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TROPICAL ORBIT SPACES AND THE MODULI SPACES OF ELLIPTIC
TROPICAL CURVES

MATTHIAS HEROLD

ABSTRACT. We give a definition of tropical orbit spaces and their mapts. We show
that, under certain conditions, the weighted number ofpagies of a point in the target of
such a morphism does not depend on the choice of this poinedie the moduli spaces
of elliptic tropical curves with a structure of tropical d@rbpace and, using our results on
tropical orbit spaces, simplify the known proof of the facatt the weighted number of
plane elliptic tropical curves of degrekwith fixed j-invariant which pass througdd — 1
points in general position iR? is independent of the choice of a configuration of points.

1. INTRODUCTION

Tropical geometry is a relatively new mathematical doméihas applications in several
branches of mathematics and, in particular, has been usexblicing various enumera-
tive problems. One of the first results concerning enumegatioblems in this domain
was achieved by G. Mikhalkin in.[M1]. He established an intpot correspondence be-
tween complex algebraic curves satisfying certain comgrand tropical analogs of these
curves. This correspondence theorem was reproven in Isligtiterent forms in [N$],
[SH] and [ST]. Mikhalkin’s results initiated the study ofienerative problems in tropical
geometry (see for example [GM1], [GMZ2], [GM3]). Dealing Witounting problems, it is
naturally to work with moduli spaces. The first step in thisedtion was the construction
of the moduli spaces of rational curves givenlin [M2] and [GKNMh [GKM] the authors
developed some tools to deal with enumerative problemstarral curves, using the no-
tation of tropical fan. They introduced morphisms betweepital fans and showed that,
under certain conditions, the weighted number of preimafiagoint in the target of such
a morphism does not depend on the chosen point. After shaWwaighe moduli spaces of
rational tropical curves have the structure of a tropical they used this result to count
rational curves passing through given points.

Following their approach, we introduce similar tools fouererative problems concerning
tropical curves of genus. Considering moduli spaces of elliptic tropical curvesisit
natural to expect the appearance of a counterpart of stadkeitropical setting. Since
we are mainly interested in the quotient structure of the ulicgpaces it is clear that
the definition for the counterpart of stacks, given in thipgrawill not be the final one.
Therefore, we call our objects tropical orbit spaces irdstdaropical stacks. The definition
is given in the second chapter. With the help of this definitiwve develop some tools for
dealing with tropical enumerative problems in geinug§he main statement of the second
chapter is Corollarly 2.34 which states that, for surjeatiephisms between tropical orbit
spaces of the same dimension such that the target is irtddutie number of preimages
(counted with multiplicities) is the same for each genehalice of a point. The corollary
can be used to prove invariance in tropical enumerativelpnodin genud. In chapter
1
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3 we show that the moduli spaces of elliptic tropical curvethviixed j-invariant have
a structure of a tropical orbit space. Then, we use the tdalsoeated in chapte2 for
the enumerative problems of counting elliptic tropicalasg with fixedj-invariant (these
problems were first considered n [KM]), and simplify the pfof one of the main results
in [KM].

The author would like to thank Andreas Gathmann and JohaRaedor the introduction
to the problem and he would like to thank Andreas Gathmannlanttenberg for many
helpful discussions.

2. TROPICAL ORBIT SPACE

In this part we denote a finitely generated free abelian glyup and the corresponding
real vector spaca ®z R by V. So we can consideY as a lattice inl”. The dual lattice in
the vector spack" is denoted byA".

Definition 2.1 (General and closed cone®) general cone in V' is a subset C V thatcan
be described by finitely many linear integral equalitieggualities and strict inequalities,
i.e. aset of the form

o={zeV|fi(x)=0,...,fr(x) =0, fry1(z) > 0,..., frys(z) >0,
fT+S+1(I)>Ov"'7fN(I)>O} (*)

for some linear formdy, ..., fv € AV. We denote by, the smallest linear subspace of
V' containinge and by A, the latticeV, N A. We define thelimension of ¢ to be the
dimension ofV,. We callo a closed cone if there are no strict inequalities ifx) (i.e. if

N =1r+3).

