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ABSTRACT. We define an intersection product of tropical cycles on matroid varieties
(via cutting out the diagonal) and show that it is well-behaved. In particular, this en-
ables us to intersect cycles on moduli spaces of tropical rational marked curves Mn and
Mlab

n (∆,Rr). This intersection product can be extended to smooth varieties (whose local
models are matroid varieties). We also study pull-backs of cycles and rational equivalence.

1. INTRODUCTION

For each loopfree matroid M with ground set E there is an associated tropical cycle
B(M) ⊂ RE . It is a fan with lineality space R · (1, . . . , 1) whose dimension is equal to the
rank of the matroid. These objects, which we call matroid varieties here, have been stud-
ied, among others, by Sturmfels, Ardila, Klivans, Speyer and Feichtner [S3, AK, S2, FS].
Matroid varieties generalise the tropicalisations of classical linear spaces and can therefore
be considered as tropical linear spaces. In particular, they are natural candidates for being
the local building blocks of smooth tropical varieties. Therefore, it has been expected that
on such spaces a well-behaved intersection product of tropical subcycles exists. The aim
of this article is to construct this intersection product, to analyse some of its properties and
to relate it to other notions such as rational equivalence. As in [AR1, section 9] for Rn and
in [A1, section 1] for Lnk , our construction is based on finding rational functions on the
product B(M)× B(M) which cut out the diagonal ∆B(M).

An intersection product on matroid varieties was presented before by Kristin Shaw (cf.
[S1]). Her alternative approach uses tropical modifications to give a recursive definition.
In particular, the observation that elementary quotients of matroids correspond to tropical
modifications is due to her. In theorem 8.10, we show that both definitions of intersection
products on matroid varieties agree — therefore, the advantages of both approaches can be
combined.

In section 3 we show that any matroid variety contained in a second one can be cut out
from the second one by explicitly given rational functions. Applying this in section 4 to
the diagonal of a matroid variety sitting in the cartesian product enables us to construct an
intersection product of cycles on B(M) having the usual properties.

In our terminology, B(M) denotes a “tropical affine cone” with lineality space L = R ·
(1, . . . , 1). A priori, our intersection product is defined on this cycle. Therefore, section 5
is devoted to carrying over this intersection product to the projectivisation B(M)/L. This
is a mainly technical task. In section 6, we give a definition of smooth tropical varieties
(whose local models are B(M)/L) and extend the intersection product to this case.

As an application, in section 7 we identify (on the level of tropical varieties) the moduli
spaces of tropical rational curves Mn and Mlab

n (∆,Rr) with matroid varieties obtained
from the complete graph Kn−1 and hence get an intersection product on these spaces.
Finally, in sections 8 resp. 9 we study pull-backs of cycles resp. rational equivalence.
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Convention 1.1. In the following, unless explicitly told otherwise, all matroids are assumed
to be loopfree (that means that each element of the ground set has rank 1).

2. PRELIMINARIES

We start with recalling the definition of a matroid variety. We state a few general results
about matroid varieties which are needed in the following.

Let M = (E,B) be a loopfree matroid of rank r(M) with ground set E = {1, . . . , n}.
It defines a tropical fan cycle B(M) of dimension r(M) in Rn whose support set can be
described as follows: To each point p ∈ Rn one can associate a matroid Mp whose bases
are the p-minimum bases of M (where the p-weight of a basis B is

∑
i∈B pi). The point

p lies in the support of B(M) if and only if the matroid Mp is (still) loopfree. As tropical
cycle, B(M) can be obtained from the unimodular fan B(M) consisting of the cones

〈F〉 :=

{
p∑
i=1

λi · VFi
: λ1, . . . , λp−1 ≥ 0, λp ∈ R

}
,

where F = (∅ ( F1 ( . . . ( Fp−1 ( Fp = E) is a chain of flats in M , and VF =
−
∑
i∈F ei denotes the vector corresponding to the flat F . Here {e1, . . . , en} denotes the

standard basis of Rn. Equipped with trivial weights 1 for each facet, B(M) is balanced (as
defined for example in [AR1, 2.6]). We call the resulting tropical cycle B(M) the matroid
variety corresponding toM . Following [AK], we call B(M) the fine subdivision of B(M).
Note that, by definition, B(M) has lineality space R · (e1 + . . .+ en).

The following picture shows the fine subdivision of the matroid variety B(U3,4) (modulo
its lineality space R · (1, 1, 1, 1)). Here U3,4 denotes the uniform matroid of rank 3 on the
set N := {1, 2, 3, 4} whose bases are the 3-subsets of N (cf. example 7.1). The maximal
cones of B(U3,4) are of the form 〈∅ ( {i} ( {i, j} ( {1, 2, 3, 4}〉.
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Recall that the direct sum M ⊕N of two matroids M and N is the matroid whose ground
set is the disjoint union E(M) ·∪E(N) and whose set of bases is the set {BM ·∪BN :
BM , BN bases of M,N respectively}.

Lemma 2.1. LetM,N be matroids. Then the two tropical cycles B(M⊕N) and B(M)×
B(N) are equal.

Proof. The equality of the support sets follows from the equality of matroids

(M ⊕N)(p,q) = Mp ⊕Nq
(see also [S2, proposition 2.5]). As all occurring weights are 1, that also shows the equality
of the cycles. �

Our next remark about matroid varieties concerns their local structure. Let us fix our
terminology first.

LetX be a tropical cycle in a vector space V and let p be a point inX . We define StarX(p)
to be the cycle (in V ) associated to StarX ({p}) (cf. [R, section 1.2.3]), where X is a
polyhedral structure of X containing the cell {p}. In other words, StarX(p) is the fan
cycle containing all vectors v such that p + εv ∈ |X| for sufficiently small (positive) ε
(with inherited weights).

Lemma 2.2. Let B(M) be a matroid variety and p a point in B(M). Then we have

StarB(M)(p) = B(Mp),

where Mp is the matroid whose bases are the p-minimum bases of M .

Proof. The statement follows from the identity Mp+εv = (Mp)v for any vector v and
sufficiently small ε. �

Any matroid M can be decomposed into a direct sum M = M1 ⊕ · · · ⊕Mk of connected
submatroids which is unique up to reordering (cf. [O, corollary 4.2.13]). It follows from
lemma 2.1 that the (maximal) lineality space of B(M) is of dimension at least the number
of connected components k. Here, a lineality space L of a tropical cycle C ⊆ Rn is a
subspace of Rn such that C is invariant under translations by vectors in L (see section 5
for further terminology). The next lemma states that equality holds.

Lemma 2.3. Let M be a matroid on the ground set E and let B(M) be the corresponding
matroid variety. Let L be its maximal lineality space. Then the equation

dim(L) = number of connected components of M

holds. In particular, if M is connected, then L is just spanned by (1, . . . , 1).

Proof. Obviously, it suffices to show that M is disconnected if dim(L) > 1. So let us
assume that L is more than the span of (1, . . . , 1). Then L must contain some vector VS
with ∅ ( S ( E. The fact that VS is contained in the lineality space of B(M) means that
MλVS

stays the same for all λ ∈ R; in particular, MVS
= M . Hence all bases of M have

the same VS-weight, i.e. have the same number of elements in S (resp. E \S). This shows
that S is a separator (i.e. a union of connected components). �

We finish this section by showing that a matroid variety B(M) is always irreducible (i.e.
any subcycle X of B(M) of the same dimension is X = m · B(M) for some integer m).
Moreover, by lemma 2.2 this implies that a matroid variety B(M) is locally irreducible (i.e.
for every point p in B(M), the local fan StarB(M)(p) is also irreducible, cf. [R, definition
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1.2.27]). To show irreducibility, let us recall that for any cycle X ⊆ Rn of pure dimension
k the projective degree of X is given by

deg(X) := deg(max{0, x1, . . . , xn}n−k ·X).

It follows easily from [S2, section 3] that each matroid variety has projective degree 1
(moreover, Fink shows a converse statement in [F, theorem 6.5]). As in the classical case,
this implies irreducibility, though this implication is not quite as trivial as B(M) could be
split into cycles with possibly negative weights.

Lemma 2.4. Each matroid variety B(M) is irreducible, and therefore, by lemma 2.2, also
locally irreducible.

