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COMBINATORICS OF TROPICAL HURWITZ CYCLES

SIMON HAMPE

ABSTRACT. We study properties of the tropical double Hurwitz loci defined
by Bertram, Cavalieri and Markwig. We show that all such loci are connected
in codimension one. If we mark preimages of simple ramification points, then
for a generic choice of such points the resulting cycles are weakly irreducible,
i.e. an integer multiple of an irreducible cycle. We study how Hurwitz cycles
can be written as divisors of rational functions and show that they are numer-
ically equivalent to a tropical version of a representation as a sum of boundary
divisors. The results and counterexamples in this paper were obtained with
the help of a-tint, an extension for polymake for tropical intersection theory.

1. INTRODUCTION

Roughly speaking, Hurwitz numbers count covers of P! by complex curves C of
some genus g — but with a given degree and some special ramification profile
over a certain number of pointsﬂ For example, simple Hurwitz numbers require
the cover C' - P! to have a specific ramification profile over some special point
(usually oco) and only simple ramification elsewhere. These numbers have played a
significant role in the study of the intersection theory of the moduli spaces ﬂg,n of
curves. The ELSV formula relates Hurwitz numbers to certain intersection
products of tautological classes on ﬂg,n. This was then used by Okounkov and
Pandharipande to prove Witten’s conjecture .

To obtain double Hurwitz numbers, we fix the ramification over two points in P,
usually 0 and oo. These numbers not only occur in algebraic geometry, but also
in representation theory and combinatorics - thus providing a strong connection
between a wide variety of disciplines. An overview over the different definitions of
double Hurwitz numbers can for example be found in . An ELSV-type formula
has been conjectured by Goulden, Jackson and Vakil in , where it is also shown
that these numbers are piecewise polynomial in terms of the ramification profile.
By convention, one writes the profile as x € Z" with ). x; = 0. The interpretation
of this is that the positive part x* gives the ramification profile over 0 and the
negative part - gives the ramification profile over co. A special feature of double
Hurwitz numbers is the fact that the number of simple ramification points only
depends on the length of the ramification profile, not on the multiplicities. The
number of additional simple ramification points is then n -2+ 2g. This fact will be
very helpful in defining higher-dimensional cycles.

The generalization to Hurwitz cycles is achieved by letting one or more of the images
of simple ramification points “move around” in P!. In the general case, these loci
were defined and studied by Graber and Vakil in [GV]. In the genus 0 case, Bertram,
Cavalieri and Markwig proved that these cycles are linear combinations of cycles
with coefficients that are piecewise polynomial in the entries of the ramification

profile \\ They also considered tropical versions H} P (z,p) and H{P(z,p),

I fact, one can consider this problem in even greater generality by counting covers C — C’,
where C and C’ are curves of prescribed genera g and g’.
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respectively, of double Hurwitz loci and showed that their combinatorics relate very
nicely to the combinatorics of the different strata of the algebraic loci via dualizing
of graphs. Here HZrOp (z,p) differs from H:Op(x,p) in that the preimages of the
simple ramification points p; are also marked.

Higher-dimensional Hurwitz loci were a key ingredient in the study of tautological
classes of M, ,, in |[GV]. For tropical geometers, they are also of particular interest in
the search for a more conceptual approach to enumerative geometry. So far, tropical
enumerative results could only be translated to results in algebraic geometry by
using correspondence theorems (e.g. [M1L|CJMIBBM]). These theorems only apply
to very specific enumerative problems. A more general result which could, for
example, relate intersection rings of algebraic and tropical moduli spaces, would
make tropical enumerative geometry much more powerful. The fact that Hurwitz
numbers (and possibly, Hurwitz cycles) are so closely related to intersection theory
on Mgm makes them a good starting point for this approach. A natural question to
ask in this context is whether the algebraic Hurwitz cycle somehow tropicalizes onto
the tropical one. In [BCM], the tropical Hurwitz cycles are obtained by translating
a Gromov-Witten type formula to its tropical analogue. While the definition is
rather simple and involves only the well-known tropical moduli space of rational
curves, the cycles itself are rather large (in terms of ambient dimension and number
of polyhedral cells) even for small examples and difficult to study “by hand”. This
makes it very hard to prove a more concrete tropicalization result. We will therefore
start by studying the tropical Hurwitz cycles and their properties to make them
more accessible.

There are two main properties we want to consider in this paper: Connectedness in
codimension one and irreducibility. The first is relevant for computational purposes,
as well as a necessary condition for the second property. Irreducibility itself is
important if one wants to prove equality of tropical cycles — thus providing an
important step towards a potential tropicalization statement relating classical and
tropical Hurwitz cycles. We will also consider how Hurwitz cycles can be written as
divisors of rational functions and how they relate to tropical translations of other
representations of algebraic Hurwitz cycles.

A very helpful tool in the study of Hurwitz cycles is a—timﬂ [H|], an extension
for polymake [GJ] for tropical intersection theory. With its focus on moduli of
curves it provides an easy way to compute examples and a quick method for testing
conjectures.

In Section we review the basic definitions of tropical geometry. We define
tropical varieties and the basic notions of tropical intersection theory. We give a
definition of connectedness and irreducibility and discuss their relevance in more
detail. We conclude this section with a short introduction to moduli of rational
curves and stable maps. In[2.2] we define algebraic and tropical Hurwitz cycles. We
then look at the latter in more detail, i.e. we describe the tropical covers that they
parametrize and how a tropical Hurwitz cycle can be computed. In Section [3.1] we
study whether tropical Hurwitz cycles are connected in codimension one. We give
a combinatorial proof of the following result:

Theorem (Theorem. For all k, p and x, the cycles ]It]If:Op(ac,p) and Hzrc’p(x,p)
are connected in codimension one.