Definition 2.2 (Face) A face of o is a general cone C o which can be obtained from
by changing some of the non-strict inequalitieg:#) to equalities.

Definition 2.3 (Fan and general fanA fan in V' is a setX of closed cones i such that
(a) each face of a cone iX is also a cone i

(b) the intersection of any two conesis a face of each of them.

A general farin V is a setX of general cones il satisfying the following property: there
exist a fanX and a subseR C X suchthatX = {7\ U| 7 € X}, whereU = Uyero-
We put|X| = Uscx . A (general) fan is callegure-dimensionalif all its inclusion-
maximal cones are of the same dimension. In this case wehealighest dimensional
conesfacets The set ofi—dimensional cones of a (general) fanis denoted byX (™).

Constructior?.4 (Normal vector) If ) £ 7, o are cones iV andr is a subcone of such
thatdim 7 = dim o — 1, then there is a non-zero linear fogne AV, which is zero orr
and positive orw\7. Theng induces an isomorphisii, /7. = R. There exists a unique
generatow,,/, € A,/A;, lying in the same half-line as/V, and we call it the primitive
normal vector of o relative tor. In the following we writer < ¢ if 7 is a subcone of
andr < o if 7 is a proper subcone of.

Definition 2.5 (Weighted and general tropical fansh weighted fan (X,wx) in V' is
a pure-dimensional general faxi of dimensionn with a mapwy : X — Q. The
numbersux (o) are calledweights of the general cones € X (™). By abuse of notation
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we also writew for the map andX for the weighted fan.
A general tropical faninV is a weighted faii.X, wx ) fulfilling the balancing condition

wa (0) - upyr =0 €V/V;

o>T
foranyr € X (dimX-1),

Definition 2.6 (Open fans) Let F be a general fan ift” and0 € U C R" an open subset.
ThesetF = FNU = {ocNUlo € F} is called aropen farin R™. As in the case of fans,
puLlF| = UU’EF OJ'

If F'is a general weighted fan, we céllaweighted open fan

Remark2.7. Since0 e U is open,F is defined byF.

Definition 2.8 (General polyhedron)A general polyhedrois a setoc C R™ such that
there exists a rational polyhedrérand a union: of faces ofo such that = 5\u. (This
definition is equivalent to saying that the faces have thieviohg form {z € V|fi(z) =
P1,---s fr('r) = Pr, frJrl(I) 2 Prols---s .frJrs(I) 2 Drts) fTJrSJrl(I) > Drgstlse--
fn(xz) > pn} for some linear formdy, ..., fy € Z" and numberg;,--- ,py € R.)
Definition 2.9 (General polyhedral precomplexe#) (general) polyhedral precompléx
atopological spackX | and a sefX of subsets ofX | equipped with embeddings, : o —
R for all o € X such that

(a) X is closed under taking intersections, icen ¢’ € X is a face ofr and ofs’ for
anyo, o’ € X such that N o’ # (),

(b) every imagep, (o), o € X is a general polyhedron, not contained in a proper
affine subspace @&"-,

(c) for every pairo,c’ € X the compositionp, o (p;/l

wor(cNa’),

is integer affine-linear on

) |X|= U 0> s (0)°), wherep, (o)° denotes the interior af,, (o) in R".
ceX

Definition 2.10 (General polyhedral complexesi\ (general) polyhedral compleis a
(general) polyhedral precomplékX|, X, {¢,|c € X}) such that for every polyhedron
o € X we are given an open fafi, (denoted as well byX to underline that it belongs to
the complexX ) in someR™> and a homeomorphism
®%iSo= |J ()R
o'eX,0' Do

satisfying:

(a) forallo’ € X,0’ O o one hasb,(¢' N S,) € F, and®,, is compatible with the

Z-linear structure om’, i.e. @, o (p;,l andyp,. o @1 are integer affine linear on
wor (0’ N S,), resp.®,(c’ NS,),

(b) for every pairo, 7 € X, there is an integer affine linear mafy, - such that the
following diagram commutes:

