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TROPICAL ORBIT SPACES AND THE MODULI SPACES OF ELLIPTIC
TROPICAL CURVES

MATTHIAS HEROLD

ABSTRACT. We give a definition of tropical orbit spaces and their morphisms. We show
that, under certain conditions, the weighted number of preimages of a point in the target of
such a morphism does not depend on the choice of this point. Weequip the moduli spaces
of elliptic tropical curves with a structure of tropical orbit space and, using our results on
tropical orbit spaces, simplify the known proof of the fact that the weighted number of
plane elliptic tropical curves of degreed with fixed j-invariant which pass through3d− 1

points in general position inR2 is independent of the choice of a configuration of points.

1. INTRODUCTION

Tropical geometry is a relatively new mathematical domain.It has applications in several
branches of mathematics and, in particular, has been used for solving various enumera-
tive problems. One of the first results concerning enumerative problems in this domain
was achieved by G. Mikhalkin in [M1]. He established an important correspondence be-
tween complex algebraic curves satisfying certain constraints and tropical analogs of these
curves. This correspondence theorem was reproven in slightly different forms in [NS],
[Sh] and [ST]. Mikhalkin’s results initiated the study of enumerative problems in tropical
geometry (see for example [GM1], [GM2], [GM3]). Dealing with counting problems, it is
naturally to work with moduli spaces. The first step in this direction was the construction
of the moduli spaces of rational curves given in [M2] and [GKM]. In [GKM] the authors
developed some tools to deal with enumerative problems for rational curves, using the no-
tation of tropical fan. They introduced morphisms between tropical fans and showed that,
under certain conditions, the weighted number of preimagesof a point in the target of such
a morphism does not depend on the chosen point. After showingthat the moduli spaces of
rational tropical curves have the structure of a tropical fan, they used this result to count
rational curves passing through given points.

Following their approach, we introduce similar tools for enumerative problems concerning
tropical curves of genus1. Considering moduli spaces of elliptic tropical curves, itis
natural to expect the appearance of a counterpart of stacks in the tropical setting. Since
we are mainly interested in the quotient structure of the moduli spaces it is clear that
the definition for the counterpart of stacks, given in this paper, will not be the final one.
Therefore, we call our objects tropical orbit spaces instead of tropical stacks. The definition
is given in the second chapter. With the help of this definition, we develop some tools for
dealing with tropical enumerative problems in genus1. The main statement of the second
chapter is Corollary 2.34 which states that, for surjectivemorphisms between tropical orbit
spaces of the same dimension such that the target is irreducible, the number of preimages
(counted with multiplicities) is the same for each general choice of a point. The corollary
can be used to prove invariance in tropical enumerative problems in genus1. In chapter
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3 we show that the moduli spaces of elliptic tropical curves with fixed j-invariant have
a structure of a tropical orbit space. Then, we use the tools elaborated in chapter2 for
the enumerative problems of counting elliptic tropical curves with fixedj-invariant (these
problems were first considered in [KM]), and simplify the proof of one of the main results
in [KM].

The author would like to thank Andreas Gathmann and JohannesRau for the introduction
to the problem and he would like to thank Andreas Gathmann andIlia Itenberg for many
helpful discussions.

2. TROPICAL ORBIT SPACE

In this part we denote a finitely generated free abelian groupby Λ and the corresponding
real vector spaceΛ ⊗Z R by V . So we can considerΛ as a lattice inV . The dual lattice in
the vector spaceV ∨ is denoted byΛ∨.

Definition 2.1 (General and closed cones). A general cone in V is a subsetσ ⊆ V that can
be described by finitely many linear integral equalities, inequalities and strict inequalities,
i.e. a set of the form

σ = {x ∈ V |f1(x) = 0, . . . , fr(x) = 0, fr+1(x) ≥ 0, . . . , fr+s(x) ≥ 0,

fr+s+1(x) > 0, . . . , fN(x) > 0} (∗)

for some linear formsf1, . . . , fN ∈ Λ∨. We denote byVσ the smallest linear subspace of
V containingσ and byΛσ the latticeVσ ∩ Λ. We define thedimension of σ to be the
dimension ofVσ. We callσ a closed cone if there are no strict inequalities in(∗) (i.e. if
N = r + s).

Definition 2.2 (Face). A face of σ is a general coneτ ⊂ σ which can be obtained fromσ
by changing some of the non-strict inequalities in(∗) to equalities.

Definition 2.3 (Fan and general fan). A fan in V is a setX of closed cones inV such that

(a) each face of a cone inX is also a cone inX ;

(b) the intersection of any two cones inX is a face of each of them.

A general fanin V is a setX̃ of general cones inV satisfying the following property: there
exist a fanX and a subsetR ⊂ X such thatX̃ = {τ \ U | τ ∈ X}, whereU =

⋃
σ∈R σ.

We put |X̃| =
⋃

σ̃∈X̃ σ̃. A (general) fan is calledpure-dimensional, if all its inclusion-
maximal cones are of the same dimension. In this case we call the highest dimensional
conesfacets. The set ofn−dimensional cones of a (general) fanX is denoted byX(n).

Construction2.4 (Normal vector). If ∅ 6= τ, σ are cones inV andτ is a subcone ofσ such
thatdim τ = dimσ − 1, then there is a non-zero linear formg ∈ Λ∨, which is zero onτ
and positive onσ\τ . Theng induces an isomorphismVσ/Vτ

∼= R. There exists a unique
generatoruσ/τ ∈ Λσ/Λτ , lying in the same half-line asσ/Vτ and we call it the primitive
normal vector of σ relative toτ . In the following we writeτ ≤ σ if τ is a subcone ofσ
andτ < σ if τ is a proper subcone ofσ.

Definition 2.5 (Weighted and general tropical fans). A weighted fan (X,ωX) in V is
a pure-dimensional general fanX of dimensionn with a mapωX : X(n) → Q. The
numbersωX (σ) are calledweights of the general conesσ ∈ X(n). By abuse of notation
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we also writeω for the map andX for the weighted fan.
A general tropical fan in V is a weighted fan(X,ωX) fulfilling the balancing condition

∑

σ>τ

ωX (σ) · uσ/τ = 0 ∈ V/Vτ

for anyτ ∈ X(dim X−1).

Definition 2.6 (Open fans). Let F̃ be a general fan inRn and0 ∈ U ⊆ Rn an open subset.
The setF = F̃ ∩U = {σ ∩U |σ ∈ F̃} is called anopen fanin Rn. As in the case of fans,
put |F | =

⋃
σ′∈F σ

′.

If F̃ is a general weighted fan, we callF aweighted open fan.

Remark2.7. Since0 ∈ U is open,F̃ is defined byF .

Definition 2.8 (General polyhedron). A general polyhedronis a setσ ⊂ Rn such that
there exists a rational polyhedronσ̃ and a unionu of faces ofσ such thatσ = σ̃\u. (This
definition is equivalent to saying that the faces have the following form {x ∈ V |f1(x) =
p1, . . . , fr(x) = pr, fr+1(x) ≥ pr+1, . . . , fr+s(x) ≥ pr+s, fr+s+1(x) > pr+s+1, . . . ,
fN(x) > pN} for some linear formsf1, . . . , fN ∈ Zn and numbersp1, · · · , pN ∈ R.)

Definition 2.9 (General polyhedral precomplexes). A (general) polyhedral precomplexis
a topological space|X | and a setX of subsets of|X | equipped with embeddingsϕσ : σ →
Rnσ for all σ ∈ X such that

(a) X is closed under taking intersections, i.e.σ ∩ σ′ ∈ X is a face ofσ and ofσ′ for
anyσ, σ′ ∈ X such thatσ ∩ σ′ 6= ∅,

(b) every imageϕσ(σ), σ ∈ X is a general polyhedron, not contained in a proper
affine subspace ofRnσ ,

(c) for every pairσ, σ′ ∈ X the compositionϕσ ◦ ϕ−1
σ′ is integer affine-linear on

ϕσ′(σ ∩ σ′),

(d) |X | =
.⋃

σ∈X

ϕ−1
σ (ϕσ(σ)◦), whereϕσ(σ)◦ denotes the interior ofϕσ(σ) in Rnσ .

