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COCYCLES ON TROPICAL VARIETIES VIA PIECEWISE POLYNOMIALS

GEORGES FRANCOIS

ABSTRACT. We use piecewise polynomials to define tropical cocycles generalising the
well-known notion of Cartier divisors to higher codimensions. We also introduce an inter-
section product of cocycles with tropical cycles and prove that this gives rise to a Poincaré
duality in some cases.

1. INTRODUCTION

Piecewise polynomials have been studied for their close relation to equivariant Chow co-
homology theory on toric varieties ([B}B2}|P, KP]). In [KP] the authors describe a method
to assign a Minkowski weight in a complete fan A to a piecewise polynomial on A and
therefore suggest to use piecewise polynomials in tropical geometry. If A is unimodular
(i.e. corresponds to a smooth toric variety), their assignment is even an isomorphism.

We show in the second section that the assignment of [KP|] agrees with the known (in-
ductive) intersection product of rational functions. This motivates us to use piecewise
polynomials as local ingredients for tropical cocycles. It turns out that each piecewise
polynomial on an arbitrary tropical fan is a sum of products of rational functions; this can
be used to intersect cocycles with tropical cycles. Finally, in theorem [2.25] we deduce a
Poincaré duality on the cycle R™ from the isomorphism between the groups of piecewise
polynomials and Minkowski weights on complete unimodular fans.

In the third section we focus on matroid varieties and smooth tropical varieties (that means
cycles which locally look like matroid varieties). Thereby we prove that each subcycle of
a matroid variety (modulo lineality space) can be cut out by a cocycle (theorem [3.I)) and
show a Poincaré duality in codimension 1 and dimension 0 for smooth varieties (corollary
3:3).

A similar construction to piecewise polynomials on fans has recently been introduced in-
dependently in [E]: Esterov defines tropical varieties with (degree k) polynomial weights
and their (codimension 1) corner loci which are tropical varieties with (degree k — 1) poly-
nomial weights.
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2. PIECEWISE POLYNOMIALS AND TROPICAL COCYCLES

To set notations we start this section by recalling the definition of a piecewise polynomial
on a (not necessarily tropical) fan F'.

Definition 2.1. Let V' = A ®z R be the real vector space corresponding to a lattice A.

Let S be a union of cones in V. We define P*(S) to be the set of functions g : S — R

that extend to a homogeneous polynomial of degree k£ on Vg having integer coefficients.

Here Vg denotes the smallest linear space containing S. A piecewise polynomial of degree

k on a fan F in V is a continuous function f : |F| — R on the support of F such that
1
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the restriction fj, € Pk(a) for each cone o € F. The group of piecewise polynomials
of degree k on the fan F' is denoted by PP*(F). We call PP*(F) := @y PP*(F) the
graded ring of piecewise polynomials on F. Finally, we define LPP*~1(F) := ({I- f :
I linear, f € PP*~!(F)}) to be the subgroup of PP (F) generated by linear functions.

Notation 2.2. Let X be a tropical fan (that means a weighted fan in a real vector space
(containing a lattice) which satisfies the balancing condition (see for example defi-
nition 2.6])). We denote by Zj(X) the group of k-dimensional Minkowski weights in X’
(that means its elements are k-dimensional tropical subfans of &).

A (tropical) fan cycle is the cycle associated to some tropical fan X'. We denote the group
of dimension d fan subcycles of fan cycle X by Z(X).

We are ready to state the result of [KP]] mentioned in the introduction.

Definition and Theorem 2.3. Let A be a complete unimodular fan in R™. For two cones

T < o € A, witho generated by v1, . . . , vy, let €or = HmigT U%, where vy, ..., v} €

PY(R™) form the dual basis of vy, . .. ,v,. Let f € PPk(A). For a maximal cone o € A,
f. denotes the polynomial on R™ which agrees with f on o. Then for any T € A"~P)

Cf<A(7—) = Z ea,‘rfo’
o>7, c€AM)

is a homogeneous integer polynomial of degree k — p. In particular, ¢y (7) is O if the
codimension of T is greater than k, and an integer if T € A"=F). Furthermore,

foa=1 J A% ¢ra
i<n—k

is tropical fan. Finally, PP*(A)/LPP* 1 (A) — Z,_1(A), given by f — f - Ais an
isomorphism. The fan cycle associated to f - A is independent under refinement of A and
is denoted by f - R™.