Proof. Let k be the dimension of B(M) and let H be a translation of

max{0, x1, . . . , xn}n−k · Rn.
As deg(B(M)) = 1 and both B(M) and H carry only positive weights, it is not hard to
see that for a generic point p in B(M), there is a suitable translation H such that {p} =
|B(M)| ∩ |H|. Now let X be a subcycle of B(M) of the same dimension. For p and H as
before, we must have H ·X = deg(X) · {p}, and therefore X = deg(X) · B(M). �

3. MATROID QUOTIENTS AND RATIONAL FUNCTIONS

Let us fix a set E with n elements and let O be the (trivial) matroid of rank n on E (i.e.
the only basis is given by the whole set E). Following the construction of [AK] described
earlier, we get a subdivision B(O) of Rn, with minimal cone R · (1, . . . , 1), which is also
called braid arrangement. By construction, any other matroid M on n elements produces
a subfan B(M) of this subdivision B(O). For two matroids M and N , we conclude

|B(N)| ⊆ |B(M)| ⇔ B(N) ⊆ B(M) ⇔ {flats of N} ⊆ {flats of M}.
In the following, we just write B(N) ⊆ B(M) in this situation. The last equivalence has
the following consequences on the rank functions of M and N .

Lemma 3.1. Let M and N be matroids of rank r resp. s such that B(N) ⊆ B(M). Let
A ⊆ B be arbitrary subsets of E. Then the equation

rM (A)− rN (A) ≤ rM (B)− rN (B)

holds. Plugging in A = ∅ and B = E, we obtain

rN (A) ≤ rM (A) ≤ rN (A) + r − s.

Proof. As clM (A) ⊆ clN (A) for any set A, we can assume that A and B are closed in M .
By induction, we can also assume rM (B)−rM (A) = 1, i.e.B = clM (A∪x) for an element
x ∈ B\A. It follows clN (B) = clN (clM (A∪x)) = clN (A∪x), i.e. rN (B)−rN (A) ≤ 1,
which proves the claim. Another proof is contained in [O, proposition 7.3.6]. �

We will now see that there is a notion in matroid theory which captures containment of ma-
troid varieties. This notion is based on the following standard constructions for matroids.

Let Q be a matroid on the set E ·∪R. Then the deletion Q \ R is the matroid on E given
by the rank function

rQ\R(A) = rQ(A),

whereas the contraction Q/R is the (potentially not loopfree) matroid on E given by

rQ/R(A) = rQ(A ∪R)− rQ(R).

Note that Q/R is loopfree if and only if R is a flat in Q. The next definition (following
[O, section 7.3]) combines both operations.
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Definition 3.2. Let M and N be matroids of rank r resp. s on the same ground set E. We
call N a quotient of M if there exists a third matroid Q on the ground set E ·∪R such that
M = Q \ R and N = Q/R. In this case, we have r − s = rQ(E) + rQ(R) − rQ(Q).
Furthermore, if r − s = 1, we call N an elementary quotient of M .

Now, in fact, containment of matroid varieties is related to quotients as follows.

Proposition 3.3. The matroid variety B(N) is a subcycle of B(M) if and only if N is a
quotient of M .

A quite lengthy proof can be found in [O, proposition 7.3.6]. To be self-contained, we give
a short proof here. We use the following criterion for rank functions.

Theorem 3.4 ([O] theorem 1.4.14). Let r be an integer valued function on the set of subsets
ofE. Then r is the rank function of a matroid if and only it satisfies the following properties.

(1) r(∅) = 0.
(2) If A ⊆ E and x ∈ E, then r(A) ≤ r(A ∪ x) ≤ r(A) + 1.
(3) IfA ⊆ E and x, y ∈ E such that r(A∪x) = r(A∪y) = r(A), then r(A∪x∪y) =

r(A).

Proof of proposition 3.3. If N is a quotient of M , then it follows straight from the defini-
tions that any flat of N is also closed in M . This proves one implication.

For the other direction, let us assume B(N) ⊆ B(M). First, we fix a set R with r − s
elements. We define a matroid Q on E ·∪R by assigning to each subset I ·∪ J ⊆ E ·∪R the
rank

rQ(I ·∪ J) = min{rM (I) + |J |, rN (I) + r − s}. (3.1)
Using the inequalities of lemma 3.1 and plugging in I ·∪ ∅, I ·∪R and ∅ ·∪R, we see that
indeed Q \R = M and Q/R = N .

It remains to check, by using the criteria of theorem 3.4, that rQ is indeed a rank function.
The first criterion is trivial, the second one follows from the corresponding property of rM
and rN . As for the third criterion, for a given A = I ·∪ J , note that if adding an element x
does not increase the first term of the minimum in equation (3.1), then it does not increase
the second term either, as we have rN (I ∪ x) − rN (I) ≤ rM (I ∪ x) − rM (I) by lemma
3.1. So the third property follows from the respective property of rN (if the minimum
in equation (3.1) is attained in the second term) and rM (otherwise). This finishes the
proof. �

Remark 3.5. Note that the matroid Q we constructed is minimal in the following sense. It
is loopfree, R is independent and closed in Q and r(Q) = r(M) (cf. [O, lemma 7.3.3]).

Let us use proposition 3.3 now. We start again with two matroids N and M such that
B(N) ⊆ B(M). Let Q be the matroid we constructed in the previous proof and assume
R = {1, . . . , r − s}. Instead of deleting (or contracting) the whole set R we might do the
following: For given i, j ≥ 0 with i+ j ≤ r − s, we can define the matroid

Q \ i /j := (Q \ {1, ..i})/{i+ 1, . . . , i+ j}
on the ground set E ·∪ {i+ j+ 1, . . . , r− s}. Of course, as Q is symmetric in R, we could
as well have chosen any other subsets of R with i resp. j elements. Particularly interesting
are the matroids Mi := Q \ i /(r − s) − i with ground set E. We see directly from the
definition thatM0 = N , Mr−s = M and rMi

(E) = s+ i. Moreover, one can easily check
that B(Mi) ⊆ B(Mj) holds for all i ≤ j (either by computing the flats using for example
[O, proposition 3.3.1] or by noting that Q \ i /(r − s) − j is a matroid that makes Mi a
quotient of Mj). The rank function of Mi is given by

rMi(A) := min{rN (A) + i, rM (A)}.
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Summarising, we get the following statement.

Corollary 3.6. Let M and N be matroids of rank r resp. s such that B(N) ⊆ B(M).
Then there exists a sequence of matroids Mi with the properties M0 = N , Mr−s = M ,
rMi(E) = rN (E) + i, and B(Mi) ⊆ B(Mi+1).

Remark 3.7. The matroid-theoretic counterpart of this statement can be found in [O, propo-
sition 7.3.5].

The previous corollary suggests to study elementary quotients in more detail. Before we
do that, let us have a look towards the geometric meaning of deletions and contractions of
matroids.

Let Q be matroid on the set E ·∪R and let B(Q) be its matroid variety in RE ·∪ R. Assume
that R is a flat of Q (i.e. Q/R is loopfree) and that there exists a basis B of Q such that
R∩B = ∅ (i.e. r(Q) = r(Q\R)). From that, we construct two tropical cycles in RE . First,

the projection map πR : RE ·∪ R → RE produces the push-forward (πR)∗(B(Q)) (for the
definition of push-forward, see e.g. [R, definition 1.3.6]). Second, we can take the closure

of B(Q) in (R∪{−∞})E ·∪ R and perform the intersection B(Q)∩ (RE ×{−∞}R) with
a coordinate plane at infinity. In other words, we intersect B(Q) with RE×{−λ}R, where
λ is a large real number. Let us denote the resulting set/cycle in RE by B(Q)∩R. Now, the
following statement relates these geometric constructions to the matroid-theoretic notions
of contraction and deletion.

Lemma 3.8. With the notations and assumptions from above, we see that the deletion of
R corresponds to projecting, i.e.

B(Q \R) = (πR)∗(B(Q)),

and the contraction of R corresponds to intersecting with the appropriate coordinate hy-
perplane at infinity, i.e.

B(Q/R) = B(Q)∩R.

Moreover, the map πR : B(Q)→ B(Q \R) is generically one-to-one.

Remark 3.9. Note that, if the matroid Q is realisable, then the analogue classical statement
is well-known. See also [S1, section 2] for similar statements.

Proof of lemma 3.8. For the first equation, let σ be a cone in B(Q) and let F = (∅ ( F1 (
. . . ( Fr) be the corresponding chain of flats in Q. Then the projection of σ along πR is
obviously given by the chain G with Gi = Fi \R, which is a chain of flats in Q\R. Hence
πR(σ) is a cone in B(Q\R). Furthermore, for any maximal chain G of flats inQ\R, there
is exactly one “lifted” chain F , namely given by Fi = clQ(Gi). Note that F is maximal as
we assume that Q andQ\R have the same rank. Thus for each maximal cone of B(Q\R)
there is exactly one maximal cone in B(Q) mapping to it (with trivial lattice index) and πR
is one-to-one over points in the interior of maximal cones.