Definition 2.10 (General polyhedral complexes). A (general) polyhedral complexis a
(general) polyhedral precomplex(|X |, X, {ϕσ|σ ∈ X}) such that for every polyhedron
σ ∈ X we are given an open fanFσ (denoted as well byFX

σ to underline that it belongs to
the complexX ) in someRn∗

σ and a homeomorphism

Φσ : Sσ =
⋃

σ′∈X,σ′⊇σ

(σ′)ri ∼
−→ |Fσ|

satisfying:

(a) for allσ′ ∈ X,σ′ ⊇ σ one hasΦσ(σ′ ∩ Sσ) ∈ Fσ andΦσ is compatible with the
Z-linear structure onσ′, i.e. Φσ ◦ ϕ−1

σ′ andϕσ′ ◦ Φ−1
σ are integer affine linear on

ϕσ′(σ′ ∩ Sσ), resp.Φσ(σ′ ∩ Sσ),

(b) for every pairσ, τ ∈ X, there is an integer affine linear mapAσ,τ such that the
following diagram commutes:

Sσ ∩ Sτ

∼Φσ

��

∼

Φτ // Φτ (Sσ ∩ Sτ )

Φσ(Sσ ∩ Sτ )

Aσ,τ
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For simplicity we usually drop the embeddingsϕσ or the mapsΦσ in the notation and
denote the polyhedral complex(X, |X |, {ϕσ|σ ∈ X}, {Φτ |τ ∈ X}) by (X, |X |, {ϕσ|σ ∈
X}) or by (X, |X |, {ϕ}, {Φτ |τ ∈ X}) or by (X, |X |) or just byX if no confusion can
occur. The subsetsσ ∈ X are called thegeneral polyhedraor faces of(X, |X |). For
σ ∈ X the open setσri = ϕ−1

σ (ϕσ(σ)◦) is called therelative interior ofσ. Thedimension
of (X, |X |) is the maximum of the dimensions of its general polyhedra. Wecall (X, |X |)
pure-dimensionalif all its inclusion-maximal general polyhedra are of the same dimension.
We denote byX(n) the set of polyhedra in(X, |X |) of dimensionn. Let τ, σ ∈ X . As in
the case of fans we writeτ ≤ σ (or τ < σ) if τ ⊆ σ (or τ ( σ, respectively). By abuse of
notation we identifyσ with ϕσ(σ).

A general polyhedral complex(X, |X |) of pure dimensionn together with a mapωX :
X(n) → Q is calledweighted polyhedral complexof dimensionn, andωX(σ) is called
theweight of the polyhedronσ ∈ X(n), if all Fσ are weighted open fans and

• ωX(σ′) = ωFσ (Φσ(σ′ ∩ Sσ)) for everyσ′ ∈ (X)(n) with σ′ ⊇ σ,

The empty complex∅ is a weighted polyhedral complex of every dimension. If((X, |X |),
ωX) is a weighted polyhedral complex of dimensionn, then put

X∗ = {τ ∈ X |τ ⊆ σ for someσ ∈ X(n) with ωX(σ) 6= 0}, |X∗| =
⋃

τ∈X∗

τ ⊆ |X |.

Note that
(
(X∗, |X∗|), ωX |(X∗)(n)

)
is again a weighted polyhedral complex of dimension

n. This complex is called thenon-zero partof ((X, |X |), ωX). We call a weighted poly-
hedral complex((X, |X |), ωX) reducedif ((X, |X |), ωX) = ((X∗, |X∗|), ωX∗).

Definition 2.11(Subcomplexes and refinements). Let (X, |X |, {ϕσ|σ ∈ X}) and(Y, |Y |,
{ψτ |τ ∈ Y }) be two polyhedral complexes. We callX asubcomplexof Y if

(a) |X | ⊆ |Y |,

(b) for everyσ in X there exists aτ ∈ Y with σ ⊆ τ ,

(c) for a pairσ andτ from (b) the mapsϕσ ◦ψ−1
τ andψτ ◦ϕ−1

σ are integer affine linear
onψτ (σ), resp.ϕσ(σ).

We write(X, |X |) < (Y, |Y |) in this case, and define a mapCX,Y : X → Y that maps a
cone inX to the inclusion-minimal cone inY containing it.
We call a polyhedral complex(X, |X |) a refinement of(Y, |Y |), if

(a) (X, |X |) < (Y, |Y |)

(b) |X | = |Y |

We call a weighted polyhedral complex(X, |X |) a refinement of a weighted polyhedral
complex(Y, |Y |) if in addition the following condition holds:

• ωX(σ) = ωY (CX∗,Y ∗(σ)) for all σ ∈ (X∗)(dim(X)).

Definition 2.12(Morphism of general polyhedral complexes). LetX andY be two (gen-
eral) polyhedral complexes. Amorphism of general polyhedral complexesf : X → Y is
a continuous mapf : |X | → |Y | with the following properties: There exist refinements
(X ′, |X ′|, {ϕ}, {Φσ|σ ∈ X ′}) of X and(Y ′, |Y ′|, {ψ}, {Ψτ |τ ∈ Y ′) of Y such that

(a) for every general polyhedronσ ∈ X ′ there exists a general polyhedronσ̃ ∈ Y ′

with f(σ) ⊆ σ̃,
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(b) for every pairσ, σ̃ from (a) the mapΨeσ ◦ f ◦ Φ−1
σ : |FX′

σ | → |FY ′

eσ | induces a
morphism of fans̃FX′

σ → F̃Y ′

eσ , whereF̃X′

σ andF̃Y ′

eσ are the general fans given in
Definition 2.6.

A morphism ofweighted polyhedral complexesis a morphism of polyhedral complexes
(i.e. there are no conditions on the weights). IfX = Y and if there exists a morphism
g : X → Y such thatg ◦ f = f ◦ g = idX we callf anautomorphismof X .

Definition 2.13 (Orbit space). Let X be a polyhedral complex andG a group acting on
|X | such that eachg ∈ G induces an automorphism onX . We denote the induced map
of an elementg ∈ G onX by g(.) and the induced homeomorphism on|X | by g{.}. We
denote byX/G the set ofG−orbits ofX and callX/G anorbit space.

Example2.14. The following example shows the topological space of an orbit space with
trivial groupG and the open fansFσ for all σ. The groupG is trivial and thus the orbit
space is the same as the polyhedral complex (i.e.X = X/G).

Let us now take the same polyhedral complex, with the ray lying on thex-axis. ForG
take the group with two elements, generated by the mapf : R2 → R2, y 7→ −y. The
topological picture of the orbit space is the following:

Definition 2.15 (Weighted orbit space). Let (X,ωX) be a weighted polyhedral complex
of dimensionn, andG a group acting onX . If X/G is an orbit space such that

• for anyg ∈ G and for anyσ ∈ X(n), one hasωX (σ) = ωX (g(σ)),

we callX/G aweighted orbit space. The classes[σ] ∈ X/G, given by the orbits ofG, are
calledweighted classes.

Definition 2.16 (Stabilizer,Gτ−orbit of σ). LetX andG be as above andτ, σ ∈ X . We
call Gτ = {g ∈ G|g{x} = x for anyx ∈ τ} the stabilizer of τ . We defineXσ/τ =
{g(σ)|g ∈ Gτ} to be theGτ−orbit of σ.

