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In the first part of the paper, we give an explicit algorithncéonpute the (genus zero)
Gromov-Witten invariants of blow-ups of an arbitrary coxv@ojective variety in
some points if one knows the Gromov-Witten invariants ofdhiginal variety. In the
second part, we specialize to blow-upsPfand show that many invariants of these
blow-ups can be interpreted as numbers of rational curveB'dmving specified
global multiplicities or tangent directions in the blowp-points. We give various
numerical examples, including a new easy way to determiadatimous multiplicity
d—3 for d-fold coverings of rational curves on the quintic threefaltid, as an out-
look, two examples of blow-ups along subvarieties, whosengarv-Witten invariants
lead to classical multisecant formulas.

Over the last few years, Gromov-Witten invariants of smgothjective varieties have
become a powerful tool in enumerative geometry. Originafiplicable only to convex
varieties where the spaces of stable maps have the expestedsion, the theory is
now well-developed for all varieties using virtual fundarted classes [LT], [BF], [B].

There are at least two motivations to look at Gromov-Witterariants of blow-ups.
Firstly, a blow-upX of a convex varietyX provides an easy example for a non-convex
variety, in the sense that one has reasonably good conteoltbe stable maps with
h(C, f*Tg) # 0 since they all must be such that they intersect the exaegtaivisor.
Hence this gives a good class of examples where one can s$tedffects of virtual
fundamental classes on Gromov-Witten theory. Secondigesuon the blowupX
of a varietyX are closely related to curves oh At least for irreducible curves not
contained in the exceptional divisor, the strict transfaicurves gives a correspon-
dence between curves ¥ of specified homology class and curvesXrintersecting
the blown-up variety with a given (global) multiplicity. iHee, being able to calculate
Gromov-Witten invariants of blow-ups, one can hope to s@rnamerative problems
on X involving multiplicity conditions at the blown-up variety

Apart from the last section of this chapter, we will only bexcerned with blow-ups
of points, since both the calculation and the question ofrearative significance get
very complicated in the case of blow-ups of general subtiase Everything will be

done overC and for curves of genus zero.

We first address the question of how one can compute the GrdMitben invariants
of blow-ups. For any convex varietq, we state and prove an explicit algorithm to
reconstruct all invariants &€ from those ofX in section 2. Directly from the algorithm,
many of the invariants ok can be seen to vanish or to coincide with otherX oThis

is done in section 3. For example, we will show in corollarg that the equality

X(1®.. @@ pt) = 1% £ (PV1@...® P'Yn)
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holds forf € A1(X) andy; € A*(X), wherep: X — X is the blow-up andE’ the class
of a line in the exceptional divisor. As curves ¥hwith homology clasp*p — E’
correspond to curves M with homology clas$ intersecting the blown-up point with
multiplicity one, both these invariants are supposed tantourves onX of classf
intersecting generic subvarieties representingyitesd one additional point iX. If
the left invariant in fact counts these curves (which is theece.g. foiX = P" by
the Bertini lemma), then the right invariant also does, aedcall this invariant orX
enumerativas it has the expected geometric meaning.
In general, ifX = X(s) is the blow-up ofX ats generic points, ..., Ps, we will call
an invariant orX of the form

IE)(*B+e1E1+~-~+%Eg(p*y1 ®...®pP"Yn)
with all § < 0 enumerative if it counts the number of curvesoof class3 intersecting
generic subvarieties representing theand in addition passing through eaghwith
global multiplicity —e (see definition 4.1). One would then expect these curves to
have—e smooth local branches at every pot

The question whether such a given invariantbis enumerative or not is in general
very difficult. We will discuss this question in the ca¥e= P'(s) in sections 4 to 6.
The results are as follows:

e If s= 1 then all invariants oiX are enumerative. This is shown in theorem 5.3.

e If r =3, s< 4, and the invariant contains only point classes as incieleon-
ditions, then this invariant is enumerative, except for edaw cases discussed
below. This is shown in theorem 6.4.

¢ If r = 3 and the invariant contains not only point classes, themiit general not
enumerative. This is discussed in section 4.

e If r > 4 ands > 2, then the invariants are “almost never” enumerative. This
discussed in section 4.

In addition, Gottsche and Pandharipande [GP] showed gtigntly that almost all
invariants are enumerative lif= 2. Taking all these results together, the main point
left open is the case= 3 ands > 5.

In section 7 we show that Gromov-Witten invariants of blopsiucan also be used to
count numbers of curves K = P' satisfying certain tangency conditions: the number
of curves inX of classp intersecting generic representatives of claggesA*(X),
and passing in addition through a given pdi¢ X with tangent direction in a given
k-codimensional subspace 6 p is equal to

X e (PV®...0p e —(-E)fY)  ifk<r-1,
FN®.. @YW pt®?) =210, e (PVi®...@p )  ifk=r—1,
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see theorem 7.1. Various numerical examples of our resaitide found in section
8. This also includes a very interesting case of non-enuiaeravariants in example
8.5, namely

P3(2) _ 4-3

lyprr—ag;ag, (D) =d
whereH' is the class of a line if?® and the notation & A*(X)®® means that there are
no cohomology classes in the invariant. This invariant caslown to coincide with
the famous multiplicity with which multiple coverings gebunted in the Gromov-
Witten invariants of the quintic threefold. Thus our alglon to compute Gromov-
Witten invariants of blow-ups gives a new easy way to repcedtis result.

We conclude our work with two easy examples of Gromov-Witterariants of blow-
ups of subvarieties in section 9. In the case of the blow-up space curv¥ c P2,
we reproduce the well-known (possibly virtual) number afe:ants of intersecting

a fixed line, and the number of 4-secant¥oln the case of the blow-up of an abelian
surface inP*, we reproduce the well-known result that the generic abdiaface in
P4 has 25 6-secants.

This work is part of my PhD thesis written at the UniversityH#nnover. | would like

to thank my advisor Prof. K. Hulek for invaluable support andny helpful discus-

sions. My work has been inspired by my visit of A. BeauvilldRaris, the conference
on enumerative geometry in Rome 1997, the AMS Santa Cruzoemée 1995, and
in particular by my stay at the Mittag-Leffler institute taspring during the year on
“Enumerative geometry and its interactions with theoedtfhysics”. My work has

partly been financed by the project HCM ERBCHRXCT 940557 (AGE

1 Preliminaries

We start by describing the setup and the notation that wiluged throughout the
work. For a complex smooth projective varietyof dimensiorr, we denote by (X)

the algebraic part dfiy (X) modulo torsion and b (X) the algebraic part dfiZ (X)
modulo torsion. These are finitely generated abelian groTips classes ia\ (X) will

be said to haveodimensioni. By abuse of notation, we will often denote a subvariety
of X and its fundamental class &.(X) or A*(X) (via Poincaré duality) by the same
symbol if no confusion can result. The intersection prochfdtvo elementsy, Y in
A*(X) (or A.(X) via Paincaré duality) will be denoted y. The class of a point will
be denotedt. If X = P', the hyperplane class will be callétic A(X), and the class
of a line will be calledH’ € A;(X).

For € A1(X) an effective homology class and> 0, we denote as usual Mom(x, B)
the moduli spaces of stable maps of genus zeko[BM], and byey : Mg n(X,B) — X
the evaluation maps. We will sometimes associate to a stabfgC, xj,...,Xn, f) €
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Mom(x, B) atopologyTt, by which we mean the homeomorphism class oftpeinted
topological spacéC, x1, ..., Xn) together with the data of the homology clas$d€i] €
A1(X) on each irreducible componegitof C. This definition can be made much more
precise and formal using the language of graphs [BM], how#wen the notation is
likely to get very messy, so we will not make use of it.

These moduli spaces of stable maps possess an expectedidimen
vdim Mon(X,B) := —Kx -B+r+n—3

and avirtual fundamental class [Mon(X,B)]"™ € Agim io(x.3) (Mon(X,B)) [LT],
[BF], [B]. This class is constructed using the obstructibit$C, f*Tx) for stable maps
(C,X1,...,%, f) € I\Zom(X,B). In particular, if these obstructions vanish for all stable
maps in the moduli space, then the virtual fundamental dassides with the usual
one. There exists a local version of this property too, wiatlows immediately from
the construction:

Lemma 1.1 Let (C,Xq,...,%, f) € Mon(X,B) be a stable map with!(C, f*Tx) =

0. Then(C,xa,...,%n, T) lies in a unique irreducible componeatof I\Wo,n(X,B) of
dimensionvdim I\WOM(X,B), and ifR denotes the union of all the other irreducible
components, then

[Mom(x, [3)]"irt = [Z] + some cycle supported ¢t O

We now come to Gromov-Witten invariants.yf, ..., y, € A*(X) are classes oX, the
associated Gromov-Witten invariant is

Ié((V1®...®Vn) = (E\iiyl. . e\j‘ﬁyn) . [|\Z07n(x7 B)]Virt cQ

if 1, codimy; = vdim Mom(x, B), and zero otherwise.

Concerning the notation, we will often drop the superscdptTo shorten notation,
we will often write 7 = y1 ®...® Y, and callT € (A*(X))®" a collection of classes
Correspondingly, we writev'7 for ey -...-eyn. If X =P', the invarianﬂB(T) is
also denoted by, (7), whereB =dH’.

We now review briefly the relations among these invariarge @g. [FP]), mainly to
fix notation for the splitting axiom.

Proposition 1.2 Properties of Gromov-Witten invariants

(i) (Mapping to a point) If 3 =0, then the invariant is equal to the triple intersection
product:

Yi-Y2-y3 ifn=3andy;codimy; =r,

I R...QVn) =
oY1 o) {O otherwise.
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(i) (Fundamental class)If B # 0 and the invariant contains the fundamental class
of X, then the invariant is zero:

Ig(X®T)=0 forallT and allg # 0.

(iii) (Divisor axiom) If B # 0 andy € AL(X) is a divisor, then

lg(y®T)=(y-B)lg(T) forallT.

(iv) (Splitting axiom) Choose a homogeneous bdsis- {To, ..., Tq} of A*(X), de-
fineg = (gij) to be the intersection matrix

Ti-T; ifcodimTi+codimT; =r,
Gij = .
0 otherwise,

and letg~! = (g) be the inverse matrix. Choogec A(X), four classes
H1,...,Ha € A" (X) and a collectiolm =y, ® ... ® Yy of classes such that

n 4
codimy,+ $ codimpy; = —Kyx -B+r+n.
2 2

Then we have the equation
0=15(T @MW H Ha)+I5(T @U@ Ma® 1 * o)
(TR @@ 2 Ha) —Ig(T @12 ® Ha® Ha - K3)
+ Y 72 S d (g (Ti0mekeT) L, (RekemeT)
B1,B270 T1,72 1)

—lg (1B T)I ('72®u2®p4®Tj))
B1 B2
where the sum is taken over

e all effective classeRy, Bz € A1 (X) with B1+ B2 =B,

e all 71 = Vi ® ... @ Vi, and7T> =VYj1 @ ... ®Vijy, such thatq < --- < ip,
j1< < jny @ndfiz,...,in,} U {jt,---, in,} = {1,...,n} (i.e. “the classes
of T get distributed in all possible ways onto the two factors”),

e allO<i,j<q.

In the sequel we will call this equatidg(T ; p, Kz | K3, ).

Now let p: X = X(s) — X be the blow-up oK ats generic point$,...,Ps€ X, and
let E; be the exceptional divisors. Fix a homogeneous Wsis{To, ..., Tq} of A*(X)
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of increasing codimension such thit= X is the fundamental class afg = pt. If
we defineTq, 1, ..., Tg with § = q+s(r — 1) to be the classes

EXe A(X) wherel<i<sl<k<r-—1
(in any order), then
B={pT,....,p" T Tou1,-- -, Ta}

is a homogeneous basis/@‘f(f(). We call the classeg’ Ty, ..., p*Tq non-exceptional
andTq,1,..., T exceptional A collection of classe§™ will be called non-exceptional
if all its classes are non-exceptional. Since the Gromottefviinvariants are multi-
linear in the cohomology classes, we will for computatiopatposes only consider
invariants of the formg (7)) where7 is of the form7 =Tj, ® ... @ Tj,.

In terms of the basi8, the intersection theory 0¥ is given by

P T - p* Ty = p*(Tj- Tjr)

T} Ef=0
EF.Ef = & /E[¥
Ef = (-1 'pt

for1<j,j’<qg1<i,i’<s 1<kk <r—1. If there is no danger of confusion, we
will write the classe*Ty, ..., p*Tq simply asTy, ..., Tq.

~

The homology group\;(X) has a canonical decomposition
AX)=A(X)DZE® - DZE]

whereE] denotes the class of a line in the exceptional diviger P'-1 such thak/ =
—(—E;)"! via Poincaré duality. We denote tle- 1 projections onto the summands
of the above decomposition lal: Ay (X) — A1(X) andey,...,es: A1(X) = Z, and we
sete=e1+---+6s. If X =P", we will identify A;(X) with Z in the obvious way and
consider as a functiord : A;(X) — Z.

