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UNIVERSAL FAMILIES OF RATIONAL TROPICAL CURVES

GEORGES FRANCOIS AND SIMON HAMPE

ABSTRACT. We introduce the notion of families af-marked smooth rational tropical
curves over smooth tropical varieties and establish a ormé correspondence between
(equivalence classes of) these families and morphisms $rapoth tropical varieties into
the moduli space afi-marked abstract rational tropical curvég,, .

1. INTRODUCTION

The moduli spaces,, of n-marked abstract rational tropical curves have been welhn
for several years. An explicit description of the combimetiostructure ofM,, and its
embedding as a tropical fan can be found.in [GKM]. Howeverfasdhe moduli spaces
M., have only been a parameter spaces, i.e. in bijection to thef sepical curves. To
further justify the nomenclature, we would like to equiprthevith a universal family. In
classical geometry or category theory, such a universalfanaduces all possible families
via pull-back along a unique morphism intd,,. This paper gives a suitable definition of
a family of tropical curves and proves that the forgetful nftapM,,.1 — M,, is indeed

a universal family.

After briefly recalling some known facts in section 2, we gavéefinition of families of
smooth rationah-marked curves over smooth varieties in section 3. We shauvttte
forgetful morphism is a family of curves and that we can assidamily of curves to each
morphism of a smooth variety intd1,,.

In section 4 we establish an inverse operation, namely weepiitat each family of.-
marked curves also gives rise to a morphism iftg,. This leads to our main theordm#.5
which gives a bijection between equivalence classes ofliesmf n-marked curves over a
smooth varietyB and morphism®3 — M,,.

In the last section we prove that there is a bijective pseadgshism, a piecewise lin-
ear map respecting the balancing condition, between twivagat families. In case the
domain of one of the families is a smooth variety, this mapenean isomorphism.
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2. PRELIMINARIES AND NOTATIONS

In this section we quickly review some results on tropic&isection theory and the mod-
uli spaceM,, of n-marked abstract rational tropical curves.

A tropical cycle X (in a vector spacé containing a lattice\) is the equivalence class

modulo refinement of a pure-dimensional rational polyhkedoaplex X’ in V' which is

weighted (i.e. each maximal polyhedron has an integer vieagid satisfies the balancing

condition (defined in[JAR, definition 2.6]). A tropical vatieis a tropical cycle which
1
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has only positive weights. A representati¥eof a tropical cycleX is called a polyhedral
structure ofX. If X has a polyhedral structut® which is a fan, then we calk a fan
cycle and¥ afan structure o . The supportX| of a cycleX is the union of all maximal
cells of non-zero weight in a polyhedral structure X6f More details can be found in
[AR] section 2] which covers fan cycle§, [AR, section 5] whintroduces abstract cycles
(which are more general than cycles in vector spaces)/argefition 1.1] whose notation
we follow in this article.

Matroid varietiesB(M) constitute an important class of tropical varieties. Thayeha
canonical fan structurB8(M) which consists of cones

p
(F) = {Z ANiVE 2 AL, A1 > 0,0, € R}
i=1

corresponding to chaing = (0 € F4 € ... C F,—1 C F, = E(M)) of flats of a
matroid M having ground set/(M) := [n]. HereVr = — 3. e;, whereey, ... e,
form the standard basis &" and all maximal cones d§() have trivial weightl. Note
that matroid varieties naturally come with the linealityaspR - (1,...,1). We refer to
[ER, section 2] for more details about matroid varieties.

A tropical variety X is smooth if it is locally a matroid variety modulo linealigpace
B(M)/L (cf. [ER, section 6]). This means that for each peiitt X, the star Stag (p) (cf.

[R, section 1.2.3]) is isomorphic to a matroid variety maxliheality space. We should
note that Stat (p) is a tropical cycle whose support consists of vectosach thap + v is

in X for small (positive. Recall that.} denotes the curve IR™ which consists of edges
R<o-e;, 1 =0,1,...,n (all having trivial weightl), wheree,, . .., e, form the standard
basis ofR™ andey = —(e1 + ... + e, ). Then smooth curves are exactly the curves which
are locally isomorphic to somg?.

A main property of smooth varieties which will be crucial lretnext section is that they
admit an intersection product of cycles having the expeptegerties[[FR, theorem 6.4].
Furthermore, iff : X — Y is a morphism of smooth varieties (that is a locally affinedin
map), then we can pull back any cyclein Y to obtain a cyclef*(C) in X [ER|, definition
8.1]. In the case whekl is smooth, we can still pull back points Bfalong f [E, remark
3.10]; this will be an essential ingredient to define fansilé curves in definitioh 3] 1.

In [GKM]| section 3] the authors map anrmarked rational curve to the vector whose
entries are pairwise distances of its leaves and use thigedlge moduli spacé1,, of n-
marked abstract rational tropical curves the structuretodgical fan of dimensiom — 3
inQ, = R(g)/lm(@, whereg mapsz € R™ to (z; + z,)i<;. The edges ofM,, are
generated by vectorg,, := vy (With I C [n],1 < |I| < n — 1) corresponding to abstract
curves with exactly one bounded edge of lengtbeparating the leaves with labelsin
from the leaves with labels in the complement/ofFurthermore, the relative interior of
eachk-dimensional cone of\,, corresponds to curves with exacitybounded edges,
whose combinatorial type (i.e. the graph without the mgigche same. The forgetful
mapftg := ft : M,+1 — M, forgetting thed-th marked end is the morphism of tropical
fan cycles induced by the projectian: r("Y) & RE) [GKM] proposition 3.9]. Note
that, in order to ease the notations, we egfp,; with the markings),1,...,n, when
we consider the forgetful map.

It was shown in[[FR, example 7.2] thatl,, is even isomorphic to a matroid variety modulo
lineality space and thus admits an intersection producydies: if B(K,,—1) denotes the
matroid variety corresponding to the matroid associatetthéocomplete graplx’,,_; on

n — 1 vertices, them\M,, is isomorphic tdB(K,_1)/L,with L =R - (1,...,1). Note that
the ground set of the matroid associatedstp_; is the set of edges df,,_;, whereas its



UNIVERSAL FAMILIES OF RATIONAL TROPICAL CURVES 3

flats are exactly the edges of vertex disjoint unions of cetggubgraphs df,,_;. In this
setting the forgetful map is induced by the projecﬁonR(Z) SR,

3. FAMILIES OF CURVES

The aim of this section is to prove that every morphism froomaath varietyX to M.,
gives rise to a family of curves. We start by defining familadscurves over smooth
varieties.

Definition 3.1 (Family of curves) Letn > 3 and letB be a smooth tropical variety. A

morphismT % B of tropical varieties is grefamily of n-marked tropical curves if it
satisfies the following conditions:

(1) For each poinb in B the cycleg*(b) is a smooth rational tropical curve with
exactlyrn unbounded edges (called the leaveg'ab)).
(2) For any poinp in T, the induced linear map

Ag,p : Stakr(p) — Stars(g(p))

is surjective.
(3) The linear part ofy at any cellr in (some and thus any polyhedral structure’tf)

induces a surjective may, - : A- — Ay, on the corresponding lattices.