The weight function on the weighted classes ofX/G is denoted by[ω] and defined by
[ω]([σ]) = ω(σ)/|Gσ|, for all [σ] ∈ X/G.

Remark2.17. We could define a weighted orbit space as well by giving an orbit space and
a weight for each class instead of defining the weights of the orbit space by the weights of
the complex and the group action.
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Definition 2.18 (Suborbit space). Let X/G be an orbit space. An orbit spaceY/G is
called asuborbit spaceof X/G (notation:Y/G ⊂ X/G) if each general polyhedron ofY
is contained in a general polyhedron ofX and each element ofG acts on the faces ofY in
the same way as forX (i.e. for all g ∈ G, σ ∈ Y we haveg|Y |{x} = g|X|{x} for x ∈ σ).
In this case we denote byCY,X : Y → X the map which sends a general polyhedronσ ∈ Y
to the (unique) inclusion-minimal general polyhedron ofX that containsσ. Note that for
a suborbit spaceY/G ⊂ X/G we obviously have|Y | ⊂ |X | anddimCY,X(σ) ≥ dimσ
for all σ ∈ Y .

Definition 2.19 (Refinements). Let ((Y, |Y |), ωY )/G and ((X, |X |), ωX) /G be two
weighted orbit spaces. We call((Y, |Y |), ωY )/G a refinementof ((X, |X |), ωX)/G, if

(a) ((Y, |Y |), ωY )/G ⊂ ((X, |X |), ωX)/G,

(b) |Y ∗| = |X∗|,

(c) ωY (σ) = ωX(CY,X(σ)) for all σ ∈ (Y ∗)(dim(Y )),

(d) eachσ ∈ Y is closed in|X |.

We say that two weighted orbit spaces((X, |X |), ωX)/G and((Y, |Y |), ωY )/G are equiva-
lent (notation:((X, |X |), ωX)/G ∼= ((Y, |Y |), ωY )/G) if they have a common refinement.

Definition 2.20 (Global orbit space). Let F be a set of orbit spaces andE a set of em-
beddingsφX,Y,σ : σ◦ → Y , given by affine linear maps, of the interior of a polyhedron
σ ∈ X , with X , Y ∈ F . After refinement ofY there exists a conẽσ in Y , such that
σ̃◦ = φX,Y,σ(σ◦). Sinceσ ⊂ Rn andϕσ̃ ◦ φX,Y,σ is an affine linear map there exists a

continuation ˜ϕσ̃ ◦ φX,Y,σ of ϕσ̃ ◦φX,Y,σ onσ. If ˜ϕσ̃ ◦ φX,Y,σ ∩ϕσ̃(σ̃) = ϕσ̃(σ̃◦), we glue
the orbit spaces along these maps. The resulting topological space together withF andE
is calledglobal orbit space.

Remark2.21. The global orbit space is a topological space which locally is an orbit space.
In the same way one could define a weighted and later on a globaltropical orbit space.
Perhaps one would prefer to call the orbit space local orbit space, and the global orbit
space only orbit space, but since all our objects will have a global group operation we
keep these names. For weighted global orbit spaces one wouldneed the condition that the
weights of the glued cones coincide.

Definition 2.22 (Tropical orbit space). Let (X,ωX) /G be a weighted orbit space with
finitely many different classes and|Gσ| < ∞ for anyσ ∈ X(n). If for any τ ∈ X(n−1),
one has#{σ > τ} <∞ and there existsλσ/τ ≥ 0 for anyσ > τ such that

∑
σ̃>τ,σ̃∈Xσ/τ

λσ̃/τ = 1 and
∑

σ>τ λσ/τ [ω]X([σ])(uσ/τ ) ∈ Vτ , thenX/G is called atropical orbit
space.

Proposition 2.23. Let (X,ωX) be a weighted fan inV andG ⊂ Gl(V ) such thatX/G is
a weighted orbit space. IfG is finite and allgeneral cones in X are closed cones, then
(X,ωX) is a tropical fan if and only ifX/G is a tropical orbit space.

Proof. ” ⇒ ”: Put n = dim(X) and letτ ∈ X(n−1) andσ > τ . Then we define
λσ/τ = |{g∈Gτ , such thatg(σ)=σ}|

|Gτ |
= |Gσ|

|Gτ |
= 1

|Xσ/τ |
. Thus, for anyτ ∈ X(n−1) one has

#{σ > τ} <∞, and for anyσ > τ one hasλσ/τ ≥ 0 and
∑

σ̃>τ,σ̃∈Xσ/τ
λσ̃/τ = 1.

Furthermore,
∑

σ>τ
1

|Gτ |
ωX(σ)(vσ/τ ) = t ∈ Vτ , because(X,ωX) is a tropical fan. Thus,

we have
∑

σ>τ
|Gσ|
|Gτ |

[ωX ]([σ])(vσ/τ ) =
∑

σ>τ
1

|Gτ |
ωX(σ)(vσ/τ ) = t ∈ Vτ .
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” ⇐ ”: Let X/G be a tropical orbit space. Thus, there existsλσ/τ with σ > τ and
τ ∈ X(n−1) such that

∑
σ>τ λσ/τ [ω]X([σ])(uσ/τ ) = t ∈ Vτ . Therefore, because of the

linearity ofg ∈ Gτ , we get:

|Gτ | · t =
∑

g∈Gτ

g(t)

=
∑

g∈Gτ

g(
∑

σ>τ

λσ/τ [ω]X([σ])(uσ/τ ))

=
∑

g∈Gτ

∑

σ>τ

λσ/τ [ω]X([σ])(g(uσ/τ ))

=
∑

σ>τ

|Gσ| · [ω]X([σ])(uσ/τ )

=
∑

σ>τ

ωX(σ)(uσ/τ ).

�

Example2.24. The following picture is an example of a tropical fanX and a tropical orbit
spaceX/Gwith this fan as underlying polyhedral complex. LetX be the standard tropical

line with its vertex at the origin, given by the directions

(
−1
0

)
,

(
0
−1

)
and

(
1
1

)
,

and all the weights are equal to one. The groupG consists of two elements and is generated

by the matrix

(
0 1
1 0

)
.

X X/G

The balancing condition for the fan is
(

−1
0

)
+

(
0
−1

)
+

(
1
1

)
=

(
0
0

)

and for the orbit space

1

2
·

(
−1
0

)
+

1

2
·

(
0
−1

)
+

1

2
·

(
1
1

)
=

(
0
0

)
,

where the first two(1/2)’s come from the splitting of1, and the third1/2 comes from the
invariance of the last vector underG.

Corollary 2.25. The balancing condition for tropical orbit spaces can be checked by
checking the balancing condition of the underlying weighted complex.

Proof. For tropical orbit spaces with infinite groupG there are only finitely many facets
around a codim-1 face. Thus, as in the proof of proposition 2.23 the balancingcondition
can be checked on the polyhedral complex as well (without group action). �

Example2.26. To show that there are tropical orbit spaces which do not comefrom a
tropical fan we consider the following orbit space. Let|X | be the topological space
{(x, y) ∈ R2|y > 0}, and letX be the set of cones spanned by the vectors

(
x
1

)
and
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(
x+1
1

)
for x ∈ Z. If we define all weights to be one andG =<

(
1 1
0 1

)
>, we get the

following tropical orbit spaceX/G:

X X/G

It is easily be seen, thatX/G is a tropical orbit space (see definition 2.22), whileX has
infinitely many cones and thus is not a fan.