~

For a homology clasB € A;(X), we calld([3) thenon-exceptional partande(f) the
exceptional part The class3 is called anon-exceptional classf () = 0 for all

i and apurely exceptional classf d() = 0 andg () # O for at least oné. For a
homology clas$ € A;(X), we will denote the corresponding non-exceptional class in
A1(X) also byp.

The canonical divisor oiX is given byKy = p*Ky + (r — 1)E (see [GH] section 1.4),
hence the virtual dimension of the moduli spatgn(X, B) is

vdim Mgn(X,B) = —Kg -B+n-+r—3
= vdim Mon(X,d(B)) + (r — 1) e(p).
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2 Calculation of the invariants

The aim of this section is to prove the following.

Theorem 2.1 LetX be a convex variety and the blow-up ofX at some points. Then
there exists an explicit algorithm to compute the Gromowt&¥iinvariants oX from
those oiX.

The computation is done in three steps. Firstly, we shownme 2.2 that all invariants

Ié(T) with B and7 non-exceptional are actually equal to the correspondivayiants

on X. Secondly, in lemma 2.4 we compute the invariahaztST) with 3 purely ex-
ceptional using a technique similar to the First Reconsisnd heorem of Kontsevich
and Manin. Thirdly, we state and prove an algorithm thatvedlone to compute all
Gromov-Witten invariants oX recursively from those obtained in the first two steps.

Lemma 2.2 LetT =Tj, ®...®Tj, be a collection of non-exceptional classes and let
B € A1(X) be a non-exceptional homology class. Then

IE;((T) = IE{(T).
In this case we will say that the invarialét(T ) isinduced by X.

Proof Consider the commutative diagram

for 1 <i < n. First we show tha@,[Mon(X,B)]Y™ = [Mon(X,B)]¥": sinceX is con-
vex, Mon(X,B) is a smooth stack of the expected dimensiba vdim Mg (X, B).
Let Zy,...,Z be the connected components\df (X, B), so thatAg(Mon(X,B)) =
Q[Z1]®---®Q[Z]. Since vdimMgn(X,B) = d, we must therefore have

@ [Mon(X, B = 0a[Zg] + -+ -+ a[Z]

for someq; € Q.

To see that albij = 1, pick a stable mag; € Z; whose image does not intersect the
blown-up points. Therp1(C;) consists of exactly one stable mép and the map
@: Mon(X,B) — Mon(X,B) is a local isomorphism around the poifit HenceC; is a
smooth point of an irreducible componéhiof Mo (X, B). Denote byR; the union of
the other irreducible componentslﬁb)n(f(, B). Then, by lemma 1.1,

[Mon(X,B)]Y™ = [Z] + some cycle supported d#.
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Now, since@: Z; — Z; is a local isomorphism arour@, we havey, [Z;] = [Z]. How-
ever, the pushforward of@cycle supported oR; will give no contribution tay; since
Ci and therefore; is not contained in the image & under@. We conclude that all
a; = 1 and that therefore

@.[Mon(% )™ = 21] +--+ (2
~ Vo (X.B)]
= Mo (X.B)1"™.

To complete the proof, note that by the projection formula

X(T) = ([]e¥P'Ty) - [Mon(X, B)™

= ([]9'eYTi) - [Mon(X.B)"™

— ([Te¥T)) - 0. Mon(X, B

= ([Te%Tj) - Mon(X.B)]"™

= 15(T).

O

Remark 2.3 This lemma is actually the only point in the proof of theorerh @here
the convexity ofX is needed. Hence, one can formulate the theorem also inltbe/fo
ing, more general way:

Let X be a smooth projective variety aiXdthe blow-up ofX at some points. There
exists an explicit algorithm to compute all Gromov-VVittenairiantSé((T ) of X from
those wher@ andT are non-exceptional.

The proof would be literally the same, just skipping lemnia 2n fact, it may even be
that lemma 2.2 also holds for non-convéxbut | do not know how to prove it in this
case.

Lemma2.4 LetT =T, ®...@Tj, with T;, € B be a collection of classes and let
B € A1(X) be a purely exceptional homology class. Then

(i) If B is not of the formd - E] for d > 0 and somel <i <, thenIE;((T) =0.
Moreover, the invariant can only be non-zero if all classeg iare exceptional
with support in the exceptional divis&y.

(i) 15(EtoE Y =1foralll<i<s.

(iii) All other invariants with purely exceptional homolgglass can be computed
recursively.
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Proof

(i) This follows easily from the fact that a Gromov-Witterviiriantlg(T ) is always

zero if there is no stable map Iv_io,n(f(, B) satisfying the conditions given L.

(i) Note thatMo (X, E!) = Mo 2(P'~1,1) and that this space is of the expected di-
mension (which is 2— 2), hence we do not need virtual fundamental classes to
compute this invariant. Choose two curvgsY, C X intersecting transversally
at the blown-up poinB, and lety;,y, € A"~1(X) be their cohomology classes.
Let Y be the strict transform ofy for k = 1,2. ThenY; and Y, intersectE;
transversally at different points, so the invariant

B (@) = &+ (~E) H e (va+ (-E) 1)

simply counts the number of lines B through two points irg;, which is 1.
Therefore, by the multilinearity of the Gromov-Witten imants and by (i) we
conclude that

SERE ™) =15+ (-B) @ (va+ (-B)' )

(i) (This is essentially the First Reconstruction Thaaref Kontsevich and Manin,
see [KM].) As in (i) we assume that = P (1) and that we want to compute the
invariantIdE,(Ejl®...®Ejn) for somed and somej;. Consider the equation
Eap (T ; E3 EP | ES,E) for someT consisting of exceptional classes and for
some2<a<r—1,2<b<r-1,1<c<r-1:

0=l4e(T®E*®EP®E®-E) 1)
+l4p (TOECQE ®E?- EP) 2)
— 14 (T®E?QE®EP-E) (3)
4 (TOEP®EQE?-E®) (4)
+ (terms with homology class&SE’ with d’ < d). (5)

We want to compute the invariants by induction on the dedraed on the num-
ber of non-divisorial classes in the invariant. Obvioushe terms in (5) have
lower degree and those in (2) and (4) have same degree butlarsmenber of

non-divisorial classes than (1). The degree of (3) is equ#tat of (1), and its
number of non-divisorial classes is not bigger than thatlyf (n any case, we
can write

lye (T OERQEPQESY) = I, (T 9 ERQ EPTL 9 ES)
+ (recursively known terms)
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Thus if a Gromov-Witten invariant contains at least three-divisorial classes,
we can use this equation repeatedly to expigss(7 ® E?® EP@ECH) in
terms ofl 4 (7 ® EA® EP*C® E) (and recursively known terms), which again
has fewer non-divisorial classes. This makes the induatiork and reduces
everything to invariants with at most two non-divisorigdg$es. However, since
vdim I\Zom(f(,d E') = (r—1)d+r+n—3 and each class has codimension at
mostr, it is easy to check that the only such invariant is the oneutaled in (ii).

O

We now come to the main part of the proof of theorem 2.1, narttedyalgorithm
to compute all invariants oX from those calculated so far. We will first state the
algorithmin such a way that it can be programmed easily omgcer, and afterwards
give the proof that it really does the job. Many numbers cotegusing this algorithm
can be found in section 8.

From now on, Gromov-Witten invariants will always be ¥runless otherwise stated,
so we will often write them ak;(7') instead oﬂg(T).

Algorithm 2.5 Suppose one wants to calculate an invariér@ﬂ' ). Assume that the
invariant is not induced bx and tha is not purely exceptional. We may assume with-
out loss of generality that the sum of the codimensions ohtireexceptional classes
in T is at least + 1 (hence in particular that there are at least two non-exceati
classes) — otherwise choose a divipar B with p- 3 # 0 (such g exists becaus@

is not purely exceptional) and ugex p®"+1) instead ofT", which gives essentially
the same invariant by the divisor axiom.

We can further assume without loss of generality thabntains no exceptional divisor
class and that the classgg, ..., Tj, in T are ordered such that the non-exceptional
classes are exacthy,, ..., Tj,, wherecodimTj, > --- > codimTj,.. In particularTj,
andTj, are two non-exceptional classes with maximal codimensign. i

We now distinguish the following three cases.

(A) n>m, ieTj = EX (for somel < i <'s, 2 <k<r—1)is an exceptional class.
Then use the equation

E(T: T T | BLETY)  whereT' =Tj;©..9T,, ..

(B) n=m(i.e. there is no exceptional classTi), T;, = pt andcodimTj, > 2. Then
choosay,v € B such thatodimp= 1, codimv =r —1, andu-v # 0. Since the
invariant to be computed is not inducedXythere is an € {1,...,s} such that
Ei - B # 0. Use the equation

E(T'; WV |E,T),) whereT' =T, ®...QTj,.
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(C) n=m, and it is not true thaf;, = pt andcodim Tj, > 2. Then again there is an
i €{1,...,s} such thak; -3 # 0. Use the equation

8[3+E((Tl ; Tis, Tj, | Eis Eirfl) whereT' =T, ®...®T,.

Here, “use equatiofi” means: the Gromov-Witten invariaqg(T ) to be calculated
appears ir€ linearly with non-zero coefficient. Solve this equation fg(ﬂ‘ ) and
compute recursively with the same rules all other invagantthis equation that are
not already known.

Proof (of theorem 2.1) Suppose we want to compute an invarﬂﬁﬁ’f). If the invari-
antis induced by, it is assumed to be known by lemma 2.2B3 i purely exceptional,
the invariant is known by lemma 2.4. In all other cases, usatforithm 2.5 to com-
pute the invariant recursively. We have to show that the ggpsto be used in fact do
contain the desired invariants linearly with non-zero Giorint, and that the recursion
stops after a finite number of calculations.

To do this, we will define a partial ordering on paii, 7) wherep € A¢(X) is an
effective homology class and@ is a collection of conomology classes. Choose an
ordering of the effective homology classe®¥(X) such that, fon1, a, # 0 being two
such classes, we hawe < a; + a2 (this is possible since the effective classe8d(X)
form a semigroup with indecomposable zero). For a colleatibclasses = Tj, ®

..®Tj,, we assume as in the description of the algorithm that thesekare ordered
such that the non-exceptional classes are exagtly. ., Tj,,, where codimTj, > --- >
codim Tj,,, and that codimTj, +--- 4 codim Tj,, > r + 1 (by possibly addlng non-
exceptional divisor classes). Then we define

V(T) =min{k; codimTj, +---+codimTj, >r +1},

i.e. “the minimal number of non-exceptional classesiwhose codimensions sum
up to at least 4+ 1”. With this, we now define the partial ordering on paifs7) as
follows: say tha{B1,71) < (B2, 72) if and only if one of the following holds:

o d(B1) <d(B2),
o d(B1) = d(B2) andv(T1) < V(T2),

o d(B1) =d(B2), V(T1) = V(T2), ande(B1) < &(B2).

Obviously, this defines a partial ordering satisfying thesdending chain condition”,
i.e. there do not exist infinite chairif1, 71) > (B2,72) > (B3, 73) > .... This means
that, to prove that the recursion stops after finitely manguations, it suffices to
show that the equations in the algorithm compute the deimeniiantIB(T) entirely
in terms of invariants that are either known by the lemmasad®2.4 or smaller with
respect to the above partial ordering. We will do this nowthar three cases (A), (B),
and (C).
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(A) The equation reads

(B)

(©)

0=1a(T'® T}, ®Tj, ® 6 - EF ) (1)
+g(T'E®E'RT;,-T),) )
+(no furtherlg(- ) lo( - )-terms sinces; - Tj, = EL.Ti,=0)

+ (someIB_OI Ea’( ) 'dE{( - )-terms) 3)
+ (somel Bl( -) IBz( - )-terms withd(1),d(B2) # 0). 4

The term (1) is the desired invariant. If the term in (2) is +r@mo, it has the same
d(B) and smallew(7), since the two non-exceptional clas3gs Tj, of maximal
codimensions codinTj,, codim Tj, are replaced by one class of codimension
codim Tj, +codim Tj,. Hence, the term (2) is smaller with respect to our partial
ordering. The terms in (3) have the sathéghe same or smaller(note that all
non-exceptional classes from the original invariant mesirbthe left invariant
IB_d ,(-)), and smallee. Finally, the terms in (4) have smalldr Hence, all
terms in (2), (3) and (4) are smaller with respect to our phaiidering.

