | N, |. Furthermore M’'(38) C |U| by the statement about the
central cell. By definition | M | C | M, | is open as well and we see that | /| is also open in
| Z'(a)|. Hence we can restrict to | | and obtain & = Z'(a) N U from 22). If we define U
to be the image of |U | in M{(R™, A), this immediately yields Z(8) N U = Z(a) N U.

For the "in particular” part of the statement, let M(8) € Mo(X, A) be a maximal cell, where
f3 is a resolution of o. Then by Definition [[.5.20/ the weight ws of M(8) in M(X, A) is the
weight of M(3) in Z(f).

If wg = 0 then | Z(8)| = 0 and hence | Z(«)| " M(B) = (. Letnow wg #O0and 8 > v > .
We have | Z(8)| # 0 and hence there is an open set M(5) C U C | Z()| that is also open in
| Z(7)|. In particular M(B) C | Z(v)| # 0. By the same argument also M(y) C | Z(a)| # 0.
From Lemma [[.5.17lwe obtain M(«) C | Z(«)|. So we conclude

[ Mo(X, A)[NN(a) = [ Z(a)|.
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FIGURE 3. Here o/ is the origin and f is a flag in a contracted edge, in-
dicated as a bold dot. Only a part of a resolution of 3 is indicated in the
picture.

Applying the same arguments again, we obtain an open subset M(3) C U C | Z(8)| =
M(B) such that Z(a) N U = Z(B) NU. Therefore Z(a) N M(B8) = Z(B). Putting this
together with the equality of the supports, we obtain Z(a) = My (X,A) NN ().

For a codimension one cell M(a) € My(X,A) this implies that My(X, A) is a tropical
variety, because Z(«) is balanced by construction. O

Note that in order too show that M (X, A) is balanced, we actually only needed that the
vertices of maximal and codimension one combinatorial types are good.

In order to obtain a tropical variety Mo (X, A) from gluing, we will have to show that all
vertices are good with respect to our given moduli data. Unfortunately we can do this only
if dim A = 1 and for a few special cases of hypersurfaces up to now, cf. Chapter Bl To
simplify this task we state the following two lemmas.

Lemma 1.5.22. Let (X', A’) be a vertex type with rdim(X’, A") > 1, where X" is a smooth tropical
fan which is either a hypersurface or a curve. If all vertices of all non-trivial combinatorial types of
degree A curves in X' are good, then also (X', A') is good.

PROOF. Let a be a non-trivial combinatorial type of degree A’ curves in X’. As all
vertices of a are good by assumption, we can apply Theorem [L5.21, which tells us that
Mo(X', A') is a tropical variety with Z(a) = M (X', A’) NN (). Hence (X', A’) is good.

If there is 7o non-trivial combinatorial type, we have [Mg(X’,A’)] = [0] by Definition
[[.5.10for dimension reasons. In this case it follows immediately that (X’ A") is good. O

Note that even though the above lemma is very simple, it is also very useful: If one at-
tempts to show that all vertex types are good, one can try to prove this by induction on
the classification number. In such an inductive proof, we could assume that all vertices of
non-trivial combinatorial types are good by Lemma[1.5.7] Thus, in such an inductive proof,
we could restrict to considering vertex types of resolution dimension one. In fact, this will
be our approach in the proof of Theorem 3.2.74

For a vertex type of resolution dimension one we cannot apply Theorem[[.5.2]]to prove that
it is a good vertex type, as we do not know whether the vertex of the trivial combinatorial
type is good or not.

By next lemma we can even restrict to considering virtual dimension one.
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Lemma 1.5.23. Let A be a degree of tropical curves in L7 x R™. Furthermore denote the projec-
tion by pr: LTt x R™ — L™+ and let A := pr(A). If the vertex type (LT, A) is good, then
sois (LIt x R™, A).

PROOE. This proof is similar to the proof of Lemma We want to abbreviate
X = LI x R™and X = L', The projection pr induces a morphism between the moduli
spaces

Q: My (RTTF™ A) — Mo(R™A).
If we consider the moduli spaces in barycentric coordinates, the morphism ) just becomes

id x pr : My xR™ ™ — M xIR™T!. Hence this morphism is a quotient morphism
with kernel R™. In these coordinates we clearly have

Mo(X,A) ={o x R" |0 € Mo(X,A)}
for the polyhedral complexes from Definition

We want to show by induction on the classification number, that (X, A) is good if (X, A)
is, and Mo (X, A) = Mo(X,A) x R™ as tropical varieties. If rdim(L?, x R™ | A’) = 0, the
claim directly follows from Definition[I.5.9and Construction[I.5.11] As we saw before, the
smallest possible value of a classification number is 3, which belongs to a vertex type of
resolution dimension zero.

Soletnow rdim(&X', A) > 0 and assume o = (G, (A, 0y )vevy ) is a non-trivial combinatorial
type of degree A curves in X. Let@ = (G, (A,, pr(0y))vev, ) be the combinatorial type of
degree A curves in X that is induced by o, where A, = pr(A,). For every vertex v of a, we
denote the local moduli space of v in @ as in (IZ) by Mz. As Njx,ay > N, holds for every
vertex v of & by Lemma[I.5.7] we can assume by induction that every vertex v of « is good

and M, = Mz xIR"™ in barycentric coordinates. Here M, is the local moduli space of v in

a as in [I2).

We want to show Q(Z'(a)) = Z'(a). Let f and ¢ be as in Construction and let g
denote the quotient by Lz. The projection also induces quotient morphisms

QY MH(R™THH™ ALY — My(R™HA,)

for the local degrees. As for (), this morphism just becomes id x pr in barycentric coordi-
nates. The product of the quotients [[, Q" injectively maps L, to Lz and hence there is a
unique quotient morphism @ such that Q o ¢ =go (][], Q").

For an edge e of a we defined evaluations ev. : [[, M, — X? in Construction[[.5.13 Now
consider e = {f1, f2} as edge of @ and let X, := pr(X.). Obviously we have X, = X', x R™.
We can similarly define an evaluation

— -2
€V, 1= (evy, X evy,)opr, : HMg — X,
v

where pr, denotes the projection onto Mz X Mgz with v; incident to f; for ¢ = 1,2. Fur-
thermore let

eve := (idrm X idgm ) o pr’, : H]Rm — (R™)?

where pr/, denotes the projection onto the two copies of R that belong to v; and v,. We
obtain a decomposition

(23) eVe:WexeA\/e:HMU:HngH]RmHYi><(]Rm)2:)(§.
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We want to denote the embedding as in (I9) of the gluing cycle of @ into the moduli space
MG (R?, A) by f. We clearly have Q o f = f o Q and we obtain

Q(2'(a) = Qfuq Kﬂev Ax, ) .HMU]
DF.Qq KH(We X eAVe)*Ayeme> J] M= X]Rm)}

€ v

272 [ (Hev AX>.1:[ME] XM]
Qﬂq[(ﬂevA ) [[ M=

Equality (1) is an application of Lemma L3Il with Q o f = f o Q o idoid and (Z3). For
equality (2) we apply Lemma[l:49and we abbreviate M := ([], év.Agm) . ][, R™. Clearly
| M | is a linear subspace of [], R™ and as the restriction of [], Q" to [T, M((R?, A,) x M
has kernel | M |, we can take the quotient by M via [[, Q" which yields equality (3).

The equality Q(Z'(a)) = Z’(@) applied to every non-trivial combinatorial type « yields an
equality Mo(X,A) = My(X,A) x R™ as tropical varieties and that (X, A) is good. This
proves the induction hypotheses for (X', A).

If there is only the trivial combinatorial type 7, then [M(X, A)] = () for dimension reasons
and hence (X, A) is also good in this case. Furthermore, there is also only the trivial com-

binatorial type of degree A curves in X and therefore also [M(X,A)] = [0]. So even in
this case (X, A) satisfies the induction hypotheses. O

1.6. Examples of gluing

In this section we will give several examples for the gluing construction so we will
stick to the notation from there.

Example 1.6.1. Let X = L7 be a tropical line in R? and let a be the combinatorial type
of arbitrary degree A = (41, ...,0,) curves in L? which is depicted below. Assume that
rdim(v) = rdim(v;) = rdim(vy) = 0.

Let I; C [n] be the set of labels of leaves which are incident to the vertex v; of o, fori =1, 2.
Furthermore let the unique leaf incident to v be z; and let the edges be given by e; :=
{v,v1} = {f1, f1} and ea := {v,v2} = {fo, f4}, where f; is incident to v for ¢ = 1,2. Let
w; be the weight of the edge e;. For any vertex v of o let F'* denote the flags of o which
are incident to u. Assume that o, = o, the ray generated by the standard basis vector
e1. By the assumption on the resolution dimension, each local moduli space consists of
only one cell, and we can explicitly describe isomorphisms to open polyhedra in some R”.
M, is isomorphic to RY x Rxge; with lattice ZF" x Ze;, where the isomorphism maps
uys (cf. Construction [[.Z.9) to the standard basis vector ey for flags f' € F" and the last
coordinate is the position of the image of v in 07 = Ry¢e;. Similarly, M,, is isomorphic
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to R’ with lattice ZF"* for i = 1,2. We have X(o.,) = X(0.,) = Rxge; and let X, =
X NX(oe,) as in Construction Therefore we can pull back the diagonal of X, as
evy, min(z — y,0) = min(evy, —evy,,0), where z,y are the coordinates of X 3 This was
explained in Construction [.4.2] Note that the evaluations are linear on M, x M,, X M,,,
therefore we can use Lemma 1.2.9 of [Rau09] to see that ev* Ax.(M, X M,, x M,,) is the
kernel K of the matrix below. By the same lemma, the weight equals the index of the matrix
times the weight of M, x M, x M,,, which is w,wy,wy,. It is known that the index of a
matrix is the absolute value of the greatest common divisor of its maximal minors.

ler ey e, ey ey restof the coordinates
evy —evy 1 —w 0 —wq 0 0
evy, —evy 1 0 —Ws 0 —Wwsy 0

The matrix has three nonzero maximal minors with absolute values wy, we and wiws. Thus
the weight of K equals
Wa 1= ged(wr, wa )wyWy, W, -

To compute the index of the push-forward, we have to express the embedding f into
MG(R™, A) (cf. ([9) in a lattice bases of K. The kernel K is (n + 3)-dimensional and
spanned by the primitive integral vectors by = ey, — ey, b2 = ey, — ey; which also generate
the lineality space L, that we have to mod out, b = Wllm) (wiwoer +waey, +wiey,) and
by e, for j € [n]. As usual we denote the map to the quotient by L, by ¢q. As embedding
into Mo (R?, A) (with barycentric coordinates) we obtain

)\ n
Zm(wwh +wivn) + Y pu;

f [ ra(v) + Z 1t5q(ex;)

i=1
wiw 1<
1W2
B W e N 5.
2gcd(w1,w2)el 2;”3 J

where the vectors vy, for i = 1,2 and u; for j € [n] are as in Construction[I.2.9 One can see
that f(q(K)) = M’(a) and that the lattice A \((4) is generated by

1 w1

1 .
(wovy, + wivr,) er and u; — §5j for j € [n].

ged(wr,wa)  2ged(wr, wa)
So we see that f is a surjection onto the lattice A/ (o) and hence the weight of the cell
M (a) =| Z'(a)] in the gluing cycle Z’(«) is equal to wq,.

Example 1.6.2. Again, let ¥ = L? be a tropical line in R? and let « be the combinatorial type
of degree A curves in L? which is depicted below. Assume that rdim(u) = rdim(v) = 0.

Let the unique edge, which has weight w, be given by e := {f, f'} where the flag f is
incident to u and f’ to v. We proceed exactly as in the previous example, so let the notation
be the same as there, we just omit the index i. This time we only have one pull back of the
diagonal. We obtain the weight of the cell ev* Ay .(M, x M,,) as the index of the matrix

| er ey ey restof the coordinates
1 —w —w 0

evy —evys




62 1. MODULI SPACES OF TROPICAL STABLE MAPS

which is clearly 1, times the weight w,w, of M, x M,. Computations very similar to
those in the previous example show that the push forward under the embedding f into
M;(IR?, A) preserves the weight. Hence we obtain that the cell M’(«) has the weight

Wa = Wyly,
in the gluing cycle Z'(a).

Example 1.6.3. Consider the degree A = (e1, ez, eg + e3) of tropical curves in L3. We want
to check that (L3, A) is a good vertex type with respect to suitable moduli data. We have
that vdim(L3, A) = 1, and there are three admissible combinatorial types of geometric
dimension one. Moving the trivial combinatorial type into direction ¢q yields a1, moving
it into direction e3 yields oz and moving into direction e; + €5 yields «3. The combinatorial
types a; and a only have one vertex each, therefore the gluing cycle is identical to the local
moduli space. The local moduli spaces only consist of one cell as the resolution dimension
of the vertex is zero in both cases. We want to assign the weight 1 as moduli data to both
of them. The picture below shows as.

The vertices of a3 are also of resolution dimension zero and we assign weight 1 to both of
them as well. Let ¥ = {f’, z3} denote the flags incident to v and F* = {x1, z2, f} those
incident to w. Here the x; are the leaves of the curves. Then the local moduli space M,
is isomorphic to R with lattice Z*" and M,, is isomorphic to RY; x R?, with lattice
Z'" x Z*%. We denote the standard basis vectors by e for each flag and the standard basis
vectors of the factor R2, by e; and e>. As before, those copies of R+ belonging to flags
record the length of the leaves and the additional R% ; records the position of the image of
w in the cone o12 of L3 which is spanned by e; and e;. As in the previous examples we
obtain the weight of ev* Ay.(M, x M,,) as the index of the matrix below

|er e ey ep restof the coordinates
(evy—evp) |1 0 -1 -1 0
(evy—evp)a | 0 1 -1 -1 0

which can easily be seen to be 1 by computing maximal minors. The indices 1,2 at the
evaluations denote the projection to the corresponding coordinate. As before we can check
that push forward under the embedding into M (IR3, A) preserves the weight and hence
M(w;) has weight 1 in the gluing cycle fori =1, 2, 3.

By definition M (L3, A) is a closed fan in Mo(IR3, A) = R? (in barycentric coordinates)
consisting of the one dimensional cells M(«;) for i = 1,2, 3 with weights 1. As the primitive
integral generators of these three rays are e, e3 and e; + e, this is balanced and hence the

vertex type is good.

Example 1.6.4. Consider the "kitchen hood" surface X C R? that consists of four copies
of L3 as in the picture below. There is one bounded cell o € X, namely the square in
the middle. We fix coordinates in IR® as follows. Let a be the combinatorial type which
is depicted in the middle of the picture below. The front vertex v of a is mapped to the



1.6. EXAMPLES OF GLUING 63

origin and the vertex w in the back is mapped to (P, P,0) with P < 0. If we denote ¢y =
—e1 — ep — e3, the combinatorial type « has degree A = (e; + ez — es, €3, e3, eg). As
Ky.A =2, we obtain dim My(X,A) = 1.

Both vertices v and w are of the same vertex type, which is good by the previous example.
We denote by FV = {1, 2, f'} the flags incident to v and by F* = {z3, 24, f} those which
are incident to w. Here the z; are the leaves of a. The unique edge is then e := {f, f'}.
The local moduli space M, is isomorphic to L? x R with lattice Z? x Z". We denote
the coordinates on the ambient vector space R? x R by (2,9, 14, sy, /). Under this
isomorphism, moving the vertex v into direction —e; corresponds to the coordinate 2’ and
moving into direction —e, corresponds to 3. To be precise we also have to restrict to the
open polyhedron {z’,y’ < P}N{lp < P—2'}N{ly < P—y'}, but this will be unnecessary
if we are only interested in the weights on the gluing cycle. In the same way, the local
moduli space M,, is isomorphic to a restriction of L7 x RY | to an open polyhedron in the
ambient vector space R? x R"". This time we denote the coordinates of the ambient vector
space by (z,y, lz;, 14, lf), where the coordinate  corresponds to moving w from (P, P,0)
into direction e; and y corresponds to moving into direction e;. With this we obtain for
the evaluation morphisms ev¢(z,y,las, lay, lf) = (P+ 2 +lf)er + (P +y + lf)es and also
evy (2, y 1oy, lay, ) = (—2' — 1y )er + (—y" — Ij7)es. Pulling back two suitable functions
cutting out the diagonal of the restriction of X? to X'(¢)? = (0°)? (which is locally IR?) via
eve = evy X evy, we obtain that

ev' Ax.(My x My,) =min(z + 2" + 1y +1p,—P).min(y + v+l + 1, —P).(My X My).

Computing this intersection product, dividing by the lineality space L, and embedding
this into M{(IR3, A), we obtain a vertex with four adjacent rays of weight 1 which corre-
spond to the pictures above. This example was computed using the polymake extension
a-tint of S. Hampe [Ham12|. The picture below indicates the polyhedral complex struc-
ture of all M(~) for admissible combinatorial types + which are resolutions of .. The two
combinatorial types a; and a3 can be resolved to a "larger" combinatorial type 5 which

does not occur in Mg (X, A). This example also shows that there are in general admissible
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combinatorial types of too high dimension. In this case the reason for the existence of ad-
missible combinatorial types of too high dimension is that X’ is special. If the cell o would
not be a square, § could not exist.

a3

QY

Example 1.6.5. Let X = L3 and A = (eg + e3, e + €3, 2e1, 2e2) be a degree of tropical
curves in L3. We have vdim(L3,A) = 1 and we will show that (L3, A) is a good vertex
type for a suitable choice of moduli data.

There is an admissible combinatorial type o of geometric dimension one which looks as
in the picture below. The red numbers indicate the leaves of the curve which are of weight
two. The vertex w is four-valent, hence there are two two-valent vertices v, and v, mapping
to the origin.

The local moduli space M,, is isomorphic to a restriction of M{,(IR?, A,,) to an open polyhe-
dral subset. The vertices v; and v, are of resolution dimension zero, hence they are good.
The local moduli spaces M,, for i = 1,2 are clearly isomorphic to RZ, and we want to
equip them with weight 1. Using a- t i nt to compute ev* Ax.(M,, x M., x M,,) we see
that it consists of only one cell with weight 2 which embeds into M (IR?, A) as M’ (), af-
ter dividing by the lineality space L, . As before, the embedding into M (R?, A) preserves
the weight.

Let the combinatorial types as and as of curves of degree A in L3 be as in the picture
below. Again, the red numbers indicate the edges of weight two. Note that in both pictures
w is a three-valent vertex, as in a3 there emanate two leaves of weight one into the same
direction, eg + e3. Note that for a2 and a3 we have that rdim(v) = rdim(w) = 0.
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(%) Qa3

As moduli data we assign weight —31 to the vertex type (L3, (2e1 + 2e2, eg + €3, €g + €3))
of v in ax and weight 3 to the vertex type (L3, (2e1, 2e2, 2eg + 2e3)) of v in ag, as these are
the weights from Conjecture B.1.71 We explicitly compute the weights in Section3.4 As in
Example[I.6.3 we can see that gluing v to w does not change these weights, and we obtain
M (az) with weight —1 and M (a3) with weight 3.

There are two more admissible combinatorial types of degree A of geometric dimension
one. We can move the trivial combinatorial type into direction eg and obtain a4, or we can
move it into direction es and obtain . These types both have only one vertex which is
of resolution dimension zero. Hence M (ay) and M (as5) both just occur with the weight of
the vertex type of their unique vertex, which we choose as 1.

Let r; denote the primitive integral generator of the ray M(a;) in Mo(IR3, A), fori = 1, ..., 5.
Using barycentric coordinates we have r1 = e1 + e, r2 = v12 + €1 + €2, 73 = vi2 + €9 + €3,
r4 = eo and r5 = e3. The weighted sum of these vectors is zero, hence M (L3, A) is
balanced and (L3, A) is a good vertex type.

Example 1.6.6 (M(X, A) may be reducible). Let X = L3 and let A = (61, 2, 3, d4) be
a degree of tropical curves in L3, with §; = §2 = e; + e2 and §3 = 84 = eg + e3. Then
vdim(L3, A) = 1 and we will show that the vertex type (L3, A) is good. There are six ad-
missible combinatorial types of degree A curves in L3 of geometric dimension one, which
we will describe now. We will call the leaves of each combinatorial type x; for j = 1,2, 3,4,
having direction vector v(z;) = d; (cf. Definition I.2.12).

We can move the trivial combinatorial type into direction e; +e5 and obtain a; and moving
it into direction eq + e3 yields a. The combinatorial type a4 has three vertices: w, which is
mapped into the relative interior of the cone o of L3, and two vertices v; and vy which are
mapped to the origin. Gluing this combinatorial type works exactly as for the type «; of
the previous example and yields weight 2 on M(a). For reasons of symmetry, also M (a2)
is of weight 2.

There is a combinatorial type a3 with two vertices, w which is mapped into o7, and ad-
jacent to a vertex v that is mapped to the origin. In this case the vertex v is of vertex

type (L3, (2e1 + 2e2, eg + €3, €g + e3)) and hence of weight —%. As for ay in the previ-

ous example we obtain that M(as) has gluing weight —1. The combinatorial type a4
also consists of two three-valent vertices v and w. The vertex w is mapped into the rel-
ative interior of op3 and again v is mapped to the origin. As before v is of vertex type

(L3, (2eq + 2e3, €o + €3, g + e3)). Symmetry yields weight —1 also for M (o).

The combinatorial type as has two three-valent vertices v and w which are both mapped
to the origin. They are adjacent via an edge which is contracted by the map into R®. Here
the leaves x; and x3 are adjacent to v and z5 and x4 are adjacent to w. The combinatorial
type as looks the same, but with x; and x4 adjacent to v and z» and 3 adjacent to w. A
computation shows that both combinatorial types have gluing weight —1.
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Let now r; denote the primitive integral vector on the ray M(«;) in Mo (IR3, A) in barycen-
tric coordinates, where i = 1, ...,6. We obtain r; = e + e3, 1o = €9 + €3, 13 = v12 + €1 + €9,
ry = vi2 + €9 + e3, r5 = vi3 and r¢ = vi4. The weighted sum of these vectors is zero
and hence (L3, A) is a good vertex type. Also note that M(a;) and M (az) already form a
proper tropical subvariety of M (L3, A), hence this is reducible.

Example 1.6.7. We want to show that every vertex type (L§ x R™, A) is good, where the
moduli data are 1 for every occurring vertex type of resolution dimension zero.

We can use Lemma to reduce this to the case of vertex types (L, A). Of course
we must have A = (0,...,0). For such vertex types we have N[(L}) N |A| for the

classification number and rdim(L{, A) = |A| — 3 for the resolution dimension. Clearly
the vertex type of resolution dimension zero is good. So consider the vertex type with
1 = rdim(L}, A) = |A| — 3, hence |A| = 4. Using any sort of coordinates we obtain that
Mo(R,A) = Moy xR and that Mo(L}, A) has support | Mg 4| x 0 as polyhedral com-
plex. Consider the combinatorial type « of degree A curves in L{ whose graph has two
vertices v and w, such that F¥ = {x1,x9, f1} are the flags of a which are incident to v
and F* = {x3, x4, fo} are the flags incident to w. Here the z; for j € [4] are the leaves of
a. We have rdim(v) = rdim(w) = 0. Clearly the local moduli spaces are isomorphic to
M, = RE; with lattice ZF" and M,, = RE | with lattice ZF". We want to assign weight 1
to both of them. The pull back of the diagonal has no influence on the gluing cycle, as L}
is just a point. Let ¢ : M, x M,, — (M, x M,,)/L, denote the quotient map. We then
obtain the embedding f : (M, x My,)/Lo — Mg 4 xRas f(q(ey,)) = f(q(es,)) = vi2 and
f(q(es,;)) = uj for j € [4], cf. Construction[1.2.9 So push forward along f does not change
the weight of the gluing cycle and we conclude that M(«) occurs with weight one in Z(«).
The same also holds for the other two combinatorial types by symmetry. Hence we obtain
an equality of tropical varieties Mo(L{, A) = Mo 4 x0. This proves that (L}, A) is good if
it is of resolution dimension one. For all higher resolution dimensions, the claim follows
inductively as in the proof of Lemma

Similarly one can prove that actually Mo(L§ x R™, A) = M(R™, A). So the gluing con-
struction recovers the already known moduli spaces of stable maps to R™. We only have
to consider R™ as a hypersurface in some larger vector space, as we only defined gluing
for hypersurfaces or curves.

Even though the choices of the weights in the above examples might look quite arbitrary,
they are all defined by one formula in Conjecture [3.1.7land those occurring in these exam-
ples are computed in Section 3.4l



CHAPTER 2

Relations between algebraic and tropical moduli spaces

We saw in Chapter [Il that even for a tropical fan X it is already very difficult to find out
which combinatorial types of degree A curves in X exist. Examples for growing |A| sug-
gest that there is no feasible purely combinatorial description of these combinatorial types.
The aim of this chapter is to describe combinatorial types of degree A curves in X in terms
of deformations of algebraic stable maps into a toric variety. Therefore Section2.1lis dedi-
cated to toric varieties and a description of morphisms into smooth projective toric varieties
X (X). In Section 2.2 we will consider |A|-marked stable maps to a subvariety Y C X (X)
which satisfy certain multiplicity conditions to the toric boundary at the marked points.
These multiplicity conditions are given by A and we will define a stack W y of such sta-
ble maps that can be deformed into irreducible curves. We will see that reducible curves in
Wa,y correspond to combinatorial types of degree A curves in the tropicalisation of Y and
that these combinatorial types can be recovered from intersection theoretical properties of
Wa,y. In Section 2.3 we will compute the expected dimension of W y and show that in
general it has a different dimension. We will therefore define a virtual fundamental class
of Wa,y which has the expected dimension, in order to benefit from the intersection theo-
retical description of combinatorial types later on in Chapter[8l We will study the locus of
reducible curves in Wa y in the last section, 2.4l

Throughout this chapter every scheme will be a noetherian scheme over C and the product
of schemes will always be the fibre product over Spec C. Furthermore projective and affine
spaces will always be over C, unless an index specifies something different.

2.1. Notions from toric geometry

First we want to introduce some basic notions from toric geometry, including intersec-
tion theory on toric varieties. We are aiming at a description of morphisms into smooth
and complete toric varieties X (X), which also allows to describe the pull back of the toric
boundary divisors nicely. This will be the content of Lemma 2. 1.4 We do this, because
in the next section we will be interested in stable maps into smooth and projective X (X),
which also satisfy multiplicity conditions to the toric boundary. The main reference for this
section is the book [[CLS11].

Let A be a lattice of rank m and let ¥ be a rational fan inside V= A ®z R such that
every cone is strictly convex, i.e. it does not contain a non-trivial linear subspace. To such
a fan there corresponds a normal and separated toric variety X (X) of dimension m, cf.
Section 3.1 of [CLS11]]. We will partially explain this in the next paragraph. For every ray
p € ¥(1) there is a Weil divisor D, on X (X). The support of D, is itself a toric variety which
corresponds to the fan Stary,(p). Furthermore, for any cone 7 € ¥ we have that Stars (1) is
the fan corresponding to the toric variety V() := (1 ¢, (1) Dp- Recall that 7(1) is the set of
one dimensional faces, i.e. the set of rays that span 7. As a toric variety V' (7) also contains
a dense subtorus which we denote O(7). A fan X is called smooth if each cone is spanned
by a part of a Z-basis of A, in particular X is then also simplicial. By Theorem 3.1.19 of
[CLS11] X (%) is smooth if and only if X is. We call ¥ complete if its support is [X|poly = V.
By Theorem 3.4.6 of [CLS11] ¥ is complete if and only if X (¥) is complete. Furthermore
X (X) is projective if and only if ¥ is the normal fan of a polytope, which follows from the

67
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discussion in Section 7.2 of [CLS11]. Therefore we call a fan projective, if it is the normal fan
of a polytope.

Let us recall a part of the construction of X (X) from X. For a subsemigroup M C AY
consider the C-vector space C [M] which has the basis (x*)xc- We can define a C-algebra
structure on C [M] via x*x» := x** for all \, X' € M, as this is a semigroup. For a cone
o € ¥ we define the dual cone 0¥ := {m € AV ®zR | (m,z) > 0 for all z € o}, which yields
a semigroup oV N AV. The toric variety X () is obtained from gluing affine varieties

Uy :=SpecC [0” N AY]

for every cone o € X. The dense torus of X (X) is then given by Spec C [A"Y], which clearly
is contained in each U,,.

In the remaining part of this section we will assume that ¥ is a complete and smooth fan of
dimension m, even though some results also hold in slightly more general settings.

Now we briefly review intersection theory on toric varieties as discussed in [FS97]. Fulton
and Sturmfels defined the group of Minkowski weights in order to describe the Chow co-
homology A™~*(X (X)). We introduced Minkowski weights in @). Theorem 2.1 in [FS97]
states that A™~*(X (X)) is canonically isomorphic to M}, (), we will therefore identify both
groups. If X(X) is smooth, we even have A™ *(X (X)) = A, (X(X)) where the isomor-
phism is given by intersecting with the fundamental class. This is the Poincaré duality and
can be found for example in [Ful98], Corollary 17.4. Furthermore there is the Kronecker
duality for complete toric varieties A¥(X (X)) = Hom(Ax(X (X)), Z) from [FS97], which
shows that A™~*(X (X)) and hence also A (X (X)) is torsion free. If X (¥) is smooth we can
explicitly describe the isomorphism Ay (X (X)) — My (X) as

(24) V] (deg( 11 Dp)-[V])

peT(1)
by [ES97], Proposition 3.1. Note the similarities to the tropical case (10).