For the second equation, we have the following chain of equivalences.

p ∈ B(Q)∩R ⇔ (p,−λ, . . . ,−λ) ∈ B(Q) for large λ
⇔ Q(p,−λ,...,−λ) loopfree for large λ
⇔ for all a ∈ E there exists a basis B of Q such that a ∈ B, |B ∩R| = rQ(R)

and B ∩ E is p-minimal
⇔ for all a ∈ E there exists a p-minimal basis B′ of Q/R such that a ∈ B′

⇔ (Q/R)p loopfree ⇔ p ∈ B(Q/R)

In the middle step we use that basesB′ ofQ/R are exactly obtained asB′ = B∩E, where
B is basis of Q with |B ∩R| = rQ(R). �
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We now turn to the case of elementary quotients. Using the above description we will
see that they are in fact related to modifications in the sense of Mikhalkin (cf. [M]). This
observation was first made by Kristin Shaw (cf. [S1, proposition 2.24], to which we also
refer for further details).

Proposition 3.10. LetM andN be matroids of rank r resp. r−1 such that B(N) ⊆ B(M).
Let Q be the matroid on E ·∪ {e} constructed in proposition 3.3 with Q \ e = M and
Q/e = N . Then B(Q) is a modification of B(M) along the divisor B(N) in the sense of
[M, section 3.3]. The modification function ϕ on B(M) is given by its values on the vectors
VF , F closed in M as

ϕ(VF ) = rN (F )− rM (F ).

In particular, the divisor of ϕ is ϕ · B(M) = B(N).

Proof. Let ϕ be as defined above. According to our definitions it satisfies

(VF , ϕ(VF )) = VclQ(F ) ∈ RE ·∪ {e},

and therefore the graph of ϕ is contained in B(Q). By remark 3.5 we can use lemma 3.8 to
see that in fact B(Q) is the tropical completion of the graph (as in e.g. [AR1, construction
3.3]), i.e. the unique tropical cycle containing the graph and with additional facets only in
direction V{e}. Therefore B(N) = B(Q)∩e is exactly the divisor of ϕ. �

Let us now collect the previous results in the following important corollary.

Corollary 3.11. Let M,N be matroids such that B(N) is a codimension k subcycle of
B(M). Then there are rational functions ϕ1, . . . , ϕk such that ϕ1 · · ·ϕk ·B(M) = B(N).

4. THE INTERSECTION PRODUCT ON MATROID VARIETIES

Our next aim is to use the results of the previous section to find rational functions cutting
out the diagonal ∆B(M) in the product B(M) × B(M). In fact, the only thing which is
left to do is to observe that both ∆B(M) and B(M) × B(M) are indeed matroid varieties.
We know already from lemma 2.1 that B(M) × B(M) = B(M ⊕M). Next, we give
the necessary definition concerning the diagonal ∆B(M). Here, ∆B(M) denotes the push-
forward of B(M) along the map B(M)→ B(M)× B(M), x 7→ (x, x).

Definition 4.1. Let M be a matroid on the set E. We define ∆M to be the matroid having
the ground set E ·∪E and the rank function r∆M

(A ·∪B) := rM (A ∪B).

The criteria of theorem 3.4 can be easily checked for the function r∆M
, so this really

defines a matroid. It is also easy to see that {F ·∪F : F flat in M} is the set of flats in
∆M . Therefore, |B(∆M )| =

∣∣∆B(M)

∣∣, and we can conclude that the cycles

B(∆M ) = ∆B(M)

are equal. Now we are ready to state the following main result.

Corollary 4.2. Let M be a matroid of rank r. Then there exist piecewise linear functions
ϕ1, . . . , ϕr on B(M)× B(M) which cut out the diagonal ∆B(M), i.e.

∆B(M) = ϕ1 · · ·ϕr · B(M)× B(M).

In fact, for the containment B(∆M ) ⊆ B(M ⊕M) the intermediate matroids Mi from
corollary 3.6 can be computed to have rank function

rMi(A ·∪B) = min{rM (A ∪B) + i, rM (A) + rM (B)},
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and following proposition 3.10 we can choose ϕi to be given by

ϕi(VF ) =

{
−1, if rM (A) + rM (B)− rM (A ∪B) ≥ i
0, else

,

where F = A ·∪B is a flat of M ⊕M .

As an immediate consequence of this fact, in complete analogy to [AR1, definition 9.3]
and [A1, definition 1.16], we can now define an intersection product of cycles in matroid
varieties.

Definition 4.3. Let C, D be subcycles of B(M) of codimension s and p. We define the
intersection product C ·D ∈ Zr−s−p(B(M)) of the cycles C and D in B(M) as

C ·D = π∗(ϕr · · ·ϕ1 · C ×D),

where π : B(M)× B(M)→ B(M) is the projection to the first factor.

Note that here and in the following, we a priori stick to the definition of the functions ϕi in
the last part of corollary 4.2. However, we will see later that the definition is independent
of all choices. There is only one lemma to prove before we can list the basic properties of
the intersection product.

Lemma 4.4. Let C,D be cycles in B(M). Then ϕr · · ·ϕ1 ·C×D is a subcycle of ∆B(M).
In particular, the definition of C ·D does not depend on the chosen projection.

Proof. We prove by induction over k that

|ϕk · · ·ϕ1 · C ×D| ⊆ |ϕk · · ·ϕ1 · B(M)× B(M)| .
for all k = 1, . . . , r, where the case k = r proves the claim. It is clear that

|ϕk · ϕk−1 · · ·ϕ1 · C ×D| ⊆ |ϕk||ϕk−1···ϕ1·C×D||,
where the right hand side is the locus of non-linearity of the restriction of ϕk to the support
of ϕk−1 · · ·ϕ1 · C ×D. By the induction hypothesis, the right hand side is contained in

|ϕk||ϕk−1···ϕ1·B(M)×B(M)||.

Since ϕk−1 · · ·ϕ1 · B(M) × B(M) is a matroid variety, and hence locally irreducible, it
follows by [R, 1.2.31] that

|ϕk||ϕk−1···ϕ1·B(M)×B(M)|| = |ϕk · · ·ϕ1 · B(M)× B(M)| .
�

Theorem 4.5. For all subcycles C,D,E of B(M), the following properties hold:

(1) |C ·D| ⊆ |C| ∩ |D|.
(2) If C and D are fans, then C ·D is a fan, too.
(3) (ϕ · C) ·D = ϕ · (C ·D) for any Cartier divisor ϕ on C.
(4) C · B(M) = C.
(5) C ·D = D · C.
(6) If C = ψ1 · · ·ψs · B(M), then C ·D = ψ1 · · ·ψs ·D.
(7) (C ·D) · E = C · (D · E).
(8) (C +D) · E = C · E +D · E.

Proof. (1) follows directly from lemma 4.4. Everything else except (4) follows either
directly or can be deduced in exactly the same way as in the Rr-case (cf. [R, 1.5.2, 1.5.5,
1.5.6, 1.5.9] or [AR1, section 9]).
It remains to prove (4). By (8) it suffices to prove (4) for irreducible cycles C. We know by
(1) that |C · B(M)| ⊆ |C|; hence the irreducibility of C implies that C · B(M) = λC · C
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for some λC ∈ Z. We first note that the factors λP are the same for every point P in
B(M): For any point P , the recession fan of P ×B(M) is {0}×B(M); thus we know by
[A2, proposition 2.2.2] that

λP = deg(ϕr · · ·ϕ1 · P × B(M)) = deg(ϕr · · ·ϕ1 · {0} × B(M)) = λ{0}.

Now, as it was done in the proof of [R, proposition 1.4.15], we choose rational functions
ψ1 . . . , ψdim(C) such that ψ1 · · ·ψdim(C) · C 6= 0. Then (3) implies that

λC · (ψ1 · · ·ψdim(C) · C) = ψ1 · · ·ψdim(C) · (C · B(M))

= (ψ1 · · ·ψdim(C) · C) · B(M)

= λ{0} · (ψ1 · · ·ψdim(C) · C).

Hence λC = λ{0} for all cycles C. As λB(M) = 1, it follows that C ·B(M) = C for every
C. �

Remark 4.6. It follows from theorem 4.5 (6) that our intersection product is independent
of the choice of rational functions describing the diagonal ∆B(M), as each intersection
product can be calculated as

C ·D = π∗(∆B(M) · C ×D),

where the right hand side is an intersection product of cycles on B(M ⊕M). This is not
only satisfactory, but also what we need to prove the following lemmas.

Lemma 4.7. Let α : B(M)→ B(M ′) be a tropical isomorphism of matroid varieties and
let C and D be two arbitrary cycles in B(M). Then the followings holds.