The equation reads
0=1(T"®E®T,®u-V) 1)
+(no furtherIB( )lg( - )-terms sinceg; - Tj, = - u=Tj,-v=0)
+(nolg 4 Ei’( -) IdE{( - )-terms since E{( - ) would have to contain at least
one of the non-exceptional classgs, |, v)
+ (somel Bl( -) le( - )-terms withd(1),d(B2) # 0). 2)

Here, obviously, (1) is the desired invariant and the term&) have smalled
and are therefore smaller with respect to the partial onderi

The equation reads
0= IB+E{(TI®T11®T12®Ei 'Eirfl) )
H,_/
(1) =1pt
+IB+E{(TI®Ei ®Eir_1®le-Tj2) 2)
+(no furtherIB( ol - )-terms)
+ |B(T’ T, T,® Ei) IE{(Ei ® Eif*1® Eirfl) (—l)r_l 3)
1
+(no furtherl_y. (- )lye (- )-terms since there are not enough exceptional

classes to put intg, Ei,( )
+ (somel Bl( -) le( - )-terms withd(B1),d(B2) # 0). 4)
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Here, (3) is the desired invariant. (4) has smatleand (2) has the santeand
smallerv, as in case (A)-(2). The term (1) has the saimbut is not necessarily
smaller with respect to the partial ordering. We distinguiso cases:

(i) If T"®Tj, ®Tj, contains a non-divisorial (non-exceptional) class, then t
invariant (1) will be computed in the next step using rule, (Bhich ex-
presses it entirely in terms of invariants with smater

(i) If 7'®Tj, ®Tj, contains only divisor classes, the invariant (1) will be eom
puted in the next step using (C). This time, (2) vanishesTjprTj, =0
sinceTj, = pt), (4) has smalled, and (1) will be computed by (B) as in (i)
in terms of invariants with smallet.

Hence, combining (C) with possibly one other applicatiofB)fand/or (C), the
desired invariant will again be computed in terms of invatsahat are smaller
with respect to the partial ordering.

This finishes the proof. O

Corollary 2.6 There exists an explicit algorithm to compute all Gromout@i in-
variants orP" (s) forallr > 2,s> 1.

Proof Compute the invariants & using the First Reconstruction Theorem [KM],
and then use theorem 2.1. O

3 A vanishing theorem

We will now prove a vanishing theorem saying that a Gromov&WiinvarianﬂB(T)
with d(B) # 0 ande () > 0 for somei vanishes under favourable conditions, mainly
if &(PB) > 0 and if there are “not too many” exceptional classe§ inThe proof of
the proposition is quite involved, but as a reward it is alsp/\sharp in the sense that
numerical calculations off (1) have shown that an invariant (with non-vanishit{@)
and non-negative(B)) is “unlikely to vanish” if the conditions of the propositiare
not satisfied. We will then apply the proposition to proveatiairy 3.2, which is a first
hint that Gromov-Witten invariants on blow-ups will leadedoumeratively meaningful
numbers.

To state the proposition, we need an auxiliary definitior. F& 5 and 1< i < swe
define

m—1 if T =E™ for somem,

W.(T):{

0 otherwise.

If 7T=T;,®...®Tj, is a collection of classes, we s&t(7) = wi(Tj,) +---+wi(Tj,).
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Proposition 3.1 Let B andT be such that for some < ig < s the following three
conditions hold:

(i) d(B) #0,
(ii) wio(T) >0 orey(B) >0,
(i) wio(T) < (€(B) +1)(r —1).
Thenly(T) =0.

Proof The proof will be given inductively following the lines of ¢halgorithm 2.5.
For invariants induced b} or invariants with purely exceptional homology class, the
proposition does not say anything, so all we have to do is tohgough the three
equations (A) to (C) and show that the statement of the pibponss correct for the
invariant to be determined if it is correct for all the others

For the proof of the proposition, we will refer to the clas3gandT; in the splitting
axiom (see proposition 1.2 (iv))

O:Z gij <| (,,,®Ti)|(---®Tj)>

as theadditional classesf a certain summand in the equation.

Assume that we are calculating an invaribdiﬂ') and that a ternhBl(Tl) IBZ(7§) oc-
curs in the corresponding equation (A), (B), or (C) such {Baf") satisfies the condi-
tions of the proposition, but neithé@s, 71) nor (B2, 72) does. We will show that this
assumption leads to a contradiction.

We first distinguish the two cases, (7)) > 0 ande,(B) > 0 according tdp, 7) satis-
fying (ii).

e W, (7) > 0. This means that we have an exceptional non-divisorial ¢fatse
invariant and hence that we are in case (A) of the algorithrarédver, we can
assume that we use case (A) of the algorithm withig. Since the term in (A)-
(2) in the proof of theorem 2.1 satisfies the conditions ofgheposition if the
desired invariant (A)-(1) does, we only need to considerntdnms (A)-(3) and

(A)-(4).
From (A)-(1) we know that

Wi (T) =W (T") +wi (EX) = wi (T") + k-1,
whereas in all other term§l(7‘1) IBz(TZ) we have

Wi (72) +Wi(72) = Wi (T7) + Wi (EX 1) +e(r —2) =wi(T7) + k—2+¢(r — 2),
(1)
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wheree = 1 if the additional classes happen to be classes in the esnapt
divisor E;j, ande = 0 otherwise. Combining both equations, we get

Wi (71) +Wi(72) =wi(T) — 1+¢€(r — 2). (%)
Now we again distinguish two cases.

(@) (B1,71) and(B2, 72) satisfy (ii).If (B1,71) does not satisfy (i), thef; is a
purely exceptional class, so all classe§immust be exceptional, i.e.

Wi (71) = vdim Moo(X,B1) = &(B1) (r—1) +r -3
= (&) +1)(r—-1) -2

So we have the two possibilities

(B1,71) does not satisfy (i= wi(71)
(B1,71) does not satisfy (iii))= w;(71)

(&(B) +1)(r—1)-2,
(&(B1) +1)(r —1).
The same is true fai32, 72). However, sincg is not purely exceptional, it

is not possible that botff3;, 71) and(B2, 72) do not satisfy (i). We conclude
that

>
>

Wi(71) +Wi(72) > (&(B1) +1+&(B2) +1)(r—1) -2
=(@P)+2)(r-1)-2
>w(7)+r—3 since(B, T) satisfies (iii).

This is a contradiction to (1).

(b) (B1,71) does not satisfy (ii)i.e.w;(71) = &(B1) = 0. Sincew;(71) =0, T1
does not contain exceptional cIasErlr‘sfor k> 1. Sinceg (1) =0, 71 also
does not contaif; (otherwisd Bl(7'1) = 0 by the divisor axiom). Henc&;

does not contailEi" for anyk, and in particular we conclude that= 0 in

(2):

Wi (72) =wi (T) —1<wi(7)
<(a(B)+1)(r-1)
= (a(B2) +1)(r —1).

Therefore(B,, 72) satisfies (iii). It also satisfies (i), since otherwise we
would havee (B1) = e(B2) = 0 and hence get zero by the divisor axiom
from the clasE in (A). Hence, (B2, 72) cannot satisfy (i), i.e. we must be
looking at the invariants (A)-(3). However, the invarieh(pEi,( - ) appearing
there can never be non-zero if the additional classes arexogptional.
We reach a contradiction.
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e g,(B) > 0andwi,(7) = 0. Then we can be in any of the cases (A) to (C) of the
algorithm. Note thag,(B1) + &, (B2) is equal toe,(B) or &,(B) + 1 (the latter
case appearing exactly if we are in case (C) aadg). In any case, it follows
that

8, (B1) +&,(B2) > &,(B) > 1,

hence we can assume without loss of generality ¢3éB1) > 1. In particular,
(B1, 71) satisfies (ii). We are going to show that it also satisfies{d) @i), which
is then a contradiction to our assumptions.

The case thafp;, 71) does not satisfy (i), i.e. that(1) = 0, could only occur
in (A)-(3) and forB; = dE. Since

1< g(B1) = &, (dE) = d&j,
we must havé = io. But this means that we have a cl&s= Ef in 7 which is
a contradiction tavi,(7°) = 0. Hence(P1, 71) must satisfy (i).

As for (iii), we computew;,(71). There are no exceptional clas&’g‘; e E{O‘l

in 7" sincewi, (7)) = 0. Hence the only such classesfincan come from

— the additional classes,

— the four special classes used in the equation (A), (B), or (C)

Both can contribute at most- 2 tow;,(71), hence
Wig(71) <2r =4 <2(r —1) < (&,(B1) +1)(r — 1).

Therefore(B1, 71) also satisfies (iii), arriving at the contradiction we wevek-
ing for.

O

As a corollary we can now prove a relation between the Grolviten invariants of
X that one would expect from geometry. Namely, if we want toregp the condition
that curves of homology clagspass through a generic pointx) we expect to be able
to do this in two different ways: either we add the class of i 7, or we blow
up the point and count curves with homology cl@ss E’. The following corollary
states that these two methods will always give the sametyegumatter whether the
invariants are actually enumeratively meaningful or not.

Corollary 3.2 Let(B,7) be such that, for sonte< i <'s, we haves(B) =wi(7)=0
andd(B) # 0. Then

lp_g:(T) = Ig(T @ pb).
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Proof Consider the equatiofg(7 ; A, A | E, E' 1) for an arbitrary divisoh € B with
A-B#0O:

0=Ig(TOASARE-E[ ) 1)
+(no furtherIB( ) (- )-terms)
+lp e (TOASARE) Ig(Ei® E-teoEYH(-1? 2)
N ~~ .
+ (no furtherIBiOI Ei,( )y Ei,( - )-terms since there are not enough exceptional
classes to put intb, Ei,( )
+ (somel Bl( -) IBz( - )-terms withd(B1),d(B2) # 0). (3)

Using proposition 3.1, we will show for any tertEl(Tl) IBz(TZ) in (3) that it van-
ishes. Since (B1) +e(B2) = &(B) = 0, we have without loss of generality one of the
following cases:

e &(B1) =&(B2) =0. Then IBl(Tl) IBz(TZ) = 0 by the divisor axiom because of
the clas<; in the equation.

e &(B1) > 0. Then we show thaff1,71) satisfies conditions (i) to (iii) of the
proposition and hence vanishes. (i) and (ii) are obvious fokgiii), the only
classes contributing te; (71) can come from

— the additional classes,

— the special clasg/ ~* used in the equation.

Both can contribute at most- 2 tow;(71), hence
Wi(71) <2r—4<2(r—1) < (a(B) +1)(r—1).
Therefore(B1,71) also satisfies (iii).
Now that we know that all terms in (3) vanish, the above egudbecomes
lg(TOAOAGE -E 1) =15 o(TOASASE) (-1

SinceE; -E 71 = (—1)"!pt andE; - (B — E!) = 1, the corollary follows. m

4 Enumerative significance — general remarks

After having computed all Gromov-Witten invariants on blayws of projective space
(see corollary 2.6), we now come to the question of enumeraignificance of the
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invariants. For most of the time, we will be concerned wit\bainilantslg(T) whereT

is non-exceptional, leading to numbers of curveXantersecting the blown-up points
with prescribed multiplicities. Only in section 7 we will osider some invariants
containing exceptional classesTn leading to numbers of curves otiwith certain
tangency conditions.

For the rest of the chapter, we will only work with = P (s). We start by giving a
precise definition of an enumeratively significant invarian

Definition 4.1 Let 3 € A1(X) a homology class with(p) # 0 andg(B) < 0, and let

T =v1®...®Yn be a collection of non-exceptional effective clasgesA~1(X) such
thaty; codimy, = vdim Mo n(X, B).

Then we call the Gromov-Witten invariaré‘(T ) enumerative if, for generic sub-
schemed/; X with |Vi] =y, it is equal to the number of irreducible stable maps
(C,x1,...,%n, f) with f being generically injectivet,[C] = B, andf(x) €V, for all i
(where each such stable map is counted with multiplicity)one

Note that irreducible stable mag€, xy, ..., X, f) on X of homology clas$ with f
generically injective correspond bijectively to irredbiei curves inX of homology
classf3, and hence via strict transform to irreducible curvexXiof homology class
d(p) intersecting the blown-up poini with global multiplicities—& (B). Hence it is
clear that we can also give the following interpretation miimerative invariants:

Lemma 4.2 If 15(T) is enumerative, then for generic subschexesX with [Vi] = yi,
it is equal to the number of irreducible rational cur@es X of homology classl ()
intersecting alV;, and in addition passing through edehwith global multiplicity
—a(B). Every such curve is counted with multiplicByCNVy) - ... #(CNVy).

In general, one would then expect these curves to khayemooth local branches at
every pointB.
We will now give an overview of the results about enumeratigaificance of Gromov-

Witten invariants ofP' (s). Assume thatl(B) # 0, g (B) < 0, and thaf/ is a collection
of non-exceptional effective classes.

@ Ifs=1 thenIB(T) is enumerative. This will be shown in theorem 5.3.

(ii) If r=2thenly(7)is enumerative i& (B) € {—1, -2} for somei or 7 contains at
least one point class. This has been proven by L. Gottsah®aRandharipande
in [GP].

(i) If r=3,s< 4, andT contains only point classes, théd(T) Is enumerative if
and only if B is not equal tad H' — d B/ — d Ej for somed > 2 andi # j with
1<, j <s We will prove this in theorem 6.4.
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(iv) If r =3 and7 contains not only point classes, tht-d(T) is in general not
enumerative.

(v) If r>4ands> 2 thenIB(T) is “almost never” enumerative.

We start our study of enumerative significance by showingtigen of potential prob-
lems with enumerative significance, thereby giving colexamples to enumerative
significance in the cases (iv) and (v) above.