We also want to describe the Picard group, as it is used to define a grading on the Cox ring
later on. As X is smooth the Weil divisors D, are also Cartier. In fact they generate the
Picard group: There is an exact sequence

(25) 0— AY -2 Z=M 2, pic X(5) — 0

with homomorphisms given by a(A) = ((A,up)), and B((a,),) = >_,a,D,, cf. Theorem
4.2.1 of [CLS11]. By [CLS11] Proposition 4.2.5, Pic X () is a free abelian group and hence
the above sequence is even split exact. As x* is in the coordinate ring of the dense torus, it
is a rational function on X (X)) and we obtain a principal divisor div(x*) = 3 oA up) Dy

Construction 2.1.1 (X (X) as a geometric quotient). Now we want to describe X (X) as a
quotient of an open subset of C*(!) by some group as in [CLST1], Chapter 5. For each
p € 3(1) let u, be the primitive integral vector and define

(26) Gy = {(tp)p e (@)W | Tt =1forall X e AV} .

P
According to [CLS11] Lemma 5.1.1 Gy, is even a torus, since A,,_1(X (X)) is torsion free.
Call a subset C' C X(1) a primitive collection if C' ¢ o(1) for every cone o € ¥ and for every
proper subset C" C C we have C’ C o(1) for some cone o € X. Consider the set

Z(%) =|JZ(,|peC)cC™V
c



2.1. NOTIONS FROM TORIC GEOMETRY 69

where the union runs over all primitive collections and the z, denote the coordinate func-
tions on C*™). In Proposition 5.1.9 of [CLST1] a morphism

(27) M\ Z2(2) 5 X(D)

is constructed, such that the fibres of 7 are just the orbits of the action of G's; on C*(V\ Z(X)
by coordinatewise multiplication. So X () is the geometric quotient of C*(!) \ Z(X) by
G'x. This is Theorem 5.1.11 in [CLS11]], which even holds for simplicial fans. Note that the
divisors D, are given by m(Z(z,)). The restriction of 7 and Gf fit in a short exact sequence
of groups

(28) 1 — Gy — (C)*D Iy (€™ — 1

which is sort of dual to the sequence (25), cf. §5.1 of [CLS11] for details. Here (C*)™ is the
set of closed points of the dense torus of X (X) in a natural way, as AV = Z™.
The ring S = Clz,|p € X(1)] is called Cox ring of X(X). It is graded by Pic X (X) via
[1,2," = >, a,D,. For a cone ¢ € ¥ we define a monomial 27 := [] 4, (1) %,/ following
the notation from [[CLS11]. There is an isomorphism Spec(S,s)o = U, where the index 0
denotes the degree 0 part of the localised ring. On the coordinate rings, this isomorphism
is given by
(29) X [ for A€o NAY.

p
For every line bundle £ € Pic X (X) there is a natural isomorphism I'(X (X), £) = S, where

S denotes the degree £ part of S. In particular x, is a global section of O x(5)(D,) in a
natural way. These statements can be found in [CLS11], Chapter 5.

We want to describe m from (27) locally, i.e. 7|,-1y,, in terms of coordinate rings. The
coordinate ring of 7~ U, is just S,s and 7* is then given by

CloeV NAY] — S,» with x* — Hxé)"“”>.
p

This looks the same as above because the degree zero part of that coordinate ring is just the
ring of invariants of the Gs-action on it, cf. Theorem 5.1.11 of [CLS11].

Now we will deal with morphisms into X (X). The following definition is from [Cox95].

Definition 2.1.2 (X-collections). For a scheme Y a 3-collection on Y consists of line bundles
L, and global sections f, € I'(Y, L,) for every p € ¥(1). Additionally, for every A € AY we
have an isomorphism c; : X o Eff"“” = Oy such that

(1) (Compatibility) cx ® ¢y = cx4x holds forall A, ) € AV.
(2) (Nondegeneracy) Each f, defines a morphism f, : Oy — £, and a dual mor-
phism f} : L;l — Oy. We require that the homomorphism

FeY @5 @ @5 o
oeB(m) pgo(l)  o€X(m) po(l)

is surjective.

Two X-collections (L, f,, cx) and (£),, f,,c) on'Y are equivalent if there are isomorphisms
Yp : L, — L), taking f, to f} and ¢y to ¢}.
Remark 2.1.3. In this remark we want to show that the nondegeneracy-property from the

previous definition can be reformulated as follows: The surjectivity of f* in the previous
definition at a stalk in P € Y is equivalent to have for each primitive collection C'a p € C

with (fp>p ¢ mp(£p>P.
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If f} is surjective, we must have a maximal cone o € X(m) such that the restricted map
®p¢0(1)(£;1)p — Oy, p is surjective. But this is the case if and only if (f,)p ¢ mp(L,)p
for all p ¢ o(1). As no primitive collection can be contained in o (1) the claim follows.

Vice versa, for any point P € Y theset B := {p € £(1) | (f,)p € mp(L,)p} isby assumption
not a primitive collection. But this means that either there is a cone ¢ € ¥ such that B C
o(1) (without loss of generality o is maximal) or that there is some proper subset B’ C B
with B’ ¢ 7(1) for all 7 € X. In the first case we obtain surjectivity by the converse of the
above argument. In the second case we obviously must have |B’| > 2, so we can consider
the smallest N > 2 such that there exists an N-element subset B” C B’, which does not
span a cone in ¥. Hence B” is by construction a primitive collection. But by assumption
B cannot be contained in B, which is a contradiction.

Lemma 2.1.4. There is a one-to-one correspondence between morphisms f : Y — X(X) and
equivalence classes of Y-collections (L, f,,cx) on Y. Furthermore L, = f* Ox(x)(D,) and f,
corresponds to f*x, under this isomorphism.

PROOF. This is Theorem 1.1 of [[Cox95]. As we will need this later on, we want to
briefly describe how to obtain a morphism from a given 3-collection (£,, f,,cx). Let W C
Y be an open subscheme on which all £, are trivial. Then we can choose isomorphisms
Y+ L,|lw — Ow and hence an equivalence (£, |w, fo|lw,cx) ~ (Ow,g,,ch). Now the
¢\ are automorphisms of Oy, and can therefore be regarded as elements in I'(W, Oy, ).
By compatibility we obtain a group homomorphism ¢ : AY — I'(W,0j,) mapping
A — c). As the exact sequence (25) is split, this homomorphism can be extended to a
homomorphism ¢ : Z*(Y) — T(W, O};,). This means there are w, € T'(W, Oj;) such that

A =1I, w,g’\"u”> for all A € AY. So the isomorphisms w, : Oy — O give an equivalence
(OW7 9p, ClA) ~ (OWa hpv id)'

For each p we have that the subscheme W, = {P € W | (h,)p ¢ mp} is open, therefore also
Wo :=,¢0(1) Wy is open. Then we can define f locally as f)" : W, — U, C X (%) given
by the C-algebra homomorphism

X IL RS € T(Wy, Ow,) for Aeo¥ nAY
(30)
and C — I'(W,, Ow, ).

One can check that the local morphisms f) patch to a morphism f%V : |J W, — X (%)
and by the nondegeneracy the W, cover all of W. Furthermore this is independent of
the choice of the trivialisations 7, and w,,. It is then easy to check that the f" patch to a
morphism f : Y — X (X). The claim about the pull backs of the line bundles follows from
Theorem 1.1 and Remark 1.1 of [Cox95]. 0

As in Theorem 2.1 of [Cox95] we now want to see what equivalence classes of X-collections
can look like on a projective space.

Example 2.1.5 (The case Y = P™). If 8 /C is any field extension, then PicPy = Z via
O(d) + d. So every morphism f : P7 — X(X) is given by a X-collection (O(d,), f,, cx),
where f, € T'(P¥,O(d,)), i.e. it is a homogeneous polynomial with coefficients in £. For
every A € A the existence of the isomorphism ¢y : @, O(d,) M) = Opr implies that
(A 22, dpup) = 0. Hence (dp), is a Minkowski weight on ¥(1). Furthermore, for each A
there is also the canonical trivialisation

cgan ® O(d,) M) =5 O((A, Z dyu,)) = Opm .
p P
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We obtain automorphisms ¢§*" o (cx) ™! of Op=. As in the proof of Lemma2Z.T.4 we obtain
w, € & such that 5™ = ([], wé’\’“”>)c)\. So if we replace F,, = w, f, we obtain an equiv-
alence (O(d,), fy.cx) ~ (O(d,), F,, c§*"), cf. Theorem 2.1 of [Cox95|]. In the later sections
we often want to describe morphisms from a projective space into X (X). To shorten nota-
tion, we will then only talk about a tuple (#),), of homogeneous polynomials instead of the
Y-collection (O(d,), F,, c5*"), as the bundles and trivialisations are clear. Recall that com-
patibility in Definition[2.1.2lis only a condition on the trivialisations, while nondegeneracy
is only a condition on the global sections. Therefore, in this shorter notation, (F},), only has
to satisfy the nondegeneracy condition.

However, note that deg F, = d, only holds if f(IP}) ¢ D,, because otherwise F, = 0. Take
for example the blow up IP? of IP? in the intersection of two coordinate lines L, and L and

let f be the embedding of the exceptional divisor E = P! into IP2. In this case we have
f*Ops(E) = O(-1).

The following two remarks will be useful for computations in the next section. Further-
more, it is sometimes convenient to have a decomposition

(31) Uy = Z m(a)/’j/up

pEa(l)

with unique integers m(a)g, for every maximal o € 3(m) and every p’ € £(1). This exists
because the fan ¥ is smooth.

Remark 2.1.6 (Gx-invariance of X-collections). Let (£, f,,c)) be a X-collection on the
scheme Y. Let (r,), € T(Y,0%)>W) satisfy 11, réA’“” = 1forall A € AY, cf. the defini-
tion of the torus Gy in (26). Multiplication by r,, defines an automorphism v, : £, — L,
which takes the section f, to r, f,. By assumption the automorphisms v, induce the iden-
tity on &, L',,g)"'“”). Therefore also (L,,7,fp,cx) is a 3-collection, which is equivalent to
(L,, fp, cx) and hence defines the same morphism to X (X).

Assume now that also (s,), € ['(Y, 03)*() and fix a maximal cone ¢ € ¥(m). Then the tu-

m(o)

ple (3,), with §, = s, for p ¢ o(1) and 5, = I, ¢00) Sy " for p € o(1) satisfies the con-
dition from above, where m(a)g/ is as in (BI). Therefore (L,,s,fp,cx) and (L,,8,5,fp,cx)
are equivalent >-collections, with 5,5, f, = f, for p ¢ o(1) by construction.

Remark 2.1.7 (Extending morphisms into X (X)). Let Y be a scheme and assume we have
a two vectors a,b € Z*) such that a — b is a Minkowski weight on (1). For all p €
¥(1) let £, and M be line bundles on Y with global sections f, € I'(Y,£,) and g €
I'(Y,M). Furthermore assume (M ® L,, g% f,, cx) is a X-collection on Y, defining a
morphism f:Y — X(X). If we denote U = Y \ Z(g) then there is an isomorphism
Yp: (M¥ @L) o — (M ® L,)|r given by multiplication with (g|7)%~%. Asa — bis a
Minkowski weight, the v, induce a canonical isomorphism

a A, ~ o AU,
ox QM @ L) = QM @ L,)[0.
P P
Hence the 7, determine an equivalence between ¥-collections

(M™ @ Lp)lu, (9% Fp)lus exlv) ~ (M @ L)lu, (9% Fo)lus exlu o d31).

This means they both define the same morphism h : U — X (X) with f|y = h. So we see
that we can extend h by f.

Let us consider an easy example. The global sections 1 and ¢ of Oy define a morphism
f:Y :=SpecC [t] — PP'. The sections t and ¢? give a morphism h : U = SpecC [t], — P!
and obviously f|y = h, so f extends h.
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Remark 2.1.8 (Push forward). Let f : P — X(X) such that the image intersects the
dense torus and let f,, := f*z,. We want to compute the push forward f, [P"] € A, (X (X)).
By Example we know that f, is a homogeneous polynomial of degree d, such that
(d,), is a Minkowski weight on ¥(1). Furthermore f, [[P"] = (¢;), € A, (X (X)) for some
Minkowski weight (¢, ). on 3(n). We can determine ¢, as degree of an intersection product

cT:deg( H D) S [P

peT(1)

By the projection formula we obtain

¢r = deg( H divf,).[P"] = H deg f, = H d,.
pET(1) pET(1) pET(1)
This coincides with the weights of ¥(n) as a marked fan as introduced in [GKMU09]. In
particular there can only be a morphism f with dim f(IP™) = n if ¥(n) is a tropical fan with
those weights.

Remark 2.1.9 (Morphisms into subvarieties of X (3)). We want to describe a morphism
f: Pk — Y C X(X) for a field extension £ /C, which factors through a closed subscheme
Y of X (X). We will apply this for the field of Puiseux series later on. The closed subscheme
Y comes from an ideal sheaf 7 — O x5y which is associated to a homogeneous ideal I C S
in the Cox ring, cf. Proposition 6.A.6 of [CLS11]. Furthermore by Proposition 5.3.3 of the
same book we have I, := I'(U,,Z) = (I,+)o via the isomorphism from (29). We have that
Z(I,) =Y NU,.

By Example we know that f is given by a X-collection (O(d,), f,, c5*"). Looking at
the proof of Lemma [2.1.4] we can consider the coordinate charts W; = {y; # 0} of P} =

Proj & [yo, ..., yn]. On W; we then obtain the trivialisation h, = f,y; 4 5o (B0) takes the
form

u _<A72 dpup) u u
(32) Y s Hh/()A., o=y p dotip Hféx, o) — HféA’ o)
3 P p

Let now F' € I be homogeneous. As in the proof of Proposition 5.3.10 of [CLS11], there
exist integers b, and k such that F'[] o, 2y ™" € (I#)o. Using @) and (B2) we see
that locally the morphism f : W; N f~'U, — U, factors through Y N U, if and only if
F((fo)o) pgoq) f,l)’ ~% — 0. By the nondegeneracy of S-collections, there is a maximal
cone o € X(m) such that [] ;) f, # 0 and hence F((f,),) = 0. This implies F'((f,),) =0

for all elements I € I since I is homogeneous.

So altogether we have that a closed subscheme Y corresponds to a homogeneous ideal I C
S and a morphism given by (O(d,), f,, c5*") factors through Y if and only if F((f,),) =0
forall F e I.

Lemma 2.1.10. For an integral hypersurface Y C X (X) there is a global section y of Ox () (Y)
with Z(y) =Y.

PROOF. As in the previous remark, Y is defined by a homogeneous ideal I C S in the
Cox ring. As in the proof of [CLS11], Proposition 5.2.4, we obtain such a homogeneous
ideal as follows. Consider Y = 7—1(Y)) ¢ C*(), where 7 denotes the map from 27). Now
Y is a Gy-invariant hypersurface in C*(1). Let I be the vanishing ideal of Y. The ideal I is
principal as it is the ideal of a hypersurface in C*!). Assume I = (y'). By the Gs-invariance
of Y, I is homogeneous. Therefore the generator 3’ also has to be homogeneous of some
degree £ € Pic X(X). As mentioned before there is an isomorphism I'(X (X), £) = S to
the degree L part of the Cox ring, cf. Proposition 5.3.7 of [CLS11]. Let y be the preimage
of ¥’ under this isomorphism. By construction we have Z(y) = Y and therefore we must
have £ = Ox(z)(Y> ]
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We conclude this section with some linear algebra that will turn out to be useful when we
work with morphisms into toric varieties in the next section.

Definition 2.1.11 (The fan 3. and the vector space Ls). Let Ly, C R*() denote the vector
space spanned by the Minkowski weights on 3(1) and let the standard basis vectors of
R*™ be denoted by e,. For the linear map py. : R*()) — R™ with e, — u, we obtain
by definition ker ps, = Ls. For any cone ¢ € X we can define pglo —: 5 and the fan &
consisting of these cones. Obviously we have /Ly, = .

Remark 2.1.12. Note that if we consider the exact sequence (28) over the field K = &((R))
from Definition [[.1.7] i.e. we replace C by K everywhere, taking valuations turns (28) into
an exact sequence

0 — Ly — R 22 R™ 40
of vector spaces. The action of G, on (K*)*(!) by coordinatewise multiplication then be-
comes an action of Ly, on R=(1) by coordinatewise addition.

Lemma 2.1.13. For every x € Z>W) there exists a unique cone T € ¥ such that

T = Z aye, mod M;(X)
peT(1)

with unique a, € Zxq forall p € 7(1).

PROOF. Clearly ps;(z) € A and as ¥ is complete, there is some maximal cone o € ¥(m)
such that px(x) € 0. As ¥ is smooth, (u,),co(1) is @ Z-basis of A and hence there are
ap € Zxo with ps(x) = 3 ,c,(1) apup. Restricting to those p with a, # 0 yields a cone

7 < 0. Obviously ps(z) = }_ ¢, 1) apUp = Px (ZPET(l) apep) which proves the claim. [

2.2. Tropical and algebraic moduli spaces

Assume we have a degree A of tropical curves, and a smooth projective fan . Then we
can consider stable maps into the toric variety X (X) which satisfy certain multiplicity con-
ditions defined by A to the toric boundary. In this section we want to study the relation
between deformations of such stable maps and combinatorial types of degree A curves in
2.

First we will briefly review the notion of stable maps and their moduli spaces as they are
treated in [BM96]. We will only work with curves of arithmetic genus zero in this thesis. Let
X be a smooth and projective integral variety and let

Hy(X)" = {a € Homz(Pic X, Z) | a(L) > 0 if £ is ample}.

If C 2+ S is a flat proper morphism and C' —~+ X any morphism, then we obtain a locally
constant function s — (£ — deg(n* L)) from S to Homyz(Pic X, Z), where (7* L) denotes
the restriction of the line bundle to the fibre of p over s. By abuse of notation we denote
this locally constant function =, [C]. In the particular case we are interested in, when X is
also toric, we have an isomorphism Homz (Pic X, Z) = A,(X) by applying the Kronecker
duality from Section2.Iltwice. We will therefore identify both groups later on. Note that if
S = SpecC, then 7 is proper and 7. [C] corresponds to the proper push forward between
Chow groups under this isomorphism.

Definition 2.2.1 (Families of stable maps). For any scheme S (the base of the family) a tuple
(C,p,S,x1, ..., xp, m) is called (family of) n-marked stable map(s) of degree 3 over S if

(1) p: C — S is a flat and proper morphism whose geometric fibres are reduced,
projective, connected curves of genus zero, having only nodes as singularities
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(2) foreachj =1,...,n, z; : S — C'is a morphism with p o z; = idg such that the
images of the z; in each geometric fibre of p are distinct smooth points

(3) m: C — X is a morphism with 7, [C] = § € Ho(X)"

(4) if Z is an irreducible component of a geometric fibre of p which is mapped to a
point by 7, Z must have at least three special points on it, i.e. nodes or markings.

For S = SpecC we omit the base and the morphism to it and just write (C, z1, ..., Zp,, 7).
Two families (C',p’, S, z}, ..., z,,,7') and (C, p, S, x1, ..., z, w) are called isomorphic if there is
an isomorphism ¢ : C'— C’ suchthatp =p'o¢, 7 = 7' opand 2 = pox; forj=1,...,n.

Assume we have a morphism ¢ : S’ — S and a family C := (C,p, S, z1, ..., zn, m). De-
fine the fibre product C’ := C' xg S’ and denote the natural maps p’ : ¢’ — S’ and
@ :C" — C. For a section x; we have maps ids: and z; o ¢ : S — C which induce a
morphism 7’ : S” — C’, which is also a section. With ' := 7 0% we obtain another family
p*C = (C",p', 5, 2, ...z, "), which is called pull back of the family C (along ).

We obtain a functor from the category of schemes over C to the category of sets given by
Mo, (X, B)(S) = {isomorphism classes of n-marked stable maps of degree 3 over S}.

The functor My, (X, B) assigns to a morphism ¢ : S — S a map [C] ~— [p* C], where the
brackets stand for isomorphism classes. This functor is in general not representable by a
scheme, i.e. it does not have a fine moduli space.

However, there is a projective variety M of finite type over C which is a coarse moduli
space for this functor. The construction of M is explained in [FP97] with a lot of details. As
the simplicial homology H»(X,Z) is used in this paper rather than H>(X )", note that for
toric X (over C) also H2(X,Z) = A;1(X). A coarse moduli space still admits a morphism
S — M for each isomorphism class of families of stable maps (C,p, S, z1, ..., p, 7), but
there is no universal curve over M. To solve this problem, the notion of a stack has been
introduced. For a brief but good introduction to stacks we refer to Section 7 of [Vis89]. A
very detailed reference is [Stal]. To put it very simply, a stack is a category F' together with
a functor pr : F' — (Sch) to the category of schemes over C which satisfies some addi-
tional conditions. The functor pr is sometimes also called structure morphism of the stack.
A morphism between stacks is then just a functor which is compatible with the structure
morphisms. A category can be equipped with something similar to a topology, a so called
Grothendieck topology, cf. [Sta]] Section 9.6 "Sites". The additional properties of a stack will
not be needed here explicitly, but loosely speaking these properties are: We can compare
two objects of F' locally in a certain Grothendieck topology and we can glue a family of
objects in F' to one object, if they satisfy a certain kind of cocycle condition. This second
property is usually called descent in the literature. Furthermore, we should note that every
scheme S defines a stack, namely the category of schemes over S.

Definition 2.2.2 (The stack My, (X, 3)). We denote by M, (X, [3) the category whose
objects are families of stable maps (C,p, S, z1,...,xn,m) of degree 3 as above. A mor-
phism from the family (C,p, S, z1,...,zn,m) to (C',p', 5,2, ...,2],,7’) is a pair of mor-
phisms (@, ¢), where 3 : C — C’ and ¢ : S — 5’ form a Cartesian diagram together with
pand p'. Furthermore, they satisfy pop = p'o®p, 7 = 7’ opand 20 p = Pox; for1 < j <n.
The structure morphism of the stack to (Sch) assigns to a family (C, p, S, z1, ..., xn, 7) just
the base S. This stack has been studied in [BM96]. It is a Deligne-Mumford stack which
is proper over Spec C. Let My (X, 8) denote the open substack of families of stable maps
where all fibres of p are smooth. Sometimes it will be convenient to label the marked points

by an index set I, different from [n]. We will then write M ;(X, 3) instead of M ,,(X, 3).

Definition 2.2.3 (Evaluation morphism). For each marking x; there is a morphism of stacks
ev; : Mo ,(X,3) — X which maps a family of stable map (C,p, S, 21, ..., 7n, ) to the
morphism 7oz, : S — X. In particular it maps a curve (C, z1, ..., z,, 7) over SpecC to
the point 7(z;) € X.
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The coarse moduli space M of the functor My ,, (X, 3) also serves as a moduli space of the
stack My (X, ) in the sense of Vistoli [Vis89] and [Gil84] who introduced intersection
theory on stacks. In particular there is a canonical proper morphism p : Mon(X,B8) — M
such that every morphism f : M (X, 3) — N to a scheme factors through M, i.e. there
is some morphism f' : M — N with f = f’ o p. This follows immediately from the
properties of a coarse moduli space, cf. Section 1.2 of [FP97]. Vistoli proved in [Vis89] that
there is a canonical isomorphism Ay (Mg (X, 8))q = Ax(M)q given by the proper push
forward p... Therefore we may also perform (almost) all intersection theoretical calculations
on M and then carry them over to M ,,(X, 3) afterwards.

Similar to stable maps we can define stable marked curves.

Definition 2.2.4 (Families of stable marked curves and MQ,n)* The functor Wojn(Spec C,0)
is representable by a smooth projective scheme M ,, of finite type over C. The closed
points of M, are in bijection to isomorphism classes of stable marked curves (C, x1, ..., z,,).
The open subscheme of irreducible curves is called M, ,,. Sometimes it will be convenient
to label the marked points by an index set I, different from [n]. We will then write M ;
instead of M ,,.

Recall that if |I| = 4 we have M, ; = . For each partition I = {i,j} U {k,[} there is a
point in M, ; which corresponds to a stable curve having two irreducible components with
the marked points z;, z; on one component and zj, z; on the other component. This point
yields a Cartier divisor which we will denote (ij|kl).

Definition 2.2.5 (Forgetful morphisms). For a family (C,p, S, z1, ..., 2, 7) of stable maps
there is a stabilising morphism f : C — C and a family of stable n-marked curves
(C,p, 8, &1, ... n) Withp = p o fand & = fouwx, fori = 1,...,n, cf. [BM96], Proposi-
tion 3.10. As M, represents the functor of families of n-marked stable maps, this induces
amorphism S — My ,,. The forgetful morphism ft : Mo (X, 3) — M, is then defined as
the functor mapping (C, p, S, z1, ..., T, 7) to the morphism S — M., from above.

Let I C [n] be a subset of the markings. For a family of stable maps (C,p, S, z1, ..., Zn, )
there is also a stabilising morphism f’ : ¢ — C” and a stabilised family of /-marked
stable maps (C',p’, S, (¢})icr,m") such thatp =p’' o f, m =7'o fand z, = foux, fori € I,
cf. [BM96], Proposition 3.10. The forgetful morphism ft; : Mo (X, 3) — Mo (X, 3) then
maps (C,p, S, x1, ..., zn, ™) to (C', 0/, S, (&})icr, 7).

We also obtain forgetful morphisms ft; : Ho,n(X ,B) — MO_, 1, by combining both mor-
phisms from above.

Definition 2.2.6 (Dual graph). Let C' be a projective nodal curve with pairwise distinct
smooth points z1,...,x, € C (marked points) and normalisation v : C — C. The dual
graph of (C,x1, ..., x,) is the graph G whose vertices are the irreducible components of C.
The set of flags of G is the set of preimages under v of all marked points or nodes on C.
The incidence map Jd¢ maps a flag to the irreducible component on which it lies. If for a
flag f we have [v=1(v(f))| = 1, i.e. it is a marked point, then we define jo(f) = f. If v(f)
isanode, ie. v (v(f)) = {f, f'}, we assign ja(f) = f'.

The picture below shows an example of a marked curve and its dual graph. One can al-
ready guess a relation of dual graphs to My ,, from the picture.

T3

T x4

Zs

T2



76 2. RELATIONS BETWEEN ALGEBRAIC AND TROPICAL MODULI SPACES

The notion of the dual graph naturally extends to higher genus curves and there are lots
of relations between algebraic and tropical moduli spaces of curves, see for example the
paper [Cap11]. A relation between dual graphs of stable maps and M, (R, A) will be part
of this thesis, cf. Theorem 2.2.18

For the rest of this section let } be a tropical polyhedral complex which is a subfan of a
smooth projective fan ¥. Furthermore let Y C X (X) be an integral subvariety such that the
tropicalisation of Y (with weights) is ).

Definition 2.2.7. A tropical degree A = (61, ...,0,) of curves in Y defines a class § €
A1(X (X)) as follows: As the variety X (X) is smooth we know that 4;(X (X)) is isomor-
phic to the group of Minkowski weights on (1) so we may define Sa := [A]M®) as in
(10), where we consider A as a tropical fan in a canonical way. For the rest of this chapter
we want to fix the following notation. Each ¢; lies in some ¢; € . Then there are unique
integers (o), € Zig) such that of = 01if p ¢ 0;(1) and §; = >0 odu,. As before, u,
denotes the primitive integral vector of p € X(1).

Definition 2.2.8 (Quasi-resolutions). For a tropical degree A of curves in ) a quasi-resolution
of (¥, A) is an equivalence class « of tuples (G, (Ay, 04 )vevy ) as in Definition[[.5 Jlsuch that:

e (G is a graph of genus zero

e A, = (0f)fecrv is a tropical degree and o, € Y a cone for every vertex v of G

e for every vertex v of G the pair (V,,A,) is a vertex type, where Y, is the tropical
fan defined in (1)

e for each edge e = {fi, fo} of G we have §;, = —dy,

e for each edge e = {v,w} of G the cones o, and o,, are both faces of some cone
Te €Y

o A = (d7)rery, Where L is the set of leaves of G.

So a quasi-resolution can be viewed as a collection of tropical curve pieces in ) which can
be glued to a tropical curve in R™, but inside ) we can only glue one (maybe more) pair
of adjacent vertices at a time. Note that every combinatorial type of degree A curves in Y
also defines a quasi-resolution in a natural way. As for combinatorial types of curves in Y
we will write a = (G, (Ay, 0v)vevy ) for any representative of c.

Example 2.2.9. If A = (2e1 + 3eq, e + €1, €9 + 2e3, e3, eg), there is a quasi-resolution « of
(L3, A) which looks as follows. The graph G = (V. F, j,9) is given by V = {u,v,w} and
F = {ZL'l, X2,X3,T4,T5, f17 fg, fg, f4} with F* = {1‘4,:65, fl}/ Fv = {561, f2, fg} and F% =
{z2, 3, f4}. Furthermore j(x;) = x; for all j and j(f1) = f2 and j(f3) = f4. The local
degrees are obtained from balancing and we have ¢, = oy, the ray spanned by ¢4, o0, = 012,
the cone spanned by e; and €3, and o, = 0.

/

1

T4

The picture above shows the quasi resolution .. We can see that it is impossible to glue all
three pieces of the curve inside L3 at once, cf. Example 2,227
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Definition 2.2.10. Let Ma y denote the substack of M ,,(X (X), Ba) of all families of stable
maps (C,p, S, x1, ..., &n, m) such that

1) n(C)CY
(2) moux;: S — D, forevery jand p with a/, > 0
(B) miDy— 3, adx; =0¢€ Ag(n~'D,) for all p € (1),

where z; also denotes the Weil divisor given by the image z;(.5). Itis easy to see that Ma y
is a closed substack of M (X (X), 8a), cf. [Ful98] Proposition 11.1. (b) for condition (3).