Sy NSy — 2= & (S, NS, ) .
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For simplicity we usually drop the embeddings or the mapsb,, in the notation and
denote the polyhedral compléX,, | X|, {¢s|o € X},{®,|7 € X}) by (X, | X|,{¢s|0 €
X}) orby (X, |X|, {¢},{®,|7 € X}) or by (X,|X]|) or just by X if no confusion can
occur. The subsets € X are called thegeneral polyhedrar faces of(X,|X|). For
o € X the openset™ = ¢! (p,(0)°) is called therelative interior ofr. Thedimension
of (X, |X|) is the maximum of the dimensions of its general polyhedrac#e( X, | X|)
pure-dimensionadtf all its inclusion-maximal general polyhedra are of thengedimension.
We denote byX (™) the set of polyhedra inX, | X|) of dimensionn. Letr,0 € X. Asin
the case of fans we write < o (or 7 < o) if 7 C o (or 7 C o, respectively). By abuse of
notation we identifys with ¢, (o).

A general polyhedral compleX, | X|) of pure dimensiom together with a mapx :
X — Qs calledweighted polyhedral complexf dimensionn, andwx (o) is called
the weight of the polyhedrom € X ("), if all F,, are weighted open fans and

e wx(0') =wr, (B,(0' NS,)) foreverys’ € (X)) with o’ D o,

The empty compleft is a weighted polyhedral complex of every dimensior{(X, |X]),
wx ) is a weighted polyhedral complex of dimensierthen put

X* ={r € X|r Coforsomes € X" withwx (o) # 0}, |X*| = | J 7C|X].
TeEX*

Note that((X*, |X*|), wX|(X*)<n)) is again a weighted polyhedral complex of dimension
n. This complex is called theon-zero pardf ((X,|X]),wx). We call a weighted poly-
hedral compleX(X, | X|),wx) reducedf ((X,|X|),wx) = ((X*,|X*|),wx~).

Definition 2.11(Subcomplexes and refinementkgt (X, | X|, {¢s|oc € X}) and(Y, Y],
{¢-|T € Y'}) be two polyhedral complexes. We call asubcomplewf Y if

(@) | X[ <[],

(b) foreverys in X there exists & € Y witho C 7,

(c) for a pairo andr from (b) the maps,, o)~ andy, ot are integer affine linear
ony. (o), resp.pq (o).

We write (X, | X|) < (Y,|Y]) in this case, and define a méfx y : X — Y that maps a
cone inX to the inclusion-minimal cone il containing it.
We call a polyhedral compleiX, | X|) a refinement ofY, |Y|), if

(@) (X, [X]) < (Y, [Y])
(b) [X]=Y]

We call a weighted polyhedral compléX, | X|) a refinement of a weighted polyhedral
complex(Y, |Y'|) if in addition the following condition holds:

e wx(0) =wy(Cx-y-(0))forall g € (X*)dimX),

Definition 2.12 (Morphism of general polyhedral complexegket X andY be two (gen-
eral) polyhedral complexes. Aorphism of general polyhedral complexes X — Y is

a continuous mayg : | X| — |Y| with the following properties: There exist refinements
(X1 X', {p}, {Ps|loc € X'}) of X and (Y, |Y’|, {¢}, {¥,|7 € Y') of Y such that

(a) for every general polyhedren € X’ there exists a general polyhedréne Y’
with f(o) C 7,
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(b) for every pairs, & from[(@) the map¥z o f o @' : |FX'| — [FY"| induces a
morphism of fangX" — FY" , whereFX" and " are the general fans given in
Definition[2.6.

A morphism ofweighted polyhedral complexés a morphism of polyhedral complexes
(i.e. there are no conditions on the weights).XIf= Y and if there exists a morphism
g: X - Ysuchthayo f = f o g = idx we call f anautomorphisnof X .