Proof. We refer to chapter 1, proposition 1.2, theorem 1.4 of [KP] for a proof. O

Example 2.4. Let f € PP? (A) the piecewise polynomial shown in the picture.

Then f - A is the origin with weight
x? y? 0 yx? — xy?
cr.A({0}) = + + = =1
r4(t0}) wx—y) yly-=z) (—2)(-y) wylz—-y)
Note that f is the square of the rational function max{z,y,0} and that max{z,y,0} -
max{x,y,0} - A (as product of rational functions with cycles defined in [AR} definition

3.4]) gives the origin with weight 1 too.

If a piecewise polynomial on a complete fan A is a product of rational (i.e. piecewise
linear) functions ¢;, then there are two ways of defining its intersection product with A:
We can either intersect inductively with the rational functions ¢; (cf. [AR| definition 3.4])
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or use the formula of theorem In the previous example both ways led to the same
result. We show in the following proposition that this is true in general:

Proposition 2.5. Let A be a complete unimodular fan in R™, and let @1, . . . , oy, be ratio-
nal functions on R™ which are linear on every cone of A. Let f = o1+ € PPk(A).
Then f-R™ = 1 - @i - R™, where the products on the right hand side are products of
rational functions with cycles.

Proof. To ease the notations we assume that each cone in A is generated by its rays. Let
7 € A %) be an arbitrary codimension k cone in A. By adding an appropriate linear
function [, we can assume that the restriction ¢ is identically zero. This does not change
f-R"since [ - py--- @y is in LPP*1(A). Set g := @y . In the following r,7;
denote rays of A with respective primitive integral vector v, v;. As 1|, = 0 the definition
of intersecting with a rational function (cf. [AR| definition 3.4]) implies that 7 has weight

w‘/’l"'@k'A(T) = Z wsoz"'ipk'A(T +7) - p1(v)
rir+reAln—k+1)

in 1 - - - @ - A. By induction on the degree of f this is equal to

Yo g alt 1) 01 (v)

rir4+re Aln—k+1)

= Z Z €o,74r Yo ° SDI(U)

rir4reAn—k+1) o>7+7r
k

= Z Z o1(v;) - €o,74+r; " Yo

o>rinaln) =1
o=T+r1+...+7k

k
= Z Zsm(vi) V] err Jo

o>7ina(n) i=1
o=T4+r1+...47%

= Z €o,r (g ) Z@1(01)0:> :
) i o

o>rinaln
o=7+r1+...4+7k

Since @1, = 0 the above agrees with

Z eor (9 ¢1), = cp.a(T).

o>7in A1)
o=T4+r1+...47k

O

So far R" is the only fan cycle admitting an intersection product with piecewise polyno-
mials (cf. theorem 2.3)). Therefore, our next aim is to define an intersection product for
arbitrary fan cycles. The idea is to write piecewise polynomials as sums of products of
rational fan functions and use these representations to define an intersection product. We
introduce some more notation:

Notation 2.6. The group of piecewise polynomials of degree k on a fan cycle X is de-
fined to be PP*(X) := {f : f € PP¥(X) for some fan structure X’ of X}. We set
LPP*Y(X) := ({l- f : llinear , f € PP*}(X)}).

Notation 2.7. Let F' be a unimodular fan such that each cone is generated by its rays. Let
v1, ..., Uy be primitive integral vectors of the rays rq,...,r,, of F. Then ¥,, = ¥; €
PP!(F) is the unique function which is linear on the cones of F' and satisfies ¥, (v;) = &;;,
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where d;; denotes the Kronecker delta function. For a cone 7 € F' we have a piecewise
polynomial ¥ :=[] W, € PPY™7(F). Note that ¥, vanishes away from Uysr o

VU, ET

As mentioned in [B[] we can show that the functions W.. generate the ring of piecewise
polynomials.

Proposition 2.8. Ler f € PPk(F ) be a piecewise polynomial of degree k on a unimod-
ular fan F' whose cones are generated by their rays. Then there exists a representation
[ = D oep<r acVs, where the ay are homogeneous integer polynomials of degree
k — dim(o). In particular, piecewise polynomials on tropical fan cycles are sums of prod-
ucts of rational functions.