A tropical markingon a prefamily’ % B is an open covefUy,0 € ©} of B together
with a set of affine linear integral map$ : Uy — T',i = 1,...,n, such that the following
holds:

(1) Forallo € ©,i=1,...,n, we havey o s/ = idy, .

(2) Foranyb € Uy if l4,...,1, denote the leaves of the fibet(b), then for each
i € [n] there exists exactly onge [n], such thatsf-(b) € I? (wherel? denotes the
leaf without its vertex).

(3) Foranyd # ¢ € © andb € Uy N Ug, the pointss? (b) andsf(b) mark the same
leaf of g*(b) (though they do not have to coincide).

A family of n-marked tropical curves is then a prefamily with a marking.

We call two familiesT” % B, T 2+ B equivalenif for any b in B the fibersg* (b), g’ (b)
are isomorphic as-marked tropical curves.

Example 3.2. e The morphism
T LY XR =R, (21,...,2n,Yy) = Y,

together with the trivial marking — (e;,y), ¢ = 0,1,...,n, is a family of
(n + 1)-marked curves.

e Letey, es be the standard basis BF. We consider the tropical curve§, := L?
andXs :=R-e; + R - es. Let us consider the morphisms

i LY X Xy = R, (21,0, 20, Y1, Y2) = Yo

Although=(p) = LT x {p} for all pointsp in R, 7; is not a family of curves: e.g.
fori € {1,2} andp = ((0,...,0),(—1,0)) € L} x X, the map

Amip  Stalnyx, (p) = LY x R — Stag(0) = R

is just the constant zero map. Geometrically, we see thasehtheoretic fiber
7;1(0) is 2-dimensional. This illustrates the necessity of the secaxidm on
a prefamily which could be seen as a tropical flatness camditithout which
m, 1, T2 Would be equivalent families with completely different daims L} x

R, LT x X1, LT x X, (compare to sectidd 5).



4 GEORGES FRANCOIS AND SIMON HAMPE

Remarl3.3. We will see later that for all cells in (a polyhedral structure of) on whichg

is not injective, condition (3) on a prefamily follows frome other conditions (cf. lemma
[4.8). We will need condition (3) on all cells (including those on whicly is injective)
to show that the locally affine linear mdp — M,, induced by the familyl" — B is an
integer map and thus a tropical morphism (cf. definifionh gribpositio 4.5).

It is clear from the definition that the support of the intetgan-theoretic fiber of a point
is contained in the set-theoretic fiber. We need the follgviimo lemmas to prove that we
actually have an equality § : 7' — B is a prefamily of curves. That property will be
crucial in sections 4 and 5.

Lemma 3.4. Letg : C — C’ be an affine linear surjective map of tropical cycles such
that )\, ,, : Staio(p) — Stak (g(p)) is surjective for all pointg in C. Then the following
holds:

e LetC,C’ be polyhedral structures af' andC’ such thaty(r) € C' forall 7 € C
(cf. [Rl lemma 1.3.4). For 7 € C we have

g(U(r)) = U(g(r)), whereU(r) := | J relint(o).
oc€Cio>T
In particular, g is an open map, i.e. maps open sets to open sets.

e Let » be a rational function orC’. Then the domain of non-linearity (dR,
definition 1.2.1] of ¢ o g is equal to the preimage of the domain of linearityof
ie.

lpogl =g (l4l)-

Proof. The first partis obviously equivalent to the surjectivitgnaition on), ,. Note that
the set of all possiblé& (7) for all possible polyhedral structures 6fforms a topological
basis of the standard euclidean topology©h For the second part it suffices to prove that
@ is locally linear atp € C’ if and only if ¢ o g is locally linear at some poirt€ ¢g—1(p).
But this is already clear from the first part. O

Lemma 3.5. Let M be a matroid of rank on the sefm]. LetL := R - (1,...,1). Then
max{x1,...,Tm} "1 -B(M) = L.

Proof. We sety := max{zy,...,7n,}. It suffices to show by induction that® - B(M)
consists exactly of the cones corresponding to chains of flat= (0 ¢ F,... C
F,_y—1 € E(M)) with r(F;) = i (all of them having trivial weight): LetG := (0 C
Gi...C Gr_g—2 C Gr_—1 := E(M)) be a chain of flats with(G;) = i for i < j and
r(G;) =i+ 1forj+1<i<r—k—2. Notethatyis linear on the cones & (M) and
satisfiesp(Vp) = —1if F = E(M), and0 otherwise. As

> Ve =Vg,,, +(|[FflatwithG; € F € Gjy1| - 1) - Vg,
F flat with G; CFC G 41

the claim follows directly from the definition of interseagj with rational functiond [AR,
definition 3.4]. O

Lemma 3.6. Letg : T'— B be a morphism from a variet§ to a smooth variety3 which
fulfils axiom (1) and (2) of a prefamily of curves. Then theparpof the intersection-
theoretic fiber over each poihtin B agrees with the set-theoretic fiber, that means

lg*(b)| = g~ (b).

Proof. Letb be a point inB and letp be a point inT" with g(p) = b. As the intersection-
theoretic computations are local, it suffices to show therckar the induced morphism
Ag,p ON the respective stars; that means we can assumgithliear, 1’ is a fan cycle B is
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a matroid variety modulo lineality space aleé= 0. We choose convex rational functions
@i such thath = 1 -+ - Ygim(p) - B This can be done by decomposifginto a cross
product of matroid varieties modulbdimensional lineality spaces (cf. [FR, section 2])
and then using lemnia_3.5. We show by induction §1at; - - - g* paim(5) - T'iS a cycle
having only positive weights and satisfying

lg* @i - '9*<Pdim(B) T| = 971(|<Pz‘ * Pdim(B) * Bl),

which implies the claim becauge(b) = g*¢1 - - - 9" @aim(p) - T Sinceg*y;_1 is convex
andg*y; - - g*vaim(p) - T has only positive weights, it follows from [R, lemma 1.2.25]
that

9" i1 9" %i -~ 9 Paim(B) - T| = [(9"Pi-1) 19> 019 @aimm T1 |5
where the right hand side is the domain of non-linearity ef tbstriction of the rational
functiong*%,l to (the support_of);*% -+ g% paim(p) + T- By induction hypothesis, this
is equal to the domain of non-linearity

[(@i=1°9)1g=1 (I paimsy BN >

which by the second axiom of a prefamily and lenima 3.4 coegiglith

9_1(|90i—1||w,,<pdim(3),3\|) = 9_1(|<Pz'—1 @i pdim(B) - Bl)-

Note that our induction hypothesis (for stars around déiferpoints) and the locality of
intersecting with rational functions (cf.[R, proposititr®.12]) ensure that the restriction
of gto g*¢i - - g*vaim(m) - T Satisfies the assumptions of lemimal 3.4. O

Our next aim is to show that the forgetful map is a prefamily.aharked curves. There-
fore, we compute its fibers in the following proposition.