Definition 2.27 (Morphism of orbit spaces). Let (X, |X |, {ϕ}, {Φσ|σ ∈ X})/ G and
(Y, |Y |, {ψ}, {Ψτ |τ ∈ Y ) /H be two orbit spaces. Amorphism of orbit spacesf :
X/G → Y/H is a pair(f1, f2) consisting of a continuous mapf1 : |X | → |Y | and a
group morphismf2 : G→ H with the following properties:

(a) for every general polyhedronσ ∈ X there exists a general polyhedronσ̃ ∈ Y with
f1(σ) ⊆ σ̃,

(b) for every pairσ, σ̃ from (a) the mapΨeσ ◦ f1 ◦ Φ−1
σ : |FX

σ | → |FY
eσ | induces a

morphism of fans̃FX
σ → F̃Y

eσ , whereF̃X
σ andF̃Y

eσ are the weighted general fans
associated toFX

σ andFY
eσ , respectively (cf. definition 2.6),

(c) there exists a refinement ofX such that for anyσ, σ̃ ∈ X with dim(f1(σ) ∩f1(σ̃))
= dim(f1(σ)) = dim(f1(σ̃)), one hasf1(σ) = f1(σ̃),

(d) f1(g(σ)) = f2(g)(f1(σ)) for all g ∈ G andσ ∈ X .

A morphism ofweighted orbit spacesis a morphism of orbit spaces (i.e. there are no
conditions on the weights).

Explanation2.28. Asking a morphism to fulfill conditionsa, b andd is obvious, but to ask
for conditionc is not. Thus, let us consider an example where conditionc is not fulfilled.
Let us consider the mapf , given by the projection of two intervals on a third one (see the
following picture). We takeG andH to be trivial, thusX/G = X andY/H = Y , where
X is the disjoint union of two open intervals of different length andY is one open interval
with the same length as the longest interval ofX .

f

Y

X

After any possible refinement the facetσ, which is the most left in the upper interval of
X , is open on the left side, but will be mapped on a left closed facet τ . We call σ̃ the
intersection of the preimage ofτ with the longest interval ofX . Thenf1(σ) ∩ f1(σ̃) is a
line segment as well asf1(σ) andf1(σ̃), but the images are not the same which contradicts
c. Thusf is not a morphism.
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Example2.29. If we take the tropical orbit spaceX/G from Example 2.24, then the canon-
ical map to the diagonal line inR2 is a morphism of orbit spaces. But the homeomorphism
which goes in the opposite direction is not a morphism, because locally at the origin it can
not be expressed by a linear map.

Remark2.30. The reason we ask conditionc to be fulfilled is to define images of the
polyhedra later on. Thus, after refinement, each polyhedronshould map to one polyhedron
and the image of the polyhedral complex should be a polyhedral complex as well. In
particular conditiona of Definition 2.9 has to be fullfiled. Therefore, different images of
polyhedra should intersect in lower dimension than the maximal dimension of them. Or in
other words,c ensuresa in Definition 2.9.

Construction2.31. As in the case of fans (Construction 2.24 [GKM]) we can define the
image orbit space. LetX/G be a purelyn-dimensional orbit space, and letY/H be any
orbit space. For any morphismX/G→ Y/H consider the following set:

Z = {f(σ), σ is contained in a conẽσ of X(n) with f is injective onσ̃}

Note, thatZ is in general not a polyhedral complex. It satisfies all conditions of Defini-
tion 2.9 and Definition 2.10 except possibly(d) of Definition 2.9 (since there might be
overlaps of some regions). However, we can choose a proper refinement to turnZ into a
polyhedral complex. Thus, if we denote the weighted polyhedral complex defined by all
representatives of all classes[σ] with σ ∈ Z byH ◦ Z, we get an orbit spaceH ◦ Z/H .

If moreoverX/G is a weighted orbit space we turnf(X/G) into a weighted orbit space.
After choosing a refinement forX andY such thatf(σ) is a cone inY for eachσ ∈ X ,
we set

ωf(X/G)(σ
′) =

∑

[σ]∈X/G(n):[f(σ)]=[σ′]

ωX(σ) · |Λ′
[σ′]/f(Λ[σ])|

for anyσ′ ∈ (H ◦ Z)(n).

Proposition 2.32.LetX/G be ann-dimensional tropical orbit space,Y/H an orbit space,
andf : X/G → Y/H a morphism. Thenf(X/G) is ann−dimensional tropical orbit
space (provided thatf(X/G) is not empty).

Proof. By construction,f(X/G) is ann−dimensional weighted orbit space. Thus we
have to prove only the balancing condition. The proof works in the same way as for fans
in [GKM] (Notice that by Corollary 2.25 the balancing condition can be checked without
taking into account the group operation). �

Definition 2.33 (Irreducible tropical orbit space). Let X/G be a tropical orbit space of
dimensionn. We callX/G irreducibleif for any refinementX̃/G ofX/G and anyY/G ⊂
X/G, Y 6= ∅ with dim(Y/G) = n the following holds: if for allσ ∈ Y (n) one has
σ ∈ X̃(n), thenY and X̃ are equal. (The equality holds on the level of orbit spaces,
the weights can be different. In the case of different weights one hasωX = λ · ωY for
λ ∈ Q 6= 0). Equivalent to this definition is to say thatX/G is irreducible, if for any
Y/G ⊂ X/G, Y 6= ∅ with dim(Y/G) = n andY is closed inX one hasY = X .

Corollary 2.34. LetX/G andY/H be tropical orbit spaces of the same dimensionn in
V = Λ ⊗ R andV ′ = Λ′ ⊗ R, respectively, and letf : X/G → Y/H be a morphism.
Assume thatY/H is irreducible andf(X/G) = Y/H as topological spaces. Then there
is an orbit spaceY0/H in V ′ of dimension smaller thann with |Y0| ⊂ |Y | such that



10 MATTHIAS HEROLD

(a) each pointQ ∈ |Y |\|Y0| lies in the interior of a coneσ′
Q ∈ Y of dimensionn;

(b) each pointP ∈ f−1(|Y |\|Y0|) lies in the interior of a coneσP ∈ X of dimension
n;

(c) forQ ∈ |Y |\|Y0| the sum
∑

[P ],P∈|X|:f([P ])=[Q]

mult[P ] f

does not depend onQ, where the multiplicitymult[P ] f of f at [P ] is defined to be

mult[P ] f :=
ωX/G(σ[P ])

ωY/H(σ′
[Q])

· |Λ′
σ′

[Q]
/f(Λσ[P ]

)|.

Proof. If we can show thatf(X/G) = λY/H (i.e. the image ofX/G is Y/G and the
weights differ by the multiplication ofλ ∈ Q) the proof works as in [GKM] for fans.
By assumption we have, thatf(X/G) = Y/H , as orbit spaces (without weights). Further,
by Proposition 2.32,f(X/G) is a tropical orbit space. Because of irreducibility we have
f(X/G) = λY/H as tropical orbit spaces. �

In contrast to the case of fans we need in the Corollary the assumptionf(X/G) = Y/H .
This is due to the fact, that we use non-closed polyhedra. Letus see what happens if we do
not assume the above equality.

Example2.35. Let G be the trivial group andX ⊂ R andY ⊂ R be open intervals of
weight one withX $ Y . Let f : X →֒ Y be the inclusion.

f

Y

X

Then, all conditions of the corollary but the equality are fulfilled and the corollary does not
hold.

Definition 2.36(Rational function). Let Y/G be a tropical orbit space. We define aratio-
nal functionϕ onY/G to be a continuous functionϕ : |Y | → R such that there exists a
refinement(((X, |X |, {mσ}σ∈X), ωX), {Mσ}σ∈X) of Y fullfiling: for each faceσ ∈ X
the mapϕ ◦m−1

σ is locally integer affine-linear. Furthermore, we demand thatf ◦ g = f,
for all g ∈ G. (Remark: by refinements we can directly assume thatf is affine linear on
each general cone.)