In we use this to show that all marked Hurwitz cycles are weakly irreducible
for a generic choice of simple ramification points:

2see also https://bitbucket.org/hampe/atint
3see also www.polymake.org
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Corollary (Corollary . For any = and any pairwise different p;, Hzmp(:v,p)
is weakly irreducible.

We conclude that section with computational examples showing that this is the
strongest possible statement.

In we study how Hurwitz cycles can be cut out by rational functions on M(t)fzp.

We know from [F| that each subcycle of a matroidal fan (such as Mgfzp) can
be written as the sum of products of rational functions, but the result is non-
constructive. We show that H:fff(x,()) can be cut out by the rational function
that adds up distances of vertex images of covers. To prove this we define the
push-forward of a rational function under a morphism of equidimensional tropical
varieties whose target is smooth.

Finally, in [3:4] we consider an alternative representation of the algebraic Hurwitz
cycle given in [BCM]| and its “tropicalization”. We show that this new tropical
cycle is numerically equivalent to H, °P(x), thus obtaining a strong indicator that
our notion of naively tropicalizing is the correct one.

Acknowledgement. I would like to thank Hannah Markwig for many inspiring
discussion. I was supported by DFG grants MA 4797/3-1 and MA 4797/1-2.

2. PRELIMINARIES
2.1. Tropical geometry.

2.1.1. Weighted polyhedral complexes.

Notation 2.1. Let A be a lattice (i.e. a finitely generated free abelian group) and
V = A ®z R the associated vector space. We assume all polyhedra in V' to be
rational, i.e. defined by inequalities g(z) > « with g € AY. For a polyhedron o we
write V, := (a —b;a,b e o)y for the linear part of its affine space and A, ==V, n A
for its associated lattice.

Definition 2.2. A weighted polyhedral complex (X,w) is a pure, rational, polyhe-
dral complex ¥ in V = A ®2 R together with a weight function w on its maximal
cells, taking values in Z. We write |X| := Uyex; o for the support of X.

Let o be a rational d-dimensional polyhedron and 7 a face of ¢ of dimension d -1
The lattice normal vector of T with respect to o, denoted by u,/;, is the unique
generator of A, /A, = Z, such that g(u,,) >0 for all g € Ay with g, =0 and g, > 0.
By abuse of notation we also write any representative of uy/, in V' with the same
letter.

We call a weighted complex (X,w) balanced, if for all codimension one cells 7 the
following holds:

w(o)ug/r € Vy.
2 /

o>T

A tropical cycle is the equivalence class of a balanced weighted complex modulo
refinement, i.e. we consider two balanced complexes to be the same, if they have a
common refinement respecting the weights. By abuse of notation, we will often use
the same letter for a tropical cycle and its polyhedral structure.

A tropical variety is a tropical cycle whose weights are greater than zero.

Let (3,w) be a weighted complex and 7 any cell in X.. We define the local fan at
T to be the weighted fan

Stal"z;(T) = ({H(U - T);T < U}aWStar)a
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where IT : R™ — R™/V, is the residue map, o — 7 denotes the pointwise difference
and the weight function is defined by wstar : (o = 7) = w(0o).

The recession cone of a polyhedron o €V is the set
rec(o) := {v € V;3z € o such that z + Rygv S o}.

If X is a tropical cycle, then by |R, Lemma 1.4.10] there exists a refinement X of
its polyhedral structure such that §(X) := {rec(c);o € X'} is a polyhedral fan (One
can use a construction similar to the one used for defining push-forwards). If we
define a weight function

ws(rec(0)) = > wx (o),
o’irec(o’)=rec(o)
then (6(X),ws) is a tropical cycle by |R, Theorem 1.4.12].

We call two tropical cycles rationally equivalent if 6(X) =6(Y) (up to refinement,
of course).

Let (X,wx) be a tropical cycle. A rational function on X is a function ¢ : X - R
that is piecewise affine linear with integer slopes with respect to some polyhedral
structure &, of X.

The divisor of ¢ is the tropical cycle ¢ - X = (Y,w,), with Y the codimension one
skeleton of X, and

o>T o>T

0o (1) = 3 wx ()gn (1)) — or ( 5 wx(a)ua/T) ,

where ¢, ¢, denote the linear part of the function restricted to the corresponding
cell.

A morphism of tropical cycles f: X - Y is a map from |X| to |Y| which is locally
a linear map and respects the underlying lattice, i.e. maps Ax to Ay.

The push-forward of X is defined as follows: By |GKM| Construction 2.24] there
exists a refinement X of the polyhedral structure on X such that {f(c);0 € X'} is
a polyhedral complex. We then set

f+(X) ={f(0);0 € X; f injective on o}

with weights

wx (c').

wrx)(f(a)) = > Ao/ f(Aer)
a’:f(a")=f(o)

It is shown in [GKM, Proposition 2.25] that this yields a tropical cycle and does
not depend on the choice of X.

If f: X - Y is a morphism of tropical cycles and ¢ is a rational function on Y,
then f*p = o f is the pull-back of ¢ via f.

2.1.2. Connectedness and irreducibility.

Definition 2.3. A tropical cycle X is connected in codimension one, if for any two
maximal cells o, 0’ there exists a sequence of maximal cells o = 0y, ...,0, = ¢’, such
that two subsequent cells ¢;, 0;41 intersect in codimension one (It is easy to see that
this does not depend on the actual choice of polyhedral structure).

We call X irreducible, if any (dim X')-dimensional subcycle Y (i.e. a tropical cycle
with Y| ¢ |X]) is an integer multiple of X.

We call X weakly irreducible if X is an integer multiple of an irreducible cycle.
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Remark 2.4. We can measure irreducibility of a tropical cycle X by computing
its weight lattice Qx: This is the lattice of weight functions making it balanced.
It has been shown in [H| that this does not depend on the choice of polyhedral
structure and that (X,w) is irreducible, if and only if the rank of Qx and the
greatest common divisor of all weights w(c) are both 1. Qx can be computed
as the common solutions of all local balancing equations, which in turn can be
interpreted as linear equations in the space of weight functions.

