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GENERIC TROPICAL VARIETIES ON SUBVARIETIES AND IN THE
NON-CONSTANT COEFFICIENT CASE

KIRSTEN SCHMITZ

ABSTRACT. In earlier papers it was shown that the generic tropicaétaof an ideal can
contain information on algebraic invariants as for exantipéedepth in a direct way. The
existence of generic tropical varieties has so far beengor@v the constant coefficient
case for the usual notion of genericity. In this paper we gadire this existence result
to include the case of non-constant coefficients in certaitings. Moreover, we extend
the notion of genericity to arbitrary closed subvarieti€she general linear group. In
addition to including the concept of genericity on algebigtioups this yields structural
results on the tropical variety of an ideal under an arbjtliwear coordinate change.

1. INTRODUCTION

One aim of tropical algebraic geometry is to provide a toostiady certain algebraic
varieties with the help of combinatorial objects assodabtethem, see for example [4, 5,
17,124]. These tropical varieties can be defined in variousvead settings, for instance
as explained in_[[7]. We will use a definition relying on Gr@porbasis theory as stated
below.

A striking observation concerning tropical varieties adirgsl in this way is that they
depend on the choice of coordinates of the polynomial ringaiaing the defining ideal.
As algebraic invariants of its coordinate ring are, howgbgrdefinition independent of
the choice of coordinates, the question arises whethee tirergeneric tropical varieties
which encode algebraic invariants in a direct way. [Inl [21\vds shown that generic
tropical varieties exist in the constant coefficient caselfe usual notion of “genericity”.
These generic tropical varieties contain information aairants as for example the depth
and multiplicity of the coordinate ring in a direct way, s@e|].

In this paper the existence result of [21] will be generalize two ways. First it will
include the non-constant coefficient case in the settingp@field of generalized power
seriesL over a given ground fiel&. The proofs for this can also be adapted to work for
slightly different valued field, e.g the field of Puiseux ssroverK (in which case we
need to assume that the characteristik ad 0) or the field introduced in [16], but rely on
the structure oL being a field of formal power series ou€r

The second generalization is with respect to the notion ehggicity”. In the classical
statements on the existence of generic initial ideals iob@er basis theory (as in![6,
Section 15.9] and [8]) the term “generic” refers to the estise of a non-empty open
subseU of the general linear group GIK) overK such that a given property hold for
all g € U. Most proofs revolving around this notion, however, do ne¢ any specific
properties of Gk(K) other than it being closed in itself and irreducible. We dfere use
the notion of genericity with respect to any closed irrebleesubvariety of GLy(K) as
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explained in Sectiohl4 and prove the existence of a genanpical variety orvV. This
leads to certain finiteness results regarding possiblec@bparieties of arbitrary linear
coordinate transformations, such as Corollary 8.9.

This paper is organized as follows. In Sectidn 2 the basieatbjof study in our setting
and our notation is introduced and the main result is sunmedri Since the proofs of
the main results depend on considering certain extensiovedued fields, the technical
issues and statements concerning this are presented iar$&cthe precise definition of
genericity used here are given in Secfion 4 along with somermgéresults needed in the
following. In Sectiori b the existence of generic Grobnanptexes in this general setting
is proved using the methods developed!in! [13]. The proof efakistence of generic
tropical varieties in this general meaning seems to be mwme@hied. It relies on the
ideas of[11] where short tropical bases are produced watléhp of rational projections.
The technical generalizations concerning the auxiliagald and the rational projections
introduced there to our context are explained in SectibmsiGlarespectively. In Sectidn 8
we give the proof of the existence of generic tropical véegetind generic tropical bases.
Section[® concludes the paper with some example classeshichwgeneric Grobner
complexes and tropical varieties can be computed directly.

The material is to a large extent contained in [23].

2. PRELIMINARIES AND STATEMENT OF RESULT

For the following letK be an algebraically closed field ahdoe the field of generalized
power series ovef, see Sectionl3 for the technical details on the valued fiedgsied for
the proof of the main theorems. The assumption khae algebraically closed is needed
for instance for Proposition 4.2. We will use the definitidnGrobner complexes and
tropical varieties from([13, Chapter 2]. Following the nada there, for an elemerat of
the valuation rindR_ of L we denote by the image ot in the residue field oR. modulo
its maximal ideal. Note that in our setting this field is caicafly isomorphic toK and
we will identify it with K in the following.

LetS =L[Xg,..., %] andS = K[xy,...,Xn] be the polynomial rings im variables over
L andK, respectively. For a polynomidle § with f =5, cynayx” all of whose coeffi-
cientsa, are inR_ we denote byf the polynomialy ,cyn @yx¥ € .

Forf € § andw € R" we can consider the polynomi&{x;t®:, ... x,t*), which is the
image off under theL-algebra automorphism d& induced by mapping; to xt®. Let

W = rrvn{v(av) +w-v}.
Then

iNg(f) =t WF(xgt@, ... xt@n) e &

is called thanitial form of f with respect taw.
We consider graded idealsc S_ with respect to the standaftgrading. For a graded
ideall C S the ideal

ine(l) = (iny(f): fel)c
is called theinitial ideal of | with respect tav. We denote byS /I)q4 theL-vector space
of homogeneous elements of degdeef S_/I for d € Z.
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In contrast to the classical setting the partial orderinggohs induced by thewo-weights
cannot be refined by a monomial ordering, since this partdéiodepends on the coef-
ficients of the monomials appearing. This leads to some teahdifficulties, seel[13].
However, the main properties bfas a graded ideal i are preserved under the degen-
eration to in,(1).

Proposition 2.1([13]). Let | € § =L[xy,...,X,] be a graded ideal andy € R". Then
iny(l) is a graded ideal and the Hilbert function of the two corresgimg coordinate
rings agree: For d> 0 we have

dimL(SL/I )d = dimK(&/inw(I ))d
In particular, this implies equality for the Krull dimensiedim(S_ /1) = dim(Sc/iny(l)).

In classical Grobner basis theory for a graded idealSc a complete fan iiR" is defined
by the following equivalence relation, sée [18]. Two vestar, /' € R" are equivalent
if and only if in,(l) =iny(l). The equivalence class = C|w| of somew € R" is

a relatively open cone and we denote by(in the initial ideal corresponding to it. The
topological closure of[w] is called aGrobner coneand the collection of all cones arising
in this way form a complete fan, th@robner fanGF(1 ), in R".

In the non-constant coefficient case for graded idealsS the set of allw € R" which
induce the same ideal jsil ) are the relative interior of a polyhedron, calle@G&dbner
polyhedron The collection of all these polyhedra form a polyhedral ptaw in R". All

of this is proved in[[1B, Chapter 2]. For a graded ideal S the polyhedral complex
defined by all Grobner polyhedra bfs called theGrobner complexaC(1) of I.

We now consider the zero-s¥{1) C L" of | consisting of allp € L" with f(p) = 0 for
all f €1. Note that it is not required thatis a radical ideal. The notion of the tropical
variety of| originally describes the component-wise imagé&of) undery, i.e.

{(v(p),-.-,v(pn)) - PEX(}NR".
For computational aspects there is a useful descriptionopidal varieties in terms of
initial ideals, which is closely connected to the notionrfial ideals defined above. By
the so called fundamental theorem of tropical geometry {seexample [[5, Theorem
4.2]) the tropical variety of a graded iddat- § as defined above can be identified with
the set of allw € R", such that ig(f) is no monomial for allf € | or, equivalently,
such that ig,(l) contains no monomial. With this description the tropicaliety is a
subcomplex of the Grobner complexloin a natural way. We consider this polyhedral
complex structure as part of this notion and take this as efinition.

Definition 2.2. Letl C § be a graded ideal. Then the subcomplex of the Grobner com-
plex of I induced on the set

{w € R" :iny(l) does not contain a monomigl
will be called the tropical variety df and be denoted by ().

To be able to refer to it, we state the following theorem eialyproved in [2, Theorem
Al

Theorem 2.3([2]). Letl € § =L[x1,...,X,]) be agraded ideal. If we consider the tropical
varieties as sets, we have:
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(i) T(1)=T(/1)=UpT(P) where the union is taken over all minimal prime ideals
Pofl.
(i) If 1 is prime withdim(S_/1) = m and | does not contain a monomial, the@l T
is a pure m-dimensional complex.
(iii) If dim(S_/1)=m and there exists a minimal prime P of | containing no monbmia
with dim(S_/P) = m, thendimT (1) = m.

To compute tropical varieties the concept of a tropical basiuseful. Let ¢ § be a
graded ideal. Then a finite system of homogeneous generfators, f; of | is called a
tropical basisof | if

T()=T(f).
i=1

In the constant coefficient case every ideal has a tropicsislas was observed inl[3,
Theorem 2.9]. (The proof of that paper also works for othddgi¢hanC.) In the non-
constant coefficient case tropical bases, which use agestmumber of polynomials, are
constructed in[11]. The methods of rational projectionsduhere will be important for
the proof of our main theorem.

The main result of this paper can be summarized as followsefadizing the result [21,
Theorem 1.1] we prove that for a graded ideaSna generic Grobner complex and a
generic tropical variety exist for the notion of generidagscribed in the introduction and
elaborated in Sectidn 4. More precisely,llet § be a graded ideal and C GLy(K) be a
closed subvariety. Then there exists a Zariski-open set/dC V such that GCy(l)) and
T(g(l)) are the same polyhedral complexes (respectively) fay alU. Moreover, there
exists a notion of a generic tropical basis in the second ciss is stated and proved in
Theoreni 5.1 for the Grobner complex and in Theokrerh 8.7 ftribpical variety.

3. VALUED FIELDS

In this section the fields and valuations will be introdudédf are used in the following.
LetK be a field endowed with thteivial valuation v, wherev(0) = o andv(a) =0 fora e
K*. This valuation gives rise to the so calleshstant coefficient casetropical geometry.
To define tropical varieties in a meaningful way, howevetdfextensions oK with a
richer image are needed which inherit certain propertie§ depending on the setting.
There are various possibilities to construct such fieldresitsns. A prominent example
for a valued field L, v) extendingK with v(L) = RU{} is thefield of generalized power
series over Kwhich will be the construction used in the following. Thisispecial case
of the following definition.