Definition 2.37 (Orbit space divisor). LetX/G be a tropical orbit space, andφ a rational
function onX/G. We define a divisor ofφ to bediv(φ) = φ ·X/G= [(

⋃k−1
i=−1X

(i), ωφ)]
/G, whereωφ is given as follows:

ωφ : X(k−1) → Q,

τ 7→
∑

σ∈X(k)

τ<σ

φσ(λσ/τω(σ)vσ/τ ) − φτ

( ∑

σ∈X(k)

τ<σ

λσ/τω(σ)vσ/τ

)
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Remark2.38. The following two remarks can be proved analogously to the proof of Propo-
sition 2.23.

1: The definition above is independent of the chosenλσ/τ (i.e. if we have different
sets ofλ’s fulfilling the definition of a tropical orbit space, the divisor will be the
same for both sets ofλ’s).

2: If |Gσ| < ∞ for all σ ∈ X(n−1) and the number|{σ > τ}| < ∞ for all τ ∈
X(n−2), thenφ ·X is a tropical orbit space.

3. MODULI SPACES OF ELLIPTIC TROPICAL CURVES

In this section we show that the moduli spaces of tropical curves of genus1 with j-invariant
greater than0 have a structure of tropical orbit space.

Definition 3.1 (n-marked abstract tropical curves). An abstract tropical curveis a pair (Γ,
δ) such thatΓ is a connected graph, andΓ = Γ\ {1-valent vertices} has a complete inner
metricδ (i.e. the edges adjacent to two vertices ofΓ are isometric to a segment, the edges
adjacent to one vertex ofΓ are isometric to a ray and the edges adjacent to no vertex ofΓ
are isometric to a line). The edges adjacent to no or to exactly one vertex ofΓ are called
unbounded, the other edges are called bounded. The unbounded edges have length infinity.
The bounded edges have a finite positive length. For simplicity we denote an abstract
tropical curve byΓ. An n-marked abstract tropical curveis a tuple (Γ, x1, ..., xn) formed
by an abstract tropical curveΓ and distinct unbounded edgesx1, ..., xn of Γ which are rays.
Two such marked tropical curves (Γ, x1, ..., xn) and (̃Γ, x̃1, ..., x̃n) are calledisomorphic
(and will from now on be identified) if there exists an isometry from Γ to Γ̃, mappingxi to
x̃i, i = 1, ..., n ( i.e. there exists a homeomorphismΓ → Γ̃ identifyingxi andx̃i and such
that the edges ofΓ are mapped to edges ofΓ̃ by an affine map of slope±1.).

For a more detailed definition of an abstract tropical curve see [GM3] definition 2.2. The
unbounded edges are calledleavesas well.

Remark3.2. We can parameterize each edgeE of a curveΓ by an interval[0, l(E)] for
bounded edges and by[0,∞) or (−∞,∞) for unbounded edges, wherel(E) is the length
of the edge. For the choice of the direction in the bounded case we choose which vertex
of E is parameterized by0. Such a parameterization is calledcanonical. We do not
distinguish between the unbounded edgexi and the vertex adjacent to it and call the vertex
alsoxi.

Definition 3.3 (n-marked abstract topical curves of genus1). We call ann-marked abstract
tropical curve to be ofgenus1 if the underlying graph has exactly one simple cycle.

As a tropical counterpart of thej-invariant, we take the length of the cycle as it was sug-
gested in [M3], [V] and [KM]. Motivations for this choice canbe found, for example, in
[KMM1], [KMM2] and [Sp].

Definition 3.4 (j-invariant). For ann-marked curveΓ of genus1, the sum of the lengths
of all edges forming the simple cycle is called thej-invariant of Γ.

Definition 3.5 (Combinatorial type). Thecombinatorial typeof an abstract tropical curve
(Γ, δ) is the graphΓ.
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Remark and Definition3.6. All curves given by Definition 3.1 of the same combinatorial
type or the combinatorial type one gets by contracting bounded edges of the graph of
the combinatorial type can be embedded in a suitableRm by the lengths of the bounded
edges and therefore this set of curves has a topological structure (called combinatorial
cone). Thus, the set of alln-marked abstract tropical curves of genus1 with this induced
topological structure on each combinatorial cone (the cones are glued together along faces
representing the same curves) is a topological space.

Definition 3.7 (abstractM1,n). The spaceM1,n is defined to be the topological space of
all n-marked abstract tropical curves (modulo isomorphism) with the following properties:

(a) the curve has exactlyn leaves,

(b) all vertices of the curves have valence at least3, and

(c) the genus of the curve is1.

The topology of this space is the one defined in the previous remark and definition.

Example3.8. The moduli space of2-marked abstract tropical curves of genus1 and the
curves corresponding to the faces are given in the followingpicture:

x2

x1

x1

x2

x2

x2

x1

x1

Now we construct a map fromM1,n to a tropical orbit space in the following way. For
each curveC ∈ M1,n let a be an arbitrary point of the cycle ofC. We define a new curve
C̃ which we get by cuttingC alonga and inserting two leavesA = xn+1 andB = xn+2

at the resulting endpoints (if we cut along a vertex we have todecide if the edges adjacent
to the vertex which are not in the cycle are adjacent toA or toB). This curve is ann + 2
marked curve (not of genus1) with up to2 two-valent vertices (at the endsA andB).

1

2

2

1

B

A

FIGURE 1. Construction of ann + 2-marked curve from ann-marked
genus-1 curve.

Let T be the set of all subsetsS ⊂ {1, . . . , n+ 2} with |S| = 2. In order to embedM1,n

into a quotient ofR(n+2
2 ) we consider the following map:

distn : M1,n −→ Vn/Gn

(C, x1, . . . , xn) 7−→ [(distΓ(xi, xj)){i,j}∈T ]
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whereVn, Gn, anddistΓ(xi, xj) are defined as follows. We denote bydistΓ(xi, xj) the
distance betweenxi andxj (that is the sum of the lengths of all edges in the unique path
from xi to xj) in C̃, wherexn+1 = A andxn+2 = B.
Let b ∈ Rt. If we denote bybi, 0 < i ≤ t, theith entry ofb, then the vector spaceVn is

isomorphic toR(n+2
2 )−n−1 and is given byVn = R(n+2

2 )/(Φn(Rn)+ < s >) where

Φn : Rn −→ Rn+2 −→ R(n+2
2 )

b 7−→ (b, 0, 0) = b̃ 7−→ (b̃i + b̃j){i,j}∈T ,

ands ∈ R(n+2
2 ) is a vector such that

si,j =





1 if i = n+ 1 or j = n+ 1 andi 6= n+ 2 6= j,
−1 if i = n+ 2 or j = n+ 2 andi 6= n+ 1 6= j,
0 otherwise.

The groupGn is generated by the matrixI and the matricesMp, p ∈ {1, ..., n}, where

I(i,j),(k,l) =





1 if ({i, j}, {k, l}) = ({m,n+ 1}, {m,n+ 2}), m ≤ n,
or ({i, j}, {k, l}) = ({m,n+ 2}, {m,n+ 1}), m ≤ n,
or {i, j} = {k, l} andi, j /∈ {n+ 1, n+ 2},
or if {i, j} = {n+ 1, n+ 2} = {k, l},

0 otherwise.

Mp,(i,j),(k,l) =





1 if {i, j} = {k, l}
or ({i, j}, {k, l}) = ({p, n+ 2}, {n+ 1, n+ 2}),
or ({i, j}, {k, l}) = ({p, j}, {j, n+ 1}), j 6= n+ 2,
or ({i, j}, {k, l}) = ({p, j}, {p, n+ 2}), j 6= n+ 2,
or ({i, j}, {k, l}) = ({p, j}, {n+ 1, n+ 2}),

n+ 1 6= j 6= n+ 2,
−1 if ({i, j}, {k, l}) = ({p, n+ 1}, {n+ 1, n+ 2}),

or ({i, j}, {k, l}) = ({p, j}, {j, n+ 2}), j 6= n+ 1,
or ({i, j}, {k, l}) = ({p, j}, {p, n+ 1}), j 6= n+ 1,

0 otherwise.

