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On rational equivalence in tropical geometry

Lars Allermann, Simon Hampe, Johannes Rau

This article discusses the concept of rational equivalence in tropical geometry
(and replaces the older and imperfect version [AR08]). We give the basic definitions
in the context of tropical varieties without boundary points and prove some basic
properties. We then compute the “bounded” Chow groups of R™ by showing that
they are isomorphic to the group of fan cycles. The main step in the proof is of in-
dependent interest: We show that every tropical cycle in R™ is a sum of (translated)
fan cycles. This also proves that the intersection ring of tropical cycles is generated
in codimension 1 (by hypersurfaces).

1 Introduction

The concept of rational equivalence plays a fundamental role in algebraic geometry and therefore
it is natural to study analogue notions in tropical geometry. This has been done quite extensively
in the case of divisors on a curve (e.g. [BN07; GK08; MZ08; CDPR12; HMY12]), whereas in higher
dimensions there are relatively few instances where rational equivalence is mentioned explicitly
(cf. [Mik06; AR10; MR09], for example).

This paper is devoted to the basic definitions and properties of rational equivalence for tropical
varieties. We stick to non-compact tropical varieties without “boundary” points here and study
usual as well as “bounded” rational equivalence (the latter using bounded rational functions). We
prove some basic properties (in particular the compatibility with the constructions from [AR10])
and show that bounded rational equivalence can also be expressed in terms of families of cycles
over R.

We then turn to the case of cycles in R™ and show that two cycles are bounded rationally
equivalent if and only if they are numerically equivalent if and only if they have the same recession
fan cycle. It follows that the bounded Chow group of R™ is isomorphic to the group of fan cycles
in R™. The main step is to prove that a tropical cycle is rationally equivalent to its recession
fan cycle. We deduce this by proving another statement of independent interest: We show that
every tropical cycle in R™ can be decomposed into a sum of (translated) fan cycles. This also
proves the fact that every such tropical cycle can be written as a sum of intersection products
of hypersurfaces. In other words, hypersurfaces V(f) with f a tropical polynomial generate the
ring of tropical cycles Z,(R™).

There exists an older and imperfect version of this paper by the first and third author on
arXiv (cf. [AR08]). Our main motivation for this new version was to replace the proof of the
“main step” mentioned above (i.e. rational equivalence of a cycle and its recession fan cycle) by
a simpler and more transparent argument. To us, the cleanest way in order to update the old
paper seemed to be to replace it completely and therefore to include the old material in this
new version. In doing so, we also updated the terminology slightly. Rational equivalence in
the old paper is now called bounded rational equivalence (as it is generated by bounded rational
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functions). We added the concept of usual rational equivalence (generated by (arbitrary) rational
functions) and rational equivalence over R (generated by families over R).

The authors would like to thank Andreas Gathmann and Hannah Markwig for useful comments
and discussions.

2 Preliminaries

This article is, to some extent, a continuation of [AR10] and we mostly stick to the definitions
and notations introduced there. However, for the reader’s convenience we start by recalling the
most important terminology. For more details, we kindly refer the reader to the cited work.

2.1 Cycles

A tropical polyhedral complex X is a balanced (weighted, pure-dimensional, rational, finite) poly-
hedral complex in R™ (with underlying lattice Z™). The top-dimensional polyhedra in X are
called facets, the codimension one polyhedra are called ridges. Balanced means that for each
ridge 7 € X the following balancing condition at 7 is satisfied: The weighted sum of the primi-
tive vectors of the facets o around 7 is zero, i.e.

Z w(o)vs/r = 0.

o (dim(X))
T<O

Here, w(o) denotes the weight of the facet, and v, /7 is the primitive integer generator of the ray
obtained from projecting o to R™/V,, where V, denotes the linear vector space spanned by 7.
The support of X, denoted by |X|, is the union of all facets in X with non-zero weight.

Two tropical polyhedral complexes are called equivalent if the they admit a common refinement
and if the induced weights are the same. A tropical cycle X is an equivalence class of tropical
polyhedral complexes. A representative X' of X is called a polyhedral structure for X. Obviously,
the support of X is well-defined and we often denote it by the same letter X. Consistently
with this abuse of notation, we may think of a tropical cycle X as a polyhedral set with weights
wx (p) for generic points p € X" such that (after choosing a polyhedral structure) the balancing
condition is satisfied. A tropical cycle F' supported on a fan (i.e. a union of cones with vertex at
0) is called a fan cycle.

2.2 The divisor of a rational function

A map ¢ : R" DS — R™ is called integer affine if there exist A € Mat(m x n,Z) and a € R™
such that for all p € S

o(p) = Ap+a.