Proposition 3.7. Letft : M,,+1 — M,, be the forgetful map. Then for each pojnin
M,, the (intersection-theoretic) fibét™ (p) is a smooth rational curve havingunbounded
edges. Furthermore, the support satisfies(p)| = ft~*(p).

Proof. We know from [R, proposition 2.1.21] that for eaphn M,, there is a smooth
rational irreducible curvé’, which has: unbounded ends and whose suppO}f is equal
to the set-theoretic fibét ~* (p). (The edges ofy areR>¢- v ; With i € [n]). Asitis clear
from the definition of the pull-back[ER, definition 8.1] théit (p) is a curve satisfying
|ft* (p)| C ft~!(p), the irreducibility ofC,, allows us to conclude thdt*(p) = X, - C,,
for some integen,. Since morphisms of matroid varieties (modulo linealitasgs) are
compatible with rational equivalende [FR, remark 9.2]pitdws from [FR, theorem 9.5]
thatft™ (p) andft*(0) are rationally equivalent; thus, = \¢. So it suffices to show that
Ao = 1. Using the isomorphism of [ER] mentioned in section 2 we hegweompute
the fiber over the origin of the projectian : B(K,,)/L — B(K,—1)/L which forgets
the coordinates, ;. Note that we gavé<,, and K,,_; the vertex setg0,1,...,n — 1}
and{1,...,n — 1} respectively and that by abuse of notation we denoted bo#ality
spaces by.. By [FR, proposition 8.5] we have*(0) = (7*(L))/L, wherer : B(K,,) —
B(K,—1) is the “naturally lifted” projection. It follows from lemm@&3 that7*(L) =
©" 73 - B(K,), wherep := max{z; ; : 0 < i < j < n— 1}. Itis easy to see that is
linear on the cones &(K,,) and thatp(Vr) = —1if F corresponds td’,, or its complete
subgraph on the vertex sgt, ..., n — 1}, andp(Vr) = 0 otherwise. A straightforward
induction shows that the cone associatedfto= (0 C F} € ... C Fh3-r S F C
E(K,)), wherer(F;) = i andF is the flat corresponding tfl, . .., n — 1}, has weight
in o* - B(K,,). ThusR> - v{0,,} has weightl in ft*(0) and it follows that\o = 1 (asCy
is irreducible and all its edges have weigdht

O
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Lemma 3.8. For n > 3 andv € M,,;1, the map\g , is surjective, i.e. the forgetful map
fulfils the second axiom of a family of tropical curves.

Proof. Letr be the minimal cell of\,,; containingv and letC' be the curve correspond-
ing to the point. Letw’ be an element of Stay, (ft(v)). Thenw’ comes from a curve

which is obtained from the curve correspondingdtt@) by resolving some higher-valent
vertices. If we resolve the same verticeginwe get a curv&”’ corresponding to a point
v’ € My41 such thatt(v’) = w’. In particular, the combinatorial type 6f corresponds

toacellr” > 7, sov’ € Stang,,_, (v). O

The following corollary is a direct consequence of proposiB.7 and lemma3].8.

Corollary 3.9. The forgetful map is a prefamily efmarked tropical curves.

We now want to define a marking on the forgetful map. To do thatpeed a basis of the
ambient spacé),, of M,,. In [KM] section 2] the authors construct a generating sétén
way that we will shortly describe and it is easy to see (e.gnbyction onn, using the
forgetful map) that it becomes a basis if we remove an aryiglement.
Foranyk € {1,...,n}, we set

Vien :=Vi :={v;k ¢ 1,|I| = 2}.
Foranyly C {1,...,n} with v;, € Vi we define

Vo =Vl =i\ {ug, }-

Lemma 3.10. Letv; € M,,, I C [n] and assume thdt ¢ I. Then we have

vy — { ZJQI,UJEVK,IO vJ, if [O{Q_I
ZJ@,UJEV;O vy, otherwise

Proof. It was shown in[[KM, lemma 2.4, lemma 2.7] that ., w = 0 and that; =
> vsevi,.scr vs- Thisimplies the above equation. O

For the following proposition, for each= 1, ..., n we fix an arbitraryl, (i) with vy, ;) €
Vi.n and writeW; ,, := Vi{z(i) for simplicity.

Proposition 3.11. There exists a tropical marking on the forgetful map, such that, as a
marked curve, the fiber over each pojinin M., is exactly the curve represented by that

point. In particular,(M,,+1 5 M., s%) is a family ofn-marked rational tropical curves.

Proof. Again, [R, proposition 2.1.21] tells us that the fiber oveclepoint is exactly the
curve represented by that point (without markings).

Fora > 0 we define

U, = { Z Arvp A > O;Z)\I < a} N M.
vreEM,,

Clearly {U,,« € N5} is a cover ofM,,. Now pick anya € Nsg,7 € 1,...,n. We
define

53 Ua = Myy1,v 0 ac-vgg iy + Ai(v),
whereA; : Q, — Q1 is the linear map defined by; (vy) = vy forall vy € Wi,.
(Note that in this proof the; represent curves with markings{i, ...,n} and thus live
in Qn, whereas they,,; correspond to curves with markings{0,1,...,n} and thus
live in Q,+1.) We have to show that this defines indeed a map.vitg,; and that it is a
tropical marking.
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For this, choose any; € M., (we assume without restriction tha¥ I, sincev; = vye).
By lemmd3.ID we have

vy = ZJQI-,UJEW.;’H v, if IO g I
= L
B Z‘]gIaUJEWim v, otherwise

and similarly inM,, 4 1:

Z vy = Z 'UJ‘n+1, if IO{Q_I

JCILv €W nt1 JCIL v EW;in
UIln+1 = ;
— E vy = — E Vg1 — E v{0,j}, Otherwise
J;(_I,UJEWZ'JHJ J;(_I,’UJEWZ'W Jj#0,i

Ai(vl), |f I() ,¢_ I

Ai(vr) + vgo,:}, Otherwise (sincez vo,;3 = 0)
j=1

Summarising we obtain fox € [0, «):

s (Avy) = {

OLU{O,i} + >\v1|n+1a if I() g 1
(a — A)vgo,iy + Avrjnt1,  Otherwise

Now for an arbitraryw = > A;v; € U, (where we can assume that all thewith A\; # 0
lie in the same maximal cone if,,) we have

si'(v) = Z ArVrjng1 + (@ — Z A1) V{0,i}-

IoCI

>0
In particular this is a vector in a leaf of the fiber @{which as a set can be described as
{2° Arvrpng1 + yvqo.43,7 > 0}) and for differenti this marks a different leaf. Also it is

clear that for differenty, o’ andv € U, N Uy, s andsf‘/ mark the same leaf. Hence the
s¢ define a tropical marking. O

We will now prove that any two markings on the forgetful mapyatiffer by a permutation
on{l,...,n}.