Remark 2.2.11. Let (C, z1,...,2n,7) € Ma vy (cf. Remark 1.4 of [Gat02]). Let Z C 7~ 'D, be
a one-dimensional connected component (with its reduced scheme structure). Let C? for
1 <4 < r denote the irreducible components of C which are not contained in Z but intersect
it, and let m; denote the multiplicity of 7*D,|c: at C* N Z =: P;. We have Ag(r~'D,) =
@, Ao(Z'), where Z' runs over all connected components of 7' D,. The partof 7*D,,. [C]
that is supported on Z equals >, m;P; + (deg(w|z)*D,) Py in Ag(Z) = Z. From property
(3) of the previous definition and the projection formula we obtain

(33) deg D, [Z]+> mi= Y o
=1

T;€Z

Now we want to see how stable maps in M y are related to quasi-resolutions of (Y, A).
After we proved the following proposition, we will consider an example for the construc-
tion from the proof.

Proposition 2.2.12. For every curve (C,x1,...,Tn,T) € Ma y with normalisation v : C —C
there is a quasi-resolution o = (G, (A, 0y )veve ) Of (¥, A) such that:

(1) G is isomorphic to the dual graph of (C, z1, ..., Tp)
(2) o, is the maximal cone of 3 such that =¥ (C") C V(o)
(3) for each vertex v of G we have (C*, F*,7") € Mz . .

Here CV is the irreducible component of C which corresponds to the vertex v of G via the isomor-
phism from (1). Furthermore ¥ := (wov)|cv, F¥ are the flags of the dual graph which are incident
toCYand Y, =Y NV(oy). The A, are uniquely determined by A, G and balancing. In addition
A, is the image of A, in Stars (o).

PROOF. As C' is rational, the dual graph G is a tree. Let the cones o, be defined as

in property (2) above. Let e = {C”,C"} be an edge of G. By the definition of the dual
graph there are special points (flags) f, € C¥ and f,, € C* such that v(f,) = v(fw). This
means 7°(f,) = 7 (fw) € V(ow) N V(ow) # 0, hence o, and oy, span a cone 7. € ¥ and
V(oy) NV (ow) = V(7e).
Assume that 7. ¢ Y. By Lemma 2.2 of [KP11] Y is already contained in X ()) — X (X) as
the closure of Y intersected with the dense torus in X () is complete. Using the orbit-cone-
correspondence (cf. [CLS11] Theorem 3.2.6) we see that V(7.) N X()) = 0 and therefore
7’(fy) ¢ Y, which is a contradiction. Hence 7. and also o, and o,, are in ). As this
argument applies to any flag, we see that ()., A,) is a vertex type.

Now we want to show the claim about the degrees. We want to denote the unique preimage
of z; in C by Z; and furthermore let F'” denote the set of flags f which are incident to C*
and which are not leaves.

First case: w*(C") ¢ D,. If f € F" is aleaf, i.e. f = &; for some j, we define m; = af;. If
feFYlet m/; be the multiplicity of (7|,(cv))* D, at the node v(f). We obtain

(34) (7°)*D,.[C*] = Y mff and degD,.x)[C’]= Y m}.

fer” ferv
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Second case: w’(CV) C D,. We want to find a certain representative of (7*)*D,,. [C"] which
is supported on the flags.

Let Z be the connected component of 7! D, which contains v(C") and let Z be equipped
with its reduced scheme structure. Then Ay(Z) = Z and as in Remark Z.Z.TT|we can write
(72)* Dy (2] = 32,7 @ — 22;—1 Mayi, where the y; denote the intersections of Z with
the adjacent irreducible components v/(C**) and m; is the multiplicity of ([, cv))*D, at
yi. The node y; has a unique preimage f; € C"* for some vertex with v(C*"*) C Z. For the
flags f; we define m% = —m,.

Let now Zy = Z and let Zj,11 denote the curve obtained from Z;, by removing those irre-
ducible components which intersect only one other irreducible component of Zj, and tak-
ing the closure in Z, afterwards. Let v(C"*) be such an irreducible component of Z, which
intersects exactly one other irreducible component v(C"?) of Z, in the point v(f1) = v(f2).
Here f; € C" fori = 1, 2. We then want to define

mf = deg Dyt [C*] — Z m and mf, = -m/ .
fEFVI\ f1
As Ay(C"') =2 Z we obtain equation (34) also in this case.

We can now define 67 := 3, m/iu, and as the numbers (deg D7 [C"]), are a Minkowski

weight on ¥(1), we conclude 3 . df = 0. By construction we also have d; = —d; if
{f, f'} isan edge of G. Since G is a tree, we obtain from balancing that A, = (0) yep+. By
the definition of the numbers m/ it follows directly that (C*, F, ") € My, y. . O

Example 2.2.13. Now we want to give an example for determining the numbers m/; from
the previous proof. Let A be as in Example and let H C IP? be a hyperplane which
tropicalises to L3. We want to consider a stable map in Ma y which will lead to the quasi-
resolution « from that example, but we only want to consider the multiplicities of the stable
map to the coordinate hyperplane H; of IP3. This stable map can also be found as C’ in
Example The picture on the left shows the image of the stable map from Ma g in
IP3, where we did not draw H. The picture on the right shows the normalisation of the
abstract curve together with its special points. Their names are chosen as in Example
The red numbers at the special points indicate their multiplicities to H;. The green numbers
are the m? which we want to determine. The map 7 ov, where v denotes the normalisation,
is of degree one on C*, of degree zero on C* and of degree two on C'*.

0
/\ ~1 2 ~1
- T

Hl 0 0
Zo

We replace p by 1 in the notation from the previous proof as p is the ray generated by e;.
So we want to determine m}i fori =1, ..., 4. By the first case from the proof we obtain that
mh = 1, as this is the multiplicity of 7 to H; at f4. In the notation from the previous proof
Z = Zy = v(C* U C") is a connected component of 7! H;. By the second case, we obtain
thatm} = —mj = —1. Then Z; = »(C") and m}, = degw” —mj —m}, =0+1-2= —1.
We obtain mj = —m} = 1. Comparing this to the picture in Example 2.2.9, we see that
the numbers at the flags in the right picture above are exactly the coefficients of e; in the

direction vectors of the flags.

Now we want to focus on combinatorial types instead of quasi-resolutions. On the alge-
braic side, this can be achieved by only allowing deformations of irreducible curves satis-
fying the tangency conditions given by A.
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Definition 2.2.14. Let W3, , denote the substack of M ,,(X (X), Ba) of all families of stable
maps (C,p, S, x1, ..., zn, m) such that

(1) p has smooth fibres

2 n(C)cY

(8) ms(Cs) & D, forall p e 3(1)and all s € S

(4) mox;: S— D, for every j and p with aJ >0

(5) D, =3, ahx; =0¢€ Ag(n'D,) forall p € (1),

where the index s means the restriction to the fibre of p over s and x; also denotes the Weil
divisor z;(S5). Furthermore let Wa y denote the closure of W{ - inside Mo, (X (), Ba)
and let OWa y denote the closed substack of Wa y of reducible curves and curves mapping
into J, D,. It is not hard to see that W}, - is a locally closed substack of Mo (X(2),Ba)-
The condition that curves are contained in a subvariety is a closed condition, so (2) and (4)
are closed and (3) is open. Also the condition (5) is closed by [Ful98] Proposition 11.1. (b),
while for a proper and flat morphism like p the locus of smooth fibres is open, cf. [Har97],
III Exercise 10.2. Obviously Wa y is a closed substack of Ma y, which is a strict inclusion
in general as Example 2.227shows.

We want to describe the stable maps in the boundary O0Wa y, as they will correspond to
combinatorial types of degree A curves in ) by Theorem To do this, we need to
work with étale neighbourhoods of points on smooth curves in the following. Therefore,
we fix the notation

Dg :=Spec &]t] and Dj := Spec &]t]:

for some field extension £ /C for the rest of this section. We will usually think of & = C,
but we will also need the case where £ is the residue field of the generic point of some
codimension one subvariety later on. The closed point of Dg will always be denoted by
m. Furthermore, we will need to blow up in order to compute special fibres of families in
Way.

Remark 2.2.15. If we blow up Dg x A' = Spec 4, where A = K[t] [2], at the point (0,0)
corresponding to the maximal ideal I = (¢, ) we obtain Proj.S where S = @,/ 4 and

I° = A. Consider the surjective A-algebra homomorphism A [yo, y1] — S which is defined
by yo — tand y1 — 2. Then J := ker¢p = (ty1 — zyo) as the following computation
shows. As ¢ is homogeneous, so is J. The element ty; — 2y is obviously in the kernel. Let
f= ZZ:O axyy~ "y% be another homogeneous generator of .J. We can assume that for k& > 0
we either have ¢ { a or ar = 0. This is because if a;, = axt and k£ > 0 we can replace f
among the generators of J by f=f— &ky(‘)i_k y’f ~1(ty1 — zy0) which has then no monomial of
the form y~*y%. So now we have 0 = o(f) = S2¢_, at?*z* which implies that t|az? and
therefore t|a; which means a4 = 0. We can cancel  now to obtain Zi;é ait?17kzk = 0 and
hence also f; = ZZ;}) aky‘oi_l_ky{C € J is homogeneous of degree one less. As f = yo f2, we
can replace f by f> as a generator of J. Inductively we obtain that f is already in the ideal
(ty1 — zyo). Therefore the blowup is isomorphic to the closed subscheme Proj(A [yo, y1] /J)
of Proj A [yo, v1] = P4 = P! x Dg x A’

Lemma 2.2.16. If C 2 S is a flat family whose geometric fibres are all P* and which admits a
section o : S — C, then every point s € S has an open neighbourhood U such that p=*(U) is
isomorphic to P}, over U.

PROOF. This is Proposition 25.3. in [Har10]. That the isomorphism is over U has to
be worked out from the proof, but this follows immediately from [Har97], II Proposition
7.12. a
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Lemma 2.2.17. If we have a family (C,p, D, 1, ..., xn, 7) in W{ v, this family is isomorphic to
a family of the form (]P}:,;, pr, Dy, (1:x1)s -y (12 Xn), 7). The sections (1 : x;) are defined by
elements x; € R[t] and the morphism 7 : ]P}j,é — X(X) is given by a tuple of polynomials (7,),

with w, = B, T1;(x;20 — 21)% and B, € &[¢].

PROOE. It follows immediately from Lemma[2.2.16land property (1) of Definition[2.2.14]
that C' = ]P}j; over Dy, as |A| = n > 0. Let the section x; correspond to the section Z; via
this isomorphism and the morphism 7 to 7. By the valuative criterion of properness we

can extend the sections &; : D}, — IP}),;3 uniquely to sections z; : Dg — P}, . Clearly

the sections &; : D — IP},. are given by two power series 27, ; € &[t];. We now choose
coordinates on P} (and hence also on l[’bﬁ) such that Z;(m) # oo for all j € [n] holds
for the extended sections. This means ]P}l; = Proj &[] [20, 21] and if we denote z = Z,
we have that Z;(m) € Uy := Spec R[t] [z]. If we restrict to Z; : D — Uy \ Z(t), the

section is given by a #-algebra homomorphism ¢; : &]t]: [z] — £R[t]+ with ¢;(t) =t and
¢;(z) = = € R[t];. But ; extends to #; : Dz — U by our choice of coordinates, which

means we must have ¢;(z) € &[t]. So without loss of generality we can assume 2 = 1 and
xf =: x; € K[t]. It follows from Example2.1.5and property (3) of Definition Z2.T4 that « is
given by homogeneous (in zo, z1) polynomials 7, € K[t] [20, 21] of degree d, = deg ¥ ,.A,
where V¥, is as in Definition and A is the canonical tropical fan curve defined by the
tuple A. Property (4) of Definition Z.2.T4 implies that x;zo — 21 is a factor of 7, if af > 0
while the multiplicity of this factor follows from property (5). Finally we can use Remark
2.1.7 to multiply each 7, by a suitable power of ¢ to obtain that the coefficients 3, of 7,
satisfy (3, € R[t]. a

In the situation of the above lemma we will by abuse of notation usually write z; = (1 : z;)
for the sections (1 : x;).

We want to prove the following theorem later on, which is the analogue of Proposition
2212 for deformations of irreducible curves. The proof is basically just comparing Con-
structions and 2.2.271

Theorem 2.2.18. For a curve (C, x1, ..., Ty, T) € Wa y with normalisation v : C — C thereis
a corresponding combinatorial type v = (G, (Ay, 0y )ve) 0f degree A curves in Y such that:

(1) G is isomorphic to the dual graph of (C, x1, ..., Tp)
(2) for each vertex v of G, o, € X is the largest cone such that ¥ (C") C V(o)
(3) for each vertex v of G we have (C*, F*,7%) € Wx ..

Here C" is the irreducible component of C which corresponds to the vertex v of G via the isomor-
phism from (1). Furthermore m¥ := (w o v)|cv, F" is the set of flags of the dual graph which are
incident to C” and Y,, = Y NV (0,). In addition A, is the image of A, in Stars,(oy,).

Note that this correspondence only works in one direction in general. One can also ask,
given a combinatorial type of degree A curves in ), is there an algebraic curve C € 0Wa y
corresponding to it? The answer is no and an example is given in Example This
question is very closely related to the relative tropical inverse problem mentioned in Section
LI of Chapter 1. However, if we take Y to be the whole toric variety X (X), we can find an
algebraic curve to every combinatorial type of degree A curves in 3, cf. Corollary 2.4.15

Definition 2.2.19. Justified by the previous theorem, we want to say that a stable map
(C, 21, ., Tn, ) € Wa y asin Theorem [2.2.18is of combinatorial type .

The next two constructions will be essential for the rest of this thesis. First we will de-
scribe how to tropicalise a family of stable maps and then how to compute its stable limit.
Afterwards we will see an example for both constructions and how they are related.
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Construction 2.2.20 (Tropicalising families of stable maps). Assume that we have a family
(C,p, Dy, 21, ..., x,, ") of stable maps in WR ;.. By Lemma 22,17 we can find an isomor-

phism to a family (]P}j;,pr, Dy, (1:21),...,(1 : &,), ), where the morphism 7 is given by
a tuple of polynomials (r,), with

(35) T =By H(zoacj — zl)o‘f’,
J

z; = Yysonit! € &[t] and 8, € &[t]. Let degm, = d,. We now want to associate a
tropical stable map (T, 1, ..., 2n, h) € Mo(R™,A) to this family, such that h(|T'|) equals
the tropicalisation of 7(C) if we consider the family as one stable map over the Puiseux
series. As usual, this tropicalisation depends on the choice of coordinates, in this case the
polynomials 7,. However, all choices of coordinates on P as in the proof of Lemma2.2.17]
will define the same tropical stable map as we will see later.

First we should introduce some notation. For k € [n] let I(0, k) = [n] and let
(36) I(m, k) :={j € [n] [+f =+ for I <m}.

We will see in the next construction (2.2.21) that these index sets are in a natural bijection
with irreducible components of a semi-stable limit curve and with vertices of the abstract
tropical curve I' that we will construct. We will then call m the level of the vertex or com-
ponent. Recall Definition ZZT.TT} as we will first construct a map % : |T'| — R*() and then
define h as pyx; o h.

The morphism = factors through the subvariety Y C X (X), which is given by a homo-
geneous ideal in the Cox ring I € S = C|z,|p € 3¥(1)]. Then for any F' € I we have
F((B, 11, (20m5 — zl))o‘]é)p) = 0 as in Remark[2.1.9 The field K = &((R)) is a field extension
of f[t]; and we can define amap 7y : K \ {z1,...,z,} — (K*)*() using our polynomials

(37) mic(z) i= | Bp ][ (i = )
! P

So we consider our family of stable maps as one stable map over the field K. Clearly 7
factors through the subvariety Yx = Z(IK [z%]) ¢ K*(), where K [2%] is the ring of
Laurent polynomials in (z,),ex(1). Then we can compute the tropicalisation of the image
of T by taking componentwise valuation, denoted by v. We obtain a tropical curve which
automatically lies inside trop(Yz N (K*)*™M) = p5'| V|, which is the support of the subfan
Yy = D 1y of 3, of. Remark 1,12 Recall that ps has kernel Ly, which is the tropicalisation
of the torus Gy;.

We will construct (T, z1, ..., ., h) by computing v(7x (z)) from (3Z) for suitably many z €
K. This will obviously be contained in |Y|. We will construct I as a metric graph as in
Definition [[.2.2by inductively gluing |T'| from intervals. To keep notation short(er) we will
not construct the underlying graph of I' explicitly. However, the underlying graph will be
clear, as a closed interval yields one edge, two flags and two vertices, while a half closed
interval yields one flag and one vertex. In the following we want to write X; := >~ ade, €

R¥M), where the e, denote the standard basis.

LEVEL 0: Let z € K with v(z) < 0. As v(x;) > 0 for all j we have that v(z; — z) = v(2)
for all j. This gives the valuation v(7x (z)) = (v(8,) + d, v(2)),, so we obtain just the point
(v(B,)), modulo Ls. Therefore, we start our construction with one vertex V' (0) of I" and
we define h of V(0) as (v(5,)),-

LEVEL m: For k € [n] let V(m — 1,k) be a level m — 1 vertex of ', where V' (0, k) = V(0).
Then the sets I(m, i) fori € I(m—1, k) are a partition of I(m —1, k). We want to distinguish
between |I(m,i)| > 1 and |[I(m,)| = 1.
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If |I(m,i)| > 1, we want to glue a copy of [0, 1] to |I'| at V (m—1, k) such that 0 gets identified
with V(m — 1, k) and 1 becomes the next vertex V(m, i) of I. We define the map h on the
interval (now a bounded edge of I') as

(38) 0,1] 5t h(V(m—1k)+t » X,
JEI(m,i)

If |I(m,4)] = 1 and there is a cone & € ¥ such that o(V(m — 1,k)) + tX; € gforallt >0,
we glue the interval [0, co) with 0 to [T'| at V/(m — 1, k). Then we define h as

[0,00) 3t — A(V(m —1,k)) + tX.

The interval [0, c0) is now a leaf of I', which we want to call z; by abuse of notation. If we
only have |I(m, )| = 1 and the above condition is not satisfied, we glue a copy of [0, 1] with
Oto |I'| at V(m — 1, k) and 1 becomes the new vertex V' (m, i) of I'. We then define the map

h as in (38).

So now we have an n-marked abstract tropical curve I" and as a next step we want to show
h(|T)) = v(m (K \ {21, ..o, 20 }))-

To compute the valuation we pick 2z, = 7§ + ... + ¥/, _1t" 7" +¢yt" + 35, cct® € K such
thatv(z; —z,) =n € (m —1,m) for j € I(m,i). Thenv(x; —z,) = lforj € I(l,3)\I(I+1,1%)
and ! =0, ...,m — 1 by definition. We conclude that

m—1
V(rk(z) = | v(B)+ [ D) D ol | +m-—m+1) > o
I=1 jeI(l,i) JEI(m,i)
P
and we can assume that A(V(m — 1,i)) = (V(ﬁp) + ( i D ieri af;)) by induction
P
on m. So we can rewrite the above formula as

V(7 (29)) = A(V(m — 1,i)) + X Z X,;, where A\=n—m+1¢€(0,1)
JEI(m,i)

which clearly coincides with / on the edge between V (m — 1,i) and V (m, i) for 5 varying
between m — 1 and m.

This construction yields a tropical stable map (T, z1,...,xn, h) with h := py o h, which
we want to denote trop(r, 1, ..., 2, ). For now we want to denote the underlying graph
of T' that is obtained from the construction by G(I'). Then h maps all vertices of G(T') to
lattice points and A(|T'|) C | YV |. We want to divide the two-valent vertices of G(I') into two
classes. Let V(m, k) be a two-valent vertex such that h(V (m, k)) € 7° for 7 € 3. We then
call V(m, k) an I-vertex if it is an isolated point of A~!(7) in |I'| and an S-vertex else. Here
I stands for intersection and S for superfluous, as I-vertices are those points where the
image of the abstract tropical curve I' intersects a cone of lower dimension, and S-vertices
are of no tropical importance but just for bookkeeping during the computation of stable
limit curves in the next construction. Also note that if we "delete" the S-vertices from G(I")
we obtain the graph of a combinatorial type of degree A curvesin ).

We want to conclude this construction with a short explanation why it is independent of
a choice of coordinates as in the proof of Lemma[2.2.17 The coordinates chosen there are
unique up to the action of PSLy(8). So if we choose different coordinates we obtain

wea(} 1) (1 22)

for the sections in the new coordinates. What we need to show is that the sets I(m, k)
defined by the transformed sections z; are the same as those defined by the sections z;.

Expanding the expression z; = (f + d2;) 3,5 (—72;)" we see that the coefficient of ¢ in

) is (6 — BY)VE, + p(’yé, ceey 73;171, 8,7, 6) for some polynomial p. Hence the coefficients of
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z; and zj, coincide up to order m — 1 if and only if those of 2, and xj, do. This means the
transformed sections yield the same sets I(m, k) as the original ones and therefore also the
same tropical stable map.

Construction 2.2.21 (Computing stable limits). Assume that we have a family of stable
maps (]P}j,é,pr, D%, xq, ..., xn, ) with sections z; = (1: z;) : D} — ]P}j,é for j € [n] where
z; € R[t] by abuse of notation. The morphism 7 : PL,. — X (%) shall be given by a tuple
of polynomials (7,), with )

(39) T =By H(zoxj — zl)o‘i
J

and also 3, € R[t]. We now want to determine the stable limit of this family, i.e. we want
to find a family of stable maps (C,p, Dg, 1, ..., T, m) which restricts to the given family on
D%. Note that this might be impossible without performing a finite base change first. The
fibre over m will be called the limit curve of the family. We will use the tropicalisation of
the family as a tool in the following computations.

Let DX 2% D% be induced by the f-algebra homomorphism ¢ + t for some b € IN.
Then the pull back family is also pr : ]P}j; — Dy, with the sections (1 : x;(*)) and the

map o (id x ). So all the base change does is replacing each ¢ by ¢ in 7,. Reviewing
Construction 2.2.20] it is not hard to see that

trop(m o (id X ¢p), T1 0 @p, ..., T © ) = btrop(m, z1, ..., Tn)
holds in My(IR™, A) = M, ,, xIR™ for any choice of coordinates.

Let trop(m o (id X ¢p), 1 © @p, ..., Ty 0 1) =: (L', 21, ..., Ty, hpy) where the underlying graph
G(T',) of Ty is the one obtained in the previous construction. Choose b such that each point
v € |I'y| which is an isolated point of &, '(7) for some 7 € ¥, is an I-vertex of G(T';). This
choice will be important when we want to extend the map = later on. We will point out
where exactly, when the time has come. Now we consider the pull back of our original
family along ¢, and for simplicity of notation we will still call sections and the coefficients
of the polynomials defining the map x; and j3,,.

We will proceed in five steps. First we will extend the space of the family, then we will
extend the sections, and the morphism to X (X). Afterwards we will see what the restric-
tion of the extended morphism to the special fibre looks like and finally we will stabilise
the family. This is the usual stable reduction business as it can be found for example in
Proposition 6 of [FP97]. However, we want to know exactly what the limit stable map
looks like (cf. (7)), as we will need this several times. This makes it necessary to work with
coordinates, which unfortunately becomes quite messy.

1. EXTENDING THE UNDERLYING CURVE: First we want to describe an algorithm that
computes an extension C of the underlying curve of the family by blowing up the trivial
extension P}, several times. We will do this in a way such that we can extend the morphism
7 and the sections x; to C in the following steps. For this it will be necessary to have
several sets of coordinates on affine open subsets of C. These different coordinates and
transformations between them, are given in formulas @0), @I) and @2).

Let C(®*) denote the fibre of the projection pr : Proj &[t] [20, 21] = P}, — Dg over m.
Let Uy := Spec &[t] [2*"] and U; := Spec &[] [2®*)] denote the charts of P}, , where
20F) = 2 and z2(OM .= 2. For a power series p = Y., pit’ € R[t] we want to write
[p]™) = 3o, pitT™ and [p](™) = 3, pitt. Leta; = Y 49.t™, let b, denote the
lowest non-zero coefficient of 5, and let N denote a number such that V'(m, k) is not a
vertex of G(I'y) for all k € [n] and m > N. In the following algorithm the lines 2, 3 and 11
to 21 have the purpose to construct an open affine cover of the total space C of the family
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over Dg. We will explain the meaning of the coordinates after the algorithm. Let I(m, k)

be as in (36).
1. C:= ]Pbﬁ
2 ROK = g[t] [2(®] and U"*) .= Spec RO
3 ROF) .= g[t] [2O9] and 4" := Spec RO
4: for m=1to N do

jeror (z;EOR 1)

5: I=10

6: fork=1tondo

7: if k ¢ I then

8: if V(m, k) is a vertex of G(T') then

9: P:=(1:4k_Hecom1k ccC

10: ¢ := Blpdl, with exceptional divisor C(™*) := Proj & [zém’k), z§’"”ﬂ
() (m. k)

11: 2(mk) . — Zm,k) and z(m:F) .= vam

12: R(m,k) = R(mfl,k) [Z(m,k)} /<Z(m71,k) o 7712—1 o Z(m’k)t>

13: ul™* .= Spec RMK)

14: R(m,k) = R(mfl,k) [Z(m,k)} /<2(m,k) (Z(mfl,k) o 77]%—1) _ t>

15: Ul™* .= Spec R(M:#)

16: Jim=tk) = Hjel(m,k) (z(m=Lk) — ijJ(mfl))

17: Rm=Lk) .= R;Tm_f;i)) and U{" ") .= Spec Rm~1:k)

18: for j € I(m,k) do

19: if V(m+ 1,7) is a vertex of G(I';) then

20: R(m:k) .= R(LZJk()m)E(m”“)fl and U™ .= Spec R(m:#)

21: end if

22: end for

23: end if

24: I:=TUlI(m,k)

25: end if

26:  end for

27: end for

We obtain a flat and proper morphism p : C — D& whose special fibre C (the fibre over m)
has irreducible components in bijection with the vertices of G(T'y) via C(™*) s V(m, k).
Furthermore it is easy to see from the procedure above that V(m1, k1) and V (ma, ko) are
adjacent via an edge in G(T}) if and only if C(™1%1) and C(™2:%2) intersect in a node, i.e.
G(T',) is isomorphic to the dual graph of C. It can be checked that L{ém’k) and U Y”*’“) for
m =0,..., N cover all of C.

Let us now explain the meaning of the coordinates. A neighbourhood of P in line 9 is
isomorphic to a neighbourhood of (¢, z) € Spec K[t] [z]. In order to compute the blow up
in P we need to introduce two new coordinates zém’k), zgm’k) in line 10 which are then the
coordinates of the exceptional divisor C(™%), cf. Remark 2215 According to that remark
these coordinates satisfy the relation

Y1) = Z§m1k)t-

In lines 12 to 15 we define U{"™" as the chart of Blp """ where z{™" + 0 and t{"™"
as the chart where zgm’k) # 0. Note that Z/l(()m’k) \Z(t) is isomorphic to an open subscheme
of Uy \Z(t). We will describe this isomorphism explicitly later on in formulas (40) and (@I).

In lines 16 and 17 we remove Z(f(m~1*)) from L{ém_l’k), which ensures that this chart

Zémﬁk) (Z(m—1,k) _

IBlp C denotes the blow up of C in the point P
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will contain no nodes of the special fibre C. The chart I/ §’””“) contains exactly the node
Ok 0 Cm=1k) after we deleted Z(|x;]™ 2™ — 1) for several j in lines 18 to 22. In
the following, formulas (40) to (42), we want to describe several isomorphisms from the
rings R(™*) and R(™*) to other rings, but we will omit the localisations from line 17 and
20 as the notation is already messy enough without them. It is clear how to extend such
isomorphisms, namely if ¢ : R — S is an isomorphism, so is ¢ : Ry — Sy(s). For
schemes this corresponds to restricting an isomorphism to open subschemes.

Let us now come back to the isomorphism of Z/l(()m’k) \Z(t) to an open subscheme of U \ Z (t),
which we will describe in terms of R-algebras, where the isomorphism is given by

A[[t]: [z(l’k) [0<I< m} /(z(l_l’k) — 7{21 — z(LR)g [0 <1< m) = &[t]: [z(o’k)]

(40)
2R) oy =L (OR) 2,10 for 0 <1 <m and K[t]e - &[]
One can see that this is an isomorphism by successively replacing z("*) by 2(!=1:%) using the

relations that we mod out. The scheme I/ ém’k) \Z(t) is by construction the spectrum of the

localisation of the ring on the left by a ring element f and the open subscheme of U/ \ Z(t)
is then the spectrum of the ring on the right localised at the image of f.

From now on we want to use different coordinates on Z/l(()m’k), which are given by the iso-

morphism
RK[¢] [z(m"k)} —= A[t] [z(l’k) |0 <1< m] J(2ULR) Ak 2GR0 <1 < m)
(41)
2k s (k) and &[] % ][]
That this is in fact an isomorphism is also easy to see using the relations we mod out. We
want to denote the composition of the isomorphisms in (#0) and @I) by ¢y, 1)-

For m > 1, we also want to use different coordinates on &/ 5’””") from now on. Using @I) we
can identify the rings &t] [2F) |0 <1 <m —1] /(2700 —4f | —20RE0 <1 <m —1)
and R[t] [2(m~1k)], therefore U (k) i the spectrum of

S s= e [o( 0] [ fEm B ) =)

localised at some ring element. There is an isomorphism of I/ §m=’“> \Z(t) with an open
subscheme of Uy \ Z(t)

Dlmk) ° S Al [2(09]

2(0.k) _ [}, ](m)

(42) =Lk Ly ((08) _ [ ](m=1) )= (m=1)

2mk) s (2 O08) _ [, 10m)=1gm and ][] -5 K[¢].