The most obvious problem is that a stable i@px, . . ., X», f) may be reducible, with
some of the components mapped to the exceptional divisoe. paint of the moduli
space corresponding to such curves will in general haveitpdimension. For exam-
ple, consider the cagé=P3(1), B = 4H'. Stable maps iMoo (X, B) will not intersect
the exceptional divisor at all, henc@o(f(, B) has the expected dimension. However,
consider reducible curves = C; UC, wheref is of homology class¥4’ — 3E' onC;
and of homology classBB onC,. These can be depicted as follows:

7

C Tre— |
—~1 | . D

E

The space of such curvéy is (at least) of dimension vdiriﬁovo(f(AH’ —3E) =
4-4—3-2= 10, the space of curvé&® of homology class B through a given point
(namely one of the points of intersection@fwith E) is of dimension33—-1—-1=7
(note thatE = P?). Hence the part of the moduli spaﬂbp(f(,ﬁ) corresponding
to those curves has dimension (at least) 17, but we have wﬂjg@(f(,ﬁ) =4-4=
16. Note that this is in agreement with the fact that theseesucertainly cannot be
deformed into smooth quartics not intersecting the exoeptidivisor, hence they are
not contained in the closure &g o(X,B) in Moo(X, B).

However, this will cause no problems when computing Groméiten invariants,
since, intuitively speaking, the cun@ cannot satisfy any incidence conditions with
generic non-exceptional varieties. So if we try to imposiarvm_ojo()?,ﬁ) =16 non-
exceptional conditions on these curves, we will get zergesthe curv€, can satisfy

at most 10 of the conditions aii% can satisfy none at all. For a mathematically more
precise statement of this fact, see proposition 5.2 (i) twis¢he important step in the
proof of enumerative significance in the case of only one blgw

When we consider more than one blow-up, things get more doaiptl, since then
for example multiple coverings of the lines joining the biewp points will cause
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problems. As an example, considér=P"(2), 8 = (d+q)H’ — qE, — qE} for some
r>2,d>1,g> 2, and look at reducible stable maps as above @jtbf homology
classd H" andC; of homology classjH’ — qE; — qE,, being ag-fold covering of the
strict transform of the line betwed® andP;:

We have just learned th@y for itself will make no problems, since no generic (non-
divisorial) non-exceptional incidence conditions can bgs$ied on this component.
However, it may well happen that the dimension of the modpéice of curve<;
meeting the line througPR;, andP; (i.e. vdim Mop()z,d H’) — (r — 2)) is biggerthan
that of both components together:

vdim Moo(X,dH') = (r —2) = (r+ 1)d4r —3— (r —2),
vdim Moo(X,B) = (r+1)d+ (1 —q)(r - 3),
= vdim Mgo(X,d H') — (r — 2) — vdim Mqo(X,B) = (q—1)(r —3) — 1.

If this last number is non-negative, we will obviously gehrwanted contributions to
our Gromov-Witten invariants from these reducible curgisge all vdimMoo(X, B)
conditions that we impose on the curve can be satisfiggy oihis will always happen
if r > 4, showing that in this case there is no chance of getting enatige invariants.
The reader who wants to convince himself of this fact nunadlsiccan find some ob-
viously non-enumerative invariants of this kind in exampl. Forr = 3, we will see
that multiple coverings of lines joining blown-up pointslpmake problems if they
form the only component of an irreducible curve, see thed@ehand example 8.3. In
fact, in the case wheig=dH’' —d E; — d E}, such that we “counttl-fold coverings
of lines, we get other important invariants, see example 8.5

Since the case d(s) for s> 2 will not lead to enumerative invariants and the case of
]?’2(3) has been studied almost exhaustively in [GP], it only resitoriook at blow-ups

of P3. We will look at the cas& = P3(4) in detail in section 6 (which then includes, of
course, also the casks= Iﬁ’s(s) with s< 4). Here, in analogy to the situation discussed
above, one gets problems with too big dimensions for redeicilrves as above, where
Co is now a curve contained in a plane spanned by three of thenblgmpoints. These
problems arise in particular because in this case it is ngdotrue thaC, can satisfy
no incidence conditions. To be more preciSgcan satisfy incidence conditions with
generic curves, butot with generic points iﬁf”3(4). This is the reason why we have
to make the assumption that all cohomology classes in theianwt are point classes
(see theorem 6.4). If we do not assume this, we can agairy ggtihon-enumerative

3
P ((H?)®4) = —1, to mention the easiest one.

invariants, e.gl AH'—2E! 2B} 2E}
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In the remainder of this section, we will prove some statemetout irreducible
curves in blow-ups that will be needed for both caBed) andP3(4). We start by
computingh(P!, f*T) in the next two lemmas.

Lemma 4.3 Letp: X — X be the blow-up of a smooth variety at some pomits. ., Ps
and letE = E; U --- UEg be the exceptional divisor. L& be a smooth curve and

f :C — X a map such thak(C) ¢ E. Then there is an injective morphism of sheaves
onX

f p Tx(—f'E) = f'Tx
which is an isomorphism away frofr(E).

Proof SinceE = {Py,...,Ps} xx X, we havei*Qg x = Qg/p,,...p} = Qe Wherei :
E — X is the inclusion. ALy /x has support o, this can be rewritten asQg =
Qg x- Hence, there is an exact sequence of sheavés on

0— p"Qx — Qg — 1,.Qg — 0.
Dualizing, we get
0— Ty = pTx — ExtY(i.QE, Ox) — 0.
By duality (see [H] theorem Il 6.7), we have
ExtY(i,Qe, Ox) = i.ExtY(Qe,Ng z) = i+ Te(—1)

whereO(—1) := Og,(—1) ®...® Og,(—1). Therefore we get a morphispi Tx —
i, Te(—1) which we can restrict t& to get a morphisnp*Tx|e — i.Te(—1) fitting into
a commutative diagram

0O —— p*Tx(—E) —_— p*Tx —_— p*Tx|E — 0

| l

0 —— T — p*Tx —— ikTe(-1) —— O.

From this we can deduce the existence of an injective pidR(—E) — Ty which
is clearly an isomorphism away froB. Applying the functorf* we get the desired
morphismf*p*Tx (— f*E) — f*Tg. Since the image of is not contained irk, this
morphism is also injective and an isomorphism away friom(E). O

Lemma 4.4 LetC =P, X =P'(s), f : C — X a morphism = f,[C] € A1(X), and
e€{0,1}.

(i) If £(C) ¢ E orf is a constant map thér(C, f*Ty(—€)) = 0 wheneved(B) +
e(B) > 0. (Here,f*T¢(—¢) is to be interpreted as Ty @ Oc(—¢).) In particular,
this always holds fos= 1 (since therd(B) +e() =deg f*(H —E) andf*(H —
E) is an effective divisor oR).
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(ii) If £(C) C E and the magd :C — E =2 P"~! has degree > 0 then
h'(C, f*Tz(—€)) =e4+e—1.
Proof

(i) If f is a constant map then the assertion is trivial, so assuné tGa ¢ E and
setd = deg f*H, e= —deg f*E. By lemma 4.3 we have an exact sequence

0— f'p'Tx(e) » Ty = Q—0

with some sheaf) on C with zero-dimensional support. Hence to prove the
lemma it suffices to show that (C, f*p*Tx(e—¢€)) = 0. But this follows from
the Euler sequence d pulled back taC and twisted byOc(e— €):

0— Oc(e—¢€)— (r+1)Oc(d+e—g) — f*p'Tx(e—€) —» 0
sinced + e—¢ > —1 by assumption.
(i) We consider the normal sequence
0—Tg —i"Tg = Ng/x — 0.
As Ng /x = Og(—1), pulling back toC and twisting byOc(—¢) yields
0— f*Te(—¢€) — f*Tg(—€) — Oc(—e—¢€) — 0. (1)
In complete analogy to (i), it follows by the Euler sequent&ez P' 1
0— Oc(—€) >rOc(e—¢) = f*Te(—€) =0
thath!(C, f*Tg(—¢)) = 0. Hence we deduce from (1) that
hl(f*Tg(—€)) = hl(C,0c(—e—¢)) =e+e—1.

O

We now come to the Bertini lemma 4.7 which is our main tool toverthe transver-
sality of the intersection products in the Gromov-Wittevanants.

Lemma 4.5 LetM be a scheme of finite type arid M — P" a morphism. Then, for
a generic hyperplarié c P', we have:

(i) £71(H) is (empty or) of pure codimension 1 .

(i) If M is smooth then the divisdi—1(H) is a smooth subscheme W counted
with multiplicity one.
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Proof See e.g. [J] corollary 6.11. O

Lemma 4.6 Let M be a scheme of finite typé& a smooth, connected, projective
scheme, and : M — X a morphism. LeL be a base point free linear system on
X. Then, for generi® < L, we have:

(i) £~1(D) is (empty or) purely 1-codimensional.

(i) If M is smooth then the divisoi—1(D) is a smooth subscheme W counted
with multiplicity one.

Proof The base point free linear systdmon X gives rise to a morphism: X — P™M
wherem = dim L. Composing withf yields a morphisnM — P™, and the divisors
D € L correspond to the inverse images unslef the hyperplanes if*™. Hence, the
statement follows from lemma 4.5, applied to the nvap+ P™. O

Lemma 4.7 LetM be a Deligne-Mumford stack of finite typ¥,a smooth, connected,
projective scheme arfgd: M — X morphisms foir=1,...,n. Lety; € A%(X) be cycles

of codimensions; > 1 onX that can be written as intersection products of divisors on
X

¥i=[Di]-----[Dig]  (=1....,n)

such that the complete linear syste}ﬁﬁ j| are base point free (this always applies,
for example, for effective cycles in the case=TP"). Letc=ci+---+cCn. Then, for
genericD; j € |Dj |, we have:

(i) Vi:=Dj1N---NDjg is smooth of pure codimensianin X, and the intersection
is transverse. In particuldk;| = ;.

(i) V = f 1 (V1) N---n f71(Vi) is of pure codimension in M. In particular, if
dim M < c thenV = 0.

(i) If dim M = ¢ andM contains a dense, open, smooth substhguch that each
geometric point d0 has no non-trivial automorphisms thérconsists of exactly
(fiy1-...- fayn)[X] points oM which lie inU and are counted with multiplicity
one.

Proof

(i) follows immediately by recursive application of lemm#&4o the schem.

(i) If M is a scheme, then the statement follows by recursive apipiicaf lemma
4.6. If M is a Deligne-Mumford stack, then it has an étale cdves M by a
schemeS, so (i) holds for the composed mafs+» M — X. But since the map
S— M is étale, the statement is also true for the méps> X.
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(i) A Deligne-Mumford stackU whose generic geometric point has no non-trivial
automorphisms always has a dense open subktaekich is a scheme (see e.g.
[V]. To be more precisd) is a functor and hence an algebraic space ([DM] ex.
4.9), but an algebraic space always contains a dense opsatblilwhich is a
scheme ([Kn] p. 25)). Sinc®’ is dense ifM and therefore\U’ has smaller
dimension, applying (ii) to the restrictiorfg|yyr : M\U’ — X gives thatV is
contained in the smooth schetdé hence it suffices to consider the restrictions
filur : U’ — X. But sinceU’ is a smooth scheme, we can apply lemma 4.6 (ii)
recursively and get the desired result.

O

As we needed for lemma 4.7 (iii) that the generic elemenMolhas no non-trivial
automorphisms, we now give a criterion under which circameses this is satisfied
for our moduli spaces of stable maps.

Lemma 4.8 LetX = P'(s) andB € A1(X) withd(B) > 0 andd(B) +e(B) > 0. Assume
that is not of the fornrd H' — d E/ for 1 <i < sandd > 2. Then, ifMon(X,B) is not
empty, it is a smooth stack of the expected dimension, aGd4f(C,x1, ..., %, f) is

a generic element dWIO,n(f(, B) thenC has no automorphisms arfdis generically
injective.

Proof Setd = d(B) ande= e(B). We can assume that 0 since otherwis#g n(X, B)

IS empty.

It follows from lemma 4.4 (i) thal\/lovn(f(,B) is a smooth stack of the expected di-
mension. Note that an irreducible stable map can only hat@narphisms if it is

a multiple covering map onto its image. Therefore it suffifese compute, for all

N > 2, the dimension of the subspagg C M07n(>~(, B) consisting ofN-fold coverings
and show that it is smaller than the dimensioMafn (X, B).

So assume that > 2 and thaiZy # 0, so that3 = NpB' for somep’ € Aj(X). We set

d' =d(p') ande€ = e(p’). Sinced’' +¢€ > 0, we can apply lemma 4.4 (i) to see that
the space of stable maps of homology cl@sis of the expected dimensign+ 1)d’ +
(r—1)€¢ +r +n—3. The dimension oZy is exactly bigger by R — 2 because of the
moduli of the covering. Hence we have

dmzy=(r+1)d +(r—1)€+r+n-3+2N-2
=(r+1)d+(r—21)e+r+n—-3+((r+21)d +(r—1)€)(L-N)+2N—-2
= dim Mgn(X,B) + ((r +1)d"+ (r —1)é —2)(1—N).

Therefore, to prove the lemma, it suffices to show fnat 1)d’ + (r — 1)€ > 2. We
distinguish two cases:
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e If € =0, then

r+0d'+(r-1€=(r+1)d >(2+1)-1=3>2

o If & <—1,then
r+1)d +(r—-1)€ =(r+1)(d+¢€)—2¢ > -2¢ > 2,

but if we had equality, this would meali + € = 0 and€ = —1, hencefy =
H’ — E/ for somei and thereforgd = NH' — N E/, which is the case we excluded
in the lemma.

