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Intersection Theory on Linear Subvarieties of Toric Varieties

Andreas Gross

We give a complete description of the cohomology ring A∗(Z) of a compact-
ification of a linear subvariety Z of a torus in a smooth toric variety whose
fan Σ is supported on the tropicalization of Z. It turns out that cocycles on Z
canonically correspond to Minkowski weights on Σ and that the cup product is
described by the intersection product on the tropical matroid variety Trop(Z).

1 Introduction

In [FS97], Fulton and Sturmfels show that the cohomology ring of a complete toric variety
XΣ is isomorphic to the ring of Minkowski weights on the corresponding fan Σ. The
product of two Minkowski weights was described by the so-called "fan displacement rule".
Later it was shown in [Kat12] and [Rau08] that the product described by this rule is equal
to the intersection product in tropical geometry introduced in [AR10]. Here, we prove
an analogous result about completions of linear subvarieties of tori in toric varieties. Let
T be a torus over an algebraically closed field K with constant valuation, and let M be
its character lattice. By linear subvarieties of T we mean those varieties which are cut
out by an ideal I E K[M] which is linear in K[Zn] in the canonical sense after choosing
an appropriate isomorphism K[M] ∼= K[Zn]. We compactify Z in a smooth toric variety
X = XΣ whose fan has support |Σ| = |Trop(Z)|. This restriction on Σ is made to ensure
that Z intersects the torus orbits of X properly. Our main theorem states that in this
situation the cohomology ring A∗(Z) can be described by the group M∗(Σ) of Minkowski
weights on Σ. Furthermore, the multiplication is induced by the intersection product on
the tropical matroid variety Trop(Z), which has been introduced in [FR13] and [Sha13].

Theorem 1.1. Let Z be a linear subvariety of the torus T and let Σ be a unimodular fan with
|Σ| = |Trop(Z)|. Then there is a canonical ring isomorphism IZ : A∗(Z) → M∗(Σ), where the
ring structure on M∗(Σ) is induced by the tropical intersection product on Trop(Z).

The proof of this theorem uses algebraic as well as tropical intersection theory. We
begin Section 2 by reviewing the basic constructions of the tropical theory. Afterwards,
we look at Minkowski weights in greater detail. The main result of this section is of
technical nature, but will be very useful in the proof of Theorem 1.1. For its statement

let Σ be a complete unimodular fan in Rn which has a subfan Σ̃ ⊆ Σ that defines a
matroid variety A after assigning weight 1 to all its maximal cones. Writing Z∗(Rn) and
Z∗(A) for the graded rings of tropical fan cycles in Rn and A, respectively, we get a map
Z∗(Rn) → Z∗(A) which assigns to C ∈ Z∗(Rn) the intersection product C · A in Rn. Using
piecewise polynomials, it easily follows from the results of [Fra13] that this map is a ring
epimorphism. But as we are interested in Minkowski weights, the question arises if this

still holds if we replace Z∗(Rn) by M∗(Σ) and Z∗(A) by M∗(Σ̃). Theorem 2.2 provides
an affirmative answer to this. As a direct consequence we obtain a new proof of the fact
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that M∗(Σ̃) is a subring of Z∗(A). To our knowledge, this result has first been proven
in [Sha13] using tropical modifications, whereas our proof uses the interplay between
intersection theory on toric varieties and tropical intersection theory.

In Section 3 we start with the examination of compactifications of linear subvarieties of
a torus T. Given a linear subvariety Z ⊆ T, we will only consider compactifications in
smooth toric varieties such that Z is proper and intersects all torus orbits properly. As
shown in [Gub13], this happens if and only if the fan Σ corresponding to the toric variety

has a subfan Σ̃ which is supported on Trop(Z). Note that in contrast to the statement of
Theorem 1.1, this condition allows fans with support strictly larger than that of Trop(Z).
This gives us more flexibility in the choice of the ambient toric variety: in particular, we
can choose it to be complete. However, the closure of Z does not meet the torus orbits

corresponding to cones in Σ that are not contained in Σ̃, so Z only depends on Σ̃. Hence
allowing larger fans does not make the statement more general.

Now given Σ, we will show that the orbit structure XΣ =
⋃

σ∈Σ O(σ) induces a strati-
fication Z =

⋃
σ∈Σ Z ∩ O(σ) and that each stratum Z ∩ O(σ) is a linear subvariety of the

torus O(σ). We use this stratification to define the morphism IZ: a cocycle c ∈ Ak(Z)
is mapped to the Minkowski weight σ 7→ deg(c ∩ [Z ∩ V(σ)]), where V(σ) denotes the
closure of the torus orbit O(σ). The morphism IZ is analogous to the one constructed
by Fulton and Sturmfels, and, in fact, we recover their isomorphism if we set Z = T.
The injectivity of IZ will follow from the fact that the Kronecker duality homomorphism
DZ : Ak(Z) → Hom(Ak(Z),Z), which assigns to c ∈ Ak(Z) the morphism α 7→ deg(c ∩ α),
is an isomorphism. We show this by proving that Z is what Totaro defines to be a linear
variety in [Tot], a type of variety for which he proves that the Kronecker map always is
an isomorphism. To prove the surjectivity of IZ, we embed XΣ in a complete toric variety
X∆ and show that the pull-back map A∗(X∆) → A∗(Z) corresponds to intersection with
the tropical cycle Trop(Z) on the level of Minkowski weights. Then the statement follows
from the fact that the resulting map M∗(∆) → M∗(Σ) is onto, which was our main result
of Section 2.

I would like to thank Andreas Gathmann for many helpful discussions and comments.