A (non-zero) rational function on a tropical cycle X is a continuous function ¢ : X — R that is
integer affine on each cell of a suitable polyhedral structure X of X. The divisor of o, denoted
by div(p) = ¢- X, is given by the weighted subcomplex ¢ - X of X constructed in [AR10, 3.3]. It
is supported on the codimension one skeleton of X and contains each ridge 7 € X’ (now a facet
of v - X) with weight

th'X(T) - Z (AJ(O'%OU(’DU/T) - 907'( Z W(O—)T)G/T)- (1)

e X (dim X) UeX(dimX)
T<Oo TOo



Here ¢, : V, — R denotes the linear part of the affine function ¢|,, and 95, is an arbitrary
representative in R” of v,,, € R"/V,. It was shown in [AR10, 3.7] that these weights satisfy the
balancing condition, hence div(y) is well-defined tropical tropical subcycle of X of codimension
one. Note also that div(y) agrees with the intersection of the balanced graph of ¢ with X x{—oc}.
The balanced graph of ¢ is obtained from the usual graph of ¢ (not balanced, in general) by
adding cells in the (0,...,0, —1)-direction in order to make it balanced. In this sense, div(y) can
be regarded as the divisor of zeros and poles (if negative weights show up) of ¢.

2.3 Morphisms and projection formula

Given two cycles X C R™ and Y C R™, a integer affine map f : X — Y is called a morphism
of cycles. Given such a morphism, we can pull back a rational function ¢ on Y to a rational
function f*(p) = o f on X. Furthermore, we can push forward a subcycle Z of X to a subcycle
f«(Z) of Y. This is due to [GKMO09, 2.24 and 2.25] in the case of fans and can be generalized to
complexes (see [AR10, 7.3]). The push forward f.(Z) is supported on the image f(|Z|) and (for
sufficiently fine polyhedral structures) the weights of f.(Z) are given by

wrn@) = S A /F(A)] - wslo),
o facet of Z
fo)=o’
where ¢’ is a cell of Y of dimension dim(Z). Here, A, := V, NZ"™ denotes the sublattice of Z™
spanned by o (analogously for A,/). It follows that dim(f.(Z)) = dim(Z) if f.(Z) # 0.
The projection formula (see [AR10, 4.8]) connects all the above constructions via

f(f(p) - Z2) = ¢ [:(2). (2)

2.4 Intersection product of two cycles

Another feature of tropical intersection theory is that for any two cycles X,Y in R"™ we can
perform the “stable intersection” X - Y which is again a well-defined cycle in R™ (not just a
cycle class modulo rational equivalence). The codimension of X -Y is always equal to the sum of
codimensions of X and Y, regardless of the dimension of the set-theoretic intersection XNY. The
definition given in [AR10, 9.3] is based on intersecting the cartesian product X x Y C R™ x R"”
with the diagonal described by the rational functions max{z1,y1},..., max{z,, yn}, i.e.

X Y :=m (max{z,y1} - -max{z,, yn} - (X x Y)).

Here, x;,y; are the coordinates of the first resp. second factor of R™ and 7 is any of the two
projections. This intersection product turns Z,(R™) into a graded commutative ring, and satisfies
(p-X) Y =9 (X Y), where ¢ is a rational function on X. Moreover, R™ (considered as a
cycle) is the identity element.

Note that our definition is a way of formalizing the concept stable intersection based on moving
the cycles slightly as proposed in [RST05; Mik06] (details can be found e.g. in [MR]; equivalence
was proven in [Kat12; Raul).

3 Rational equivalence

As discussed in [AR10, 8.6], the definition of rational equivalence given there is not compatible
with push-forwards of cycles. The following definition is more flexible and resolves this problem.
Moreover, we show in proposition 3.5 that this definition is consistent with the approach of using
families over R.



Definition 3.1. Let X be a cycle and let Z be a subcycle. We call Z bounded rationally
equivalent to zero on X if there exists a morphism f : Y — X and a bounded rational function
¢ on Y such that

f(6-Y) =2

Note that in this case dim(Y) = dim(Z) + 1. Two subcycles Z, Z’ of C are called rationally
equivalent, denoted by Z ~ Z', if Z — Z' is rationally equivalent to zero.

Furthermore, if the function ¢ from above can chosen to be bounded, we call Z bounded
rationally equivalent to zero. The corresponding equivalence relation is called bounded rational

equivalence and is denoted by R,

Obviously, both ~ and X are additive equivalence relations. It also clear that Z Rz implies
7 ~ Z', hence bounded rational equivalence is the stronger relation. Even though ~ is more
natural from the classical point of view, the main interest in this paper will be on bounded
rational equivalence. Some explanations regarding this are collected in remark 3.7. (Bounded)
rational equivalence satisfies the following properties.