This finishes the proof. O

5 Enumerative significance — the cas#' (1)

In this section we will prove that all invariant§(7‘) on X = P'(1) are enumerative.
We start with the computation ¢f'(C, f*Ty) for arbitrary stable maps. To state the
result, we need the following definition: for any prestablatC, xq, .. ., X, f) to X we
definen(C, f) to be “the sum of the exceptional degrees of all irreducibl@gonents
of C which are mapped intg”, i.e.

nc,f) = Z { e|Cis an irreducible component & such thatf,[C'] = eFE }.
C

Obviously,n(C, f) only depends on the topologyof the prestable map in the sense
of section 1, so we will write) (1) = n(C, f).

Lemma 5.1 LetC be a prestable curvi = P' (1), andf : C — X a morphism. Then
h'(C, f*Tg) < n(C, f), with strict inequality holding if\(C, f) > O.

Proof The proof is by induction on the number of irreducible comgrats ofC. If C

itself is irreducible, the statement follows immediateiyrh lemma 4.4 foe = 0.

Now letC be reducible, so assun@@= CoUC’ whereC' =2 P!, ConC' = {Q}, and
whereCy is a prestable curve for which the induction hypothesis it (C, f) > 0,
we can arrange this such thgCo, fo) > 0.

Consider the exact sequences

0 FTg = fgTg @ 7Tz > 15Tz 0
0— f"Tg(—Q) — " Ty LY foTg — 0

wherefo, f/, andfg denote the restrictions dfto Co, C', andQ, respectively.
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From these sequences we deduce that
dim cokerH(¢) = h'(C, f*Tg) — h}(Co, f§Ty) —h1(C/, " Tg)
dim cokerH%(w) = h'(C', " Tz (—Q)) — h}(C', f""Tx).

Since we certainly have dim coket®(¢) < dim cokerH®(ys), we can combine these
equations into the single inequality

h'(C, f*Tx) < h'(Co, 5 Tg) +h'(C', f" Tz (~Q)).

Now, by the induction hypothesis dig, we haveh!(Co, foTz) < Nn(Co, fo) with strict
inequality holding ifn(Cp, fo) > 0. On the other hand, we gbt(C’, f"" T (—Q)) <
n(C, f') by lemma 4.4 foe = 1. Asn(C, f) = n(Cy, fo) + n(C', f’), the proposition
follows by induction. O
We now come to the central proposition already alluded teettisn 4: given a part
M(X,T) of the moduli spacélon(X,B) corresponding to the topology(see section
1), we consider the map

@: M(X,1) = Mon(X,B) = Mon(X,d(B))

given by mappindC,x,...,X, f) to (C,x1,...,Xn, po f) and stabilizing if necessary
(p exists by the functoriality of the moduli spaces of stablepsyasee [BM] remark
after theorem 3.14). We show that, aIthougbf(,r) may have too big dimension, the
image@(M (X, 1)) has not. Part (i) of the proposition, which is of similar gwill be
needed later in section 7.

Proposition 5.2 Let X = P (1) andB € Ay(X) with d(B) > 0. Let®: Mon(X,B) —
Mon(X,d(B)) be the morphism as above, andebe a topology of stable maps of
homology clas$ (so thaM (X, 1) C Mon(X,B)). Then we have

() dim @(M(X,1)) < vdim Mgn(X,B). Moreover, strict inequality holds if and only
if T is a topology corresponding to reducible curves.

(i) At least one of the following holds:

(a) dim @M(X,1)) < vdim Mon(X,B) —r,
(b) dim M(X,1) < vdim Mgn(X,B) -2,
(c) dim M(X, 1) < vdim Mon(X,B) — 1 andn(t) =0,

(d) dim M(X,1) = vdim Mon(X,B) andt is the topology corresponding to
irreducible curves,

(e) dim M(X, 1) = vdim Mqn(X,B) — 1 andt is a topology corresponding to
reducible curves having exactly two irreducible composgate with ho-
mology clas$ — E’ and the other with homology claEs.
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Proof We start by defining some numerical invariants of the toppltothat will be
needed in the proof.

e Let Sbe the number of nodes of a curve with topolagywWe divide this num-
ber intoS= S + Sxx + Sxe, WwhereSeg (resp.Skx, Sxe) denotes the number
of nodes joining two exceptional components®{resp. two non-exceptional
components, or one exceptional with one non-exceptionapoment). Here
and in the following we call an irreducible component®géxceptional if it is
mapped byf into the exceptional divisor and it is not contractedfiyand non-
exceptional otherwise.

e LetP be the (minimal) number of additional marked points which @ecessary
to stabilizeC. We divide the numbéep into P = P= + Px, wherePg (resp.Px) is
the number of marked points that have to be added on excepttomponents
(resp. non-exceptional components)aato stabilizeC.

Now we give an estimate for the dimensionM{X,1). The tangent spachyx 1).¢
at a pointC = (C,xq,..., %, f) € M(X,1) is given by the hypercohomology group (see
[K] section 1.3.2)

Tug.c =B (1E = £Tg)

whereT{ = Te(—X1 — -+ - — X») and where we put the sheavgsand f*Tx in degrees
0 and 1, respectively. This means that there is an exact segque

0— HO(C,T¢) = H°(C, F*Tg) = Ty .c = H'(C,TY) 1)
(note that the first map is injective becauses a stable map). By lemma 5.1, we have
dim HO(C, *Tg) < X(C, f*Tg) +n(C, f). )
Moreover, by Riemann-Roch we gefC, T) = S+ 3 —n. It follows that

dim TM()Z,T),C <X(C, " Tg) +n(C,f)+n—-S-3
— vdim Mon(X,B) +n(C, f) - S,

and therefore
dim M(X,1) < vdim Mon(X,B) +n(1) - S.

If n(t) — S< 0, then statement (i) is obviously satisfied. Moreoverif) = 0 then we
also have (ii)-(c), and ifi (t) > 0 then we have strictinequality also in (2) and therefore
(i)-(b). Therefore we can assume from now on th&t) —S> 0. If n(t) = 0, then
we must also hav8= 0, which means that the curve is irreducible. But then (i) and
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(i)-(d) are satisfied. So we can also assume in the sequtei thjp> 0. It follows then
from lemma 5.1 that we have strict inequality in (2), hence

dim Ty .1 ¢ < vdim Mon(X,) +n(C, f) —S—1. (3)

We now give an estimate of the dimension of the ima@d (X,1)). As we always
work over the ground field’, we can do this on the level of tangent spaces, i.e. we
have

dim (M (X, 1)) < max ¢ e .7y dim (do) (T 1))

Hence our goal is to find as many vectors in kgras possible. We do this by finding
elements in the kernel of the composite map (see (1))

HO(C, £*Tg) /HO(C, ) = Tuignc = Thion(,d(B)).0(C)-

Let Co be a maximal connected subschem&afonsisting only of exceptional com-
ponents ofC. Let fo be the restriction off to Cy and letQ;,...,Qa be the nodes
of C which join Cy with the rest ofC (they are of typeSxg). Now every section of

foTe(—Q1—---— Qa) can be extended by zero to a sectiorf 6Ty which is mapped

to zero bydg since these deformations of the map take place entirelymiitie excep-

tional divisor. AsE =2 P'~1 is a convex variety, we have

h%(Co, f§Te) = X(Co, fTe) =1 — 1+1n(Co, fo)

and therefore we can estimate the dimension of the spacdarfukions that we have
just found:

hO(Co, f§Te(—Q1—---— Qa)) > r—1+1n(Co, fo) — (r—1)a.

(The right hand side of this inequality may well be negatiué,nevertheless the state-
ment is correct also in this case, of course.)

We will now add up these numbers for all possiBig say there arB of them. The sum
of then(Cy, fo) will then given(C, f), and the sum of tha will give Sxg. Note that

there is aPcz-dimensional space of infinitesimal automorphism€opf.e. a subspace
of HO(C, T¢), included in the deformations that we have just found, aad ttese are
exactly the trivial elements in the kernel@$. Therefore we have

dim kerdeo>B(r—1)+rn(C,f) — (r —1)Sxg— P
:(r—2)( B -I-r](c,f)_S(E)+B+2n(C,f)_S(E_PE
~ ——
>1 >0
(B> 1sincen(C,f) >0
andn(C, f) — Sxg > 0 sincen(C, f) —S> 0)
> (r—2)+B+2n(C, f) — Sxg — Pe.
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Combining this with (3), we get the estimate
dim @(M(X, 1)) < dim Ty g ) ¢ — dim kerdg
< vdim Mon(X,B) =1 +1— (Sxx+See +B+n (1) - Pe).

To prove the proposition, it remains to look at the term irckeds. First we will show
that

Pe < Sxx+Se+B+n(1). (4)

Look atPg, i.e. the exceptional components®ivhere marked points have to be added
to stabilizeC. We have to distinguish three cases:

(A) Components on which two points have to be added, and wuogy) node is of
typeSee: those give a contribution of 2 &, but they also give at least 1 tdT)
and toSce (and every node of typ8&:g belongs to at most one such component).

(B) Components on which two points have to be added, and wfuodg) node is
of type Sxg: those give a contribution of 2 =, but they also give at least 1 to
n(t) and toB (since such a component alone is one of@geonsidered above).

(C) Components on which only one point has to be added: theseagontribution
of 1 to Pe, but they also give at least 1 tgT).

This shows (4), finishing the proof of (i). As for (ii), (a) iatssfied if we have strict
inequality in (4), so we assume from now on that this is notdhge and determine
necessary conditions for equality by looking at the proof{4fabove. First of all,
we see that every maximal connected subschen@aunsisting only of exceptional
components contributes 1 B) but this gets accounted for only in case (B) above, so if
we want to have equality, every such maximal connected seinse must actually be
an irreducible component of type (B), which in addition giwecontribution oexactly

2 toP: andexactlyl ton(t). So all exceptional components of the curve must actually
be lines with no marked points, connected at exactly onetoia non-exceptional
component of the curve. Moreover, for equality we must alaeelsxx = 0, since
these nodes have not been considered above at all.

Hence, in summary, we must have one non-exceptional irfelducomponenty of
homology clas — qE', andq exceptional components of homology cl&swith no
marked points, each connected at exactly one poifptoBut it is easy to compute
the dimension ofp(M(X,1)) for these topologies: the mapsimply forgets theg
exceptional components, so

dim @M (X, 1)) = dim Mg (X, —qE)
— vdim Mg (X, —qE) by (i)
= vdim Mon(X,B) —q(r — 1).
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Hence we see that (ii)-(a) is satisfied tpr- 1 and (ii)-(e) forqg = 1.
This completes the proof. O

We now combine our results to prove the enumerative signifieaf the Gromov-
Witten invariants of?' (1). Some examples of these numbers can be found in 8.1 and
8.2.

Theorem 5.3 Let X = P'(1), B = dH' + eE e Ay(X) an effective homology class
withd > 0 ande <0, andT =y1®... ®Yn a collection of non-exceptional effective
classes such thgt codimy, = vdim Mon (X, ). ThenIB(T ) is enumerative.

Proof The proof goes along the same lines as that of lemma 2.2. Famtuicible
stable maps$C, x1,..., %, ) we haven!(C, f*T;) = 0 by lemma 4.4 (i). Therefore, if
Z C Mgn(X,B) denotes the closure don(X,B), then lemma 1.1 tells us that

Mon(X,B)"" = [Z]+a

wherea is a cycle of dimension vdiriﬁo,n(f(, B) supported onﬁovn(f(, B)\Mon(X,B).
But if @: Mon(X,dH’ +eE) — Mgn(X,dH’) denotes the morphism induced by the
mapp : X — X, we must havep,a = 0 by proposition 5.2 (i). So, considering the
commutative diagram

for 1 <i < n, it follows by the projection formula that
IX(T) = ([]e¥PY) - Mon(X, B)]™
= <h ev'¥i) - ¢.[Mon(X, B

= <h evyi) ¢.[Z].

= <n eV py)-[Z.

Hence we are evaluating an intersection product on the &ack

Unlessd +e = 0 andd > 2, the theorem now follows from the Bertini lemma 4.7
(i) in combination with lemma 4.8 saying that the generleneent of Z has no
automorphisms and corresponds to a generically injectafeles map. However, if
d+e= 0 andd > 2, then the image of every stable map\ig n(X,dH' —dE') is a
line through the blown-up point. These curves can obvioasly satisfy as many in-
cidence conditions as the curveshig n(X,H’ — E'). But vdim Mg (X,dH' —d E) >
vdim Mo (X,H’ — E’), so the Gromov-Witten invariant will be zero, which is alke t
enumeratively correct number. O
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6 Enumerative significance — the cas&®(4)

In this section, we discuss the enumerative significancaefromov-Witten invari-
ants onX = P3(4). First we fix some notation. As the four points to blow up on
X =P3 we chooseP, = (1:0:0:0,P,=(0:1:0:0,P3=(0:0:1:0, and
P,=(0:0:0:1). For1<i< j <4, we denote by,; C X the strict transform of the
line TP, Thelij are disjoint from each other, and we get= Ui<j Lij. For 1<i <4,
we letH; be the strict transform of the hyperplaneXrspanned by the three poirfes
with j #£1i, and we set{ = |J; Hi. As usualE; denotes the exceptional divisor ov@r
We set€ = |J; E.