2. EXTENDING THE SECTIONS z;: The section z; : D} — C* := C\C can be extended
uniquely to a section z; : Dg — C by the valuative criterion of properness. We claim
that z;(m) = (1 : ’y,jnj) € Cmiv)), where m; := max{m |V (m,j) isa vertexof G(T';)}. In
particular the images z,(m) are distinct smooth points of C. To see this we consider the
restricted section x; : D, — Uo \Z(t). This restriction is given by a R-algebra homomor-
phism x; : &[t] [2(®F] — &[], with x;(t) =t and x;(2(®*)) = z;. Now we use the iso-
morphisms from (40) and @) and obtain that x; © ¢ (., ;) (t) = t and x;j © G, 5 (2(m30)) =
|,;] (™), which means that z;(m) = (1 : 7,37'”) e cmid) ¢y,

3. EXTENDING 7: We want to extend 7 from U™\ Z(t) to U™ for i = 0,1, separately

on each chart and then check that these extensions coincide on intersections, hence they
define a global extension 7 : C — X (X).
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First we extend 7 : UM\ Z(t) — X (X) o™ form = 0,..., N. On U, \Z(t) the global
section m, of O(d,) trivialises to the regular function 7, = 8, [[;(z; — 2(00))% which has
the preimage

d)(_nll,k)ﬂp = ﬂp H(SCJ - [zk](m) — Z(m’k)tm)o‘];;

on UO k) \Z(t). Clearly this extends to a regular function on Z/{ ™) For0 <1< m-—1
and j € I(l,k)\ I(l + 1,k) we have v (z; — [z}](™) = [ while v (:cj [2:]1(™) = m for
j € I(m,k). Clearly v (z; — [2;]™)) is the maximal power of ¢ which divides the term
zj — [z ] — 2mkpm in &) [2(™F)]. Adding this up we see that

=vB)+>. D
I=1 jeI(l,k)
is the maximal power of ¢ that divides qﬁ(_"ll wTp i &[] [20"P)]. The point (v, (mk)) , equals
hy(V (m, k)) from Construction 22200 By LemmaZ.T.I3 there are a unique cone oy (;, ) €
and a point (v5™*)), € 22(1 such that hy(V(m, k)) € oy, and o™ s 0iff p €

(m,k) (mak) _y(m k)

ov(m.k)(1). By Remark 217 the regular functions m, = t% qﬁ(m }yTp define

the same morphism as (qﬁ(_nll 1 Tp)p ON L[O k) \Z(t). When we say that regular functions
define a morphism, we actually mean the ¥-collection where all bundles and trivialisations
are trivial. Therefore we omit these redundant data. A computation shows that

Wf()m,m:tvlgm,k) (v(ﬂp))H II (Lz — )™ O — tm—lz(m,k))afi’
1=0jeJ(l,k)

where J(I,k) = I(l,k) \ I(l + 1,k) for 0 < I < m — 1 and J(m,k) = I(m,k). Hence
F,(Jm’k)|z(t) =0ifpe UV(m,k)(l) and
(43) Ty = ] (= 2m0)%

J€L(m,k)
for some ¢, € 8", else. So condition (2) of Definition could by Remark only be
violated in the points (¢, z2(™*) — ~J ), but those do by construction not belong to Z/l(()m’k).
Hence (7, (m.k) ) defines a morphism (") : L{ém’k) — X (X), which extends our original
morphism 7 : U™\ Z(t) — X ().

Now we want to extend 7 : U™\ Z(t) — X () tou"™" form =1, .., N. As above the
global section m, of O(d,) trivialises to the regular function 7, = 8, [[;(z; — 2(0R))% on
Uo \Z(t). We obtain

m—1 m—1,k) ym—1\a?
mk)”p = ﬂp]:[ ( ) — 2 't )

which obviously which extends to a regular function on I Y”*’“)

arguments as above with m — 1 to obtain that

. We can apply the same

(m—1,k) _,(m—1k) v_1
v
i (m, k)ﬂ.P

p(m=1k) m) | (m— m— o
B O T (L — ] 0D — (R o))

JEI(m,k)

-

m—

ol
L2 = Tax] )0 — g3t mth) gk )
1=0 jeI(l,k)\I(I4+1,k)
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For j € I(m,k) the formal power series |z; — 23] |(™~1) equals t|z;|(™) and hence
L — [ ] ™) (m=1) = (z(m=1k) — ok ) is divisible by 2(m~1*) —4k | in S0k We obtain

~(m,k) ._ (,(m—1,k) _ .k w(mR) _y(mak) o kYo (m k) _y(m=1k) g _
Tp )= (2 Ym-1)"" o (Em ) ? (m,k) TP =

(z(m=Lk) _ %1;71)1;;’"”‘) (z(m,k))v(mfl”” 18,V (Be)) H ((ttij(mH) + g YEmk) 1)0‘?’
jel(m;k)

-1

3

. o
[T R+ 6=kt gl )
1=0 jeI(l,k)\I(I+1,k)

for some R; € (t). Clearly ﬁ,gm’k) is still a regular function on U 5’"”” and by Lemma

2113 and Remark 2.1.7, the morphisms defined by the regular functions (ir,()m’k)) » and
(&(ni,k)ﬁp)f’ coincide on Z/lgm’k) \Z(t). As for the case of w,()m’k) above, we will now check
that condition (2) of Definition Z12is also satisfied on Z(3(™*)) = ¢(m=1k)  14{™*) We

have ﬁ,gm’k)|z(2(m,k)) =0if p € oy (m-1,1)(1) and for p & oy (—1,1) (1) we have

~(m,k m—1,k o
5" g stmay = € ”( I (-1 )
JEI(m,k)

,(Z(mq,k) _ 77]%_1)1”57”’“ I ('yj - Z(mﬂ,k))a{)
Jel(m—1k)\I(m,k)

(44)

with ¢ = b, TT1%5° Icramrasin i =) € & For j € I(m — 1,k)\ I(m,k)
the points (1 : v ) e ¢m=1LF) do not belong to U gm’k), therefore condition (2) might
only be violated at P := (1 : 4% _,) € C(™~1k)_ Note that P is the node of C' connecting
Cm=1k) and C(™k), We see fr,gm’k) (P) = 0if and only if p € oy (m—1,)(1) U Oy (m, k(1)
and this is where our choice of b comes into play. By the choice of b the edge between
V(m — 1,k) and V(m, k) is mapped entirely into some cell 7 € ¥ by h, hence 7(1) D
OV (m—1,k) (1) U 0y (m,k) (1) and condition (2) is satisfied at P. Similarly we can check that
condition (2) is also satisfied on Z(y*,_, — 2(™~1%)) and hence on all of I §m”“>. Therefore
(fr,gm’k)) , defines a morphism 7™ : ¢ Y”*’“) — X (X) which extends the original mor-
phism 7 : ug"“’“) \Z(t) — X (X¥). For later use we want to note that if p € oy (1) (1) we

- (m.k
have 7T,()m )|Z(7371_Z<m71,k)) =0and

~(m m z(m p{m=1.k) i z(m ol
(45) AP gk iy = R (2R I Gzt -1
FEI(m,k)

for p & oy (k) (1), where cf)m’k) is defined as above.

Finally we extend 7 : Ugo’k) \Z(t) — X(2) to ug"*’”. On U, \Z(t) the global section 7,
from (B9) trivialises to 7, = B, [[;(z;2 (0.) _ 1) This clearly extends to a regular function
onU 507’” which is v(/3,)-times divisible by t. As above we obtain regular functions fr,(,o’k) =
tvf()o’k)_"éo’k)ﬁp = o |8, V(o)) [erom (2,205 — 1) on U . As before, they define
the same morphism as (7,), when restricted to Ugo’k) \Z(t). We have ﬁ,§°’k>|Z(t) = 0 for
p € ovor(l) and

(46) 7~rf(70,k)|Z(t) =0, H (ng(o,k) B 1) ’
j
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for p ¢ oy (0,x)(1). Since none of the points (1 : 7)) € COF) belongs to U §0”“), condition (2)
of Definition Z1.2is satisfied on ¢/(*"). Therefore the tuple (7, (0:F) ) defines a morphism
708 %8 5 X (%) which extends 7 : U\"M\ Z(t) — X (%).

Now we want to see that all these morphisms patch to a morphism = : ¢ — X(Z).
Let U denote the intersection of all charts, which is clearly contained in C*. Then U C
U™ AU *2) s an open dense subset on which by construction 7r(m1k1) — g(ma.k)
Therefore, as X () is separated and C is integral, we have 7("1:%1) = 7(m2:k2) on the whole
intersection I/ éml )y émZ’kZ). The same argument for the other possible intersections of
the charts shows that we indeed obtain a global morphism 7 : C — X ().

4. m ON THE SPECIAL FIBRE C: Now we want to explicitly describe the restricted morphism
m: C — X(X). Let [con.r be given by polynomials 7_rpc(m'k), which we will determine
in the following. For this we will need the charts U/ Y”“”’ for i € I(m, k), where C("™%) is
given by Z(3(m+1:9), and additionally 2\"™"*), where C(™¥) is given by Z(~% — (). We
need all of these charts in order to cover all the special points on the irreducible component.
Let I(m, k) = [Ii_y I(m + 1, k;) with ky = k, and let B =3 ime1ks) Xj- Here X;j =
>, a%e, as in Construction Then there is a unique cone 7; € ¥ with 7 > oy (1)
such that the image of ps(E®) in R™/ Vou (m. lies in 7. This means there are unique
integers e ) with pE(E(Z ) =2, eg,i)up, such that eff) > 0if p € 7i(1) \ OV (m,k (1), eg,i) eZ
if p € oy (m,i)(1) and ep = 0 else.

In particular E®) = (e() , mod Ly, and we can apply Remark2.1.7to @4) and we see that
the regular functions

m al m plmt1.k) - i m,k)\eld
o (T 1% | U0 o [Tk - 2y

JEI(m+1,k) i=2

define the same morphism on U/ §m+1’k) NC(™*) as those in @4). After applying Remark
217 one more time for E(!) and the factor —1, we end up with

m @ (m WL YT ks mk)ye(®
s = el (=) (2R — ke T T = 2R
i=2
still defining the same morphism. Note that h,(V (m, k)) + B = hy (V(m + 1,k)) so

1) = (’UE;erLk) o U/()m,k))

we have E( » mod Lx. By our choice of b the two cones vy (1)

and oy (;41,x) are faces of the cone 71 € ¥ from above. By definition u,(f””” = 0forp ¢

OV (m,k)(1) and oSy mR) — 0 for p ¢ 71(1), so we must have ( (mALk) _ (m’k))p =

(e,gl)) p- Therefore
_ (mk) H (m k (1)

on U 5’”“”‘”. On the other charts U Y”“”’ N C(™F) we obtain the same sections. Alterna-

tively, we can say that 520) extends to all of these charts. On the chart &/ §’””“) we can do the
same and we obtain that the regular functions

B ¢ < (k) e =1E) YT/ ks ~(m o0
Sgl) = CEJ ) (z(mak)yv, ]:[(,y iz(mk) _1yep
i=1
which define the same morphism as those from (45), respectively @6). Furthermore the

CONES Ty (1, k) aNd Ty (1, —1,%) SPan a cone 7y s above we see that fore, ” :=v i
(m.p) and p € 3. Asab that for e} := v{™ )

/(Jm ) we have 6( > 0if p e (1 )\ ovimr (1), e p) € Z for p € oy (m (1) and eE,O) =0
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else. If we define df]””“ =3 ef,i) it is now clear that 55,0) and 5,(31) glue to a global section
7C of O(dS™™) which looks as follows:

p
T (1)
m,k m,k)y\e(® m,k . m,k .
| @G (=) o ovn (1)
71' = =
p
(47) 0 if p € ovimur(l)
k) _ J kel
with ¢, =b, [] II (=)

1=0 jeI(l,k)\I(I+1,k)

Note that for m = 0 there is no E(%), therefore we read the above formula with (e,(JO) )p =0in
that case. Also (Zﬁ ef,i)ﬂp) is the local degree of (I'y, x1, ..., n, hp) around V (m, k)
i=0,1,...,7

in Stars (ov (m,x)), as it is claimed in Theorem 22,18 Again, for m = 0 we must leave out
i=0.

5. STABILISING THE FAMILY: The special fibre C' might be unstable, so we have to get
rid of the unstable components. It is possible to just contract the unstable components
of the limit. Proposition 3.10 of [BM96] tells us that there is a family of stable maps
(@ ,D,Dg, %1, ...,%n, ), and a proper surjective morphism f : ¢ — C over Dg such that
m=7of,p=pofand z; = f oz, forj € [n]. Furthermore f is one-to-one on geometric
points which do not lie on unstable components of C. So (@ D, Dg, %1, ..., Tn, ) is a family
of stable maps which extends the family we started with.

Note that unstable components will be those on which the map is constant and on which
there are less than three special points. As we saw above, C(™*) is unstable if and only if
V(m, k) is an S-vertex of G(I'p).

Example 2.2.22. Let A = (2e1+3e2, eg+e1, eg+2es, e3, eg) be a degree of tropical curves in
IR?. Let furthermore ¥ = L3 and let H = Z(3%_, y;) € X () = P*> = ProjC [yo, y1, Y2, y3).
Let

t2
Z1 , L2 y I3 , T4 , Ts 172152
202(1* — 1) 2(t? — 1)? 1
d = 1 = = —-——-:--— =
an 60 y ﬂl 1_92¢2 62 1_ 92 ° ﬁ3 1 _ 972

which define a family in Wa g as in the previous construction. Using the geometric series
we can see that x5 = t? + 2t* + 4t5 + ... and hence I(1,1) = I(2,1) = {1,3,5} and I(3,5) =
I(4,5) = {3,5}. All other sets I(m, k) for m > 1 are I(m,k) = {k} for k € [5]. We can
compute (I, z1, ..., x5, h) = ’crop(l[’})é ,pr, D&, 21, ..., x5, ), which is depicted below.

T2

T
level z3"?

x

[CRERNICIERN SO

T4 TH

V(0,k)
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Here the abstract tropical curve I is shown on the right together with all its vertices V' (m, k)
and indicated level structure. There is one I-vertex which is coloured green and one S-
vertex which is coloured in red. On the left hand side we see the image (|I'|) in the tropi-
calisation L3 of H. By (dZ) we obtain the following stable limit of the above family:

s

On ¢~ . (20 :21) = (20 — 21 : 0: 221 : —z9 — 2z1) withmarkings zs(m) = (1:1),
xz4(m) = (1:—1) and anode (1:0)

On O (25:2) % (1:0:0: —1) with amarking z;(m) = (1 :0)
and nodes (0:1), (1:1)

On CBF (21 29) 5 (27122 - =22 —22) withnodes (0:1), (1:0)

On C™M) (251 2) % (0:1: —1:0) with markings z3(m) = (1:0), z5(m) = (1:2)
and anode (0 : 1).

The component C'13) belonging to the red vertex is contracted by the stabilisation. Note
that the above family can be obtain from a family over Spec C[s], by a base change s = ¢2.
If we tropicalise the family in s, we obtain the above tropical curve stretched by 1 and the
red and the green vertex do not occur. Hence we have an edge of the tropical curve which
passes through a cell of lower dimension without seeing it. As in the previous construction,
this would cause a problem if we tried to extend the family in s. Therefore we have to apply
the base change first.

Lemma 2.2.23. Let X be a smooth projective variety and let 3 € Ha(X)*. IfU C Mo (X, B) is
a locally closed or open substack, then every stable map C = (C, 21, ..., T, ) in the closure U can
be found as the special fibre of a family (C,p, D¢, %1, ..., &n, T) with generic fibre in U.

PROOF. Assume we have a family 7 = (C',p’, B', 2, ...,2},,7’) with dim B’ > 0 and a
C-rational point P € B’ such that the fibre over P is C. For ¢ : B = SpecOp/ p — B’ the
pull back family ¢* F clearly has fibre C over the unique closed point n € B. This induces a
morphism B — M, (X, 3) and the closed immersion U < M, (X, 3) induces a closed
immersion T < B of schemes, where T' = U x g M (X, (), cf. the definition of a substack.
In the same way U — U induces a locally closed embedding 7' < T as a dense subscheme.
Now n € T, by the assumption that C is in U. As B is noetherian we have dim B < oo.
Hence we can find an irreducible curve . : S < T passing through n and not contained in
T\ T, by intersecting with suitable functions f € O(B) and then choosing an irreducible
component. Finally we normalise v : S — S, pick some preimage P € v~!(n) and the
irreducible component S’ of S containing P. Let mp be the maximal ideal defining P. By
the Cohen Structure Theorem, cf. [Eis04] Theorem 7.7, we obtain an étale neighbourhood
of P

j: Dc = SpecC[t] = Spec Og: p — Spec Qg p — 5.
Then the pull back family j*v*1*¢* F on D¢ has the desired properties. O

PROOF OF THEOREM By Lemma[2.2.23 the curve (C, z1, ..., ,,, T) Occurs as geo-
metric fibre over m in a family of stable maps over D¢. The claim then follows from Con-
structions and [2.2.27] in particular part (2) and (3) of the claim can be seen by the
formula for the limit map @Z). We can apply these constructions by Lemma 2217 O

Given a family (C,p, Dg, ¥1, ..., Tn, 7) With generic fibre in Wy -, we defined the tropical-
isation of the family restricted to D} in Construction Now we want to investigate
how to compute the tropicalisation of this family in terms of algebraic intersection theory
on Dg. This will be the content of the following two lemmas.
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Lemma 2.2.24. Consider a morphism Dg —— Wa y such that 1"'WR y # 0. This corresponds to
a family in WS, y over D, which by Construction[2.2.20 has a tropicalisation C. If I = {i, j, k, 1}
and Fy = fty o then there is the following relation between tropical and algebraic forgetful maps

(48) ft;(C) = ordw F} (ij|kl)vi; + ordm Fy (ik|jl)vir + ordw Fy (il kj)va.

PROOF. We assume that ft;(C) = Av;; € My 1, and by Lemma 2.2.17 we can assume
that the sections are given by (1 : z;) : Dy — ]P}j; with z; € R[t]. The morphism
Fr: Dy — MQ 1 = P! is given by the cross ratio of the four sections in I, and there is an
affine chart SpecC [z] C P! such that the divisor (ij|kl) is given by the regular function z.
Its pull back therefore is

(zj — xi)(vp — 1)

Fr(ijlkl) = Ffxz =
I(]| ) I (ZCJ‘ _xl)(-rk_-rj)

€ K[t]:

and it vanishes with order v(F;x) at m, so
ordy, Ff (ij|kl) = v(z; — xi) + v(zk —x1) — vz — 1) — v(xg — z5).
We will distinguish between the following cases:

o The situation is like in the first picture below. Then A = v(z; —z;) by Construction

Also v(zy — x;) = v (2 — z;) = v (z — ;) = 0 which implies
v(Frz)=v(z; —x;).

e Assume we are in the situation in the second picture below. Then A = v (z; — z;)—
v(zg —zj)and v(z; —x;) > v(zg —x;) > 0and v (x; —ax) = v(zy —x;) =0. It
follows that

v(Frz) =v(z; —x;) — v(zg — xj).

e Assume we are in the situation on the right in the picture below, so v (z; — ;) >
v(zg —xz;) > vz —xj) =v(rg — ) and A = v (z; — xj) — v (zx — ;). The case
where z;, and z; are swapped in the graph works similar. So

V(Fiz) =v(z; —xj) — v(zk — xj).

TjLi 5T X4

Tk Tk
t2 T Tp T T
P A B
t° R
In any case we obtain that ordy, F (ij|kl) = A, which proves the claim. O

Together with Lemma [[.2Z 1T we can use the above lemma to uniquely determine the un-
derlying abstract tropical curve. In the next lemma we want to describe how to recover the
map into R™. Unfortunately I do not know how to do this using barycentric coordinates,
so we will use approach (3) from Construction [[.2.2]] i.e. we have two root leaves.

Forlet o € ¥ be a cone. Let So = U, cx.,5,7(1) \ (1), then S, is in obvious bijection to
Stary;(0)(1). We want to denote the images of the primitive generators u,, of the rays p € S,
under the projection to R™ /V,, by f,. These are then the primitive generators of the rays in
Stars (o).
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Lemma 2.2.25. Consider a morphism Dg —— Wa y such that . =*WZ y # (. This corresponds
to a family in Wy, - over D, which by Construction2.2.20has a tropicalisation C. Let o be a cone
of Y and 6, € A with 6, € ¢°, f, as above and EVy, = evy or. Then we obtain the following
relation between tropical and algebraic evaluation maps

(49) ev)”(C)= Y ordwEV} D, f, € R™/V,
PESs

PROOF. Let the restriction of the family to Dj; be as in LemmaR.2.17 with 3,, z; € &[]
and the morphism given by (7,), with 7, = 8, [[;(z0z; — 21)®. Then EVy is given by a
tuple of power series (EVy, ,), in £]t] with

_ ) BTl (e — @)™ if p g o(1)
BV, = { T if peo(l)

on Dj. Let my, be the smallest integer m such that [I(m + 1, k)| = 1. As in Construction

2.2.27] we define

my

v, =vV(B,) + Z Z a,

I=1 leI(lk)
and we can see that v, is the highest power of ¢ that divides EV}, , if p ¢ o(1). By Lemma
R.1.13/there is a unique cone 7 € ¥ and a unique (v,), € Zigl) with (v,), = (v,), mod Ly,
and v, > 0if and only if p € 7(1). Then by Remark[2.1.Zlthe tuple of regular functions

(tv” Ve EV}mp) p

defines a morphism into X (3) which extends EVy,
Now it is obvious that

px to Dg and therefore equals EVy,.

0 if peo(l)

Furthermore (v,), is the point i(V (my, k)) from Construction and h(V(myg, k)) =
2 per(1) Uplp- As V (my, k) is incident to the leaf i, we obtain evy” (C) = 3 e (1)\o(1) Vo fo-

ordw EV:. D, :{ v, if pgo(l)

Remark 2.2.26. In the following we will mostly be interested in the case of hyperplanes ) =
L7 _,. So we have to consider subvarieties Y C P with this tropicalisation. An obvious
choice for Y are projective linear spaces of dimension m — 1. So letnow Y = P~ in which
case we obtain a closed embedding M ,(P™~!,d) = M, (Y,d) < Mg, (P™,d). There is
a natural action of G = Aut(IP™) on M ,,(IP™, d) which sends M, (Y,d) to Mg.(gY,d)
for every element g € G. We also have gWg y, = W ,y for those g € G which keep the
coordinate hyperplanes fixed (diagonal matrices). So in particular gWa y = Wa 4v. Every
hyperplane which tropicalises to L)"_, is not contained in any coordinate hyperplane. Fur-
thermore, two such hyperplanes can be mapped to each other by an element g € G fixing

all coordinate hyperplanes. We conclude that all possible W4 y are isomorphic in this case,
fora fixed Aand Y = P~ 1.

Example 2.2.27. Consider the degree A = (2e1 + 3eq, €9 + €1, €g + 2e3, €3, €9) and the
hyperplane H = Z(Zfzo yi) C P3 = ProjC [yo, Y1, Y2, y3]. Furthermore let Hy, ..., H3 de-
note the coordinate hyperplanes. Computations as in Remark[2.3.5will show that we have
dim Wa, g = 1. The same kind of computation yields a one dimensional family in WR 5
with limit a curve C = (C, 21, ...,x5,m) € OWa, u as follows: The curve C has three irre-
ducible components C; with marked points x5 and z3, Co with marked points z4 and z5
and C3 with marked point ;. Here C; intersects C3 in a node and also C intersects Cs5 in a
node. The morphism 7 has degree two on C, hence it is embedded as a conic, it has degree
one on C and it maps onto the line H», furthermore it is constant on Cs. The picture below
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shows the image 7(C) in H = IP? on the left. By the correspondence from Theorem 2.2.18
this belongs to the tropical combinatorial type depicted on the right.

x5

Hy, H,
There is also another one dimensional family W’ C M0,5(H ,3) of curves in Ma . In the

above picture this family is given by moving the image of C> but requiring that it passes
through H; N H. Then W’ also contains the curve C’ depicted below.

T2 €1 V2 v
Th
CQ i e H3 1
T
Ch H,
/
I

€2

Hs Hy

By Proposition the stable map C’ corresponds to a quasi-resolution of A, which we
already saw in Example The picture shows the situation only inside the cone 2.
We see that the vertices fit together pairwise but not all at the same time, hence we do not
obtain a corresponding combinatorial type of tropical curves in L3. So by Theorem [2.2.18
we can conclude that C’ cannot be the limit of a family of irreducible curves in Wx . There
is another interesting curve in Wa g, namely the one from Example It corresponds
to the tropical combinatorial type below.

The tropical curve passes through the origin with a weight two edge, but we would expect
that such a curve is locally not realisable at the origin (cf. Example[2.3.7). The vertex type
of the vertex that is mapped to the origin has resolution dimension —1, hence the combina-
torial type is not admissible in the sense of Definition [[.5.8
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Example 2.2.28. Consider the degree A = (e1+e2, e1+2es, e3, 2eg+2e3, eg+e1) for curves
in L3, let H C IP? be as in the previous example and let Hy, ..., H3 denote the coordinate
hyperplanes. A computation as in Remark 2.3.5will show that Wa z = 0 even though we
would expect (cf. Construction it to be one dimensional. Consider the combinatorial
type v of degree A curves in L3 from the picture below.

5

In the picture the red number 2 means that the edge is of this weight. As OWa g = 0, there
is no algebraic stable map of combinatorial type v. However, for each vertex of v we can
find a corresponding algebraic stable map: We have that Wa, y # 0 by Example 237 To
w there corresponds a degree one cover of the line # N H; and to u corresponds a degree
zero map to the point H N H; N Hs.

Example 2.2.29 (Rational curves on the Hirzebruch surface). In this example we want to
consider two different curves Y7,Y> C F,,. The fan of F,, is generated by u,, = nes — e,
Up, = €2, Up, = €1 and u,, = —ey as depicted below. Consider the maps

n

m(z0:21) = (20:1:21: (21 —20)") and ma(20:21) = (20:1: 21 : H(:I:izo —z1))

i=1
where the homogeneous coordinates of IF,, are ordered the same way as the generators
and the z; € C* are pairwise distinct. One can see that Y7 := m; (P1) and Yy := mo(IPY)
both tropicalise to ) which consists of the cones pi, p3 and ps with weights 1, 1 and n
respectively.

P1
P2
Y\ +
| h
N S ﬂ\
n P4

Consider the degrees Ay = (up,, nup,,up,) and Ag = (Upy, Up,, ..., Up,, Up, ). The picture
above shows ) as subfan of the fan of IF,, in green and also shows the abstract graphs
of the tropical stable maps of degrees A; and A, corresponding to (IP',0,1,00,7;) and
(PY,0, 21, ..., T, 00, T2) according to Theorem 2.2.18 Recall that by definition of Wa, y; all
intersections with boundary divisors are marked. As Y; has only one intersection point
with D, (of multiplicity n) while Y5 intersects D, n times with multiplicity one, it follows
that Wa,,y, = 0 = Wa, y,, while Wa, y; # 0 for i = 1, 2. In particular this example shows
that the space W y in general depends on Y and not just the tropicalisation ).
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2.3. The virtual fundamental class

As we saw in the previous section, Wx y encodes combinatorial types of degree A curves
in ). However, we also saw that this space is not well behaved. By Example there
is no hope for the boundary 0Wa y to have any sort of recursive structure in the way the
boundary of M (X, 3) has. Also, the combinatorial types which can occur are not always
admissible in the sense of Section as shown in Example 2.2.22l Furthermore, we will
see in Example[2.3.7] that the expected dimension of Wy y is not always equal to its actual
dimension, which makes it difficult to do intersection theory on W y. Which dimension
the expected one is, will be discussed in Construction The usual solution to this
dimension issue is to define a virtual fundamental class [WA_VY]”'T, which will be the goal
of this section.

Lemma 2.3.1. Let n = [A| > 3 and m = dim X(X), then WR v ) = Mon x T™, where
T™ is the m-dimensional torus over C. In particular W y ;) is smooth and of dimension |A| +
dim X (%) — 3.

PROOF. The idea of the proof is easy: as we saw several times, a curve in W3 y ) over
C is given by a tuple of homogeneous polynomials in two variables. These are uniquely
determined by their zeroes (n marked points) and scalars in C* (up to action of the torus G's;
from (26), their number is m). Nevertheless, this needs to be formalised. Fix a maximal cone
o € ¥(m),letT™ = Spec C [F! | p € 0(1)], B, := 1for p ¢ o(1) and M := M ,, x T"™. First
we want to describe the universal family over M. Let p : M — My, and 7: M — T™
denote the projections. Let (]P}%m , Dy Mo n, 1, ..., Ty ) be the universal family over M ,,. Let
U:=MxPandletp: U — Mandp: U — My, x P! denote the projections. Then
the right square in the following commutative diagram is Cartesian.