Proposition 3.2. Let Z be a cycle in X (bounded) rationally equivalent to zero. Then the
following holds:

(a) Let X' be another cycle. Then Z x X' C X x X' is also (bounded) rationally equivalent
to zero.

(b) Let ¢ be a rational function on X. Then ¢ - Z is also (bounded) rationally equivalent to
zero.

(c) Letg: X — X be a morphism. Then 9+(Z) is also (bounded) rationally equivalent to zero.

(d) Assume X = R™ and let Z' be another cycle in R™. Then Z-Z' is also (bounded) rationally
equivalent to zero.

(e) IfZ20 and dim(Z) =0, then deg(Z) = 0. Here, as usual, deg(d>"m;P;) := > m; denotes
the sum of coefficients.

Proof. Let f:Y — X be a morphism and ¢ a (bounded) function on Y such that f.(¢-Y) = Z.
Then f xid: Y x X' — X x X' shows (a). Restricting f to f*(p) - Y and using the projection
formula (2) shows (b). Composing f with g shows (c¢). For (d) we just have to recall that Z - Z’
is computed by

me(max{zy,y1} - -max{z,,yn} - (Z x Z)).

Thus (d) follows from (a) — (c). We are left with (e), the only case where the stronger concept
of bounded rational equivalence is needed. In this case, Y must be one-dimensional and we can
apply [AR10, 8.3], which shows that the degree of ¢ - Y, when ¢ is bounded, is zero. Pushing
forward preserves degree, and hence the statement follows. O

An easy example of bounded rationally equivalent cycles are translations. Given a vector
7 € R™, in the following X + ¢ will always denote the translation of a cycle X by the vector 7.
This should be distinguished from the usual sum of cycles X +Y given taking unions and adding
weights.

Proposition 3.3. Let X be a cycle in R™ and let X 4+ ¥ denote the translation of X by an
arbitrary vector v € R™. Then

X~X 4.



Proof. Consider the cycle X x R in R™ x R and the morphism
f:R*"xR — R",
(x,t) — x+te;,

where €; is the ¢-th unit vector in R". For u € Ry let ¢, be the bounded function

Pu(z,t)=qt 0<t<p
t>pu

Then we can compute

fe(du - (X X R)) = fo(C x {0} = C x{u})
=C — (C + ué;).
Applying this to each coordinate step by step, we obtain X R x + 7. O

In algebraic geometry, instead of using the divisors of zeros and poles of rational functions,
one may define rational equivalence by considering (flat) families of cycles over P!. Indeed, two
cycles are rationally equivalent if they both appear as fibers of some family F. Tropically, we
can do the same (cf. [Mik06, 4.6]).

Definition 3.4. Let X be a cycle and consider a subcycle FF C X x R. For each point p € R,
we define the fiber of F' at p by

Fyi=gp FCX x{p} =X,

where ¢, is the pull-back of max{z,p} along X x R — R. We think of F, as a subcycle of
X. The equivalence relation generated by setting F), R F, for two fibers Fj,, F, of the same F' is

called rational eqivalencce over R, denoted by R

Proposition 3.5. Rational equivalence over R (as defined in 5.4) agrees with bounded rational
equivalence (as defined in 3.1).

Proof. We first show that, given F' C X x R and p,q € R, any two fibers F}, and Fj satisfy

prEFq. To see this, let ¢ be a rational function on R with divisor ¢ - R = > m;p;. Let
furthermore denote 7 : FF — X X R — R the second projection. Pulling back ¢ to F', we obtain

o F = Zmini. (3)

This follows from the fact that the divisor construction is local (cf. [Rau, 1.1]), linear and invariant
under change by an affine function (cf. [AR10, 3.6]). We apply equation (3) to the function

¥ = max{:c,p} - Inax{z, q}7
which is obviously bounded. We obtain

(- F)=F,—F, € Z.(X),

which proves Fj, L Fy.



Let now f : Y — X be some morphism of cycles and ¢ a bounded rational function on Y. We

have to show f.(¢-Y) R 0. In order to construct a suitable F , let us first consider the balanced
graph of ¢ mentioned in 2.2. It is obtained from the usual graph of ¢ in Y x R by adding
facets directed downwards in such a way that the constructed polyhedral complex satisfies the
balancing condition (cf. [AR10, 3.3]). Let us denote this subcycle of Y xR by I'. As ¢ is bounded
from above, we may choose p € R close to +oco such that I';, = [}] = 0. But ¢ is also bounded
from below. Hence, choosing ¢ € R close to —oco we will only intersect the “additional” facets of
I' and therefore I'y = ¢ - Y. Let us now consider the map f xid:Y xR — X x R and set

F:=(f xid).(I) CC xR.