Proposition 3.12. For any two families of tropical curves of the form

(Mgt 8 Mo, (s9)), (Mogr T8 M, (7)),

there exist isomorphisms : M,, - M,, andvy : M, 11 — M1, such thatfty o
1 = ¢ o fto and such that for any in M,,, ¢ identifies equally marked leavesfof (b)
andft;(4(b)) in the two families. Furthermorey, v are induced by permutations on the

coordinates oR(3) andR("2") respectively.

Proof. We can assume without restriction that both markifg3, (r?) are defined on the
same open subsetty. Since they are tropical markings, if we chod@ssuch that) € Uy,
we must have for all that

57(0) = Xvi0,00(i)y; 75 (0) = p{v10,02(i))
for some permutations;, o2 € S, \?,p? > 0. Note that by definition of a marking,
o1, 09 are independent of the choice®f

We can extend, o3 to bijectionss, 52 on{0,1,...,n} by settings;(0) = 72(0) = 0.
These bijections induce automorphismﬂ%ﬁl) andRr(3) given by

€{i.} 7 €{(52067 1) (i),52007 ) ()}
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which map In{¢) to Im(¢) and thus give rise to automorphisms

1/):Mn+1*>./\/ln+1, ¢Mn4)Mn
Obviously ftg o ¢ = 1 o fty (since thed-mark which is discarded by, is not affected
by o1, 02). We will now prove compatibility with markings for ray vexsv;:
Letv; € Us C |M,| withi ¢ I and assume ' (v;) = v 1y € Up € |M].
Then we have

0100,

7 (V1) = Vrjns1 + A V{0,03()}
for some\ and
(Posfog™")(vr) = (Yo 5?)(”(010051)(1))
= A(V(oy005 ) (Dn+1 T P V{0, (1)) TOr sOmep
= U(oz001 torioay ) (D)n+1 T P V{0 (03007 Yoo ) (i)}
= VI|n+1 T P V{0,02(i)}

which lies on the same leaf aé(vl). For an arbitrary vector = > o vy the same
argument can be applied by linearity ¢f O

As mentioned earlier we want to assign a familyrefnarked curves to each morphism
from a smooth cycle to,,. Therefore, we need the following definition.

Definition 3.13. Let X be a smooth variety anfl : X — M,, a morphism. We define
X7 to be the pull-back of the diagonal,, along the morphisnif x ft), i.e.
Xf = (f X ft)*(AMn) S ZdilnXJrl(X X Mn+1).

Note thatX / is well-defined by[[FR, definition 8.1] becau&ex M,,, 1 andM,, x M,,
are smooth tropical varieties (which follows from the fawatt cross products of matroid
varieties (modulo lineality spaces) are again matroidetas (modulo lineality spaces)
[FR, lemma 2.1, remark 5.3]).

In order to show that the projection froii/ to X is a prefamily ofn-marked curves we
compute its fibers in the following proposition.

Proposition 3.14. Letrx : X/ — X be the projection taX. Thenn(p) = {p} x
ft*(f(p)) for eachp in X. In particular, the fiber over each point is a smooth rational
curve withn leaves.

Proof. In this proof by abuse of notationy , 74, ,, Tx x Am,., denote projections from
a product ofX, M,,, M, ;1 to the respective cycle. Let € C1™ ¥ (X) be the (uniquely
defined) cocycle such that- X = {p} [F, definitions 2.17, 2.20, corollary 3.8]. By the
projection formula and commutativity of intersection puots [F, proposition 2.24] we
have
W}(p) = ”}Sﬁ ! Xf = (WXan+1)*Ffot ’ ({p} X Mn+1 X AMn)

Since we know by [FR, theorem 6.4(9) and lemma 8.4(1)] that

{p} X Mn+1 X AMn = ({p} X MnJrl X Mn X Mn) . (X X Mn+1 X AMn)
andl'; - ({p} x M,,) = {(p, f(p)}, the above is equal to

{P} X (Tt )« (T X {f(P)}) - M1 X Ap,,))-

Now it follows in an analogous way from [FR, theorem 6.4(9) &&mma 8.4(2)] that the
latter equals

{2} X (Tt 1)« Tty - (Mg x My x {f(p)}))
{p} X (Tadn 1) (Tte - (Mg < {f(p)}))
= {p} x " (f(»)).
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Remark3.15 The support ofX/ satisfies

X7 | = (F < £6) 7 (|Am,|) = {(2,9) € X x Mopa: f(2) = fe(y)}.

Here, one implication follows from definition of the pull-tlg whereas the other is a direct
conseqguence of propositibn 3114 together with the equafiiptersection-theoretic and
set-theoretic fibers of the forgetful map (proposifiad 3.7)

In order to conclude thatyx : X/ — X is a prefamily we need to prove that it satisfies
the second axiom of a prefamily and that the cy&lé is a tropical variety (i.e. has only
positive weights). It is obvious that it fulfils the last catiah.

Lemma 3.16. The projection morphismy : X/ — X fulfils the second prefamily axiom.

Proof. By remarK3.1b, we can consid&i’ to be equipped with the polyhedral structure
xl={r xfpo;T € X, 0€ M},

whereX is a polyhedral structure oli, M is the standard polyhedral structure. ét, |
and

Txro:={(z,y) €T x0o: f(z)="1t(y)}
is the set-theoretic fiber-product ofando. Now letp be in some celtr x; o, ¢’ € 7/
for somer’ > 7. Considerf(q’) as an element of Star, (f(p)). By lemmd3.3, it has a
preimagey’ under the forgetful map in some > o; so the point¢’,v’) is in Star s (p)
(and is obviously mapped tg by 7 x). O

Lemma 3.17. All maximal cells ofX / have trivial weightl. In particular, X / is a tropical
variety.

Proof. Let X7, X’ be polyhedral structures df f, X considered in the proof of the previ-
ous lemma. Ifdim(7) = dim(wx (7)) + 1, then we observe that

{ceX o>y s {acX:a>nx(1)}, 0= nx(0)

is a bijection. Sincerx maps normal vectors relative toto normal vectors relative to
mx (1), the local irreducibility and the connectedness in codisimmone ofX (cf. [FR,
lemma 2.4]) allow us to conclude that there i3 & Z such that the weight functions of
X7, X satisfy

wyr (o) =X wx(rx (o)) forall maximalo € x7.

Now let T be an edge it/ mapped to a poing € X by 7. After finding rational func-
tions whose product (locally) cuts out the poinfrom X, it follows from the definitions
of pulling-back and intersecting with rational functiof@tl = wg-(,)(7) = A, which
finishes the proof. O

The following corollary is an immediate consequence of peiion3.1# and lemmas 3]17
and3.16.