9
E/\ﬁ"

C u I[)}Wo,n
ﬁk ﬁ‘ pl
Mo,
14

The rest of the diagram will be explained below. As the right square is Cartesian, we obtain
pull back sections &; : M — U from the ;. Let H,, := (’)]P}MM (Z ; af;xj) and fix canonical
sections s, € I'(P},, ,H,) representing the Cartier divisors 3, aJz;. Furthermore fix triv-
ialisations ¢y : @), Hve) Oﬁ’}um forall A € AY. Clearly 7% 3, is a global section of O,

and hence (7i*s,)(p*7*8,) =: 7, is a global section of i* H, = Oy (ZJ a?ﬁj). Let ¢ denote
the trivialisations that are induced from cy via pull back along @. Then (7" H,, 7, €) is
a X-collection which yields a morphism 7 : f — X (¥) by Lemma[2.1.4 By construction
U,p, M, 21, ..., @y, 7) is a family in WR x-

Now consider any family (C,p, S, Z1, ..., &n, 7) in W3 X By the universal property of
Moy, the family (C,p, S, Z1, ..., &) is isomorphic to the pull back of the universal family
over My, via some morphism ¢ : S — My,. Letp : C — ]P}MM denote the morphism
induced by ¢. So also the outer square in the above diagram is Cartesian. By Lemma 2.1.4
and definition of W y ), the morphism 7 is given by a ¥-collection (Hp, 7, é2), where 7,
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is a global section of #, = O (Z] Oé‘;j:j) which cuts out }°; adi;. As P*x; = i for the
divisors given by the images of the sections, we conclude * H, = H,,. Let ¢ denote the
trivialisations that are obtained from c, via pull back along . As in the proof of Lemma
R.14 or in Example 2. 1.5 we obtain global sections w, of O¢ such that ¢}, = (]], wi e,
holds for all A € AY. Then (H,,w,7,, ¢y ) is equivalent to (,, 7,, ¢,) and hence also defines
. For each p the sections w,#, and ¥"s, define the same cycle }_, a/2; on C, therefore
they differ only by a global section Bp of Of. Using Remark 2.T.6 we can assume 3, = 1
for p ¢ o(1). Then the remaining 3, are uniquely determined. As the fibres of p are P,
the sections Bp must be constant on fibres and hence there are global sections Bp of Oy
with p* ﬂp = ﬂp The (5p)pea(1) define a morphism ¢ : S — T with ¢*f, = ﬂp for all
p € ¥(1). So we obtain morphisms ® := ¢ x ¢ : S — M and ® = P x ¢. With these
morphisms also the left square is Cartesian. We also have Topo® =70 ®op = ¢ o,
which implies ® (5*7*8,) = p*¢*3, = p*f3,. Furthermore ® 7i*s, = 7*s, and we obtain
w,ﬂrp = (7 sp)(A*Bp) = & ((m*s,)(p*mB,)) = ® 7,. Asp = T o ®, we conclude that

i*H, = H, and that ¢} is also the trivialisation induced by ¢, via pull back along ®.

Hence # = 7 o ®. This means the family (C, p, S, 21, ..., #n, 7) is isomorphic to the pull back
of the universal family over M along ®. O

Lemma 2.3.2. Assume we have an integral hypersurface Y C X(X) with tropicalisation ), a
subfan of X. If [Y] = X cxq) ¢pDp in Ap—1(X (X)) then the tropical rational function ¢ =
> pes() ¥y (cf. Definition [L3.9) satisfies p.R™ = Y. In particular Ox (s)(Y') is generated by
global sections.

PROOF. By Lemma 2.3 of [KP11], the weight wy (7) of a maximal cone of ) is given by
wy(7) = deg[Y] = deg Z coDp- V()] =) cpdeg Dy [V(7)].
P

Let p1(7) and p2(7) denote the two unique rays that span maximal cones o1 and o of ¥
together with 7. We fix a maximal ¢ > 7 for the rest of this proof, say ¢ = ;. We need
to distinguish between three different cases. The first one is that p and 7 do not span a
cone in %, then deg D,,. [V(7)] = 0. The second one is that p and 7 span a maximal cone
of ¥, then deg D,. [V (7)] = 1. The last case is that p € 7(1), where we need to replace
Dy = =% eor1) m(ol)ngp/ (cf. formula (BI)). This equality comes from div(x**) = 0
where (\,), e, (1) is the dual basis of (u,),ecq, (1)- After replacing D,, we have reduced the
problem to the first two cases. Adding everything up we obtain

Wy(T) = Cpi(r) T Cpa(r) — Z Cpm(gl)g2(r)
peT(1)

where the first two summands are coming from case one and the sum results from case
three.

If we compute w, g (7) using formula () we can choose vy, /; = u,,(r) for i = 1,2 and
obtain

Vou 7+ Vossr = m(01)Muy € V.
pET(1)
Plugging this into the formula (8), we see immediately that wy(7) = w,rm (7) for all 7 €
Y(m—1).

The line bundle is generated by global sections by Theorem 6.3.12 of [CLS11], as the inter-
section numbers [Y].V(7) = wy(7) are non-negative for all 7 of codimension one, i.e. all
torus invariant irreducible curves. O
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Construction 2.3.3 (The vector bundle Fy). We will imitate a construction from Kontse-
vich’s celebrated paper [Kon|. Let Y C X (X) be a hypersurface such that its tropicalisation
Y is a subfan of ¥, and let A be the degree of a tropical fan curve. Furthermore we want
to assume that O x(x)(Y’) is generated by global sections and that there is a global section
y € I'(X(X),0xx)(Y)) with Z(y) = Y. If for example Y is integral, these two condi-
tions are ensured by Lemmas and We want to describe the locus of curves in
Mo (X(X),8a) which lie in Y as the zero locus of a global section of some vector bun-
dle Ey on Mg (X (%), Ba). If f : U — My ,,(X(X), Ba) denotes the universal family with
morphism 7 : Y — X(X), then we want to define £y := f.71* Ox(x)(Y). This is a sheaf
on My.,(X(X), 8a) which assigns to a family (C, f%,S,z1, ..., 7, 7s) the Og(S)-module
(S, f*SWE OX(E) (Y)).

Now we want to see that this is a locally free sheaf. The restriction of 75 Ox(x)(Y) to a
fibre C, of [ over s € S'is (m5)% Ox(x)(Y). It is easy to see that a line bundle on a nodal
genus zero curve which is generated by global sections has no higher cohomology because
this is true for the irreducible components, which are IP's. From this the statement follows
by "gluing" the restrictions to the irreducible components to the original line bundle. As
Ox(x)(Y) is generated by global sections, we obtain H'(Cs, (75)i Ox(x)(Y)) = 0. Know-
ing this, the Riemann-Roch-Theorem for nodal curves ([Ful98], Example 18.3.4) yields

h?(Cs, (m5); Ox () (Y)) = deg(ms); Ox () (Y) + 1.

But the degree of the line bundle is constant in flat families of curves, hence also the num-
ber h(Cy, (m5)s Ox(s)(Y)) is constant on S. By [Har97] III, Corollary 12.9 it follows that
[8m% Ox(x)(Y) is alocally free sheaf of rank h°(Cs, (ms); Ox(x)(Y)) as f¥ is flat. In partic-
ular, if we choose S as an atlas (cf. Definition 3.1 in [Gil84]) of M (X (X), 3a) we see that

Ey is locally free, cf. Definition 7.1 of [Gil84]. Therefore there is also an associated vector
bundle By — Mg, (X(X), a), cf. Definition 1.18 of [Vis89].

Now we want to show that if Y is integral, the vector bundle Fy is actually of rank Ky .A+
1. For this we restrict to a smooth curve (P!, zy,...,z,, 7). By Lemma we have that
Oxx)(Y) = Ox)(X,cpDp) and Y = o.R™ with ¢ = 3~ ¢,¥,. Hence the canonical
divisor is Ky = ¢|y and Ky.A = 3° c,deg¥,.A = 3_ c,d,, where A also stands for the
canonical tropical fan defined by it. On the other hand 7* O x(5;)(D,) = Op:1 (d,) by Lemma
214 which means 7* Ox(x)(Y) = Op1(3_, ¢yd,), so we conclude hO(C,m* Oxs)(Y)) =
chpdp +1 = KyA+ 1

If y is a global section of O x(x)(Y) with Z(y) = Y, we denote sy := f.m*y which is a global
section of Ey . If we restrict Ey to Wx, x(s), we have Z (sy)red = Wa,y for the zero locus of
the restricted section. From this, the rank of Ey and the dimension of Wx x(s) we would
expect Wa y to be of dimension

(50) vdim(Y,A) = dim Y +|A| — Ky . A — 3,

the virtual dimension of the vertex type from Definition[1.5.6]

Definition 2.3.4 (Virtual class). Let the notation be as in Construction2.3.3] We also denote
the restriction of Ey to the stack W x(s) by Ey. We obtain a fibre square

Z(sy) ——— Wa x(x)

L

Wa,xx) — Ey

where 0 denotes the zero section. As Z(sy )red = Wa y we can define the virtual fundamental
class as

(Way]" =0 [Wa x)] € Avdimy,.a)(Way)a.
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Note that push forward along the closed embedding ¢ : Wa y < Wa x(x) yields the inter-
section with the top Chern class v, [Wa y]"" = ciop(Ey) N [Wa x )]

Remark 2.3.5 (Ey; for hyperplanes H C P™). Consider the hyperplane H = Z(}_." y;) C
P™ = ProjC [yo, ..., ym] Whose intersection with the dense torus tropicalises to L7’ _; and
a degree A of tropical curves in L7"_; such that |A| > 3. We know by Lemma 2.3.7] that
WR pm = Mo, x T™. We will fix coordinates on P' and we fix the coordinates for three
arbitrary marked points, say z1, 2, 23 € C. This also fixes the automorphisms of IP! and
we can consider the open subscheme U C M ,, of curves where no marked point equals
0o. We can then use the positions of the marked points z; as coordinates and consider U as
open subscheme of A"~3 = SpecC (24, ..., ).

As in Lemma[2.3Tlthe restriction of the universal family to U x 7™ is given by the projection
pr: UxT™x P! — U x T™ and the morphism 7 to IP™ is given by a tuple of polynomials

n

(51) Bi [ (@izo0 — z1)
Jj=1 i

where 3; = 1 for some fixed .

Leth = >"", y;, which is a global section of O(H ) with zero scheme H. Then the pull back

7*h is a global section of 7* O(H) and is of the form

(52) mhlpy = Zﬁl H w20 — 21)%.

i=0  j=1
The coefficients of this polynomial in zy and z; are the global section sy = f.7m*h of the
bundle f.7m* O(H) = Ey restricted to U x T™.

We will determine these coefficients via a Taylor series expansion. Defining 2\/) = 22y — 2,
we obtain 3 (1)) = ——4 f(z(j)). We can use this to compute

=D
d 4
d_z1 Hfj(Z(J)) _ Z( l) filz (l) Hf (J) Z dz(l ]._.[fJ (J) ),
J l VE
so d;‘zll =-> #ﬁ,). If we interpret (52) as 7*h = F(z1), we can compute the coefficients

%(d%l)rF (21)]2,=0 of the Taylor polynomial of F'(z1). We want to abbreviate 7; = [], xja;

and D =3, 0. It is now easy to see that with this notation

1, d
(53) ﬁ(d—zl)TF(ZlNzl:o - —Zo ZﬂzDT

So we finally see that sy |y <= is given by

(54) suluxtm = <(

o)
=0

Therefore (U x Tm) NWR g is given by the solution of the equations (54), where we can
(=

0<r<d

omit the factors
can use (54) to actually compute ciop(Er) N [Wapm] = [Z(sw)] = [Wa.]"" and its degree.
If Z(sg) N WR pm # 0, we can use (B4) to find families in W3 p as the one from Example
Such families can then be used to determine elements in OWa .

" if we want to compute the zero scheme. If Z(sg) N OWa pm = 0, we

Note that we might miss some stable maps in W3 5 as there could be stable maps with
some z; = oo on the underlying curve. To make sure we find all smooth stable curves, we
need to do two computations with different choices of for the fixed coordinates of z1, z2, x3
(which then also gives another choice for co). The reason why we did not fix one of the
marked points to be oo in the above computations, is that the equations look nicer this way.
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Example 2.3.6. Consider the degree A = (2e3 + e3, e1 + €3, 2e¢ + e1) of curves in L3and a
hyperplane H C IP? which tropicalises to L3. We have that vdim(L3,A) = 0 and Z(sg) N
OWa ps = 0 for the global section of the bundle Er. We want to use Remark [2.3.5to show
that deg crop(Err) N [Wa pz] = deg [Wa, z]”" = 1. In this example we obtain that Z(sy) is
the zero scheme of the following equations

Box3 + B17372 + Boxi + B3wize = 0
280w + P1(x3 + 22) + 2B221 + Ba(r1 +22) =0
280 + 281 + 2B + 285 = 0.

Fixing values for 1, 2,23 and 8y = 1 this becomes a linear system of equations having
one solution which is then of multiplicity one.

For the tropical degree A’ = (2e3, e1 + 2e2, 2¢¢ + e1) we also have vdim(L3, A’) = 0 and
by a very similar computation we obtain deg [Wa+ ]”*" = 1 also in this case.

Example 2.3.7. The expected dimension is not always equal to the actual dimension. Con-
sider the two tropical degrees A = (2eg+2e1, 2e2+2e3) and A’ = (2eg+2e1, ez2+e3, ea+e3)
in L3. The expected dimensions are —1 and 0, respectively. So we would expect Wa i = 0,
but it consists of a degree two cover of the line through Hy N H; and Hy N Hs, where the H;
denote the planes at infinity in IP?. Also dim Wa, i = 1, consisting of degree two covers of
the same line where one simple unmarked ramification is free to move.

2.4. Boundary behaviour of W y

As we saw in Section [2.2] the multiplicities of certain Cartier divisors to the boundary of
Wa y encode combinatorial types of degree A curves in ). Therefore we will investigate
properties of the boundary of W y in this section. We will mostly restrict to the case
Y = X(X), as this is easier to understand than the general case. As a tool we will con-
sider suitable refinements ¥ of the fan ¥ and the induced morphisms X (X) — X (%) and
Wa xE) — Waxm):

In the moduli spaces My (X, 3) and My, the boundary divisors have a recursive struc-
ture, i.e. they are a fibre product over spaces of the same type. The hope is that we can say
something similar about Wx x(x). Therefore, we start with the following definition of fibre
products over graphs.

Definition 2.4.1 (Fibre product over a graph). Let G be a connected graph. Assume for
every vertex v of G we have some scheme (or stack) X, and for every flag f € F"¥ which
is incident to v we have a morphism ey : X,, — Y} such thatif {f, f'} is an edge of G we
have Yf = Yf/ .

Fix a vertex w of G. Let E = {{f/, fi}|i = 1,...,r} be the set of all edges of G that are
adjacent to w, where dg(f;) = w and dg(f/) = w; fori = 1,...,r. Let Gy, ..., G, be those
graphs which are obtained by cutting G at the edges E, i.e. the elements of G(G, E) (cf.
Construction [1.5.4), except the graph that only has the vertex w. Let now M, := X,, and
define inductively

M; = H Xy fo-; M;_q.
Gi, (Ys)s
We assume by induction of the number of vertices that [, (y,), Xv is already defined.
We take the product over the morphisms which are induced by ey, : X, — Yy, and
ef, : X — Yy, . We then define ] (y,), Xov := M,. Using the universal property of the
usual fibre product it is not difficult though quite cumbersome to see that this only depends
on G and on the morphisms ey, not on the choice of w or the order of the G;.
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Assume that all ef are smooth morphisms, all X, are schemes and all Y; are smooth
schemes. As smoothness is stable under base extension, it follows that also the product
HG, ) X, is a smooth scheme. Furthermore the morphisms HG, ) Xy — Yy which
are induced by ey : X;,, — Y}, are also smooth for every leaf f of G.

If there is some scheme Y such that there is a morphism ¢¢ : Yy — Y for every flag f, we
can define the fibre product [[; y Xu := [, (y,), Xv using the morphisms ¢y o ef. The
universal property of the usual fibre product yields [ [ (vp); Xv = [e, vy Xo

Definition 2.4.2 (Boundary strata). Let v = (G, (Ay,04)vecv,) be a combinatorial type of
tropical degree A curves in X. For a vertex v of v let ¥, = Starx(o,), F" the flags of v
which are incident to v and let A, be the image of the local degree A, in R™/V,, . By
iterated application of Property III in Section 7 of [BM96]

H MO,F" (X(Zv)a BZU) — Mo,n(X(Z)7 ﬁA)
G, X (%)

is a closed substack. Therefore W3 =[] () W%U_’X(Ev — Mo n(X(X),Ba) is a locally

)
closed substack and we can define

Wy () = W2 X5z, (x(s).88) Way

which is a locally closed substack of Wa y. According to Definition WR y(7) is the
substack of all stable maps of combinatorial type 7. We define the closure of W y-(v) in
WAyy as WAyy(’y).

Lemma 2.4.3. The boundary OWx x s is of pure codimension one.

PROOF. The locus of reducible curves in 9Wx x5 clearly is of pure codimension one,
as it is the intersection (with reduced structure) of Wx x(x) with the boundary divisors of
Mo (X(X),Ba). Assume there is a stable map C = (C, 1, ..., 2, ™) of combinatorial type
v having only one vertex, which is mapped into ¢° for o € ¥ and let o(1) = {p1,..., pr}.
Then there are combinatorial types 3;, where i = 1,...,r, having only one vertex each,
such that the vertex of j3; is mapped into p for every i. We abbreviate ¥, := Starx(p;)
and let A; be the image of A in R™/V,,,. By explicitly writing down families, we can see
that Wa, x(z,) = Wa x)(8i) = Wa x(z) and C lies in every Wa x(x)(5;). In particular
dimWA,X(E)(ﬁi) = dimWAi,X(Ei) = dlmX(Zl) - |A| -3 = dlmX(E) -1 |A| -3 =
dim WA,X(Z) — 1. ]

Later on, we will partially classify integral substacks of codimension one which are con-
tained in the boundary. To do this, we will need the following two Lemmas.

Lemma 2.4.4. If W is an irreducible closed substack of OWa v, then there is some combinatorial
type ~y of degree A curves in Y such that W — Wa y (7).

PROOF. Let W2 be as in the Definition 2.4.2]and let W, be its closure in the space of all
curves, Mg ,(X(X), 8a). By Theorem Z2ZI8 0Wa y is a closed substack of | W, where
the union runs over all non-trivial combinatorial types « of degree A curves in Y. As W
is irreducible, it must be a closed substack of an irreducible component of some W.,. Since
Wa,y(y) = Wy N Way, the claim follows. O

Lemma 2.4.5. If W is an irreducible component of Wa y () with W — Wa vy (8), then v > .

PROOF. Let 8 = (G, (A,,00)vevy), let X, := Stars(o,) and let A, be the image of A,
in R™/V;,. Clearly W° := W N WY y(v7) # 0 and we have inclusions

W — Way(8) = H WZWX(E«J)'
Gg, X (%)
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Every stable map ¢ = (C,z1,...,2p,7) in W° can be decomposed into unique subcurves
(C(v), F(v),|c@)) in Wx | (s, for the vertices v of 3. By a subcurve, we mean that C(v)
is a connected union of irreducible components of C. The marked points F(v) on C(v) are
those x; with z; € C(v) and the intersections of C(v) with those irreducible components
of C which do not belong to C(v). This decomposition works as in the proof of Lemma 12
of [EP97]. The stable map (C(v), F'(v), T|¢(»)) corresponds to a resolution v, of the vertex v
of 8 (modulo V;,) by Theorem2.2.18 As the whole curve C is of combinatorial type v, we
conclude by Lemma that v > . O

It would be nice to know if the converse of the previous lemma holds, i.e. if v > 5 implies
Way(v) = Wa. vy (5). But this seems to be much more difficult, it might even be wrong.

Let us now consider an example which shows that the boundary of W, y does in general
not have a nice recursive structure, even for Y = X (X). This example also shows a way to
attack this problem, namely refining the fan .

Example 2.4.6. Consider ¥ = L3, i.e. X(X) = P?, and the degree A = (2e1, 2e3, €, €).
Denote the coordinate hyperplanes of P? by Ly, L1, L. Lemma[23]tells us that W x(x)is
three dimensional. Consider the combinatorial type v which occurs by moving the trivial
combinatorial type into —eg direction. This generates two two-valent vertices over the
origin. We see that the space of all curves corresponding to v, i.e. W from Definition 2.4.2
is also of dimension three. One dimension for each line through L; N Ly and one for the
fourth special point on the contracted component Cjy over L; N Lo. This means, that not all
such curves can occur in the boundary of Wx x(x)-

If we blow up P2 in L N Ly and consider curves of degree A in the fan where o5 is subdi-
vided, we obtain degree two covers from C; onto the exceptional divisor E, ramified at z1
and x5 over £ N Ly and E N Ly. The components C; and C; are still mapped as lines into
P2, but their intersection points with F also uniquely determine their intersections with L.
Therefore the conditions that the components Cy, C; and C; glue together already deter-
mines the stable map, the only parameters being the gluing points on C°. This generalises
to Proposition

Now we want to formulate the idea of refining the fan ¥ more precisely.

Construction 2.4.7. Let 3 and ¥ be rational smooth projective fans in V := A @ R re-
spectively V := A ®z R. Furthermore let ¢ : V — V be an integer linear map such
that for every ¢ € ¥ there is a 0 € ¥ with ¢(6) C 0. Then ¢ induces a toric mor-
phism ¢ : X () — X(X) as in [CLST1], § 3.3. Furthermore we also obtain a morphism
D : Mo, (X(2),8) — Mon(X(X),.3) which maps a family (C,p, S, &1, ...., ,, 7) to its
stabilisation (C, p, S, x1, ..., T, 7), cf. [BM96] Proposition 3.10. Le. there is a stabilising mor-
phism ®g : C' — C which is proper and surjective and satisfies ¢ o # = 7 0 @5, = P50 p
and z; = ®go F; for 1 < j < n. Note that ® is proper and separated, as it is a morphism
between two separated stacks which are proper over SpecC.

Furthermore, a combinatorial type v of degree A tropical curves in 3 defines a combinato-
rial type ¢(y) of degree pA tropical curves in ¥ as follows. If (I', z1, ..., 2, h) is a tropical
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curve of combinatorial type v, then (T, 21, ..., Z,,, ¢ 0 h) is a tropical curve in ¥ of some com-
binatorial type (7). This does not depend on the choice of the tropical curve, because X
and X are fans and ¢ is linear, mapping cones into cones.

Lemma 2.4.8. The morphism of moduli spaces from above restricts to ® : Wy y 55y — Woa x ()
and it further restricts to ® : W X5 (7) — Wea,x ) (e(7))-

PROOF. As the coarse moduli spaces of Wi, X(5) and W a x(x) are of finite type over
C, it suffices to check what ® does on stable maps over SpecC. Let (C,x1,...,x,,7) be a

stable map in W3 &) By assumption C is smooth and rational. We obtain a stable map to
X (X) by just composing the morphisms ¢ o 7. If we denote C’ := C'\ {1, ..., z, } then the
restriction 7 := 7| : €' — T* maps into the dense torus of X (3) and the composition

¢ om:C" — T™ maps into the dense torus of X (X). As in Section 1 of [Spe07] the map
AV — Z with X+ ord,, X

is linear and therefore defines a unique element §; € A with (J;, \) = ord,; ™ x> for all
A € AV. In the same way,

AY — Z with X+ ord,, 7% ¢*x*

is linear, defining a unique &} € A with (6, \) = ord,, 7*¢*x* for all A € AY. We obtain

(0%, A) = ord,, " @ ord,, ﬁ*x‘/’v(’\) = {8;,0"(N) = (p(;), \)

for all A € AV and hence ¢(d;) = 6. Here ¢¥ : AY — AV denotes the dual map induced
by ¢ : A — A and the equality (a) holds by the construction of ¢ from ¢.

Assume 7 < ¢ are cones of 3 such that ¢ is maximal and 7 (z;) € O(7) C U,. Then the u,,
for p € o(1) are a Z-basis of A and we can consider the dual basis )\,. As divx*» restricted
to U, is just D,, we conclude that

ord,, 7D, = ord,, P*xM = (65, ),) for p€o(l)

and A = (41, ...,0,). The same argument applied to the fan ¥ shows that the stable map
(Cyx1, .y Tp, P o 7) is in W;A X5 In particular we also obtain ¢.5Ar = B,a and taking
closures yields ® : W, v sy — Woa x () -

We will now prove the statement about the combinatorial types by applying the case of
irreducible curves for each component. For a vertex v of  let &, denote the unique cone
such that v gets mapped into &, and let o, denote the inclusion minimal cone of ¥ with
¢(6,) C 0,. Then the map ¢ induces an integer linear map ¢, : V/Vs, — V/V,, . Fur-
thermore, let A, be the image of the local degree in V/V;, for every vertex v of . If
we denote ¥, = Stars,(6,) and ¥, = Starx(o,), the map ¢, induces a toric morphism
Oy X (f]v) — X (3,) which equals the restriction of ¢ to X (f]v) by construction, cf.
[CLS11] Lemma 3.3.21. By what we showed above, ¢, induces a morphism between the

stacks ©, : W3 o — W, &, x(u,)- As in Definition 242 we obtain closed immer-
sions
Py = [ Wz, x(.) = Mon(X (), Ba) with image My
Gy, X(8)
and ¢: W2 )= H W, &, xzm,) = Mon(X(X),Bpa) withimage M.,
Gy, X (%)

where G, and G,y denote the graphs of the combinatorial types. The vertices of ¢(7) can
be considered as a subset of the vertices of . For each vertex v of ¢(y) we want to denote
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the projection from W7 onto the factor Wx v (s ) by pr,. We obtain that

o = H (®, o pr,)

vV (y)

maps W to W;(v)‘ As ¢, is the restriction of ¢ we have that ® = 1 o ® o i~!. Hence
®: My — M7, and together with ® : W, v 5y — Wa x(x) we obtain the claim about
the combinatorial types. U

For the rest of this section let > be a smooth and projective refinement of the smooth and
projective fan ¥ C R™ and let ¢ = idgr~. In particular the induced toric morphism ¢
restricts to the identity on the dense open tori. In this case we can say a little bit more about

. We will denote 5 := [A] M) and Ba = [A]M® (cf. (I0)), where we consider A as a
tropical fan in a canonical way. For the rest of this section we will abbreviate Wa = Wx x(x)

Remark 2.4.9. In general there are several combinatorial types 7 of tropical curves of degree
A in ¥ such that ©(§) = =, cf. the picture below. However, if «y is of geometric dimension
one, a curve of this combinatorial type can be transformed into any other curve of this
combinatorial type by rescaling . Hence the set of all possible positions in R™ of a vertex
of v is a ray (without the origin) and therefore there is a unique combinatorial type ¥ with
©(¥) = 7. The picture below shows examples in L3 of both cases, where the combinatorial
type 7 is unique and where it is not.

dim M(y) =2

gl ¥

We will see in Proposition that refining the fan X is indeed useful to understand the
boundary a little more. Furthermore, we will see in Section [3.T] that intersections of the
virtual fundamental class and the boundary can be used to determine a one dimensional
tropical fan that is a candidate for the tropical moduli space we are looking for, cf. Conjec-
ture3.1.7] Therefore we will also study how the virtual fundamental class behaves under
refinements of the fan. To do this, we first need to state two lemmas.

Lemma 2.4.10. The morphism ® : Wz — Wa from above is surjective. Push forward along ®
yields (I)* [WA] = [WA]

PROOF. Let M denote the coarse moduli space of Wa and let pao : Wa — Ma be
the canonical proper morphism. By Lemma[2.4.8 we have pa o ® : Wz — Ma and as this
morphism has a scheme as target, it factors through the coarse moduli space Mz of W5 as
@y opx = pa o ®. Here pz : Wx — Mg is the canonical morphism. Clearly also @y, is
proper as a morphism between separated projective schemes.

We will show that @) is a bijection between the closed points of pz (W3 ) and pa(W3).
Given a stable map (C, z1, ..., x,, m) € WR, we can consider C’' := C'\ {z1,...,z,} and 7’ :=
| O — T™, where T™ is the dense torus of X (%) and X (). As the map ¢ restricts to
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the identity on the dense open tori of X (%) and X (X), we can extend 7’ : ¢’ — X (%) to
7 : C — X(X) by the valuative criterion of properness and smoothness of C. Hence we
obtain a stable map (C, 1, ..., z,,7) € Wx. By construction we obviously have 7 o ¢ = 7.

This proves the bijectivity.

Now Mj is the closure of pa(W3) and Ma is the closure of pa (W) as the coarse moduli
spaces are of finite type over C. Properness of ®,; yields surjectivity between the coarse
moduli spaces.

This can now be used to show that the image of Wz under ® is just W in the sense of
Definition (1.7) in [Vis89]. By Proposition (2.6) of the same paper there is a proper surjective
morphism ¢ from a scheme Nx to Wx. Let f = ®); o pz o g and g = ® o ¢ which are both
proper as compositions of proper morphisms. From surjectivity of ¢ and what we already
know about ®,;, we conclude that the image of f contains all closed points of pa(WR)
and therefore it is surjective, as it is proper. Since W is a Deligne-Mumford stack and the
source of ¢ is a scheme, g is representable by [Vis89], Proposition 7.13. To show that g is also
surjective, consider a morphism from a scheme V' — Wa which gives us the following
commutative diagram.

f
Nx W M
Ay A A A

NAXWAV*)V

This shows that N3 xw, V = Nx xu, V and the induced morphism Nx xw, V — V
corresponds to a base change of f under this isomorphism and hence it is surjective, since
f is. If we choose V as an atlas, then by the surjectivity of g the image of Wz under ®
(cf. Definition 1.7 of [Vis89]) is defined as the stack coming from the groupoid structure
R =V xw, V =2 V which is just the stack Wa (cf. the end of section 7 in [Vis89]).

By Lemma 1.16 of [Vis89] we obtain the following equation for the degrees
deg(W5 /M) deg(Mz/Ma) = deg(Wx/Wa) deg(Wa /Ma).