Proof. We use induction on the dimension of F', the case dim F' = 0 being obvious.
We know by induction hypothesis that there are (homogeneous) polynomials a, such that
fim) =2, cp=m 0¥y, where Fy = {0 : 0 € F®) with p < dim F'}. Thus, it suffices
1
to show the claim for g := f — ZU€F<gk> as ¥V, € PP’“(F). Now we use induction on the
1

number r of maximal cones in F'. Let = 1 and o be the unique maximal cone in F'. By
[Bl section 1.2], we know that the following sequence is exact:

0 — U, PFdimF )y ppr () = PPR(F\ {o}) — 0.

Since g r\{s}] = 97| = 0, it follows that there is a polynomial a, such that g =
as¥Y,. Nowletr > 1 and 0 € F a maximal cone. By the induction hypothesis, there
are polynomials b, such that g p\ (5} = ZTEF\{G’}(SI"’) b;¥... Since the restriction of
9= rer\foy=m br¥r to '\ {0} is 0, the claim follows from the exactness of the above
sequence. As every fan can be refined to a unimodular fan whose cones are generated by
their rays (cf. [R} proposition 1.1.2]) this also implies the “in particular” statement. O

It is clear that the representation of a piecewise polynomial as a sum of products of rational
functions is not unique. Therefore, we need to ensure that the intersection product will not
depend on the chosen representation.

Proposition 2.9. Let %, ..., ¢k, fy{ e ,’yi with k < d be rational fan functions on a fan
cycle X € Z5"(V) such that f := >, ¢4+ ¢l = Zjer{ e ’yi € PP*(X). Then
we have the following equation of intersection products of rational functions with cycles
(cf. [AR| definition 3.4]):

STt ek X=X oad el X
i€l jeJ
The proof of the proposition makes use of the following technical lemma:

Lemma 2.10. Let cy, .y, be real numbers such that ), ., _; alteabe ey, =
foralla; > 0. Then all ¢y, ., are 0.

Proof. Fora; € {1,...,k+ 1} and any as, ..., as we have

k
b b b b b
0= g ayt Ayt Chyb, = E ay’t E as’ - A Chy.. b,

bit...4+bs=k b1=0  bot...+bs=k—b;
Since the Vandermonde matrix (i7) i=1....k+1,j=0,...  1s regular, it follows that
b bs .
Z as?--aycy, b, =0
ba+...4+bs=k—by
forall as,...,as > 0andall b € {0,...,k}. Hence the claim follows by induction. ]
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Proof of proposition[2.9 We choose a unimodular fan structure X’ of X such that every

cone is generated by its rays and all goj,, 1#1]; are linear on every cone of X. Let vy,...,v,,
be the primitive integral vectors of the rays 71, . .. , 7, of X. Since i, = Y7 | b (vs)- W,
we have
m m
f= ZQOZl‘P}c = Z Zsoll(vs) W] Z@Z(U‘s) -y
il iel \s=1 s=1

Z Z Z @i (’Usgu)) U (p;‘;:(lusa(k)) : \1’81 e \Ijsk

i€l 1<s1<...<s,<m o€E€Sk

Z Z Z‘pi(vsa(n)"'Sp;c(ﬂsa(k))'qjsl "'\I]Sk,'

1<s1<...<sp,<m o€Sy, i€l

= Asy...5, €L
The commutativity of intersecting with rational functions ([JAR| proposition 3.7]) implies
Z%...@;'C.X: Z Xoyovsy - Wy, Ty, - X,
i€l 1<5:<...<s5,<m
Analogously we find 5, .5, € Z such that
ZW{...%J;.X: Z fhsy.sn - Vs, - W, - X,
jeJ 1<s1<..<sp<m

It follows that

Z(pll @;cX*ZfY{ Pin = Z ()‘51---31@ 7M51»--5k) '\Ilsl \IISkX

iel jeJ 1<, <...<sp<m

As Uy, -+ Uy, - X = 0if the cone (wy, ..., w;) ¢ X (this can be showed in the same
way as A, lemma 1.4]) the above is equal to

Z csl...sk '\I/sl"'\IJsk - X.