2 Tropical Intersection Theory

The tropical objects occurring in this paper are tropical (fan) cycles in the sense of [AR10]
on the one hand and Minkowski weights on the other. Both objects will always live in the
real vector space NR = N ⊗Z R for a lattice N. Tropical cycles are equivalence classes of
certain weighted fans, that is pure-dimensional fans with weights on their top-dimensional
cones, where two weighted fans are called equivalent if and only if they have a common
refinement which respects the weights. Note that when speaking of a "cone" we actually
mean a rational polyhedral cone. The equivalence classes we consider are exactly those
of tropical fans, which are those weighted fans satisfying the so-called balancing condition.
To explain the balancing condition we first need the concept of lattice normal vectors.
Suppose that τ is a codimension one face of a cone σ. If we write Nδ = N ∩ Lin(δ) for
a cone δ ⊆ NR, then Nσ/Nτ is a one-dimensional lattice. The lattice normal vector uσ,τ of
σ with respect to τ is the unique generator of Nσ/Nτ which is contained in the image of
σ in (Nσ/Nτ)R = Lin(σ)/ Lin(τ). Now if A = (Σ, ω) is a weighted fan with underlying

fan Σ and weight function ω, and for k ∈ N we denote by Σ(k) the codimension k cones of
Σ (that is the cones of dimension dim(Σ)− k), then A satisfies the balancing condition if
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and only if we have

∑
σ:τ≤σ∈Σ(0)

ω(σ)uσ,τ = 0 in NR/ Lin(τ)

for every τ ∈ Σ(1). The set of all tropical cycles of given codimension k in NR can be given
the structure of an Abelian group Zk(NR) ([AR10, Lemma 2.14]).

If Σ is a fan, weighted fan or tropical cycle, then we can define its support |Σ|. For a
fan this is just the union of all its cones. For a weighted fan it is the union of all maximal
cones with nonzero weight. Finally, if Σ is a tropical cycle, then its support is defined to
be the support of any representative (this is easily seen to be well-defined). In any of these

cases we can define the subgroup Zk(Σ) of Zk+codim(Σ,NR)(NR) consisting only of those
cycles whose support is contained in that of Σ.

An important operation on fans is that of taking stars. For any cone σ ⊆ NR let N(σ) =
N/Nσ. If σ is a cone of a fan Σ, we define the star of Σ at σ to be the fan StarΣ(σ) in
N(σ)R having as cones the images of the cones of Σ containing σ under the projection
map NR → N(σ)R. In case there are weights defined on Σ we equip StarΣ(σ) with the
induced weights. As the projection respects lattice normal vectors, the star will be tropical
if Σ is.

Minkowski weights differ from cycles in that they do not allow refinements. To be more
precise, given a pure-dimensional fan Σ, the set of codimension k Minkowski weights

Mk(Σ) is defined as the set of weight functions c : Σ(k) → Z making the codimension k
skeleton of Σ a tropical fan. This is easily seen to be a subgroup of the group of functions

Σ(k) → Z. It is also evident that there is a canonical inclusion map Mk(Σ) →֒ Zk(Σ), c 7→
[c].

A particularly nice class of tropical cycles are matroid varieties. For every loopfree
matroid M on E = {1, . . . , n} there is a pure-dimensional fan B(M) in Rn = Zn ⊗Z R. Its
cones are of the form

〈F〉 = cone{vF1
, . . . , vFk−1

, vE,−vE},

where F = {∅ ( F1 ( · · · ( Fk = E} is a chain of flats in M, and vF = −∑ f∈F e f

(e1, . . . , en being the standard basis of Rn). Assigning weight 1 to all maximal cones of
B(M) we obtain a tropical fan. These fans always have lineality space Lin{vE}. As we
also want to consider fans without lineality space we define a matroidal fan to be any
tropical fan isomorphic to B(M)/ Lin{vE} for some loopfree matroid M. Here, by an
isomorphism of two fans A ⊆ NR and B ⊆ KR we mean a linear map NR → KR which
maps |A| bijectively onto |B| in a way compatible with the weights and which is induced
by a lattice morphism N → K that maps the lattice NA = Lin |A| ∩ N isomorphically onto
KB = Lin |B| ∩ K. Tropical matroid varieties are then defined to be exactly those tropical
cycles which are associated to matroidal fans.

Taking for the matroid M the uniform matroid of rank n on n elements yields a complete
fan B(M). In particular, Rn, or more generally NR for any lattice N, equipped with the
trivial weight 1, is a matroid variety.

The nice thing about matroid varieties is that they allow an intersection product. That is,
for each matroid variety B, the graded Abelian group Z∗(B) =

⊕
k∈N Zk(B) can be given

the structure of a graded commutative ring with unity B, which also has the property that
the support of a product C · D is contained in |C| ∩ |D| ([FR13, Thm. 4.5], [Sha13, Prop.
3.13]).

Intersection products on matroid varieties also respect intersections with piecewise poly-
nomials, which are somewhat the tropical analogues of equivariant cocycles on toric
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varieties. A piecewise polynomial of degree k on a cycle A is a continuous function
ϕ : |A| → R for which there exists a fan structure Σ on |A| such that ϕ is given by a
homogeneous polynomial of degree k with integer coefficients on every cone of Σ. The

Abelian group of piecewise polynomials of degree k on A is denoted by PPk(A). Allowing

also polynomials with mixed degrees we obtain a graded ring PP∗(A) =
⊕

k∈N PPk(A). In
[Fra13, Prop. 2.24] it is shown that Z∗(A) can be given the structure of a graded PP∗(A)-
module, making Z∗(A) a PP∗(A)-algebra in case A is a matroid variety. Given two cycles
A, B ∈ Z∗(NR) with |A| ⊆ |B|, there is a natural restriction morphism PP∗(B) → PP∗(A).
This induces a PP∗(B)-module structure on Z∗(A) and with this structure, the inclusion
Z∗(A) → Z∗(B) (note that this is a graded morphism of degree codim(A, B)) is a mor-
phism of PP∗(B)-modules.

