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LOWER BOUNDS FOR THE NUMBER OF GENERIC INITIAL IDEALS

JOKE FRELS AND KIRSTEN SCHMITZ

ABSTRACT. Given a graded idealI in a polynomial ring over a fieldK it is well known,
that the number of distinct generic initial ideals ofI is finite. While it is known that for
a givend ∈ N there is a global upper bound for the number of generic initial ideals of
ideals generated in degree less thand, it is not clear how this bound has to grow withd.
In this note we will explicitly give a family(I(d))d∈N of ideals inS= K[x,y,z], such that
I(d) is generated in degreed and the number of generic initial ideals ofI(d) is bounded
from below by a linear bound ind. Moreover, this bound holds for all graded ideals inS,
which are generic in an appropriate sense.

1. INTRODUCTION

Generic initial ideals are useful tools in commutative algebra reflecting homological and
algebraic properties of the original ideal in a direct way, see [8, 9]. Introduced in [2]
to study the regularity of graded ideals they also have various applications in algebraic
geometry, see for example [11]. While generic initial ideals, gins for short, with respect to
certain term orders (in particular, the reverse lexicographic term order) have been studied
well, little is known about gins with respect to other term orders. In particular, it is a
natural question of how many generic initial ideals an idealin a fixed polynomial ring can
have. For procedures such as the Gröbner walk for fast computations of Gröbner bases,
see [6], it is of course useful to have information on the number of full-dimensional cones
in a Gröbner fan. Asking for the number of generic initial ideals means studying this issue
in the generic setting.
Note that it is easy to construct a family of ideals such that the number of distinct initial
ideals (or equivalently the number of full-dimensional cones in the Gröbner fan) increases.
We are, however, interested in the number of generic initialideals of an ideal (or equiva-
lently, maximal cones in the generic Gröbner fan).
Let K be a field andI a graded ideal in a polynomial ring in one or two variables over K.
Then the number of generic initial ideals ofI can be at most two. This follows from the
fact that the generic Gröbner fan isR in the case of one variable and eitherR

2 or the fan
in R

2 consisting of the coneR(1,1) and the two maximal cones induced by it. For three
or more variables, however, the number of generic initial ideals is not so easy to control.
In this note we will therefore deal with the following question.

Question 1.1.Given a natural number k is there a graded ideal in K[x,y,z] with at least
k distinct generic initial ideals?

We consider this question in a polynomial ring over a fieldK of characteristic 0 (the
assumption on the characteristic is necessary for the proofof Theorem 2.12). We will
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give a positive answer by explicitly describing a family of monomial ideals inK[x,y,z]
such that for eachk ∈ N we can point to an ideal in the family having at leastk distinct
generic initial ideals.
In [15] relying on [1] it was shown that there is a bound on the maximal degree of the
elements of a universal Gröbner basis ofI ⊂ K[x,y,z] which is a function of dim(S/I) and
the maximal degree in a given generating set ofI . For our setting this means that the there
is an upper bound for the number of generic initial ideals of an ideal generated in a given
degree. So, to exhibit a family of ideals with an increasing number of gins, we certainly
have to increase the degree of the generators. This is not a sufficient condition though:
Computations with Singular [7] and Gfan [12] indicate that,for example, the number of
gins of I = (xd,xd−1y, . . . ,xyd−1,yd) ⊂ S is always 3 independently ofd. We will show,
however, that for the family(I(d))d≥3 with I(d) = (xd,xd−1y, . . . ,xyd−1,zd) ⊂ S there is
a lower bound for the number of generic initial ideals ofI(d), which is linear ind, see
Theorem 2.12. From this we derive that this bound also holds for a class of graded ideals
satisfying a certain genericity assumption, see Theorem 2.13.