Definition 2.13 (Orbit space) Let X be a polyhedral complex ar@ a group acting on
|X| such that eaclh € G induces an automorphism dfi. We denote the induced map
of an elemeny € G on X by ¢(.) and the induced homeomorphism 01| by ¢g{.}. We
denote byX /G the set ofG—orbits of X and callX/G anorbit space

Example2.14 The following example shows the topological space of antice with
trivial group G and the open fansg,, for all 0. The groupG is trivial and thus the orbit
space is the same as the polyhedral complexf.e- X/G).

d

~
N
=

Let us now take the same polyhedral complex, with the rayglyn thez-axis. ForG
take the group with two elements, generated by the thagR? — R2,y — —y. The
topological picture of the orbit space is the following:

/r -
(L /
N

Definition 2.15 (Weighted orbit space)Let (X, wx) be a weighted polyhedral complex
of dimensionz, andG a group acting orX . If X/G is an orbit space such that

b —

e foranyg € G and for anyr € X, one hasvy (o) = wx (g(0)),

we call X/G aweighted orbit spacé he classefr| € X/G, given by the orbits of, are
calledweighted classes

Definition 2.16 (Stabilizer,G—orbit of ¢). Let X andG be as above and o € X. We
call G = {g € Glg{z} = =z foranyz € 7} the stabilizerof . We defineX,,, =
{g9(0)|g € G} to be theG,—orbit of o.

The weight function on the weighted classesXfG is denoted byw] and defined by
[w]([o]) = w(0) /|G|, forall[o] € X/G.

Remark2.17. We could define a weighted orbit space as well by giving antsgzce and
a weight for each class instead of defining the weights of thé space by the weights of
the complex and the group action.
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Definition 2.18 (Suborbit space)Let X/G be an orbit space. An orbit spag&'G is
called asuborbit spacef X /G (notation:Y/G C X/G) if each general polyhedron &f
is contained in a general polyhedronXfand each element @f acts on the faces df in
the same way as foX (i.e. forallg € G, 0 € Y we havegy |{z} = g/x/{z} for z € o).
Inthis case we denote lfyy- x : Y — X the map which sends a general polyhedron Y’
to the (unique) inclusion-minimal general polyhedron®that containg. Note that for
a suborbit spac¥ /G C X /G we obviously haveY'| C |X| anddim Cy x (o) > dimo
foralloc e Y.

Definition 2.19 (Refinements) Let ((Y, |Y]), wy)/G and ((X, |X|), wx) /G be two
weighted orbit spaces. We c&llY, |Y]),wy)/G arefinemenbf (X, |X|),wx)/G, if

@) (Y, [Y]),wy)/G C ((X,[X]), wx)/G,

(b) [Y*| =X,

() wy (o) = wx(Cy x (o)) forall g € (Y*)din(),
(d) eachr € Y is closed inX]|.

We say that two weighted orbit spadéX, | X|),wx)/G and((Y, |Y]),wy)/G are equiva-
lent (notation:((X, | X|),wx)/G = ((Y, |Y]),wy)/G) if they have a common refinement.

Definition 2.20 (Global orbit space) Let F' be a set of orbit spaces arttla set of em-
beddingspx,y,» : 0° — Y, given by affine linear maps, of the interior of a polyhedron
o € X, with X, Y € F. After refinement ofY” there exists a coné& in Y, such that
5° = ¢x,vo(0°). Sincec C R™ andys o ¢x vy, is an affine linear map there exists a

continuationps o ¢x y,s 0f s 0px v,e ONo. If 95 0 dx v.o Nz () = @s(c°), we glue
the orbit spaces along these maps. The resulting topolcseae together witli” and £
is calledglobal orbit space

Remark2.21 The global orbit space is a topological space which locallyri orbit space.

In the same way one could define a weighted and later on a gliagtal orbit space.

Perhaps one would prefer to call the orbit space local ogats, and the global orbit
space only orbit space, but since all our objects will havéoda group operation we
keep these names. For weighted global orbit spaces one wealtithe condition that the
weights of the glued cones coincide.

Definition 2.22 (Tropical orbit space)Let (X,wx) /G be a weighted orbit space with
finitely many different classes an@,| < oo for anyoc € X, If foranyr € X1,
one has#{o > 7} < oo and there exist,,. > 0 foranyo > 7 such tha@&w,&exg/f
Assr = landd> o A, r [W]x([o])(us/r) € Vi, thenX /G is called atropical orbit
space

Proposition 2.23. Let (X, wx) be a weighted fan itV andG C GI(V') such thatX /G is

a weighted orbit space. I is finite and allgeneral cones in X are closed cones, then
(X,wx) is a tropical fan if and only ifX /G is a tropical orbit space.