Lemma 2.1. Let A, B ∈ Z∗(NR) be matroid varieties with |A| ⊆ |B|, then the map

ϕ : Z∗(B) → Z∗(A) : C 7→ C · A,

which maps a cycle C to its intersection product in Z∗(B) with A, is a surjective PP∗(B)-algebra
homomorphism.

Proof. The fact that ϕ is a morphism of PP∗(B)-modules follows directly from the compat-
ibility properties stated above. To prove that ϕ also respects the ring structures we first
note that the structure maps PP∗(A) → Z∗(A) and PP∗(B) → Z∗(B) are surjective by
[Fra13, Remark 3.2]. Also, as a direct consequence of [Fra13, Prop. 2.8], the restriction
morphism PP∗(B) → PP∗(A) is surjective. This shows that both, Z∗(A) and Z∗(B) are ho-
momorphic images of PP∗(B). Together with the fact that the unity B of Z∗(B) is mapped
A, the unity of Z∗(A), this proves the lemma.

The following Theorem is an adaption of Lemma 2.1 to the world of Minkowski weights.
It suffices to look at the case where B = NR and A is a matroid variety contained in NR.
To make a sensible statement about Minkowski weights, we have to fix a fan structure on
NR that respects A. More precisely, we treat complete unimodular fans Σ having a subfan

Σ̃ with support equal to |A|. Now we can replace Z∗(B) by M∗(Σ) and Z∗(A) by M∗(Σ̃)
in the above Lemma and are left with the question why intersection with A induces a map

M∗(Σ) → M∗(Σ̃), that is why the intersection of two cycles represented by Minkowski
weights on Σ is again represented by a Minkowski weight on Σ. But this is a well-known
statement: Fulton and Sturmfels have shown in [FS97] that if Σ is a complete fan in NR,
there is a natural ring structure on M∗(Σ), the product being described by the so-called
"fan displacement rule", and later it was shown in [Kat12, Thm. 4.4] and [Rau08, Thm.
1.9] that the fan displacement rule on M∗(Σ) is induced by the intersection product on
Z∗(NR).

Theorem 2.2. Let A ∈ Z∗(NR) be a matroid variety and let Σ be a complete unimodular fan

having a subfan Σ̃ ⊆ Σ with |Σ̃| = |A|. Then the map

M∗(Σ) → M∗(Σ̃), c 7→ c · A

is surjective.

Proof. To prove surjectivity we use methods from algebraic geometry, especially toric ge-
ometry and intersection theory. After dividing by the lineality space of Σ we can assume
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that Σ consists of strongly convex cones. In this way, we ensure that the toric variety XΣ

(over the complex numbers say) associated to Σ has the correct dimension. Let c ∈ Mk(Σ̃).
By Lemma 2.1 there is a cycle B ∈ Zk(NR) such that [c] = B · A (remember that [c] denotes
the tropical cycle associated to c). There is a complete fan ∆ refining Σ, such that B = [b]
for a Minkowski weight b ∈ Mk(∆). Let π : X∆ → XΣ be the toric morphism induced
by the identity on N, and let s be the Minkowski weight on Σ with [s] = A. Identify-
ing Minkowski weights and cocycles on complete toric varieties, π induces a morphism
π∗ : Mk(Σ) → Mk(∆). By applying the projection formula, one easily sees that π∗ is noth-
ing but the refinement of Minkowski weights. Then the equation [b] · A = [c] translates
into

b ∪ π∗(s) = π∗(c), (1)

where we write the intersection product as "cup"-product to emphasize that we think of
Minkowski weights as cocycles on toric varieties. Since XΣ is smooth and π is proper there
is the Gysin push-forward π∗ : Mk(∆) → Mk(Σ) (see [Ful98, pp. 328-329]). Applying it to
Equation 1 we obtain

π∗(b) ∪ s = π∗(b ∪ π∗(s)) = π∗π∗(c),

where the first equality follows from [FM81, (G4) (i), p. 26]. By [FM81, (G3) (ii), p. 26]
(with g = id and θ = [π]) we have π∗π∗(c) = π∗[π] ∪ c. So if we show that π∗[π] = 1 we
get π∗(b) · A = π∗(b) ∪ s = c and are done. We have

π∗[π] ∩ [XΣ] = π∗([π] ∩ [XΣ])

by the definition of the push-forward of bivariant classes. By [Ful98, Ex. 17.4.3 (c)] and
[Ful98, Cor. 8.1.3] we have [π] ∩ [XΣ] = [X∆]. Hence

π∗[π] ∩ [XΣ] = π∗[X∆] = [XΣ]

and we are done by Poincaré duality ([Ful98, Cor. 17.4]).

Now we can easily show that the tropical intersection product on a matroid variety
induces a ring structure on the group of Minkowski weights on any unimodular fan with
the same support. This statement also follows from [Sha13, Prop. 3.13], where it has been
proved using the purely tropical method of tropical modifications.

Corollary 2.3. Let ∆ be a pure-dimensional unimodular fan in NR which defines a matroid variety
A if we assign weight 1 to all of its maximal cones. Then the group of Minkowski weights M∗(∆)
can be given a ring structure which is compatible with the intersection product on Z∗(A).

Proof. By [Ewa96, Thm. 2.8, p. 75] and [CLS11, Thm. 11.1.9] there is a complete unimodu-
lar fan Σ with ∆ ⊆ Σ. Now consider the commutative diagram

M∗(Σ) Z∗(NR)

M∗(∆) Z∗(A).