Using the projection formula, we easily see that F,, = f.(I';) for all € R. In particular, F, =0
and Fy = fi(¢-Y). Thus fi(p-Y) X0 and we are done. O

In the following we will abandon the terminology “over R” and notation & in favor of “bounded”

b
and ~.

Definition 3.6. The (bounded) Chow group of X is defined to be the group of tropical subcycles
of X modulo (bounded) rational equivalence, denoted by

A (X) = Z.(X)/ ~ and AP(X) := Z,(X)/ 2.

Remark 3.7. A few remarks regarding our definitions of rational equivalence might be helpful at
this point. Note that in this paper we only work with spaces which do not contain “boundary
points” (e.g. the points at infinity in TP = RU{+00}) as introduced for example in [Mik06]. We
refer to the book in progress [MR] for the corresponding theory in this more general setting. In
particular, definition 3.4 can be changed to allow families over TPP! and not just IR, in which case
we recover rational equivalence ~ (with unbounded functions). Hence this equivalence relation is
the canonical choice from the classical point of view. However, when working with non-compact
spaces, cycles can often be moved off “to infinity” and hence the corresponding Chow groups
contain relatively little information. For example, we will show A,(R™) = 0 (cf. 5.5), in analogy
with the classical statement A, ((C*)"™) = 0.

In contrast, bounded rational equivalence in essence prohibits to move cycles to infinity and
therefore provides richer Chow groups also in the non-compact case. The main idea is that two
cycles are bounded rationally equivalent in X if and only if they are rationally equivalent in
any (toric) compactification X of X. For example, in the case of X = R” our main result 5.7
together with [FS97, 4.2] shows that AP(R™) can be described as the direct limit of the Chow

groups of all toric varieties compactifying (C*)™.

4 Numerical Equivalence
Let us now compare bounded rational equivalence to numerical equivalence.
Definition 4.1. Let X be a cycle in R™ of codimension k. Then we define dx to be the map

dx : Z(R") = Z,
7 — deg(X - 7).

We call two cycles C, D numerically equivalent if the two functions d¢ and dp coincide.



Note that Lemma 3.2 implies that bounded rationally equivalent cycles are also numerically
equivalent. In Theorem 5.7 we will also prove the converse. In this section, our goal is to show
that two bounded rationally (resp. numerically) equivalent fan cycles have to be equal.

Proposition 4.2. Let Fy and F5 be fan cycles in R™. If F} ’]\DJFQ ordp, =dp,, then F1 and F
are equal.

We need the following technical result.

Lemma 4.3. Let F be a d-dimensional fan cycle in R™. Then there exists a complete simplicial
rational fan © in R™ such that F can be represented by a tropical fan F which is a subfan of ©
(i.e. each cone of F is a cone of ©).

Proof. We start with some fan 5o = {o1,...,0n} representing F. Each cone o; is described by
certain integer linear inequalities, say

oi={x € R": (fi,z) > 0,...,(f;,,z) > 0},

with f; € Z". Let Hy: be the fan consisting of the two halfspaces and the hyperplane defined
) J
by fj, i.e.

Hf; = {{z: ( ;,:p} >0}, {z: (fj,z) =0}, {z:( ;,:c> <0}}.

Consider the “intersection” of all these fans,

N k;
o = ﬂ me;

i=1j=1

as described in [GKMO09, 2.5(e)]. In other words, ©’ is the complete fan in R™ containing any
cone which can be described by some collection of inequalities of the form =+ f;(x) > 0. By
construction, F' can be represented by a subfan F’ of ©’. By subdividing ©’ further, we can
construct a simplicial fan © (cf. [Ful93, p. 48]). As O is a refinement of ©’, F' can still be
represented by a subfan of © (namely by F := F' N ©) and we are done. O

Proof of 4.2. As mentioned before, note that F} ’PJFQ implies dp, = dp, by proposition 3.2 (d)
and (e). Hence it suffices to show the following: If F' is a tropical cycle with dp = 0, then F' = 0.
We prove this by induction on d := dim(F’). For d = 0 the situation is trivial: F' is equal to the
origin {0} with a certain multiplicity w. But this multiplicity can be computed as w = dp(R™).
Hence, assuming that dp is the zero map, w is zero as well.

To prove the induction step, we first use lemma 4.3, which shows that we can assume that F'
can be represented as the d-skeleton of a complete simplicial rational fan © with certain (possibly
zero) weights on the d-dimensional cones. We have to show that the assumption dp = 0 implies
that all these weights are zero. Let o be a d-cone of ©. As O is simplicial, we can find primitive
vectors v1, ..., vq that generate o and a piecewise linear function ¢ on © such that for each ray
of © with primitive generator v we have

s0(1)){a7éO for v = vy,

0 otherwise.