α∗(C ·D) = α∗(C) · α∗(D)

Proof. If C = ψ1 · · ·ψs · B(M) is cut out by rational functions, the claim follows from
theorem 4.5 (6) and the projection formula. We apply this to β := α×α (the corresponding
isomorphism between B(M) × B(M) and B(M ′) × B(M ′)) and the cycles ∆B(M) and
C ×D. By the previous remark, this suffices to prove the claim. �

Lemma 4.8. Let A1, B1 be cycles in B(M1) and let A2, B2 be cycles in B(M2). Then

(A1 ×A2) · (B1 ×B2) = (A1 ·B1)× (A2 ·B2).

Proof. If A1 and A2 are cut out by rational functions, the claim follows from theorem 4.5
(6). The general statement follows from remark 4.6 using the fact that (after permuting the
coordinates) ∆B(M1) ×∆B(M2) = ∆B(M1)×B(M2). �

Remark 4.9. Let B(N),B(N ′) be two matroid varieties contained in third matroid va-
riety B(M). So far, we were not able to find an easy matroid-theoretic description of
the intersection product B(N) · B(N ′). In general, the product is not just a matroid
variety again. The easiest example where we at least get negative weights is the self-
intersection of the straight line contained in the plane max{0, x, y, z} · R3 (cf. [AR1, ex-
ample 3.10]). In our setup, this is given by B(N) ⊆ B(M), where M is the uniform
matroid of rank 3 on 4 elements (cf. example 7.1) and N is the matroid with lattice of flats
∅, {1, 2}, {3, 4}, {1, 2, 3, 4}. It is easy to check that the self-intersection of B(N) in B(M)
is R · (1, 1, 1, 1) with weight −1.

To find a general description of B(N)·B(N ′), one should probably compactify the problem
in TPn, but this causes other difficulties. The only case which is understood so far is
B(M) = Rn. In this case, we form the matroid intersection N ∧N ′ (cf. [W, section 7.6]).
The bases of N ∧N ′ are the minimal sets in

{B ∩B′ : B basis of N,B′ basis of N ′}.
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If r, s are the ranks ofN,N ′, then the rank ofN∧N ′ is greater or equal to n−r−s (where
equality is attained if and only if there exist basesB,B′ ofN,N ′ satisfyingB∪B′ = [n]).
Then we get

B(N) · B(N ′) =

{
B(N ∧N ′), if the rank of N ∧N ′ is n− r − s,
∅, otherwise.

This follows essentially from extending the arguments in the proof of [S2, proposition 3.1]
to the case where the coordinates of the Plücker vector are allowed to be infinite.

5. DIVIDING OUT THE LINEALITY SPACE

So far, we defined an intersection product on B(M) which is a “tropical cone” in the sense
that it contains the lineality space L = R · (1, . . . , 1). But in most applications, one is
really interested in B(M)/L. We will now discuss how the intersection product of B(M)
descends to B(M)/L. First, let us fix some terminology.

Let X be a polyhedral complex in a vector space V . For a cell τ ∈ X we denote by Vτ
the linear subspace spanned by (differences of vectors in) τ . The intersection of all these
subspaces L := ∩τ∈XVτ is called the lineality space of X . If X is a fan, L is just the
unique inclusion minimal cone of X . We define the polyhedral complex X/L in V/L by
X/L := {q(τ)|τ ∈ X}, where q : V → V/L is the quotient map. If X is weighted, q(σ)
inherits the weight from σ.

Let X be a tropical cycle in V . A subspace L ⊆ V is called a lineality space of X if there
is a polyhedral structure X of X whose lineality space is L. In this case, we denote by
X/L the tropical cycle in V/L represented by X/L.

Let C be a cycle inX/L and let C be a polyhedral structure of C. We define the polyhedral
complex q−1(C) inX to be the collection of cells {q−1(σ)|σ ∈ C} (with weights inherited
from C). Furthermore, we define q−1(C) to be the tropical cycle associated to q−1(C). By
definition, L is a lineality space of q−1(C).

Now, the only thing we need in order to define an intersection product on B(M)/L is the
following lemma.

Lemma 5.1. Let C,D be two cycles in a matroid variety B(M) and let us assume that L
is a lineality space of each. Then L is also a lineality space of C ·D (if non-zero).

Proof. For all vectors v ∈ L we can define the translation automorphism αv : B(M) →
B(M) which sends x to x + v. For a subcycle of B(M), having L as lineality space is
equivalent to being invariant under all translations αv, v ∈ L. Now we use lemma 4.7 to
see that this property is passed from C and D to C ·D. �

Definition 5.2. Let B(M) be a matroid variety with lineality space L, and let C,D be
two tropical cycles in B(M)/L. We define the intersection product C ·D of C and D in
B(M)/L by

C ·D := (q−1(C) · q−1(D))/L,

where on the right hand side we use the previously defined intersection product on B(M)
(cf. definition 4.3). In words, we first take preimages of C and D in B(M) and intersect
them. By lemma 5.1, the result has lineality space L which we divide out again.

Remark 5.3. This definition also works for cartesian products B(M)/L × B(M ′)/L′ as
they are equal to B(M ⊕M ′)/L× L′.

Proposition 5.4. Let C,D be cycles in B(M)/L. Then ∆B(M)/L · (C ×D) = ∆C·D. In
particular, we have

C ·D = π∗(∆B(M)/L · C ×D),
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where π : B(M)/L× B(M)/L→ B(M)/L is the projection to the first factor. Note that
this is how we defined our intersection product on matroid varieties (cf. remark 4.6).

To prove this we use the following lemmata:

Lemma 5.5. Let X be a tropical cycle with polyhedral structure X whose lineality space
is L. Let ϕ be a function which is affine linear on the cells of X and let C be a cycle in X
(not necessarily with lineality space L). Then the equation

ϕ · q−1 q∗(C) = q−1 q∗(ϕ · C)

holds, where q : X → X/L is the quotient map.

Proof. First note that by adding a globally affine linear function to ϕ, we can assume
ϕ = q∗ ϕ̃ for a suitable function ϕ̃ on X/L. In this case, it is obvious from the definitions
and projection formula that both sides equal q−1(ϕ̃ · q∗(C)). �

Lemma 5.6. Let L be a lineality space of a matroid variety B(M), and q : B(M) →
B(M)/L the corresponding quotient map. Let C,D be cycles in B(M) such that L is a
lineality space of D. Then q−1 q∗(C) ·D = q−1 q∗(C ·D).

Proof. First, we split M into its connected components M =
⊕

iMi and pull back the
functions that cut out the diagonal of B(Mi) × B(Mi) to B(M) × B(M). With the help
of lemma 2.3 this gives us functions on B(M)×B(M) which cut out the diagonal and are
affine linear on a polyhedral structure of B(M)× B(M) with lineality space ∆L.

Second, set j : B(M)×B(M)→ (B(M)×B(M))/∆L. Then we have q−1 q∗(C)×D =
j−1 j∗(C ×D). Thus we are in the situation of the previous lemma, and intersecting with
the diagonal gives j−1 j∗(∆B(M) ·C ×D). After projecting, this is q−1 q∗(C ·D) and we
are done. �

Proof of proposition 5.4. Let q : B(M) → B(M)/L be the quotient map. For any cycle
A having lineality space L the following equality holds:

(q× q)−1∆A/L = (id× q)−1(id× q)∗∆A. (5.1)

The set-theoretic equality is clear; the equality of the cycles follows from the fact that
all involved weights are inherited by the weights of A. By definition of our intersection
products and equation (5.1) we have

∆B(M)/L · (C ×D) = ((q× q)−1∆B(M)/L · q−1 C × q−1D)/L× L
= (((id× q)−1(id× q)∗∆B(M)) · q−1 C × q−1D)/L× L,

as well as

∆C·D = ((q× q)−1(∆(q−1 C·q−1D)/L))/L× L
= ((id× q)−1(id× q)∗(∆q−1 C·q−1D))/L× L
= ((id× q)−1(id× q)∗(∆B(M) · q−1 C × q−1D))/L× L.

Now the claim follows from lemma 5.6. �

Remark 5.7. Let B(M)/L be a quotient of a matroid variety and assume we can cut out the
diagonal ∆B(M)/L in B(M)/L × B(M)/L with a collection of rational functions. Then
the intersection product defined by this collection coincides with the one defined in 5.2.
This follows from proposition 5.4 together with property (6) of theorem 4.5.
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Remark 5.8. Lemma 4.7 also holds if we replace B(M) by B(M)/L, i.e. we have

α∗(C ·D) = α∗(C) · α∗(D)

for any isomorphism of α : B(M)/L → B(M ′)/L′. We first use remark 5.3 and write
B(M)/L = (B(M)×L′)/(L×L′) resp. B(M ′)/L′ = (L×B(M ′))/(L×L′). In other
words, we can assume that B(M) and B(M ′) lie in the same ambient vector space and
that L = L′. In this situation we can lift α to an isomorphism α̃ : B(M) → B(M ′) with
q ◦ α̃ = α ◦ q and use lemma 4.7.