2. BOUNDS FORGENERIC INITIAL IDEALS

2.1. Genericity. We will consider graded ideals inS= K[x,y,z] with respect to the stan-
dard grading. To deal with linear coordinate changes induced by variousg ∈ GL3(K)
simultaneously it is useful to replaceK by a polynomial ringK[Γ] overK, where we set
Γ = {γ1, . . . ,γ9}. This allows one to perform calculations in the polynomial ring overK[Γ]
and afterwards evaluate at appropriateg∈ GL3(K). In the following we will consider the
K-algebra homomorphism induced by

γ : K[x,y,z] −→ K[Γ][x,y,z]
x 7−→ γ1x+ γ2y+ γ3z

y 7−→ γ4x+ γ5y+ γ6z

z 7−→ γ7x+ γ8y+ γ9z.

Note that for an idealI the imageγ(I) is not an ideal. By abuse of notation we will,
however, denote byγ(I) the ideal generated by this image. Forg∈ GL3(K) evaluatingγi
at gi induces a linear coordinate transformation onK[x,y,z], which by abuse of notation
we will denote byg as well. It is well known that for a given term order≻ there is a
Zariski-open set /06= U ⊂ GL3(K) such that in≻(g(I)) is the same ideal for allg ∈ U .
This ideal gin≻(I) is the generic initial ideal ofI with respect to≻.

2.2. The generic Gröbner fan and its graded components.To prove the existence of a
given number of distinct generic initial ideals we will use the one-to-one correspondence
between gins and the maximal cones of the generic Gröbner fan. Let I ⊂ S= K[x,y,z] be
a graded ideal. The Gröbner fan GF(I) of I as introduced in [16] is the set of equivalence
classes ofω ∈R

n of the relation definingω,ω ′ ∈ R
3 to be equivalent if inω(I) = inω ′(I).

By [17, Theorem 1.1] there exists a Zariski-open set /06=U ⊂ GL3(K) such that GF(g(I))
is the same fan for allg∈U . This fan is called thegeneric Gr̈obner fan of Iand denoted
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by gGF(I). The maximal cones of gGF(I) are in one-to-one correspondence with the
distinct generic initial ideals ofI .
One description of GF(I) results from comparing initial ideals by comparing their graded
components. In particular, we can consider the “degreed part” of the Gröbner fan for
eachd ∈ N by looking at the equivalence relation that definesω to be equivalent toω ′

if inω(I)d = inω ′(I)d. The same arguments showing that the Gröbner fan is indeed afan
can be used to prove that the set of the closures of the equivalence classes of this relation
is a complete fan inR3. We will denote this fan by GF(I)d. As GF(I) is a refinement
of GF(I)d and, indeed, also gGF(I) is a refinement of gGF(I)d, the number of distinct
maximal cones in gGF(I)d provides a lower bound for the number of distinct generic
initial ideals ofI .
One advantage of studying the Gröbner fan ofI via its graded components is that the
defining equations of its cones can be expressed in the Plücker coordinates ofId. Recall
that for a subspaceW of a finite dimensionalK-vector spaceV with a given basisB of V
the Plücker coordinates ofW can be computed in the following way: Choose a basis ofW
and express this basis in the elements ofB obtaining a dim(W)×dim(V)-matrix A with
entries inK. The vector of determinants of the maximal minors ofA does not depend
on the choice of the basis ofW up to nonzero scalar multiple. This vector, considered
as an element in projective(dim(V)−1)-space, is calledthe Pl̈ucker coordinates of W.
In our caseV will be K[x,y,z]d for a givend, andB will be the basis consisting of all
degreed-monomials indexed by their exponents. When we talk about anentry of the
Plücker coordinatesP, we will mean an entry of any representative ofP in homogeneous
coordinates. As we will only be concerned with the question of whether an entry is zero
or not, our arguments will not depend on the choice of representative.
We will use the following notation throughout this note.