Let us now consider ¢ - F'. The compatibility of the divisor construction with the intersection
product, i.e. (¢-F)-Z =F - (p-Z) for all Z € Z,,_441(R"), shows that d,.r = 0. We apply
the induction hypothesis and conclude that ¢ - F' = 0. In particular, the weight w,.z(7) of 7 :=



(v2,...,Vd)Rs, has to be zero. So let us compute this weight by hand: Note that the primitive
generator va/_T of the projection of o in R™/V; is equal to the projection of mvl (even
though this vector itself might not be integer). Recall that ¢ is identically zero on all facets
containing 7 except for o (in particular, ¢ is identically zero on 7). Hence formula (1) for the
weight of 7 gives

1
we-c(1) = wC(")m@(”l)-

Since |Ay/(Ar + Zv1)| and ¢(v1) are non-zero numbers, we (o) must be zero, which finishes the
proof. O

5 The recession cycle

Our goal is to compute the bounded Chow group AP(IR™) of R™. In proposition 4.2 we showed
that the group of fan cycles embeds into the bounded Chow group. We will now show that the
bounded Chow group is in fact isomorphic to the group of fan cycles. To do so, we have to show
that any tropical cycle is bounded rationally equivalent to a fan cycle. Let us first describe this
(necessarily unique) fan cycle explicitly.

Definition 5.1. Let o be a polyhedron in R™. We define the recession cone of o to be

Rec(o) ={veR": 2 +R>pv CoVz o}
={veR":Jzecost. 2+ R>v o}

The two sets coincide as o is closed and convex. Let X be a tropical d-dimensional cycle. It
admits a polyhedral structure such X such that

Rec(X) := {Rec(o) : 0 € X'}

forms a fan, i.e. no cones overlap (cf. [Rau09, 1.4.10]). We equip the d-cones of Rec(X’) with
weights by

WRee(x)(0) == g wx (o).
o'ex
o=Rec(c")

This makes Rec(&X) a balanced fan (cf. [Rau09, p. 61]) and we denote the corresponding cycle
by Rec(X). We call Rec(X) the recession fan of X and Rec(X) the recession (fan) cycle of X.
Note that

Rec(X +Y) = Rec(X) + Rec(Y). (4)

Example 5.2. Let F' be a fan cycle in R™ and let ¥ € R™ be a vector. Then obviously
Rec(F + ) = F.

Indeed, when F = {0}, is a fan representing F', then F 4+ ¥ = {o; + ¥}, is a polyhedral structure
for F'+ ¥ and Rec(F + 7) = F.

Our main result is the following:

Theorem 5.3. Let X be a cycle in R™. Then

X 2 Rec(X).



To prove this, we will use another theorem of its own interest.

Theorem 5.4. Let X € R"™ be a tropical cycle. Then X can be decomposed into a sum of
translated fan cycles, i.e. there are fan cycles Fy, ..., F; and points p1,...,p; € R™ such that

l
X:ZEJrﬁi.
=1

The proof of this theorem (as it does not rely on the concept of rational equivalence) will be
postponed until section 7. Instead, we continue with the proof of theorem 5.3, which of course
is straightforward now.

Proof of 5.3. We write X as a sum of translated fans X = Zi:l F; 4+ p; by theorem 5.4. By
equation 4 and example 5.2 we have

l

Rec(X) = Z F;.

i=1

On the other hand, each translated fan F; 4 p; is bounded rationally equivalent to F; by propo-
sition 3.3. As rational equivalence is additive, X 2 Rec(X) follows. O

Let us also mention another consequence of theorem 5.4.

Corollary 5.5. Let Z,.(R"™) denote the ring of tropical cycles in R™, with + the usual sum
of cycles and - the stable intersection. Then Z.(R™) is generated by the set of hypersurfaces
V(f) € Zn_1(R™) of tropical Laurent polynomials f € T[zi, ..., ). In particular, A,(R™) = 0.

Proof. By [MR, 2.5.10], every codimension one cycle can be written as a difference of two hy-
persurfaces V(f) — V(g). Hence it suffices to show that Z,(R™) is generated in codimension one.
In the case of fan cycles, we can deduce this from the corresponding statement for (smooth)
toric varieties and the equivalence of stable intersection and the toric intersection product (cf.
[FS97; Kat12; Rau]). Alternatively, a proof in purely combinatorial terms can be obtained via
the polytope algebra (cf. [FS97; JY13]). Finally, via theorem 5.4 we can reduce our case to the
case of fan cycles and hence are done. O

Remark 5.6. In [FS97; JY13], the authors establish a link between the algebra of tropical fan
cycles and McMullen’s polytope algebra [McM89]. In the context of general cycles, one can
consider a generalized polytope algebra generated by all polyhedra with a fixed given recession
cone o (in the ordinary case, o0 = {0}). Technically, this algebra might be constructed as a
quotient of the ordinary polytope algebra by the additional relation

[Pl=Qif P+oc=Q+o0.