0= (Vs 5sVsy )EX

It suffices thus to prove that each c, . s, occurring in the above sum is equal to O: Let
p<kand (vy,...,v,) € X Forallay,...,a, >0 we have

0 = (f—flarvy +... +apvy,)

Z Csyosy Vs - Uy | (a1vg, + ..+ apvy)

1<s51<...<sp<m

5 T =]
Jjisj=t;
= CS1---3k Hai ’
1<s1<...<sp<m i=1
{51,856 }C{t1,--tp}
— by b
= > Ctyootyonty .. 100 "y
L
1t +bp by times by, times
It follows from lemma that all ¢, 4,..1,,...¢, are 0. =

The previous propositions together with the well-known intersections with rational func-
tions enable us to define an intersection product of piecewise polynomials with tropical fan
cycles. Later we will use this to construct an intersection product of cocycles with arbitrary
cycles.
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Definition 2.11. Let X € Z% (V) be a tropical fan cycle and let f € PP*(X) be a
piecewise polynomial on X. By propositionwe can choose rational functions go; such

that f = Y7, bl € PP*(X). This allows us to define the intersection of f with
the cycle X to be

S
fX =gl ph - X € Z5m(X).
=1

Note that this does not depend on the choice of rational functions by proposition 2.9}

Remark 2.12. Ttis clear that the intersection product is linear and that f-(g-X) = (f-g)- X
for two piecewise polynomials f, g on a fan cycle X. Furthermore, it follows straight from
definition that f - X = 0if f € LPP*!(X).

Example 2.13. Let f € PP2(L§) be the piecewise polynomial on the tropical fan cycle
L3 := max{w,y, 2,0} - R? shown in the following picture. Let X’ be the corresponding
fan structure of L3.

f € PP?(X) C PP%(L3) f—22-9, -z,

We want to compute f - L3. Therefore, we use the idea of the proof of proposition to
obtain a representation of f as a sum of products of rational functions: We first make f
vanish on the rays of X by adding appropriate (linear) multiples of the rational functions
U, (with r ray of X). Doing this we obtain f — 2z - ¥, — x - ¥y, where a = (-1, —1,0)
and b = (1,1, 1). Now it is easy to see that

f=2r U, =2 U=, +V, +¥, —2-V,, .

As U, - L3 = 1-{0} for all i (cf. lemma we obtain by deﬁnition and remark
Ra2that f- L = (-1+1+1-2)-{0} = —1-{0}.

Remark 2.14. Let X be a tropical cycle in a vector space V' (that means the cycle associated
to some balanced weighted polyhedral complex X in V' (cf. [R] definition 1.1.8])). Let p be
apoint in X. Recall that in [R] section 1.2.3] the star Star x (p) is defined to be the tropical
fan cycle in V' associated to Starx (p), where X is a polyhedral structure of X containing
the cell {p}. That means Starx (p) is the fan cycle whose support consists of vectors v
such that p 4 ev € | X| for small (positive) € and whose weights are inherited from X.

A piecewise polynomial f € PP*(X) on a fan cycle X induces a piecewise polynomial
fP € PP*(Starx (p)) obtained by restricting f to a small neighbourhood of p and then
extending it in the obvious way to Starx (p). As f = >.7_, ¢} - i implies that f? =
S0 (94)P - ()P, it follows from [R] proposition 1.2.12] that

f? - Starx (p) = Starf.x(p).



COCYCLES ON TROPICAL VARIETIES VIA PIECEWISE POLYNOMIALS 7

Our next aim is to use piecewise polynomials to define higher codimension cocycles on
tropical cycles X . Prior to that we give a definition of (abstract) tropical cycles consistent
with the definition of smooth tropical varieties in chapter 6 of [FR] (to which we refer for
further details). Recall that a topological space is called weighted if each point from a
dense open subset is equipped with a non-zero integer weight which is locally constant (in
the dense open subset). A cycle X in a vector space can be made weighted by assigning
to each interior point of a maximal cell o € X the weight of o, where X is a polyhedral
structure of X.

Definition 2.15. An (abstract) tropical cycle is a weighted topological space X together
with an open cover {U; } and homeomorphisms

such that

e cach W is an (euclidean) open subset of | X;| for some tropical fan cycle X; (in
some vector space)
e for each pair i, k, the transition map

dr o ¢; (Ui NUL) — dx (Ui N Uy)

is the restriction of an affine Z-linear map, i.e. the composition of a translation by
a real vector and a Z-linear map

o the weight of a point p € U; is equal to the weight of ¢;(p) in X; (if both are
defined).