Notation 2.1. Fix d ∈ N. For a monomialxν1yν2zν3 in K[x,y,z] we can consider its expo-
nent as a vector(ν1,ν2,ν3) ∈N

3. Consider all setsJ of exponents of degreed monomials
in x,y,z with |J| = d+ 1 and denote byN(d) the set of all suchJ. For J ∈ N(d) let
mJ = ∑ν∈J ν ∈ N

3 and denote byM(d) the set ofmJ with J ∈ N(d). For a graded ideal
I ⊂ Sassume that dimK(Id) = d+1 and letPJ(Id) be the entry of the Plücker coordinates
of Id defined byJ ∈ N(d). We setN(I ,d) = {J ∈ N(d) : PJ(Id) 6= 0} and

M(I ,d) = {m∈ M(d) : ∃ J ∈ N(I ,d) : m= mJ} .

Each maximal cone of GF(I)d can now be described by one element ofM(I ,d).

Proposition 2.2. For each maximal cone C inGF(I)d there exists a unique m∈ M(I ,d)
such that C=

{

ω ∈ R
3 : ω ·m≤ ω ·mJ for mJ ∈ M(I ,d)

}

. The map associating to C the
corresponding m is injective.

Proof. This statement follows from the proof of the existence of theGröbner complex as
explained in [13] in a Chapter on Gröbner basis theory (currently in the proof of Theorem
2.4.11). In this setting the fieldK is considered together with a valuationv : K −→R∪{∞}
and initial forms and ideals are defined with respect to the valuations of the coefficients
of the polynomials. The equivalence classes ofω ∈ R

3 of inducing the same graded
component of an initial ideal are relatively open polyhedra, see [13]. By use of Notation
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2.1 the defining equations of such a Gröbner polyhedronC ∈ GF(I)d are determined by
giving a subsetA of N(d): A vectorω is contained in the relative interior ofC if and only
if

v(PJ(Id))+ω ·mJ = v(PJ′(Id))+ω ·mJ′ for J,J′ ∈ A

v(PJ(Id))+ω ·mJ < v(PJ′(Id))+ω ·mJ′ for J ∈ A,J′ ∈ N(d)\A.

Our case (the constant coefficient case of [13]) correspondsto consideringK equipped
with the trivial valuation withv(0) = ∞ andv(a) = 0 for all a 6= 0. Hence, in our setting
all defining equations of Gröbner cones are of the form

ω ·mJ = ω ·mJ′ for J,J′ ∈ A∗

ω ·mJ < ω ·mJ′ for J ∈ A∗,J′ ∈ N(I ,d)\A,

whereA∗ = N(I ,d)∩A. To define a maximal cone of GF(I) the setA cannot contain
J,J′ with mJ 6= mJ′ , as otherwise there would be at least one equality among the defining
relations. Thus there is a uniquem∈ M(I ,d) with mJ = m for J ∈ A. As ω,ω ′ are in the
same relatively open cone of GF(I) if and only if the same of the above equalities and
inequalities are fulfilled, the assignment ofm to C as described above is injective. This
proves the claim. �

With the same argument we can determine the defining inequalities of maximal cones in
gGF(I)d. As M(I ,d) depends on the ideal in question, we need to prove thatM(g(I),d)=
M(g′(I),d) for all g,g′ in some nonempty Zariski-open subset of GL3(K). To do this note
that for fixedd∈Nwe have dimK(g(I)d)=d+1 for everyg∈GL3(K) if dimK(I)=d+1,
so we have to consider the sameN(d) andM(d) for every idealg(I) for g∈ GL3(K). To
ensure the same forN(g(I),d), and thus forM(g(I),d) for genericg note that the Plücker
coordinates ofγ(I)d can be considered as polynomials theγi . As there are only finitely
manyJ ∈ N(d), there exists /06=U ⊂ GL3(K) and a subsetN ⊂ N(d) (independent ofg)
such thatPJ(g(I)d) 6= 0 for J ∈ N andPJ(g(I)d) = 0 for J ∈ N(d)\N for all g∈U . Thus,
N(g(I),d) andM(g(I),d) are the same sets (respectively) for allg∈U .

Notation 2.3. The setN such thatPJ(g(I)d) 6= 0 for genericg as described above we will
denote by gN(I ,d). Analogously we set

gM(I ,d) = {m∈ M(d) : ∃ J ∈ gN(I ,d) : m= mJ} .