As @) is generically a bijection, we have deg(Mz/Ma) = 1. By Corollary (2.5) of [Vis89]
the degree of a stack over its moduli space is the number of automorphisms of a general
element. Hence deg(Wx /Mz) = deg(Wa/Ma) = 1 and deg(Wx /Wa) = 1. This proves the
claim about the push forward. O

Let Y C X(X) be hypersurface such that Oy x)(Y) is generated by global sections and
such that there is a global section y € I'(X(X), Oxx)(Y)) with Z(y) = Y. Via the toric

morphism ¢ : X () — X (X) we also obtain a preimage hypersurface Y = ¢~'Y X (X).
As in Construction we obtain a vector bundle Ey on Wa which we can pull back to

W via @. The pull back ¢* Ox(x)(Y) = Oy 5, (Y) is also generated by global sections and
the global section ¢*y clearly satisfies Z(¢*y) = Y, hence we also get a bundle Fy on W;x.
The next lemma shows how these bundles are related.
Lemma 2.4.11. For the toric morphism ¢ : X (X) — X (X), the hypersurface Y = ¢~'Y and the
induced morphism ® : Wz — Wa we obtain

*Ey =~ By
for the vector bundles from Construction[2.3.3
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PROOF. We will prove the claim for the locally free sheaves £ and ®* £y . To compute
the pull back of the locally free sheaf £y on a family (C‘, 15,8, %1, ...,&n, 7s), we need to
compute

D* Ey (C, f5,8,%1, e, T, T5) = Ey (V(C, f5,8, &1, o, Tny 7s))
= EY(Ca fSa S,ZCl, "'7xna7TS) = F(S7 ffﬂg OX(E)(Y))7

cf. [Sta] Section 61.7 "Sheaves of modules". Let &g : C — C be the S-morphism which
stabilises the family, as in Construction[2.4.71 We then obtain a commutative diagram

f”/s C X(%)
S ,\@s ¢
P> TS x(w)

By Construction 233 € maps (C, f°, S, %1, ..., #n, Ts) to T(S, f37% Ox5) (Y)). There is a
canonical isomorphism

FP75 Ox 5y (Y) = £2(B5)u750" Ox () (V) 2 f2(D5). P57 Ox (5 (V).

It is known that (®s5). O = Oc¢ (cf. [BM96], proof of Proposition 3.10) so we may apply
the projection formula ([Har97], II Exercise 5.1) to obtain another canonical isomorphism
(@5)«P57s Ox(5)(Y) = w5 Ox(x)(Y). Altogether we get a canonical isomorphism

fo 7% Ox(i)(ff) = 275 Oxm)(Y).

One can check that these isomorphisms are compatible with the restriction maps of the
sheaves, which is quite cumbersome to write down explicitly. The claim about the vector
bundles follows immediately. O

Obviously @ also restricts to a morphism ® : W, y — Wa y since $(Y) =Y. We can
use the previous lemma to see what happens to the virtual fundamental class under push
forward along this morphism.

Corollary 2.4.12. With the notation from above we have

®, [WAY} o = [Wa y]UiT € A, (Way)a-

)

PROOF. The usual properties of Gysin homomorphisms also hold for stacks, which
was proven in [Kre99], Theorem 2.1.12 (xi). Therefore we may apply [Ful98], Proposition
14.1. (d) (ii). This yields

P, [WA,YV} = deg(Wx/Wa) [Way]"" € Au(Way)o.

By Lemma [2Z.4.I0we know deg(Wx /Wa) = 1. O

The following proposition generalises the idea from Example It shows that under
certain assumptions on a combinatorial type 7, at least the boundary stratum W3 (7) has
a recursive structure. Unfortunately we cannot prove that this extends to the closure of
the boundary stratum, cf. Conjecture 2.4.14 The reason for the usefulness of refinements
of ¥ is that we can always find a refinement such that v satisfies the assumptions of the
proposition, cf. Corollary or Corollary2.417
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Proposition 2.4.13. Let v = (G, (Ay, 0v)veve ) be a combinatorial type of degree A curves in ¥
such that every vertex v of v lies on a ray of X or the origin, i.e. o, € X(1) or 0, = 0. Then

WZ(’Y) = H W%mx(zvy
G, X(%)

where Y., = Stars (o) and A, is the image of A, in R™/V, .

PROOF. As in Definition 242 we see that [[; v ) Wz X Moo (X(2),Ba)isa

locally closed substack. We want to denote the image in M ,,(X (), 3a) by M?. We now
want to show that M7 is actually a locally closed substack of Wa. As the coarse moduli
space of M (X (X),3a) is of finite type over C, it suffices to check this for stable maps
over SpecC.

LetC = (C,z1,...,zn,m) € MS. We will prove the claim by just writing down a family in
W3R over D = SpecC[t] with C as special fibre. We will find the family by reversing Con-
structions and 2.2.21] so we will stick to the notation from there. Choose a tropical
curve (I', 1, ..., zn, h) of combinatorial type « such that for each vertex v of of y the image
h(v) lies in Z™ and every edge of  has integral length. Now insert additional two-valent
vertices on all edges of I' until each edge is of length 1. We denote the resulting underlying
graph structure on I by G. In Construction we called these additional two-valent
vertices S-vertices. For an example picture we refer to Example 2222

Fix any vertex w of G. For every vertex v, let p, denote the cell with h(v) € pJ, which is
either 0 or a ray of ¥. Now we want to label the vertices of G as in Construction2.2.20l Let
k € [n] and V(0, k) := w for all k. For each k there is a unique path from w to the leaf z,
in G and we denote the vertices on this path by V (0, k), V(1,k), ..., V(mg, k) in their order
of appearance. Recall that we called the first number in the brackets the level of the vertex.
Let I(m, k) C [n] the set of all i such that V(m,i) = V(m, k).

Now we want to choose coordinates on the irreducible components of C. For C'V (%) we
choose coordinates such that no special point is co. For every other component C'V (™),
there is a node which is the intersection with a component C'V(™"*) of lower level m’ < m.
We choose coordinates such that this node is co. Choose numbers v/, € C as follows:
For each j € [n] and 1 < m < mj; such that V(m, j) is not an S-vertex, i.e. CV(™J) is a
component of C, let (1 : s;) denote the unique special point on the component C'V ("7,
which is either the marked point z; or the node which connects this component to the part
of C containing z;. We define v/, = s; in this case. If V(m, j) is an S-vertex, we choose
7k =0forall k € I(m, j). We can now define

mj
S i am
m=0

If we denote the set of special points on C* by F"* for every vertex v of vy, the morphism
7| is given by a tuple of polynomials

ﬂ;/zg‘ﬁ (v) H (ZOSf - Zl)a/f;(v)

fEFY\oo o

where the special points are co and (1 : s¢) for f € F¥ \ co. Of course, for v = w we do not
have the special point co and hence a5°(w) = 0 for all p.

We want to define elements 3, € C[t] as follows: By assumption the vertex w has integral
coordinates h(w) = 3, v, u, where (v,), € Zi(ol) and v, > 0 if and only if p = p,, € X(1).
We now define 3, = Byt and B,,, = t'rw in case p,, € B(1).
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Let 7@ : PL. — X(X) be given by the tuple (Bp [1;(=0Z; — zl)o‘i) and define sections
P

Z;:=(1:%;): D* — P},.. As usual we have D* = SpecC[t];.

Comparing our choices #; and 3, to Constructions and 2.2.2Twe see that the family
(PL.,pr, D*, %1, ..., @n, ) extends to a family over D having a special fibre (C’, 21, ..., 2}, 7')
with C' = C' and =; corresponds to z; via this isomorphism. Hence we will identify the
curves and the points. After this identification we also obtain 7|cvo,x» = 7'|cvio.x, cf. @2).

We will now prove by induction on the level that 7 and =’ also coincide on the other irre-
ducible components, after possibly adjusting our choices for Z;. Let k € [n], m < m’ < my,

v := V(m, k) and v' := V(m/, k) such that C*’ intersects C' in a node. For this note that
m'|cv (1 ¢ si) only depends on level m and below, i.e. 4{ with [ < m, and also on (3,),, cf.

1st case: p, = p,» = 0. We obtain

rlow (00) = (8 TIDHY) = alen(1 s ),

This uniquely determines the coefficients ﬂgl for all p € 3(1) up to action of the torus Gx

from (26). As we already know that the special points coincide, only the coefficients (ﬂ;j/ )p
are missing to recover 7|.... But as we just saw, these coefficients are already determined
by 7|cv = 7’|cv and therefore 7|, = 7| cur .

2nd case: p, = 0, p,y € X(1). We obtain
’ Otf ’Ul .
{ By TI(=1)*™) if — p#p,
0

(mlew (), = !

where the index p stands for the p-coordinate of the point. As 7./ (00) = 7|cv (1 : s3) this
again determines the coefficients Bgl forall p # p, up to the Gx-action, hence 7|, = 7’| .

3rd case: p, € (1), p,r = 0. We obtain

{ﬁgn@nﬁw>ﬁ p# po
0

(el (50)), = e

7| oo (00) = m|ew (1 : s1,) determines the coefficients ﬁ;’/ for all p # p, up to the Gx-action.
But we still need to find out about Bg;.

We can achieve arbitrary values of Bg; on our limit component C* by performing a coor-
dinate change on Cv': (29 : 21) © (30 : Z1) where %y = 1120 and %, = z;. In our new coordi-
nates the special points take the form (1 : 5¢) and oo, where 55 = 1~ 1s;. This changes the
py-coordinate of the map 7., from

:)1; ZS‘P (v") H (SfZO . Zl)oz“;v (v")
feF\oo
to
g T G
fEFY \co
while the coefficients of all other entries stay the same, as the factor z, only occurs in the
hile th fficients of all oth tries stay th the fact ly in th

pu-coordinate. Replacing the values 7/, by 4/, in Z; we obtain the same curve C’ and
marked points #; in the special fibre and additionally 7|,., = 7’|. for a suitable choice

of 7. Note that choosing 1 has neither influence on anything below level m’ nor on other
branches of the tree G.
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4th case: py, py € X(1). We obtain
v’ af (v .
(7w (20) ={ G TICDC) 5 p pus o

0 else

Again, 7|o.(00) = m|cv(1 @ si) determines the coefficients B};/ for all p # p, up to the
Gx-action. As in the third case we obtain 7| = 7| .

So we see that for any choice of C we can find a family in W with C as special fibre, which
proves the claim. O

Conjecture 2.4.14. Let v = (G, (Ay, 0y)vev, ) be a combinatorial type of degree A curves
in 3 such that every vertex v of -y lies on a ray of ¥ or the origin. As this was the case in all
examples that I saw, I suppose that the previous proposition can be generalised to

Wal(y) = H WZU,X(ZU)v
G, X(%)

where ¥, = Stars(o,) and A, is the image of A, in R™/V,, . We already saw in Example
2.4.6 that this is in general false if we omit the assumption that the vertices lie on rays or in
the origin.

Corollary 2.4.15. If y is a combinatorial type of degree A curves in X, then WR (vy) # 0.

PROOF. Let X be a smooth projective refinement of 3 such that there exists a combi-
natorial type 4 of degree A curves in ¥ that satisfies the assumptions of Proposition Z.4.13
and ¢(7) = v. Then W% (7) # 0 by Proposition2.4.13and Lemma[2.4.8yields the claim. [

Proposition 2.4.16. Let vy be a combinatorial type of degree A curves in X such that every vertex
either lies in the origin or on a ray. Then Wa () is irreducible.

PROOF. Lety = (G4, (Ay, JU)UGVG7 ), ¥, = Starg(c,) and let A, be the image of A, in

R™/V,. To shorten notation let U, := W ()" BY the Proposition we already

know that WX (v) = [l x(x) Uv- We now want to prove the irreducibility for WX (7).
For simplicity assume first that all vertices of  are at least three-valent. Then all U, are
smooth and irreducible schemes of finite type over C by Lemma[2.3.1l As the schemes we
work with are of finite type over C, it suffices to consider their sets of closed points. Let
G = (Vg, Fa,ja,0c) be a connected subgraph of G-, where subgraph means Vo C Vg,
Fg C Fg, and the map O is just a restriction of dg., while jo(f) := ja,(f) if jo,(f) € Fa
and jg(f) := f else. We will proceed by induction on the number of vertices of G.

The induction hypothesis is that for every leaf f of G which is incident to some vertex
w € Vg the morphism ey : [[; x5 Us —> X (), which is induced by ev; : U, — X (X),
has irreducible fibres.

First let us check the induction start. Let f be a flag with 0z (f) = v such that it is mapped
into ¢0° for some o € X. We will show that a fibre of the evaluation evy : U, — O(0)
at the flag f is isomorphic to T4me=dimav 5 Moy o, hence irreducible. As in Lemma
we can choose a maximal cone 7 € ¥ (m) with 7 > ¢ such that the torus factor of
Uy, = TU™Z0 5 My ya1(v) has the coordinate functions (8,),er(1)\0,(1)- We have to take
7(1) \ 0,(1) because we work with the fan ¥, here. Choose coordinates on the universal
family IPf, such that the section f is constant co. Then the evaluation evy on U, is given
by the tuple (8,(—1)""),er(1)\0(1) for suitable integers m,. So keeping the image point
fixed, we can vary the marked points freely and also those 3, with p € o(1) \ o,(1). This
proves the claim about the fibres. Note that ev; : U, — O(0) is even smooth by generic
smoothness (cf. III, Corollary 10.7 of [Har97]) and the action of the dense torus of X (X) on
O(o) and U,, which is transitive on O(o).
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For every connected subgraph G of G as above let o denote the cone into whose relative
interior the flag f is mapped. We just saw that the evaluations evy : Uy, ) — O(oy)
and the O(oy) are smooth, hence also the fibre product [ (o(,)), Uv = Il x(x) Uv is
smooth. Furthermore also the morphisms ey : [[; x ) Us —> O(0y) induced by the
evaluation morphism ev; : Uy, sy — O(oy) are smooth, cf. the remark in Definition 2.4.11
The reason is that smoothness is preserved under base extensions.

Now we want to prove the induction step, so let G be a connected subgraph of G, w
a vertex of G and f a leaf of G which is incident to w. As in Definition 247l let £ =
{{fl, fi} |1 = 1,...,r} be the set of all edges of G that are adjacent to w, where 0¢(f;) =
w and Jdg(f/) = w; for i = 1,...,r. Let Gi,...,G, be those graphs which are obtained
by cutting G at the edges E, except the graph that only has the vertex w. We assume
that w; is a vertex of G; and we abbreviate o; := oy, = ¢ - Then the smooth evaluation
morphism evy; : Uy, — O(0;) induces a smooth morphism e€; : [, x(x)Us — O(03)
fori=1,...,r, as mentioned above.

For a point ¢ € X (X) we obtain the fibre of ¢ as

- | (He;wevm))): U ).

zEev;l(t) i=1 yEeV(eV;I(t))

Here e := J[;_ e : [Ti; e, x(s) Uv — Ilizy O(0s) is a smooth morphism, as it is a
product of smooth morphisms, and ev := [[;_, evy, : U, — [[;_, O(0;). By induction
hypothesis the e; ' (ev, ()) and hence the e ~!(y) are irreducible and by the induction start
also eVJT1 (t) and ev(ev;l(t)) are irreducible. This implies that e}l(t) is irreducible, as e is
smooth and thus also open.

So for G, and a marked point z; we have that e, : [[¢  x(x)Us — O(0s,) is smooth,
hence open. By induction the fibres of e, are irreducible and irreducibility of O(c,,) im-
plies irreducibility of [[  x () Us-

For the general case, where v might have two-valent vertices, we add additional leaves of
direction 0 to those vertices of -y of valence two. This gives a combinatorial type v of curves
of degree A’. As above we see that WR,(v’) is irreducible and as WR (v) clearly is the image
of W/ (") under forgetting the additional marked points, it is also irreducible. O

Now we can use the results from above to partially classify integral substacks of codimen-
sion one that are contained in the boundary.

Corollary 2.4.17. Let ~y be a combinatorial type of degree A curves in ¥ of geometric dimension
one. Then Wa () is irreducible and of codimension one in Wa.

PROOF. First we choose a smooth projective refinement % of X such that the unique
combinatorial type 7 in X with (5) = + satisfies the conditions of Proposition 2416l The
combinatorial type 7 is unique, since v is of geometric dimension one, cf. Remark[2.4.9] By
Lemma[2.4.10lwe know that ® from Construction[2.4.7]is surjective and by LemmaR2.4.8 we
know that W3 () must be equal to ®(W3 (7)). Hence ®(Wz (7)) = Wa(y) is irreducible by
Proposition

Now we want to prove the claim about the codimension. Clearly Wa(7) is contained in
an irreducible component W of the boundary 0Wa which is of codimension one. But then
W — Wa(B) for some combinatorial type § by Lemma[2.4.4 Then v > 3 by Lemma
and as § is non-trivial it must also be of geometric dimension one, thus 5 = v. So we
conclude Wa (v) <= W < Wa(8) = Wa(y), which proves the claim. O
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Conjecture 2.4.18. As this is the case in all examples that I know, I suppose that also the
converse of the previous corollary holds. Le. for every integral substack W of 0Wa of
codimension one in Wa, there is some combinatorial type v of geometric dimension one
such that W = Wa (7).

In the next chapter, we will be interested in explicitly determining the multiplicities of cer-
tain Cartier divisors along boundary divisors of the form W (y). Unfortunately our meth-
ods are limited to computations on families over a smooth irreducible curve. Therefore we
will find such a curve through Wa () and compute the multiplicity on the curve. However,
if W is étale locally around Wa (y) the intersection of several irreducible components, this
method yields the wrong multiplicity. Therefore we will prove Lemmas and 2.4.27]
about two cases where this approach works.

A scheme S is called unibranch around a point P € S, if P has only one preimage under
the normalisation map. This is the case if S is étale locally irreducible around P by the next
lemma. In general we cannot expect W to be unibranch around an element of W3 (), cf.
[Vako0], but there are two cases where we can say something. These cases are where 7 is of
geometric dimension one and consists of up to two vertices. In the following three lemmas
let M A denote the coarse moduli space of W and let p : Wa — Ma denote the canonical
proper morphism. Furthermore let M3 := p(WR(v))-

Lemma 2.4.19. Let R be a noetherian local domain which is complete with respect to its maximal
ideal m. Then the integral closure R” in the field of fractions Q(R) is a local integral domain,
complete with respect to its maximal ideal.

PROOF. It follows from Exercise 8 in Chapter V, §2 of [Bou72] that R" is a local integral
domain. The ring R" is a finitely generated R-module, hence we obtain the m-adic comple-
tion of R” as R¥ = R ®r R = R¥ ©p R = R”. The m-adic topology on R” is generated by
m” R¥ = (m R")", the powers of the maximal ideal of R”. Hence R is also complete with
respect to its maximal ideal. O

Lemma 2.4.20. Let |A| > 3 and let «y be a combinatorial type of degree A curves in ¥ with only one
vertex. Then the coarse moduli space M is smooth at every closed point of Mz, i.e. each irreducible
boundary curve.

PROOF. LetC = (C,z1,...,xn, ™) € WR (7). We will show that the coarse moduli space
Ma is smooth at C. As |A]| > 3 the curve C has no automorphisms and we can compute
the tangent space of Ma to C as the space of first order deformations of C. As C = P! is
rigid ([Har10], Example 5.3.1), first order deformations of C' are all trivial. If 7 is given by

(Bp 11 (2025 — 21 )?),, then any first order deformation is given by the tuple

J

B+ Bye) [ [ (0(xj + 2e) —21)™ |

I P

defining a morphism 7 : ]Pelz[e]/@Z) — X (¥). Sowe have |%(1)|+|A| parameters 3, ', € C.
Let ¢ € ¥(m) be a maximal cone, such that 3, = 0 implies p € o(1). Then we can assume
By, + B,e = 1 for p ¢ o(1) by Remark Dividing by automorphisms of P¢ /.2,
we obtain a tangent space of dimension dim X (¥) + |A| — 3 = dim Wa, which proves the
claim. O

Lemma 2.4.21. Let |A| > 3 and let v be a combinatorial type of degree A curves in Y which is
of geometric dimension one and has two vertices. Then the coarse moduli space M is unibranch
around every closed point of M.
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PROOF. Choose a closed point C € M3, i.e. a curve C over C, and an affine neigh-

bourhood U = Spec R of C in Ma. Then we can consider the completion R with respect
to the maximal ideal m¢ defining the point C. Let MR := p(W3R), which is a fine mod-
uli space as |[A| > 3. We obtain a morphism e : U = Specﬁ — U. Consider irre-
ducible curves C; and C, inside U through me = me }AB, but e(C;) ¢ M3 fori = 1,2.
The idea is to show that C; and C; have to lie in the same irreducible component of U.
To do this, we will find families of stable maps over C; and C, and then construct an
irreducible two dimensional family of stable maps which contains both of them. Using
Lemma and the Cohen Structure Theorem, cf. [Eis04] Theorem 7.7, we see that the
normalisations are v; : D = Spec C[t] — C;. Restricting to D* = SpecC[t]; we ob-
tain morphisms e o v; : D* — MR and as My is a fine moduli space, we also obtain
families 71 = (C1,p1, D, x1,...,xn,7) and Fo = (C2,p2, D, Z1, ..., Zn, ) associated to these
morphisms. Pick three sections, without loss of generality x1, z2, z3 and #1, Z2, 3 and
reparameterise the families such that these three sections attain fixed constant values in C
in the generic fibres. This has the consequence that if we want to compute the tropicalisa-
tions of the reparameterised families as in Construction the vertex V (0, k) is in both
cases the unique vertex from which there are disjoint paths to the leaves x, x3 and 3.

Because v is of geometric dimension one, the ray M(y) in My(R™, A) has a primitive
integer generator 7. Then the tropicalisation of the restriction of 7 to D* (cf. Construction
2.2.20) equals bor., for some integer by. Also the tropicalisation of the restriction of F» to
D* equals by, for an integer b;. Consider the finite base changes ¢, : D — D, t > tbi
fori = 1,2. Denote ¢ F1 = (C1,p1, D*, 21, .70, ) and @; Fo = (C3,p2, D*, %1, ..., T, )
by abuse of notation. Clearly we have trop(w, z1,...,2,) = trop(®, &1, ..., &n) = bibar,.
Furthermore both families extend to families over D, having special fibre C. Therefore
the morphisms € o v; o ¢y, : D* — Ma extend to ¢; : D — Ma. We can assume
that trop(r, 1, ...,x,) = trop(#, Z1, ..., Z,) has the vertices V (0, k), ..., V(m, k), where the
vertices V(1,k),...,V(m — 1,k) are S-vertices and we abbreviate v = V(0,k) and w =
V(m, k). As usual, let o, and o,, denote the unique cones into whose relative interiors
v and w are mapped. As v and w are adjacent in v, o, and o, span a cone 7 € %, ie.
7(1) = 04(1) U oy(1). Assume that p € 0,(1) N 0y (1). Then we can vary the length of the
unique edge of v and move the curves of combinatorial type 7 into direction u,. Hence the
geometric dimension of v would be at least two. As v is of geometric dimension one, we
have that 0,,(1) N 0, (1) = (. In the following let o € ¥ be a maximal cone with 7 < 0. By
Lemma[2.2.T7we can assume that the morphisms 7 and 7 are given by

By [ (20w —21)* | and | B, [[(20%; — 1)
J o J o

with sections z; = 3, ~/t™ and &; = 3, 77,t™ and 8, = B, = 1 for p ¢ o(1), by Re-
mark From Construction Z2Z2Twe know that ~} = 7], because we fixed coordinates
on C**) by reparameterising the families 7 and F». Also the position of v in R™ in the
tropical curve represented by by bor, is given by (v(3,)), and (v(5,)),, therefore these vec-
tors must be equal. Furthermore, the components C(™*) in the limit of both families are
equal, both having the node co as special point. Hence there is an affine linear automor-
phism f : C — C, z — ax + b with f(vlj) = 7ylj for all j € I(m, k). We want to define
17, := (1+s(a—1))7, +sb € C[s] and T := (1 — s)7] + 57 for I # m. Using this, we
define a section X; := > T t™ € C[t] [s] with X;(s =0) = z; and X,(s = 1) = &;.

As in Construction2.2.2]lwe denote the lowest non-zero coefficient of 3, by b, and the one
of 3, by b,. We then obtain by [@Z7) that the extended maps 7| .5 and 7| .») are given by

by [Tz = %)% and B, [T (626" = =) for p ¢ 0,(1)
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and 0 else, where the égi) come from the local degree A,. We conclude that b, = b, for
p ¢ 0,(1). If we use @) to determine the maps on the other component C(™*), we obtain
the following.

m,k)\e(®) m,k m,k)ye(® .
oo _ [ by (Tgnam O = 9% ) )% TGPk = 2% it p ¢ 0u(1)
g 0 if p € 0y (1)
7 m,k)ye(® ~(m,k) ~ . ~(m,k)\e® .
oo _ [ by (Tgnam O = 98)% ) G TLE D3k = 2% it p ¢ 0u(1)
! 0 if p € 0u(1)

zmR) (m’k) are the coordinates on C™¥) that are obtained from the family ¢} F»
and the 1ntegers eff) come from the local degree A,,. A coordinate transformation via f
yields

_o(m.k) C1\e@7 i o m, k) e(® mk) ks m,k)y e
7 =@ b, | [T Gf =) | e T = )
'gzz(lm) i

Here %,

and we conclude b, = b, a ¢ for p € 0,(1). We now want to define B, := b, if p ¢ 0,(1)
and B, :=b,(1+ s(a — 1)) " for p € oy(1).

Let So = SpecC[t] [s];(115(q—1)) and &; = (1 : X;) : So — P, define sections. Fur-
thermore (7,), with 7, := Bpt"(ﬂﬂ) [1;(z0X; — 21)% defines a morphism # to X (%) such
that (l[’ls07 pr, So, &1, ..., &n, ) is a family in WR. If we denote S = Spec C[t] [8]1+s(a71)’ we
can extend this family to a family in W over S, which works exactly as in Construction
2.2.211 We just have to replace 7% by I'% , b, by B, and blow up in the disjoint subvarieties
Z(t, z(m=1k) Tk Yinstead of (1:~* ). For a fixed value s¢ of s we can determine the
fibre over (s — so,t) by just plugging s, into B, and X; and this then into formula @7).
On the component belonging to v we immediately see that this equals the corresponding
component of C. On the component belonging to w we have to apply the affine coordinate
transformation « — (1 + so(a — 1))x + sob first, but then we see that also this component
equals the corresponding component of C.

So we obtain a family (C, p, S, , Z1, ..., &», T) in Wa where all fibres over Z(t) are equal to C.
Therefore the induced morphism 1) : S — M satisfies 9(Z(t)) = {C} and 9| z(s) = ¥1 and
V|z(s—1) = 2. As C[t] [s], +s(a-1) is complete with respect to the ideal (¢) the morphism 1
naturally lifts to w S — U. By construction we have 1/1| Z(s) = V10 ¢y, and w| Z(s—1) =
vy o @y, and therefore C; and C are both contained in 1/;( ) which is irreducible. O



CHAPTER 3

Tropical moduli spaces of covers and of lines in surfaces

In this final chapter we want to use the theory from the previous two chapters in order
to obtain a few results. We will construct a one dimensional tropical fan Wa y by using
intersection theory on Wa y in certain cases. This will be the content of Section 3.1l In
Section[3.2lwe will show thatif L C IP™ is a line which tropicalises to L", then W 1, equals
Mo (A, LT") from Definition for a suitable choice of moduli data. Furthermore, we
will show that every vertex type (A, L") is good. In Section 3.3 we will use the theory
from the first chapter to construct moduli spaces of tropical lines in smooth surfaces in R?.
In particular this includes the tropical cubic surface. In the last section we will combine
results from Chapters Il and 2 to compute a few degrees of the virtual fundamental class

deg [Wa, H]vir, for degrees A of curves in L3 and hyperplanes H C IP? tropicalising to L3.

3.1. Constructing local tropical moduli spaces

In this section we want to use intersection theory on W x(x), respectively Wa y, in the
cases vdim(Y, A) = 1, respectively dim Wa y = 1, to define a tropical fan Wa y of dimen-
sion one in My(R™, A). As usual we will assume that Y C X (X) is an integral subvariety
and that the subfan ) of ¥ is the tropicalisation (with weights) of ¥ intersected with the
dense torus of X (¥).

Definition 3.1.1. An irreducible boundary divisor of W y is an integral substack A of 0Wa y
which has codimension one in Wa y. Note that by Lemma [2.4.4] there is a combinatorial
type 7 of degree A curves in ) such that A < Wa y (7). Furthermore, in case Y = X (%)
and 7 is of geometric dimension one, we have that Wx x(s)(7) is already irreducible and
of codimension one, cf. Corollary 2.4.17

Lemma 3.1.2. Let A be an irreducible boundary divisor of Wa vy with A < Wa y (7). Then there
is a unique element 04 € Mo ., such that

(55) ft;(04) = ord a ft7 (ij|kl)vi; + ord a ft7 (ik|jl)vi, + ord a £ty (il|kj)vy

forall I = {i,j,k,1} C [n]| of cardinality four. Furthermore, we can equip the n-marked ab-
stract tropical curve (T 4,1, ..., ) represented by U4 with a map h : |Ta| — | Y| such that
(Ta,x1, ..., Tn, h) is a tropical stable map of degree A and combinatorial type .

PROOF. By Proposition 2.6 of [Vis89] there is a finite and hence proper morphism from
a scheme ¢ : U — Wa y. We then want to compute the multiplicity of ¢*D to an irre-
ducible component V' C ¢~ 1A for some Cartier divisor D on Way. This can be done by
a local computation on a curve j : S = Spec Oy,y — U through the generic point of V.
Let my, be the closed point of S. We can normalise the curve v : S — S and consider a
preimage point P € v~ (my,) and an étale neighbourhood of P

gp: Dg = Specﬁ[[tﬂ %Spec(AQQP — S,

Then Fp := ¢ o j o v o gp clearly induces a family (C,p, Dg, z1, ..., xn, 7) with generic
fibre in W3 .. We can apply Lemma [2.2.241and obtain the existence of a vp € My, such

113
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that the abstract tropical curve represented by vp can be equipped with a map to || of
combinatorial type ~. Furthermore,

ft](’l}p) = orde F;; ft?(zy|kl)vw + OI'de F;; ft?(lk/’ljl)’l}lk + ordmp F;; ft?(’t”k/’j)vll,
where mp is the closed point of the étale neighbourhood of P. We have that
ordy ¢*D = ordy,, j ¢*D = Z ordy, FpD

Pev=Y(my,v)

and we define vy := 3 pc, -1y, ) UP- APplying the projection formula to ¢ we obtain

ords D = deg(V/A)ordy ¢*D,
v
where the sum runs over all irreducible components of ¢~ A. Finally we define 94 :=
> v deg(V/A)vy, which then satisfies (55) by construction. Since ) is a fan, M(y) C
Mo(R™,A) is a cone. Therefore also the abstract tropical curve represented by 74 can

be equipped with a stable map to |} | of combinatorial type . Uniqueness of ©4 follows
from Lemma [[.2.11 O

Now we want to recover the map into |V |. As in Section[2.2 we will use approach (3) from
Construction[1.2.27] so we choose two root leaves.