6. SMOOTH VARIETIES AND LOCALITY

For the sake of completeness, in the following we give a (preliminary) definition of smooth
tropical varieties (whose local models are matroid varieties modulo lineality spaces) and
extend the intersection product to those. For the latter we have to show that the intersection
product can be computed “locally”.

Definition 6.1. A smooth tropical variety is a topological space X together with an open
cover {Ui} and homeomorphisms

φi : Ui →Wi ⊆ |B(M)/L| ⊆ Rn/L
such that

• eachWi is an (euclidean) open subset of |B(M)/L| for a suitable matroidM with
(suitable) lineality space L;

• for each pair i, j, the transition map

φj ◦ φ−1
i : φi(Ui ∩ Uj)→ φj(Ui ∩ Uj)

is the restriction of an affine Z-linear map Φi,j , i.e. the composition of a translation
by a real vector and a Z-linear map.

Let us stress again that this is only a provisional definition which is appropriate for the
purposes of this paper. In particular, our definition does not allow any boundary points
(i.e. points of “positive sedentarity”). However, we chose not to reflect this in a more
complicated name.

Note also that a tropical cycle X in Rn is a smooth variety if and only if for all points p in
X the star StarX(p) is isomorphic to B(M)/L, the quotient of a suitable matroid variety.

Let W ⊆ |B(M)/L| ⊆ Rn/L be a set as in the previous definition. We can define
polyhedral complexes and tropical cycles in W exactly as in B(M)/L — by just defining
a polyhedron in W to be the (non-empty) intersection of a polyhedron in |B(M)/L| ⊆
Rn/L withW . A set C ⊆W (or, more generally, a topological space) is called a weighted
set if each point from a dense open subset of C is equipped with a non-zero integer weight
which is locally constant (in the dense open subset). Two such weighted sets C,C ′ are said
to agree and are thus identified if the sets are equal and the weight functions agree (where
both defined). Note that each tropical cycle D in W can be regarded as a weighted set by
inheriting the weight of each facet to its interior points.

Definition 6.2. Let X be a smooth tropical variety. A tropical subcycle of X is defined to
be a weighted set C such that for all i the induced weighted set φi(C ∩ Ui) agrees with a
tropical cycle in Wi.

Of course, each smooth variety X contains the fundamental cycle X itself with constant
weight 1 for all points.

If C,D are two tropical cycles in X , we want to define their intersection product in two
steps: We first intersectC andD locally on eachUi (via φi) and then glue together the local
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results. To make this approach work, it remains to be checked that intersection products
on B(M)/L can be computed locally, as in the Rr-case (cf. [R, proposition 1.5.8]).

Let X be a tropical cycle in a vector space V and let p be a point in X . Recall that we
defined StarX(p) to be the fan cycle containing all vectors v such that p + εv ∈ |X| for
sufficiently small ε. Let ϕ be a rational function on X . Then ϕ induces a function ϕp on
StarX(p). Namely, we first restrict ϕ to a small neighbourhood of p and then extend it by
linearity to StarX(p) (one might also normalise to ϕp(0) = 0). From the locality of ϕ ·X
it follows that

Starϕ·X(p) = ϕp · StarX(p)

(cf. [R, proposition 1.2.12]).

In particular, if the functions ϕ1, . . . , ϕr cut out the diagonal of X in X × X , then
the functions ϕ(p,p)

1 , . . . , ϕ
(p,p)
r cut out the diagonal of StarX(p) in StarX×X(p, p) =

StarX(p)× StarX(p). Using these collections of functions to define intersection products
on X resp. StarX(p), we obviously get the equality

StarC·D(p) = StarC(p) · StarD(p),

where the left hand side (resp. right hand side) contains a product on X (resp. StarX(p)).

Note again that the intersection product on B(M) is independent of the chosen functions.
Moreover, for each cycle C in B(M)/L and p ∈ | q−1(C)| with q(p) = p′ we have
q−1 StarC(p′) = Starq−1 C(p). This leads to the following statement.

Corollary 6.3. Let C,D be subcycles of B(M)/L and p a point of B(M)/L. Then the
following equality holds:

StarC·D(p) = StarC(p) · StarD(p)

Let us now put things together. First, we have a well-defined intersection product on open
setsW ⊆ |B(M)/L| ⊆ Rn/L. Namely, for two cyclesC,D inW ,C ·D is the subcycle of
W which satisfies StarC·D(p) = StarC(p) ·StarD(p), where the latter part of the equation
is an honest intersection product of the two subcycles StarC(p),StarD(p) on B(Mp)/L.
This does not depend on the choice of M,L by remark 5.8.

When C,D are two subcycles of a smooth tropical variety X , then on each Ui we can
compute Ei := (C ∩ Ui) · (D ∩ Ui). Using locality again, we see that on each overlap
Ui ∩ Uj the weighted sets Ei and Ej agree. More precisely, this follows from the fact
that for each point p ∈ Ui ∩ Uj , the maps Φi,j resp. Φj,i provide isomorphisms between
the stars of Wi, φi(C), φi(D) at φi(p) on the one hand and the stars of Wj , φj(C), φj(D)
at φj(p) on the other hand. Therefore, also the stars of the local intersections φi(Ei) and
φj(Ej) at p are isomorphic (cf. remark 5.8), which proves that Ei and Ej agree locally.
We collect all this in the following theorem.

Definition and Theorem 6.4. Let X be a smooth tropical variety and let C and D be
subcycles of X . Then the intersection product of C and D on X , denoted by C ·D, is the
unique subcycle of X such that

(C ·D) ∩ Ui = (C ∩ Ui) · (D ∩ Ui)
holds for any Ui of the open cover. Moreover, this intersection product satisfies the follow-
ing properties.

(1) codim(C ·D) = codimC + codimD (if C ·D 6= 0).
(2) |C ·D| ⊆ |C| ∩ |D|.
(3) (ϕ · C) ·D = ϕ · (C ·D) for any Cartier divisor ϕ on C.
(4) C ·X = C.
(5) C ·D = D · C.
(6) If C = Ψ1 · · ·Ψs ·X , then C ·D = Ψ1 · · ·Ψs ·D.
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(7) (C ·D) · E = C · (D · E).
(8) (C +D) · E = C · E +D · E.
(9) (A1×A2) ·(B1×B2) = (A1 ·B1)×(A2 ·B2) ifA1, B1 andA2, B2 are subcycles

of the two smooth varieties X1 and X2 respectively.

Proof. We already discussed that our definition is well-defined. It remains to show the list
of properties. In the case X = B(M), all the properties have already been proven. The
next step isX = B(M)/L, to which the properties immediately generalise. For the general
case, note that all properties can be verified locally. Therefore, by our local definition of
the general intersection product, all properties also hold in the general case. �

Remark 6.5. Let X,Y be two smooth varieties. A tropical morphism f : X → Y is a
continuous map such that for all i, j the map φYj ◦ f ◦ (φXi )−1 on the charts is induced by
an affine Z-linear map of the ambient vector spaces. We call f an isomorphism if there is
an inverse tropical morphism g : Y → X . We can extend remark 5.8 to this case, i.e. if f
is an isomorphism and C and D are two subcycles of X , then

f∗(C ·D) = f∗(C) · f∗(D).

Moreover, we can extend proposition 5.4 and check locally that

C ·D = π∗(∆X · C ×D)

holds for all smooth varieties X .

7. EXAMPLES

In this section we discuss a few examples. The first example compares our new definitions
to the previously known cases of Rr and Lnk . The following examples are devoted to the
moduli spaces of tropical rational curves.

Example 7.1. Let M = Uk+1,n+1 be the uniform matroid of rank k + 1 on the set N :=
{1, . . . , n + 1} (i.e. each k + 1-subset of N is a basis). Then L := R · (1, . . . , 1) is the
lineality space of B(M), and B(M)/L is isomorphic to Lnk = max{x1, . . . , xn, 0}n−k ·
Rn. Thus we have reproved the result of [A1] that the cycles Lnk admit an intersection
product of cycles. Note that both intersection products agree by remark 5.7.