We now immediately get the analogous result to Proposition 2.2 for the generic case.

Corollary 2.4. For each maximal cone C ingGF(I)d there exists a unique m∈ gM(I ,d)
such that C=

{

ω ∈ R
3 : ω ·m≤ ω ·mJ for mJ ∈ gM(I ,d)

}

. As in Proposition 2.2 the
map associating to C the corresponding m is injective

2.3. Candidates for maximal Gröbner cones.Let I ⊂ S= K[x,y,z] be a graded ideal.
As the number of generic initial ideals ofI is equal to the number of maximal cones in
the generic Gröbner fan gGF(I), we can express a lower bound for the number of gins in
terms of the number of cones of gGF(I). Moreover, it suffices to give a lower bound for
the number of maximal cones the in degreed part gGF(I)d of the generic Gröbner fan for
somed, as gGF(I) is a refinement on gGFd(I).
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Fix d ∈ N, d ≥ 3, and letN(d) andmJ for J ∈ N(d) be as in Notation 2.1. Consider
the polytopeQ(d) = conv(mJ : J ∈ N(d)) ⊂ R

3. This is a 2-dimensional polytope in the
planeH =

{

x∈ R
3 : ∑i xi = d(d+1)

}

. In this section we will determine some vertices
of Q(d), which will correspond to maximal cones of the generic Gröbner fan in degreed
under certain circumstances.

Notation 2.5. For 0≤ n< d
3 we will use the notationJ(n) for the set

{(d−a−1,a,1) : 0≤ a≤ n−1}∪{(d−b,b,0) : 0≤ b≤ d−n} ∈ N(d).

We will now show that every such set corresponds to a vertex ofQ(d).

Proposition 2.6. For every d≥ 3 and0≤ n< d
3 the point mJ(n) is a vertex of Q(d).

Proof. A vectormJ for someJ∈N(d) is a vertex ofQ(d) if and only if there existsω ∈R
3

such thatω ·mJ < ω ·mJ′ for everyJ′ ∈ N(d) with mJ 6= mJ′ . Let

∆ =
{

ν ∈ N
3 : ν1+ν2+ν3 = d

}

.

To show thatmJ is a vertex ofQ(d) it thus suffices to show that there existsω ∈ R
3 with

ω ·ν < ω ·ν ′ for everyν ∈ J, ν ′ ∈ ∆\J, since then we have

ω ·mJ = ω · ∑
ν∈J

ν = ∑
ν∈J

ω ·ν < ∑
ν∈J′

ω ·ν = ω ·mJ′,

where the strict inequality is true, as there is at least oneν ∈ J′\J. Geometrically this idea
can viewed as finding a line inH ⊂ R

3 separating the points inJ from the ones not inJ,
see Figure 1.
For 0≤ n< d

3 let

ω(n) = (2n−d−2,2n−d+1,2d−4n+1)

and
λ (n) = d+2nd−d2−3n.

By direct calculation one can show that we haveω(n) · ν ≤ λ (n) for all ν ∈ J(n) and
that ω(n) · ν > λ (n) for all ν ∈ ∆\J(n). ThusmJ(n) is a vertex ofQ(d) with defining
hyperplane

{

x∈ R
3 : ω(n) ·x= λ (n)

}

. �

Corollary 2.7. For d ∈ N the polytope Q(d) has at leastd3 vertices.

Proof. As the last coordinate ofmJ(n) is n, themJ(n) are distinct for distinctn. By Propo-

sition 2.6 eachmJ(n) for 0≤ n< d
3 is a vertex ofQ(d). �

2.4. Main Result. Let d ∈ N. The aim of this section is to show that for almost all
graded ideals inS= K[x,y,z] generated byd+1 homogeneous polynomials of degreed
the number of generic initial ideals is bounded from below byd

3, see Theorem 2.13 for the
precise statement. To parametrize these ideals we want to considerd+1 polynomials of
degreed whose coefficients can be interpreted as variables, which can then be substituted
by elements ofK. More precisely, we will use the following notation.
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l

(d,0,0)(0,d,0)

(0,0,d)

FIGURE 1. The points in∆ for d = 7 with the linel separating the points
of J(2) from the others.

