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LOWER BOUNDS FOR THE NUMBER OF GENERIC INITIAL IDEALS
JOKE FRELS AND KIRSTEN SCHMITZ

ABSTRACT. Given a graded idedlin a polynomial ring over a fiel& it is well known,

that the number of distinct generic initial idealslaf finite. While it is known that for
a givend € N there is a global upper bound for the number of generic iniigals of

ideals generated in degree less tldait is not clear how this bound has to grow with

In this note we will explicitly give a family(l (d))qgen Of ideals inS= K[x,y, 7], such that
I(d) is generated in degrekand the number of generic initial idealsIdfl) is bounded
from below by a linear bound id. Moreover, this bound holds for all graded ideal$§jn
which are generic in an appropriate sense.

1. INTRODUCTION

Generic initial ideals are useful tools in commutative algereflecting homological and
algebraic properties of the original ideal in a direct wage $8,[9]. Introduced in_|2]
to study the regularity of graded ideals they also have uarepplications in algebraic
geometry, see for example [11]. While generic initial idegins for short, with respect to
certain term orders (in particular, the reverse lexicogi@perm order) have been studied
well, little is known about gins with respect to other ternders. In particular, it is a
natural question of how many generic initial ideals an ideal fixed polynomial ring can
have. For procedures such as the Grobner walk for fast ctatipos of Grobner bases,
see 6], it is of course useful to have information on the nandj full-dimensional cones
in a Grobner fan. Asking for the number of generic initiadads means studying this issue
in the generic setting.

Note that it is easy to construct a family of ideals such thatrtumber of distinct initial
ideals (or equivalently the number of full-dimensional esim the Grobner fan) increases.
We are, however, interested in the number of generic indedls of an ideal (or equiva-
lently, maximal cones in the generic Grobner fan).

LetK be afield and a graded ideal in a polynomial ring in one or two variablesrd¢e
Then the number of generic initial idealslofan be at most two. This follows from the
fact that the generic Grobner fanlisin the case of one variable and eitfR% or the fan

in R? consisting of the con®&(1,1) and the two maximal cones induced by it. For three
or more variables, however, the number of generic initiahid is not so easy to control.
In this note we will therefore deal with the following questi

Question 1.1.Given a natural number k is there a graded ideal ifx}, Z| with at least
k distinct generic initial ideals?

We consider this question in a polynomial ring over a figldbf characteristic 0 (the
assumption on the characteristic is necessary for the mboheoren’ 2.12). We will
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give a positive answer by explicitly describing a family obnomial ideals irK[x,y, Z
such that for eack € N we can point to an ideal in the family having at lekstistinct
generic initial ideals.

In [15] relying on [1] it was shown that there is a bound on thaximal degree of the
elements of a universal Grobner basis af K|x,y, z] which is a function of diniS/I') and
the maximal degree in a given generating sdt &for our setting this means that the there
is an upper bound for the number of generic initial idealsroideal generated in a given
degree. So, to exhibit a family of ideals with an increasingiber of gins, we certainly
have to increase the degree of the generators. This is ndfi@ent condition though:
Computations with Singular [7] and Gfan [12] indicate tHat,example, the number of
gins ofl = (xd,x3-1y, ... . xy?~1 y9) c Sis always 3 independently af. We will show,
however, that for the familyl (d))g>3 with 1(d) = (x3,x4 Yy, ... . xy?=1 ) c Sthere is
a lower bound for the number of generic initial idealsl &), which is linear ind, see
Theorem 2.12. From this we derive that this bound also halda tlass of graded ideals
satisfying a certain genericity assumption, see Thebrd 2.