Definition 3.1. Let R be a domain. The set

R{t} = { chvt" :cy € Rand{v:c, #0} is WeII-ordered}

is called theing of generalized power series over R

Recall that this set with addition and multiplication argiasly to those of polynomials
is indeed a domain, see [20, (1.14)]Klis an algebraically closed field, then sdig{t }},
see[20, (2.1) and (5.2)]. In this case there is a naturabtimo onK {{t}} defined by
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v:K{t)}] — RU{w}
f = cht" — min{v:c, #0}if f#£0
VER

andv(0) = oo. It is useful to viewK {{t}} as a valued field extension &f endowed with
the trivial valuation.

Notation 3.2. In the followingK will always denote an algebraically closed field equipped
with the trivial valuation and. = K {{t}} the field of generalized power series otewith
the natural valuation as defined above.

To obtain results on tropical varieties under generic cioarte transformations it is useful
to first consider the coefficients of these coordinate cheagendependent variables, see
[21]. For a finite set of independent variabdsnd a fieldK or L one can then do the
necessary computationshi{Y) orL(Y), respectively. Afterwards the desired coefficients
for these variables can be substituted, see Selction 4 fatdtaéls. The main technical
problem with this is that the field extension ¥ydoes not commute with taking the field
of generalized power series, i.K(Y) {t}} is not canonically isomorphic t& {{t}} (Y).
The rest of this section is devoted to establishing a settimgh copes with this difficulty.
LetY be a finite set of independent variables oivend consider the canonical inclusion
of polynomial ringsK[Y] < L[Y]. Moreover, for a domaiR let Q(R) denote its quotient
field. We need the following result:

Proposition 3.3. LetK,L and Y be as defined above and K[Y] be a prime ideal. Then
there is a canonical inclusion of rings

LIY]/PLIY] = (K[Y]/P) {{t}} -
In particular, PLIY] is a prime ideal in Y] and we have a natural field extension
Q(LIY]/PL[Y]) — Q(K[Y]/P) {{t}} -

Proof. Note that every elemefte L[Y] is a formal sumy , (5 ,cr avuth)y’, where we
abbreviatey;* - --yim by y¥ for v € N™, the set ofv appearing as exponents is finite and
for everyv the set{ i1 : a,, # 0} is well-ordered.

We define the ring homomorphism

giLY] — (KY]/P){th
> ath)y’ — 5 (S ay’ +P)tH,

V. ueR ueR v
which is well-defined, since for a givem there exist only finitely many, such that
ayy # 0. We show that kep = PL[Y]. First note that fop € P C K[Y] — L[Y] we have
Y(p) = 0 by definition. Sincep is a ring homomorphism, this implies
W pihi) =% w(p)yhi) =0

for every finite sum withp; € P andh; € L[Y]. Hence PL[Y] C kery.
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For the other inclusion lét = ¥ , (5 ,cr avutH)y” € kerg. Then
> S ay’+P)th =0,
jeR

soy,avuy’ € P for every u appearing. Choose an exponegte N™ with non-zero
coefficienty ;,cg ayut” in h. Furthermore, choossy, such thaty,,, # 0. Since

. vV
p]_ = avuoy c P,
Avoko z
we can writey"® =3, &,,,0y” + P1, Whereay, . = —ay,/avp,- Hence,
h — z av ut“ VO+ Z a\/ut“
HeER Vo MER

= (Y ayuth)( ; a’ VAp)+ Y (Y auth)y
H;R ° V#Vo Ve V#Vo H;R

= pihi+ Z ( Z bvutu)yv7
V#Vy UER
wherep; € P, hy € L[Y] and the right part is a polynomial lfjY| containing one less term
thanh. By induction on the number of terms bfve obtain a finite expressidn= 3 pihj
with p; € P, hj € L[Y], soh € PL[Y]. This shows thaPL[Y]| = kery. The mapy therefore
induces a canonical inclusion

LIY]/PLIY] = (K[Y]/P) {t}}-
In particular, PL[Y] is a prime ideal, agK[Y]|/P){{t}} is a domain. Moreover, since
Q(K[Y]/P) {t}} is a field, this inclusion induces the desired field extension

Q(L[Y]/PLIY]) = Q(K[Y]/P) {t}}.
0

The fieldQ(L[Y]/PL[Y]) will play a fundamental role in the following sections, it
provides the right tool to deal with “genericity” on the salietyV C GLy(K) which is
the zero-set oP, see Sectiohnl4 for this notion.

With the above result we obtain a natural valuation@h[Y]/PL[Y]) which extends the
valuation onL.

Corollary 3.4. The chain of inclusions

K{th =L Q(LIY]/PLY]) = Q(K[Y]/P) {{t}
is an inclusion of valued fields, where the valuations on L@Q(d[Y]/P) {t}} are the nat-
ural valuations as fields of generalized power series and/étheation on QL[Y]/PL[Y])
is the restriction of the one on(@&]Y]/P) {t}}.

We will use the following notation.

Notation 3.5. Let K — L be as in Notation 3]2 and C GL(K) be a subvariety defined
by a prime ideaP. In the followingL(V) will always denote the fiel@(L[Y]/PL[Y]) as
constructed above with the valuation of Corollaryl 3.4. lditidn K(V) will denote the
quotient fieldQ(K[Y]/P) equipped with the trivial valuation.
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4. GENERICITY

As introduced in Section 3 we consider the field exten&ion L of valued fields, where
K is an algebraically closed field equipped with the trividsagion and. = K {{t}} is the
field of generalized power series ouer

In this section we will specify the meaning of the tegenericfor this note and introduce
the notation used here. This notion of genericity diffesrirthe one used in [6, 8] and
also so in[[21] 22] in two ways. First of all we will not considarbitrary coordinate
transformations. Since we are dealing with valued fields thedvaluation has a great
influence on taking initial ideals as introduced in Secfibrc@rdinate transformations
involving field elements of non-zero valuation will not ydedny “generic” results, see
[21, Remark 2.8]. We therefore only consider coordinatesi@rmations by elements of
GLn(K) instead of the whole general linear group{BlL).

Moreover, we will generalize the meaning of “generic” toiidry irreducible subvari-
eties of Gly(K). We will consider Gly(K) as an affind-space of dimension? equipped
with the Zariski topology. In the classical setting in Gn&lp basis theory the term generic
is used, if there exists a non-empty Zariski-open subsetGL,(K), such that alh € U
fulfill a given condition. Such a séi is by definition of the Zariski topology dense in
GLn(K), so the name “generic” is justified. By a subvarietof- GL,(K) we will mean

a non-empty irreducible closed subset. As we would like &l déth properties of subva-
rieties ofV as well, we will use the notion “generic fof’, meaning there is a non-empty
Zariski-open subset &f (in the induced topology) satisfying the given conditiom plar-
ticular, this allows us to extend our results to algebratmsaups of Gl(K) as well, see
Sectior® for a discussion of the subgroup of diagonal megritn addition this concept
can yield results on the number different outcomes for abrdimate transformations in
GLn(K), see Corollary 819.

To handle generic coordinate transformations the follgwiralgebra homomorphism
plays a fundamental role.

Definition 4.1. LetY = {yij L= 1,...,n} be a set of? independent variables over
K andV C GLy(K) be a subvariety defined by the prime id&t K[Y]. LetL(V) be
the field extension ok from Notation[3.b. In the following we consider tthealgebra
homomorphism induced by

)[le -y Xn ]

y:iL[X1,...,Xn L(V
Z (i + PL[Y])x

For anyg = (gij) € V C GLn(K) this induces ah-algebra automorphism drixy, . . ., Xn]
by substitutingg;j for yij. We identify g with the induced automorphism and use the
notationg for both of them.

In addition we will sometimes use the restricteehlgebra homomorphism induced by
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YiKXy, .o — K(V)[X1,..., %]
n

X — > (Vi +P)Xj.
=1

Note that for anyg € GLn(K) the idealg(l) is a graded ideal isomorphic taas a graded
L-module. In particulag(l ) has the same Hilbert function &sOn the other hand the set
y(l) C L(V)[Xq,...,Xn] is not an ideal in general. In this case we will be interestetthe
ideal generated by(l) in L(V)[x1,...,X,] and by abuse of notation denote this ideal by
y(1). Moreover, we will sometimes denote a polynomiaLifV)[xi,...,X] in the form
f(y) to emphasize its dependence on ¥hje Analogously, we denote the polynomial
obtained by substituting € GLy(K) for y (if this is possible, i.e. if no denominator of the
coefficients in they; vanishes) byf (g).

In the situation thalk is algebraically closed, this extension of ideals presetlie main
structural features of ideals which are important to ussThdue to the following propo-
sition.

Proposition 4.2. Let L C L’ be a field extension and consider gn@gebra inclusion
S =L[X,..., %) = S =L'[xg,...,%].

For any prime ideal RZ § the extension RSis also prime. If B,. .., Ps are the minimal
primes of an arbitrary graded ideald S, then RS /,...,PsS / are the minimal primes
of IS /. Moreover, for each homogeneous component of | we tiamel g = dimy/ (1S./)g.
This implies that the Hilbert functions and, hence, the Kdinmensions of | and IS
coincide.

Proof. See [9, Chapter II, Exercise 3.15] for the first statemenickvican be applied,
sincel is algebraically closed.

The second statement follows from the fact that “going dohoits for flat extensions:
For a prime ideaP C S_ we first show thaPS: NS = P. The inclusiolPS. NS D Pis
clear. Since§ — S isflat, by “going down” (se€ [6, Lemma 10.11]) we h@yer§ =P
for any minimal primeQ C S’ over PS,. But sincePS: is itself prime by the first
statement, this implieBS /' NS =P.

From this it follows directly that the minimal primes éfand 1S, correspond to each
other: LetP be a minimal prime of. ThenlS. C PS: andPS is prime. Assume that
thereis aprimeided) C §/ with 1S, € Q C PS./. By contracting and the above result we
havel Cc QNS c PandPis minimal over, soQNS. =P. ThusPS/ = (QNS.)S/ C Q,
which impliesQ = PS /. Hence, all the idealB,S /, ..., PsS / are minimal primes ofS; .
To show that there can be no other minimal prime<Jldie any minimal prime ofS,..
Thenl C (QNS), the latter of which is prime. Sind®, ..., Ps are the minimal primes of
|, there exists an inddxsuch that CR C (QNS.). So

1S, CcRS/ C (QﬁS_)S_/ c Q.