If all X; can be chosen to be matroid varieties [FR| section 2] modulo lineality spaces, then
we call X a smooth tropical variety. Recall that in [FR| definition 6.2] a subcycle C of X is
defined as a weighted subset of |X| such that for all ¢ the induced weighted set ¢,(C' N U;)
agrees with the intersection of W; and a tropical cycle in Xj;.

Definition 2.16. Let X be a fan cycle (in a vector space V') and U an open subset in | X|.
A continuous function f : U — R is called piecewise polynomial of degree k£ on U if
it is locally around each point p € U a finite sum ZJ( f} o T3) of compositions of (re-
strictions of) piecewise polynomials f7 € PP*(Starx (p)) and translations TJ. We define
f» € PP¥(Starx (p)) to be the (uniquely defined) sum of the . The group of piecewise
polynomials of degree & on U is denoted PP* (U). Furthermore, L PP*~1(TU) is the group
of piecewise polynomials f (of degree k) on U such that f, € LPP*~*(Stary (p)) for all
.

We now generalise the notion of Cartier divisors (i.e. codimension 1 cocycles) introduced
in [[AR| definition 6.1] by using piecewise polynomials (instead of piecewise linear func-
tions) as local descriptions:

Definition 2.17. A representative of a codimension k cocycle on the cycle X is defined as
aset {(V1, f1),..., (Vp, fp)} satisfying

o {V;} is an open cover of | X|

o (fjo ¢i_1)|¢i(Umvj) € PP*(¢:(U; NV;)) for all 4, j

o ((fi—fr)o ¢i_1)|¢>i(Umvijk) € LPP* Y (¢;(U; N V; N V})) for all d, j, k.
The sum of two (representatives of) codimension & cocycles {(V}, f;)} and {(V{, fi)} is

defined to be {(V;NV}), f; + f1.) }. We call two representatives of codimension k cocycles
{(V;, f;)} and {(V/, f}.)} equivalent (and identify them) if we have for all 7, s that

(95 © 67 Visuwink,) € LPP* H(¢(U:i N Ky)),
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where {(K, g5)} = {(Vj, f3)} = {(Vi, fi) }-

The group of codimension & cocycles on X is denoted C'*(X). The multiplication of two
cocycles can be defined in the same way as the addition; therefore, there is a graded ring
C*(X) := ®renCF(X) called ring of piecewise polynomials.

Example 2.18. For any cycle X, C!(X) is the group of Cartier divisors Div(X) intro-
duced in [AR| definition 6.1].

Example 2.19. Vector bundles 7 : F' — X of degree r on tropical cycles X have been
introduced in definition 5.1.5]. A rational section s : X — F with open cover
Ui, ..., Us induces rational functions s;; := p;i) o®,0s5:U; = R (cf. definition
5.1.18]). Here the ®; are homeomorphisms identifying 7T71(Ui) with U; x R" and the
py) : U; xR™ — R are projections to the j-th component of R". For any k£ < r one obtains
the cocycle s¥) := {(U;, doi<ii<.. <ju<r SiqSij)} € Ck(X) (see definition
5.2.1)).

We are now ready to construct an intersection product of cocycles with tropical cycles.

Definition and Construction 2.20. Let f = {(V}, f;)} € C*(X) be a codimension k
cocycle on a tropical cycle X. For a point p in X we choose i, j such that p € U; N'V;. By
definition (f; 0 ¢; '), € PP*(Stary, (¢i(p)) is a piecewise polynomial on the star around
¢;(p). Thus we can define the local intersection (f; o ¢; ) - X; by

Star s o4-1.x, (9:(p)) := (fj 0 ¢; ')p - Starx, (¢:(p))-

As ¢y o¢; ! induces an isomorphism between the stars Star y, (¢;(p)) and Starx, (¢x(p)),
the definition does not depend on the choice of open set U;.

We can glue together the local intersections to a subcycle f - X € Zgim, x—x(X) of X: If
p € U;NV;NV,, then ((fj — fs) oo ), € LPP*(Starx, (¢i(p)). Therefore, it follows
by remark [2.12] that the local intersections agree on the overlaps.