Letp e A1(>~() be an effective homology class withi3) > 0. The first thing to do is to
look atirreduciblecurves of homology clags and to see whether their moduli space
Mo.o(X,B) is smooth and of the expected dimension, which in this case is

vdim Moo (X, B) = 4d(B) + 2e(B).

In the case of one blow-up in section 5, this followed easiiyrf lemma 4.4 (i) since

there we always have(p) + e(B) > 0. However, for multiple blow-ups, this is not
necessarily the case. Our way to solve this problem is to geetain Cremona map to
transform curves witkd(B) + e(3) < 0 into others witrd(B) +e(B) > 0, so that lemma

4.4 can be applied again. Before we can describe this mapeagk andefinition.

Definition 6.1 Let (C, f) € Mo7o(1§’3(4),[3) be an irreducible stable map witiC) ¢
L. Then we seki; (C, f) to be the “multiplicity off alongLi;”, defined as follows: if
b1 :Y — P3(4) is the blow-up of?3(4) alongL with exceptional divisors; j overLij,
then there is a well-defined még*o f : C — Y, and we define

Nij(C, f) :=Fij- (170 F).[C] > 0.
Finally, we defind(C, f) to be the vector consisting of aj(C, f), and set
AC, )= .Z)\ij (C, f).

i<J
We can now describe the Cremona map announced above.
Lemma 6.2 There exists a birational map: P3(4) --» P3(4) which is an isomor-

phism outsideC with the following property:
If (C, ) € Moo(P3(4),B) is an irreducible stable map such tH4€) ¢ L, so that the
transformed stable mag, ¢ o f) € Mo,o(]f”s(4),[3’ ) exists, then the homology cla@'s
of the transformed stable map satisfies

d(B) = 3d(B) +2e(B) —A(C, f),

e(B’) = —4d(B) — 3e(B) + 2A(C, f).

Hence, in particular, we have
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o 4d(B') +2¢(B') = 4d(B) + 2¢(B),
e ifd(B)+e(B) <O, thend(B') +e(p’) > 0.

Proof The birational map : P3(4) --» P3(4) we want to consider is most easily
described in the language of toric geometry (see e.qg. [E2}A in R be the complete
simplicial fan with one-dimensional coné¢év) | 1 <i < 4}, where

v1 = (1,0,0), vo = (0,1,0), v3=(0,0,1), va = (—1,-1,-1),

corresponding to the toric variey = P3. LetA be the blow-up of\’ at the four torus-
invariant points as described in [F2] section 2.4, so thatdhic varietyX, associated
toAis ]?’3(4). The fanA can be described explicitly as follows: it is the complete fa
with one-dimensional cones

{£(vi) |1<i<4}
and two-dimensional cones
{(vi,—vj> |1<i,j<4;i# j}U{(vi,vj> y1<i< j<4}.

The Picard group oK, is generated by the divisors corresponding to the one-dimen
sional cones, we will denote the divisor corresponding &dbne(v;) by H; and the
divisor corresponding to the cong(v;) by E;. This coincides with the definition &
andE; given above, and these divisors satisfy the three relations

H:=H;+E+E3+Ey
=Hx+E1+E3+E4
=Hs+E1+Ex2+E4
=Hs+E; +Ex+Eg 1)
whereH denotes the pullback of the hyperplane class under thepmﬁﬁ(4) — PS,

Now denote by-A the fan obtained by mirrorindy at the origin inR3. Then, of course,
we also havéX_p = P3(4). The mapp we want to consider is now the obvious rational
map¢ : Xa -+ X_a which is the identity on the toru&C*)3 contained in botiX, and
X_a. Note that the one-dimensional conesdo&nd —A are the same, so thétis an
iIsomorphism away from a subvariety]E?r(4) of codimension 2.

In more geometric terms, we can describas the so-called “flip” of the 6 lines, i.e.

one blows up these lines (that have normal bui@e-1) & O(—1) in P3(4)) to get a
varietyY with the 6 exceptional divisor‘éj =~ P1 x P! corresponding td;j, and then
blows down theFj again with the roles of base and fibre reverseBlix P1. One can
write these two steps as in the following diagram:



6 ENUMERATIVE SIGNIFICANCE — THE CASE@3(4) 33

The varietyY can be depicted as follows:

Here, we denoted the strict transformghfandE; underd, by H; andE;, respectively.
These are all isomorphic #?(3). The divisorsH;, H,, andHz have not been drawn
to keep the picture simple.

We now look more closely at the divisors¥h Obviously, we have

OiH1 = Hy + Foz + Fog + Fag,
¢1E1 = Ey,

and similarly forH; andE; with i = 2,3,4. The Picard group of is the free abelian
group generated by thé, £, andF;j, modulo the three relations induced by (1)

H:= ¢1H = Hi+Ex+ Ez+Es+ Fos+ Fos+ Faa
= Hy+E1+E3+Es+ Fis+FratFas
= H3+E1+Ex+Ea+ Fra+Fua+Fos
=Hs+E1+ B2+ B3+ Fio+ Fis+ Foa. (2)
If we now have a stable map (€, f) in Y, we also get stable mag6;, f;) in P3(4) by

composingf with ¢; fori = 1,2. We will now compute the homology classes of these
two stable maps.

The homology class dfCy, f1) isB=dH'+ Y& E where

d=H- 01, £.[C]

=H-f,[C]

= (H1+Ex+ B3+ B4+ Fog+ Fog + Fag) - 1.[C],
& = —Ei-¢1,1[C]

= —E - f.[C].
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The homology class OQCZ, fz) is obtained by reversing the roles Bf and E; and
substituting12 <> Faa, F13 <> Foa, andFya 5 Foz, soitisp’ = d'H’ + yi€l E/ where

d' = (Ex+Ho+Hz+Ha+Fra+ Fiz+Fio) - £.[C]
= (3H1— 2E; + Ep + Eg+ B4 — Fro— Fig— Fra+ 2P+ 2Fos + 2F34) - 1,[C]
(by substitutingHz, Hz, andH,4 from (2))
=3d+2(er+et+est+es)— (D Fy)-f :
i<]
=A(Cy,f1)=A(Co, f)=:A
€ = —Hj - £,[C]

— —d—e—e3—eg+ (Fas+ Faa+ Fag) - £.[C],

and similarly forep, e3, andes. Defininge= Y and€ = Y€, we arrive at the
equations

d' =3d+2e— )\,
d = —4d —3e+2\.

In particular, we see thath+ 2€/ = 4d + 2e and that, ifd + e < 0, then
d+e=—-d—e+A>A>0.

O

We now use this map to prove some properties of irreducibldsmaps i = 113’3(4).

As already mentioned in section 4, apart from the case mM@,erf(, B) is smooth of
the expected dimension (case (iii) below), we have to camdigde cases where the
curves are multiple coverings of one of thg (case (i)) and where they are contained
in one of theH; (such that they cannot satisfy any incidence conditionk géneric
points inX, see case (ii)). One of the most important statements of ¢elemma

is the final conclusion that, although the dimension of thelaticspace may be too
big, the curves can never satisfy more incidence condi{jetth points) as one would
expect from the virtual dimension of the moduli space.

Lemma 6.3 LetB € Aj(X) be a homology class such thdéo(X,B) # 0. Set
1 . - -
n:= évdlm Moo(X,B) = 2d(B) +e(B).
Then at least one of the following statements holds:

() n=0andB=dH —dE — dE’ for somed >0, 1<i < j<4. Allcurvesin
Moo(X,B) are contained if; .
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(i) n> 0, and for generic poin®1,....,Qn € X, we have
eV {(Qu)N---Ney(Qn) =0

in MQI’I()’Z: B) .

(iii) n>0,dim Mggo(X,B) = vdim Moo(X,B), and for a generic eleme@it= (C, f)
Moo(X,B), f is generically injective¢ has no automorphisms, afi¢C) inter-
sects neithef (which is a disjoint union of 6 smooth rational curves) #bn &
(which is a union of 12 smooth rational curves).

In particular, it is impossible that < 0, and in any case we have
e H(Qu)n---nev; (Qu) =0
in Moy ()~(, B) for generic point£)1,...,Qy € X if ' > n.

Proof Let (C,f) € Mgo(X,B) be a stable mag) = d(B), & = &(B), e= 3;&, and
assume thad # 0 (since otherwisg o(X, B) = 0).

If d =0, thenn=¢e(B) > 0 andf(C) is contained in an exceptional divisor. Then it is
clear that for a generic point i, no curve inMg o(X, 3) meets this point. Therefore,
(i) is satisfied.

Now assumel > 0, then we must havg < O for alli. The curvef (C) cannot be con-
tained at the same time in three of tHg since their intersection is empty. This means
that there are at least two of tht, sayH; andHo, in which f(C) is not contained. It
follows that

d+e+e3+es=degf*H; >0 and d+e +e3+e=degf*H,>0.

Sinceey < 0 andes < 0, this also means thdt+ e, +e3 > 0andd +e; +¢e4 > 0, and
thereforen = 2d + e > 0O: the virtual dimension of the moduli space cannot be negati
Moreover, ifn = 0 then we must have equality everywhere, which means

elz_daezz_d7e3:07e420

Hence we are in case (i), and it is clear that all these cumesd-old coverings oL 1.
It remains to consider the case wher 0. We distinguish four cases.

Case 13=dH —dE ford > 1 and some X i <4. Then the curves irMo,o(f(, B)
must obviously bel-fold coverings of a line through the exceptional divigpr Those
cannot pass through two generic points, however2d —d = d > 2, hence (ii) is
satisfied.

We assume therefore from now on tiais not of this form.
Case 2d + e > 0. We show that (iii) is satisfied.




6 ENUMERATIVE SIGNIFICANCE — THE CASE@3(4) 36

e dim Mogo(X,B) = vdim Moo(X,B): This follows becaus&!(C, f*Ty) = 0 by
lemma 4.4 (i).

¢ the generic element cWIo,o(f(,B) has no automorphisms and corresponds to a
generically injective map: This follows from lemma 4.8.

¢ the generic element cbﬂovo(f(, B) does not intersed andH NE: LetL be one
of the 18 smooth rational curves iU (% N &), we will show that the generic
element oM o(X, B) does not intersedt. Assume thafC, f) is a stable map in
X such that there is a poimte C with f(x) = Q € L. ConsiderC = (C,x, f) as
an element oM = Mo,l(f(,B). The tangent space 1 at the poin(C is (see [K]
section 1.3.2)

Tue = HO(C, *Tg) /HO(C, Te(—X)).

If Z C M denotes the substack of those stable maps WK) € L, then the
tangent space té atC is

Tze= {se Tue; s(x) € f*TLjQ}.
However, by lemma 4.4 (i) fog = 1 we see that
h°(C, *Tg(—x) = h(C, f*Tg) - 3,

i.e. that the mapi%(C, *Ty) — f*Tg o, S+ S(X) is surjective. Therefore the
tangent space @8 atC has smaller dimension than thatib SinceM is smooth
atC, it follows thatZ has smaller dimension than atC, proving the statement
that the generic element b o(X, B) does not intersedt.

Case 3d+e< 0 andg = 0 for some. Without loss of generality assume thegt= 0.
Since then 0> d+e=deg f*(H — E; — Ex — E3) = deg f*Hy4, we conclude that (C)
must be contained iRl;. Hence (ii) is satisfied.

Case 4d+e< 0 and allg # 0. We show that (iii) is satisfied using the Cremona map
of lemma 6.2. We use in the following proof the notations @ temma. Certainly no
curve inMoo(X, B) is contained inC. So if we decomposklg o(X, B) into partsM ac-
cording to the value cﬁ(C) then¢ gives injective morphisms fromit; to Mo,o(X, B5)
with 5 calculated in the proof of lemma 6.2. Irlparticular we hd{@;) +e(B5) >0,

so that we can apply the results of case B (X, ;). We therefore have

dim My < dim Moo (X, B;) 1)
= vdim Mogo(X,B;) by case 2
= 4d(B;) + 2¢(B;)
=4d(B) +2e(B) bylemmas.2
— vdim Mo o(X,B).
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If A 0, i.e. if all curves inVi; intersect’, then the trarjsformed curveshiy o(X, Bs)

also have to intersed. But the generic curve iMgo(X, ;) does not intersect by

the results of case 2, so it follows that we must have striegjurality in (1). Since
the dimension oMo o(X,B) cannot be smaller than its virtual dimension, this means
that M; is nowhere dense iMo,o(f(,B) for A + 0. In other words Mg is dense in
Mo,o(X, B), so it obviously suffices to prove (iii) fdvl;

But this is now easy: it follows from the above calculatioattthe dimension o

is equal to the virtual dimension &g o(X, ). The other statements of (jii) about the
generic curves in the moduli space are obviously preserye¢ddoCremona mag, so
they follow from the fact that the spaddy (X, Bg) has these properties.