ThusRS '/ = Q, since both are minimal primes. This proves the second claim
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To prove the last claim ldty, ..., hp be anL-vector space basis &f, solg = @P:lL -hj.
Since(I1Sy/)g = lg® L as anL’-vector space, we have

D D D
(IS)a=lgaLl' = (@L-h ol =@Lel) =L h,
i=1 i=1 i=1
as the tensor product commutes with direct sums. Hgh&g)q is D-dimensional as an
L-vector space proving the claim. O

Note that all statements of Proposition]4.2 apply to theligla generated by the image
of | undery:

Remark 4.3. Propositior 4.2 implies that for a prime iddat- §_the idealy(P) C S (V)
is also prime. Moreover, for an arbitrary iddat_ S with minimal primesP, ..., Ps
the extensiory(l) of | under theL-algebra homomorphismfrom Definition[4.1 has the
minimal primesy(Py), ..., y(Ps) and the same Krull dimension &s

The concept of genericity as defined above will now be appbeidtroduce the generic
objects used in the following. As we have extended the megawfifigeneric” to subvari-
eties of Gly(K), the questions of [21] can be adapted to ask for the existefrecgeneric
Grobner complex and a generic tropical variety oh a subvariety C GL,(K).

Definition 4.4. LetV C GLy(K) be a subvariety andC S be a graded ideal.

(i) If for an open subset & U C V the Grobner complex G@(1)) is the same
polyhedral complex for ally € U, then this complex is called tlggneric Gbbner
complex of | on V It will be denoted by gGG(1).

(i) If T(g(l)) is the same complex for afj in an open subset£ U C V, then this
complex is called thgeneric tropical variety of | on\and is denoted by gl).

If V is clear from the context we will also denote g@C) by gGQl) and gT,(l) by
gT(l), respectively.

A priori it is of course not clear, that generic Grobner céexps or generic tropical vari-
eties exist. The proof of this will be the object of Sectiomil &ectiorn B, respectively.
Note, however, that in the constant coefficient case theéanas of a generic Grobner fan
and generic universal Grobner basis on a subvaviety GL,(K) can be proved with the
same method as in the proof 0f [21, Theorem 3.1], where the fiel

K' = K(yij :i,j=1,...,n)
is replaced bK (V). This yields the following theorem also needed in a lateofiro
Theorem 4.5.Let | C S be a graded ideal and \ GL,(K) a subvariety. Then there
exists an open s@ U CV and polynomials f{y), ..., hs(y) € y(I) C S(v) such that

(i) {h1(y),...,hs(y)} is a universal Gobner basis of {1 ).
(i) Forge U the set{hi(g),...,hs(g)} is a universal Gobner basis of ().
(i) All of these Gbbner bases have the same support.

As another first result in this direction we note that geradlycthe tropical variety of an
ideal is empty if and only if diriS_/1) = 0, the proof of which works exactly as the one
of the analogous statement in [21, Lemma 2.5] for the constagfficient case.
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Proposition 4.6. Let | C § = L[xq,...,Xn| be a graded ideal witlim(S_/1) > 0. Then
there exists an open subgef U C GL,(K), such that Tg(l)) # 0 for every ge U.

Note that every graded idedlC S with dim(S_ /1) = O contains a monomial. Thus
Propositiori 4.6 immediately implies that if it exists, (@ T= 0 if and only if dim(S_/1) =

0.

Recall that dinT (1) can be strictly smaller than dif§_/1) if | is not prime and the min-
imal primes ofl defining the dimension contain monomials (this follows frdheorem
[2.3). The above proposition shows that in general, howeegrality holds between the
dimensions even in the case of non-prime ideals.

Corollary 4.7. Let| C § =L[xi,...,Xn| be a graded ideal. There exists an open subset
0#U C GLp(K), such thadimT (g(l)) = dim(S_/1) for every ge U.

Proof. The case diff§ /I) = 0 is clear. Let dindS_/I) = m > 0. Then there exists a
minimal primeP of | with dim(S_/P) = m. By Propositior 4.6 there exists an open
subset 84U C GL,(K), such thafl (g(P)) # 0 for allg € U. Sinceg(P) does not contain
a monomial forg € U, Theoren 2.3 implies that dif(g(l)) = mforge U. O

If the generic tropical variety exists for an idéan a subvariety of GL,(K), we can also
hope to find a tropical basis of each idegél), such that each member cuts out the same
tropical hypersurface generically. This concept is endadehe following definition.

Definition 4.8. Let| C L[x1,...,Xn] a graded ideal and C GL,(K) a subvariety. Let
y(I) € L(V)[x1,...,X] be as in Definition 4]1. A finite set of polynomials

Fa(y), ..., Fs(y) € y(I) C L(V)[xq,- .., Xn]
is called ageneric tropical basis of | on Vif there exists an open setAU C V, such
that:
(i) Fi(9),...,Fs(g) is atropical basis of(1) forg € U.
(i) For everyj we have: The tropical variety(Fj(g)) is the same polyhedral com-
plex for everyg € U.

If 0 U C V fulfills these two conditions, the generic tropical basisaiedvalid onU.

The existence of generic tropical bases will be shown iniSe&

5. GENERIC GROBNER COMPLEXES

LetK andL be as defined in Notation 3.2. In[21, Corollary 3.2] the extise of a generic
Grobner fan of a graded ideblC K[xy,...,X,] was proved. In the setting of this paper
this is the same as showing that a generic Grobner complaxdded ideal exists in the
constant coefficient case, that is if the ideat L[xy,...,Xn] iS generated ifK[Xy, ..., Xn),
see[[13, Chapter 2] in a section on Grobner bases.

In the non-constant coefficient case a similar result canrbegol. The proof given here
relies on the fact thdt is a field of power series ové and a priori does not apply in
a more general setting. The idea of the proof is taken frorh, [Bere the concept of
Grobner complexes is introduced and their existence issh&ince only graded ideals
are considered, one can prove certain claims by considémmgomogeneous compo-
nents of the ideals separately. These are finitely genevatetdr spaces, which can be
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compared by studying the corresponding Grassmanniansdelatiénto projective space
via the Plucker embedding.

LetU be aD-dimensional vector subspace offdrdimensional-vector space. By choos-
ing a basis we represeldtas the row space ofla x N-matrix A with entries inL. We set
m= (B) and consider the vectét € L™ of all D x D-minors ofA. The components d?
will be indexed by subsets of tid¢ columns ofA of cardinalityD. Following the notation
in [13] in this section we denote the set of all such subsetsHy.

The equivalence class (up to scalar multiplePdh projective spac®™1 is called the
Plucker coordinates & in the Grassmannian GiD, N). Note that the componeni® of

P for J € [N]P are elements df, so we can consider the componentwise valuati®).
This is not a well-defined concept on the Plicker coordsamce these are defined up
to L-scalar multiple. In the following we will always mean thaewapply the valuation
map to a fixed representative, when we consider the valuatiBiicker coordinates. The
final results will always depend on difference®;) — v(P}) for J,J' € [N]P and this is
well-defined on the equivalence classes induced by scalkipfiaation.

The aim of this section will be to prove the following theorawhich is an analogue to
[21, Theorem 3.1] in the non-constant coefficient case.

Theorem 5.1.Let | C § be a graded ideal and \© GL,(K) be a subvariety. Then
there exists an open s@t~£ U C V, such that the Gibner complexcC(g(l)) is the same
complex for all ge U.

This theorem shows that the first part of Definitlon|4.4 is natuous, since generic
Grobner complexes indeed exist. To prove this theorem wsider the graded com-
ponents of the initial ideals af(l) for g € V. These graded components each induce a
polyhedral complex ifk", see[[13]. Led > 0. Forge V andw € R" set

Coylw] = {& € R :ingy (9(1))a = inwo(9(1))a} -

We call the topological closure of this tl&rdbner polyhedron otv in degree d The
name is justified by the following statement.

Lemma5.2. Let | and V be as in Theorelm 5.1 and>d0. Then there exists an open set
0#£U(d) CV, such that for evergw € R" the set

Conlw] = {& € R :ingy (g(1))a = inw(9(1))a}
is the same relatively open polyhedron for akkdJ (d).

Proof. We follow the proof of the corresponding statement.in [13hgsalmost the same
notation and making the necessary observations for oultresu

Consider thd_-algebra homomorphism: L[Xy,...,X)] — L(V)[X1,...,Xn] from Defi-
nition[4.1. Recall thay(l) C L(V)[Xs,...,%] denotes the graded ideal generated by the
image ofl undery.

Let dim_Iq = D. We then have dimy, y(1)qg = D and dim g(I )¢ = D for all g € GLn(K)

by Remark 4.8. Moreover, by Propositioni2.1 we also knowdlirak ing(g(1))q = D for

g € GLn(K). SetN = (”*gfl) and enumerate all monomials of degoeby xH1, ... xMN,

The L(V)-vector space/(l)q corresponds to a point in the Grassmanniap\s(D, N)
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and for allg € GL,(K) the L-vector spaceg(l )4 correspond to points in the Grassman-
nian Gi (D,N). Moreover, theK-vector spaces inNg(l))q correspond to points in the
Grassmannian (D, N).

Let hy(y),...,hp(y) be anL(V)-basis ofy(l)4. Note that by multiplying with denomi-
nators we can choose the coefficients of the terms as polyi®inithe residue classes
of they;; modulo the defining prime ideal ™ C GLn(K). This implies that the compo-
nentsPs(y) of the Pliicker coordinates gfl )4 for J € [N]P are also polynomials in the
residue classes of thgj. We claim that there exists an open set® C V, such that
V(Py(9)) = v(P3(gd')) for all g,d € U and allJ € [N]°.

To prove this considd?;(y) as an element df (V) {{t}} by the natural inclusion

L(V) = K(V) {{t}

as in Corollary 3.4. Thus we write(y) as a formal power series tnvhose coefficients
are polynomial expressions in the residue classes ofith€€hoose an open subset)
U cV, such that no leading coefficient in any of tRgy) as an element of the valued
field K(V) {t}} vanishes. This implies(P;(g)) = v(Ps(d')) for all g,g € U and every
J € [N]P,

In particular,P;(y) =0 if and only if P;(g) = 0 forg € U. Sohs(g),...,hp(g) is a basis of
the L-vector spacg(l )4, since these vectors are linearly independent and the dioren
of y(1)g andg(l )4 coincide. Hencel;(g) are the Plucker coordinatesgfi )4 for g € U.
ForJ € [N]P andg € U letM; = ¥ jcj Hj andW(w) = miny {v(P3(g)) + w- M;}. Denote
by p$’(g) the Pliicker coordinates ofjiig(l))q depending orw € R".