Corollary 3.18. For each morphism of smooth varietias % M., we obtain a family of
n-marked rational curves as

(X7 = X1,
wheret® : f~Y(U,) — X',z — (2,5 o f(x)) (ands$ is the marking on the universal
family we defined above).
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4. THE FIBER MORPHISM

We now want to construct a morphism intd,, for a given familyZ” % B (we will omit
the marking to make the notation more concise). It is actusieady clear what this map
should look like: 1t should map eaétin B to the point inM,, that represents the fiber over
b. For the pull-back familyX / defined above this gives us back the nfafFor an arbitrary
family however, it is not even clear that it is a morphism. dotf we will only show that it
is a so-callepbseudo-morphisrand then use the fact th&tis smooth to deduce that it is
a morphism.

Definition 4.1 (The fiber morphism) For a familyT % B we define a map
dy: B —RG) b (dist (g7 (b))er,

where the length of the path from Iefato leafi on the fiber is determined in the following
way: The length of a bounded edde = con{p, ¢} is defined to be the positive real
numbera, such thay = p + « - v, wherew is the primitive lattice vector generating that
edge.

We definep, := gn0d, : B — M., whereg, : RG) — R() /im(g) is the quotient map
and¢ mapse € R™ to (z; + 2;)i<;.

As mentioned above, we will not be able to prove directly thais a morphism. But we
can show that, in addition to being piecewise linear, it eespthe balancing equations of
B. Let us make this precise:

Definition 4.2 (Pseudo-morphism)A map f : X — Y of tropical varieties is called a
pseudo-morphisiifthere is a polyhedral structur® of X such that:

(1) fj-isintegral affine linear for eache€ X’

(2) f respects the balancing equations'ofi.e. for eachr € x(°dml) jf f denotes
the induced piecewise affine linear map on $far) (cf. [Rl section 1.2.3]), we
have

ZCUX 0/7— —OGV/Vf(T)

o>T

More precisely, if we choosew, € o for eacho > mandpy, ..., pq € 7 a basis of

Vr, such thab, — po = e/ and)_ . wx(0)(ve — po) = Zle ai(pi — po)
with o, ...aq € R, then

S wx(0)(f(vs) Zaz p) — £ (o).

o>T
Note that it suffices to check this condltlon for a single cleodf v,, po, -..pd,
since any other choice would only differ by elements fréim on which f is
affine linear. It is also clear thgtsatisfies the above properties on any refinement
of X if it does so forX.

As for a morphism, we denote by~ the linear part off on.

Proposition 4.3. Let X be a smooth tropical variety, any tropical variety andf : X —
Y a pseudo-morphism. Thehis already a morphism.

Proof. It suffices to prove the claim for piecewise linear pseudaghsmsf : B(M) —

Y from matroid varieties to fan cycles because being a monpigsa local property and
we can lift any pseudo-morphis®(M)/L — Y to a pseudo-morphisB(M) — Y.

By deleting parallel elements we can assume that one elesnbsets of the ground set
E(M) are flats ofM. It is easy to see thgt must be a pseudo-morphism with respect to
the fan structuré3(M). Now we show by induction on the rank of the flats that for all
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flats F we havef(Vr) = > .. f(Viiy). As the vectord/;, are linearly independent
this implies the claim. Lef’ be a flat of rank-. We choose a chain of flats of the form
F=0CFkhC...CF_2CFCF.41C...C Funy= EM)),withr(F;) = i.
The fact thatf is a pseudo-morphism translates the balancing conditionrat the facet
Fin B(M) into

Yo Ve =f(Ve)+ ({G: Fa S GG Flat} = 1) - f(V,_,)-

Fr_CGCF flat

Now the induction hypothesis implies the claim. O

Proposition 4.4. For any familyT % B, the mapyp, : B — M, is a pseudo-morphism.

Before we give a proof of this proposition we use it to provemain theorem.

Theorem 4.5. For any smooth variety3, we have a bijection

Families(T% B,r?) 1:1 Morphisms
of n-marked tropical curves® < BoM
modulo equiv. fiB=Man

(T&B,rf)»ﬁgog
(B! ™8 B,(id x (s o f))) + f,

wherey, : B — M, is the morphism constructed in definitibn]422{ is the tropical
subvariety o3 x M., 1 introduced in definition3.13;5 : Bf — B is the projection ta3,
ands®,i = 1,...,nis the tropical marking of the forgetful map described ingwsition
B.11.

Proof. We have already shown in corolldry 3118 and propos(tioh H these maps are
well-defined. It is obvious that they are inverse to eachrothe O

The rest of this section is dedicated to proving proposifich For all the following
proofs, we will assume thaf and 5 are polyhedral structures @ and B satisfying
B ={g(0),0 € T}. Thisis possible by [R, lemma 1.3.4].

Proposition 4.6. The mapi, of definitior{4.1 is integral affine linear on eache 5.

Proof. We first show thatl, is affine linear on each cell: Sineec B is closed and convex,
it suffices to show that, is affine linear on any line segment cdivbt’'} C 7, whereb € 7
andd’ € relint(r).

Denote byG, := {0 € T : g(¢) = 7} and choose any € G.. If dimo = dim 7, then
9| i injective and the preimage bfandb’, respectively, is a point. dim o = dim 741,
then, since we have choséhfrom the interior ofr, there must be @ < relint(o),
such thaty(c’) = o'. Asdimker gy, = 1, the preimage’y, := gljjl(b’) is a (possibly
unbounded) line segment. The fibk€y := g‘;l(b) is either a parallel line segment or a
point.

For now we assume both fibers to be bounded. We claim that ébr&echs the mapd,, :
con\{b,b'}) — R which assigns to eadh, := b+ A(V' — b), A € [0, 1] the length of the
fibergﬁrl(b,\) is affine linear. The mag, will then be a sum of these maps. First we argue
that the endpoints of the fibef§,, C;,» must lie in the same faces 6f Denote byy;, ¢» the
endpoints ofCy, lying in faceso;, 02 < 0, S0Cy = conM{q1,¢2}); 1 € 01,¢2 € 0.
Theng(o;) C g(o) = 7 andd’ € g(o;) Nrelint(r). Henceg(o;) = 7 and there must be
p1 € 01,p2 € o2 Which map tob. Hence, since they lie in proper faces, they must be the
endpoints o’} and we conclude:

Cy = con({p1,p2});p1 € 01,p2 € 02.
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It immediately follows that
Ch, = con{p1 + A(q1 — p1),p2 + A(g2 — p2)}) forall A € [0, 1].

co1 €02

P1 q1

FIGURE 4.1. An illustration of the fiber€,, Cy andCy,

Denote byv the primitive vector generating the kernelgyf, . Then

(2—q)=a-v,(p2—p1)=08-v
for somea, 5 € R. Now the length of a fibe€, is determined by the difference of its
endpoints

(p2 + Mgz — p2)) = (p1 + Alar — p1)) = (p2 — p1) + AM(@2 — @) — (p2 — p1))
=v-(B+A-(a—p)).
Hence we have
do(bx) =B+ A (a—p),
which is an affine linear map.
We also have to consider the case that one fiber is unbounded Gubset of a leaf). In
this case there is no length to consider; we only have to shat}, is unbounded if and
only if Cy is. We have already proven that every endpoin€pfinduces an endpoint of
Cy in the same face. Hence,df, is unbounded, i.e. has only one or no endpoint, so does
Cy . For the other direction, assunig, has only one endpoimtand letp be any point in
Cy. We can rewrite this as
Cy ={q+a-v;a>0} Co.
Sinceo is convex, we have
o351 -N-p+Ag+a-v)

=((1=XN p+Xr)+a-Avel,

forall A € [0,1],a > 0.
In particular,Cy, is unbounded for alk > 0.