Example 7.2. The complete (undirected) graphKn−1 with n−1 vertices defines a matroid
on the set of edges

{
1, . . . ,

(
n−1

2

)}
whose independent sets are the trees in Kn−1. It was

shown in [AK, chapter 4] that B(Kn−1) parameterises so-called equidistant (n− 1)-trees
(i.e. rooted trees with n− 1 labelled leaves and lengths on each edge such that the distance
from the root to any leaf is the same). As a variation of this, we construct a bijection of
B(Kn−1)/L (with L := R · (1, . . . , 1)) andMn, the space of n-marked abstract rational
tropical curves (i.e. metric trees with bounded internal edges and n unbounded labelled
leaves; see [GKM, chapter 3] for the construction of Mn). Our bijection is analogous
to the one in [AK] except for a global scalar factor. More important, we show that this
map is actually a tropical isomorphism of the two fans, i.e. it is induced by a Z-linear
transformation of the ambient spaces. HenceMn can also be equipped with an intersection
product of cycles.

Note that B(Kn−1)/L lives in R(n−1
2 )/L, whereas Mn lives in R(n

2)/ Im(φn). Here,
φn : Rn → R(n

2) is the linear map defined by (a1, . . . , an) 7→ ((ai + aj))i,j . We define
the linear map f by

f : R(n−1
2 )/L → R(n

2)/ Im(φn)

(ai,j)i,j 7→ (bi,j)i,j , with bi,j =

{
0, if n ∈ {i, j}
2 · ai,j , else

.
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It is easy to see that f is well-defined and injective. Since its domain and target space have
the same dimension, it follows that f is a linear transformation.

Let F be a flat of the matroid corresponding to Kn−1. Then F is a vertex-disjoint union of
complete subgraphs S1, . . . , Sp of Kn−1, and

f(VF ) = (bi,j)i,j , with bi,j =

{
−2, if {i, j} ⊆ V (St) for some t
0, else

,

where the V (St) denote the sets of vertices of the complete subgraphs St. We define a
vector a ∈ Rn by setting ai = 1 if i ∈ V (St) for some t, and ai = 0 otherwise. Then

(f(VF ) + φn(a))i,j =


0, if {i, j} ⊆ V (St) for some t, or i, j 6∈ V (St) for all t
1, if i ∈ V (St) for some t, and j 6∈ V (Ss) for all s
2, if there are s 6= t with i ∈ V (Ss), j ∈ V (St)

.

The metric graph with n leaves associated to this vector, denoted by MF , is depicted in the
following picture.

{1, . . . , n} \ ∪iSiS1 S2 Sp...

1 1 1

We see from this description that f also gives an isomorphism of the underlying lattices
Z(n−1

2 )/L→ Λn. Here Λn is the lattice generated by metric graphs with only one internal
edge of length 1 (see [GKM, construction 3.6]). Z(n−1

2 )/L is mapped to Λn as Z(n−1
2 )/L

is spanned by the VF and MF is contained in Λn. Moreover, let MI|J be a generator of Λn
corresponding to the graph whose single internal edge splits the leaves into the partition
I ·∪ J = {1, . . . , n}with n ∈ J . Then we haveMI|J = MF , where F is the flat associated

to the complete subgraph with vertex set I; hence MI|J lies in the image of Z(n−1
2 )/L.

It remains to check that f can be restricted to a bijection B(Kn−1)/L→Mn. Sticking to
the notation for the generators ofΛn, we already saw that MF = MS1|Sc

1
+ . . .+MSp|Sc

p
.

For a chain of flats F , it follows that all the appearing partitions I ·∪ J = {1, . . . , n}
satisfy the following property: For each pair of partitions one part of the first partition is
contained in one of the parts of the second partition. This is what is needed to ensure that
each positive sum of such vectors MI|J still corresponds to a metric graph. Therefore,
the image of B(Kn−1)/L is contained in Mn. As Mn is irreducible, we actually have
equality.

Therefore, f induces a tropical isomorphism between B(Kn−1)/L andMn and thusMn

inherits the intersection product of cycles from B(Kn−1)/L. Note that this intersection
product onMn is independent of the chosen isomorphism by remark 5.8.

Example 7.3. The moduli spaceMlab
n (∆,Rr) parameterises n-marked rational parame-

terised tropical curves of degree ∆ in Rr (cf. [GKM, definition 4.1]). It was shown in
[GKM, proposition 4.7] that Mlab

n (∆,Rr) can be identified with Mn+|∆| × Rr. This
identification together with the previous examples shows that we have an isomorphism

Mlab
n (∆,Rr) ∼= B(Kn+|∆|−1 ⊕ Ur+1,r+1)/L× L′,

where Kn+|∆|−1 is the complete graph matroid, Ur+1,r+1 is the uniform matroid of rank
r + 1 on r + 1 elements and L resp. L′ are their respectively “natural” one-dimensional
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lineality spaces. This implies that there is an intersection product of cycles onMlab
n (∆,Rr)

having the properties listed in theorem 6.4.

8. PULL-BACK OF CYCLES

When dividing out a lineality space q : X → X/L, we defined by q−1(C) a very natural
preimage for every cycle C ∈ X/L. Moreover, when we consider a modification π : X̃ →
X (with X, X̃ smooth) given by a function ϕ on X , then for each C ∈ X there is also a
natural lift C̃ ofC to X̃ . Namely, we can restrict ϕ toC and define C̃ to be the modification
of C by ϕ|C .

In the following, we will see that both cases are examples of a more general construction.
This generalisation is useful when dealing with a chain of several modifications and when
showing that our intersection product agrees with the definitions made in [S1]. A discus-
sion of this construction for less general smooth varieties (in our terminology, in the case
of only uniform matroids) can be found in [A1, section 3].

Definition 8.1. Let f : X → Y be a morphism of smooth tropical cycles. We define the
pull-back of a cycle C in Y to be

f∗C := π∗(Γf · (X × C)),

where π : X × Y → X is the projection to the first factor and Γf is the graph of f (that
means Γf := γf ∗(X), with γf : X → X × Y, x 7→ (x, f(x)).

Note that here Γf · (X×C) is an intersection product of cycles inX×Y , which is smooth
by our assumptions. By definition, we see that the codimension of C in Y equals the
codimension of f∗C in X and |f∗C| ⊆ f−1|C|. Moreover, we obviously have f∗(C +
C ′) = f∗C + f∗C ′.

Example 8.2. Let us give some examples.

(1) Let f : X → Y be a morphism of smooth tropical cycles. Then f∗Y = X . This
follows easily from π∗(Γf ) = X .

(2) Now we assume additionally that C = ϕ1 · · ·ϕl · Y is a subcycle of Y cut out by
some functions. Then we have

f∗C = f∗ϕ1 · · · f∗ϕl ·X.
Indeed, if we denote the two projections ofX×Y by πX and πY , then by definition
the function π∗Y ϕ1 agrees on Γf with the function π∗Xf

∗ϕ1 and the above equation
follows from projection formula.

(3) Let id : X → X be the identity morphism. Then Γid = ∆X , and we conclude
id∗ C = X · C = C for all subcycles C of X .

(4) Let p : X × Y → Y be a projection. Then Γp = X ×∆Y , and it follows easily
that p∗C = X × C for all subcycles C of Y .

Our next goal is to prove the following properties of pull-backs:

Theorem 8.3. Let X , Y and Z be smooth tropical varieties and let f : X → Y and
g : Y → Z be two morphisms. Let C,C ′ be two cycles in Y , D a cycle in X and E a cycle
in Z. Then the following holds:

(1) C · f∗D = f∗(f
∗C ·D)

(2) f∗(C · C ′) = f∗C · f∗C ′
(3) (g ◦ f)∗E = f∗g∗E

In a first step we prove the theorem for matroid varieties X,Y, Z. We need the following
lemma:
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Lemma 8.4. Let f : X → Y be a morphism between matroid varieties. Then we have

({x} × Y ) · Γf = {(x, f(x))} (8.1)

for each point x of X .
Let g : Y → Z be another morphism of matroid varieties and set Φ : X → X × Y × Z,
x 7→ (x, f(x), g(f(x))). Then we have

Φ∗X = (Γf × Z) · (X × Γg). (8.2)

Analogously, if h : X → Z is another morphism of matroid varieties and we set Φ : X →
X × Y × Z, x 7→ (x, f(x), h(x)), then we have

Φ∗X = (Γf × Z) · (Γh × Y ). (8.3)

Note that, by abuse of notation with regard to the order of the factors, (Γh× Y ) sits inside
X × Y × Z.