_ · A _ · A
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All groups except M∗(∆) occurring in this diagram have a ring structure and the mor-
phisms at the top and on the right are ring homomorphisms. The one on the right even is
surjective by Lemma 2.1 and so is the map on the left by Theorem 2.2. Together with the
fact that the horizontal maps are injective it follows that M∗(∆) is a subring of Z∗(A).

Let us end this section with a result which is not directly related to tropical intersection
theory but rather to the concept of tropicalization. There are several approaches of how
to define the tropicalization of a subvariety of a torus and it has been a major result in
tropical geometry that they are all equivalent. Our working definition of tropicalization,
however, is nonstandard but instead chosen in a way that makes the connection to toric
intersection theory evident.

Proposition and Definition 2.4. Let K be an algebraically closed field with constant valuation
and let Z be a subvariety of an algebraic torus T over K. Let N be the lattice of one parameter
subgroups of T and let Σ be a complete unimodular fan in NR = N ⊗Z R such that the closure
of Z in the toric variety XΣ intersects all orbits properly. Then the tropical cycle associated to the
Minkowski weight corresponding to the cycle [Z] in A∗(XΣ) is independent of the choice of Σ and
called the tropicalization Trop(Z) of Z.

Proof. The fact that the tropical cycle associated to [Z] does not depend on Σ has been
proven in [ST08, Lemma 3.2] in the special case of tropical compactifications and later in
[KP11, Lemma 2.3] in the general case. The existence of such a Σ follows from [Tev07,
Thm. 1.2].

Note that it also follows from [KP11, Lemma 2.3] that our definition of tropicalization
is equivalent to the standard ones which use non-Archimedian amoebas or initial degen-
erations.

3 Linear Subvarieties of Tori

Let us first make precise what we mean when speaking of a linear subvariety Z of a torus T.

If T is equal to Spec K[Zn] = Spec K[x±1
1 , . . . , x±1

n ] for some n, it would be natural to call a
polynomial f ∈ K[M] linear if it is of the form f = a0 + ∑i aixi for some coefficients ai ∈ K.
As the character lattice M of T is always isomorphic to Zn for some n, the assumption
T = Spec K[Zn] is not really a restriction, and we could use this for our definition of
linear by calling a subvariety Z ⊆ T linear if its vanishing ideal is generated by linear
polynomials. However, if we do so there will arise some difficulties: If Σ is a fan in NR,
where N is the lattice dual to M, and we take the closure Z of a linear subvariety Z in the
toric variety XΣ, then we would like say (and in fact will prove in Proposition 3.5) that
the subvariety Z ∩ O(σ) of the torus O(σ) is linear again. But the coordinates on Zn do
not induce natural coordinates on the character lattice M(σ) = M ∩ σ⊥ of O(σ) so that
it is unclear what linear should mean in this context. This problem does not occur if we
instead go with the following definition.

Definition 3.1. Let M be a lattice and B = {e1, . . . , en} a basis for M. We call f ∈ K[M]
linear with respect to B if it is of the form

f = a0 +
n

∑
i=1

aiχ
ei .
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for some ai ∈ K, where χm denotes the basis vector of K[M] corresponding to m ∈ M. An
ideal I E K[M] is said to be linear with respect to B if it is generated by polynomials which
are linear with respect to B. We will call I linear if it is linear with respect to some basis. A
subvariety Z ⊆ T will be called linear (w.r.t. some basis B), if its vanishing ideal in K[M]
is.

We wish to describe the Chow cohomology A∗(Z) of the closure of a linear variety
Z ⊂ T in a toric variety X = XΣ as Minkowski weights on the fan Σ. In analogy to the
result of Fulton and Sturmfels, the isomorphism between Chow cocycles and Minkowski
weights should use the stratification of XΣ into torus orbits and assign to a cocycle c ∈

Ak(Z) the Minkowski weight with multiplicity deg(c ∩ [Z ∩ O(σ)]) on a cone σ ∈ Σ with
dim(Z ∩ O(σ)) = k. But this construction cannot make sense for arbitrary Σ. The two
things that can go wrong are first, that Z could be non-complete so that the degree in
the formula above is not defined. By [Tev07, Prop 2.3], this happens if and only if the
tropicalization of Z is not contained in the support of Σ. The second problem is that
Minkowski weights on Σ only assign weights to cones of a fixed dimension. So the cones

σ with dim(Z ∩ O(σ)) = k should all have the same dimension and, furthermore, Z ∩O(σ)
should be pure-dimensional. We see that our approach only makes sense if Z intersects all
torus orbits properly. It is a direct consequence of the results proved in [Gub13, Chapter
14] that this is the case if and only if for each σ ∈ Σ we either have relint(σ)∩ |Trop(Z)| =
∅ or σ ⊆ |Trop(Z)|. These considerations lead to the following definition.

Definition 3.2. Let Z be a subvariety of the torus T. A fan Σ in NR is called admissible
(for Z) if it is unimodular, and |Trop(Z)| is a union of cones of Σ. If Σ is admissible for

Z, we denote by Σ̃ = {σ ∈ Σ | σ ⊆ |Trop(Z)|} the subfan of Σ consisting of all cones

contained in the tropicalization of Z. Note that the cones of Σ̃ are exactly those cones of
Σ with Z ∩ O(σ) 6= ∅ ([Tev07, Lemma 2.2]).

As we have just seen, admissible fans are exactly those which are unimodular and for
which the closure Z in the corresponding toric variety is complete and intersects all torus
orbits properly. The following result is an easy consequence of this.