Somewhat contrary to the terminology, connectedness should probably be consid-
ered the “tropicalization” of irreducibility in the algebraic setting. It was shown in
|CP] that the tropicalization of any irreducible variety over an algebraically closed
field is connected in codimension one. This property is also interesting from a com-
putational point of view: Roughly speaking, a connected complex can be computed
by starting with a single maximal cell and recursively computing maximal cells
that are attached to codimension one faces. This often provides a more efficient
approach (see |[BJS™| for an example).

It is not as easy to find an analogue for tropical irreducibility. By [MS], Theorem
6.7.5], the weight lattice of a d-dimensional complex ¥ in R"™ is in bijection to
A,—4(X5). From a purely tropical point of view, irreducibility is a helpful property
if you want to show equality of cycles, as one then only needs to prove one inclusion.

Connectedness in codimension one is clearly a necessary condition for irreducibility.
Together with local irreducibility we obtain a sufficient criterion:

Proposition 2.5 (This is an easy generalization of |R, Lemma 1.2.29]). Let X
be a tropical cycle. If X is locally (weakly) irreducible (i.e. Starx(7) is (weakly)
irreducible for each codimension one face 7) and X is connected in codimension
one, then X is (weakly) irreducible.

2.1.3. Tropical rational curves, moduli spaces and Psi classes. We only present the
basic notations and definitions related to tropical moduli spaces. For more detailed
information, see for example [GKM].

Definition 2.6. An n-marked rational tropical curve is a metric tree with n un-
bounded edges, labeled with numbers {1,...,n}, such that all vertices of the graph
are at least trivalent. We can associate to each such curve C its metric vector
(d(C)ij)i<j € R(2), where d(C);,; is the distance between the unbounded edges
(called leaves) marked ¢ and j determined by the metric on C.

Define ®,, : R" — R(g) a+ (a; +a;)ic;. Then
MP = {d(C); C n-marked curve} c R() /@, (R™)
is the moduli space of n-marked rational tropical curves.

Remark 2.7. The space thp is also known as the space of phylogenetic trees [SS].
It is shown (e.g. in [GKM]) that MGP is a pure (n - 3)-dimensional fan and if we
assign weight 1 to each maximal cone, it is balanced (though |GKM] does not use
the standard lattice, as we will see below). Points in the interior of the same cone
correspond to curves with the same combinatorial type: The combinatorial type of
a curve is its equivalence class modulo homeomorphisms respecting the labelings of
the leaves. I.e. morally we forget the metric on each graph. In particular, maximal
cones correspond to curves where each vertex is exactly trivalent. We call this
particular polyhedral structure on thp the combinatorial subdivision.

The lattice for /\/ltmp under the embedding defined above is generated by the rays
of the fan. These correspond to curves with exactly one bounded edge. Hence each
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such curve defines a partition or split I|I¢ on {1,...,n} by dividing the set of leaves

into those lying on the “same side” of e. We denote the resulting ray by v; (note

that v; = vye). Similarly, given any rational n-marked curve, each bounded edge F;

of length «; induces some split I;|I7,i=1,...d on the leaves. In the moduli space,

this curve is then contained in the cone spanned by the v;, and can be written as
. trop - . . .

Y vy, In particular, M " is a simplicial fan.

There are several reasons, why thp should be considered the tropical analogue of
My, the algebraic space of ratlonal n-marked curves. Perhaps easiest to see is the
fact that there is a one-to-one, dimension-reversing relation between combinatorial
types of tropical rational curves and boundary strata of Mo,n- Each boundary
stratum corresponds to a nodal curve X, to which we can assign a dual graph. This
is a graph which has a vertex for each component of X, a bounded edge for each
node and an unbounded leaf for each marked point.

A much stronger relation was proven in [GM], where it is shown that (for the right
embedding), the tropicalization of My, is thp and the closure of M, in the

toric variety X(thp) is Mo,n (i.e. MO,n isa tmpical compactification).

Definition 2.8. Let n >3 and i € {1,...,n}. The i-th Psi class is the subset v,
of My, consisting of the locus of all n-marked curves such that the i-th leaf is
attached to a vertex that is at least fourvalent.

Remark 2.9. In the combinatorial subdivision of My ,,, ¥; is actually a codimen-
sion one subfan and assigning weight 1 to each maximal cone produces a tropical
variety. Tropical Psi classes were first defined by Mikhalkin in [M2], as a direct
translation of the classical definition. In [KM], the authors define Psi classes as di-
visors of rational functions on My ,, and give a complete combinatorial description
of all products of Psi classes.

2.1.4. Tropical stable maps. To study covers of R in tropical geometry, we will need
a tropical space of stable maps. A precise definition can be found in [GKM] Section
4]. For shortness, we will use their result from Proposition 4.7 as definition and
explain the geometric interpretation behind it afterwards.

Definition 2.10. Let m > 4,r > 1. For any A = (v1,...,v,),v; € R” with Y v; =0
we denote by
MES (R, A) = MR, < B

the space of stable m-pointed maps of degree A.

Remark 2.11. An element of MtrOp(R’“ A) represents an (n+m)-marked abstract
curve C together with a continuous, piecewise integer affine linear (with respect to
the metric on C') map h : C - R". We label the first n leaves by {1,...,n}
and require h to have slope v1,...,v, on them. The last m leaves we denote by
loy---,lm-1. These are contracted to a point under h. Since we want the image
curve to be a tropical curve in R”", the slope on the bounded edges is already
uniquely defined by the condition that the outgoing slopes of h at each vertex have
to add up to 0. This defines the map h up to a translation in R”. The translation
is fixed by the R"-coordinate, which can for example be interpreted as the image of
the first contracted end Iy under & (see figure[l] for an example). There are obvious
evaluation maps ev; : grfyf’ (R",A) > R",i=0,...,m -1, mapping a stable map
to h(l;). |GKM]| Proposition 4.8] shows that these are morphisms. Similarly, there
is a forgetful morphism ft : /\/lt]rop (R",A) - grflp, forgetting the contracted ends
and the map h.