As proved in[13] the equation

py(g) = toM-W(w)py(g)

holds forg € U up to global scaling, which does not change the pointin tres&nannian.
Thus fore/ € R"andg € U we have

W eClylw] & iny(g(1))a=inw(g(l))d

& pY(@=pSg WeNP
& t@M-W(w) Py(g) = tw-My-W(w) Py(g) VJe [N]D.
If for someJ € [N]P we haveP;(g) = 0, then alsg¥(g) = 0 for everyw, so the above
statement does not impose a conditionccga)[a)]. If P3(g) # O, the last equation is
fulfilled if for every setJ we have:
(i) Either the minimumW (w) is not attained af, sov(P;(g)) + w- My > W(w).
Thenp? (g) = p?(g) = 0 andv(Ps(g)) + - My > W(w') as well.
(i) Or we havev(P;(Q)) + w- My = W(w), then the Plucker coordinates coincide if
and only ifv(P;(g)) + o' - My =W(w').
These equalities and inequalities def@gﬁ) [w] to be the relative interior of a polyhedron
in R", which does not depend grfor g € U, asv(Ps(g)) is the same for everyc U. [

After having obtained individual “generic” Grobner pobgdira in a given degree in Lemma
5.2, these can now be shown to form a polyhedral compléX'inThis has been proved
in [13].
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Lemma 5.3([13]). For all g € U(d) as in LemmaX5I2 the collection of the closures of all
polyhedra (g(l)[w] for w € R" form the same polyhedral comple® in R".

With these prerequisites the proof of Theorlenj 5.1 can be tietbin the same way as
is done in[[13].

Proof of Theorerh 5]1For eachd € N there exists an open setAU (d) C V, such that
the collection of the closures of alg(l)[w] for w € R"is a fixed polyhedral comple¥d

in R" for g € U (d) by Lemmd&5.B. It remains to show that there is a finiteet N and
an open set & U C V, such that fog € U we have

iNw(9(1)) =ingw (9(1)) < iNe(g(1))d =inw (9(1))q foralld € 2.

In this case we consider the common refinement o¥4lfor d € 2 containing the clo-
sures of the relatively open polyhedty)[w] = ﬂdegcg(l)[Q)]. These polyhedra are

the equivalence classes of the relation of inducing the saitial ideal in,(g(l)) =
ingy (g(l)) for two elementsv, ' € R" for g € U. This proves Theorem3.1.

To prove the above claim recall thgfl) C L[xy,...,X,] has the same Hilbert function
for everyg € V. Moreover, the Hilbert function is preserved by taking ialiideals
iNne(g(l)) C Kxg,...,X| by Propositiori 2]1. The Hilbert function is also preservid i
initial ideals of in,(g(l)) are taken in classical Grobner basis theory with respestitee
term order, (see [6, Theorem 15.26]). Any such initial idsane of finitely many mono-
mial ideals, as there are only finitely many monomial idedth whe same Hilbert func-
tion, seel[12, Corollary 2.2]. We can now tafeto be the set of total degrees of all min-
imal generators of all these monomial ideals, since evesglidy,(g(l)) has a Grobner
basis of polynomials in these degrees. The claim now follivars the general fact that
two graded ideals coincide, if they coincide in the degrggeearing in a generating sys-
tem for each of them. OJ

This already implies that there are only finitely many poditigs of what the tropical
variety can be under a generic coordinate change which wildeded to prove that in
fact, there is only one such possibility in the main theordinis follows from Theorem
together with the fact that the tropical variety alwag/a subcomplex of the Grobner
complex.

Corollary 5.4. Let | C § be a graded ideal and \& GL,(K) a subvariety. Then there
exists a Zariski-open s@t+# U C V, such that the tropical variety (B(l)) is one of a
finite set of polyhedral complexes for alkgJ .

6. GENERATING SYSTEMS OFPROJECTIONIDEALS

To prove the existence of generic tropical varieties on @misubvariety/ of GLp(K)
some ideas and results from [11] need to be generalized.rticgar, we want to apply
[11, Theorem 3.5] in a generic setting. There an idk& defined corresponding to a
prime ideall and a linear projection. The idea behind this definition is, that the tropical
variety of JNL[Xxy,...,X| essentially is the image of the tropical varietyl afnderrt, see
Propositio 8.1 (originally([11, Corollary 3.6]). Thus thidealsJ andJNL[Xy,...,Xn]
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provide a tool describe the tropical varietyloby the simpler tropical varieties defined
by JorJNL[xy,...,X)|. We will loosely refer to these ideals psjection ideals

In our setting all projection ideal{ g) obtained by this construction corresponding to the
prime idealsg(l) for g € V need to be dealt with simultaneously. To handle these it is
convenient to consider the extensionl oh the polynomial ring over the field extension
L(V) of L as given in Definition 4]1. Then one can do the constructidhigpolynomial
ring as well, defining an idedl(y) depending oivV. The results needed are then obtained
by evaluating the residue classes of varialyigsat theg;; for a giveng € V. For this
the connection betweely) andJ(g) for g € V needs to be established. The aim of this
section is to introduce these auxiliary ideals and show:r@ legists a finite generating
system ofJ(y) and a non-empty open détC V, such that if they;; are substituted for the
yij in these generators, a generating sel(gf is obtained for everg € U.

By means of notation for a ring andl € N let

A[x,)\,@] :A[X]_,...,Xn,)\l,...,)\|,61,...,9|]
be the polynomial ring im+ 2| variables oveA. We fix the following data for the rest of
this section:
e A set ofl linearly independent vecto@(l),...,u(')} in Z",
e the composite variables, ..., T, with

I —x I_l )\JUI(J) |_| ej_uiﬁ),

u>o0 u <o
e agradedidedl C § =L[x,...,Xn],
e a subvariety C GLn(K).
All constructions in this section will depend on this datae ¥Wst review the definition
of the ideald in [11, Theorem 3.5] and adapt it to our purposes. Since wd teause
Grobner basis theory, however, we do not want work in thg rin
L[Xg,- -, X AT S AT
from the start as is done in [11], but in the “large” polynohmiag L[x, A, 6].
Notation 6.1. Recall thelL-algebra homomorphismfrom Definition[4.1. We define the
following notation for projection ideals
Jy) = W(f)(t,...,m) F€l) CL(V)[xA, 0],
Jy) = (W(f)(t,...,m): f€l) CLV][xA, 0],
J@) = (9(f)(11,...,Tn): f€l)CL[xA,B0]forge GLy(K).
Note that the ideald(y) andJ(g) correspond to the idealsdefined in[11, Section 3].

The ideaﬁ(y) is of auxiliary purpose for this section (to prove the secdiatn of Lemma
[6.2) and is of no further importance for us.
SinceL[V][x,A, 6] is noetherian, there exists a finite system of generatorsigithe given

generators of(y). We fix such a generating system

& ={y(f)(1),....,y(f)(1)}
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~

of J(y) for somey(fi)(7) € L|V][x,A, 6]. Note that this is also a system of generators of
J(y) C L(V)[x,A, 68]. Since the chosen generators are elementf\fx, A, 6], there are
no denominators in thgj and we can substitute evegy= V for y. Hence, this system of
generators also defines a set of generatdig) = {9(f1)(7),...,9(f;)(7)} of each ideal
J(g) for g € V by the following simple observation.

Lemma 6.2. For every ge V we have {g) = (9(f1)(1),...,9(f)(1)). Moreover, there
is an open sed # Uy C V, such that all polynomials in

{9(f1)(1),...,9(f) (1)}

have the same support forgUss.

Proof. Letg € V andg(f)(1) be one of the generators dfg) from Notation[6.1. Then

~

y(f) € I(y), so there exishy, ..., hr € L]V][x,A, 8] with

y(f)(1) = .;hi(Y)y(fi)(T)-

This implies
g9(f)(1) = Zhi(g)g(fi)(f) € (9(f0)(1),...,9(f)(1)),

proving thatJ(g) = (g(f1)(7),...,9(f;)(1)). The selUg can be chosen as the set of all
g €V, such that no coefficient in thgg f1)(7),...,9(fr)(7) vanishes. O

Following the procedure in_[11] we later want to consider ithealsJ(g) C L[x, A, 6]

in the quotient ring_[x,A,A~1]. We need to ensure that in passing frauiv)[x, A, 0]

to the quotient(V)[x,A,A 1] we keep a finite generating system of the residue ideal
of J(y), such that if we substitute “generig/ € V for y we obtain a generating system
of the residue ideal od(g) in L[x,A,A~1]. To do this letWs C Alx,A, 6] be the ideal
Wa=AiG—1:i=1,....1)forA=LorA=L(V).

We deal with the above problem for the idealg) +W_ andJ(g) +W. using Grobner
basis theory. The idea is to guarantee that the Buchbergenithim applied to generators
of J(y) +W_(v) consists of exactly the same computational steps as if fijiied to the
corresponding generatod$g) +W_ generically.

Let > be the lexicographic term order @éix, A, 6] induced by

A= = A =01=...=-6 =X = ... = Xn.

Recall that this is an elimination order with respect to thdablesA,...,A,04,...,6,
seel[6, p. 361, Example 2].

Lemma 6.3. There exists an open subget U, C V and polynomials
hi(y),....hs(y) € I(y) + W) C L(V)[x,A, 6],

such that:

() 4 = {ha(y),...,hs(y)} is the reduced Gibner basis of the ideal(§) +W ) in
L(V)[x,A, 8] with respect to-.
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(i) ¢(g) ={h1(9),...,hs(g)} is the reduced Gibner basis of the ideal(d) +W_in
L[x, A, 6] with respect to- for all g € Uy .
(iii) The set? and all the set¥/(g) for g € Uy have the same support.