Lemma 3.3. Let Z ⊆ T be a subvariety of the torus, Σ an admissible fan for Z and σ ∈ Σ a cone
in Σ. Then we have the set-theoretic equality

Z ∩ O(σ) = Z ∩ V(σ)

in the toric variety X = XΣ, where V(σ) denotes the closure of the torus orbit O(σ) corresponding
to σ.

Proof. Let Y be an irreducible component of Z ∩ V(σ) and let τ ∈ Σ be a cone which is
maximal with the property that σ ≤ τ and Y ⊆ V(τ). Then Y has nonempty intersection
with the orbit O(τ). Because O(τ) is open in V(τ), the set Y ∩O(τ) is open in Y, showing
that Y has dimension at most dim(Z)− dim(τ). On the other hand, because X is smooth,
every component of Z ∩ V(σ) has dimension at least dim(Z)− dim(σ). We conclude that
σ = τ, showing that every component of Z ∩ V(σ) intersects O(σ). The equality we want
to prove follows.

The result of the preceding lemma is very important for us and will be used at various
places in the remaining part of this paper. Unfortunately, it is only a set-theoretic statement
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and neglects potentially arising intersection multiplicities. As we do not want to bother
with this, we will only consider varieties in this paper. In particular, expressions like Z ∩
V(σ) will denote the subvariety of XΣ whose underlying set is the set-theoretic intersection
of Z and V(σ).

We recall that a stratification of a variety X is a finite decomposition X = ∐ Si such that
each stratum Si is locally closed, and the "boundary" Si \ Si is a union of strata of lower
dimension. The following corollary will show that every admissible compactification of a
subvariety Z ⊆ T has a natural stratification. Afterwards, we will show that in case Z is
linear, the strata of this stratification are, in fact, linear subspaces of tori.

Corollary 3.4. Let Σ be an admissible fan for a subvariety Z ⊆ T. Then the closure of Z in XΣ

is stratified by the subsets {Z ∩ O(σ) | σ ∈ Σ̃}. For 1 ≤ k ≤ n, the strata of dimension k in this

stratification are exactly those with σ ∈ Σ̃(k).

Proof. We have seen that the closures of Z in toric varieties corresponding to admissible
fans intersects all orbits properly. Together with the fact that dim(Trop(Z)) = dim(Z),
this proves the statement about dimensions. The rest follows from Lemma 3.3.

Proposition 3.5. Let Z ⊆ T be linear and Σ an admissible fan. Then for each cone σ ∈ Σ̃ the
intersection Z ∩O(σ) is a linear subvariety of the torus O(σ).

Proof. We prove the statement by induction on the dimension of σ. If dim(σ) = 0, then
Z ∩ O(σ) = Z is linear by assumption. Hence we can suppose dim(σ) > 0. In this

case we find a face τ ∈ Σ̃ of σ of dimension dim(τ) = dim(σ) − 1. By induction we

know that Z ∩ O(τ) is linear, and by Lemma 3.3 we have Z ∩ O(σ) = Z ∩ O(τ) ∩ O(σ).
By [Gub13, Prop. 14.3], the support of the tropicalization of Z ∩ O(τ) is equal to that
of Star

Σ̃
(τ), showing that StarΣ(τ), the fan corresponding to the toric variety V(τ), is

admissible for Z ∩O(τ). We see that by considering the toric variety V(τ) we can assume
that dim(σ) = 1.

Let u ∈ σ be a generator of σ. To show that Z ∩ O(σ) is linear we will use initial ideals
with respect to u. The initial form inu( f ) of a polynomial f ∈ K[M] with respect to u is
the sum of all terms of f corresponding to monomials with minimal u-weight. That is, if
we write f = ∑i aiχ

mi as a finite sum with distinct mi and all ai nonzero, then inu( f ) is
the sum of all terms aiχ

mi for which 〈mi, u〉 is minimal. Given an ideal I E K[M] we now
define inu(I) = 〈inu( f ) | f ∈ I〉. It is immediate that if we choose coordinates on M, our
definition coincides with the usual definition used in the theory of standard bases (except
maybe by taking minima instead of maxima) and therefore all techniques developed there
apply in our setting.

The torus orbit O(σ) is contained in the affine toric variety Uσ = Spec K[σ∨ ∩ M]. If Z
is given by the ideal I E K[M], the intersection I ∩ K[σ∨ ∩ M] is the vanishing ideal of the
closure of Z in Uσ. The orbit O(σ) is embedded into Uσ via the morphism

ϕ : K[σ∨ ∩ M] → K[M(σ)], χu 7→

{
χu , if u ∈ σ⊥

0 , else.

It follows that the ideal of Z ∩O(σ) in the coordinate ring of O(σ) is given by the radical of
Iσ = ϕ(I ∩K[σ∨ ∩ M]). We claim that Iσ is equal to inu(I)∩K[M(σ)]. Whenever the image
ϕ( f ) of an f ∈ K[σ∨ ∩ M] is nonzero, the u-weight of f must be zero. Hence inu( f ) is
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equal to the sum of terms of f with u-weight zero, which are exactly those which do not go
to zero when applying ϕ. It follows that ϕ( f ) = inu( f ) ∈ inu(I) ∩ K[M(σ)]. Conversely,
if 0 6= g ∈ inu(I) ∩ K[M(σ)], then g is u-homogeneous and therefore there exists some
f ∈ I with g = inu( f ). With the same argument as before we get f ∈ K[σ∨ ∩ M] and
g = inu( f ) = ϕ( f ) ∈ Iσ.