2. BOUNDS FORGENERIC INITIAL IDEALS

2.1. Genericity. We will consider graded ideals B= K|x,y, Z| with respect to the stan-
dard grading. To deal with linear coordinate changes indunevariousg € GL3(K)
simultaneously it is useful to repla¢eby a polynomial ringK[I'] overK, where we set
r={w,...,¥}. This allows one to perform calculations in the polynomiiagjroverK I
and afterwards evaluate at approprigte GL3(K). In the following we will consider the
K-algebra homomorphism induced by

y: K[X7y7 Z] — K[r“X?y? Z]
X — WX+ WY+ VsZ
y = YaX+ Y5y + V6Z

Z — YiX+WYy+ Yz

Note that for an ideal the imagey(l) is not an ideal. By abuse of notation we will,
however, denote by(l) the ideal generated by this image. o GL3(K) evaluatingy
atg; induces a linear coordinate transformationkjm, y, zJ, which by abuse of notation
we will denote byg as well. It is well known that for a given term order there is a
Zariski-open set @ U C GL3(K) such that in(g(l)) is the same ideal for aj € U.
This ideal gin (1) is the generic initial ideal of with respect to-.

2.2. The generic Grobner fan and its graded components.To prove the existence of a
given number of distinct generic initial ideals we will ubetone-to-one correspondence
between gins and the maximal cones of the generic Grobnet&tl C S=KI[x,y,Z be

a graded ideal. The Grobner fan @GJof | as introduced in [16] is the set of equivalence
classes ofv € R" of the relation definingo, ' € R to be equivalent if igy(1) = ingy (1).

By [17, Theorem 1.1] there exists a Zariski-open s€tl@ C GL3(K) such that GFg(l))

is the same fan for ali € U. This fan is called thgeneric Gbbner fan of land denoted
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by gGKI). The maximal cones of gGF are in one-to-one correspondence with the
distinct generic initial ideals df.

One description of Gff) results from comparing initial ideals by comparing theadgd
components. In particular, we can consider the “degrgart” of the Grobner fan for
eachd € N by looking at the equivalence relation that defire$o be equivalent ta/
ifiny(l)g =iny(l)g. The same arguments showing that the Grobner fan is indésed a
can be used to prove that the set of the closures of the equ@klasses of this relation
is a complete fan ifR3. We will denote this fan by Gf)q. As GF1) is a refinement
of GF(l)q and, indeed, also gGH is a refinement of gGff )4, the number of distinct
maximal cones in gGF)q provides a lower bound for the number of distinct generic
initial ideals ofl.

One advantage of studying the Grobner fan ofia its graded components is that the
defining equations of its cones can be expressed in the &liacdordinates ofy. Recall
that for a subspad®/ of a finite dimensionaK-vector spac® with a given basi® of V

the Plucker coordinates W# can be computed in the following way: Choose a basW of
and express this basis in the element8abtaining a dinfwW) x dim(V)-matrix A with
entries inK. The vector of determinants of the maximal minorsfofloes not depend
on the choice of the basis ¥ up to nonzero scalar multiple. This vector, considered
as an element in projectiglim(V) — 1)-space, is callethe Plicker coordinates of W

In our caseV will be K[x,y,Z]q for a givend, andB will be the basis consisting of all
degreed-monomials indexed by their exponents. When we talk aboutrdry of the
Plucker coordinateB, we will mean an entry of any representativeRah homogeneous
coordinates. As we will only be concerned with the questibwloether an entry is zero
or not, our arguments will not depend on the choice of repiasiee.

We will use the following notation throughout this note.

Notation 2.1. Fix d € N. For a monomiak“1yV2z"3 in K|[x,y, Zl we can consider its expo-
nent as a vectaivy, Vo, va) € N3, Consider all set$ of exponents of degredtmonomials

in x,y,z with |J] =d+ 1 and denote byN(d) the set of all suchl. ForJ € N(d) let
m; = Sy € N3 and denote by (d) the set ofm; with J € N(d). For a graded ideal

| C Sassume that dig(lq) = d+ 1 and letPs(l4) be the entry of the Plucker coordinates
of 14 defined byd € N(d). We setN(I,d) = {J € N(d) : P;(l4) # 0} and

M(l,d) = {meM(d):3J e N(l,d) : m=my}.
Each maximal cone of GFF)4 can now be described by one elemeni ,d).