Proof. We start with equation (8.1). It is obvious that both sides are supported on the point
(x, f(x)), so it suffices to check that the degree on the left hand side is 1. To do this, we can
assume that x = 0 is the origin and is cut out by rational functions on X . Then {x}× Y is
cut out by the pull backs of these functions and the projection formula proves the claim.
For equation (8.2), we also start by noting that the supports on both sides must be equal.
This follows from the fact that Φ∗X is irreducible and the support of the right hand side
is obviously contained in |Φ∗X|. So again, both sides can only differ by a global factor.
It is easy to see that this factor is indeed 1: For example, we can intersect both sides with
{x} × Y × Z, where x ∈ |X| is any point. Using equation (8.1) and part (9) of theorem
6.4 it follows that we get 1 · {(x, f(x), g(f(x)))} on both sides.
Equation (8.3) can be proven completely analogously. �

Proof of theorem 8.3 for matroid varieties X,Y, Z. We give (rather short) proofs of the
three properties ifX,Y, Z are matroid varieties. We skip the details of a couple of straight-
forward computations which can be found in more details in [A1]. In what follows,
π := πX denotes the projection of a product of X , Y and Z to the factor X .

To prove (1), it essentially suffices to show (f × id)∗∆Y = Γf , where f × id : X × Y →
Y × Y . Using this, a straightforward computation shows

C · f∗D = f∗π∗(Γf ·D × C) = f∗(f
∗C ·D).

The equation (f × id)∗∆Y = Γf is clear set-theoretically and the equality of weights can
be checked using the first equation of lemma 8.4 and part (2) of example 8.2.

To prove (2), another computation shows

f∗(C · C ′) = π∗((Γf × Y ) · (X × ΓidY
) · (X × C × C ′))

and
f∗C · f∗C ′ = π∗(π

∗
1,2Γf · π∗1,3Γf · (X × C × C ′)),

with π1,i : X × Y × Y →, (x, y1, y2) 7→ (x, yi). Using both the second and third equality
of lemma 8.4 (with h = f and g = id) together with part (4) of example 8.2, we see that
both terms coincide.

To prove (3), we compute easily

(g ◦ f)∗E = π∗(Φ∗X · (X × Y × E)),

where Φ : X → X × Y × Z maps x to (x, f(x), g(f(x))), and

f∗g∗E = π∗((Γf × Z) · (X × Γg) · (X × Y × E)).

Using the second equation of lemma 8.4 again, the claim follows. �



18 GEORGES FRANCOIS AND JOHANNES RAU

In order to extend this proof to arbitrary smooth varieties we need another technical propo-
sition:

Proposition 8.5. Consider the following commutative diagram of tropical morphisms.

B(M)
g−−−−→ B(N)

q

y yj

B(M)/L
f−−−−→ B(N)/K

HereL,K are lineality spaces and q, j are the respective quotient maps. Then the following
equality holds:

q−1 f∗C = g∗ j−1 C,

or equivalently
f∗C = (g∗ j−1 C)/L.

Proof. Since the cycles Γf and Γg carry only trivial weights, the equality

|(q× j)−1Γf | = {(x, y) : x ∈ |B(M)|, j(y) = f ◦ q(x)} = |(id× j)−1(id× j)∗(Γg)|

implies the equality of cycles

(q× j)−1Γf = (id× j)−1(id× j)∗(Γg).

Let π : B(M)/L × B(N)/K → B(M)/L and π̃ : B(M) × B(N) → B(M) projections
to the first factor. It follows from the above equality that

f∗C = π∗(((q× j)−1Γf · (B(M)× j−1 C))/L×K)

= π∗(((id× j)−1(id× j)∗(Γg) · (B(M)× j−1 C))/L×K).

Aplying lemma 5.6 to the quotient map (id× j), we see that the above is equal to

π∗(((id× j)−1(id× j)∗(Γg · (B(M)× j−1 C)))/L×K)

= π∗((id× j)∗(Γg · (B(M)× j−1 C))/L× {0})
= (π̃∗(Γg · (B(M)× j−1 C))/L

= (g∗ j−1 C)/L.

�

Proof of theorem 8.3 for smooth cycles X,Y, Z. We have already proved the claim for ma-
troid varieties X , Y and Z. Using proposition 8.5, we see that theorem 8.3 also holds if
X,Y, Z are quotients of matroid varieties by lineality spaces. Moreover, as all construc-
tions are based on intersection products and therefore are defined locally, the statements
hold in fact for all smooth varieties (in our sense). �

Remark 8.6. Let B(M) be a matroid variety with lineality space L and let q : B(M) →
B(M)/L be the quotient map. Then the pull-back q∗(C) coincides with q−1(C) as defined
previously. This is a direct consequence of proposition 8.5.

Remark 8.7. Let f : X → Y be a morphism of smooth tropical varieties such that f∗(X) =
Y . Then it follows from the first part of theorem 8.3 that f∗f∗(C) = C holds for any cycle
C in Y .

We now come back to the meaning of pull-backs in the case of modifications.

Lemma 8.8. Let Q, M and N be (loopfree) matroids and let e be an element in Q (which
is not a coloop) such thatQ\e = M , Q/e = N . Consider the corresponding modification
π : B(Q) → B(M) and let ϕ be the modification function on B(M) (as described in
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proposition 3.10). For any subcycle C of B(M), let C̃ be the modification of C by ϕ. Then
the equality

C̃ = π∗C

holds.

π−→

Modification of a cycle and its intersection with B(N)

Proof. The modification of C along the function ϕ is the (uniquely determined) cycle
C̃ in B(Q) satisfying π∗C̃ = C and C̃∩e = ϕ · C. We show that π∗C fulfils those
two conditions: As π∗ B(Q) = B(M), the first equality follows from remark 8.7. As
for (π∗C)∩e = ϕ · C, we first pick a real constant r large enough such that B(N) =
π∗(max{xe,−r} · B(Q)) holds. Applying theorem 8.3 again provides

ϕ · C = C · B(N) = π∗(π
∗C ·max{xe,−r} · B(Q))

It follows that ϕ · C = (π∗C)∩e. �

Applying this lemma to a whole series of modifications, we get the following corollary.

Corollary 8.9. Let B(Q) and B(M) be matroid varieties such that Q \ R = M (for
suitable R) and choose a series of matroid modifications

B(Q) = B(M0)
π1→ B(M1)

π2→ . . .
πn→ B(Mn) = B(M).

Let C be a cycle in B(M) and let C̃ be its repeated modification along πn, . . . , π2, π1.
Then C̃ is in fact independent of the chosen series of modifications.

Moreover, let B(N) ⊆ B(M) be two matroid varieties and let Q be the matroid such that
Q \ R = M and Q/R = N (cf. proof of proposition 3.3). Let C be any cycle in B(M).
Then the intersection product B(N) ·C can be computed as (π∗C)∩R, where π : B(Q)→
B(M). In other words, we get B(N) ·C by performing a series of modifications that lift C
to a cycle in B(Q), and then intersecting with a boundary part.

Another important consequence of lemma 8.8 is that we can now prove that our intersection
product coincides with the definitions made in [S1].

Theorem 8.10. Let B(M) be a matroid variety and let C,D be two cycles in B(M). We
denote by C.D the recursive intersection product defined in [S1, definition 3.6]. Then this
intersection product coincides with the one defined in definition 4.3, i.e.

C.D = C ·D.
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Proof. The intersection product C.D of [S1, definition 3.6] is defined recursively via mod-
ifications. Finally, the recursion uses the known intersection product on Rn. As our defini-
tion gives back the same product on Rn, we have agreement here. It remains to check that
our definition satisfies the same recursion formula given by

C.D = π∗(π∗C.π∗D) + π∗π∗C.∆D + ∆C .π
∗π∗D + ∆C .∆D,

where π : B(M) → B(M \ e) is a modification and ∆C = C − π∗π∗C resp. ∆D =
D − π∗π∗D. Note that in [S1] π∗E is defined as the (restricted) modification of E, but
by lemma 8.8 we know that we can also use our pull-back definition instead. Writing
C = π∗π∗C + ∆C and D = π∗π∗D + ∆D we get

C ·D = π∗π∗C · π∗π∗D + π∗π∗C ·∆D + ∆C · π∗π∗D + ∆C ·∆D,

noting that the first term equals π∗π∗C ·π∗π∗D = π∗(π∗C ·π∗D) by theorem 8.3 property
(2). So our intersection product satisfies the same recursion formula and therefore the
definitions agree. �

9. RATIONAL EQUIVALENCE ON MATROID VARIETIES

Let C be a cycle in B(M)/L. Then by contracting all bounded parts of C to the origin, we
get the so-called recession cycle δ(X) of X (cf. [AR2, definition 8]). As a set, |δ(X)| is
the limit of t·|C|when t goes to zero. The aim of this section is to show thatC is rationally
equivalent to δ(C). In this context, rational equivalence in B(M)/L is generated by those
cycles which are push-forwards along some tropical morphism f : A → B(M)/L of
a cycle ϕ · A, where ϕ is a bounded function (cf. [AR2, definition 1]). Note that, by
definition, if C ∼ 0 in the ambient space X , then C ∼ 0 also holds in any larger ambient
space Y ⊇ X . Our first statement is again concerned with dividing out a lineality space.