Let B be a basis with respect to which I is linear. It is a consequence of [MT07, Prop.
1.4.4] that the initial ideal inu(I) is again linear with respect to B, say generated by the
linear polynomials f1, . . . , fk. Because inu(I) is u-homogeneous, we can assume all of the
fi to be u-homogeneous. Let M be the set of all m ∈ M such that the monomial χm

occurs in one of the fi. We define an equivalence relation on M by letting m ∼ m′ if
and only if 〈m, u〉 = 〈m′, u〉, and for each equivalence class x ∈ M/ ∼ we choose a
representative r(x) ∈ x. As each fi is u-homogeneous, all of the exponents occurring
in fi are equivalent, hence there is a well defined equivalence class [ fi] ∈ M/ ∼ with

generator r(i) = r([ fi]). This choice of r(i) ensures that χ−r(i) fi ∈ K[M(σ)]. Hence, inu(I)

is generated in K[M(σ)], namely by the polynomials χ−r(1) f1, . . . , χ−r(k) fk, and since K[M]
is free as K[M(σ)]-module, the ideal inu(I) ∩ K[M(σ)] is generated by these polynomials
as well. Let B′ = {a − r(x) | x ∈ M/ ∼, a ∈ x \ {r(x)}}. This is certainly a subset of
M(σ), and if we add the elements {r(x) | x ∈ M/ ∼, 0 /∈ x} we obtain a basis of the
sublattice of M generated by the elements in M. Since this sublattice is saturated, we can

also complete B′ to a basis B̃ of M(σ). By construction, the generators for inu(I)∩K[M(σ)]
from above are all linear with respect to this basis, showing that Z ∩ O(σ) is linear.

Before we start to consider the Chow groups and the Chow cohomology of linear sub-
varieties of tori, let us state the following immediate consequence of the preceding propo-
sition, which will be of great importance in the proof of Theorem 3.11.

Corollary 3.6. Let Z be a linear subvariety of the torus T, and A = (Σ, ω) a unimodular tropical
fan representing the cycle Trop(Z). Furthermore, let σ ∈ Σ. Then the tropicalization of the
subvariety Z ∩ O(σ) of the torus O(σ) is represented by StarA(σ).

Proof. By [Gub13, Prop. 14.3], the underlying sets of Trop(Z ∩ O(σ)) and StarA(σ) are
equal, so we just need to show that the weights coincide. But Z is linear by assumption
and Z ∩O(σ) by Proposition 3.5, hence all weights are 1 in both cases.

Our first result on the intersection theory of linear subvarieties of toric varieties will
give us generators for the Chow groups.

Corollary 3.7. Let Z ⊆ T be linear, Σ an admissible fan for Z, and 1 ≤ k ≤ dim(Z). Then the

k-th Chow group of the closure of Z in XΣ is generated by the cycles [Z ∩ V(σ)] for σ ∈ Σ̃(k).

Proof. By Proposition 3.5 we know that all strata of the canonical stratification of Z in-
troduced in Corollary 3.4 are linear subvarieties of some torus. In particular, only their
top-dimensional Chow groups are nonzero. This reduces the statement to a well-known
result about Chow groups of stratified varieties ([EH13, Prop. 1.19]).

Now we know generators of the Chow groups of Z, but we do not know any relations
between them. The next lemma will be the essential ingredient to change this.
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Lemma 3.8. Let I E K[M] be a linear ideal and Z the corresponding subvariety of the torus.

Furthermore, let Σ be an admissible fan for Z, let σ ∈ Σ̃ be a ray in Σ with primitive generator uσ,
and let m ∈ M. Then χm ∈ K[M] defines a rational function on the closure of Z in XΣ and

ordZ∩V(σ)(χ
m) = 〈m, uσ〉.

In particular, we have div(χm) = ∑σ〈m, uσ〉[Z ∩ V(σ)], where the sum is taken over all rays of

Σ̃.

Proof. The character χm clearly defines a rational function on Z. To prove the formula we
can assume that XΣ = Uσ in which case we have Z ∩ V(σ) = Z ∩ O(σ). Let ϕ : K[σ∨ ∩
M] → K[M(σ)] be the morphism corresponding to the closed embedding O(σ) → Uσ.
In the course of the proof of Proposition 3.5 we showed that the image ϕ(I ∩ K[σ∨ ∩ M])
is prime in K[M(σ)] (it is linear with respect to some basis). Therefore, its preimage
ker ϕ + I ∩ K[σ∨ ∩ M] in K[σ∨ ∩ M] is prime, too. Choose a basis e∗1 , e∗2 , . . . , e∗n of N
with dual basis e1, . . . , en ∈ M such that e∗1 = uσ. With these coordinates, K[σ∨ ∩ M] =
K[χe1 , χ±e2, . . . , χ±en ] and ker(ϕ) = 〈χe1〉. Consequently, the ideal in the coordinate ring
K[σ∨ ∩ M]/I ∩ K[σ∨ ∩ M] of Z cutting out Z ∩O(σ) is generated by χe1 . Hence, OZ∩O(σ),Z

is a discrete valuation ring whose maximal ideal is generated by χe1 . Writing

m = 〈m, uσ〉e1 +
n

∑
i=2

〈m, e∗i 〉ei

and noting that χei is a unit in OZ∩O(σ),Z for i ≥ 2 we obtain ordZ∩V(σ)(χ
m) = 〈m, uσ〉.

Because χm is an invertible regular function on Z, the divisor div(χm) is a linear combi-
nation of prime divisors contained in Z \ Z. But this is exactly the union of the varieties

Z ∩ V(σ) for rays σ ∈ Σ̃, which yields the "in particular" statement.