The case of interest for us are polytopes in R and ¢ = Rxoen+1 and hence the genera-
tors correspond, in some sense, to convex subdivisions of polytopes in R™. Geometrically, this
corresponds to taking tropical fan cycles in R"! and intersecting them with the hyperplane
{zn+1 = —1}. Conjecturally, this generalized polytope algebra is isomorphic to the algebra
of general tropical cycles Z,(R™) (not just fan cycles). However, the exact definitions and a
subsequent proof of isomorphy still require careful analysis, we do not pursue this here.

We finish this section by listing some consequences of theorem 5.3. First, we conclude that the
notions of bounded rational equivalence, numerical equivalence and “having the same recession
cycle” coincide.



Theorem 5.7. Let XY be two tropical cycles in R™. Then the following are equivalent:
i) XRY
it) dx =dy
iii) Rec(X) = Rec(Y)

In particular, the equation

ALR™) = Z["(R™)
holds, where A%(R™) is the bounded Chow group of R"™ and Zifa"(]R") is the group of fan cycles.

Proof. i) = ii) follows from proposition 3.2 (d) and (e). iii) = i) is an immediate consequence
of theorem 5.3. ii) = iii) follows from theorem 5.3, i) = ii) and proposition 4.2. O

The second corollary is the following general Bézout-type statement, where Rec(X) plays the
role of the degree of X.

Theorem 5.8 (General Bézout’s theorem). Let X, Y be two tropical cycles in R™. Then
Rec(X -Y) = Rec(X) - Rec(Y).
Proof. We apply theorem 5.3 and get
Rec(X - Y)R X -V 2 Rec(X) - Rec(Y)

(the second equivalence also uses lemma 3.2 (d)). By proposition 4.2 two rationally equivalent
fan cycles are equal. O

6 Lineality spaces and splitting dimension

In this section, we collect some additional definitions and notations which we need to prove
theorem 5.4.

Let X be a tropical cycle. A function f : X — R is called lower semiconstant if for any
polyhedral structure on X

(a) f is constant on each relatively open cell Rellnt(o) (and hence we can set f(o) := f(p),
where p is some point in the relative interior of o),

(b) for any face 7 C o we have f(r) < f(o) (i.e. f is lower semicontinuous in the Euclidean
topology).

Given such a function f and k € R, the sublevel set
Xp={zeX: f(x) <k}

is again a polyhedral set.

Let X be a tropical cycle and p € X a point. Locally around p, X looks like a fan and this fan
cycle is denoted by Starx (p). As a set, Starx (p) is the set of vectors v € R™ such that p+ev € X
for arbitrarily small € > 0. Given a polyhedral structure on X, we get an induced polyhedral
structure on Starx(p) such that the facets of Starx (p) are in one-to-one correspondence to the
facets of X which contain p. Using the weights from X for Starx (p) accordingly, the balancing
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condition is obviously still satisfied. Hence Starx(p) is a fan cycle. It is easy to check the
following formulas.
Starx 4y (p) = Starx(p) + Stary (p) (5)

StarX (p + 6(]) = StarStarx (p) (Q) (6)
Let FF C R™ be a fan cycle. The lineality space of F' is defined to be
LinSp(F):={ve R": F = F + v},

where F'+v denotes the tropical cycle translated by v. Obviously, LinSp(F) is a linear subspace of
R™. Tts dimension is denoted by lindim(F’) and is called the lineality dimension of F. Examples
are given in Figure 1 below. In the special case F' = 0 we set lindim(F) = co. When taking
stars, we have

LinSp(F) C LinSp(Starr(p)) (7)
for all p. When taking the sum of two fan cycles F' and G, we have
LinSp(F + G) D LinSp(F') N LinSp(G). (8)
We denote by

Fans® := {F fan cycle : lindim(F) = k}
Fans=F = {F fan cycle : lindim(F) > k}

the sets of fan cycles in R™ with lineality space of dimension (greater than) k.

Definition 6.1. Let F' C R™ be a fan cycle. We define the splitting dimension of F' by

spldim(F') := max{k : F = Z F; for F; € Fanszk}.

Thus spldim(F) is the largest integer k such that F' can be split into a sum of fan cycles with
lineality dimension at least k. When F' = 0, we have spldim(F) = co. Let X C R™ be a tropical
cycle and let p € X be a point. We define the lineality dimension resp. splitting dimension of p
in X by

l(p) :== lx(p) := lindim(Starx (p)),

s(p) := sx(p) := spldim(Starx (p)).

In accordance with the previous conventions we set I(p) = s(p) = 0 if p ¢ X.