Proof. We start with the finite generating sefsU {A101 —1,...,A6 — 1} of the ideal
J(y) + W) and &(g) U {A161—1,..., A6 — 1} of J(g) + WL, all of which have the
same support for allj € Ug as in Lemma 6]2. Proceeding by applying the Buchberger
Algorithm we compute the reduced Grobner bdsig(y), ..., hs(y) } of J(y) +W ) with
respect to-. In each of the finitely many steps finitely many polynomigp@ar, which

all have quotients of residue classes of polynomials inythes coefficients. Choose
Uy C Ug C V, such that none of these residue classes vanishes faratl,. ThenUy

is non-empty and open and we ha#é&g) = {h1(Q),...,hs(g) } is a reduced Grobner basis
of J(g) + W_ with the same support. O

The ideals defining the tropical hypersurfaces used to egprepical varieties in Section
are the intersections of the quotient idealsl¢d) + W in L[x,A,0]/W. with § =

L[X1,...,Xn):
Notation 6.4. ForA=L oderA=L(V) let
PaAlX A, 8] — AlX A, 0] /Wa
be the canonical ring epimorphism. Consider the images (J(y)) and¢. (J(g)). Then

we denote the ideah_(J(y)) NS ) by J(y) and the idea (J(g)) NS by J(g).

~

Note thatJ(g) C S is exactly the ideal N L[xy,...,X| as defined in[[11, Section 3]
corresponding to the ideg(l ) instead ofl for g € V. In particular, we have the following
result, which has been proved in[11, Lemma 3.3].

Lemma 6.5. With the notation from above we have tiiy) c y(I) andJ(g) c g(1) for
every ge GLn(K).

By the definition oM there is a canonic#-algebra isomorphism betwedix, A, 6] /Wa
andA[x,A,A "1 forA=LorA=L(V). The elements o&x, A, 8] /Wx can thus be thought
of as polynomial expressions in thkgd and A~ rather than as residue classes. More-
over,Alx,A,A "] is a localization ofA[x,A], which will be of use in the following state-
ment. Note that the polynomial rirsy = A[X1, ..., X,] C A[X,A, 8] is mapped injectively
to Pa(Sa) C A[X, A, A 1], sinceWan Sy = {0}. Therefore we can identif$a with ¢ (Sa).

For the proof of our main theorem we need thatdar GLn(K) the ideals)(y) C § v,

~

andJ(g) C § are prime ifl C § is prime. A version of this has also been provedin [10,
Theorem 3.11]. We include the proof of this statement in ettirgg.

Lemma 6.6.Let | C § =L[xs,...,%| be a graded prime ideal. Then the ideRl) in
S (v) is also prime. Moreover, all ideal¥(g) are prime for ge GLy(K).

Proof. We will prove the statement for the ide&(y) in S (v)- The proof for the ideals

J(g) for g € GLn(K) can be done analogously. In the first part of the proof we will
considerL(V)[x,A,A 1] as anL(V)[x]-algebra and denote it tSL(V)[A,A—l] to display
this. In the second paki(V)[x, A, A ~1] will be considered as dn(V)[A,A ~1]-algebra. To
emphasize this we will denote it byV)[A,A ~][x], when we do so.
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Consider the chain of inclusions

S =Sy =Syl =S v A,
where the first one is given byas in Definition 4.1l and the other ones are the natural
ones. Ad C § is prime, by Proposition 4.2 the gxtensiﬂm) C § v) is prime (this step
is superfluous in the corresponding proof for tHg)). SinceS ()[A] is a polynomial
ring overS_y), the residue ring )[A]/y(1)S v)[A] is isomorphic to(S_)/y(1))[A].
As (S (v)/y(1))[A]is anintegral domain, so § () [A]/y(1)S v)[A]. Hencey(1)S )[A]
is prime. By [6, Proposition 2.2(b)] this implies thal ) S_)[A ,A~ 1 is prime.
Let : L(V)[A,A 7YX — L(V)[A,A71][X] be the map of (V)[A,A ~1]-algebras induced
by

l (i)
wix)=x A" .
JI:!I‘ J

—u¥
This map is an isomorphism with the inverse given by mapging |‘|'j:1)\j 4
With the canonical identification df(V)[x,A,A ~1] with L(V)[x,A, 6]/Wv) the ideal

Yly(Sw)AA ) CLV)XAA T
is exactly the ideal
dLv)(3(Y)) CL(V)[XA, 0] /M)
as in Notatio 6. Sincg(1)S_ (v) [A,A~1] is prime by the above argument agidis an
isomorphism, the ideal(y(1)S_v) [A,A71]) is also prime. Thusgp v)(J(y)) is prime.
This also means that the intersectiny)(J(y)) NS (v) is prime, which by definition is

the ideall(y) C § ). O

The final aim of this section is to compute Grobner baseseo$time support of the ideals
J(y) andJ(g) using elimination with respect to the variables..., A}, 01,...,6. To be
able to apply this idea to the ideaps(J(y)) and¢.(J(g)) we need to show that these

have the same intersections wiif},/) andS_ respectively as the ideals in Lemial6.3:

Lemma 6.7. With the above notatioWW ) +J(Y)) NS v) = drv)(I(Y) NS vy = I(Y)

and(WL+J(9)) NS = ¢L(I(9)) NS = J(9).

Proof. Since the proof does not depend on the chosen figld or L, it suffices to show
the first statement. The second one is proved in exactly tine seay. For simplicity we
denotep, ) by ¢ and writeJ for J(y) as well asV for W () andSfor Sy in this proof.
Lethe (W+J)NS Theng¢(h) = h, sinceh € Sis independent ok andf. On the other
hand we can writeh = hy + h3, wherehy € W andh; € J. Then we have

¢(h) = ¢ (hw) +(hy) = 0+ ¢(hs) € ¢(J).
Hencehe ¢(J)NS
For the other inclusion ldt € ¢ (J) N'S. Sinceh € ¢(J), there existd € J with ¢ (b) = h.
The aim is to construct an element (W +J) N Sby adding a suitable element4f to
b. Then we knowp (b) = ¢ (b) = h, and bothb andh are independent of and8, which



18 KIRSTEN SCHMITZ

impliesb=h. To findbwriteb= 3 ,, ., cxa Cv (X y)A 162 as a polynomial in tha and

0. Then we have
h=¢0)= ¥ ( S cmxw>Aaes
anZ| Vi—Vo=a

If a0, then(y,,_y,—aCv(X,y)) = 0. Writing
b="3% c(xyArez+ 5 cu(xy)A"6e"
vi—Vp#£a Vi—Vvz=a
the second part must be containedAf since it maps to 0 undep. So we can drop
the second part frorb and this still maps td under¢ and is an element frot + J.
Without loss of generality it can thus be assumed thiata polynomial inxy, ..., X, and
A101,...,A18, since it only contains ternts, (X, y)A V102 with vy = v,.
To eliminate the\;; from b observe thatA;6;)? — 1 € W for everyd > 0. Indeed
d-1

(Aj6)¢ —1= (Z)()\jejf‘) (Aj6—1).

For every ternt(x,y)(A;6;)" [;.;(Ai6)" we can subtract

c(x.y) ((Ai8)) ~1) [|(Ai8)" €W
1#)
from b and thus eliminate the variablg6; from this term. Doing this inductively for all
AjBj, j=1,...,l inallterms ofb we obtain the expressidn=b+bw € S for an element
bw € W. Hence b € (J+W) N Sproving the claim. O

By elimination we can now find a Grobner basis jdy) C ) such that if we substitute
g € Uy from Lemmd 6.8 we obtain a Grobner basislof) C S. Let ¥ be the reduced
Grobner basis al(y) +W_) C L(V)[x,A, 8] with respect to the lexicographic term order
>~ and let¥ (g) the reduced Grobner baseslo§) +W. C L[x, A, 8] with respect to- for

all g € Uy; all as in Lemma6]3.

Corollary 6.8. With the above notation we have:
() 4 =9 NS v)is a Grobner basis ofi(y) C S (v with respect to-.
(i) 9(g) = 9(g)N'S is a Gobner basis ofi(g) ¢ § with respect to>- for all
g€ Ugy. . .
(iii) The setZ and all the set¥/(g) for g € Uy have the same support.

Proof. By elimination [6, Proposition 15.28f and</(g) are Grobner bases 61V ) +
J(y)) NS vy and (WL +J(g9)) NS, respectively. By Lemma 8.7 we know th&tf ) +
I(Y) NS v) =J(y) and(WL +J(g)) NS = J(g). Finally, (iii) follows from Lemm&6.B
(iii). O

In particular, we have found a generating systérof J(y) and a non-empty open subset
of V, such that if we substitute the residue classes ofjtheodulo the defining ideal of
V by gij in this set, we obtain a generating system of the idég). Moreover, we get
the following simple corollary on the Krull dimensions ofgpection ideals, which will be
useful later.
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Corollary 6.9. For all g € Uy as defined in Lemnia 6.3 we have

dim(s./3(g)) = dim(S_v /3(y))

~ ~

for the ideals)(g) C S andJ(y) C § (v
Proof. We have Grobner bas&qg) of J(g) and¥ of J(y) with respect to some term order

~

>~ with the same support as stated in Corollaryl 6.8. This inspieat in_(J(g)) C S

and in-(J(y)) C § (v are generated by the same monomials. Since the dimension of
monomial ideals does not depend on the ground field, we thtes ha

dim(S./J(g)) = dim(S./in--(J(9))) = dim(S v/ in-- (I(y))) = dim(S (v)/I(y))-
O

7. RATIONAL PROJECTIONS

The main tool to express a tropical variety as an interseaifdropical hypersurfaces as
done in [11] are certain linear projections. The idea is &t foroject a tropical variety,
such that the dimension of the ambient space is as small ahpg9ut no information
on the structure of the tropical variety is lost. Formamdlimensional tropical variety iiR"

it turns out, that a linear map frof" to R™ ! can be used for this. As the kernel of such
a map is(hn—m— 1)-dimensional, the inverse image of ardimensional tropical variety
is a finite set of polyhedra of dimension- 1 in R". In [11] it is shown that this inverse
image is a tropical hypersurface. We then need to recoveorilgenal tropical variety
from tropical hypersurfaces obtained by projections asmlasd above. This is solved in
[11] by applying a theorem of Bieri and Grovés [2, Theoren].4.4

To proceed in the same way as donelin/ [11] we need a versiaon dhorem 4.4] for
finitely many subsets dk" instead of only one.

Definition 7.1. Let m < n be positive integers and
mR" — RM™1
X — AX

be a linear map with rational matr& of maximal possible rank. Such a map will simply
be called arational projection Let I be the set of equivalence classes of all rational
projections with respect to the equivalence relation

T~ 1 <= kerm=kerr.
A vector subspace @&" will be calledrational, if it has a basis of rational vectors.

Note that ket is rational forrr € . Moreover,1 can be identified with
{U Cc R": U is arational vector subspaceRf, dimU =n—m-1}.