Proposition 2.2. For each maximal cone C iGF(l )4 there exists a unique mM(l,d)
such that C= {w € R3: w-m< w-myformy e M(l ,d)}. The map associating to C the
corresponding m is injective.

Proof. This statement follows from the proof of the existence of@ébner complex as
explained in[[13] in a Chapter on Grobner basis theory @ty in the proof of Theorem
2.4.11). Inthis setting the field is considered together with a valuatiorK — RU {0}
and initial forms and ideals are defined with respect to theatens of the coefficients
of the polynomials. The equivalence classesuo& R? of inducing the same graded
component of an initial ideal are relatively open polyhedee [13]. By use of Notation
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[2.1 the defining equations of such a Grobner polyhe@enGF(l )4 are determined by
giving a subsef of N(d): A vectorw is contained in the relative interior &fif and only
if

V(Pi(lg)) +w-my = V(Py(lg))+w-myforJ,J € A

V(Pi(lg)) +w-my < V(Py(lg))+w-my forJ e A/J € N(d)\A

Our case (the constant coefficient case of [13]) corresptmdsnsideringk equipped
with the trivial valuation withv(0) = 0 andv(a) = O for all a # 0. Hence, in our setting
all defining equations of Grobner cones are of the form

w-m = w-myforlJeA*
w-m < w-myfordeA I eN(,d)\A

whereA* = N(I,d) N A. To define a maximal cone of GH the setA cannot contain
J,J with my # my, as otherwise there would be at least one equality amongetiiainty
relations. Thus there is a uniquee M(l,d) with my = mfor J € A. As w, ' are in the
same relatively open cone of @F if and only if the same of the above equalities and
inequalities are fulfilled, the assignmentrofto C as described above is injective. This
proves the claim. O

With the same argument we can determine the defining ingmpsatif maximal cones in
gGH1)g4. AsM(l,d) depends on the ideal in question, we need to proveMitigtl ),d) =
M(d'(1),d) for all g,d in some nonempty Zariski-open subset of48). To do this note
that for fixedd € N we have dim (g(1)q) =d+1 for everyg € GL3(K) ifdimk (1) =d+1,
so we have to consider the saié&l) andM(d) for every ideal(l) for g € GL3(K). To
ensure the same fdt(g(1),d), and thus foM(g(l ), d) for genericg note that the Pliicker
coordinates of/(1)q can be considered as polynomials fheAs there are only finitely
manyJ € N(d), there exists @ U C GL3(K) and a subse¥l C N(d) (independent of)
such thaPs(g(l)q) # 0 forJ € N andP;(g(l)q) = 0 ford € N(d)\N for all g € U. Thus,
N(g(l),d) andM(g(l),d) are the same sets (respectively) forgadi U.

Notation 2.3. The setN such thaf;(g(l)q) # 0 for generiay as described above we will
denote by §i(I,d). Analogously we set

gM(l,d) = {me M(d):3J e gN(l,d): m=my}.
We now immediately get the analogous result to Propoditidrid the generic case.

Corollary 2.4. For each maximal cone C igGH1 )q there exists a unique mgM(l,d)
such that C= {w e R®: w-m< w-my formy € gM(1,d) }. As in Propositiod 212 the
map associating to C the corresponding m is injective

2.3. Candidates for maximal Grobner cones.Let | C S=K]x,y,Z] be a graded ideal.
As the number of generic initial ideals bfis equal to the number of maximal cones in
the generic Grobner fan gGH, we can express a lower bound for the number of gins in
terms of the number of cones of g@F. Moreover, it suffices to give a lower bound for
the number of maximal cones the in degdgeart gGK| )4 of the generic Grobner fan for
somed, as gGFKl) is a refinement on gGffl).