Notation 2.8. Let ∆ =
{

ν ∈ N
3 : ν1+ν2+ν3 = d

}

and consider the polynomial ring

L = K[biν : 1≤ i ≤ d+1,ν ∈ ∆]

overK. Set

fi = ∑
ν∈∆

biνxν ∈ L[x,y,z]

for 1 ≤ i ≤ d + 1. For q = (qiν)iν ∈ K(d+1)|∆| by abuse of notation we will denote
∑ν∈∆ qiνxν ∈ Sby fi(q) and the ideal generated byfi(q) for i = 1, . . . ,d+1 by I(d,q).

In this way the affine spaceK(d+1)|∆| parametrizes graded ideals generated byd+1 poly-
nomials of degreed. This assignment of points inK(d+1)|∆| to graded ideals is of course
not injective, but we do not need it to be for the following.
To start we will give a sufficient condition forI(d,q) to have at leastd3 distinct generic
initial ideals in terms of certain Plücker coordinates notbeing zero. We will then proceed
by exhibiting a family of ideals that fulfill these conditions, i.e. for everyd we will obtain
an explicitq ∈ K(d+1)|∆| such that Lemma 2.9 can be applied toI(d,q). Finally we can
show that this result implies that for eachd every idealI(d,q) fulfills these conditions for
generic enoughq.

Lemma 2.9. Let d∈ N with d ≥ 3, q∈ K(d+1)|∆| and I(d,q) ⊂ S as defined above. If
dimK(I(d,q)d) = d+1 and if J(n) ∈ gN(I(d,q),d) as defined in Notation 2.3 for every
J(n) as defined in Notation 2.5, then I(d,q) has at leastd3 distinct generic initial ideals.

Proof. We will prove thatd
3 is a lower bound for the number of full-dimensional cones

in the graded component gGF(I(d,q))d of the generic Gröbner fan ofI(d,q). As the fan
gGF(I(d,q)) is a refinement of gGF(I(d,q))d, this gives a lower bound on the number of
full-dimensional cones in the generic Gröbner fan ofI(d,q) and, thus, for the number of
generic initial ideals ofI(d,q).
By the proof of Proposition 2.6 we know that for the setsJ(n) for 0≤ n< d

3 and

ω(n) = (2n−d−2,2n−d+1,2d−4n+1)
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we haveω(n) ·mJ(n) < ω(n) ·mJ′ for all J(n) 6= J′ ∈ N(d). Moreover,mJ(n) 6= mJ(n′) for
n 6= n′. By assumptionJ(n) ∈ gN(I(d,q),d), somJ(n) ∈ gM(I(d,q),d) for everyn. Thus,

by Corollary 2.4 theω(n) for 0≤ n< d
3 are all contained in different maximal cones of

gGF(I(d,q))d. �

We will now give a family(I(d))d∈N of ideals inK[x,y,z] such thatI(d) fulfills the condi-
tions from Lemma 2.9 and thus the family is an example class providing a positive answer
to Question 1.1.

Notation 2.10. Consider the family of ideals(I(d))d≥3 such that

I(d) = (xayd−a,zd : 0≤ a≤ d−1)

= (yd,xyd−1,x2yd−2, . . . ,xd−1y,zd).

Note thatI(d) is generated in degreed by d+1 monomials.

Remark 2.11. Note thatI(d) is equal toI(d,q) for q∈ K(d+1)|∆| defined as follows: Let
νi = (i−1,d− i+1,0) for i = 1, . . . ,d andνd+1 = (0,0,d). Consider the evaluation map
φ : L −→ K mappingbiνi to 1 for i = 1, . . . ,d+1 and all other independent variables to 0.
ThenI(d) = I(d,q) for (qiν)iν = (φ(biν))iν .