This completes the proof that we always have one of the cggegi(i). The statement
thatn > 0 has already been proven, and the fact that

ev; H(Q)N---nev. (Qy) =0

in MO,n’(X,B) for generic pointLy,...,Qy € X if ' > n follows easily in all cases:
for (i) because the image of all curves in the moduli spac@mained in arLj, for
(ii) it is trivial, and for (iii) it follows from the Bertini eEmma 4.7 (ii). O

To prove enumerative significance for the Gromov-Witteraitants or?3(4), we now
finally have to consider reducible stable maps. Some nualexamples can be found
in 8.3.

Theorem 6.4 Let X = P3(4) andB € A(X) an effective homology class which is
not of the formd H' — d§ — d Ej for somed > 2 andi # j. LetT = pt®", where
n=2d(B) +e(B). Thenly(T) is enumerative.

Proof LetQs,...,Q, be generic points iX. First we want to show that all points in
the intersection

| :=ev 1 (Qu)N---Nevyt(Qn) 1)

on I\Wo,n()N(,B) correspond to irreducible stable maps. To do this, we deosmthe
moduli spacd\/lo,n(f(,B) into the spacedl; := M(X,1) according to the topology of
the curves and show thbth M, is empty for each corresponding to reducible curves.

So assume thatis a topology corresponding to stable m&@sf) whose irreducible
componentshat are not contracted HyareCy,...,Cy. For 1<i < a, let3j # 0 be the
homology class of onC; and letn; be the number of markings on the compon@nt

By amaximal contracted subschemave will mean a maximal connected subscheme
of C consisting only of components &f that are contracted by. A maximal con-
tracted subscheme will be calledarked if it contains at least one of the marked
points. For each X i < a, we definep; to be the number of marked maximal con-
tracted subschemes Gfthat have non-empty intersection with
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We can assume that each maximal contracted subscheme hmaestabne marked
point, since otherwise the intersection (1) will certaibly empty. This means that
each maximal contracted subscheme must have at least tws pbintersection with
the other components of the curve, since otherwise thegiiesiapC, Xy, ..., Xn, f)
would not be stable. We conclude that each marked point tbstin a contracted
component (there ar@— 3 n;) of them) must be counted in at least two of fhe

yPiz2n-yn), 2)

Now there is a morphism

®: M — M07n1+p1(>~<7 B1) X -+ X M07na+Pa(X7 Ba) (3)

mapping a stable map to its non-contracted components, where on each such com-
ponent we take as marked points theanarked points of’ lying on this component
together with the intersection points of the component i maximal contracted
subschemes. We denote By : My — Mo +p; (X,Bi) the composition ofb with the
projections onto the factors of the right hand side of (3).

We now consider again the intersectioim (1) and show tha®(l N My) is empty for
all topologiest but the trivial one, hence showing that M; is empty. Note that in
®; (1 NMy) the image point of each of thg + p; marked points is fixed to be a certain
Q;. But we have seen in lemma 6.3 thatsbif(l N M;) C Mo, 10, (X, Bi) is non-empty,
this requiresy; + p; to be at most &(B3;) + e(Bi). Therefore we get

n<an-3n LS (e < 3 (20(B) + e(B)

= 20(B) + e(B) = 5 vdim Noo(X,B) = n

Hence we must have equality everywhere, which means firdt tfa 3 ; nj = n and
thereforep; = O for alli. Moreover, it follows that the number of marked points with
prescribed image i®; (I N My) is equal to &(B;) +e(B;) for all i, showing that there
can be no component Gfof type (ii) according to the classification of lemma 6.3 (& b
precise, that for all, C is mapped unde®; to a moduli space which is not of type (ii)).

If there are only components of type (i), then we have the tet@ =dH—-d E —d E]f

for somed > 2 andi # j (note that there cannot be two components of type (i) with
different(i, j) since theli; do not intersect). As we excluded this case in the theorem,
we conclude that there must be at least one componé&hbbtype (iii). We are going

to show that there is in fact only one component which must tiecessarily be of
type (iii).

We first exclude components of type (i). Note that on each amaptC; of type (iii)

we imposen; generic point conditions. Since diMgp, (X,Bi) = 3n;, this means by
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the Bertini lemma 4.7 (i) tha®; (I N M;) C Mop, (X,Bi) is zero-dimensional (if not
empty). Moreover, if we le%; C Mgp, ()~(,Bi) be the substack of curves intersecting
LU(HNE), then dimZ < 3n; by lemma 6.3, and hence again by Bertij(l N M)

will not intersectz;, i.e. the curves ib; (I N"My) do not intersecCL U (HNE). This is
true for any component of type (iii). Hence, if there wereoascomponent of type (i)
which is contained in ah;j, the curve would not be connected, which is impossible.
Therefore we can only have components of type (iii).

Assume now that we have at least two components of type YWg.will again show
that these components do not intersect, leading to a cactiiad We define

Vii= U f(C) c X,
(C1Xla---7xn11f)6q)]_(| OMT)

V2::.U U f(C) C)N(.

i=2 (Cxa,...%n;, F)EP; (INMy)

We already remarked thé; (I N My) is zero-dimensional for alland corresponds to
curves none of which intersecU (% N &), henceV, andV, are one-dimensional
subvarieties oK\ (LU (HNE)). We now define

M = {diag(vo,V1,V2,V3) | vi € C*} /C" C PGL (3)

to be the space of all invertible projective diagonal masicObviously the elements
of M can be considered as automorphism&%) with our choice of the blown-up
points. We now consider the map

W:Vix M — X\ (LU(HNE))
(Q.H) = HQ)

and determine the dimension of its fibres. Fix a p@he X\ (LU (HNE)).

o If Q ¢ HUE, then foranyQ € X\ (LU(HNE)) there is at most onge M such
thatp(Q) = Q' (in fact, there is exactly one sughif Q ¢ # U & and no suchu
otherwise). Therefore the fibke—1(Q') is one-dimensional (in fact, isomorphic
toVi\(HUE)).

e If Q' € H; for somei, then anyQ € X\ (LU (HNE)) that can be transformed
into Q by an element of\ must also lie inH;. In this case, we then have a
C*-family of elements of\M mappingQ to Q. SinceVy; meetsH; only in finitely
many points (otherwise we would be in case (i) of lemma @8 fibreW—1(Q)
is again (at most) one-dimensional.

e If Q € E; for somei, we again get at most one-dimensional fibres by exactly the
same reasoning as for thi.
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We have thus shown that all fibores Wfare at most one-dimensional. Hertge(\,)
can be at most two-dimensional. But this means that ther¢ bmua € M such
thatVy x {u} N"W=1(V2) = 0, or in other words such thatV;) NV, = 0. So if we now
transform the prescribed imag@se X of those marked points lying on the component
Cy by p, this will transformV; to p(V1), with the result that the componedt does not
intersect the others. This would lead to curves that are anhected, which is a
contradiction.

So we finally see that only the trivial topologycorresponding to irreducible curves
can contribute td, and moreover that these irreducible curves are of typeagicord-
ing to lemma 6.3. Hence if we 1@ C I\Zo,n(f(, B) be the closure of the substack corre-
sponding to irreducible curves aRbe the union of the other irreducible components,
then by lemma 1.1 we can write

[I\Zovn(f(, B)]"irt = [Z] + some cycle supported dd

But as we have just shown, the intersectida be considered is disjoint froR, so we
can drop this additional cycle and evaluate the intersedZ. Then it follows from
the Bertini lemma 4.7 (iii) that the invariamé(T) IS enumerative, since the generic
element oZ has no automorphisms, as shown in lemma 6.3. O

7 Tangency conditions via blow-ups

In this section we will show how to count curvesXn= P" of given homology clasB

that intersect a fixed poi € X with tangent direction in a specified linear subspace
of Tx p. One would expect that this can be done on the bIovalm X atP, since the
condition that a curve iiX has tangent direction in a specified linear subspadg ef

of codimensiork (where 1< k <r —1) translates into the statement that the strict trans-
form of the curve intersects the exceptional divigom a specifiedk-codimensional
projective subspace & =2 P' 1. As such &-codimensional projective subspacebof
has class-(—E)¥t1, we would expect that the answer to our problem is

X (T —(—E)F

where7 denotes as usual the other incidence conditions that tve€should satisfy.

We will show in theorem 7.1 that this is in fact the case as lasig# r — 1. However,

if k=r—1, so that we want to have a fixed tangent directioR,athings get more
complicated. This can be seen as follows: consider thei'mvtahé(T@ pt®?) on X,
about which we know that it counts the number of curvedhrough the classes in
T and through two generic poinBsandP’ in X. We now want to see what happens if
P’ andP approach each other and finally coincide. Basicallp! iipproache®, there
are two possibilities: either the two pointandx’ on the curve that are mappedRo
andP’ also approach each other (left picture), or they do not {mitture):
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_—— PP — P;P'

In the limit P — P, the curves on the left become curves throlytangent to the
limit of the linesP P, and those on the right simply become curves interseétiwith
global multiplicity two. But the latter we have already coechin theorem 5.3. So we
expect in this case

IE{(T@ pt®2) = (curves through™ and throughP with specified tangent)
+215 e (T)

where the factor two arises because in the right picturepdivetsx andx’ on the curve
can be interchanged in the limit whelPe= P’ andx # x'. This should motivate the
results of the following theorem. Some numerical exampéesle found in 8.6.

Theorem 7.1 Let X = P" and let0 # B € A1(X) be an effective homology class. Let
P e X be apointk € {1,...,r — 1} andW a generic projective subspaceRifix p) of
codimensiok. LetT =y1®... Yy be a collection of effective classesXnsuch that
5 codimy; = vdim Mon(X,B) —r 41 —k.

Then, for generic subschemdsc X with [Vi] = vi, the number of irreducible stable
maps(C, Xy, ..., %n+1, T ) satisfying the conditions

f generically injective,
o f.[C]=8,

f(x) €V for alli,

f(Xnt1) =P,

the tangent direction df atx,. 1 lies inW (i.e. if f :C — X is the strict transform,
thenf (xn+1) e W C P(Tx p) = E),

is equal to

X a(To—(-E)*Y)  ifk<r—1,
X(Topt®?)—21% e (T)  ifk=r—1,

where each such curve is counted with multiplicity one.
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Proof Consider the Gromov-Witten invariarg_E,(T@) —(—E)*1). We will show
that this invariant counts what we want, apart from a coiwecterm in the cas& =
r—1.

As usual, we decompose the moduli spM_taﬁHl(f(, B—E’) according to the topology
of the curves

Mon+1(X,B—E') UM

and determine which parM (X, 1) give rise to contributions to the intersection
evit(Ve) N---nevi H(Vo) nevy (W) 1)

onMoni1(X, B —E') (note thafw] = —(—E)k* onX).

We use proposition 5.2 (ii) and dlStII’lgUISh the five caseslmsfp)roposmon Assume
thatM (X, 1) satisfies (a). Sdt:=ev, (V1) N---nevyt(Vn) onMoni1(X,B). By the
Bertini lemma 4.7 (ii), this mtersectlon is of codimension

S codimV; = vdim Mon(X,B) —1 +1—k
|

= vdim Mom( ,B—E)—k—1
>dim @M (X, 1)) +r—k—1  (by (a))
> dim (M (X, 1)), (sincek <r—1)

where@: M(X,1) < Moni1(X,B—E’) = Moni1(X,B) is the morphism given by the
functoriality of the moduli spaces of stable maps. HenceBéxini again@1(1) will

be a finite set of points. But since the pakat 1 of the curves inp~1(1) is not restricted

at all, it is actually impossible that—2(1) is finite unless it is empty. So we see that we
get no contribution to the intersection (1) frav(X, 1).

Before we look at the cases (b) to (e) of proposition 5.2 \ig, setZ = evnH(E) C

Mo n+1(X,B—E’) and decomposg analogously tdg . 1(X,B—E’) asZ = [J, Z(1).
Then we obviously have

dim Z(t) = dim M(X,T) =1 if x,,1 is on a non-exceptional component of the curve
dim M(X, 1) if X141 iS ON an exceptional component of the curve

(2)

There are evaluation maps : Z(t) — X for 1 <i <nandéw,1:Z(t) - E= P,
and the intersection (1) now becomes the intersection

evi 1(V) N nevi H (V) NV, 1 (W), 3)

onZ(t), whereV;, ¢ X andwW c PP'~1 are chosen generically.
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We now continue to look at the cases (b) to (e) of propositiéh(b). If |\/|()~(,T)
satisfies (b), then the intersection (3) will be empty by Bersince

3 codimy; + codimW = vdim Mon(X,B) —r +1
|

= vdim Mops1(X,B—E') -1
>dimMX,1)+1  (by (b))
>dimzZ(t)+1.  (by (2))

Similarly, this follows for (c): because @f(t) = 0 we have no exceptional component,
hence we must have the first possibility in (2), i.e.