LOWER BOUNDS FOR THE NUMBER OF GENERIC INITIAL IDEALS 5

Fix d e N, d > 3, and letN(d) andm; for J € N(d) be as in Notatioh 2]1. Consider
the polytopeQ(d) = conv(my : J € N(d)) € R3. This is a 2-dimensional polytope in the
planeH = {x R3:5;x =d(d+ 1)}. In this section we will determine some vertices
of Q(d), which will correspond to maximal cones of the generic Gwtfan in degred
under certain circumstances.

Notation 2.5. For0< n< % we will use the notatiod(n) for the set
{(d—a—1,a1):0<a<n-—-1}U{(d—b,b,0):0<b<d-—n}eN(d).
We will now show that every such set corresponds to a vert€X dj.

Proposition 2.6. For every d> 3and0<n< % the point 3 ) is a vertex of @d).

Proof. A vectorm; for someJ € N(d) is a vertex ofQ(d) if and only if there existgo € R3
such thatw-my < w-my for everyd’ € N(d) with m; # my. Let

A={veN>:vi+vo+vz=d}.

To show thaim; is a vertex ofQ(d) it thus suffices to show that there existse R3 with
w-V < w-V foreveryv € J, v’ € A\J, since then we have

w-M=w- Z V= Zw~v< Z w-V=w- -my,
vel vel veJ
where the strict inequality is true, as there is at leastwoag)’\J. Geometrically this idea
can viewed as finding a line id ¢ R3 separating the points ihfrom the ones not id,
see Figuréll.
Foro<n< dlet

wn)=(2n—-d—-2,2n—d+1,2d—4n+1)

and

A(n) =d+2nd—d?—3n.
By direct calculation one can show that we haven)-v < A(n) for all v € J(n) and
that w(n)-v > A(n) for all v € A\J(n). Thusmy, is a vertex ofQ(d) with defining
hyperplang{x € R3: c(n)-x=A(n)}. O

Corollary 2.7. For d € N the polytope @) has at Ieas% vertices.

Proof. As the last coordinate afyy is n, them,, are distinct for distinch. By Propo-
sition[2.8 eachmy, for 0 < n< $ is a vertex ofQ(d). O

2.4. Main Result. Letd € N. The aim of this section is to show that for almost all
graded ideals ir5 = K|x,y, Z| generated byl + 1 homogeneous polynomials of degike
the number of generic initial ideals is bounded from belovgbyee Theorein 2.13 for the
precise statement. To parametrize these ideals we wanhsdswd + 1 polynomials of
degread whose coefficients can be interpreted as variables, whichhemn be substituted
by elements oK. More precisely, we will use the following notation.
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(0,0,d)

FIGURE 1. The points imA for d = 7 with the linel separating the points
of J(2) from the others.

Notation 2.8. LetA = {v S\ CHVERVERVE d} and consider the polynomial ring
L=K[by:1<i<d+1vel

overK. Set
fi = Z bivx¥ € L[x,y,Z
veA
for 1<i<d+1. Forqg= (gy)iv € KI@DIA py abuse of notation we will denote
SvealivX’ € Sby fi(q) and the ideal generated liy(q) fori =1,...,d+1 byl(d,q).

In this way the affine spadé(@tDIAl parametrizes graded ideals generated byl poly-
nomials of degred. This assignment of points i(@tD/Al to graded ideals is of course
not injective, but we do not need it to be for the following.

To start we will give a sufficient condition fdr(d, q) to have at Ieasg distinct generic
initial ideals in terms of certain Pliicker coordinates being zero. We will then proceed
by exhibiting a family of ideals that fulfill these conditisni.e. for everyd we will obtain
an explicitq € K(@+DIAl such that Lemm&2.9 can be applied td,q). Finally we can
show that this result implies that for eadlevery ideal (d, q) fulfills these conditions for
generic enough.