Theorem 2.12.The ideal I(d) as defined in Notation 2.10 has at leastd
3 distinct generic

initial ideals.

Proof. Let d be fixed and for simplicity denote gN(I(d),d) by N. As I(d) is one of the
I(d,q) as defined above by Remark 2.11 and dimK(I(d)d) = d+1, we can apply Lemma
2.9 toI(d) if J(n) ∈ N for everyn with 0≤ n< d

3. We thus have to show that there exists
/0 6=U ⊂ GL3(K) such that the Plücker coordinatesPJ(n)(g(Id)) 6= 0 for all g∈U . Choose
the system of polynomials

γ(yd),γ(xyd−1),γ(x2yd−2), . . . ,γ(xd−1y),γ(zd)

as aK(Γ)-basis of the degreed component ofγ(I(d))d, whereγ is defined as in Subsection
2.1. Fix 0≤ n< d

3 and choose the ordering

xd,xd−1y,xd−2y2, . . . ,xnyd−n,xd−1z,xd−2yz,xd−3y2z, . . . ,xd−nyn−1z

of the monomials of degreed indexed byJ(n). Let B be the(d+1)×(d+1)-matrix with
entriesBi j the coefficients of thejth monomial in the above ordering of monomials given
by J(n) in the ith polynomial in the above system of generators ofγ(I(d))d. Note thatB
is a matrix overK(Γ). It now suffices to show that det(B) is not equal to zero.
As all entries ofB are by definition inK[Γ], we can evaluate each entry by settingγi = ai
for someai ∈ K. To show that det(B) 6= 0 it is enough to show that it is non-zero after an
evaluation at someai ∈K. We chooseγ1= γ3= γ4= γ5= γ7=1 andγ2= γ6= γ8= γ9= 0.
After this evaluation the matrixB is of the blockform

(

B′ B′′

b 0

)

,

with the following submatrices:
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(i) B′ is and× (d−n+1)-matrix withB′
i j =

(d−i+1
j−1

)

for i = 1, . . . ,d, j = 1, . . . ,d−
n+1.

(ii) B′′ is and×n-matrix withB′′
i j = (i −1)

(d−i+1
j−1

)

for i = 1, . . . ,d, j = 1, . . . ,n.
(iii) b is a 1× (d−n+1)-matrix withb11 = 1 andb1 j = 0 for j = 2, . . . ,d−n+1.

In this description we assume that the characteristic ofK is 0. By Proposition 3.1 in the
Appendix we know that det(B) 6= 0 for all choices ofd andn. �

The fact that the idealI(d) has at leastd3 distinct generic initial ideals ford ∈ N can be
used to show that having at leastd

3 distinct gins is a generic property in the following
sense.

Theorem 2.13.Let d∈N, d≥ 3. There is a Zariski-open set/0 6=U ⊂ K(d+1)|∆| such that
I(d,q)⊂ S has at leastd3 distinct generic initial ideals for every q∈U.

Proof. By Lemma 2.9 we have to determine an open subset /06=U ⊂ K(d+1)|∆| such that
dimK(I(d,q)d) = d+1 andJ(n) ∈ gN(I(d,q),d) for everyJ(n) as in Notation 2.5 and
every q ∈ U . For the first condition note that there is a non-empty open subsetŨ of
K(d+1)|∆| such thatf1(q), . . . , fd+1(q) are linearly independent forq ∈ Ũ . We can thus
assume that dimK(I(d,q)d) = d+1 generically. It remains to show that for genericg ∈
GL3(K) the Plücker coordinates ofg(I(d,q))d corresponding to the columns indexed by
J(n) are not equal to zero.
Let γ : L[x,y,z]−→ L[Γ][x,y,z] as in Subsection 2.1 withL as defined in Notation 2.8. Let
B be the(d+1)×

(d+2
2

)