As in [2, Section 4.1] the topology dn will be the one induced by the Zariski topology
of the Grassmannian @fn—m—1,n). Thusrl is a dense subset of &M —m—1,n)
consisting of all rational vector subspaces ok @Gr— m—1,n).

Since every open subsetldfis by definition the intersection of an open subsdflafith
Grg(n—m—1n) andl is dense in G§(n—m—1,n), it follows that every non-empty
open set i1 is dense. Note that[2, Lemma 4.2, Lemma 4.3 and Theoremwhigh
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consider the set of all (not necessarily rational) progexihold forl1 with the above
topology as well. In particular, all of the following statents are well-defined on the
equivalence classes 0Off, although they concern representatives of these.

One necessary condition to be able to recover a tropicattyafiom its image under a
rational projectionr is that 1t preserves the dimension of all polyhedra in the tropical
variety. This is true for almost all rational projectionsvail be the content of the next
statement. Itis a direct application of [2, Lemma 4.2], dee A9, Section 5] for arelated
result.

Lemma 7.2([2]). Letm< nandZ = {Py,...,R} be afinite collection of m-dimensional
polyhedra inR". Then the set of all rational projectiorns: R" — R™ 1 such that
dim7(R) = m fori=1,...,t, contains an open and dense suld3et I in the set of all
rational projections.

The key to recover tropical varieties from their images urrdéonal projections is |2,

Theorem 4.4]. In[[11] this theorem is directly applied toaeer a single tropical variety.
To handle the generic case it is necessary to be able to g2pliheorem 4.4] to all

possible tropical varieties under a generic coordinategba However, there is only a
finite number of possibilities of what the tropical varietiyam ideal can be generically,
see Corollary 5}4. This hints at the necessity of the follmwersion of([2, Theorem 4.4]
for our purposes, which can be proven in the same fashioreawriginal theorem.

Theorem 7.3([2]). Let A.,...,A: C R" be arbitrary subsets and assume that there exists
a dense set D 1N of rational projectionsr: R" — R™ L, such thatr(A)) is a finite
union of polyhedra of dimension less than or equal to m foryeyes {1,...,t}. Then
there existrp, . .., T € D/, such that for every j we have

A= ()75 1(A).

i=0

8. GENERIC TROPICAL VARIETIES

In this section the existence of the generic tropical vgrfiet a graded idedl on a subva-
riety V of GLn(K) will be established. We first prove this for graded prime Idesing
the methods in_[11, Section 3], and then generalize thislidrary graded ideals. The
idea will be to construct finitely many polynomiaig(g) € g(l) with constant tropical
variety on a Zariski-open subset ofAV C GLn(K) for whichT(g(l)) =N T(F(g)) for
gev.

This amounts to giving a generic version of [11, Corollar§]&xplained below. To do
this we need the ideals which are associatddridl1] to describe the tropical variety bf
as an intersection of tropical hypersurfaces. We must dialthese ideals corresponding
to g(l) for all gin some non-empty open subselbt GL,(K) simultaneously. The main
technical treatment for this was done in Secfibn 6, wherebtaioed generating systems
with the necessary properties for these ideals.

Let K < L be as in Notation 312 andc S be a graded ideal. Let: R" — R™? pe a
rational projection i1 as in Sectiofil7. Fix a basisV,...,u!") € Z" for| =n—(m+1)
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of kerrt. Forg € GL,(K) we consider the ideal

J(g) = ¢L(3(9)) NL[X1,. .., Xn] T L[X1,...,%n]

as in Notatiof 6.4 a priori depending on the chosen haSis .., u). If gis the identity in
GLn(K), this is exactly the idealNL[x1,...,Xn] from [11, Theorem 3.1], which provided
the idea for the definition of its generic versions in SedBon

We first cite an important result from [11], which will estadti the connection between
the ideals of Sectionl 6 and the tropical varietyl ofThis allows us to expresg(l) as an
intersection of tropical hypersurfaces.

Proposition 8.1([11, Corollary 3.6]) Let | € § = L[xy,...,%n| be a graded prime ideal
with dim(S_/1) = m. Then there exists a dense open subsetID, such that forrr € D
we have: Ifdimr(P) = m for every maximal polyhedron P in(@(l)), then

T(3(9) = m (T (g(1)))
is a tropical hypersurface.

First of all we assert that for prime ideals the conditioniiag®sitior{ 8.1 on the dimension
of the image of the maximal polyhedra®fl ) underrr can be met generically.

Remark 8.2. Letl € § =L[xy,...,X,] be a graded prime ideal with di{§_ /I ) =m>0
andV C GLp(K) a subvariety. From Corollafy 5.4 we know that there existopen
subset B4 U C V, such thafT (g(l)) is one of finitely manym-dimensional polyhedral
complexes7y,..., s for all g € U. All these complexes are pure, bss prime. By
LemmalZ.2 there exists an open and dens®setl, such that dimt(P) = m for every
m-dimensional polyhedroR in any of the.% for everyme D. As bothD andD (from
Propositio 8.11) are open and densélirso isD’ = DN D. So for everyrre D’ and every
g € U we have dinti(P) = mfor every maximal polyhedroR in T (g(l)).

To handle the ideald(qg) for all g € V simultaneously we have also constructed the ideal
J(y) € L(V)[X1,...,X] in Notation[6.4. We will mainly need one important fact about
all these ideals: There is a finite generating systerf(y))‘ and a non-empty open subset
U CV, such that substituting thg; for the variablesgyj; in the generators yields a finite
generating set af(g) for everyg € U, all proved in Corollary 6J8.

In Theoren{ 8.4, which is the technical key statement in taetisn, we will show that
the idealJ(y) is principal and we want to substitugee V into the given generator
in L(V)[Xa,...,X%|. For eachg which can be substituted this yields a polynomial in
L[x1,...,Xn]. The tropical hypersurfaces defined by these polynomiasganerically

all the same, as will be shown in the following lemma.

Lemma 8.3. LetV C GL,(K) be a subvariety and §) € L(V)[X, ..., X)] be a homoge-
neous polynomial. Then there exists an open subget) C V, such that TF(g)) is the
same (possibly empty) polyhedral complex for adllg.

Proof. Let F(y) = zn(:]—:’])x”, where f, andhy, are elements of[V] = L[Y]/PL[Y] as
used in Notatiofi 3]5. Recall thé} andh,, define functions fronV to L. ConsiderF (y)
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as a polynomial irK(V) {t}} [x1,...,%s] via the canonical inclusion, see Corolldry]3.4
and Notatioh 3)5. Thus we can write

Syany +P
g (3 ()
; ;J%R ZV’bU/uyv+P

n n
where allay, andbv,u are elements df. For everyn let

Svagy’ +P
Ur?ﬂn =V Z b W+ p tH
HeER ZV' v’uy +

be the valuation of the coefficient &f.
ChoosdJ C V to be a non-empty open subset, such thagferd we have:
(i) hn(g) # 0 for everyn appearing. This ensures that we can substiiréo F (y).
(i) fn(g) # 0 for everyn. ThusF(g) is a polynomial inL[xy, ..., Xn] with the same
support for allg € U.

(iii) Zvagun_ 9" # 0 andy,, bg’u”- g” # 0. This guarantees that for a givgnand
w e R the expression "

(mg) 710

is the same for everg e U.

As the tropical hypersurface &f(g) depends exactly on this data, we have thek (g))
is the same polyhedral complexRf for all g € U. This complex is empty, if and only if
F(y) is a monomial. O

With this we can now prove a general version of Propositidh®hich will be the crucial
step in the proof of the existence of generic tropical vaaget

Theorem 8.4.Let | C § = L[xy,...,%| be a graded prime ideal witdim(S_/I) =
let V C GLn(K) be a subvariety andr: R" — R™! a rational projection in D c N as
defined in Remark8.2. Then
(i) either T(g(l)) =0forallg e V
(i) or there exists Fy) € y(I) C L(V)[X1,...,X] and an open subs&+# U C V,
such that TF(g)) is the same polyhedral complex for allgU and the set
m1r(T(g(1))) is the (underlying set of) tropical hypersurface defined kg)Fe

a(l).

Proof. If T(g(l)) =0 forallg eV, there is nothing to prove. Assume there exisjs=aV,
such thatT (§(1)) # 0. In particular, dingS_/1) > 0 in this case. The idea of the proof
is to obtain a polynomiaF (y) € L(V)[Xq,. .., %], such thati(y) = (F(y)) is a principal
ideal. Then we want to chookkeC V, such that if we substitute the coefficientsfor y;;

for g e U, we get thafl (J(g)) = T(F(g)) is the same tropical hypersurface.

Sincel is prime, the tropical variet¥ (g(l)) of §(I) is a purem-dimensional polyhedral
complex. By Lemma7]2 and Proposition|8.1 there exists @ptiojnp € I1, such that the
tropical varietyT (J(§)) = p~ p( (6(1))) is a tropical hypersurface. AK§) is prime by
Lemma6.6, we have di(8_/J(§)) =n—1. Thus dinQSL(V)/j(y)) =n-1 by Corollary
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[6.9. In addition, again by Lemnia 6.6 the idd&)) € L(V)[xq,...,Xn] is a prime ideal. So
J(y) is a principal ideal, as it is prime and of height 1. This shevetJ(y) = (F(y)) for a
non-zero homogeneous polynomigly) € L(V)[x1,...,X|. Note that by Lemma6l5 we
have indeedr (y) € y(I).

The next aim is to substitute approprigéor they in F(y), such that the conditions in
(i) are fulfilled. In Corollaryl6.8 we have obtained a finitergerating se¥ of the ideal
Jly) C L(V)[X,---,Xn], such that if we substitutg in some non-empty Zariski-open set
Uy C V, then?(g) is a generating set di(g) C L[xy,...,%,]. We have

Jy) = (@) = (fa(y),.... fa(y)) = (F(¥)),

so we can writefj(y) = rj(y)F(y) andF(y) = Z?:osj' (y)fj(y) for some polynomials
Xn]

ri(y),sj(y) € L(V)[xa,.. for everyj =1,...,q. ChooseJ C Uy to be a non-empty
open subset o, such that forg € U no denominator in any of the coefficients efy)
and in any of thej(y) ands;(y) for j =1,...,q vanishes. This condition implies that
J(g) = (F(g)), henceT (F(g)) = T(J(g)) for all g € U. Moreover, by LemmBa38.3 we can
choose a non-empty open subgét— U C V, such thafT (F(g)) is the same polyhedral
complex for allg € U’. In addition,F (g) € g(1) by Lemmd®6.b.