Lemma 2.9. Let d € N with d > 3, g€ K(@+DIAl and I(d,q) S as defined above. If
dimk (I1(d,q)q) = d+ 1 and if J(n) € gN(l(d,q),d) as defined in Notation 2.3 for every
J(n) as defined in Notation 2.5, the(d, q) has at Ieas% distinct generic initial ideals.

Proof. We will prove that% is a lower bound for the number of full-dimensional cones
in the graded component g@kd, q) )4 of the generic Grobner fan ofd,q). As the fan
gGHK1(d,q)) is a refinement of gGiF(d, q) )4, this gives a lower bound on the number of
full-dimensional cones in the generic Grobner far @f, q) and, thus, for the number of
generic initial ideals of (d, q).

By the proof of Proposition 216 we know that for the s&fs) for0 < n < % and

wn)=(2n—-d—-2,2n—d+1,2d—4n+1)
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we havew(n) - My, < w(n)-my for all I(n) # J" € N(d). Moreover,my, # myy, for
n#n'. By assumptiod(n) € gN(l(d,q),d), somy) € gM(l(d,q),d) for everyn. Thus,
by Corollary[2.4 thew(n) for 0 < n < % are all contained in different maximal cones of
gGH1(d,q))q- O

We will now give a family(l (d) )4y Of ideals inK|[x,y, Z| such that (d) fulfills the condi-
tions from Lemma 2]9 and thus the family is an example clasgiging a positive answer
to Questiom 1J1.

Notation 2.10. Consider the family of ideald (d))4>3 such that
I(d) = (&9 23A:0<a<d-1)

= (Y9I xyf A2 xdty A,
Note thatl (d) is generated in degrekby d + 1 monomials.

Remark 2.11. Note thatl (d) is equal tol (d,q) for g € K(@*+DIAl defined as follows: Let
vi=(i—1d—-i+10)fori=1,...,dandvgq.1 = (0,0,d). Consider the evaluation map
@: L — K mappingbjy, to 1 fori =1,...,d+1 and all other independent variables to 0.
Thenl(d) =1(d,q) for (giv)iv = (@(biv))iv-

Theorem 2.12.The ideal (d) as defined in Notation 210 has at ledstlistinct generic
initial ideals.

Proof. Let d be fixed and for simplicity denoteNj1(d),d) by N. As(d) is one of the
I(d,q) as defined above by Remark 2.11 and ljiid)4) = d + 1, we can apply Lemma
2.9 tol (d) if I(n) € N for everyn with 0 < n < %. We thus have to show that there exists
0 #U C GL3(K) such that the Plucker coordinateg, (g(l4)) # 0 for allg € U. Choose
the system of polynomials

YY), yOoR ), yORYA2), v (@ y) ()

as aK(I")-basis of the degredecomponent of/(1 (d) )4, wherey is defined as in Subsection
21. Fix0<n< % and choose the ordering

x4 Xty xd=2y2 A s d-1y =2y )d=327  xATy1;

of the monomials of degrestindexed byJ(n). Let B be the(d+ 1) x (d + 1)-matrix with
entriesBjj the coefficients of thgth monomial in the above ordering of monomials given
by J(n) in theith polynomial in the above system of generatorg@fd))q. Note thatB

is a matrix oveiK (I"). It now suffices to show that d@) is not equal to zero.

As all entries ofB are by definition irK[l'], we can evaluate each entry by settjng- a;

for somea; € K. To show that dgB) 0 it is enough to show that it is non-zero after an
evaluationatsoma € K. Wechoosgr =ys=ya=%=y=1landp=Vs=)= Y =0.
After this evaluation the matriB is of the blockform

B/ B//
(55)

with the following submatrices:
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(i) B'is and x (d — n-+ 1)-matrix with Bf; = (djﬂgl) fori=1,...,d,j=1,....,d—
n+1. .
(i) B”is and x n-matrix with Bf; = (i — 1) (dj_f{l) fori=1,....d,j=1,...,n.
(i) bis a1x (d—n+1)-matrix withbyy =1 andb;j=0forj=2,...,d—n+1.
In this description we assume that the characteristi€ af 0. By Propositiof 3]1 in the
Appendix we know that déB) # O for all choices ofi andn. O

The fact that the idedl(d) has at Ieasg distinct generic initial ideals fod € N can be

used to show that having at Ie%tdistinct gins is a generic property in the following
sense.