COMBINATORICS OF TROPICAL HURWITZ CYCLES 7

1 a 3 h(lp) =0 B
, > , " h(ly) = (2a,0)

FIGURE 1. On the left the abstract 6-marked curve I' = a-v(q 2 10}
If we pick A = ((-1,0),(-1,0),(2,2),(0,-2)) and fix h(lp) =0 in
R?, we obtain the curve on the right hand side as h(T").

2.2. Hurwitz cycles.

2.2.1. Algebraic Hurwitz cycles. We will only briefly cover algebraic Hurwitz cycles,
as we will be working exclusively on the tropical side. For a more in-depth discussion
of its definition and properties, see for example [BCML|GV].

Let n > 4. We define

H,, = {ern:ioji:O}\{O}.

Let x € H,, and choose distinct points po,...,pn_3-x € P1 N {0,00}. The double
Hurwitz cycle Hy(x) is a k-dimensional cycle in the moduli space of rational n-
marked curves Mo,m It parametrizes curves C that allow covers C 5 P! with the
following properties:

e (' is a smooth connected rational curve.

e 7 has ramification profile z* := (z;;2; > 0) over 0 and ramification profile
x” = (a;;2; < 0) over oo. The corresponding ramification points are the
marked points of C.

e 7 has simple ramification over the p; and at most simple ramification else-
where.

The precise definition [BCM, Section 3] actually involves some moduli spaces. For
the sake of simplicity, we will just cite the following result, that can be taken as a
definition throughout this paper.

Lemma 2.12 (|[BCM|, Lemma 3.2]).
k

11

=1

Hp(x) = st (n piev? ([pt] )

where

e the intersection product is taken in Mom_g_k(m), the space of relative stable
maps to P! with ramification profile x+,x~ over 0 and oo (see also |[GV] for
a definition. In their language, this is the space of maps to a rigid target).

e st: M07n_2_k($) - Mo,n is the morphism forgetting the map and all marked
points but the ramification points over 0 and oo.

2.2.2. Tropical Hurwitz cycles. We already have all ingredients at hand to “tropi-
calize” Lemma [2.12] Note that a point ¢ € R can be considered as the divisor of
the tropical polynomial max{x,q}, so it can be pulled back along a morphism to
R. Also, as M{°" s a subcycle of Mgf?f:(RT, A) = MIP  xR", we can define

0,n+m 0,n+m
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Psi classes on the latter: For ¢ =0,...m — 1, we define
\I/Z' = ’lb(lz) X RT,

where 1(1;) is the Psi class of M{'°P associated to the leaf I; we defined in

0,n+m

Definition 2.13 ([BCM, Definition 6]). Let x € Z™ ~ {0} with Y x; =0,k > 0 and
N :=n-2-k. Choose p := (po,...,pn-1),pi € R. We define the tropical marked
Hurwitz cycle

N-1

P (2, p) = ( [T (wev! <pi>>) MU (R 2)

=0

We then define the tropical Hurwitz cycle
H P (0, p) = £t (H} P (2, p)) € MoP.

Remark 2.14. In [CJM] the authors show that Hurwitz numbers can be consid-
ered as a weighted count of tropical covers of R, which are monodromy graphs of
algebraic covers. In particular, the ramification profile over 0 and co appears on
the tropical side as the slopes of the ends going to +oo. Thus a tropical analogue of
a cover with prescribed ramification profile z is an element of Mgf%’(R, z). Hence
the above definition becomes the exact analogue of Lemma and gives us k-
dimensional tropical cycles ]I:]I?Op(x,p),Hzmp(%p). While it formally depends on
the choice of the p;, two different choices p,p’ lead to rationally equivalent cycles
Hzmp(gc,p) ~ Hzmp(x,p’). The reason for this is that any two points in R are ra-
tionally equivalent and this is compatible with pullbacks and taking intersection
products. In particular, if we choose all p; to be equal (e.g. equal to 0), we obtain
fans, which we denote by H:]IZmp(x) and H}"°P (). They are obviously the recession
fans of ]I:]Ierp(x,pLHerP(%p) for any p.

Example 2.15. Let us now see what kind of object these Hurwitz cycles represent.
As discussed in Remark [2:11] for any fixed x and any n-marked curve C' we obtain
a map h:C — R up to translation. To determine such a map, we have to fix an
orientation of each edge and leaf of C' and an integer slope along this orientation.
In informal terms, the orientation determines how we position an edge or leaf on
R (the “tip” of the arrow points towards +oco). The slope can then be seen as a
stretching factor.

The orientation of each leaf ¢ is chosen so that it “points away” from its vertex if
and only if z; > 0. We define its slope to be |z;]. Any bounded edge e induces a
split I.. Its slope is |z |, where x7, = Y ;; ;. We pick the orientation such that
at each vertex the sum of slopes of incoming edges is the sum of slopes of outgoing
edges (it is not hard to see that such an orientation exists and must be unique).

As we discussed before, we can fix the translation of i by requiring the image of any
of its vertices g to be some « € R. Denote by h(C,q,a) : C - R the corresponding
map. Figure [2| gives two examples of this construction.