Remark 2.21. In the same way we can also intersect cocycles on X with any subcycle of
X. Hence, definition [2.20] gives rise to an intersection product

CM(X) x Z(X) = Zix(X), (f,C)f-C.
Example 2.22. The following picture shows a cocycle f = {(V1, f1), (Va, f2)} € C?(R?)

with R = (—1,—1), Q@ = (2, 2). Note that for p = (¢,t) with —1 < t < 2 we have
(fi—f2)p=(y+2z) max{x —y,y —z} € LPPI(StarP(RQ));

hence f is indeed a cocycle. As (f1)g is the piecewise polynomial of example we
conclude that the multiplicity of R in f - R? is 1. We can deduce from an analogous
argument for the point Q that f - R? = R+ Q.
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As in the case of rational functions and Cartier divisors (AR} proposition 4.7 and 7.6]),
we can define pull-backs of piecewise polynomials and cocycles along morphisms.

Definition 2.23. If 4 : Y — X is a morphism of fan cycles and f € PP¥(X) is a
piecewise polynomial on X, then we define the pull-back h* f € PPk(Y) of f along the
morphism h as h* f := f o h.

Analogously the pull-back h*f € C*(Y') of a codimension k cocycle f = {(V}, f;)} €
C*(X) along a morphism h : Y — X of any cycles is defined to be {(h=1(V}), fj o h)}.

Proposition 2.24. The following properties hold for cocycles f € C*(X) and g € C'(X)
onacycle X.

(1) CHX) x Z)(X )—>Zl (X)), (b,C)—b-C is bilinear.

@ f(g X):(f 9)- X=g-(f-X).

3) f-(hE) = hy(h*f - E) for amorphism h : Y — X and a subcycle E of Y.

@) If X € Z4(Vx),Y € Z.(Vy) are contained in vector spaces (in the sense of
[Rl definition 1.1.8]), then (f- X)xY = 7*f- (X XY'), where 7 : Vx xVy — Vx
maps (x,y) to x.

(5) If D is rationally equivalent to 0 on X (cf. [AR2} definition 1]), then so is f - D.

X)

If X and'Y are smooth and C, D are subcycles of X, then intersection products and pull-
backs (|FR, definition 6.4 and 8.1]) have the following additional properties:

©) IfD=f X, thenD -xC=f-C.
(7) Ifbisacocycle on C, then (b-C)-D =b-(C - D).
@) IfD=f-Xandh:Y — X is a morphism, then h*D = h*f - Y.

Proof. We first notice that all statements except (5) can be verified locally (that means for
piecewise polynomials on fan cycles). But the local statements are either trivial or follow
directly from the respective property of rational functions (JAR} 4.8, 9.6, 9.7, 9.8], [FR} 4.5,
8.2]). Using (3) the proof of (5) is the same as the proof of [AR2] lemma 2(b)]. [l

After having listed the main properties of intersections with cocycles we now focus on
cocycles on the cycle R™. We use theorem [2.3]to establish a Poincaré duality for this case:

Theorem 2.25. For any n > k, the following is a group isomorphism:
C*(R™) = Zn_x(R™), f— f-R™

Proof. We first consider the corresponding local statement: Since every fan cycle in R™
has a fan structure lying in a complete unimodular fan ([AR2] lemma 5] and [R} proposition
1.1.2]), we can use theorem [2.3to conclude that

PP*(R")/LPP*}(R") — Z& (R"), g+~ g-R"

is an isomorphism.

For the global case we start by proving the surjectivity. So let C' € Z,,_;(R™) be an
arbitrary subcycle of R™ and let C be a polyhedral structure of C. We choose an open cover
{V;} of R™ and translation functions 7 such that 7;(C N V;) is an open tropical fan (cf.
[AR| definition 5.3]) for all j. By the local statement we can choose for each j a piecewise
polynomial f; whose intersection with R™ is the tropical fan associated to T;(C N Vj).
Then f = {(V;, fj o T;)} € C*(R") is a cocycle satisfying f - R = C. Note that by
construction the difference of two of these local functions gives a zero intersection on the
overlaps of two open sets; therefore, the local statement implies that the third condition of
definition is fulfilled and f is indeed a cocycle on R™.

The injectivity follows immediately from the local statement. U
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3. COCYCLES ON MATROID VARIETIES

In this section we analyse cocycles on smooth varieties. As mentioned in definition[2.15]a
tropical cycle is smooth if its local building blocks are matroid varieties modulo lineality
spaces (denoted by B(M)/L). If M is a (loopfree) matroid whose ground set E(M)
has n elements, then the support of the corresponding matroid variety B(M) is the set
{p € R™ : M, is still loopfree}. Here the matroid M), is given by its set of bases

{B : B basis of M with » " p; minimal}.
i€B

Alternatively one can express a canonical fan structure of B(M) in terms of the flats (i.e.
closed sets) of M (cf. for example [FR| section 2]).