Theorem 2.13.Let de N, d > 3. There is a Zariski-open s@t£ U c K(@+DI2l sych that
I(d,q) C S has at Ieasg distinct generic initial ideals for every g U.

Proof. By Lemma 2.9 we have to determine an open subséethc K(@+DIAl sych that
dimk (1(d,q)q) = d+1 andJ(n) € gN(I(d,q),d) for everyJ(n) as in Notatior 2J5 and
everyq e U. For the first condition note that there is a non-empty opédrsstU of
K(@+DIAl sych thatfy(q),. .., fa11(q) are linearly independent far € U. We can thus
assume that dipl(d,q)q) = d 4+ 1 generically. It remains to show that for genegie
GL3(K) the Plucker coordinates ofl (d,q))q corresponding to the columns indexed by
J(n) are not equal to zero.

Lety:L[xy,Z] — L[I'][x,y,Z] as in Subsection 2.1 with as defined in Notation 2.8. Let
B be the(d + 1) x (dzz)-matrix of the coefficients of(f1),...,y(fd4+1), i.e. the entryb;j

of this matrix is the coefficient of( f;) in the basis of all monomials of degrden x,y,z
in reverse lexicographic order. Note that these coeffisiane polynomial expressions in
they; and thebj, for j=1,...,9,i=1,...,d+1,v € A. For(p,q) € K% x K(@+DIA et
B(p,q) denote théd + 1) x (dgz)-matrix overK obtained by mapping; to p; andbj, to
giv for everyj, i, v.

For N(d) as in Notatiorf 2]1 and € N(d) denote byB; the matrix consisting of all
columns fromB indexed by the elements af By the choice 0B the determinant déB;)

is a polynomial in they; andby, with coefficients inK. For (p,q) € K@V we have
det(B;)(p,q) = det(B(p,q)).

With the notation of Remafk2.11 fop, q) € K x K@+ DA with g, =1 fori=1,...,d+

1 and 0 otherwise, anph = ps = ps = ps = p7 = 1 andp2 = ps = Pg = P9 = 0 we have
thatB(p, q) is exactly the matrix with rows

VYY), yOoR ), yORYE2), . v (@ y) ().

By Propositiori 311 we know that d&(p,q)yn)) 7 O for everyJ(n) from Notation2.5.
Hence, deiB;n ) is not the zero polynomial iK[y, ..., yol[biy 1 1 <i <d+1,v € A]. Let
0+#V c K (@+DIA pe an open subset such that(@p, q) ;) # O for every(p,q) € V

and eveny(n).

Let

U= {q e KDL there existp € K : (p,q) ev} c K@+
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which is a non-empty open subsettof V2 For eachy € U if we substitute thés;, by
the corresponding;, in det(B;,), we obtain a polynomial ii[y1, ..., Y], which is not
the zero-polynomial, since by assumption there expstsK® with det(B(p, d)ym)) # 0.
Thus for a giverg € U there exists & W(q) C GL3(K) with detB(p,d);(n)) # 0 for every
p € W(q). In other wordsJ(n) € gN(d) as in Notatiori_ 23 for every ide&(d,q) C S,
whereq € U. By Lemmd 2.9 this implies thd{d, q) has at Ieasg generic initial ideals
for everyge U. O

3. APPENDIX

This appendix contains the proof that the determinants efntlatrices describing the
relevant Plicker coordinates needed in Sedtioh 2.4 arequal to zero. Fod € N and
0 < n < d consider the matrix
B/ B//
- (515)

with the following submatrices:
() B'isand x (d —n+ 1)-matrix with Bf; = (d] '*1‘1) fori=1,...,d,j=1,...,d—
n+1.
(i) B is and x n-matrix with B, = (i — 1) (O'J '*1) fori=1,....,d,j=1,...,n
(i) bisa1x (d—n+1)-matrix withbyy = 1 andb;j =0 for j=2,...,d—n+1.