P1 D2
b3

Figure 1: We calculate the lineality and splitting dimension of this one-dimensional
tropical cycle at various points: I(p1) = l(ps) = 0, while I(p2) = 1.
s(p1) = s(p2) = 1, while s(p3) = 0.

11



Obviously, the chain of inequalities

l(p) < s(p) < dim(Starx(p))

holds and [ resp. s are lower semiconstant functions on X (by equation (7)). It follows that the
sets

X® ={pe X :i(p) <k},
XM= {pe X :s(p) <k},
are polyhedral sets. We call X(*) the k-skeleton of X. Given a polyhedral structure for X, for

each cell o we have
dim(o) < l(0) < s(0)

and it follows
X [¥] C x (F) C U .
dim(o)=k

Moreover, these subsets are compatible with taking stars.

Lemma 6.2. For any cycle X and p € X we have

StarX (p>(k) = StarX<k> (p),
Stary (p)!* = Star xu (p).

Proof. Using equation (6), we get the following chain of equivalences.

= spldim(Stargiar () (q)) = spldim(Starx (p + €q)) < k

q € Starx (p)
— ptecX (]
<= q € Starxw (p)
The case lindim is analogous. O

Here is another straightforward fact about lineality dimensions.

Lemma 6.3. Let F C R" be a fan cycle and p € F a point. Then lp(p) > lindim(F) and the
equivalences
Irp(p) =lindim(F) <= p € LinSp(F) < Starp(p) = F

hold.

Proof. The inequality {r(p) > lindim(F') is clear (I is lower semiconstant). For the equivalences,
we reduce to the case lindim(F') = 0 by taking the quotient F'/ LinSp(F'). Then the statement
boils down to show

lr(p) =0 = p=0 = Starp(p) = F = Ip(p) =0.

The first conclusion follows from the fact that each non-zero point in F' is contained in a positive-
dimensional cell and therefore has positive lineality dimension. The remaining arrows are clear.

O
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7 Decompose cycles into sums of fan cycles

In this section we prove theorem 5.4, i.e. we show that every tropical cycle can be decomposed
into a sum of (translated) fan cycles. The strategy of the proof is as follows. We recursively
remove points in X of minimal splitting dimension by subtracting the corresponding star fans.
The main step is to show that this subtraction process does not create new points of minimal
splitting dimension somewhere else. Based on this, we show that the process terminates (i.e. we
obtain the zero-cycle) after a finite number of steps.

T R

Figure 2: We iteratively subtract the local fans at the marked points from this plane
tropical one-cycle until we arrive at a fan cycle. Note that in the first reduc-
tion step we obtain a new vertex on the bottom right leg of the one-cycle. This
reduces the lineality dimension of this point to 0, but its splitting dimension
is still 1. (Of course, in the case of curves our approach is unnecessarily com-
plicated and we could instead give an explicit formula for the decomposition
into fans.)

Let X C R™ be a tropical cycle of dimension dim(X) = m. We set
s:=5(X) := min{sx(p) : p € R"}.
Our goal is to find a finite process which increases s(X) by subtracting star fans. It stops when
5(X) = oo which means X = 0. The main step is contained in the following proposition.

Proposition 7.1. The set of points of minimal splitting dimension X® is a finite union of
affine subspaces W; C R"™ of dimension s,

To prove this, we use the following local condition.

Lemma 7.2. Let Y CR"™ be a polyhedral set such that for any P € Y we have
lp

StaI‘y (]7) = U Vji,

i=1
where Vi; € R™ are k-dimensional linear subspaces. Then'Y is a finite union of affine subspaces
of dimension k.

Proof. We choose a polyhedral structure for Y with k-cells o1, ..., 0,. We pick a point pj in the
relative interior of o; for all cells. Then Stary (7;) = Vj is a k-dimensional linear subspace. We
want to show

Y =JVi+7,

j=1

13



i.e. Y is equal to the union of translated spaces appearing in Stary (pj;). The direction “C” is
obvious as each cell o; is contained in V; + pj. For the other inclusion, pick a vector space
V :=V; at a point p:= pj;. In order to show V 4+ 5 C Y, consider

Z:=VnY -p)CV

By our assumptions, Z is a full-dimensional polyhedral subset of V' with 0 € Z°. Assuming
Z #V, we find a point ¢ in the boundary of Z°. But Stary (5 + ¢) is a union of k-dimensional
vector spaces, and one of them must be V' as Stary (p'+¢) NV is k-dimensional. It follows ¢ € Z°,
a contradiction. O

Proof of proposition 7.1. Let s := s(X) as above and pick 7 € X[/, By lemma 7.2 it suffices to
show that Starys)(p) is a union of linear subspaces of dimension s.