Now choose pg,...,pn-1 € R. Then Hzmp(x,p) is (set-theoretically) the set of all
curves C, where we can find vertices qo,...,qn-1 (each vertex ¢ can be picked a
number of times equal to val(q) —2), such that A(C,qo,po)(q:) = p; for all [, i.e. all
curves that allow a cover with fixed images for some of its vertices. E.g. in Figure
we have

o CeHP(z,p=(0,1)), but C ¢ H"P(z,p = (0,0)).
o C' e H"P(z,p=(0,0)), but C" ¢ H"P(z,p = (0,1)).
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3 )
IR eV R Iy ~3
vy q v ¢ "%
v q v1 .

o
N =
w

iy
4
N
R

FIGURE 2. The covers defined by two 5-marked rational curves
after fixing the image of a vertex ¢ to be o = 0. We chose z =
(1,1,1,1,-4) and denoted edge lengths by I, edge slopes by w.

In particular, if we choose p; = 0 for all i, H}*P(z,p) is the set of all curves, such

that n — 2 — k of its vertices have the same image (again, counting higher-valent
vertices v with multiplicity val(v) — 2).

Of course there may be several possible choices of vertices that are compatible with
p. In Hzmp (z,p), we fix a choice by attaching the contracted end I; to the vertex
we wish to be mapped to p;. Le. H:]Izmp(x,p) is the set of all curves C, such that
lo,...,In_1 are attached to vertices and such that in the corresponding cover the
vertex with leaf [; is mapped to p;. For example, in Figure 2| on the left hand side
there are two possible choices of vertices that are compatible with p = (0,1). Hence
there are two preimages in I[:]IZTOP(:C,])) corresponding to attaching the contracted
leaves lg, [l either to ¢ and vy or to vs and gq.

Remark 2.16. Let us see how the weight of a cell of H}P(z) is computed if
we choose the p; to be generic, i.e. pairwise different. Let 7 be a maximal cell of
H,"P(z) and C' the curve corresponding to an interior point of 7. Then 7 must lie
szp and for a generic choice of C there is a
unique choice of vertices qo, . ..,qny-1 compatible with the p; (which fixes a cover).
Marking these vertices accordingly, we can consider o as a cone in M{ (R, z). We
thus obtain well-defined and linear evaluation maps ev; : 0 - R, mappfng each curve
in o to the image of the vertex ¢;. Assume o is spanned by the rays vr,,...,vr, 4,
then we can write ev; in the coordinates of these rays as (ai,...,a%_3), where
ai = evi(vr,). It is shown in [BCM, Lemma 4.4] that the weight of 7 is then the
greatest common divisor of the maximal minors of the matrix (a} ), ;.

in the interior of a maximal cell o of M

In the case that all p; are 0, we use the fact that H,"°"(x,p) is the recession fan of
the Hurwitz cycle obtained for a generic choice of p;. By its definition this means
that the total weight of a cell 7 is obtained as
W(T) = Z Zga,qm
TCO q4

. t o .
where the first sum runs over all maximal cones o of M," containing 7, the second

sum runs over all vertex choices qq,...qn-1 that are compatible in o with a generic
choice of p; and g, 4, is the gcd we obtained in the previous construction. In fact,
one can easily see that the same method can be used for computing weights if only
some of the p; are equal.

2.3. Computation. If we approach this naively, we already have everything at
hand to compute at least marked Hurwitz cycles with a-tint: [H| tells us how to
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compute a product of Psi classes (without having to compute the ambient moduli
space, which will be huge!) and then we only have to compute divisors of tropical
polynomials on this product. However, this only works for small k, i.e. large codi-
mension. Otherwise, the Psi class product will already be too large to make this
computation feasible.

Also, we will mostly be interested in unmarked Hurwitz cycles and computing push-
forwards is, computationally speaking, not desirable. One has to produce a very
fine polyhedral structure to make sure that the images of the cones form a fan.
The following approach to compute unmarked cycles directly proves to be more
suitable:

Assume we want to compute Hzmp(x,p = (po,...,pn-1)) for z € Z™. Fix a combi-
natorial type C of a threevalent rational n-marked curve, i.e. a maximal cone o of
M°P. For each choice of distinct vertices qo, . ..,gn-1 of C', we obtain linear eval-

uation maps on o, by considering it as a cone of stable maps, where the additional
marked ends are attached to the g;. We can now refine o by intersecting it with
the fan F;, whose maximal cones are

Fr={zeo:evi(z)2pi}, F; ={xzeo:evi(x) <p;}.

Iterating over all possible choices of g;, this will finally give us a subdivision o’ of o.
The part of H}"P(x,p) that lives in o is now a subcomplex of the k-skeleton of o:
It consists of all k-dimensional cells T of o’ such that there exists a choice of vertices
q; with the property that the corresponding evaluation maps fulfill ev;(x) = p; for
all x € 7. The weight of such a 7 can then be computed using the method described
in Remark

The full Hurwitz cycle can now be computed by iterating over all maximal cones
of Mgr)flp. This gives a feasible algorithm at least for n < 8 - after that, the moduli
space itself becomes too large.

Example 2.17. We want to compute (part of) a Hurwitz cycle: We choose k =
2,z = (2,2,6,-5,-4,-1) and (po,p1) = (0,1). Since the complete cycle would
be rather large and difficult to visualize (3755 maximal cells living in R?), we
only consider the part of Hi°P(x,p) lying in the three-dimensional cone of Mf)fgp

corresponding to the combinatorial type

C= U{LQ} + U{4,5,6} + U{5,6}~

Figure |3 shows the corresponding cover, together with the part of the Hurwitz
cycle we computed using the method described above. Each cell of the cycle is
obtained by choosing specific vertices of C' for the additional marked points py and
p1. The correspondence between these choices and the actual cells, together with
the corresponding equation, is laid out in Figure While there are of course in
theory 4 -4 = 16 possible choices, not all of them produce a cell: We only display
choices of distinct vertices, such that the image of the vertex for p; = 1 is larger
than the image of the vertex for py = 0. This gives (3) = 6 valid choices.