Proposition 3.1. For every de N and0 < n < d we havealetB) # 0.

Proof. To show that déB) # 0, we first do a Laplace expansion with the last row, thereby
dropping the matriceb and 0 in the block form and deleting the first columnBbf We
then replacej by (d+1— j)Bj; —Bjj for j = 1,...,n, which corresponds to an elemen-
tary column operation and, hence, does not change the absalue of the determinant.
This yields ard x d-matrix

(clc),
with the submatrice€,C’:
(i) Cis and x (d — n)-matrix with entriesCi; = (d*}“)
(i) C'is and x n-matrix with entrie<C]; = (d —i—j +2) (d '*1)
We can substitut€;; by Cfj := Cj; for j = 1,...,d — n without changing whether the

determinant is zero or not. Moreover, we can rep[a{:é)y 9= .+1C” andCj; by g- I+1C’
(i.e. multiply theith row of the matrix(C"|C’) by (d —i +1)). We then obtaln a matrix

(D[D"),
with
(i) Dis and x (d — n)-matrix with entrieDj; = - (4 11) = (? ).

i+1 i

(i) D’ is and x n-matrix with entriesD;; = dd' .HZ (d] ) = (? -
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We will now inductively use row operations and Laplace exgdamto eliminate the matrix
D’ and the lash rows of (D|D’). We replaceD;j by

d—i d—i—-1 d—i—1
o -oua=(570) - (*127) = (°12)
d—i d—i—1 d—i—1
Di/j_D/““”:<J—1)_( i1 ):< -2 )

fori=1,...,d—1, which does not change the absolute value of the determiBanthen
the first column oD’ is 0 except foDj;, = 1. Using Laplace expansion on this column
we get the reduce@ — 1) x (d — 1)-matrix

andDj; by

(D1|D1),
with detD|D’) = det(D1|D}), where
(i) D1isan(d—1) x (d — n)-matrix with entrieg D1 )ij = (dj*_;l).
(i) D}isan(d—1)x (n— 1)-matrix with entriegD))i; = (dflil)-
This process is repeateetimes, so we obtain @& —n) x (d —n)-matrix D, with (Dy)ij =

(?_‘r']:rl‘) fori,j=1,...,d—n, such that déD,) = detD|D’).

We replace(Dp)ij by the entryEj; = (ﬁ;');)! : (”(ﬁ)‘!)! - (Dn)ij = (?_‘i) As the first
factor is a multiplication of each row &, with a non-zero number and the second one is
a multiplication of each column by a non-zero number, we kiteat de{D,,) # O if and
only if det(E) # 0.

But |detE)| = 1, which follows by induction ord —n. Ford —n =1, we have the
single entry(dal) =1, so determinant df is 1. Letd —n> 1. SetE; = Ej_4); — Ejj for
i=2,...,d—n, which corresponds to subtracting ftlerow of E from the(i — 1)st. Then
|det(E)| = |detf(E’)|. AsEj; =1 andE{; =0 fori > 1, we have defE’)| = 1-det E"),
whereE/! = (djﬂf) — (f':i) = (djﬂ;l) fori,j =2,...,d—n. By the inductive hypothesis
|detE”)| = 1 proving the claim. O

REFERENCES

[1] D. Bayer,The Division Algorithm and the Hilbert Schenfh.D. thesis. Harvard University (1982).

[2] D. Bayer and M. StillmannA criterion for detecting m-regularitynvent. Math .87, 1-11 (1987).