A curve on B(U3,4)/L and its recession cycle.

Proposition 9.1. Let X be a cycle with lineality space L. Let C be a subcycle of X also
having lineality space L. Then C is rationally equivalent to zero on X if and only if C/L
is rationally equivalent to zero on X/L.

Proof. As X is isomorphic to X/L × L, it suffices to show that C/L × L is rationally
equivalent to zero on X/L×L if and only if C/L is rationally equivalent to zero on X/L.
The if-implication was proved in [AR2, lemma 2 (a)]. So let us assume that C/L × L
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is rationally equivalent to zero. That means by definition that there are a morphism f :
A → X/L× L and a bounded rational function ϕ on A such that f∗(ϕ · A) = C/L× L.
Let πX/L : X/L × L → X/L and πL : X/L × L → L be projections to the respective
factor. We choose rational function on L such that ψ1 · · ·ψdimL · L = {0}. Now we just
replace A by A′ := f∗π∗LΨ1 · · · f∗π∗LΨdimL · A and check by projection formula that
(πX/L ◦ f)∗(ϕ ·A′) = C/L holds. �

Remark 9.2. Note that on matroid varieties modulo lineality spaces B(M)/L, intersection
products and pull-backs of cycles are compatible with rational equivalence. In other words,
ifC andC ′ are cycles in B(M)/LwithC ∼ C ′, then also f∗C ∼ f∗C ′ andC ·D ∼ C ′ ·D
for any morphism f : B(N)/K → B(M)/L and any third cycle D in B(M)/L. This
follows from the fact that cross products, intersections with rational functions as well as
push-forwards are compatible with rational equivalence (cf. [AR2, lemma 2]), and the
previous proposition.

In the following, if a is an element of the matroid M , we denote the corresponding projec-
tion by πa : B(M) → B(M \ a). Furthermore, if F is a chain of flats in M , then F \ a
denotes the chain of flats in M \ a obtained by intersecting each flat of F with E(M) \ a.

In order to prove that every cycle in B(M)/L is rationally equivalent to its recession cycle,
we need the following lemmas:

Lemma 9.3. Let a, b ∈ E(M) be no coloops and assume that {b} is a flat. Let C be a
subcycle of B(M) with πa∗C = 0. Then πa∗π∗bπb∗C = 0.

Proof. We choose a polyhedral structure C of C which is compatible with pushing forward
(cf. [R, lemma 1.3.4]) such that every cell of C is contained in a cone of B(M). As πa∗C =
0 we know that every cell of C is contained in a cone 〈F〉 of B(M) satisfying Fi+1 = Fi∪a
for some i (as on the other facets, πa is one-to-one and cannot delete non-zero cells of C).
In order to simplify the notations we assume that b = |E(M)|. Let ϕ be the piecewise
linear function on B(M \ b) which satisfies for all flats F of M \ b that

ϕ(VF ) =

{
−1, if b ∈ clM (F )

0, else
.

It follows from proposition 3.10 that B(M) is the modification of B(M \ b) along the
rational function ϕ. Hence π∗bπb∗C is the modification of πb∗C along ϕ (cf. lemma 8.8).
It is easy to see that ϕ is given on a cone 〈G〉 of B(M \ b) by

ϕ|〈G〉(x1, . . . , xb−1) = xp, with p ∈ Gz+1 \Gz and z s.t. b ∈ clM (Gz+1) \ clM (Gz).

We claim that for a chain of flatsF inM satisfying Fi+1 = Fi∪a for some i, the restriction
of ϕ to 〈F \ b〉 does not depend on xa: Assume the contrary is true; then our description
of ϕ implies that

b ∈ clM (Fi+1 \ b) and b /∈ clM (Fi \ b).
Note that clM (Fi+1 \ b) ⊆ Fi+1 and clM (Fi \ b) ⊆ Fi; thus b ∈ Fi+1. As Fi+1 = Fi ∪ a,
this implies that b ∈ Fi. It follows that clM (Fi \b) = Fi \b. Now Fi and clM (Fi \b∪a) =
Fi+1 are both minimal flats containing the flat Fi \ b. But this is a contradiction since
Fi ( Fi+1.

Let σ be a maximal cell of π∗bπb∗C of the form (id×ϕ)(πb(τ)), where τ is a maximal cell
of C. We can assume that the restriction of πa to σ is injective (otherwise πa(σ) does not
contribute to the push-forward). Since ϕ|πb(τ) does not depend on the a-th coordinate, we
can conclude that α := π{a,b}(σ) has the same dimension as σ. Let σ1, . . . , σp be the cells
of C mapped to α by π{a,b}. As πb is injective on σi, the cell σi turns into the cell

σ̃i := {(x1, . . . , xb−1, ϕ(x1, . . . , xb−1)) : ∃ xb : (x1, . . . , xb) ∈ σi}



22 GEORGES FRANCOIS AND JOHANNES RAU

in the cycle π∗bπb∗C. The σ̃i are exactly the cells of π∗bπb∗C mapped to πa(σ) by πa. Since
π{a,b}∗C = 0, we can conclude that πa(σ) has weight 0 in πa∗π∗bπb∗C.
Now, the claim follows from the balancing condition. �

Lemma 9.4. Let C be a subcycle of a matroid variety B(M). Assume that B(M) 6=
R|E(M)| and that {a} is a flat for every a ∈ E(M). If πa∗(C) = 0 for all a ∈ E(M)
which are not coloops of M , then A = 0.

Proof. We choose a polyhedral structure C of C such that every cell of C is contained in a
cone of B(M). Let F = (∅ ( F1 ( . . . ( Fr(M)−1 ( E(M)) be an arbitrary maximal
chain of flats of M . We choose i such that |Fi+1 \ Fi| > 1 and a ∈ Fi+1 \ Fi. The
maximality of F implies that a is not a coloop. As πa is generically one-to-one (lemma
3.8) and its restriction to 〈F〉 is injective, πa∗C = 0 implies that there is no cell σ ∈ C
whose interior is contained in the interior of 〈F〉.
Now we assume there is a cell σ of C whose interior is contained in the interior of a
codimension 1 cone 〈G〉 of B(M). Let F = (∅ ( F1 ( . . . ( Fr(M)−1 ( E(M)) be a
maximal superchain (of flats) of G. As before we choose a ∈ Fi+1 \ Fi, with i satisfying
|Fi+1 \ Fi| > 1. Only cells of C contained in 〈G〉 or a facet adjacent to 〈G〉 can potentially
be mapped to πa(σ) by πa. The first part of the proof thus implies that

0 = ωπa∗C(πa(σ)) = ωC(σ).

Continuing this way, we see that C = 0. �

Theorem 9.5. Every subcycle C of a variety B(M)/L is rationally equivalent to its reces-
sion cycle δ(C).

Proof. By proposition 9.1 it suffices to show the statement for matroid varieties B(M).

We first consider the case where {a} is a flat for every a ∈ E(M). We use induction on the
codimension of B(M): The induction start (B(M) = Rn) was proved in [AR2, theorem
7]. We show that C is rationally equivalent on B(M) to a fan cycle: After renaming the
elements, we can assume that {1, . . . , k} is the subset of elements of E(M) which are not
coloops. For i ∈ {1, . . . , k} we set

C0 := C, Ci := Ci−1 − π∗i (πi∗Ci−1 − δ(πi∗Ci−1)).

By induction πi∗Ci−1 is rationally equivalent to δ(πi∗Ci−1). As pulling back preserves
rational equivalence, it follows that Ci is rationally equivalent to Ci−1. We set

N0 := C, Ni := Ni−1 − π∗i πi∗Ni−1,

and
F0 := 0, Fi := Fi−1 + π∗i δ(πi∗Ni−1).

It is easy to see that for all i the cycle Fi is a fan cycle, Ci = Ni + Fi, and πi∗Ni = 0.
Lemma 9.3 implies that πi∗Nk = 0 for all i; thus Nk = 0 by lemma 9.4. Therefore, C is
rationally equivalent to the fan cycle Fk. As δ(C) is the only fan cycle which is rationally
equivalent to C on Rn [AR2, lemma 6, theorem 7], we can conclude Fk = δ(C).
The general case follows from the observation that the projection πR : B(M)→ B(M \R)
is an isomorphism for R = clM ({a}) \ a. �
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