Sinceg is continuou5g|;1(conv({b,b’})) must be a closed set. Hen¢g must be un-
bounded as well.

For both the bounded and unbounded case, this descriptithre dibers also gives us an
affine linear mag’,, — Cy, forall A < p € [0,1]. If p, A > 0, this map is even bijective

(since both fibers are line segments). We can glue togethtbeak maps for each e G-

to obtain a homeomorphism , : g=*(b,) — g~'(bx) which is an affine linear map on

each edge. Ih = 0, p > 0, we still obtain a map, » which might contract certain edges
to a point.
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We can furthermore assume that there exisis@ ©, such thab,,b, € Uy (otherwise
cover cony{by, b, }) with finitely manyU, and use induction). Now affine linearity of
implies that the leaves which are identified untigy are also marked by the samg In
other wordsg~*(by), g~ *(b,) have the same combinatorial typeXfp > 0. If A = 0,
thenCy, = C, either has the same combinatorial type&gs or is obtained by contracting
some edges of the latter curve.

Denote byG, (k, 1) the set of all cones i, of dimension(dim 7+ 1), such thay‘_gl(bA)

is contained in the path frofto [ in the curveg=1(b,). Then we have

diste (g7 (0r) = > do(ba).

o€Gy, (k1)

Since we know thad,, is affine linear, it suffices to show tha, (k,1) = Gy, (k,1) for all
A, p € [0, 1], which immediately follows from the fact that the may, identifies equally
marked leaves and hence edges lying on the same path.

It remains to show that, is an integral map: We want to show that fai’ € 7 (of

dimensiornk), such that — o’ € A, we haved,(b') — dy(b) € 7(3) . Note that the lattice
elements inM,, are exactly the points representing curves with integeeddggths, so
¢4 Will be an integer map as well. Choosesuch that the fiber df in o is a bounded line
segment. We have already shown that we have two endpaiagtsf both fibers lying in
the same face’ < o, hence in the same hypersurfacdpfwhich is defined by an integral
equation

h(z) =a; he A),a € R.
By surjectivity 0f5\9|T : Ay — A, we have

Ae ZAr x (v),

for some primitive integral vectar (which generateger )\, ).
Under this isomorphism we write the coordinatepof andh as

p=(p1,--,PksPv)
q=(q1s- QK qv)
h(x1,. . Tk o) = hay + -+ - 4 hpxg + hyo,
wherep; — ¢; € Zfori =1,...,k, h; € Zforall j andh, # 0 (since otherwise\,
would not be injective on the corresponding hypersurfadey the identityh(p — ¢) =0

transforms into
k

0= Z(Qi — pi)hi + (qo — pv)ho

=1
k
= b/_bihi+ v — Pu h'u-
;( )ihi +(qu — pv)
— €7

€7
Henceg, — p, € Qandg —p € A, ®z Q.
So there exists a minimal € N, such that: - (¢ — p) € A,. In particulark - (¢ — p) is
primitive. Assumek > 1. Then),(k - (¢ — p)) = k- (' — b). By surjectivity of)\,, there
exists an: € A/, such that,(a) = b’ — b. This implies\,(k-a) = A\, (k- (¢—p)). Since
)\, is injective onA,,, we must havé - a = k - (¢ — p), which is a contradiction, since the
latter is primitive. Hencé& = 1 andg — p € A,.

Finally we obtain
Ao 2 (d = p) = (a—p) = (ds(¥)) — do(D)) - v.
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Hence, since is primitive,d,, (V') —d,(b) € Z and the same follows fat, (') —d,(b). O

The first part of the preceding proof also gives us the foll@viesult as a byproduct, which
boils down to saying that fibers over the interior of a celldthe same combinatorial type:

Corollary 4.7. For eacht € B,b € 7,0’ € relint(r), there exists a piecewise linear,
continuous and surjective map ; : g* (') — ¢*(b) for which the following holds:

(1) If b,0" € relint(r), thent 4 is a homeomorphism.
(2) If 1;(b), 1;(b") denote the-th leafs of the respective fiber, then

te b (15 (D) = 1;(D).

(3) On each edge of g*(b'), ty » is affine linear ance is either mapped bijectively
onto its image or to a single vertex. In particular, vertiGges mapped to vertices.
(4) If ey, eq are two different edges gf ('), then

|tb’,b(€1) N tb/7b(€2)| <1.
(5) For eachs € G, we have
tys(lg"(0) N o) C o

In fact the part of the proof of propositi@n 4.6 which implesrollary4.7 does not use the
last condition on a prefamily; therefore we can use it to pritve following lemma.

Lemma 4.8. Letg : T — B (with B smooth) be a morphism of tropical varieties which
satisfies conditions (1) and (2) on a prefamily. Then
M:{ceT:o0>7t—>{aeB:a>g(n)}, c—g(o)

is a bijection ifr € T is a cell on whicly is not injective. In this case we have furthermore
that),,; : A- — Ay is surjective. Moreover, all maximal cells i have trivial weight
1.

g(7)

Proof. As in the proof of lemm&_3]6 we can assume thas a linear function and that
T, B are fan structures of the fan cycleand the matroid variety modulo lineality space
B such thay(7) € B for all conesr € T.

For surjectivitiy ofIl, leta > g(7). Choose elemengse< rel int(g(7)), g € relint(«). By
corollary[4.7,t ,(9*(p) N 7) is a line segment. Let be any cone containing an infinite
subset of this. In particulag(c) = a. Then we can use the last statemerf of 4.7 to see
that we must have > .

For injectivity, assume thaf(c1) = g(02) = a > g(r) for two distincto; > 7. Then
tep(lg*(@)|No;) = |g*(p)|N7 fori = 1,2, which is a contradiction to the fourth statement
of 4.4.