[3] T. Bogart, A.N. Jensen, D. Speyer, B. Sturmfels and R.Rorfias,Computing tropical varieties].
Symb. Comput42, No. 1-2, 54-73 (2007).

[4] W. Bruns and A. ConcaGrobner bases, initial ideals and initial algebrals: L.L. Avramov et al.
(Hrsg.), Homological methods in commutative algebra, IPlddeedings, Teheran (2004).

[5] W. Bruns and J. Herzog;ohen-Macaulay rings Rev. EBambridge Studies in Advanced Mathemat-
ics 39, Cambridge: Cambridge University Press (1998).

[6] S. Collart, M. Kalkbrener, D. MallConverting bases with the @bbner Walk J. Symbol. Compu4,
465-469 (1997).

[7] W. Decker, G.-M. Greuel, G. Pfister, H. Schonemafimgular 3-1-3, A computer algebra system for
polynomial computationg\vailable at http://www.singular.uni-kl.de (2011).

[8] D. EisenbudCommutative algebra with a view toward algebraic geomeasaduate Texts in Math-
ematicsl50, Springer (1995).


http://www.singular.uni-kl.de

LOWER BOUNDS FOR THE NUMBER OF GENERIC INITIAL IDEALS 11

[9] M.L. Green, Generic initial ideals In: J. Elias (ed.) et al., Six lectures on commutative algeb
Birkhauser, Prog. Math.66, 119-186 (1998).

[10] R. HartshorneAlgebraic GeoemtryGraduate Texts in Mathematib®, Springer (1977).

[11] J. HerzogGeneric initial ideals and graded Betti numbels: T. Hibi (ed.), Computational commu-
tative algebra and combinatorics, Mathematical Societjapfan. Adv. Stud. Pure MatB3, 75-120
(2001).

[12] A. N. Jensen,Gfan, a software system for Gr'obner fans and tropical &g Available at
http://www.math.tu-berlin.de/jensen/software/gfdarghtml.

[13] D. Maclagan and B. Sturmfels)ntroduction to Tropical Geometry Book in preparation.
http://www.warwick.ac.uk/staff/D.Maclagan/paperspicalBook.pof

[14] D. Maclagan, R. Thomas, S. Faridi, L. Gold, A.V. JayamthA. Khetan and T. Puthenpurakabmpu-
tational Algebra and Combinatorics of Toric Ideals: R.V. Gurjar (ed.) et al., Commutative algebra
and combinatorics. Ramanujan Mathematical Society Ledtiates Seried, Ramanujan Mathemat-
ical Society (2007).

[15] H. Moller, F. Mora,Upper and Lower Bounds for the Degree oftBner BasesProc. EUROSAM 84,
LNCS 174, 172-183 (1984).

[16] T. Mora and L. Robbiandlhe Gkbner fan of an ideall. Symb. Compus, No.2-3, 183-208 (1988).

[17] T. Romer and K. Schmitzizeneric Tropical VarietiesJ. Pure Appl. Algebr216, No. 1, 140-148
(2012).

JOKE FRELS, FACHBEREICH MATHEMATIK, TECHNISCHE UNIVERSITAT KAISERSLAUTERN, POST
FACH 3049, 67653 KISERSLAUTERN, GERMANY
E-mail addressjoke.frels@yahoo.de

KIRSTEN SCHMITZ, FACHBEREICH MATHEMATIK, TECHNISCHE UNIVERSITAT KAISERSLAUTERN,
PosTFACH3049, 67653 KISERSLAUTERN, GERMANY
E-mail addressschmitz@mathematik.uni-kl.de


http://www.math.tu-berlin.de/jensen/software/gfan/gfan.html
http://www.warwick.ac.uk/staff/D.Maclagan/papers/TropicalBook.pdf

	1. Introduction
	2. Bounds for Generic Initial Ideals
	2.1. Genericity
	2.2. The generic Gröbner fan and its graded components
	2.3. Candidates for maximal Gröbner cones
	2.4. Main Result

	3. Appendix
	References