3. PROPERTIES OF HURWITZ CYCLES

In the first two parts of this section we want to study whether tropical Hurwitz
cycles are irreducible. For this purpose we will first prove that all (marked and
unmarked) Hurwitz cycles are connected in codimension one. We will go on to
show that for a generic choice of p; all marked cycles Hzr()p(a:,p) are locally and
globally a multiple of an irreducible cycle. Finally we will see that H,"*"(x,p) is in
general not irreducible.
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5y 1083

FiGURE 3. The cube represents the three-dimensional cone in
Mgfgp that corresponds to the combinatorial type vy oy + V{4 5.6} +
v(5,6) drawn on the bottom left part of the picture. We denote the
length of the interior edges by «, 8,7 as indicated. The blue cells
represent the Hurwitz cycle living in this cone. The bottom right
figure indicates the corresponding cover. The parameters we chose
here are k =2,z =(2,2,6,-5,-4,-1) and (po,p1) = (0,1).

. . . . t .
3.1. Connectedness in codimension one. It is well known that Morfbp is con-

nected in codimension one. In this particular case, the property has a very nice
combinatorial description: Maximal cones correspond to rational curves with n -3
bounded edges. A codimension one face of a maximal cone is attained by shrinking
any of these edges to length 0, thus obtaining a single four-valent vertex. This
vertex can then be “drawn apart” or resolved in three different ways, thus moving
into a maximal cone again. Saying that Mf)fzp is connected in codimension one
means that we can transform any three-valent curve into another by alternatingly

contracting edges and resolving four-valent vertices.

A similar correspondence holds for Hurwitz covers. An element of a maximal cone
of H}P(z,p) € My ¥ (R,x) can be considered as an n-marked rational curve C
with N = n—2-k additional leaves attached to vertices of C. By abuse of notation,
throughout this chapter we will also label these additional leaves by po,...,pN-1.
By the valence of a vertex of an element of Hzmp(x, p), we will mean the valence of
the vertex in the underlying n-marked curve.

For a generic choice of p, maximal cells of ]I:]I}“:Op(m, p) will also correspond to curves
with n — 3 bounded edges and codimension one cells are obtained by shrinking an
edge. Hence the problem of connectedness can be formulated in the same manner
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FIGURE 4. Different choices of vertices yield different cells of Hj P (z, p).
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as for Mgfflp. However, the requirement that the contracted leaves be mapped to
specific points excludes certain combinatorial “moves”, as we will shortly see.

Also note that the problem of connectedness does not really change if we allow
non-generic points: The combinatorial problem remains essentially the same, we
just allow some edge lengths to be 0. Hence we will assume throughout this section
that Po<p1 <+ <PN-1-

We will first show connectedness in the case k = 1. In this case the Hurwitz cycle
is a tropical curve, so saying that H:]Iir‘)p(x,p) is connected in codimension one is
the same as requiring that it is path-connected. So we will prove that for each two
vertices q,q' of H{"P(x,p) there exists a sequence of edges connecting them.

We will prove this by induction on n, the length of x. For the case n =5 we will
simply go through all possible cases explicitly. For n > 5, we will first show that
any two covers of a special type, called chain covers, are connected. Having shown
this, we will then introduce a construction that allows us to connect any cover to a
chain cover.

The general case is then an easy corollary, since we mark fewer vertices in higher-
dimensional Hurwitz cycles, thus obtaining more degrees of freedom.

Remark 3.1. Before we start, we want to discuss why this problem is so difficult.
Since /\/l(t)r%’ is connected in codimension one, one would expect to be able to move
from one combinatorial type to another without problems. However, the interme-
diate types need not be valid covers: A vertex of Htlmp(a:, p) can be considered
as a point in a codimension one cone of Mg, ie. a curve with one four-valent
vertex and only trivalent vertices besides, with an additional marked end attached
to every vertex. Moving along an edge of H;mp (x,p) means moving an edge or leaf
of that codimension one type along a bounded edge. However, this cannot be done
in an arbitrary manner, since not all of these movements will produce valid covers
(see figure [o|for an example). Note that the p; already fix the length of all bounded
edges of a vertex curve in I[t]Iimp(m,p) uniquely. So, we will usually identify each

vertex of H{"P(x,p) with the combinatorial type of the corresponding curve.

1p1:1 p0:03 1p1:1 p0203
<—c<5 — 5>—>¢<
27" length =3 4 2 4

FIGURE 5. The curve on the left is a vertex of H{™P(1,1, 1,1, -4).
In Mg,z it corresponds to a ray spanning a cone with the curve
on the right. However, the right curve is not an element of
H"°P(1,1,1,1,-4) (for any edge length), since the edge direction
is not compatible with the vertex ordering.

Recall that the weight or slope of an edge e is @ := |Y;c; xi|, where I is the split
on [n] induced by e. The orientation of e is chosen as in Example e “points
towards I” if and only if ¥ ,c; ; > 0.

Now, when moving some leaf along a bounded edge, that edge might change direc-
tion. But the direction of the edges is dictated by the order of the p;, so this is
not a valid move. One can easily see the following (see figure |§| for an illustration):
Moving an edge/leaf i to the other side of a bounded edge e changes the direction
of that edge if and only if one of them is incoming and one outgoing (recall that we
consider leaves as incoming if they have negative weight) and |z;| > z.. Note that,
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even if the direction of an edge does not change, moving an edge might be illegal
(see the last diagram in figure @, if the resulting edge configuration does not agree
with the order on the p;.

7 7
3 € > if |z;[>@e . € ¥
—
7 7
e T S
—

pa=2e Py
\0—6>0 — .—6>/P2 <ps#
pr=1 p3=3 D1 D3

FIGURE 6. Invalid moves on a Hurwitz cover: In the first two
cases, when moving the leaf/edge i along the bounded edge e, the
direction of e changes. In the third case the edge direction of e
remains the same, but the direction is not compatible with the
order of the p;.