By Propositior 8.1 together with Remdrk8.2 there exists penosubset & U"” C V,
such thafl (J(g)) = m1m(T(g(1))). Hence, for everg € U =U’NU" all the conditions
in (ii) are met, which proves the claim. O

In the previous statement it was shown that for a given ratipnojectionst under cer-
tain conditionsT1717(T(g(1))) is the same tropical hypersurface for almost all choices of
coordinategy. We will now use a theorem by Bieri and Groves (in the versiaesl as
Theoren 7.B) to show that in the generic cagg(l)) is cut out by finitely many rational
projections. This proves the main result for the case ofepaatime ideals, including the
existence of generic tropical bases as defined in Defiritiin 4

Theorem 8.5.Let | € § =L|[xq,...,Xy| be a prime ideal an@ # V C GLy(K) a closed
subvariety. Then there exists a non-empty Zariski-opeld seV, such that Tg(l)) is the
same (possibly empty) polyhedral compdy; (1) for all g € U. Moreover, ifgTy, (1) # 0
there exists a generic tropical basis of I.

Proof. By Theoren1 2.B for eacly € V the tropical varietyT (g(l)) is either empty or
pure of dimensiom. From Corollary 5.4 we know that there is a non-empty operssub
U cV, such thatifT (g(1)) # 0, it is one of finitely many purerdimensional polyhedral
complexed.#1,...,.%} for all g € U, but this complex is not a priori independent of the
choserg.

Since the seb’ c M as defined in Remaik 8.2 is open and dens@ ity Theoreni 73
there exist rational projections,, ..., m, € D’, such that

= O TR (F)

for everyk. For everyi =0,...,n there existF(y) € L(V)[x,...,%| and non-empty
Zariski-open set8)' C U, such thav'q‘ m5(T(g(1))) is either empty or a tropical hyper-
surface generated By(g) € g(1), such thafl (F(g)) is the same polyhedral complex for



24 KIRSTEN SCHMITZ

all g € U' by Theoreni 8J4. In particular, for a fixed indethe setrr *7%(T(g(1))) is the
same subset dR" for all g e U'. LetU = L ,U', which as an intersection of finitely
many non-empty open sets is itself open. As

A w(T () =T(g(h))
i=0

is the same set for aff € U as well, this proves the existence of generic tropical vigse
as a set.

Assume thafT (g(l)) # 0. Since the tropical variety (g(1)) is a subcomplex of the
generic Grobner complex gGQ for everyg € U c U, we have a natural complex struc-
ture onT(g(l)). It follows thatT(g(l)) is also constant as a polyhedral complex for all
g € U with this complex structure induced by Grobner basis theor

Moreover, one can obtain a generic tropical basi$ a6 follows. Since thé&(g) al-
ready cut out the tropical variety fay € U, we only need to add a finite generating
system of constant support. For this choose homogeneowsajers fq,..., fs of I.
Theny(f1),...,y(fs) generatey(l) C L(V)[X1,...,X]. By Lemmal8.B we can choose
0+#U’ c U open, such thak (g(f;)) is the same polyhedral complex for glE U” and all

i. Adding they(f1),...,y(fs) € y(I) to the set of thé5(y) € y(I) yields a generic tropical
basis ofl onV valid onU’. O

With Theoreni 2.8 the assumption thas prime can be dropped. We need the following
auxiliary result.

Lemma 8.6. Let V C GL,(K) a subvariety, R § be a graded prime ideal andk)
be its extension in %, via the inclusion given by Definitidn 4.1. Iff) contains no
monomial, then there existssgV, such that g°) contains no monomial.

Proof. Although the valuation ok is not trivial, in this proof we use classical Grobner
basis theory ir§ vy andS_. Choose any term order on § () (this is a term order on
S as well). By Theorerh 415 there exists a non-empty open slibseV, such that the
reduced Grobner basig(y) = {f1(y),..., fs(y)} of y(P) with respect to- and the sets
%(9), where they;; are substituted foy;j, have the same support for gl U. Moreover,

% (g) is the reduced Grobner basisgiP) with respect to- for g € U. Assume thay(P)
does not contain a monomial. In particular, we then have x, ¢ y(P). Dividing X - - - X

by the Grobner basig (y) (in the sense of [14, Algorithm 1.3.4]) yields an expression

0= 3 HOY)+T0)
2

wherefj(y) € 4(y), rj(y),r(y) € S () andr(y) is the normal form ok; - - - X, with respect

to ¢ (y). Sincexy - - -Xn ¢ Y(P), the polynomiar (y) # 0. Thus there exists an open subset
0#U’ CU, such thatr(g) #0 in S forge U’. As¥(g) = {f1(g9),...,fs(g)} is a
Grobner basis ofj(P) andr(g) is the normal form ok; - - - X, with respect ta4(g), this
impliesx; ---xn ¢ g(P) for g € U’. Hence,g(P) cannot contain a monomial fgre U’,
since itis prime and every prime ideal$h containing a monomial contains the particular
monomialx; - - - Xn. This proves the claim. O
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Theorem 8.7.Let | C § be a graded ideal and \& GL,(K) a subvariety. ThegT,, (I)
exists. IfgTy () # 0, there exists a generic tropical basis of | on V.

Proof. Let Py,...,R be the minimal prime ideals ¢f By Theoren 8.5 there are Zariski-
open sets @ U; C V, such thafl (g(R)) is either empty or the same tropical variety for
everyg € U;. Sinceg(P1),...,g(R) are the minimal prime ideals of1), by Theoreni 2]3
this implies

is the same set for evege U = m}zlui. Analogously to the end of the proof of Theorem
[8.3 one can additionally conclude thatg(l)) is also constant as a polyhedral complex
for all g € U if it is non-empty.

Moreover, if gT,(l) # 0, we can also obtain a generic tropical basi$.ofhe idea is to
add a finite generating systemyi ) (analogously to the proof of Theordm B.5) to a set
of polynomials iny(l) which cut out gT;(l) as follows:

We proceed by induction of the numbieonf minimal primes ofl. If t =1 andP; is
the only minimal prime ofl, then by Remark 413 the ideg{l) has only one minimal
prime, which isy(P;). Thusy/y(I) =y(P1). Let {Fi(y),...,R(y)} be a generic tropical
basis ofP; valid on an open subskt c V, which exists by Theorefn 8.5. Sinégy) €
y(P1) = /¥(l), there exists; € N, such thaf;(y)" € y(I). This impliesk (g)" € g(I) for
geU. MoreoverT(F(g)") = T(F(g)) by Theoreni 213, so the s (9)™,...,R(g)™}
also cuts out the tropical varietly(g(l)). Analogously to the procedure in the proof of
Theoren 8.6 we can adfF1(y)™,...,R(y)"} to a finite generating system gfl) to
obtain a generic tropical basis kof

Lett > 1 andPy,...,R be the minimal primes df. If gTy,(I) # 0, we can assume without
loss of generality that gf{P1) # 0. By induction hypothesis we then have a generic
tropical basi{Hi(y),...,Hs(y)} of I” := ﬂ}j R. We have to consider two cases:

(i) IfgTy(R) # 0, we also have a generic tropical bai#s(y),...,F/(y)} of R. Let
0+ U’ C U be open, such that both tropical bases are valid orForg € U’ we
have

T(g() =
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So the product$ijF(g) cut outT(g(l)) for g € U’. All productsH;F(y) are
elements of

t—1 t
(ﬂ y(H)) y(R) c (Y(R) = /y(l),
i=1 i=1

see Remark 413. This implies that we can chagge N, such thatH;jF(y))"k €
y(l). Since we knowT (H;FR(g)) = T((H;jF(g))"k) for anyg, we can add the
H;jF(y)"* to a finite generating set of1). This yields a generic tropical basis
of | onV.

(i) IfgT (R) = 0, we know thag(R) contains a monomial for af € V by Theorem
8.4. By Lemma 86 this implies thg(R) C S () contains a monomid. Since
multiplying by a monomial does not change a tropical hypdase, we have

T(g(1) = T(9()UT(9(R))
= T(g()

= NTHF©).

SinceF is an element of/(R), it follows thatHF (y) € y(I') ny(R) = /y(I).
Choose integensy, ..., ns € N, such thatkF (y)™ € y(I). Adding

{HiF ()™, ..., HsF (y)™}
to a generating set gf | ) as constructed above yields a generic tropical basis of
| onV.
O

We end this chapter with two basic observations about thetstre, that the different
possible tropical varieties of an ideklinduce on Gly(K) in the following sense. By
consideringy, g’ € GLn(K) to be equivalentiff (g(1)) =T(d/(l)), it is a natural question,
of what can be said about the corresponding equivalenceedasWhile it is hard in
general to give a complete description of this structuryestundamental properties can
be established directly. We first show the set of all coor@ineansformations which
induce an empty tropical variety to be a closed subset of(&)L. This is proved by
repeated use of Theorédm8.4.

Corollary 8.8. Let | ¢ S be graded ideal. Then the sf € GLy(K) : T(g(l)) =0} is
closed inGLp(K).

Proof. We first consider the case, tHais a prime ideal. Denote

{ge GLa(K) : T(g(1)) = 0}
by M,. We proceed by inductively applying the following fact, whiholds by Theo-
rem[8.4: IfW C GL,(K) is an irreducible subvariety, eithe¥ ¢ M, orWNM; C W is
contained in a closed proper subseWaf
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To start, Gly(K) is an irreducible subvariety of itself, so we either h&we= GLp(K)
or M; € GLn(K) is contained in a closed proper algebraic sub¢ét- GL,(K). In the
first case there is nothing to prove, while in the second cage that dinw?! < n®—1.
Let W{,...,W! be the irreducible components Wf'. By the above statement we can
assume thatVf', ..., Wy are the irreducible components witi C My andWg. , 4,..., W]
are the irreducible components\Wf with M; "W C W is contained in a proper closed
algebraic subsay? of W2, Then dimM2 < n? — 2. This yields the chain of inclusions

Eljvwchlc@vwl)u( LtJ W),
i=1 i=1 i=s1+1

To proceed consider the irreducible componenta/éf= U}lzsﬁlwiz and apply Theorem
to obtain a sequence of inclusions
st S s1 ) t

(UWHuUw?) cm e (UwhuUwhu U wd),

i=1 i=1 i=1 i=1 i=sp+1
whereW?, ..., W2 are the irreducible components\&f containedVlj andW2 , ;,...,WZ
are the irreducible components W2 with M; N\W2 ¢ W2 for W2 ¢ W2 closed with
dika3 < n? — 3 for each suclk. By inductively decreasing the dimension of the closed
set marking the difference between the sets on the left ajid side of the chain of
inclusions, we obtain the desired result for the caseltisaprime.
Let] C § be an arbitrary graded ideal aRy, ..., Py its minimal primes. Then by The-
orem[Z.3 we know thaT (g(1)) = U;_, T(g(R)) for g € GLn(K). So for a giverg we
haveT (g(l)) = 0 if and only if T(g(P)) = O for everyr. Hence M, = N, Mg, which
is itself closed as an intersection of the closed sulddgts O

Moreover, we can show that the set of equivalence classég @fltove equivalence rela-
tion is finite, giving rise to only finitely many possible tigpl varieties of a fixed ideal
under an arbitrary (linear) coordinate change.