As B is locally irreducible and connected in codimensibicf. [ER, lemma 2.4]) the
above bijection implies that there is an integesuch thatvr(c) = X - wp(g(o)) for
all maximal cells inc € 7. For the last part, we thus need to show that 1 and
thatg(ve/r) = vg(0)/4(r) if g iS NOtinjective onr, i.e. g maps normal vectors to normal
vectors. Itis clear thaj(v, /) is a multiple ofvy ) /4(-); @SB is a matroid fan, it follows
thatg(vy/r) = Ar - Vg(s)/g() fOr somer, € Z-, which does not depend an Let
©1...,dim(p) b€ rational functions withp; - - - pqim(p) - B = {0} (cf. proof of lemma
[3.6). Comparing the weight formulas for intersection prtgwfw,, ..o, ,-5({0}) and
Wy p1-g*pamm T (T) fOr an edger € T, we see thath = 1 and\z = 1 for all cones
8> O

Before we can prove thai, is a pseudo-morphism, we need to fix a few notations:
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Notation 4.9.

e Let 7 € Bcodml) - Choosepg, p1,...,ps € relint(r), such that{p; — po;i =
.,d} is a basis ofi;. Furthermore, for each > 7, choose a point, <
relint(o), such thab, — po is a representative of, /.. We can assume that this is
possible, since there always exists,ac rel int(o), ¢, € Q, such thav, — py =
¢o - Us/- moduloV,.. We can then make our choice such that= ¢,» =: ¢ for
allo,o’ > 7,0

ZWB(U)'Ua/r: ZWB —Po)-

o>T cr>'r

Hence the left hand side is I, if and only if the right hand side is.
So we obtain that

d
> ws(0)(ve —po) = Z a;(p;

o>T

for someq; € R.
e Corollary[4.7 justifies the following definitions:

— Fork,l € [n], denote byy (k,1),...,q.(k,1) € T the vertices of the fiber
9*(po) which lie on the path fronk to [ (Actually, » also depends on the
choice ofk andi, but we will omit that to make notations simpler). Whére
and! are clear from the context, we will also wrigg, . . ., g,.

— Thefiber ofp; has the same combinatorial typegigp,), soforj = 1,...,d,
denote by, i = 1,...,r thei-th vertex in the fiber of, (Again, this
actually depends oh, [).

— Leto > 7. The preimage of;(k,!) undert,_ ,, contains a certain number
of vertices lying on the path frorhto [, the first and last of which we denote
by ¢, andgy, respectively.

— Letw;,i =1,...,r—1 be the primitive direction vector of the bounded edge
from ¢; to g; 1. We define the lengths;, e(J) ¢ > 0 of the corresponding
edges via:

Qi+1 = ¢; + €; - Wy,
©)) (J) Jre(J)

qz+1 W,
Qi1 p = +ef
— In addition we fixwy := —wvg,w, := v;, wherev, andv; are the primitive

direction vectors of the leaves markednd!.
- Fori=1,...,r,denote by?,(k,1),t =1,...,7(i,k, [, o) the length of the
edges on the path frogf, to ¢7,.
e We define

};J = Zw( 7 —e;)

o>T

H'M&
o
.
<
|
[}
o
-

\
~
|
—

r(i,k,l,0)

Z,JZZZOJ(O‘) Z ef (k) |5i=1,...,m

o>T t=1
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g*(p;),j >0

FIGURE 4.2. An illustration of the chosen notation

Summing up over all length differences at each vertex an@ edg exchanging
sums gives us the following equation:

Sra(T) =" w(o)(disty(vs) — dist1(po)) a;(dist, ; (p;) — disti(po))

H'M&

3

|9

- Vv
3

(d;c,l + Ai,l) +dj - (4.1)

=1

Remark4.1Q To prove thatp, is a pseudo-morphism, we need to show idal)r<; €
Im(®,,), i.e.itis0in M,,. The idea for the proofis the following: A cell that maps non-
injectively onto some € B (and thus carries edges of the fibers ofjtk)és a codimension
one cell inT". We will show that the vertices of the fibers in the surrougdiraximal cones
can be used to express the balancing conditigi,&uch that the coefficients coincide with
the balancing equation of (lemma4.1Il1). Howeverim p’ = dim 7 + 1, SO we have an
additional generatow; of V, (that generates the kernel gf,). We will then show that
the quantities\, , andd:, , we defined above can be expressed in terms of the coordinates
of the balancing equation in this element (lemmaZ.1B). These expressions will then
yield §;; as an alternating sum where everything exceptitfreoefficients of the vertices
at the leaveg and! cancels out.

Lemma 4.11. For eachk # [ € [n], eachi = 1,...,r, there exist; (k, 1), x:(k,1) € R,
such that

Z ai(¢? —qi) = Y w(o)(af) — @) + &k, 1) - wy, (4.2)
o>T
ZO‘J G) _ oy — > w(o)(af — ai) + xi(k, 1) - wis. (4.3)

o>T
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Proof. By corollary[4.7,q;, qgl), ey qfd) are all contained in the relative interior of the
same minimal cong € G,. Since they; are verticesdim p = dim 7, since otherwise, the
kernel ofg|y, would be spanned by all edges emanating frerand thus have a dimension
higher thant.

Now letG, > p’ > p be the adjacent cone, such that the kern@hppf, is spanned byv;
(i.e. p’ contains (part of) thé-th edge). By lemm@a4l8, there is a bijection

I:{c’" >p'} = {o>1};0" — g(o).
Since), is surjective, we have the following isomorphisms:
Agr =2 Ag(ory X (wy) forall o’ > p',
Apl = AT X <w1>
Aoy, = hateryy
Sincety, p,(q7;) = qgj),t%_,p0 (¢7;) = @ and both maps preserve polyhedra, all these

vertices are contained in a common polyhedron which mustfaeeaofs’ := 11-1(0).
Hencegy, — g; is a representative af,./,, = (uy/-,0). Thisimplies

Y w(o) (@l — @) € Vy-

o>T

We also have

Zaj ') eV, Cv,.

and since both are mapped to the same elengnt, w(o)(ve —po) = Z;l:l a;(pj—po)
underg, they can only differ by an element froker 9v, = (w;), which implies the first
equation. Exchanging and! gives the second equation. O

Remark4.12 Itis obvious from the equations themselves, thatk, ) = x1 (k) actually
only depends ol (sincewy = vy is the same for all). Similarly, &, only depends on
and if we reverse the path direction, we find that

x1(k) = x1(k, 1) = =& (1, k).
Lemma 4.13. For eachk # I € [n] we have
Ay =6& —xiqrforalli=1,...,r—1,
di, =x; —&foralli=1,...,r

Proof. If we subtract equatioh (4.2) frorh(4.3) for- 1, we obtain

d
Zaa‘ q’L(i)l ¢~ (g1 — @1))

:(e(,j) —e;) w;

=Y w(@) (@ 1k — 7)) — (Gi41 — @) + (xig1 — &) - wi.