The orbits of all elements of< Φn(Rn) > + < s > underGn are trivial and thusVn/Gn

is well defined. By the following lemma, the definition of the mapdistn is well defined as
well.

Lemma 3.9. Let C̃ andC̃∗ be two curves resulting from two different cuts of a curveC.
The images of̃C andC̃∗ are the same inVn/Gn.

Proof. Let us fix an orientationo of the simple cycle inC and letdist(C̃) anddist(C̃∗) be
the images underdistΓ of C̃ andC̃∗. The orientationo of the simple cycle inC induces
an orientation of the edges connectingA andB of C̃ andC̃∗. By applying the mapI to
dist(C̃) anddist(C̃∗) if necessary we can assume that the induced orientation goesfrom
theAs to theBs. Let us denote bỹa, Ã, B̃ (resp.ã∗, Ã∗, B̃∗) the cut and the inserted edges
corresponding to curvẽC (resp.C̃∗). We denote byd the distance of̃B to Ã∗ in the curve
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cut atã andã∗. LetL be the subset of marked points of the component containingB̃Ã∗.
Then the following equality holds:

dist(C̃) =
∏

p∈L

Mp · dist(C̃∗) + d · s.

�

Remark3.10. The main idea in our definition comes from the rational case (see [GKM]).
After cutting the curve we get a new curve without cycles. Thus, the distance of two points
in the new curve is well defined. Then, as in the rational case we have to mod out the image
of Φn. In addition we have to get rid of all the choices we made during the construction of
A andB. These choices can be expressed by the following three operations.

(a) The shift of the pointa on one edge of the cycle (which corresponds to the addition
of an element of< s >).

(b) InterchangingA andB, which corresponds to the matrixI.

(c) The pointa jumps over the vertex adjacent to an unbounded edgep. The matrix
corresponding to this operation isMp. If the pointa jumps over a bounded edgeE,
the matrix corresponding to this operation is the product ofall matricesMi with i
is connected withE by edges not intersecting the cycle.

To get a polyhedral complex we put

Ψn : Vn −→ Vn/Gn

x 7−→ [x]

and
Xn = Ψ−1

n (distn(M1,n)).

As general polyhedrons we take the cones induced by the combinatorial cones inM1,n,
defined in Remark and Definition 3.6. Thus,Gn is a group acting onXn and we can
consider the quotient topology on the orbit spaceXn/Gn (see Definition 2.13). To have
a weighted orbit space we choose all weights to be equal to one. To show that the spaces
M1,n have a structure of tropical orbit space, we have to show thatM1,n andXn/Gn are
homeomorphic and thatXn/Gn fulfills the balancing condition.

Proposition 3.11. Let Xn, Gn andM1,n be as above. ThenS : M1,n −→ Xn/Gn,
(C, x1, . . . , xn) 7−→ [(distΓ(xi, xj))]{i,j}∈T is a homeomorphism.

Proof. Surjectivity is clear from the definition, andS is a continuous closed map. Thus, it
remains to show thatS is injective. To show this, we prove that out of each representative
of an element[x] in the target we can construct some numbers which are the samefor each
representative of[x]. If these numbers determine a unique preimage, the injectivity follows.
For this we take the following numbers which are independentof the representative:

j = xn+1,n+2 = length of the circle,

di = (xi,n+1 + xi,n+2 − j)/2 = distance fromi to the circle,

di,k = |(xi,n+1 + xk,n+2) − di − dk − j| = distance ofi andk on the circle.

If there are more than three marked edgesi1, ...ir with dis,it equals0 or j, than we have to
determine the distances these edges have one to each other. But, since these distances do
not depend on the cycle, the edges inXn encoding these distances are invariant underGn.
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Thus, we can reconstruct these distances, by considering the projection (not necessarily or-
thogonal) of[x] to the fixed part of the cone (and thus the fixed part of each representative)
in which [x] lies. Thus, all distances are given, injectivity follows and we are done. �

Proposition 3.12. The weighted orbit spaceXn/Gn is a tropical orbit space.

Proof. To show the balancing condition we have to consider the codim-1 cones and the
facets adjacent to them. If there is more than one vertex on the circle of a curve corre-
sponding to a point on a facet, then the stabilizer is trivialand we are in the same case as
for theM0,n. If there is only one vertex on the cycle we have the stabilizer {I, 1}, the
identity andI (see above). The curves corresponding to the points in the interior of the
codim-1 face have exactly one4-valent vertex. This vertex can be adjacent to the circle or
not. Let us consider these two cases separately. The second case is trivial (the stabilizers
are the same for all three facets and the balancing conditionis the same as forM0,n),
thus let us assume, that the4-valent vertex is at the circle. Qualitatively, the codim-1 face,
which we callτ , corresponds to a curve as in the following picture:

A

B x2

x1

FIGURE 2. A tropical curve with 4-valent vertex.

By assumption, there is only one vertex on the cycle. We only consider the case with two
endsx1 andx2, because if we have a tree instead ofxi the calculation is the same for
each leaf of the tree. To verify the balancing condition for tropical orbit spaces given in
definition 2.37, we have to consider the three facets around the faceτ . Let σ1 (resp.σ2)
belong to the insertion of the edge withA andx1 (resp.A andx2) on the same side. Then,
σ1 andσ2 lie in the sameGτ -orbit. Thus, if we take the same notation as in the picture we
get the following condition:
There existsλ1, λ2 ≥ 0, λσ1/τ + λσ2/τ = 1 such that

λσ1/τ ·




1
0
1
1
0
1




+ λσ2/τ ·




1
1
0
0
1
1




+
1

2
·




0
1
1
1
1
0




d(x1, x2)
d(x1, A)
d(x1, B)
d(x2, A)
d(x2, B)
d(A,B)

, ∈ Vτ .

This condition is fullfiled forλσ1/τ = λσ2/τ = 1
2 . Thus we have indeed a tropical orbit

space. �

Remark3.13. In Example 3.8 we have seen the topological picture of the moduli space
M1,n. Unfortunately it is not possible to give a picture of the corresponding polyhedral
complex sinceX2 has infinitely many cones. But let us see a description of it. Let the
vector entries be labeled as in the previous proof and letC1, C2, C3, C4 be the cones cor-
responding to the four different combinatorial cones in thepicture of Example 3.8, where
C1 is the left,C2 the second left,C3 the third left andC4 the right combinatorial type. The
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group and represantantives of the conesC1, C2, C3, C4 (labeled by the same name) are the
following:

G =

〈




1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1



,




1 1 −1 −1 1 1
0 1 0 0 0 1
0 0 1 0 0 −1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




〉
,

C1 = {a ·




1
1
1
2
0
2




|b > 0}, C2 = {a ·




1
1
1
2
0
2




+ b ·




0
1
0
1
0
1




|a, b ∈ R≥0, a+ b > 0},

C3 = {b ·




0
1
0
1
0
1




|b > 0}, C4 = {a ·




0
1
1
1
1
0




+ b ·




0
1
0
1
0
1




|a, b ∈ R≥0, b > 0}.

All other cones of the underlying polyhedral complex are given byg{Ci} for g ∈ G and
i ∈ {1, 2, 3, 4}.

Now we define a tropical orbit space corresponding to the parameterized genus-1 curves in
R2.

Definition 3.14 (Tropical M̃lab
1,n(Rr,∆)). A parameterized labeledn-marked tropical

curve of genus 1 inRr is a tuple(Γ, x1, . . . , xN , h), whereN ≥ n is an integer,(Γ,
x1, . . . , xN ) is an abstractN -marked tropical curve of genus1, andh : Γ → Rr is a
continuous map satisfying the following conditions.