The following theorem states that every subcycle of a matroid variety can be cut out by a
cocycle. The idea of the proof is to delete elements of the matroid in order to make use
of the R"-case. If an element 7 of E(M) is not a coloop, then the deletion of i (see for
example [FR| section 3]) corresponds to a projection. This means that the push-forward of
B(M) along the projection 7; : R™ — R™~! forgetting the i-th coordinate is equal to the
matroid variety B(M \ {i}) corresponding to the deletion matroid ([FR} lemma 3.8]).

Theorem 3.1. For any k < d := dim(B(M)/L), the following morphism is surjective:
CH(B(M)/L) = Za-x(B(M)/L), [+ f-B(M)/L.

Proof. We first consider the case where L = {0} and {a} is a flat for every a € E(M).
We use induction on the codimension of B(A): The induction start (B(M) = R™) was
proved in theorem Let C be an arbitrary subcycle of B(M) of codimension k. After
renaming the elements, we can assume that {1,...,p} is the set of elements of F(M)
which are not coloops. For i € {1,...,p} we set

*
Co:=0C, C;:=0Ciq— 5 T Ci1,

where the 7; : B(M) — B(M \ {i}) denote the projections forgetting the i-th coordinate.
The induction hypothesis allows us to choose cocycles f; € C*(B(M \ {i})) such that
fi - B(M \{i}) = m;,Ci_q fori € {1,...,p}. [FRl Lemma 9.3] implies that 7;,Cj, = 0
for all 4; thus C,, = 0 by [FR] lemma 9.4]. It follows that

p p p
C =Y mmCioi =Y wf(fi-B(M\{i})) =) _(xffi) - B(M).
i=1 i=1 i=1
As g : B(M) — B(M \ R) is an isomorphism for R = clp;({a}) \ {a} this also implies
the claim for arbitrary matroid varieties B(M ).
Now let C' be a subcycle of B(M)/L. Since B(M) = B(M)/L x L we can choose a
cocycle f with f-(B(M)/Lx L) = Cx L. It follows that f - (B(M)/Lx{0}) = C x{0}.
Therefore, we can conclude that s* f-B(M)/L = C, where s : B(M)/L — B(M)/Lx L
maps z to (z, 0). O

Remark 3.2. It follows in the same way that each fan cycle D € Z@, (B(M)/L) is cut
out by a piecewise polynomial f € PP*(B(M)/L).

Remark 3.3. An alternative proof (in the case of a trivial lineality space L = {0}) has
recently been found by Esterov in [E} corollary 4.2].

The rest of the section is devoted to show that the (surjective) morphism of theorem 3.1]is
an isomorphism in some cases. Unfortunately, so far we have not been able prove this in
general.
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Proposition 3.4. Let d := dim(B(M)/L). Then the following is an isomorphism:
PP (B(M)/L)/LPP*(B(M)/L) = Zi" (B(M)/L), f+ f-B(M)/L.

Proof. 1t remains to prove injectivity. We can assume without loss of generality that {a}
is a flat in M for every a € E(M). By successively deleting elements which are not
coloops, we see that B(M) is obtained from RI 4™ B(M)I by a series of modifications (cf.
[FR} proposition 3.10]). Thus it follows from induction and [[A2| theorem 4.2.6] that the
above morphism is injective if the lineality space is trivial. The B(M)/L case follows
immediately from the B(M) case. O

Proposition 3.5. Let X be a locally irreducible fan cycle of dimension d which is con-
nected in codimension 1 (cf. [R| definition 1.2.27, lemma 1.2.29]). Then the morphism of
groups

PPY(X)/LPP" (X)) =z X)=2Z, f— f- X
is injective. As matroid varieties modulo lineality spaces are locally irreducible and con-

nected in codimension 1 (this follows from [FR| lemma 2.4]), the above is an isomorphism
of groups if X = B(M)/L.