-matrix of the coefficients ofγ( f1), . . . ,γ( fd+1), i.e. the entrybi j

of this matrix is the coefficient ofγ( fi) in the basis of all monomials of degreed in x,y,z
in reverse lexicographic order. Note that these coefficients are polynomial expressions in
theγ j and thebiν for j = 1, . . . ,9, i = 1, . . . ,d+1, ν ∈ ∆. For (p,q) ∈ K9×K(d+1)|∆| let
B(p,q) denote the(d+1)×

(d+2
2

)

-matrix overK obtained by mappingγ j to p j andbiν to
qiν for every j, i,ν.
For N(d) as in Notation 2.1 andJ ∈ N(d) denote byBJ the matrix consisting of all
columns fromB indexed by the elements ofJ. By the choice ofB the determinant det(BJ)

is a polynomial in theγ j andbiν with coefficients inK. For (p,q) ∈ K(d+1)|∆| we have
det(BJ)(p,q) = det(B(p,q)).
With the notation of Remark 2.11 for(p,q)∈K9×K(d+1)|∆| with qiνi =1 for i =1, . . . ,d+
1 and 0 otherwise, andp1 = p3 = p4 = p5 = p7 = 1 andp2 = p6 = p8 = p9 = 0 we have
thatB(p,q) is exactly the matrix with rows

γ(yd),γ(xyd−1),γ(x2yd−2), . . . ,γ(xd−1y),γ(zd).

By Proposition 3.1 we know that det(B(p,q)J(n)) 6= 0 for everyJ(n) from Notation 2.5.
Hence, det(BJ(n)) is not the zero polynomial inK[γ1, . . . ,γ9][biν : 1≤ i ≤ d+1,ν ∈ ∆]. Let

/0 6=V ⊂ K9+(d+1)|∆| be an open subset such that det(B(p,q)J(n)) 6= 0 for every(p,q) ∈V
and everyJ(n).
Let

U =
{

q∈ K(d+1)|∆| : there existsp∈ K9 : (p,q) ∈V
}

⊂ K(d+1)|∆|,
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which is a non-empty open subset ofK(d+1)|∆|. For eachq∈U if we substitute thebiν by
the correspondingqiν in det(BJ(n)), we obtain a polynomial inK[γ1, . . . ,γ9], which is not
the zero-polynomial, since by assumption there existsp ∈ K9 with det(B(p,q)J(n)) 6= 0.
Thus for a givenq∈U there exists /06=W(q)⊂GL3(K)with det(B(p,q)J(n)) 6= 0 for every
p ∈ W(q). In other wordsJ(n) ∈ gN(d) as in Notation 2.3 for every idealI(d,q) ⊂ S,
whereq∈U . By Lemma 2.9 this implies thatI(d,q) has at leastd3 generic initial ideals
for everyq∈U . �

3. APPENDIX

This appendix contains the proof that the determinants of the matrices describing the
relevant Plücker coordinates needed in Section 2.4 are notequal to zero. Ford ∈ N and
0≤ n< d consider the matrix

B=

(

B′ B′′

b 0

)

,

with the following submatrices:

(i) B′ is and× (d−n+1)-matrix withB′
i j =

(d−i+1
j−1

)

for i = 1, . . . ,d, j = 1, . . . ,d−
n+1.

(ii) B′′ is and×n-matrix withB′′
i j = (i −1)

(d−i+1
j−1

)

for i = 1, . . . ,d, j = 1, . . . ,n.
(iii) b is a 1× (d−n+1)-matrix withb11 = 1 andb1 j = 0 for j = 2, . . . ,d−n+1.

Proposition 3.1. For every d∈ N and0≤ n< d we havedet(B) 6= 0.

Proof. To show that det(B) 6= 0, we first do a Laplace expansion with the last row, thereby
dropping the matricesb and 0 in the block form and deleting the first column ofB′. We
then replaceB′′

i j by (d+1− j)B′
i j −B′′

i j for j = 1, . . . ,n, which corresponds to an elemen-
tary column operation and, hence, does not change the absolute value of the determinant.
This yields and×d-matrix

(

C C′
)

,

with the submatricesC,C′:

(i) C is and× (d−n)-matrix with entriesCi j =
(d−i+1

j

)

.