We start by splitting Starx (p) into a sums of fan cycles with lineality dimension at least s, or
more precisely,

Starx(ﬁ):F1+---E+zGiv (9)

where F; € Fans® and G; € Fans=*T!. We set V; := LinSp(F;), hence V4, ...,V is a collection of
s-dimensional linear subspaces of R™. We want to show that Stary.(p) is equal to a union of
some of those V. First we show

Starx[s](ﬁ)gL::VlU...UVl. (10)

For all ¢ € R™ we have

Stargeary (5)(7) = Z Starg, (¢) + Z Starg, (7) (11)

by equation (5). If ¢ ¢ L, then ¢ is not contained in the lineality space of F; for all ¢ and thus
lindim(Starg, (7)) > s for all ¢ (cf. lemma 6.3). Hence on the right side of equation (11), all fans
have lineality dimension at least s 41 and thus sgiar (7 (7) > s+ 1. We conclude q ¢ Starx (p) [s],
which by lemma 6.2 is the same as ¢’ ¢ Star x(s(p). Equation (10) follows.

We now show the following:

Vi € Starys (p) = Stary(p) CViU...UV_q. (12)

This finishes the proof, as it allows us to recursively remove from equation (10) all vector spaces
V; which are not contained in Star y(s; (p) until we reach equality. To prove equation (12), pick a
point ¢ € V; \ Starxs) (7). Let us reorder the spaces V; (and F;) such that

g¢ Viforalli=1,...,r
geViforalli=r+1,...,1.

We will prove the somewhat stronger statement Star y-;(p) € V1 U...UV,.. Again by lemma 6.2,
we conclude from ¢ ¢ Star x(.) (p) = Starx (§)!% that sspar (5 (7) > . Thus we can write

StarStarX(ﬁ) ((T) = ZHl (13)

for suitable fan cycles H; € Fans=**'. Combining equations (11) and (13) we get the expression

Frpi+...+ R =) Hi— <smFl (@) + ...+ Starg, (9) + Y _ Starg, @) . (14)

14



Here we used the fact that Starp, (§) = F; for alli =r+1,...,1 by lemma 6.3. Using this lemma
again, we see that on the right hand side of this equation all fans have lineality dimension at
least s + 1. Finally, replacing the summands Fj.41 + ...+ Fj in equation (9) by this expression,
we get a new splitting of Starx (p) of the form

Starx(ﬁ‘):Fl‘i’Fr‘i’ZG;a

with fan cycles G, € Fans=**!. Now the same reasoning as above (which proved equation (10))

shows that Star y()(p) € V3 U...UV,. This finishes the proof. O

Based on proposition 7.1 we now consider the process of subtracting the star of a point of
minimal splitting dimension.

Proposition 7.3. Let X C R™ be a tropical cycle with minimal splitting dimension s := s(X).
Write XIs) = Wy U...UW,, W; s-dimensional affine subspaces. Then there exists a point p€ W,
such that W; = LinSp(Starx (p)) + p. Moreover, for the tropical cycle X := X — (Starx (p) + p),
we have _

XEcwu...uwiy.

Proof. First, we show the existence of such a point p. Fix a polyhedral structure of X and let o
be a s-dimensional cell which is contained in W;. Pick a point p in the relative interior of o. This
implies Ix(p) > dim(c) = s. But we also have Ix(p) < sx(p) = s and thus Ix(p) = s. Hence
the lineality space of Starx (p) is s-dimensional and is contained in Starx (p)[*! = Star v () (by
lemma 6.2). But X[l = W, U...UW, and p € W}, hence Star y s (p) = W, — p, and we are done.
Now let us check the second statement: Pick ¢ ¢ X[l From ¢ ¢ W, it follows ¢ — p ¢
LinSp(Starx (p)) by assumption and thus lindim (Stargiar (7)+5(¢)) > § by lemma 6.3. Write

Starx (q) = Y _ F;

with fan cycles F; € Fans=*"!. Using equation (5) we get

Star(q) = Z Fy — Stargiar (5)+5(0);

which implies s3(¢) > s+ 1 and ¢ ¢ X5l This proves X! C X[, By proposition 7.1 X!
must be equal to the union of some subcollection of the affine spaces W;. Hence it suffices to
show W, ¢ X [s]. This follows from the fact that by construction we have 7 ¢ X, since X and
Starx (p) + P coincide in a neighbourhood of p. O

We can now prove theorem 5.4.

Proof of theorem 5.4. We repeatedly subtract star fans as in proposition 7.3 in order to remove
all points of splitting dimension s, i.e. X[*) = (). This implies §(X) > 5, and we can repeat
the process until we reach 5()~( ) = oo and hence X =0 (alternatively, one may stop when
5(X) = dim(X) — in this case X = X* is a union/sum of affine subspaces). As during this
procedure we only subtract translated fan cycles (namely of the form Starx (p)+p), the statement
follows. |
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