For a proof we need the following two lemmas:

Lemma 3.6. Let X be a unimodular fan structure of a fan cycle X of dimension d (such
that every cone in X is generated by its rays). Let 0 € X be a maximal cone. Then
U, - X =wy(o) - {0}. Here wy denotes the weight function of X.

Proof. Let vy, ..., vq be the primitive integral vectors generating the rays of o. It follows
from the definition of ¥, and the intersection product with a rational function that the
weight of the cone (v, ...v;—1) in ¥, --- ¥, - X is equal to the weight of (v1,...v;) in
Wyipr - Wy, - X. This implies the claim. O

Lemma 3.7. Let X be a unimodular fan structure of a fan cycle X of dimension d (such
that every cone is generated by its rays). Let 01,09 € XY having a common face T €
X@=1_If X is locally irreducible then

wx(O'g) . \Ifal — w;((al) . \I/UQ =1- \I/T,

for some linear function l on X.

Proof. Letos, ..., oy be the remaining facets adjacent to 7. Let vy, ..., vg—1, w1, ..., Wk
be the primitive integral vectors such that 7 = (vy,...,v4_1) and o; = (v1,...,Vg—1, W;).
As

wX(UQ) Wy — wX(Ul) Vo, =U; - (WX(O'2) Wy, — WX(Ul) : \IIU)Q),
we need a linear function [ satisfying

Lo, =wx(02) (Y, )joys loy = —wx(01) - (Y, )|o, and I, = 0 fori > 3.

The local irreducibility of X implies that vy, ..., vq, ws, ..., wg, w; are linearly indepen-
dent. Thus there exists a linear function / such that [(w;) = wx(o2) and I(v) = 0 for
v € {v1,...,04-1,Wws,...,wg}. By the balancing condition /(wy) = —wx (o1); hence
satisfies the above conditions. O

Proof of proposition3.3} Let f € PP4(X) with f - X = 0. We choose a unimodular fan
structure & of X such that every cone in A" is generated by its rays and f € PPd(X ).
Then there exist a, € Z such that f = > _s ) as - ¥, in PPY(X)/LPP(X).
Fix a maximal cone o« € X. Since X is connected in codimension 1 it follows by
lemma that ¥, = “*(2 . for all maximal cells o. Hence we see that f =

wx (a)

(Za cx@ Ao o E;;) W,,. Therefore, lemmaimplies that f = 0. O
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We can prove the following corollary in a similar way as theorem [2.25]

Corollary 3.8. Let X be a smooth tropical cycle and k € {1,dim X }. Then the following
is an isomorphism of groups:

C*(X) = Zaimxw(X), fr—=f-X.

Proof. The injectivity follows directly from the local statement (proposition [3.4]resp[3.3).
Let C € Zgim x—1(X). We choose an open cover {VZ]} of X such that for all 7,7 we
have Vl-j C U; and the weighted set ¢;(C' N Vl-j ) corresponds to (the translation of) an
open tropical fan in qbi(Vij ). As the tropical fan associated to ngi(‘/;j ) is a matroid variety
modulo lineality space, the local statement ensures that we can find piecewise polynomials
] € PPH(¢4(V})) cutting out ¢;(C N V7). Then f = {(V/, f] o ¢:)} € C¥(X)isa
cocycle with f - X = C. Note that the difference of two of these local functions gives a
zero intersection on the overlaps of the open sets, so the local statement implies that f is
indeed a cocycle. (]

Remark 3.9. Proving the injectivity of
PP*(B(M)/L)/ LPP* " (B(M)/L) = Zgh, s(ar)/o—1(B(M)/L)

is all that remains to be done in order to generalise corollary [3.8]to arbitrary codimensions
k. Note that we also needed the injectivity of intersecting with piecewise polynomials to
prove the surjectivity in the preceding proof.

Remark 3.10. Let C' be a codimension k subcycle of a dimension d cycle Y satisfying
CHF(Y) = Zy_(Y). Let h : X — Y be a morphism. We can define the pull-back of C'
along h to be h*C := h* f - X, where f is the (unique) cocycle satisfying f - Y = C. If
X and Y are smooth, this coincides with the pull-back of cycles defined in [FR| definition
8.1]. Furthermore, pull-backs defined in this way clearly have the properties listed in
[FRl, example 8.2, theorem 8.3]. In particular, we can define pull-backs of points and
codimension 1 cycles if Y is smooth, as well as pull-backs of arbitrary cycles if Y = R".
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