(ii) C′ is and×n-matrix with entriesC′
i j = (d− i − j +2)

(d−i+1
j−1

)

.

We can substituteCi j by C′′
i j := jCi j for j = 1, . . . ,d−n without changing whether the

determinant is zero or not. Moreover, we can replaceC′′
i j by 1

d−i+1C′′
i j andC′

i j by 1
d−i+1C′

i j
(i.e. multiply theith row of the matrix(C′′|C′) by (d− i +1)). We then obtain a matrix

(

D D′
)

,

with

(i) D is and× (d−n)-matrix with entriesDi j =
j

d−i+1

(d−i+1
j

)

=
(d−i

j−1

)

.

(ii) D′ is and×n-matrix with entriesD′
i j =

d−i− j+2
d−i+1

(d−i+1
j−1

)

=
(d−i

j−1

)

.
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We will now inductively use row operations and Laplace expansion to eliminate the matrix
D′ and the lastn rows of(D|D′). We replaceDi j by

Di j −D(i+1) j =

(

d− i
j −1

)

−

(

d− i −1
j −1

)

=

(

d− i −1
j −2

)

andD′
i j by

D′
i j −D′

(i+1) j =

(

d− i
j −1

)

−

(

d− i −1
j −1

)

=

(

d− i −1
j −2

)

for i = 1, . . . ,d−1, which does not change the absolute value of the determinant. But then
the first column ofD′ is 0 except forD′

d1 = 1. Using Laplace expansion on this column
we get the reduced(d−1)× (d−1)-matrix

(

D1 D′
1

)

,

with det(D|D′) = det(D1|D′
1), where

(i) D1 is an(d−1)× (d−n)-matrix with entries(D1)i j =
(d−i−1

j−2

)

.

(ii) D′
1 is an(d−1)× (n−1)-matrix with entries(D′

1)i j =
(d−i−1

j−1

)

.

This process is repeatedn-times, so we obtain a(d−n)×(d−n)-matrixDn with (Dn)i j =
(d−i−n

j−n−1

)

for i, j = 1, . . . ,d−n, such that det(Dn) = det(D|D′).

We replace(Dn)i j by the entryEi j := (d−i)!
(d−n−i)! ·

(n−1+ j)!
( j−1)! · (Dn)i j =

(d−i
j−1

)

. As the first
factor is a multiplication of each row ofDn with a non-zero number and the second one is
a multiplication of each column by a non-zero number, we knowthat det(Dn) 6= 0 if and
only if det(E) 6= 0.
But |det(E)| = 1, which follows by induction ond− n. For d− n = 1, we have the
single entry

(d−1
0

)

= 1, so determinant ofU is 1. Letd−n> 1. SetE′
i j = E(i−1) j −Ei j for

i = 2, . . . ,d−n, which corresponds to subtracting theith row ofE from the(i−1)st. Then
|det(E)|= |det(E′)|. As E′

11 = 1 andE′
i1 = 0 for i > 1, we have|det(E′)| = 1 ·det(E′′),

whereE′′
i j =

(d−i−1
j−1

)

−
(d−i

j−1

)

=
(d−i−1

j−2

)

for i, j = 2, . . . ,d−n. By the inductive hypothesis
|det(E′′)|= 1 proving the claim. �
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[4] W. Bruns and A. Conca,Gröbner bases, initial ideals and initial algebras. In: L.L. Avramov et al.

(Hrsg.), Homological methods in commutative algebra, IPM Proceedings, Teheran (2004).
[5] W. Bruns and J. Herzog,Cohen-Macaulay rings Rev. Ed.Cambridge Studies in Advanced Mathemat-

ics39, Cambridge: Cambridge University Press (1998).
[6] S. Collart, M. Kalkbrener, D. Mall,Converting bases with the Gröbner Walk. J. Symbol. Comput.24,
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[15] H. Möller, F. Mora,Upper and Lower Bounds for the Degree of Gröbner Bases. Proc. EUROSAM 84,
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