For this assume we have a cone o € X. Let S, = J, ¢y, ,>, 7(1) \ (1) which is in obvious
bijection to Stars ()(1). We want to denote the images of the primitive generators w,, of the
rays p € S, under the projection to R™ /V, by f,. These are then the primitive generators
of the rays in Stary; (o).

Lemma 3.1.3. Let A be an irreducible boundary divisor of Wa y with A — Wa y(y). Then
by the previous lemma there is a unique 94 € Mo, satisfying (55) and representing an abstract
tropical curve that can be equipped with a tropical stable map of degree A to | Y |. So there is some
pa € R™ such that (Da,pa) € Mo, xR™ = My(R™, A) represents such a map. For each j
with §; € o € Y we obtain

(56) evy”(ba,pa) = »_ ordaevi D,f, € R™/V,.
PESs

PROOF. The proof works exactly as the one of the previous lemma, using D = ev} D,
and Lemma instead. a

For the rest of this section, we assume that there are ;, d> € A with §; € o foro; € ¥ and
j =1,2such that V,, & V,, = R™. We will fix z; and x5 as root leaves for My(IR™, A).

Construction 3.1.4 (The fan Wa y). For every irreducible boundary divisor A of Wa y or
of W, x(x) we obtain a unique element 94 € Mo, by LemmaB.1.2l AsV,, NV,, = 0by
assumption, we also obtain a unique p4 € R™ such that v4 = (04,pa) € Mg xXR™ =
Mo(R™, A) satisfies (55) and (56). Recall that vdim(), A) is the expected dimension of
Way, but note that it is not clear whether the following two cases will yield the same
result or not, even if vdim(Y,A) = dimWa y = 1.

Case 1: We have dimWa y = 1. Let Wa y be the one-dimensional fan whose rays are
generated by the vectors v4 for all irreducible boundary divisors A of Wa y. We define
r4 = vy for every A. Assume that va,,...,v4, are all vectors that generate some ray p €
Wa,y. Then }°7 | va, = wu, holds for some natural number w and the primitive integer
generator u, of the ray. Let w be the weight of the ray p.

Case 2: We have vdim(Y,A) = 1. Let Wa y be the one-dimensional fan whose rays are
generated by the vectors v4 for all irreducible boundary divisors A of Wa x(s). Let Ey be
the vector bundle from Construction As vdim(Y, A) = 1 we can define

ma = deg ciop(Ey) N [A]
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and 74 := mavy for all A. As before, assume that vy,, ..., v4, are all vectors that generate
some ray p € Way. Then Zle va, = wu, holds for some natural number w and the
primitive integer generator u, of the ray. We define the weight of pin Ma y asw>_._; ma.

So in both cases we obtain a weighted fan of dimension one. In order to prove that this is a
balanced fan, we have to check " , 74 = 0. This will be the content of the next lemma.

Lemma 3.1.5. The weighted fan W y from the previous construction is balanced, and the elements
of its support represent tropical curves inside Y.

PROOF. Let the notation be as in the previous construction. To prove balancing it suf-
fices to prove that R = )" , 74 = 0, where the sum runs over all irreducible boundary divi-
sors of Wa y incase 1 and W x(x) in case 2 of the previous construction. First of all we can
apply Lemma[L.2Z.ITlfor the tropical forgetful maps and restrict to proving ft;(R) = 0 for all
I ={i,j,k,1} C [n] of cardinality four. In My ; we obtain ft;(R) = A\i;vij + Aikvik + Xigvir.
This is zero if and only if all three coefficients are equal. This is what we want to see now,
by computing A;;.

First we consider case 2. Using linearity of the tropical map ft; and LemmaB.1.2 we obtain

Aij = Y maorda ft7(ij|k)
A

= orda ft;(ij|kl) deg ciop(Ey) N [A]
A

= deg crop(Ey) N (Z ord 4 £t} (ij|kl) [A])

= deg crop(Ey) N (ffz(wlkl [Wa x)])
= deg ft7 (ij|kl). (ctop(Ey) N [Wa x(s)])
= deg ftj (ij|kl). [W. ]””-

The computations take place in A, (Wa, X(g))Q, and by the virtual fundamental class we
mean its image in this Chow group. It is now obvious that A\;; = Aix = Ajyas 4o (HO_, REYA
Hence R € My(R™, A) = My, xR™ actually equals R = (0, r) for some r € R™.

Vo ,
Similarly to the above computation we considerev; ’ (R) =>_ A, f, for j = 1,2 and show
that it is zero. The same computation as above using Lemma [3.1.3yields

A = degevi D, [Way]"" = deg D,.(ev;). [Way]""

and therefore (),), is a (rational) Minkowski weight and ev;/“j (R) =0 for j = 1,2. Hence
alsor =0and R = 0.

Case 1 works similarly. We do not have to deal with the Chern class there, as we can directly
intersect with the usual fundamental class [Wa y] since it is one-dimensional.

To see that all the curves in | Wa y | are curves which map to | Y | we have to distinguish
cases again. For case 1 this is clear by construction. So consider case 2 and assume that
A — Wa x(x)(7) for a combinatorial type v of degree A curves in ¥. Furthermore, assume
that curves of combinatorial type v are not mapped to | ' |. This means there is some flag
f of v which is mapped into the relative interior of a cell 05 € ¥ with oy ¢ Y. For 5 > ~
we can consider the flags of 7 as a subset of the flags of § as in Construction[L.5.5] It is not
difficult to see that in § the flag f is mapped into a cell 74 with 74 > o¢. This means that
for every curve (C, z1, ..., an,m) € WX x(5,)(B) thereis anode P € C with 7(P) € O(y) C
X (X). By Lemma 2.2 of [KP11] Y is already contained in X ()) — X (X). Using the orbit-
cone-correspondence (see e.g. [CLS11] Theorem 3.2.6) we see that O(74) N X (Y) = 0 and
therefore O(77)NY = . We conclude W3 (5 (8)NWay = @ forall 3 > v. By Lemma[2.4.5]



116 3. TROPICAL MODULI SPACES OF COVERS AND OF LINES IN SURFACES

we have Wa x(x)(7) N Wa,y = 0 and hence AN Wa y = (). This means c;,,(Ey) N [A] =0
andrs = 0. ]

After we defined the fan Wa y, we can ask if we can really determine the vectors v4 from
Construction B.1.4 For case 1 we can solve this if Y is a line in projective space, cf. Sec-
tion[3.2l For case 2 our methods unfortunately only apply in the case where Wy x(x) is
unibranch around general points of A, as we can only determine multiplicities of Cartier
divisors on families of stable maps over a smooth irreducible curve. So if W x(x) is not
étale locally irreducible around A, the multiplicity of the divisor restricted to the curve will
not be equal to the multiplicity of the divisor along A. There are only two cases where
we know something about this, namely Lemmas and 2.4.2]] Therefore we can only
prove the following restrictive result.

Lemma 3.1.6. Let |A| > 3 and assume ~y is a combinatorial type of degree A curves in ¥ of
geometric dimension one and has at most two vertices. Then we obtain a unique element v, :=
VWa x (s (v) a8 in Construction 314 and v, is the primitive integral generator of the ray M(y) in
Mo(R™, A).

PROOF. Let M denote the coarse moduli space of Wa x(s) and let p : Wa x(z) — M
denote the canonical proper morphism. Furthermore, let M° := p(W} x () and M7 :=
P(WR x(s)(7)) for all combinatorial types  of degree A curves in X. Let D := SpecC[{(]
and D* := SpecC[t]; and let m be the closed point of D. Let the o be coming from A as in
Definition[2.2.7land let d1, 62 € A be root leaves as above, with §; € o¢ fori = 1,2. The idea
of the proof is to write down a family over D for which we know that the multiplicities of
divisors of the form ft7(ij|kl) and ev} D, along m yield a v, that is the primitive integral
vector of M(7). The difficulty is to show that the multiplicities along m coincide with those
along Wx_ X(Z)(fy). We want to use that A is unibranch around closed points of M3 to
achieve this.

First let v have only one vertex, which then is mapped into the relative interior of some
ray £ € X(1). Assume without loss of generality that £ ¢ o1(1). Consider a family F =
(P}, pr, D, z1,...,x,, m), where 7 is given by a tuple (5, Hj(zoxj - zl)o‘fa)p with 3,,z; € C*
for p # and j € [n] and 3¢ = bt for b € C*. The fibre C over m is then a closed point of M?.
We obtain a morphism ¢ : D — M, induced by 7. We have clearly have ord,, ¢* ev} D¢ =
1. As M is smooth at C by Lemma 2420 and elements in M;’ have no automorphisms, we
conclude that ordy, ., (y)evi D¢ = 1. All other multiplicities follow from uniqueness of
v, and that v, represents a curve of combinatorial type v and M(7) is a ray. This proves
the claim.

Let now ~ have two vertices v and w which are mapped into the relative interior of o,
and o, respectively. First assume that neither v nor w is two-valent. Denote the set of
labels of leaves which are incident to w by J. Then the primitive generator of M(7) is
vy +rforsomer € R™. Let}: . )V, u,be the image of the vertex v in the stable map
represented by vy + r. Of course, v, > 0 for p € 0,(1) and we set v, = 0 for p ¢ o,(1).
Forj ¢ Jletz; € Cand forj € Jletz; := v+ vJt € C[t]. We choose the numbers
such that the z; for j € J and v are pairwise distinct. Furthermore the 7{ for j € J
shall be pairwise distinct. Then z; := (1 : z;) : D* — P},. defines sections and the tuple
(% I1;(z0m; — zl)o‘]é)p defines a morphism 7 : PL. — X(X). So we obtain a family
F = (PL.,pr,D*,z1,...,x, ) of stable maps in W3R x)- By Construction 2.2.2T| we can
extend this family (possibly after a finite base change) to a family over D whose special
fibre C over m is a closed point of MJ. As M is complete, the morphism induced by 7
extends to a morphism ¢ : D — M. As M° is smooth, the normalisation v : M — M
is an isomorphism restricted to the preimage of M°. Therefore we obtain ¢ : D* — M
with ¢ = v o ¢. Letnow I C [n] with I = {4,j,k,l} and I N J = {i,j}. Then clearly
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ordy, ¢* ft}(ij|kl) = ordy, ¢* ft;(ij|kl) = 1. Now M is unibranch around every closed point
of MS by Lemma 2.4.27) therefore v~ M 5 is irreducible. As M is normal, we conclude that
ord, 170 V* ft7(ij|kl) = 1. In particular v : v='M? — MY is a bijection on closed points,
hence ord e ft7(ij|kl) = 1 by the projection formula. General elements in M do not have
automorphisms, hence we also have ordy, . () ft;(ij|kl) = 1. All other multiplicities
now follow from the uniqueness of the vector v, = vy + ' and that M(y) is a ray. This
yields v, = v; + r which finishes the proof.

If one of the vertices, say w is two-valent the proof works similar. In this case the primitive
integral generator of M(v) is given by some r1 +ro € Z™/V,, @ Z™V,, withr; € Z™ [V,
fori =1,2. Let} ., 1)V, u, be the image of the vertex v in the stable map represented
by 71 + r9. Of course, v, > 0 for p € 0,(1) and we set v, = 0 for p ¢ o,(1). Choose fixed
distinct complex numbers z; € C* and define the family 7 = (P},.,pr, D*, z1,...,xp, ),
where the sections are given by z; := (1 : z;) : D* — P},. and the map 7 is given by
the tuple (¢ [[;(z0z; — 21)%),. The rest of the proof is the same as in the case above, we
just have to consider suitable evaluations ev; D,in order to recover r; +ry instead of using
£ (i5]k1). O

Even though the above result is quite restrictive, we can use it to do some computations
in Section We suppose that a similar statement holds for general combinatorial types
of degree A curves in ¥ of geometric dimension one. Probably we might not obtain a
primitive integral vector of M(v), but only a "tropical meaningful" multiple of it. To be
more precise, we suppose that the following is true.

Conjecture 3.1.7. Let H = Z(>_" ,y;) C P™ = ProjC [yo, ..., ym| and let A be a degree of
tropical curvesin L7 _,. If the vertex type (L} _;, A) satisfies vdim(L],_;, A) = 0 we want
to assign a weight

(57) w[(Ll:LNA)] = deg [WA_’H]UZ.T

We conjecture that these moduli data turn every vertex type into a good one (in the sense
of Definition[1.5.17). Furthermore we suppose that there is an equality of tropical cycles

Mo(Lyy 1, A) =Wa m,

where the weights of the left cycle are as in Definition [[.5.10 with the moduli data given in
(B7). The cycle Wa g is as in Construction [3.1.4] case 2. Examples give evidence for this
to be true. E.g. this conjecture holds for Examples and and a lot more examples
which are not included in this thesis. Furthermore, we will see in the next section that this
is true for m = 2, if we consider W g as in case 1 of Construction 3.1.4 I suppose that
case 1 and case 2 of that construction will yield the same fan then, because we will see that
the virtual fundamental class equals the usual one then.

3.2. The case of curves

The aim of this section is to prove that all vertex types (LT, A) are good in the sense of Defi-
nition[L.5. 12 with respect to a certain choice of moduli data, cf. Definition[3.2.8l Throughout
this section let L C IP™ denote a line, i.e. L = P!, such that its intersection with the dense
torus tropicalises to L. We will always be given a degree A = (41, ...,,d,) of tropical
curves in LT and a corresponding algebraic degree d = —5 Ky m.A. In order to obtain
something interesting let also m > 2. Throughout this section we want to denote the coor-
dinate hyperplanes of P™ by Hy, ..., H,,. As before we denote the standard basis of R™ by
€1, emand eg = — .7 e;. For a vector §; € A there are unique integers ) € Zx for
0<i<mwithd; = Z;io a{ei and such that ag > 0 for at most one 1.

As L is a curve, we will first state an important tool for studying covers of curves, the
Riemann-Hurwitz formula.
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Lemma 3.2.1 (Riemann-Hurwitz formula). Let 7 : Y — X be a finite and separated morphism
between smooth and complete curves over an algebraically closed field. Then

29(Y) —2=degm- (29(X) = 2)+ Y (fp — 1),
PeYy
where g denotes the genus of the curve and fp is the ramification order at the point P. The degree
deg 7 is the degree of the field extension [K(Y') : K(X)] that is induced by 7*.

PROOF. This is [Har97], IV Corollary 2.4. O

Now we will review some deformation theory of covers following the paper [Vak00] of
R. Vakil. For literature about deformation functors and miniversal families we refer to
[Har10]. Deformations to a C = (C, 1, ..., ¥y, 7) in Mg, (X, 3) can be obtained from the
complex

Q, = | — Q1))
j=1
where the first order deformations (those over SpecC [¢] /(¢)) are given by Ext'(Q,,0¢)
and the obstruction space is given by Ext*(Q,, O¢).

Sl

For C = (C,x1,...,wp,7) € Mo,(L,d) asubset A C C is called special locus, if it is a con-
nected component of a fibre of 7 which is not a reduced unmarked point. So the special loci
are components on which 7 is constant, ramification points, nodes or marked points.

Let Fi. denote the deformation functor of the étale neighbourhood e : ¢ — C of some
special locus A, which is defined as follows. Consider tuples (C,p,Spec R, 7, (i:)ic1) where
p: C — SpecR is a flat morphism, # : ¢ — L is a morphism and &; : SpecR — C
is a section of p for each ¢ € I. Here I is the set of indices such that z; € A and (R, m)
is a local artinian C-algebra with R/ m = C. Two such tuples (é ,D,Spec R, 7, (Z;)icr) and
(@I, p',Spec R, 7', (&})ier) are isomorphic if there is an isomorphism ¢ : ¢ — ¢’ over SpecR
such that # = @’ o ¢ and ] = ¢ o &; for all i € I. We denote by F.(Spec R) the set of
isomorphism classes of tuples (C, p, Spec R, #, (&;)ic1) such that the restriction to the fibre
of p over m is isomorphic to (C, p,SpecC, 7 o e, (e~ () )icr)-

We want to define another functor F2 as follows. Let F2(Spec R) C F.(Spec R) be the set
of isomorphisms classes (C,p, Spec R, #, (i)ic7) which additionally satisfy

(1) 7oz;:SpecR — H; forall j € Iwitha{ >0
2) #*H; — Zje] Oég.f}j =0¢ AQ(?ATilHi) fori=0,...,m.

Let F¢ denote the functor describing deformations of an element C Mo,n (L,d) and let FCA
denote the functor describing deformations of a stable map C in Ma 1, cf. Definition 2.2.10

Let Def¢ be the miniversal deformation space of the functor F¢ and Def? the miniversal de-
formation space of the functor F2*. Then Def¢ is a formal neighbourhood of C in My ,,(L, d)
and Def? is a formal neighbourhood of C in Ma ;. Furthermore let Deff, be the miniver-
sal deformation space of the functor F, and DefZ the miniversal deformation space of the
functor F2.

Let C = (C,x1,...,xp, 7) in M (L, d) have special loci A1, ..., A, and choose étale neigh-
bourhoods ey, : Cj, — C of each special locus k = 1, ..., 7. In Proposition 4.3 of [Vak00] it is
shown that there is an isomorphism Ext' (2, O0c) = @, Ext'(e;Q., O, ) for all i. Further-
more ef) = Recalling that the tangent space of a deformation functor is its value

2fepom®

at SpecC [¢] /(¢), we obtain the following lemma.
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Lemma 3.2.2. We have natural isomorphisms of miniversal deformation spaces Defc = ], Def.,
and of tangent spaces Tr, = @), T., . Furthermore Def5 =~ ] 5 DefeAk and Tpa = P, TFeAk.
In particular the miniversal deformation spaces and tangent spaces do not depend on the choice of the
étale neighbourhood of Ay. We therefore write Def F., = Def4,, Def?ﬁk =: Defﬁk, Tr,, =:Ta
and Tpa =:T4% .

€k

k

PROOF. The claim without A is Proposition 4.3 of [Vak00]. This also implies the claim
with A because the conditions defining Ma . in Definition [2.2. 10| restrict to the conditions
defining F2} on étale neighbourhoods e, of the special loci of C. O

Lemma 3.2.3. Let C = (C, 21, ..., 2, ™) € Mo n(L,d) be a stable map and A a special locus of C.
If A is an unmarked fa-fold ramification point, then dim Ty = dimT% = fa — L IfA=x; isa
marked point for which there is some i with o > 0, then dim T4 = 0 and dim T4 = f4 else. In
both cases we have dim T4 = fa.

PROOF. First we consider the case of an unmarked ramification. We can choose any
étale neighbourhood e : ¢ — C of A by the previous lemma, for example C’ = Spec C[t].
Then the pull back 7' = 7 o e maps into an affine open subset D := Spec C [z] C L and we
can assume that 7'(m) = (z) for the closed point m of C’. Therefore 7’ is given by a C-
algebra homomorphism z — at/4 for some o € C*. As C’ is smooth it is also rigid, i.e. all
its first order deformations are trivial ([Harl10], Example 5.3.1). Hence we can assume that
first order deformations of C” look like

p: D :=SpecC[t] [¢] /(¢) —> D. := SpecC [¢] /{e),

where p is just the projection. Automorphisms of D over D, are given by C-algebra homo-
morphisms ¢ with ¢(¢) = € and ¢(t) = at + e, with a € C* and ¢ € C[t]. We can only
have a € C* because for ¢ = 0 this must become an automorphism of C[t]. The inverse is
givenby ¢ 1(e) = e and ¢~ (t) = a7 (t — p(a”'t)e), which is easily checked using Taylor
series expansion. The deformed map # : D — SpecC [z] is given by z — at/4 + ge, where
g € C[t]. Let B € C be such that 374 = a~! and let ¢ denote the degree f4 — 2 polyno-
mial which consists of all terms of g(/5t) of order up to f4 — 2. Then reparameterising with
the automorphism ¢(t) = Bt + ¢ with p = f; '8 f4(q — g(Bt))t—F2~Y yields the map
z + tf4 + ge. Therefore the only possible deformations up to isomorphisms are of the form
zestfa 4 (Zing vtF)e with v, € C. Counting coefficients yields the claim.

If A is marked, we additionally have a section  : D, — D givenby ¢ — cand ¢t — xe
with x € C. Reparameterising with the automorphism ¢(t) = ¢ — xye we can assume that the
section is constant zero. As above, a deformation of the map is given by z — atf4 + ge with
g € C[t]. If we reparameterise this, we have to restrict to those automorphisms ¢’ with
@' (t) = at + ¢'c where ¢’ € m C C[[t] in order to keep the section constant. Let ¢ denote the
sum of all terms of g(/3t) up to order f4 —1and choose ' = f; '3 ~f4(q—g(Bt))t=a=1) ¢
m. Then we obtain z — t/4 + ge after reparameterising the map with ¢/(t) = gt + ¢'e.

Therefore, up to isomorphism, each deformed map # is of the form

fa-1
(58) zthh 4 Z Aet?

k=0
with 7, € C and the constant section ¢ — 0 and € — ¢. Counting coefficients yields the
claim. If A = z; with o/ > 0, then we must have f4 = o]. We have H; N L = {z = 0}
and hence #*H; = tfa + 52&51 vtk = tf4, since the section is constant zero. Thus
Yo = ... = Yfa—1 = 0 and the claim follows. O

Lemma 3.2.4. For a degree A of tropical curves in LT* we have that dim Wa , = vdim(LT*, A),
if Wa, 1. # 0. Furthermore Wa . is a scheme and W, | is smooth.
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PROOF. Theline L C P™ is the intersection of m — 1 hyperplanes H1, ..., H),_; C P™.
Construction 2.3.3 provides vector bundles Ep: on Moﬂn(]l’m, d) with global sections s;,
such that Wy, is the vanishing locus of the sections sy, ..., s,,,—1 restricted to Wa pm, with
its reduced structure. As each Ep; is of rank d + 1 we conclude that every irreducible
component of W r, has dimension at least dim Wa pn—(m—1)(d+1)=n—(m—-1)d-2=

vdim (L7, A).
Asm > 2, we conclude that every vertex of a combinatorial type of degree A curves in LT*
is at least three-valent. But this means by Theorem that no curve in Wx 1, has non-

trivial automorphisms. Therefore W, is a scheme. We will now compute the dimension
of the tangent space of a point of W3 ; and therefore also an upper bound for the dimension

of the scheme. Given any curve C = (P!, x1,...,z,,7) € WX 1, the special loci are z1, ..., z,
and possibly unmarked ramifications p1, ..., pr. As C has no automorphisms, we have that
g e =10 = @ 120 @ 130 @1

j:6;7#0 j:0;=0
by LemmaB.2.2l By LemmaB.2.3we have dim 7)) = f,, —1fori = 1,...,7. The same lemma
tells us dim 7> = 0if §; # 0 and dim T3> = fa, 1f §; = 0. Therefore

dim Twg , ¢ = > fzj+z - 72d727 S fuy+m

j:0;=0 j:0;7#0
=n—d(m-—1)—2=vdim(LT", A)

where equality (a) follows from the Riemann-Hurwitz formula. Note that this also implies
that the dimension of the tangent space is equal to the dimension of the scheme. Therefore
W3R 1, is smooth. O

Definition 3.2.5 (Hurwitz numbers). If vdim(LT*, A) = 0 we have dim Wa ; = 0 by the
previous lemma. Therefore Wa , = WY ; is a scheme. We define the Hurwitz number
Hj q(A) as the degree of the fundamental class

Ho.a(A) :=deg [Wa. L]

This is the number of degree d covers of P! by P! with ramifications prescribed by A.
In the literature each cover is usually weighted by the inverse of the number of its au-
tomorphisms, which in our case is always 1. However some authors do not require the
ramification points to be marked.

Remark 3.2.6 (Computing Hurwitz numbers). The Hurwitz number Hy 4(A) can be com-
puted by pure combinatorics. Let S; denote the symmetric group on [d]. Then Hy 4(A) is
the number of tuples of cycles (o1, ...., 05, ) such that

(1) if §; = o’ e; for some i with o} > 0, then o is an a/-cycle
2) o100, =1id
(3) the group (o1, ..., 0,) acts transitively on [d].

This follows from the Riemann Existence Theorem which can be found, for example, in the
book [Don11]], Theorem 2 of Section 4.2.

If m = 2 then L? is a hypersurface in R?. Additionally, also L C IP? is a hypersurface and

we can ask for the relation between the virtual fundamental class [Wa L]W', that was only
defined for hypersurfaces, and the usual fundamental class [Wa 1]

Lemma 3.2.7. Let A be a degree of tropical curves in L3, i.e. L C P? is a line which tropicalises to
L3. Then the virtual fundamental class from Definition[2.3.4] coincides with the usual fundamental
class

(Wa,L] = [Wa,r]"" € A(Wa.L)o.
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kl

.

type 1 type 2
kl J

FIGURE 4. The different combinatorial situations (d; denotes the weight of
the edges)

PROOF. Let E;, and sy, be as in Construction It is known that the global section
s, of Er, on My ,,(IP%,d) has the stack theoretic zero locus Z(sr) = Mg (L, d), cf. Section
2.1 of [Pan98]. Then WR ; = Wa p2 N My (L, d) intersect in the correct dimension by
Lemma .24 Let V be an irreducible component of Wa 1. Clearly V is the closure of an
irreducible component V° of WX ;. We will show that M (L, d) and W p., which are
both smooth schemes, intersect transversally at closed points of V°. This can be achieved
by considering the tangent spaces of both schemes at the intersection points. Let C € V° C
My, (L,d) N W3 p> be a closed point. Then a tangent vector to Mo ,(IP?,d) at C which is
also tangent to My,,,(L, d) and W}, - is given by a first order deformation of C which holds
the image L of 7 rigid and also preserves the multiplicities of 7* H; to z;. By Lemma[3.2.2]it
suffices to study the first order deformations of étale neighbourhoods of the special loci of
C, which are just the markings 1, ..., z,, and unmarked ramification points p, ..., p, in this
case. As we explained in the proof of Lemma[3.2.4 we have

A A
Ty, p2,0),c 2 Ty, (L,d),c N ng’ﬂﬂ,c = @ T, ® @Tpi =Tyo .
§:6;=0 i

As all schemes involved here are smooth and Wy . and My ,,(L, d) intersect in the right
dimension, we conclude that T, , (p2,4),c = Ty, (L.d).c + TWZ e i.e. the intersection is

transversal. Hence [V] occurs with multiplicity 1 in the usual and the virtual fundamental
class. O

Definition 3.2.8 (Moduli data for curves). To a vertex type (L7", A) with rdim(L7*, A) =
vdim(L}*, A) = 0 we want to assign the weight Wipp a)] = Hy 4(A). To a vertex type
(Ly~' xR, A) of resolution dimension zero we want to assign the weight WiLp-ixr,A)] T
1. Note that by the previous lemma these weights equal the weights defined in Conjecture

B.IZfor m = 2.
Lemma 3.2.9. If Wa () # 0, then ~y is an admissible combinatorial type in terms of Section[L.5

PROOF. If 7 is not admissible, i.e. there is some vertex v with rdim(v) < 0, then this
must be a vertex which is mapped to the origin. The Riemann-Hurwitz formula tells us
that Wa, ., = 0 and by Theorem [2.2.18|there can be no stable map in Wa (7). O

We want to determine the fan Wa 1, from Construction[3.1.4] case 1 later on. Therefore we
want to compute the multiplicities of divisors of the form ft(ij|kl) to the boundary points
OWa, 1, in case vdim(L7", A) = 1. By Lemma[3.2.4/this means that also dim W 1 = 1, which
was required for case 1 of that construction.
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Lemma 3.2.10. Let vdim(LT*, A) = 1 and let C € Wa, () where ~ is of type 1 as in Figure[d
Then

(59) ordc ftj (ijlkl) = 1

PROOF. By assumption the stable map C = (C, z1, ..., 2, 7) has two irreducible com-
ponents C' = Cy U C; such that 7|¢, is constant, ;, z; € Cy and all other marked points lie
on (. Assume that §; = dse; and §; = dye; for some 0 < s < m and define d = d; + ds.

Let M° denote the closed subscheme of My ;(IP!, d) whose closed points are exactly those
stable maps (P!, x;, z;, zx, 71, 7) such that w(x;) = 7(z;) = 0, 7(2;) = oo, w(xx) = 1 and
70 = diz; + dox; and o0 = dux;.

Let S := Spec (C A 0] g1y /A0 = (1 — w)d)) and consider the family given by U =
(PL,pr, S, &;, %, Tk, &y, 7), with & = 1, &; = 0, #; = oo and Z, = (1 : w). Furthermore let 7
be given by the tuple ((zo — 21)%, Az 2{?), where 2, 2, are the coordinates of IP%. It is not

difficult to see that M° = S, because the stable maps in M ° are exactly the stable maps in
the family U.

We even have an isomorphism 1 : SpecC [w],,;_,, — S, induced by the C-algebra iso-
morphism w — w and A — (1 —w)%w~%. We can now extend the pull back ¢* U to a
family over SpecC [w],, with fibre C' = (C’, z}, 2, x}, x],7') over 1. An easy computation
(e.g. use formula [47) shows that C’ has two irreducible components C; and C such that
7'|cy is constant, z}, 2 € Cj and x,z; € (. The extended family induces a morphism
¢ : SpecC [w],, — M into the closure M of M° in Mg (P!, d).