(a) On each edge ofΓ the maph is of the formh(t) = a + t · v for somea ∈ Rr

andv ∈ Zr. The integral vectorv occurring in this equation if we pick forE the
canonical parameterization starting atV ∈ ∂E is denotedv(E, V ) and is called
thedirectionof E (at V ). If E is an unbounded edge andV is its only boundary
point we writev(E) instead ofv(E, V ) for simplicity.

(b) For every vertexV of Γ we have thebalancing condition
∑

E|V ∈∂E

v(E, V ) = 0.

(c) v(xi) = 0 for i = 1, . . . , n (i.e. each of the firstn leaves is contracted byh),
whereasv(xi) 6= 0 for i > n (i.e. the remainingN − n ends are “non-contracted
ends”).

Two labeledn-marked tropical curves(Γ, x1, . . . , xN , h) and(Γ̃, x̃1, . . . , x̃N , h̃) in Rr are
called isomorphic (and will from now on be identified) if there is an isomorphismϕ :

(Γ, x1, . . . , xN ) → (Γ̃, x̃1, . . . , x̃N ) of the underlying abstract curves such thath̃ ◦ϕ = h.
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Letm = N − n. Thedegreeof a labeledn-marked tropical curveΓ of genus1 as above
is defined to be them-tuple∆ = (v(xn+1), . . . , v(xN )) ∈ (Zr\{0})m of directions of its
non-contracted ends. Thecombinatorial typeof Γ is given by the data of the combinatorial
type of the underlying abstract marked tropical curve(Γ, x1, . . . , xN ) together with the
directions of all its (bounded and unbounded) edges. From now on, the numberN will
always be related ton and∆ by N = n + #∆ and thus will denote the total number of
(contracted or non-contracted) ends of ann-marked curve of genus1 in Rr of degree∆.

The space (of the isomorphism classes) of all labeled parameterizedn-marked tropical
curves of genus1 of a given degree∆ in Rr, such that all vertices have valence at least3

will be denotedM̃lab
1,n(Rr,∆). For the special choice

∆ = (−e0, . . . ,−e0 , . . . , −er, . . . ,−er)

with e0 = −e1 − · · · − er and where eachei occurs exactlyd times, we will also denote
this space bỹMlab

1,n(Rr, d) and say that these curves have degreed.

In the case of rational curves we can simply takẽMlab
0,n(Rr,∆) = Mlab

0,N × Rr because
to build the moduli spaces of rational curves inRr it suffices to fix the coordinate of
one of the marked ends (for examplex1). For the case of genus-1 curves the situation is
more complicated. If we fix the combinatorial type of the curve, the cycle imposes some
conditions on the lengths. In order to get a closed cycle in the image the direction vectors
of the cycle edges multiplied by their lengths have to sum up to zero. Further we have to get
rid of cells which are of higher dimension than expected. We will see that these conditions
(closing of the cycle and getting rid of higher dimensional cells) can be expressed by some
rational functions.

Let X̃ lab
n,∆,r = XN × Rr × Zr . We defineGlab

N to be as group the same asGN , acting
onXN asGN before, onb ∈ Rr (that is the image ofx1) as identity and onv ∈ Zr as
follows:

I(v) = −v,Mp(v) = v − v(p).

As topology onX̃ lab
n,∆,r, we take the product topology ofXN , Zr andRr, where we con-

siderZr with the discrete topology andRr with the standard Euclidean topology.

As mentioned above the direction vectors of the cycle multiplied by the lengths have to
sum up to zero. To ensure that the sum is indeed0 we use divisors. Therefore, we need
rational functions as defined in the second chapter. The purpose of these rational functions
is to make sure that theith coordinate ofA is mapped to theith coordinate ofB.
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Proposition 3.15. For all 0 < i ≤ r, we have a function

φi : X̃ lab
n,∆,r → R

(a{1,2}, . . . , a{N+1,N+2}, b, v) 7−→
1

2
· max{±(

1

2
(

N∑

k=2

(
a{1,k} − a{k,N+1}

)
vk(i)

+
(
a{1,N+2} − a{N+1,N+2}

)
(−v(i))

+(a{1,N+1})v(i))

−
1

2
(

N∑

k=2

(
a{1,k} − a{k,N+2}

)
· vk(i)

+
(
a{1,N+1} − a{N+1,N+2}

)
v(i)

+(a{1,N+2}) · (−v(i))))}

which is rational and invariant underGlab
N .

Proof. The only thing to do is to show that this is indeed a function, i.e. it is well defined.
For this we have to show, thatφi is invariant under the addition ofc · (s, 0, 0) (we identify
(s, 0, 0) with s) for c ∈ R and the actions ofI andMp. Letx ∈ X̃ lab

n,∆,r andd = φi(x).

Let c ∈ R. Then, the value ofc · s+ x underφi is d±
∑N

k=2 (−c) · vk(i). The second part
(
∑N

k=2 (−c) · vk(i)) is 0 due to the balancing condition, thus the value ofx andc · s + x
is the same as before.

ForI we get the same, because

φi(I(a{1,2}, . . . , a{N+1,N+2}, b, v))

=
1

2
· max{±(

1

2
(

N∑

k=2

(
a{1,k} − a{k,N+2}

)
vk(i)

+
(
a{1,N+1} − a{N+1,N+2}

)
(−(−v(i))) + (a{1,N+2}) · −v(i))

−
1

2
(

N∑

k=2

(
a{1,k} − a{k,N+1}

)
vk(i)

+
(
a{1,N+2} − a{N+1,N+2}

)
(−v(i)) + (a{1,N+1}) · (−(−v(i)))))}

=
1

2
· max{±(−(

1

2
(

N∑

k=2

(
a{1,k} − a{k,N+1}

)
vk(i)

+
(
a{1,N+2} − a{N+1,N+2}

)
(−v(i)) + (a{1,N+1}) · v(i))

−
1

2
(

N∑

k=2

(
a{1,k} − a{k,N+2}

)
vk(i)

+
(
a{1,N+1} − a{N+1,N+2}

)
v(i) + (a{1,N+2}) · (−v(i)))))}

= φi(a{1,2}, . . . , a{N+1,N+2}, b, v).

It remains to show the invariance with respect toMp. Let us consider first the casep 6= 1.
We get:

d±
1

4

((
(a{1,N+1} + a{p,N+2} + a{N+1,N+2} − a{1,N+2} − a{p,N+1})
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+(a{N+1,N+2})
)
· vp(i) +

(
a{1,N+2} − a{N+1,N+2}

)
(vp(i)) + (a{1,N+1})

·(−vp(i)) −
(
(a{1,N+1} + a{p,N+2} + a{N+1,N+2} − a{1,N+2} − a{p,N+1})

−(a{N+1,N+2})
)
· vp(i) +

(
a{1,N+1} − a{N+1,N+2}

)
(vp(i)) − (a{1,N+2}) · (vp(i))

)

= d.

In the casep = 1, we have:

d±
1

4
(

N∑

k=2

(ak,N+1 + a1,N+2 + a{N+1,N+2} − a{k,N+2} − a{1,N+1}) · vk(i)+

(aN+1,N+2) · (−v(i)) + (aN+1,N+2) · (−v(i))

−
N∑

k=2

(ak,N+1 + a1,N+2 + a{N+1,N+2} − a{k,N+2} − a{1,N+1}) · vk(i)−

(−aN+1,N+2) · (v(i)) − (aN+1,N+2) · (−v(i))) = d.

Thus,φi is a rational function. �

Remark3.16. We multiply the function by1
2 , because locally the condition that the cy-

cle closes leads to the functionmax {(1
2

∑N
k=2

(
a{1,k} −a{k,N+1}

)
vk(i) +

(
a{1,N+2}

−a{N+1,N+2}

)
(−v(i)) +(a{1,N+1}) ·v(i), 0}. We changed the function slightly because

of the symmetry we need for the orbit space structure.