o>T

=(ey —eq)-w;
Factoring outw; we obtain 4
0=A%; =&+ Xit1-

For the second equation lete {1,...,r} be arbitrary. Sincg*(po) is a smooth curve,
it is locally atg; isomorphic toL"a'(ql) Denote byzy, ..., zs the direction vectors of the
outgoing edges, w.l.o.g; = —w;_1,2s = w;. Now each edgé in the preimage ofj;

undert,,, p, induces a partition of the s¢l, .. ., s} = IgJIg such thate,y € {1,...,s}
are contained in the same set if and only if the path frarto z, does not pass through
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(i.e. we separate theg “on one side oft” from the others). It is easy to see that, due to the
balancing condition of the curve, the direction vectoroimust be

wE::I:Zzz::FZzy,

z€lp yelg

depending on the choice of orientation (one can, for exansgle this by induction on the
number of edges). Now assuniglies on the path fronk to [ (i.e. in t;al7po(Qi) it lies on

the path fromgy, to ¢7;). Chooselg, such thatl ¢ Ir > s, i.e.wg points towardd.
Denote byEY, . . ., E;,’(Z. kloo) the sequence of edges frafy, to ¢7;. Subtracting equation

g*(vy) “locally att; ! (g;)”

Vo ;PO

g*(po) “locally at ¢;”

FIGURE 4.3. The direction vector of an edge is determined byzhe
lying “behind” it.

(4.2) from [4.3) for the samg we obtain

0= ZW(U)(QZI —q7k) T & - wi — Xi Wi
o>T

r(i,k,l,0)

:ZW(U) Z ezt'wEt +€12’5+X121

o>T t=1

:"“"<Zw<a><zef"*>>+2w<0> Y| X o

o>T o>T CEGIE,,\{S}

:=R, contains neithee; nor z

+& - zs+ X2

=z - (d}lc’l +&)— X ZZ’I + R.
r#1

Sincez; does no longer appear in this equation dnd « # 1} is linearly independent by
smoothness, the coefficient af must be O:

0=dj,; +& — xi-
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Proof of theoreri 4]4By equation[(4.1) and lemnia 4]13 we have
r—1

Ok (T) = Z( ;cl + Ai’,z) + dj

i=1

= Xl(k7 l) - 67'(k7 l)

BI2 (k1) +xa (L, k)

@Xl(k’) + xa(1).

Hence
Okt (7)<t = Prn((X1(7))r=1,....n)-

5. EQUIVALENCE OF FAMILIES

In the classical case, two familigs % B, T’ %> B are equivalent if there is an isomor-
phismy : T — T' that commutes with the morphisms and markings. Such an isomo
phism hence automatically induces isomorphisms betwesfiltbrsg* (p) andg’*(p) of a
pointp in B.

In fact, the last statement already uniquely fixes the mago for any two equivalent
families ofn-marked tropical curves we obtain a bijective nfap+ T’ that commutes with

g, ¢’ and the markings by identifying the fibers over each ppifwhich are isomorphic by
definition). We would like to see if this map is in fact a morghi Again, we will only be
able to show that it is a pseudo-morphism and since in gemerahn not assume to be
smooth, we cannot give a stronger statement.

Definition 5.1. LetT % B, T’ i; B be two equivalent families ofi-marked tropical
curves. Now for each pointin B there is a unique isomorphism (of tropical curves)

Uy g7 (p) = 9" (p)
(i.e. itidentifies equally marked leaves and is linear opsld on each edge). We define a
map

T =T
tng(t)(ﬁ).

Theorem 5.2. The mapy is a bijective pseudo-morphism whose inverse is also a pseud
morphism. In particular, ifl” or T" is smoothy) is an isomorphism.

Proof. Since the construction af is symmetric, it is clear that the inversewfs a pseudo-
morphism ify itself is one. Also, by propositidn 4.3, it is an isomorphigrany of 7" or
T’ is smooth.

First, we prove that is piecewise integral affine linear: Lete 7 and choose € 7,t'
rel int(7). Again, it suffices to show that is affine linear on the line segment cdimvt’}.

By corollary[4.7,t andt’ lie on edges of the corresponding fibers which have the same
direction vectow. Select verticep, p’ of these edges, such that p+a-w,t’ = p'+a’-w
fora,a’ > 0.

Denote byg := ¢(p), ¢ := ¢ (p") and let¢ be the direction vector of the corresponding
edge inT’. Hence

P(t) =vp+a-w) =q+a-§
V() =v(p +ao' - w)=q¢ +a' ¢



20 GEORGES FRANCOIS AND SIMON HAMPE

and using the fact that any convex combinatiom aindp’ must by[4.¥ again be a vertex,
it follows that

Y+t =) =v((p+v0 —p) +w- (@ +y(a —)))
=(g+(¢ =) +&- (a+7(a — )
= (t) + (') — (1))

for any~ € [0, 1]. Hencey is affine linear. Using the fact that it has slope 1 on each edge
of a fiber and thay’ o ¢) = g, itis easy to see that it respects the lattice.

It remains to see that is a pseudo-morphism, so lebe a codimension one cell 61 We
distinguish two cases:

e g, is injective: Thery(7) is a maximal cell of3, so the adjacent maximal cells
o > T are also mapped tg(7). So if we take a poinp € rel int(7), the normal
vectorsv,,,, — p correspond to normal vectors of the edges of the fiti¢g (p))
adjacent tg (after proper refinement). Since the fiber is smooth, thedaupdo
0 and by definition of/, so do their image#(v,,,) — ¥(p).

e g|, is notinjective: Hence the fiber inover a generic pointy € g(7) is contained
in the m-th edge on the path from some Idato some leaf (it doesn't really
matter, which one). Choosg, . . ., p4, v, in g(7) and its adjacent cellg(c), o >
7 as defined in_4]9. We now use the shorthand notafion;, ¢, for the m-th
vertex point of the fibers o, p; andv,. Now lemmd 4.1 tells us that — qo
is actually a normal vector of with respect tor and that its balancing equation
reads

> w(o)(gs — q) Zaj —q0) — €L (k1) - w

o>T

Now the image ofy, undery is by definition them-th nodal point of the fiber
¢"*(po), SO we also get

> w(o) (W) - Zag 90)) = & (k1) - (wn).
o>T
Hence, to prove that is a pseudo—morphlsm, it remains to show uf%t(k:, )=
Em (kD).
By the proof of proposition 414, we know that

01,1(1) = (O (k)k=1,0.m) = (T (B)) k=1, ).
Since the left side is independent on the choice of familydfynition (it is defined
only in terms of lengths of fibers) andl,, is injective, we must have? (k) =
T’ (k) for any k. Using the fact thatl; ;.. andAj ; are also independent of the
ch0|ce of family and applying lemnia4]13 |nduct|vely, we fipaee that

Xi (kvl) = Xi (kal) andgi ( ) ): 61 (kvl)

for any possiblg, £, I.
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