Let Fr denote the composition of the forgetful morphism ft; : M — M, ; with the mor-

phism ¢. Then we can see that F; (ij|kl) = w — 1 which vanishes with order 1 at 1. By the
projection formula we also obtain ordc (ft})* (ij|kl) = 1.

The special loci of C" are Cj) and the marked points 7}, and z]. As étale neighbourhoods
of z, and z} are not deformed in M°, we conclude from Lemma [3.2.2 that a formal neigh-
bourhood of C’ in M is isomorphic to Defé{). We obtain Defé0 = DefAé, as C'and C’ are
étale locally isomorphic around Cy and Cj). Furthermore Def? = Defé0 as vdim(L{", A) =
dim Wa,r = 1 and hence dim Defﬁ = 0 for the other special loci A of C. This means that
Wa.r, and M have formal neighbourhoods around C and C’ which are isomorphic. Fur-

thermore the forgetful morphisms ft; and ft; to M ; correspond to each other via this
isomorphism, thus orde ft; (ij|kl) = orde (ft})*(ij|kl) = 1. O

Lemma 3.2.11. Let vdim(LY*, A) = 1 and let C € Wa, () where ~ is of type 2 as in Figure[d
Then

(60) orde ft7(ijlkl) = dy

PROOF. By assumption the stable map C = (C, x1, ..., &, m) has three irreducible com-
ponents C = Cy U C; U C5 such that 7|¢, is constant, z; € Cj is the only marked point on
Co, zj € Cy and zy,2; € C1. Assume that §; = de, for some 0 < s < m and let d; be the
multiplicity of (|¢,)*H, at the node Cy N C; for i = 1,2. Then we must have d = d; + d»

(cf. Remark 2.2.T7).

Let M° denote the closed subscheme of M ;(IP', d) whose closed points are exactly those
stable maps (P!, x;, z;, 7k, 71, 7) such that w(xy) = n(x;) = 0, 7(z;) = oo, w(x;) = 1 and
70 = diz; + doxy, and T 00 = du;.

Let S := Spec (C A W]y /X = w0 (1 — w)d2>) and consider the family given by U =
(P, pr, S, &4, T, T, 71, 7), with p, = 1, 7; =0, 7; = oo and #; = (1 : w). Furthermore let &
be given by the tuple (\zg, (20 — 21)%2{"), where 2, 2, are the coordinates of IP%. It is not
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difficult to see that M° = S, because the stable maps in M ° are exactly the stable maps in
the family /.

We have an isomorphism 1 : SpecC [w]
da

w(l—w) — S, induced by the C-algebra isomor-
phism w — w and A — w® (1 — w)?. We can extend the family ¢* I/ (after a suitable
finite base change, e.g. 1 — w + (1 — w)% will do) to a family over SpecC [w], _,, with fibre
¢ = (C a2, '’ ), ;, ') over 1. An easy computation (e.g. use formula[d7) shows that C’
has three irreducible components C), C] and (% such that z; € Cy, z,,7; € Cj and 2y € C7.

Furthermore 7’'|¢; is constant, 7’|, has degree d; and 7’|, has degree ds.

Let M denote the closure of M° in Mg ;(P!,d) and let N denote the coarse moduli space
of M with the canonical proper morphism p : M — N. Then the forgetful morphism
ft) : M —s My ; factors through N as ft; = ft; o p. The family ¢* ¢/ induces a morphism
¢+ SpecC[w],,(1_) —> N. As N is complete ¢’ extends to ¢ : SpecC [w],, — N with
©(1) = C'. Let F; := ft; o . Then clearly Fj(ij|kl) = w — 1 vanishes with order 1 at 1.
As ¢’ is one-to-one, we obtain that ordc: f:c;(z j|kl) = 1 holds on the coarse moduli space N.
The curve C’ has d; automorphisms and therefore orde: (ft;)*(ij|kl) = d; on the stack M,
by Corollary (2.5) of [Vis89] and the projection formula.

The special loci of C" are C and the marked points , z}, and zj. As étale neighbour-

hoods of 2/, zj, and z; are not deformed in M°, we conclude from Lemma that a
formal neighbourhood of €’ in M is isomorphic to Deféé. We obtain Defé0 = Deféé, as

C and (' are étale locally isomorphic around Cy and (. Furthermore Defs = Defé0 as
vdim(LT*, A) = dimWa ;, = 1 and hence dim Def = 0 for the other special loci A of
C. This means that Wa ; and M have formal neighbourhoods around C and C’ which are
isomorphic. Furthermore the forgetful morphisms ft; and ft; to My ; correspond to each
other via this isomorphism, thus ordc ft}(ij|kl) = orde: (ft})*(ij|kl) = di. O

Corollary 3.2.12. Let C = (C,x1, ..., 7, 7) € Ma,, C Mon(L,d) and let Cy be an irreducible
component of C on which m is constant and around which C étale locally looks like in the following
picture.

Q

Cy,dy C

Cy1,d

Ca,dg

H.NL H,NL

Then dim DeféU = 1. In particular, C can be deformed into a curve in M 1, having two nodes less
than C in the left case and one node less in the right case.

PROOF. This follows immediately from the proofs of the previous two lemmas. O
Before we state and prove the main theorem of this section, we should make the following

remark.

Remark 3.2.13. By arguments very similar to those in Example one can show that all
vertex types (L7"~! x R, A) are good with respect to the moduli data chosen in Definition
3.2.8

Theorem 3.2.14. All vertex types (LT, A) are good with respect to the moduli data chosen in
Definition[3.2.8
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PROOF. We will proceed by induction on the classification number, cf. Definition [L.5.61
The smallest possible value is V| [(r.an] = 2m + 1, which is attained only for the degree
A" = (eg,....,en) and which is of resolution dimension zero. Vertex types of resolution
dimension zero are always good. If rdim(L}*, A) > 1 we can assume by induction that all
vertices in non-trivial combinatorial types of degree A curves in L* are good, cf. Lemma
.57 By Lemma [I.5.22 we conclude that then also (L}, A) is good. Hence it is sufficient
to check that vertex types with rdim(L}*, A) = 1 are good, so we will assume that the
resolution dimension is one. Let v be an admissible combinatorial type of degree A curves
in LT* of geometric dimension one. The geometric dimension clearly equals the number of
vertices of v which are not mapped to the origin, plus the number of edges of v which are
mapped to the origin. So we will have to distinguish two cases.

1st case: The combinatorial type « has two vertices v and w which are mapped to the origin
and are adjacent via a contracted edge. It is easy to see that, without loss of generality,
rdim(v) = 0 and rdim(w) = 1. By induction both vertices are good and we can define the
gluing cycle Z(vy) as in Construction The local moduli space of v consists of one
cell, which is of weight zero by the Riemann-Hurwitz formula, since 0 € A,. Therefore
[Z(7)] = [0] and v does not occur in My (LT, A).

2nd case: There is one vertex v that is not mapped to the origin, and vertices wy, ..., w, which
are mapped to the origin. As there are no contracted edges over the origin, the number of
edges of + is . For a genus zero graph we have

r=|A| -3 (val(v) - 3) = Y _(val(w;) — 3)
i=1
< |A]=val(v) = Y ((Kpp.A)w, — 1) = [A] = Kpp. A + 1 — val(v).
i=1
The inequality holds because « is admissible. Together with vdim(L}*, A) = 1 the above
inequality yields val(v) < 3 and hence val(v) = 3. Therefore either r = 1 or = 2 and
must look as follows.

wy
w2

type 1 type 2

We now want to show that M (L{*, A) is equal to the fan W 1 from Construction 3.1.4
case 1. For this we choose two suitable root leaves to obtain M(R™, A) = M, xR™. In
these coordinates | Mo(Ly,_1,A)|poly C | Mo, | % 0, hence it suffices to consider only the
forgetful morphisms.

First we assume that + is of type 1 and has a vertex v that is mapped to an edge and is
incident to leaves z; and x;. There is also a vertex w that is mapped to the origin. Assume
that C = (C,z1,...,2n, ™) € Mo ,(L,d) corresponds to type v. This means, that with the
notation from Theorem the normalisation of C' has two irreducible components C*
and C" such that x;, 2; are the only marked points of C' on C*. Furthermore 7" is constant
and (C*,F*,m") € Wa,, . By Corollary 3.2.12C can be deformed into a curve in Wy ;.
Hence |Wa,r(7)| = deg[Wa,, 1] = Ho,a(Aw). Furthermore, by Lemma 3.2.10 we see that
the vector v¢ € My, that is assigned to C € Wa 1. (7) in Construction B. T4 equals v¢ = v;;.
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The gluing weight of M () is by Example[1.6.2land our choice of moduli data just Hy ¢(A.).

Therefore the primitive integral generator of M(7) times the weight is
ry = Ho,a(Aw)vij = [Wa,L(7)|ve.

Now assume that v is of type 2. Let the vertices of v be called v, w; and wy where v is
mapped into an edge and w; to the origin for i = 1,2. Denote the labels of the leaves
incident to w; by J; and let d; be the weight of the edge {v,w;}, for i = 1,2. LetC =
(C, 21,y ey ¥, ) € Mon(L,d) and let the notation be as in Theorem 2.2.I8 again. Assume
that C corresponds to type v, i.e. (C*¢, F"i, ) € Wa,,. 1, fori = 1,2. Furthermore there is
only one marked point of C'on C” and 7 is constant. By Corollary[3.2.121C can be deformed
intoa curvein WR ;. Hence [Wa, (7)| = Ho,d, (Aw, ) Ho,dy (Aw, ), where d; = L Kpm Ay,
for i = 1, 2. We already know that the vector v¢ € My, that is assigned to C € Wa () in
Construction represents a tropical stable map of combinatorial type . From Lemma
B.2.1Tlwe obtain vec = dhv,, + djvy,.

The gluing weight of M(~) is by Example [L.6.1] just ged(d, d5)Ho,d, (Aw, ) Ho,dy (Aw,), SO
the primitive integral generator of M() times the weight equals

Ty = HO,dl (Awl)H07d2 (A’UJQ)( /2vJ1 + d/l’UJQ) = |WA7L(’Y)|UC'
We conclude that Mo (L7", A) is equal to W, 1, and by Lemma[3.1.5lit is balanced. O

Corollary 3.2.15. Let the moduli data be as in DefinitionB2Z8and let X C R” be a closed smooth
tropical curve. Then Mo(X, A) is a tropical variety of dimension

Al — Kx.A —2.

PROOF. That M(X,A) is a tropical variety follows from Theorem [3.214, Remark
and Theorem the claim about the dimension follows from Lemma O

Remark 3.2.16 (Recursively computing Hurwitz numbers). If dim Wa, 7, = 1 we constructed
afan Wa, 1, in Construction3.1.4, case 1. We determined its weights in the proof of Theorem
B.2.14and showed that it equals M (L7, A), hence it can be determined by combinatorics.
To say that Wa 1, is balanced with these weights is a nice and organised way to state that
there are actually plenty of relations between different multi-point Hurwitz numbers. But
these relations are not very nice to write down explicitly.

For example, consider A = (4e1, 2es, e, €2, 2eq, €p, €9) and let Ay := (eq, €1, €2), Ag =
(260, 261, €2, 62), Ag = (360, 261, €1, 262, 62) and A4 = (460, 361, €1, 262, €2, 62). Then
applying the tropical forgetful map ft{; ;35 to the sum of weighted primitive integral
generators of Wa 1, we obtain the following equalities:

3Ho1(A1)Ho,3(As)
=Ho.4(A4) 4+ Ho1(A1)Ho3(As)
=2H,2(A2)* + Ho,1(A1)Ho3(As).

It is easy to see that Hyp1(A1) = Hp2(A2) = 1. Using the above equations we find
Ho3(As) = 1and Hy.4(As) = 2. We will now sketch why this sort of relations even suffices
to inductively compute all multi-point Hurwitz numbers from one initial value.

Fixm > 2 and let A = (e, ..., ). The initial value that we need is then just Hy 1 (A1) = 1.
Let d > 1 and assume by induction that all m-point Hurwitz numbers of degree less than d
have already been computed. Let A = (41, ..., d,,) be a degree of tropical curves in LT with
vdim(L7*,A) = 0and d = ﬁK L. A. Assume without loss of generality that §; = aeo,
02 = bey, I3 = ceg and that a > 1, which is possible as d > 1 and vdim(L*, A) = 0. Choose
any partition a = ag + a1 into positive integers and define §;, = ageq, ¢; = arep and &, = §;
fori=2,...,n. Let A" = (&(,...,0). Then vdim (L}, A’) = 1 and hence dim Wa, ; = 1. We
obtain a tropical fan Wa: 1, as above. We apply the tropical forgetful map ftyg 1 2 3} to the
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weighted sum R of the primitive integral vectors of the fan YW/ 1. Only one combinatorial
type of type 1 from Figure @ will contribute something to ftyg 1 2 33 (R), namely Ho 4(A)vo;.
All other combinatorial types that contribute to fty; 5 3}(R) need to be of type 2 from
Figured] by the choice of directions for the leaves xy, ..., 3. Therefore all Hurwitz numbers
that will occur in the coefficients of vg2 and o3 in ftyg 1 2,31 (R) are of strictly smaller degree
and hence already known. As the coefficients of vo1, vo2 and vos in ftyg 1 2 3} (R) are equal
by Lemma this proves the claim.

3.3. Lines in smooth tropical surfaces, the tropical cubic

In this section we want to construct moduli spaces of tropical lines in a smooth tropical
surface X C R3. It turns out that that the dimension of such a moduli space will be 3 —
deg X, so it is empty for deg X > 3 and we obtain a finite number of lines counted with
multiplicities for deg X = 3. Throughout this section let ¥ C IR? be a closed smooth tropical
surface, unless specified otherwise, which is equipped with its unique coarsest polyhedral
structure. Furthermore we fix the moduli data from Conjecture

Definition 3.3.1 (Tropical lines). A tropical line in R™ is an element in M, (IR™, 1,,,), where
1 = (€0, ey €m)-

First we want to see which local combinatorial situations can occur. We want to use dec-
orations on the graph of the tropical line as in [Vigl0] to describe the local combinatorial
situation. A bold dot indicates that the tropical line passes through a 0-dimensional cell of
X and a bold line indicates that the tropical line passes through a 1-dimensional cell of X
If a vertex of the tropical line is mapped into a 1-dimensional cell of X', we want to consider
its vertex type modulo this 1-dimensional cell later on. Therefore, in the case of a bold line
decoration, we want to distinguish whether an edge of the tropical line is mapped into the
1-dimensional cell or not. There are two possibilities for a four-valent vertex mapping into
a 1-dimensional cell of X'. All edges of the tropical line could be mapped into maximal cells
of X, which is the situation we mean by the second picture from the right. Alternatively,
one edge of the tropical line might be mapped into the 1-dimensional cell of X', which is
the situation we mean by the last picture on the right. There cannot be more edges of the
tropical line that are mapped into a 1-dimensional cell of X" as there is exactly one (up to
scalar multiples) linear relation between the elements in 13. So all possible local situations
are those from the following picture.

A S S

Definition 3.3.2 (Degree of a surface). We denote the intersection product (as defined in
[AR10], Section 9) of tropical cycles in IR? by -gs. For a closed tropical surface X C R? the
degree is defined as deg X := deg (X -gs [L3]), cf. Definition 9.12 of [AR10].

Let (I', 1, ...,24, h) be a tropical line in X. By the tropical projection formula we have
Kx.13 = deg Kx.h.I' and by Corollary 9.8 of [AR10] and by definition of the canonical
divisor we obtain K x.h.I' = X -gsh.I'. We want to use the recession cycle 6(Z) of a tropical
variety Z, which is defined in [ARO8]]. The recession cycle is basically what we obtain if we
shrink all bounded cells of Z to a point and translate this to the origin. By Theorem 12 of
[ARO08] we obtain

61)  Kx.l3=degd(X gsh.T) = deg (§(X) -gs 6(h.T)) = deg (X -gs [L}]) = deg X' .

This means that for every vertex v of the tropical line we have (Kx.13), < degX. Now
we want to see which vertex types can actually occur for the six possible local situations
from above. By definition every admissible vertex type must satisfy val(v) > (Kx.13), + 1
for the bold dot decorations and val(v) > (K x.13), + 2 for the bold line decorations. This
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o | KD

1 0A)] 1(B) | 0(D) | 2(E) X 10
X | 0(C) X 1(F [ 0@®E) | 00)
3 X X X | 0(G) X X

FIGURE 5. Possible local situations and their resolution dimensions (we
will refer to these situations by the letters in brackets)

already shows that we must have (Kx.13), < 3, as the valency is bounded by 4. Figure
lists all possible local situations, the impossible ones are marked with an "X". Most of them
can already be excluded by the previous valency considerations. Only the 4-valent type of
degree one above type H has to be excluded by a different argument: there is one maximal
cell of X' into whose relative interior two edges of the tropical line are mapped. Therefore
(K x.13), must be at least two.

Now we want to determine the different possible vertex types that can occur for tropical
lines in X and check that they are good in the sense of Definition By Lemma
it suffices to check those vertex types of resolution dimension one.

TYPE B: For the 3-valent case of degree 1 with a bold dot, it is easy to see that the only
vertex type is (L3, (eo, €1, €2 + €3)). This is a good vertex type as seen in Example[.6.3

TYPE F: For a vertex type (L3, A) of type F with degree A = (41, 62,3, d4) the only linear
relation between the §; (up to scalar multiples) has to be Z?Zl d; = 1, as this is the case for
13. Furthermore, no curve of degree A is allowed to have a bounded edge of weight bigger
than one, as we consider tropical lines. Using these two facts it is not difficult to figure out
that the only possibility for A (up to isomorphisms) is 61 = 2ep + €1, d2 = e1 + €3, I3 = e
and 54 = eg + €3.

1

Zo T3

T4

The picture above shows all combinatorial types of degree A curves in L3. If we consider
Mo (L3, A) in barycentric coordinates, the primitive generator of the ray M(a;) is viz +
1(eg + e3), the one of M(ap) is v12 + €1 + €9 and the one of M(a) is vi4 + €2 + 2es. This
is balanced with weights 1, which are actually the gluing weights.
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TYPE I: By Lemma this reduces to the case of L}, where all vertices are good by
Theorem 3.2.14 That the moduli data are the same follows from Lemma [3.2.7] and was
already mentioned in Definition

Proposition 3.3.3. The moduli space of lines Mo (X ,13) in X is a tropical variety of dimension
3 — deg X. In particular the moduli space consists of finitely many (weighted) points if deg X = 3
and it is empty if deg X > 3.

PROOE. That M(X,13) is a tropical variety follows from Theorem[1.5.21]since all pos-
sible vertex types are good, as seen above. The dimension can be calculated using Lemma

[.5.18and (6I):
dlmMo(X,lg) = d1mX+|13| -3 - K/'\(.13 = 2—|—4 —S—degX.
O

Example 3.3.4. This example of lines in a tropical cubic surface was introduced to me by
Cristhian Garay. Consider a floor decomposed generic cubic surface where the three walls
(represented by a line, a conic and a cubic) have the following relative position to each
other (projected into the e3 direction):

The 0-dimensional cell P of X lies on the lowest floor, whose projection we obtain by eras-
ing the tropical line from the above picture. Such a cubic surface contains exactly 27 tropi-
cal lines which all count with multiplicity one, but in addition it contains a family of lines
which does not contain any of the 27 other tropical lines.

All tropical lines in this family have a vertex which is mapped to P, while the rest of the
tropical line is mapped into the relative interior of maximal cells of X. ILe. the lines are

decorated as in the picture below.
<

If the vertex that is mapped to P is three-valent, it has to be of resolution dimension —1.
Therefore the only admissible line in the family is the one where there is no bounded edge,
i.e. the line where a four-valent vertex is mapped to P. This vertex is then of resolution
dimension zero and we now want to determine its vertex type. The directions of the un-
bounded 1-dimensional cells of &' are known, they are just ey, €1, e2 and e3. From this,
smoothness of X and the "map" of the lowest floor from above, we can determine the
(outgoing) direction vectors of the four 1-dimensional cells of X adjacent to P. They are
fi=—ei+es, fo =e1—2e3, f3 = —ea —2eg and fy = ex + 3e3. Applying the automorphism
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of R? which maps f; +— e; for i = 0,...,3, we obtain that the vertex type we are looking
foris (L3, A) with A = (3eg + 2e1, 1 + €2, ez + €3, e2 + 2e3). Computations as in Remark
D35 show that [Wa g]"" = 0 for a hyperplane H C IP? which tropicalises to L3. Hence the
weight of this vertex type, which is also the weight of the tropical line, is zero. Therefore
our moduli space consists of exactly 27 lines as one would expect.

Conjecture 3.3.5. For every smooth cubic surface X we have deg My(X,13) = 27.

3.4. Examples for computing weights deg [Wa y]"""

In this section we want to use the theory we developed up to now to determine the weights
of all vertex types in L3 with K £3-A = 2. We already met some of them, e.g. the weights of
types D and E were computed in Example[2.3.6] The most interesting case is type C, where
we have dimWa y = 1 even though vdim(L3,A) = 0, cf. Example 2371 We can only
have negative weights when the dimension is bigger than the expected dimension and this
example shows that this actually happens.

A= (637 2eq + €3, 2e9 + 261) A= (263, 2eq, 2e9 + 261)

deg [Wa,u]"" =1 deg [Wau]""" =1

A = (2e3+ 2eq, eg + €1, €g + €1) A = (2e3, e1 + 2e3, 2e9 + €1)
deg [Wa m]"" = —% deg [Wa.m]"" =1
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E F

A= (63 + 2e9, 20 + €1, €1 + 63) A= (O, 2eq + 2e3, 2eg + 261)
deg [WA’H}MT =1 deg [WAyH]MT =0

The strategy of computing these weights is similar to Remark We will take some
degree of tropical curves such that the virtual dimension is one, and some of the vertex
types from above occur in one dimensional combinatorial types. We then use results from
Section 3] to obtain relations between the numbers we are looking for and numbers that
we already know. A good approach is to consider tropical degrees in L3, as the vertex types
from above then occur as projections of resolutions which have only one vertex and hence
are particularly easy to understand.

Example 3.4.1 (Type A). Consider the degree A = (2eq + e1, e1 + €2, ea + 2e3 + 2e4) of
tropical curves in L3 which has vdim(L4, A) = 1. Let H C IP* denote a hyperplane which
tropicalises to Lj and let D; denote the coordinate hyperplanes of P, for i = 0, ..., 4. First
we want to determine all non-trivial combinatorial types of degree A curves in L3 of geo-
metric dimension one and we will see that their number is four. There are three obvious
ones 72, v3 and 74, which are given by moving the trivial combinatorial type into direc-
tions ey, e3 and e4. But there is also one other resolution +; consisting of two vertices, a
two-valent one in the origin and a three-valent one in the relative interior of the cone og12.
There are also resolutions of these combinatorial types, but one can check that the only
irreducible boundary divisors of W ps are Wa pa(7;) fori =1, ..., 4.

Using barycentric coordinates to embed My(L3, A) < My 3 xR* = R?, we see that the
rays M(~;) have the primitive integral vectors v., = 2eg + 2e1 + ez, v, = €2, vy, = €3 and
vy, = e4. By Lemma[3.].6lwe know that v,, equals the vector that is associated to Wa pa(v;)
in Construction B.1.4 We abbreviate w; := deg crop(Er) N [Wa pa(7i)] fori = 1,...,4. So
in the fan W g from Construction 3.1.4, case 2, the primitive integral generator of M (v;)
times the weight is just r; := w;v,, fori =1,...,4.

Let A; be the projection of A to R*/(e;)r and H; := D; N H. It is easy to see that for
i =2,3,4wehave Wx pi(vi) = Wa,,p, and that the vector bundle Ey from Construction
2.3.3]corresponds to Ey;, under this isomorphism. Hence we obtain

(62) Wi = deg CtO;D(EH) N [WA,IP4 (’Yl)} = deg CtO;D(EHi) N [WAini] = deg [WAini]mr

for the weights if i = 2,3,4. The pairs (L3, A3) and (L3, A4) are both of vertex type E,
which is already known to have weight one, i.e. w3 = wy = 1. The tuple (L3, A) is the
vertex type A, whose weight we wish to determine.

We know by Lemma[3.1.5that ), r; = 0. Consider the image of this sum under the tropical
evaluation evg 712 at the leaf x5. We obtain

2wieg+e3+es =0 mod V;,,

. . V. :
and hence w; = 1. The tropical evaluation ev; "' now yields

1
562 +woeg+e3+e4s =0 mod Vg,
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and therefore wy = 3.

Example 3.4.2 (Type B). Consider the degree A = (2e( + 2e1, 2e2 + e4, 2e3 + e4) of tropical
curves in Li. We have vdim(L3,A) = 1. Let H C P* denote a hyperplane which tropi-
calises to L} and let D; denote the coordinate hyperplanes of IP*, for i = 0, ..., 4. There are
six relevant combinatorial types of degree A curves in L3i. The combinatorial type ~; for
i =0, ...,4 occurs if we move the trivial combinatorial type into direction e;. The combina-
torial type 75 occurs if we move the trivial combinatorial type into direction es + e3 + e4. It
is not difficult to check that these are the only combinatorial types which contribute to the
fan Wa g from Construction case 2.

Let the primitive integral generator of M(~;) be v,, for each i = 0,...,5. Furthermore,
let w; := deg cop(Er) N [Wa,ps(vs)] fori =0,...,5. So in the fan W, g from Construction
case 2, the primitive integral generator of M(~;) times the weight is just r; := w;v,, for
i=0,...,5. By LemmaB.I.6lwe know that r; = w;e; fori =0, ....,4and r5s = ws(e2 + €3+ e4).

Let H; := D; N H and let A; denote the image of A in R*/(e;)r. It is easy to see that
Wa pi(7i) = Wa, p, holds for i = 0, ...,4 and that the restriction of the vector bundle Ex

corresponds to Ey, via this isomorphism. Hence w; = deg [Wa, p,]""" fori = 0,...,4 as in
©2).
Note that (L3, As) and (L3, As) are of vertex type A and hence wy = w3 = 3. Furthermore

(L3, Ao) and (L3, A1) are of vertex type D, so wg = w1 = 1. The weight we are looking for
is wy, since (L3, A4) is of vertex type B.

We know from Lemma[3.1.5lthat }_, r; = 0. Tropical evaluation eV‘l/"01 yields

1 1
562 + 563 +wieq =0 mod Voor -

This implies wy = % For later use, we also want to determine ws. For this we evaluate with

ev;/ 724 and obtain
1
eg +e1+ 563 +wses =0 mod V,,
and hence w; = 1.

Example 3.4.3 (Type C). Recall Example[1.6.5] where A = (eg + e3, e + e3, 2e1, 2e2) was
a degree of tropical curves in L3 of vdim(L3, A) = 1. In that example, we saw that (L3, A)
is a good vertex type, with the weights chosen there. Now we want to see, that these
weights coincide with those from (&7). It can be checked that M (L3, A) and Wa g from
Construction 3.1.4 case 2, have the same supports. Let the notation be as in Example[1.6.5

Let H C IP? be a hyperplane which tropicalises to L3 and let D; for i = 0, ..., 3 denote the
coordinate hyperplanes of P2. Let Ey be the vector bundle from Construction2.3.3] Again,
we define the weights w; := deg ciop(En) N [Wa ps(a;)] fori = 1,...,5. Let as in Example
r; be the primitive integral generator of M(c;), but only for ¢ = 2,...,5. By Lemma
we obtain that 9 = V19 + €1 + €2, 73 = V12 + €9 + €3, T4 = € and rs = €3 equal the
vectors that are associated to W ps(«;) in Construction[3.1.4) for i = 2,...,5. Let r1 be the
vector associated to Wa ps(«1). Then we must have ), w;r; = 0 by Lemma[3.1.5

Let Ay = (261 + 2e9, €9 + €3, €9 + 63) and Asz = (261, 2es, 2eq + 263). Then (Lg, AQ) is of
type C and (L3, A3) is of type B. We have that Wx ps(;) & Wa, ps for i = 2, 3, because the
stable maps in both stacks only differ by a collapsed component with three special points.
Therefore

w; = deg ciop(El) N [WA,]PS (ozz-)] = deg cop(Ef) N [WA“]pz} = deg [WAi,H]viT

for i = 2, 3. Here E}; denotes the vector bundle from Construction2.3.3lon W, ps. Clearly
Ep corresponds to E}; under the isomorphism Wa ps(a;) = W, ps. So we want to deter-
mine wy. We already know that w; = 3 from the previous example. We apply the tropical



132 3. TROPICAL MODULI SPACES OF COVERS AND OF LINES IN SURFACES

forgetful morphism ft; with I = [4] to ), w;r; and we obtain wyvi2+ %’1}12 = 0 and therefore

1
Wo = —3-

Example 3.4.4 (Type F). As we saw this several times now, we only want to sketch the
computation. Consider the degree A = (2eg + 2e1, 2e2, 2e3 + 2e4) of tropical curves in
L3. We have vdim(L3,A) = 1. Let H C P be a hyperplane which tropicalises to Lj.
Consider M(R*, A) equipped with barycentric coordinates. We find that the primitive
integral generators of the rays of Wa g arev; = ¢;fori =0,...,4and vs = e2 + e3 + e4 and
vg = eg+e1+es. Each v; belongs to a combinatorial type «; of tropical degree A curvesin L]
of geometric dimension one. As before let w; := deg cop(En) N [Wa pa(a;)]. The number
we are looking for is wy. We know from Example B.4.2] that wy = w1 = w3 = wyq = %
Furthermore, we have that Wa pa(as) and Wa ps(cog) are isomorphic to Wa pa(7s5) from
Example[3.4.2] The restrictions of the vector bundles E; correspond to each other via these
isomorphisms. So we conclude that also w5 = ws = % By Lemma [3.1.5lwe know that
6
O:Zwivi =epter+ (wa+1)ea+es+ey
i=0
and we conclude wy = 0.
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