Definition 3.2. A wvertex type cover is any cover corresponding to a vertex of
HY"P (2, p).

Lemma 3.3. Forn =5, the cycle H™P(x,p) is connected in codimension one for
any p and x.

Proof. Let q,q" be two vertices of Htlmp(x, p) and C,C" the corresponding rational
curves. Both curves consist of a single bounded edge connecting contracted ends
po < p1 with three leaves on one side and two on the other. We distinguish different
cases, depending on how many leaves have to switch sides to go from C to C'.

Assume first that both curves only differ by the placement of one leaf, i.e. we want
to move one leaf i from the four-valent vertex in C' to the other side of the bounded
edge. We can assume without restriction that the four-valent vertex in C' is at py.
Assume that moving i to the other side is an invalid move. Then the direction of
the bounded edge would be inverted in C’, which is a contradiction to the fact that
Do <Pp1-

Now assume that both curves differ by an exchange of two leaves. Again we assume
that the four-valent vertex in C' (and hence also in C") is at pg. Denote the leaves
in C' at pp by 4,a,b and the remaining two at p; by j,c¢ and assume that C’ is
obtained by exchanging 7 and j. If we can move either ¢ in C or j in C’, then we
are in the case where only one leaf needs to be moved, which we already studied.
So assume that 7 and j cannot be moved in C' and C’, respectively. By remark
[3:1] this means that z; < -z, < 0, where x. is the weight of the bounded edge in
C. Furthermore, x; + x4 + Tp = —T¢, S0 T4 + p > 0. We assume without restriction
that xz, > 0. Hence we can move a along the bounded edge to obtain a valid cover
C1, whose four-valent vertex is at p;. Since we assumed that we cannot move j in
C’, we must have z; < 0 (it must be an incoming edge). This implies that we can
move it to the left in C; to obtain a cover C5. We now have 4,j,b at py and ¢, a
at p;. We want to show that we can move i to the other side. Assume this is not
possible. Then —z; > x!,, where x! is the weight of the bounded edge in Cy. But
xl, = —x; —xj — xp. This implies 0> —xz; — 3. Again, since j cannot be moved in C’
we have —x; > x, + xp. Finally, we obtain that 0 > x, + 2, — 2 = x4 > 0, which is



COMBINATORICS OF TROPICAL HURWITZ CYCLES 15

a contradiction. Thus we can move ¢ to the right side to obtain a cover C3. This
cover now only differs from C’ by the placement of leaf a, so we are again in the
first case (see figure [7] for an illustration).

'Ep p ] ‘:p p Ep p
(2 0 '1<i“? Z 001.1<é % 0 '1<Z

C Co
7 ~po P a J~po p1_ g
~ b>’73"<g ~ ‘g>’7<c

FIGURE 7. Connecting two curves differing by an exchange of
leaves. The leaf we moved in each step is marked by a red line.

Now assume we have to move three leaves (see figure . That means we have to
exchange two leaves 4, j from the four-valent vertex in C' (again assume it is at po)
for one leaf k at p;. Assume we cannot move ¢ in C. In particular, z; < 0. But that
means we can move ¢ in C’ to obtain a cover C7. This cover differs from C by the
exchange of j and k, so we already know they are connected.

i D Pk kP P1_-i
e S

C

FIGURE 8. Two vertex types differing by a movement of three
leaves. Depending on the direction of i, we can move it either in

Corin C'.

Finally, assume that four leaves have to switch sides, i.e. we exchange two leaves i, j
at the four-valent at po for the two leaves k,[ at p;. Assume we can move neither ¢
nor j. This means that z;,z; < 0. But then z; +z; <0 as well, so the edge direction
would be inverted in C’, which is a contradiction. Hence we can move ¢ or j and
reduced the problem to the case where only three leaves need to be moved.

It is easy to see that these are all possible cases. In particular, it is impossible to
let all five leaves switch sides, since this would automatically invert the direction
of the bounded edge. O

As mentioned above, we want to show that for n > 5 we can connect each vertex
type to a vertex corresponding to a standard cover. Let us define this:

Definition 3.4. Let x € H,,. We define an order <, on [n] by:

i<z ji<= z;<zjor (z;=z; and i < j).
A chain cover for x is a vertex type cover with the additional property that the
vertex marked with p; is connected to the vertex marked with p;, if and only if
li—j| =1 (ie. the p; are arranged as a single chain in order of their size). Fix an
s€{0,...,n—-4}. The standard cover for x at ps is the unique chain cover, where
the leaves are attached to the p; according to their size (defined by <) and ps
is at the four-valent vertex. More precisely: If leaf i is attached to py and leaf j
is attached to p;, then i <, j <= pi < p; (See figure |§| for an example of this
construction).

Lemma 3.5. Fach standard cover is a valid Hurwitz cover.
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Ty = -3 Po P1 b2 p3 T

>’—'P—>T”< T2

Te = -3 T
Is = -1 Tr3 = 1

FIGURE 9. The standard cover for z = (3,2,1,-3,-1,-3,1) at ps

Proof. We have to show that the edge connecting p; and p;,1 points towards pj1
for all j. Note that the weight and direction of an edge only depend on the split
defined by it.

We will say that a leaf lies behind py, if it is attached to some pys, k' > k. Denote
the leaves lying behind pj,1 by 41,...,4. Their weights are by construction larger
than or equal to all weights of remaining leaves. Considering that the sum over all
leaves is 0, this implies that le=1 x;, >0 (if it was 0, then all z; would have to be
0). Hence the bounded edge points towards p;.1. O

We will also need another construction in our proofs:

Definition 3.6. Let C be a vertex type cover and e any bounded edge in C' con-
necting the contracted ends p and ¢q. Removing e, we obtain two path-connected
components. For any contracted end r, we write C.(r) for the component contain-
ing 7.