Corollary 3.7 and Lemma 3.8 show us that there is a strong analogy between the Chow
groups of toric varieties and those of admissible compactifications of linear subvarieties
of tori. The problem is that our description of the Chow groups in the latter case is incom-
plete: we do know generators and we do know the relations induced by the characters of
the various tori O(σ), but we do not know whether or not all relations are of this form. We
will only obtain an answer to this question up to torsion in Corollary 3.12 as a consequence
of our results on Chow cohomology.

To describe the Chow cohomology of an admissible compactification Z in a toric variety
XΣ we proceed similarly to Fulton and Sturmfels in [FS97]. Given a cocycle c ∈ Ak(Z),
we will first apply the Kronecker duality homomorphism DZ : Ak(Z) → Hom(Ak(Z),Z)
which assigns to c the morphism mapping α ∈ Ak(Z) to deg(c ∩ α). The Chow group

Ak(Z) is generated by the cycles [Z ∩ V(σ)] for σ ∈ Σ̃(k), hence DZ(c) is uniquely deter-

mined by its images on those cycles. Let us denote the induced map Σ̃(k) → Z by IZ(c).

For every τ ∈ Σ̃(k+1), the subvariety Z ∩ V(τ) is an admissible compactification of the
linear variety Z ∩ O(τ) by Lemma 3.3, Proposition 3.5, and Corollary 3.6. Consequently,
we know that

∑
σ:τ≤σ∈Σ̃(k)

〈m, uσ,τ〉[Z ∩ V(σ)] = 0 in Ak(Z)

for all m ∈ M(τ) by Lemma 3.8 (remember that uσ,τ denotes the lattice normal vector of σ

with respect to τ). We conclude that IZ(c) actually is a Minkowski weight on Σ̃, that is an
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element in Mk(Σ̃). This shows that our construction really yields a morphism of Abelian
groups

IZ : A∗(Z) → M∗(Σ̃)

analogous to the one constructed by Fulton and Sturmfels for complete toric varieties, and,
in fact, we recover the isomorphism of [FS97] if we take Z = T. But we do not know yet
that the image IZ(c) of a cocycle c ∈ A∗(Z) completely determines c. This will be ensured
by the next proposition.

Proposition 3.9. Let Σ be admissible for a linear subvariety Z ⊆ T. Then the Kronecker duality
map DZ is an isomorphism. In particular, IZ is injective.

Proof. The statement basically follows from the result [Tot, Thm. 2] in Totaro’s paper,
which says that the Kronecker duality map is an isomorphism for all complete varieties
of a certain type. The type of varieties considered by Totaro is that of what he calls linear
varieties. The class of varieties which are linear in his sense is defined recursively. We
do not want to go into the details here. In our setting it is sufficient to note that varieties
stratified by linear varieties are again linear and that the complement of a union of affine
subspaces in an ambient affine space is linear (see [Tot, p. 5]). By Corollary 3.4, Z is

stratified by {Z ∩O(σ) | σ ∈ Σ̃}. Each of the strata Z ∩O(σ) is cut out by equations which
are linear in some coordinates and is hence isomorphic to the intersection of an affine
subspace L of some Ak with the k-dimensional torus T′ ⊆ Ak. This can also be considered
as the complement of a finite union of affine subspaces of L and therefore it is linear in
the sense of Totaro. Consequently, Z, too, is linear in Totaro’s sense. Applying Totaro’s
theorem we see that DZ is an isomorphism. The "in particular" statement then follows
directly from the construction of IZ.

Corollary 3.10. With the same requirements as in the preceding proposition we have A0(Z) ∼= Z.

Proof. Consider the composite morphism A0(Z)
IZ−→ M0(Σ̃) →֒ Z0(Σ̃), which is one-to-

one by what we just saw. We have |Σ̃| = |Trop(Z)| and the cycle Trop(Z) is, as it is a

matroid variety, irreducible by [FR13, Lemma 2.4]. Therefore, Z0(Σ̃) is freely generated

by Trop(Z). The tropical cycle Trop(Z) is represented by the Minkowski weight in M0(Σ̃)
having weight 1 on all maximal cones. Noting that this is exactly the image of 1 ∈ A0(Z)
under IZ finishes the proof.

Now that we know that IZ embeds the Chow cohomology of Z into the group of

Minkowski weights on Σ̃, our next goal is to show that IZ even is an isomorphism. One
of the key ingredients for this is the following theorem.

Theorem 3.11. Let Σ be a complete fan which is admissible for a linear subvariety Z ⊂ T, and let
X = XΣ be its associated complete toric variety. Then the diagram

A∗(X) M∗(Σ)

A∗(Z) M∗(Σ̃),

IT

IZ

i∗ _ · Trop(Z)
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where the vertical map on the right assigns to a Minkowski weight c ∈ M∗(Σ) the Minkowski
weight representing the intersection cycle [c] · Trop(Z), is commutative.

Proof. Because all maps involved are graded, it is sufficient to show the commutativity for
homogeneous elements. Let d be the dimension of Z, then for k > d the k-th components
of the vertical maps are both zero and hence the diagram commutes in degrees greater
d. Now assume that c ∈ Ad(X). Let t ∈ An−d(X) be the cocycle on X corresponding to
[Z] by Poincaré duality, that is the unique cocycle with t ∩ [X] = [Z]. Then its associated
tropical cycle [IX(t)] = Trop(Z) is the tropicalization of Z (see Definition 2.4). Identifying

both, Mn(Σ) and Md(Σ̃), with Z, we get

IZ(i
∗c) = deg(i∗c ∩ [Z]) = deg(c ∩ [Z]) =

= deg((c ∪ t) ∩ [X]) = IT(c ∪ t) = IT(c) · Trop(Z),

where the second equality uses the projection formula, and the last equality uses that
the ring structure of the Chow cohomology of complete toric varieties is compatible with
tropical intersection products.