Now we can define the tropical orbit space we are interested inby constructing the tropical
orbit space cut out by the rational functionsφi:

Mlab
1,n,trop(R

r,∆) = φ1 · · ·φr(X̃
lab
n,∆,r/G

lab
N ), see Definition 2.37.

The set of cones ofMlab
1,n,trop(Rr,∆) is denoted byX lab

n,∆,r. The rational functions assure
thatA andB are mapped to the same point.

Example3.17. Let us consider the following map:

x1

x2

x3 x4

x1

x3

h

a

b

c

d d

c

a

x2

x4

b

To ensure thath, defined byh(x3) =
(
0
0

)
, h(x1) = d ·

(
0
1

)
, h(x2) = d ·

(
0
1

)
+ a ·

(
1
0

)
and

h(x4) = c ·
(
1
0

)
, is the map of a tropical curve we needa = c andb = d, which is the case

for elements ofMlab
1,n,trop(Rr,∆) due to the fact that the direction vectors multiplied by

the lengths sum up to zero.

The rational functionsφi define weights on the resulting facets on the divisor. Since the
stabilizers are finite the divisor is a tropical orbit space as well. Let us now consider the case
r = 2. The weights we get from the definition of the rational function are the following.
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(a) The image of the cycle is two-dimensional:
the condition, that the cycle closes up inR2 is given by two independent linear
equationsa1 anda2 on the lengths of the edges of the cycle (which is a subset of
the bounded edges); thus, the weight is given by the index of the map:

(
a1

a2

)
: Z2+#Γ1

0 7→ Z2.

(b) The image of the cycle is one-dimensional:
because of the chosen rational function, we obtain that there has to be one four-
valent vertex on the cycle. If not, the weight would be zero onthe corresponding
face. Letm · u andn · u with u ∈ Z2,m, n ∈ Z, andgcd(n,m) = 1 be the
direction vectors of the cycle (this is the same notation as in [KM]). If we denote
by v ∈ Z2 the direction of one other edge adjacent to the4-valent vertex, the
weight is| det(u, v)|. If n = m = 1 and no point lies on the circle, the stabilizer
of the corresponding face consists of two elements. Thus, the weight of the orbit
space has to be divided by2 in this case.

(c) The image of the circle is 0-dimensional. Due to the rational function we get the
weight 1

2 · | det(u, v)| (notation as in [KM]) if there is a5−valent vertex adjacent to
the cycle,u, v are two of the three non-cycle directions outgoing from the vertex.
If there is no5−valent vertex the weight would be zero by the definition of the
rational function.

Proposition 3.18. For i = 1, . . . , n the map

evi : X lab
n,∆,r → Rr

(Γ, x1, . . . xN , h) 7−→ h(xi)

is invariant under the group operations.

Proof. The mapevi is given by

evi(x) = b +
1

2

(
N∑

k=2

(
a{1,k} − a{k,i}

)
vk +

(
a{1,N+1} − a{N+1,i}

)
(v)

+(a{1,N+2} − a{i,N+2}) · (−v)

)
. (1)

Recall thatb = h(x1). It is invariant unders, because the value added bys to the differ-
encesa{1,N+1} −a{N+1,i} anda{1,N+2} − a{i,N+2} is 0.

The mapI changes only the order of the two last summands.

Thus, it remains to consider the mapMp. We have three cases:p = 1, p = i, 1 6= p 6= i.
The sum we get differs from(1) by the following expressions. Case1 6= p 6= i:

1

2

(
a{1,N+1} + a{p,N+2} + a{N+1,N+2} − a{1,N+2} − a{p,N+1}−

(a{i,N+1} + a{p,N+2} + a{N+1,N+2} − a{i,N+2} − a{p,N+1})
)
· vp

+
1

2

(
a{1,N+1} − a{N+1,i}

)
(−vp) +

1

2
(a{1,N+2} − a{i,N+2}) · (vp) = 0.
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Casep = 1:
N∑

k=2

1

2

(
a{k,N+1} + a{1,N+2} + a{N+1,N+2} − a{k,N+2} − a{1,N+1}

)
· vk+

1

2

(
−a{N+1,N+2}

)
· (v − v1) +

1

2

(
a{1,N+1} − a{N+1,i}

)
(−v1)

+
1

2

(
a{N+1,N+2}

)
· (−v + v1) +

1

2

(
a{1,N+2} − a{i,N+2}

)
· (v1) = 0.

The last equation is true, because
N∑

k=2

(a1,N+2 + aN+1,N+2 − a1,N+1)vk = 0, v1 = 0

and the rest of the sum
(

N∑

k=2

1

2

(
a{k,N+1} − a{k,N+2}

)
· vk +

1

2

(
−a{N+1,N+2}

)
· (v)

+
1

2

(
a{N+1,N+2}

)
· (−v)

)

is equal to

−
1

2

(
N∑

k=2

(
a{1,k} − a{k,N+1}

)
vk +

(
a{1,N+2} −a{N+1,N+2}

)
(−v)

+(a{1,N+1}) · v

)
+

(
1

2

(
N∑

k=2

(
a{1,k} − a{k,N+2}

)
vk

+
(
a{1,N+1} − a{N+1,N+2}

)
v + (a{1,N+2}) · (−v)

))

which is0 because of the rational function which we have used to constractX lab
n,∆,r (see

proposition 3.15).

Casep = i:

1

2

N∑

k=2

−
(
a{k,N+1} + a{i,N+2} + a{N+1,N+2} − a{k,N+2} − a{i,N+1}

)
· vk+

1

2

(
a{N+1,N+2}

)
· (v − vi) +

1

2

(
a{1,N+1} − a{N+1,i}

)
(−vi)

+
1

2

(
−a{N+1,N+2}

)
· (−v + vi) +

1

2

(
a{1,N+2} − a{i,N+2}

)
· (vi) = 0.

(Same reason as above.) �

Definition 3.19(Evaluation map). For i = 1, . . . , n the map

evi : Mlab
1,n,trop(Rr,∆) → Rr

(Γ, x1, . . . xN , h) 7−→ h(xi)

is called thei-th evaluation map(note that this is well-defined for the contracted ends since
for themh(xi) is a point inRr).
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Proposition 3.20. With the tropical orbit space structure given above the evaluation maps
evi : Mlab

1,n,trop(Rr,∆) → Rr are morphisms of orbit spaces (in the sense of Definition
2.27 andRr equipped with the trivial orbit space structure).

Proof. Since continuity is clear, we have to check conditionsa − d in Definition 2.27.
Since we can move the curve arbitrarily inRr, conditiona is clear. Conditionb is the same
as the case of fans treated in [GKM]. Conditionc is clear since each cone is mapped to the
wholeRr and the last condition follows from Proposition 3.18. �

Proposition 3.21. The mapf = ev1 × · · · × evn × j : Mlab
1,n,trop(Rr,∆) → R(rn+1) is a

morphism of orbit spaces.

Proof. Since all open ends in the cones of the moduli space are comingfrom the limit of
thej-invariant to0, conditionc of Definition 2.27 is fulfilled. Thus, the statement follows
from Proposition 3.20 and the fact thatj is the projection on the coordinateR{A,B}.

�

Theorem 3.22. Let d ≥ 1 andn = 3d − 1. Then the number of parameterized labeled
n-marked tropical curves of genus1 and of degreed with fixed j-invariant which pass
throughn points in general position inR2 is independent of the choice of the configuration
of points.

Proof. Forn = 3d− 1 pointsMlab
1,n,trop(R2, d) has the same dimension asR(rn) × R>0.

Since all open ends are mapped toj-invariant equal0, surjectivity follows by the balancing
condition. Thus, Proposition 3.21 and Corollary 2.34 implythe theorem. �
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