Now assume C,(p) contains the four-valent vertex and at least one other bounded
edge. The split cover at e is a cover C' obtained in the following way: Remove the
edge e and keep only C.(p). Then attach a leaf to p whose weight is the original
weight of e (or its negative, if e pointed towards p). This is obviously a vertex type
cover for some ' = (zf,...,2,,), where m < n (see figure [10| for an example). We
denote the leaf replacing e by [, and call it the splitting leaf.

1 6 7
2 le p3 pPs _ 8
~r
3 P4 9
4 5
5 Ps 5
6 le p3 6
9 ~ 9
7 7
8 Ps > 8

FIGURE 10. Two Hurwitz covers for n = 9. In each case the split
cover at the edge marked by e is a cover for n = 6 (the labels at
the leaves are just indices in this case, not weights).

We now want to see that all chain covers are connected:

Lemma 3.7. Let x € H,, and let po,...,pn-a € R with p;j <pje1 for all j. Then all
chain covers for x are connected to each other.
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Proof. We will show that all chain covers are connected to a standard cover at some
ps. We prove this by induction on n. For n =5, all covers are chain covers and our
claim follows from lemma

So let n > 5 and C be any chain cover. We can assume without restriction that
the vertices at py and p,_4 are trivalent (if they are not, one can easily see that at
least one leaf can be moved away). Take any bounded edge e connecting some p;
and pj,1. Suppose there is a leaf k at p; and a leaf [ at p;,1, such that k£ >, [. This
means that exchanging k£ and [ still gives a valid cover. We can assume without
restriction that j > 0, i.e. e is not the first edge (if j = 0, we can use a similar
argument using a split cover at the edge connecting p,_5 and pp_4 ).

Let C' be the split cover at the edge connecting py and p;. This is a cover on n—1
leaves. By induction we know that C’ is connected to the cover which only differs
from C’ by exchanging k and [. Let C” be any vertex type cover occurring along
that path. Since pg is smaller than all p;, we can lift C" to a cover on n leaves:
Simply re-attach the splitting leaf to py. (see figure for an illustration of the
split-and-lift construction in a different case).

Hence we obtain a path between C' and and the cover C, where k and [ have been
exchanged. We can apply this procedure iteratively to sort all leaves to obtain a
standard cover at some p;.

Finally, note that all standard covers are connected: One can always move the
smallest leaf at the four-valent vertex to the left (except of course at py) and the
largest leaf to the right. This way the four-valent vertex can be placed at any
contracted end. (]

Lemma 3.8. Let x € H,,. Then ]I:]I'imp(:v,p) s connected in codimension one.

Proof. We prove this by induction on n. The case n = 5 was already covered in
lemma Also note that for n = 4 the Hurwitz cycle H{"*P(z,p) is by definition
equal to a Psi class and hence a fan curve.

So assume n > 5 and let ¢ be a vertex of H{*P(z,p) with corresponding rational
curve C'. We want to show that it is connected to the standard cover on pg. First,
we prove the following technical statement:

1) Let e be a bounded edge connecting po and some pj, such that Ce.(p;) contains
the four-valent vertex. Let C' be the split cover at e with degree x' = (z7,...,2],).
Let P ={p},...,pl,} be the set of contracted ends in C' and assume p| < ---<pl,.
Then C' is connected to the cover C, obtained in the following way: First, remove
all leaves and contracted ends contained in C' from C together with any bounded
edges that are attached to them. Then attach all p € P as an ordered chain to po,
i.e. pi to po, ph topl,... etc. Assume the leaves in C' have weights x;, <---<x; .
Attach leaf iy to po, iz to py and so on (see figure[11)).

We know by induction that C’ is connected to the standard cover for x’ at any
p € P. Choose p, such that the standard cover at p has the splitting leaf attached
to the four-valent vertex. Since the splitting leaf has negative weight, we can move
it to the smallest contracted end. This gives us a chain cover Cs connected to C”.
As in the proof of lemma [3.7] we can lift the connecting path to a path of covers
with degree = by attaching pg to the splitting leaf. Denote the lift of Cy by C3.
This cover has its four-valent vertex at p}. Denote by k the smallest leaf at p| with
respect to <, and let w be the weight of the edge connecting py and pj. By definition
w = Y,e5 Ti, where T is the set of all leaves contained in C’. By construction, k& is
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F1GURE 11. The branch sorting construction:

) Take the split cover C” at e.

) Move that split cover to a standard cover using induction.
) Move the splitting leaf to the smallest p;.

) Consider the lift of this cover.

5) Move the smallest leaf at p} = pa to py to obtain C”.

(1
(2
(3
(4
(

the minimal element of I with respect to <. Hence w > k and we can move k to pg
to obtain C"'.

We can now use this to prove the following:

2) If po has only one bounded edge attached to it, then C is connected to the standard
cover at pg.

We can assume without restriction that pg is not at the four-valent vertex (other-
wise, we can move at least one leaf). We now apply the construction described in
1) to the single bounded edge at py. This gives us a chain cover for z, which by
lemma [3.7 is connected to the standard cover.

It remains to prove the following statement, which implies our theorem:

3) C is always connected to a cover C', in which py has only one bounded edge
attached to it.

As any vertex is at most four-valent, py can have at most four bounded edges
attached to it. First, assume that only two bounded edges e, e’ are attached to pg
and their other vertices are attached to contracted ends p. < per. If pg is four-valent,
we can move €’ along e to obtain a valid cover in which py has a single bounded
edge attached to it. If the four-valent vertex lies behind one of the edges, say e, we
apply the construction of 1) to this edge.