3 codimy; +codimW = vdim Moni1(X,B—E') -1
|

>dimM(X,1)  (by(c))
>dimZ(t1)+1.  (by(2)

Hence we are only left with the cases (d) and (e). In case (dnus have the first
possibility in (2) since the curve is irreducible, hence

3 codimy; + codimW = vdim Mop.1(X, B~ E) - 1
|

=dimM(X,1)—1 (by (d))
=dim Z(1). (by (2))

The intersection (3) is transverse and finite by Bertini. &bwer, the dimension

of M(X, 1) coincides with vdimMgn.1(X,8 — E’), and there are no obstructions on
M(X,T) by lemma 4.4 (i). Hence, using lemma 1.1 in the same way as @vindhe
proof of theorem 5.3, we see that we get a contribution to tfer®v-Witten invari-

ant IE;?E,(T® —(—E)¥+1) from exactly the curves we wanted. One can depict these
curves as follows:

=
)

ey )L

f(C)

Note that, by corollary 3.2, in the cake=r — 1 we have

X e(To—(—E)) =15 o (T@pt) = 1X(T @ pt®?).
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It remains to look at case (e). There we have

3 codimy; +codimW = vdim Moni1(X,B—E') -1
|

~

=dimM(X,T)  (by (e))
>dimZ(t).  (by(2))

Note that again there are no obstructiondfX,t) by lemma 5.1.

Hence, to get a non-zero contribution from (e) to the interea (3), we must have
equality in the last line, which fixes the component whete; lies. We thus have
reducible curves with exactly two components, one compo@gewith marked points
X1,...,%n and homology clasB — 2E’, and the other compone@$ with marked point
Xn+1 and homology clasg’. Moreover, the intersection (3) must be transverse and
finite by Bertini. But this is only possible & =r — 1, since the only conditions on
the exceptional lin€; are that it has to interse€; and thatx, 1 maps toV, and this
cannot fixC, uniquely unles$V is a point, i.ek =r — 1. This finishes the proof of the
theorem in the cade< r — 1.

In the cas&k =r — 1, we have just shown that the curves in the intersectioro@® as

follows:
W=f(X,,, )>/
_— f(C,)

7

—

R
E

f(Cy)

Here, one has to show that the generic curve of homology Blas2E’ intersects the
exceptional divisor twice, and not only once with multiglyctwo. But this is easy to
see: irreducible curves of homology clgss 2E’ intersecting the exceptional divisor
once with multiplicity two correspond via strict transfotmcurves of homology class
BinP' having a cusp &. For mapsf : P — X =P' itis however easy to see that the
requirement that a specified powt P! is mapped td® and thatd f(x) = 0 imposes
2r independent conditions, so the space of irreducible stables of homology class
B with a cusp aP has dimension

dim Mo 1(X,B) — 2r = dim Moo(X,B — 2E") — 1,

so the generic curve iX of homology clas$ — 2E’ does indeed intersect the excep-
tional divisor twice and looks as in the picture above.
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Therefore, to get the correct enumerative answer, we haselitvact the contribution
from this case (e). But this is easily done, since we now krtwat this contribution
is twice the number of curves of homology cldds- 2E’ satisfying the conditions
T (the factor two arises since the compon€atcan be attached to both points of
intersection of the componerft(C,) with E). By theorem 5.3, we know that this
number isIEf_ZE,(T). This finishes the proof also in the cdse-r — 1. O

One can of course ask whether the analogue of theorem 7.Geisatso for several
tangency conditions at different points. As imaginablerfrour work in this chapter,
the answer in general is no, and the problems arising heressentially the same as
those discussed in the previous sections when considetttgoia blow-ups.

However, as (most) invariants df??(s) are enumerative by [GP], one can expect an
analogue of theorem 7.1 in this case. Indeed, numericallledions show that this
seems to be true: if one calculates with these methods wioaidste the number
of rational curves irP? tangent toc general lines at fixed points, and intersecting
additionala general points, one obtains exactly the numib#is 0, c) of Ernstrom and
Kennedy [EK] that have been computed by completely differeathods and shown
to be enumeratively correct.

8 Numerical examples

Example 8.1 Gromov-Witten invariants oB?(1)

™2
According to theorem 5.3, the Gromov-Witten invariarﬁﬁ(,lleg(pt®(3d+€*1)) for

d > 0 are equal to the numbers of degreplane rational curves meetingl3-e— 1
generic points in the plane, and in addition passing thraugked point inP? with
global multiplicity —e. All these curves are counted with multiplicity one. Some of
the invariants are listed in the following table.

d=1{d=2|d=3|d=4| d=5 d=6 d=7
e=0 1 1 12| 620 87304| 26312976 14616808192
e=-1 1 1 12| 620 87304| 26312976 14616808192
e=-2 0 0 1 96| 18132| 6506400 405936600(¢
e=-3 — 0 0 1 640| 401172 347987200
e=—-4 — 0 0 0 1 3840 7492040
e=-5 — 0 0 0 0 1 21504
e=—-6 — — 0 0 0 0 1

The equality of the first two lines follows from the geometneaning of the invariants
(see theorem 5.3) as well as from corollary 3.2. In [GP], lott&che and R. Pand-
haripande also compute the numbers given here, togetheitivase for blow-ups of
P2 in any number of points, and they prove the enumerative fitginice of all these
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numbers if the prescribed multiplicity in at least one of th@wn-up points is one or
two. The numbers foe = —2 have been computed earlier by different methods in [P].

™2
The fact that 5 H(,l_)(d_l) E,(pt‘X’ZO') = 1 can also be understood geometrically: a c@ve

of degredad in P? passing with multiplicityd — 1 through a poinP has genus
1 1
2 2
i.e. it is always a rational curve. Hence the space of dednegional curves with a

(d —1)-fold point in P is simply a linear system of the expected dimension, showing
that the corresponding Gromov-Witten invariant must be 1.

(d-=1)(d-2)-5(d-1)(d-2) =0,

Example 8.2 Gromov-Witten invariants of3(1)

As in the previous example, the Gromov-Witten invariaépiélle E,(pt‘g’(z‘l'*e)) ford >
0 are equal to the numbers of degrkeational curves ifP® meeting 2 + e generic
points, and in addition passing through a fixed poirftdrwith global multiplicity —e.

d=1|d=2|d=3|d=4|d=5|d=6| d=7 d=8

e=0 1 0 1 4| 105| 2576| 122129| 7397760

e=-1 1 0 1 4| 105| 2576|122129| 7397760

e=-2 0 0 0 0 12| 384| 23892| 1666128

e=-3 — 0 0 0 0 0 620 72528

e=_4 — 0 0 0 0 0 0 0
Example 8.3 Gromov-Witten invariants oﬁ’3(2)

23(2) ®(2d+e,+ -

By theorem 6.4, the numbe&,+%Ei+@Eé(pt (2d+eq 92)) for d > 0 are enumerative

unlesd > 2,e; = —d, & = —d (for those cases, see proposition 8.5). This means that
they are equal to the numbers of degdemtional curves ifP® meeting 21+ e; + &
generic points inP3, and in addition passing through two fixed points with global
multiplicities —e; and—ey, respectively.

(e1,&) |d=2[d=3|d=4|d=5|d=6|d=7| d=8 d=09
(-2,-2)| 1/8 0 0 1| 48| 4374|360416] 39100431
(-3,-2) — 0 0 0 0| 96| 14040 2346168
(—3,-3) —| 1/27 0 0 0 1 384| 119134
(—4,-2) — 0 0 0 0 0 0] 18132
(—4,-3) ) - 0 0 0 0 0 640
(—4,—4) —| =1 1/64 0 0 0 0 1

The numbers with one of the = —1 can be obtained from corollary 3.2 and example
8.2.
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Example 8.4 Gromov-Witten invariants of*(2)

o4
The invariantsl([][rH(,i)e1 £ e, () for d >0 are enumerative if only one of the blown-
up points is involved (ll.e. if one of the is zero) or if one of they is equal to—1 (by
corollary 3.2). It has already been mentioned that in alrabsither cases, the invari-

ants are not enumerative. As examples, we list in the foligwable some invariants

Ifif,i)elE,ﬁezE, (T) whereT = pt®2® (H2)®b with a> 0, 0< b < 2 being the unique

numbers such thattbt 3e; +3ex+1=3a+b.
(e1,e0) |d=2]d=3[d=4| d=5] d=6] d=7 d=8
(-1,-1) 1 0 1| 161] 270] 831 1351863
(-2,-1) 0 0 0 9 16 105 233040
(-2,-2)| =] 1/4 0| 5/4] 9/4| 29/2| 1546834
(-3,-1)| - 0 0 0 0 0 2625
(-3,-2)| - 0 0 o| 3/4 1| 25332
(—3,-3) — — | 1/27|13/108] —1/12| —1/54 | 32471/108
(-4,-1)| - 0 0 0 0 0 0
(-4,-2) -] = 0 0 0 0 16

Example 8.5 Non-enumerative invariants @3 (4)

We have seen in theorem 6.4 that the only non-enumeratiaeiémts oriP3(4) involv-
ing only point classes are those of the for, E,deé(l) ford > 2 (where the 1 is
1

to be understood as an element6fX)®0, i.e. there are no cohomology classes in the
invariant). We will now explicitly compute these invariargnd discuss their meaning.

Let X = @3(2). Let L be the strict transform of the line joining the two blown-up
points, its normal bundle iX is O(—1) ® O(—1). If we let = dH' — d E] — d E} for
somed > 2, then stable maps of homology clgsssorrespond to degrekcoverings of

L. In fact, the moduli spackloo(X,B) of these coverings is equal Mg (P!, d) and
has dimension@— 2. Applying [BF] proposition 7.3 we see that the Gromov-\&fitt

invariantlfa(,zjd B d Eé(1) is equal to the integral
cod 2 (RMLF*(O(-1) @ O(-1
/Mo,o(lP’l,d) 2d 2( T f7(O(-1) ( )))

whereTt: Mg 1(PL,d) — Moo(PL,d) is the universal curve anfl: Mg (P!, d) — P*
the evaluation map. One can see that this does not depeXdiog more, but just on
the normal bundle of.

Before we do the actual computation — the integral will tuot to bed=2 — one
should note that this number has some history. Its most itapbapplication is
the case of a quintic threefol@, where rigid rational curves (of any degree) also
have normal bundl&®(—1) ® O(—1). All methods to compute the numbers of ra-
tional curves of a given degree dp will determine the degree of the zero-cycle
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[Mo,o(Q,B)]V" € Ag(Moo(Q,B)), but this number counts not only the number of ra-
tional curves of clasg, but alsod-fold covering maps of all rational curves of class
B/d. Knowing that these multiple coverings are counted withtiplitity d—3, one can
then subtract them from the degree of the zero-cjdigo(Q, )" to get the actual
number of rational curves of degren Q.

When the numbers of rational curves on the quintic thredfiald been computed first
by physicists [COGP], they just guessed the multiplicity? because it was the only
one that turned their predictions of the number of rationalzes into non-negative
integers. Later, Yu. Manin [M] and independently P. Aspithwad D. Morrison [AM]
(using an a priori different definition of the multiplicitglerived this multiplicity rig-
orously, however their methods are very complicated. Wencamgive a remarkably
simple way to compute it as a byproduct of our work on Groma#éfl invariants of
blow-ups.

To compute the invariant, we use the equatiang (1; H,H | E1,E2). The only
possibilities how the homology clags+ E; = dH' — (d — 1) E] —d E, can split up
into two effective classes are

Bi=diH —diEy —di B, Bo=doH — (dp—1)E] — 2 Ep

for d; + d> = d andds, do> > 0. First we look at the invariants with homology clgss
and claim that they all vanish fal, > 2. The virtual dimension oﬂo,o()N(,Bz) is 2,
so we have to impose two conditions on the curves we are cauni is easy to see
that all stable maps with homology cla@s are reducible, such that one component
maps to a line in the exceptional divider =2 P2, and all the others intb. This means
that no such curve can intersect the strict transform of @gétine in3(2) or of a
general line througl,, and hence, (7) vanishes whenevef contains one of the
classed?, E2, andpt. But also no such curve can interséwb strict transforms of
general lines irP3(2) throughP;, so we also havé, ((H?—Ef)®?) = 0. Hence, by
the multilinearity of the Gromov-Witten invariants it follvs that all invariants with
homology clas$, vanish ford, > 2.

The equatiortp, g (1; H,H | Ea, E2) reduces therefore to the simple statement

N J/
v~

1
2 2
—la—yr—(d-nE—d-yg(HOE1@E) Iy _g (HOE{QE]).

The invariantl,, o (H® Ef@ Ef) is easily computed to be 1, e.g. using the algo-
rithm 2.5. Hence, f)y the divisor axiom we get

Clyw-ag-ag, D = @Dy @-ne-@-ve@):
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Together withIH,_Ei_Eé(l) =1 (which follows for example from corollary 3.2), we
see that

lar—ag—ag, (D =d>.

It should be noted that our additional considerations attloy&ove the vanishing of
Gromov-Witten invariants of homology claslsH’ — (d2 — 1) E; — d2Ej for dp > 0
would not have been necessary to compute the desired intgrthey just made the
calculation easier. According to theorem 2.1, we could ofse also use the algorithm
2.5 without further thinking, and everything would takeeaf itself.

Examp