Corollary 8.9. Let | C § be a graded ideal. Then there exist finitely many polyhedral
complexes#, ..., 7 in R", such that for any g GLn(K) we T(g(l)) = .% for some k.

Note that one of the# in the statement can be the empty polyhedral complex.

Proof. We proceed by inductively cutting out Zariski-open setsutif\@rieties of Gh(K)
for which T(g(l)) is the same polyhedral complex by using Theofem 8.7 replyatied
each step of this process the dimension of the remainingtsetiysdecreases, as the
complement of a non-empty open set has always a strictiylsnaiinension. For the first
step let 3~ U C GLy(K) be open, such that(g(l)) =gT(l) for everyg € U, which exists
by Theoreni 8]7. The complementdfc GL,(K) is closed and, hence, is the union of
finitely many irreducible subvarieties of dimension lesath?. Again by Theorerh 8]7 we
choose a non-empty Zariski-open sulidgof each such componevit such thaf (g(1))

is the same (possibly empty) polyhedral complex for ewggryUy. The complement
of U U (Uy Uv) in GLn(K) now has dimension less thad — 1 and thus is the union of
finitely many subvarieties of dimension less th&n- 1. Proceeding inductively we add a



28 KIRSTEN SCHMITZ

finite number of possible polyhedral complexesTdg(l)) to our collection in each step,
while decreasing the dimension of the set of the remaigiggGLy(K). This algorithm
stops when the remaining set has dimension 0, i.e. it is anusfidinitely many points.
We can finally add the tropical varieties corresponding tséhpoints to our collection of
polyhedral complexes, thereby obtaining the desired tesul O

This statement of course raises the natural question o$itfasy all possible tropical
varieties of a given ideal or class of ideals in cases of @ster

9. EXAMPLES

We conclude this paper with three classes of examples wiggrerig Grobner complexes
and generic tropical varieties are directly computableéctkag the ideas and referring to
[23, Chapter 4] for full proofs.

Example 9.1.In [21, Theorem 4.5] it was shown that in the constant coefficicase
the generic tropical variety of a graded idéat Sc on GL,(K) as a set depends only
on the dimension o8 /l. This seems to offer a rather coarse distinction of ideals by
their tropical varieties. It raises the question whethex can make a finer differentiation
by choosing a suitable subvariety C GLn(K), for which gT,(I) can be different for
ideals of the same dimension, but is still computable. Omh subvariety is the group
of diagonal matrices in GI(K). While generic tropical varieties over G(K) provide a
very rough distinction of ideals, we will show that generigical varieties over diagonal
matrices constitute an example for the other extreme.

LetDn = {ge GLn(K) : gij =0 fori # j} be the set of all diagonal matrices of @K).
This set is as well a subgroup of GIK) as ann-dimensional subvariety. In tropical
geometry it plays a role in the study of singularities of toah curves, see [15]. We do
not assume to be in the constant coefficient case in thisosecti

By Theoren{ 8.7 we know that for every graded ideat S_ there exists a non-empty
Zariski-open set) C Dy(K), such thafl (g(1)) is the same polyhedral complex for every
g€ U, i.e. the generic tropical variety g )(I) on Dn(K) exists. It is thus a natural
problem to describe ¢ ) (l) and to ask what information dfcan be obtained from it.
One can show directly that(g(l)) = T(l) for all g € Dy. The main reason for this is,
that in this special case taking initial forms commutes witlanging coordinates: For a
homogeneous polynomidl€ S, g € Dy andw € R" we have ig,(9(f)) = g(inw(f)).
From this it follows that ig,(g(1)) = ingy (g(1)) if and only if ing, (1) = inyy (1) for w, o' €

R" andg € Dy,. In particular,] andg(l) have the same Grobner complex. Showing that
the same polyhedra in this Grobner complex correspond teoméal-free initial ideals
for I andg(l) yields that in facfT (1) = T(g(l)) for g € Dy. This shows that for a graded
ideall C §_ there is always th&@-dimensional subvarietp(K) of GLn(K), such that
T(g(l))=T(I) for everyg € Dp(K).

Example 9.2. For principal ideals generated by some homogeneous polghfn# f
S =L[x,..., %] we can explicitly describe the generic Grobner complextardjeneric
tropical variety on Gk(K). Even in the non-constant coefficient case g&Gand gT(f)
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are fans, which are closely related to the generic troparal $ee for examplée [21, Defini-
tion 4.1]. Analogously to[21, Lemma 5.1] we can find an opepsstl) C GL,(K) such
that

(i) g(f) has constant support and every monom‘j‘adippears with non-zero coeffi-
cient,
(i) the valuations of the coefficients of all monomials appeg ing(f) are indepen-
dent ofg,
(i) the valuation of the coefficients of th@’ are all the same and minimal among the
valuations of all coefficients

forgeU. Thisis done by considering the polynonyéf ) € § (gL, k), whereL(GLn(K))

is the field as in Notation 3.5. By Corollary 3.4 the fieldL,(K)) is a valued subfield of
K(GLn(K)) {{t}}. Regardingy(f) as an element db gL, «k))gty We can choos® such
that none of the coefficients ¢f f) and none of the leading terms of those coefficients
vanish when substitutingfor y for anyg € U. This setU fulfills the above conditions.

For a homogeneous polynomialOf € § this yields a complete characterization of the
generic Grobner fan and generic tropical variety on,®. In fact:

(i) gGC(f) is equal to the generic tropical fé#,.
(i) gT(f) is equal to#"1, the (n — 1)-skeleton of the generic tropical fan.
This is done by the same reasoning as in the proof of [21, Ritpn 5.2]

Example 9.3. Tropical varieties of linear ideals, i.e. ideals generdigdinear forms, in
the constant coefficient case have been studied in [1] uemtheory of matroids. If we
choose/ = GL,(K), the generic Grobner complex and generic tropical vaonétylinear
ideal can be computed explicitly. Even in the non-constaefficient case both objects
are fans inR". Moreover, these fans just depend on the dimension of tta &l have a
very symmetric structure.

One feature of linear ideals making this class accessilBdbner basis computations is
the direct connection of their structure to basic lineaehl@. To be able to apply linear
algebra methods the first claim is that fore R" the ideal iny(1) is linear. By Proposition
(2.1 the Hilbert functions ofS_/l) and (S«/iny(l)) agree. Hence, the multiplicities of
the corresponding projective varieties are the same. Sirsdenear, this multiplicity is 1.
As linear varieties are exactly the varieties of multigicl (seel[9, Exercise 1,7.6.]), this
means that ig(l) is linear. Hence, by Theorelm 5.1 the generic Grobner coxgBC(1)

is equal to the generic Grobner comptéX in degree 1 as introduced in Lemmal5.3.
To show thats! is a fan note that fog € GLy(K) the L-vector space(l); corresponds
to a point in the Grassmannian&n— m,n). This holds, as there aremonomials of
degree 1 inS. and we have dimg(l); = n—m. Thus the Plucker coordinat&s(g) of
g(l); are indexed by setsC {1,...,n} of cardinalityn—m.

By the proof of Lemma 512 every Grobner polyhedlfbéal)[a)] of g(1) in degree 1 is
defined by equalities and inequalities among the expression

V(Py(9)) + w- My,

whereM; = ¥ jc; lj is the sum over the exponents of all monomials indexedl&yin the
proof of Lemma5.R. The key point now is to show that theretexist U € GL,(K) such
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that for everyg € we havev(P;(g)) = v(Py(g)) for everyJ,J' € [n](™™. We then have
equalities and inequalities of the forem- (Mj; —My) < 0 andw- (Mj— Mjy) = 0, which
define a cone iR". To prove the claim note that we can obtain an open sétll C
GLn(K) such that for giverd the real numbev(P;(g)) is the same for everg € U’ by
Lemma5.2. Moreover, for everyyJ’ € [n](™™ we can choose a coordinate permutation
T € GLy(K) such thaPs(1 o g) = Py(Q) (this is the step where the proof fails for general
non-linear ideals, as this claim is false there). As evenmy-ampty open set contains a
non-empty open s&V such thatg € W implies 7(g) € W for every permutatiorr, the
claim follows by considering such a $atc U’.

Comparing the inequalities above then yields the followiegult. Letl € § be a lin-
ear ideal with dingS_ /1) = m. Then the generic Grobner complex g@{Lcontains the
following maximal cones: Fow € R", such that

Wy, Wy < Wy gy - -5 Wy
with {iq,...,in} ={1,...,n} we have

Clw] = {w’ eR ..., < q’nfmﬂ,...,q’n}.

For the generic tropical variety @) we now claim that gT1) = #;", the m-skeleton
of the generic tropical fan (even in the non-constant cdefficcase). As glll) is a
subcomplex of gGQ@), we only have to show thagT(l)| = |#7"| by the above result.
This can be proved along the following lines: Lete R" andg € W as above. By
definitionw ¢ gT(l) if and only if ing,(g(l)) contains a monomial. As js(g(l)) is linear,
this is equivalent to igg(g(l)) containing a variable, sax,. This is true if and only if
inw(g(1))1 as a vector subspace bf contains the standard basis vectgrfor that k.
Comparing the equalities and inequalities above this is#ime as saying thal, < wj
for at leastm indices j # k. This statement is equivalent to the fact that p{iwj} is
attained at most — mtimes, sow ¢ #," completing the sketch of proof.
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