Now assume c ∈ Ak(X) for some k < d and let σ ∈ Σ̃(k). By definition, the weight of
IZ(i

∗c) at σ is equal to deg(i∗c ∩ [Z ∩ V(τ)]). Denoting the inclusion V(σ) → X by j, this
is equal to deg(j∗c ∩ [Z ∩V(τ)]) by the projection formula. By Lemma 3.3, Proposition 3.5,
and Corollary 3.6, we know that Z ∩ V(σ) is an admissible compactification of the linear
variety Z ∩O(σ). So if we denote the inclusion Z ∩V(σ) → V(σ) by κ, then the k = d case
applied to j∗c yields

deg(j∗c ∩ [Z ∩ V(σ)]) = deg(κ∗(j∗c) ∩ [Z ∩ V(σ)])

= IZ∩O(σ)(κ
∗(j∗c))

= IO(σ)(j∗c) · Trop(Z ∩ O(σ)),

where the first equality again follows by the projection formula and in the last two expres-
sions we identify Mk(Star

Σ̃
(σ)) with Z. Using the projection formula one easily sees that

IO(σ)(j∗c) is equal to StarIT(c)(σ), and by Corollary 3.6 we know that Trop(Z ∩ O(σ)) =

StarTrop(Z)(σ). The locality of the intersection product ([Rau08, Lemma 1.2]) then implies

that the intersection product of StarIT(c)(σ) and StarTrop(Z)(σ) is equal to the weight of

IT(c) · Trop(Z) at σ, which is exactly what we wanted to show.

Now we are able to prove our main result.

Proof of Theorem 1.1. We have already constructed the morphism IZ and have seen that it is
injective in Proposition 3.9. To see that it is also surjective, let ∆ be a complete unimodular
fan containing Σ (which exists by [Ewa96, Thm. 2.8, p. 75] and [CLS11, Thm. 11.1.9]).
Because |Σ| = |Trop(Z)|, the closure of Z in X∆ is equal to that in XΣ. Let i : Z → X∆

denote the inclusion map and consider the diagram
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A∗(X∆) M∗(∆)

A∗(Z) M∗(Σ)

IT

IZ

i∗ _ · Trop(Z)

which is commutative by Theorem 3.11. Since Z is linear, the fan Σ has support equal
to that of a matroid variety. We have seen in Theorem 2.2 and Corollary 2.3 that in this
situation the intersection product on Z∗(Trop(Z)) induces a ring structure on M∗(Σ) and
that the morphism on the right is a surjective ring homomorphism. We also know that
the upper horizontal map IT is an isomorphism by [FS97, Thm 2.1]. Together, these facts
imply that IZ is a ring isomorphism.

Corollary 3.12. Let k ∈ N, and Z and Σ as in Theorem 1.1. Then the k-th Chow group Ak(Z)Q =

Ak(Z) ⊗Z Q with rational coefficients is canonically isomorphic to the quotient of the Q-vector

space with basis {eσ | σ ∈ Σ(k)} by the subspace spanned by the elements

∑
σ:τ≤σ∈Σ(k)

〈m, uσ,τ〉eσ

for τ ∈ Σ(k+1) and m ∈ M(σ), where uσ,τ denotes the lattice normal vector of σ with respect to τ.

Proof. Denoting the vector space just described by V = Lin{eσ | σ ∈ Σ}, the dual V∗ of
V clearly is canonically isomorphic to Mk(Σ)Q. This in turn is canonically isomorphic

to Ak(Z)Q by Theorem 1.1. It follows from Proposition 3.9 that this is isomorphic to

(Ak(Z)Q)
∗. Dualizing the composite isomorphism V∗ ∼= (Ak(Z)Q)

∗ finishes the proof.

As a final result we will prove that the intersection ring of Trop(Z) is isomorphic to the
direct limit of the cohomology rings of admissible compactifications of Z.

Corollary 3.13. Let Z be a linear subvariety of the torus T and let D be the directed set of uni-
modular fans in NR with support equal to |Trop(Z)|. Then we have lim

−→
A∗(Z) ∼= Z∗(Trop(Z)).

Proof. As an immediate consequence of the fact that every fan has a unimodular refine-

ment, we get the equality lim
−→

M∗(Σ) ∼= Z∗(Trop(Z)). Since we have M∗(Σ) ∼= A∗(Z
Σ
) for

all Σ ∈ D by Theorem 1.1, it is only left to show that whenever Σ ∈ D refines ∆ ∈ D the
diagram

A∗(Z) M∗(∆)

A∗(Z
′
) M∗(Σ),

IZ

IZ

i∗

where Z and Z
′

are the closures of Z in X∆ and XΣ, respectively, i : Z
′
→ Z is the morphism

induced by the identity on N, and the vertical arrow on the right is the refinement of
Minkowski weights, is commutative. This boils down to showing that whenever σ ∈ Σ
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and τ ∈ ∆ are two cones of the same codimension such that σ ⊆ τ, then i∗([Z
′
∩ V(σ)]) =

[Z ∩ V(τ)]. In this situation, we have Nσ = Nτ and i is induced by the toric morphism
V(σ) → V(τ) coming from the identity on N(σ) = N(τ). As Z ∩ V(σ) is the closure of

Z ∩O(σ) by Lemma 3.3, it is sufficient to show that the push-forward of [Z
′
∩O(σ)] under

the induced map j : O(σ) → O(τ) is equal to [Z ∩ O(τ)]. But this is clear because j is an

isomorphism, j(Z
′
∩ O(σ)) ⊆ Z ∩ O(τ), and Z ∩ O(σ) and Z

′
∩ O(τ) are both irreducible

of the same dimension.
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