Proof. 7 = ”: Putn = dim(X) and letr € X(»~Y ando > 7. Then we define
_ Hy€Gr,suchthag(o)=c}| _ |Go| _ 1 (n—1)

Ao/jr = [em =1e T o Thus, for anyr € X one has

#{o > 7} < o0, and for anys > 7 one has\, ;. > 0 andzbﬂaexm Aosr = 1.

Furthermorey | . IG—lT‘wX(cr)(va/T) =t € V,, becausé X, wx) is a tropical fan. Thus,

we havey", . 124 [wx]([0])(vo/r) = 3 e s 1w (0) (vg)r) =t € V5.
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7 <« 7. Let X/G be a tropical orbit space. Thus, there exisis, with o > 7 and

e X"V suchthaty . A,/ wlx([0])(uy/r) =t € V;. Therefore, because of the
linearity ofg € G, we get:

Golot = Y gl)

9eG-

= > 90 Aerlwlx([0])(uayr))

geG, o>T

= 3> Aosllx(loN(g(uosr)

geGr o>T

= ) 1Gol - [wlx (o) (to/r)

o>T

= > wx(0)(ugs)-

o>T

d

Example2.24 The following picture is an example of a tropical fAnand a tropical orbit
spaceX /G with this fan as underlying polyhedral complex. Létbe the standard tropical

0 J'\ -1 1
and all the weights are equal to one. The gréugonsists of two elements and is generated

by the matrix( (1) 1 )
X X/G
—_—

0
The balancing condition for the fan is
LN (0N (1Y (0
0 -1 1) \0
and for the orbit space
1 -1 1 0 1 1 0
() () (1)-(0)

where the first twd1/2)’s come from the splitting of, and the thirdl /2 comes from the
invariance of the last vector undeét

line with its vertex at the origin, given by the directio s_1 0 ) and( ! ,

Corollary 2.25. The balancing condition for tropical orbit spaces can be atesl by
checking the balancing condition of the underlying weightemplex.

Proof. For tropical orbit spaces with infinite group there are only finitely many facets
around a codini-face. Thus, as in the proof of proposition 2.23 the balancomgition
can be checked on the polyhedral complex as well (withoutgection). O

Example2.26 To show that there are tropical orbit spaces which do not chora a
tropical fan we consider the following orbit space. Le&f| be the topological space
{(z,y) € R*ly > 0}, and letX be the set of cones spanned by the vectdjsand
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1 1
0 1 ) >, we get the

XiG

It is easily be seen, that/G is a tropical orbit space (see definition 4.22), whilehas
infinitely many cones and thus is not a fan.

Definition 2.27 (Morphism of orbit spaces)Let (X, | X|, {¢}, {®-|c € X})/ G and
(Y, |V, {¢}, {¥.|7 € Y) /H be two orbit spaces. Anorphism of orbit space$ :
X/G — Y/H is a pair(f1, f2) consisting of a continuous maf : |X| — [Y|and a
group morphisnys : G — H with the following properties:

(*T1) for z € Z. If we define all weights to be one ait =< (

following tropical orbit spaceX/G:

(a) for every general polyhedrene X there exists a general polyhedr@re Y with
fi(o) C o,

(b) for every pairo, 5 from[(@) the mapls o f; o @' : |[FX| — |FY| induces a
morphism of fang"X — F, whereF.X and Y are the weighted general fans
associated t&’;* andF.’, respectively (cf. definition 26),

(c) there exists a refinement &f such that for any, & € X with dim(f1 (o) Nf1(5))
= dim(f1(0)) = dim(f1(5)), one hasf1(c) = f1(5),

(d) fi(g(0)) = fa(9)(f1(0)) forallg € G ando € X.

A morphism ofweighted orbit spaces a morphism of orbit spaces (i.e. there are no
conditions on the weights).

Explanation2.28 Asking a morphism to fulfill conditions, b andd is obvious, but to ask
for conditionc is not. Thus, let us consider an example where conditismot fulfilled.
Let us consider the maf, given by the projection of two intervals on a third one (dee t
following picture). We take> and H to be trivial, thusX/G = X andY/H =Y, where
X is the disjoint union of two open intervals of different leh@ndY is one open interval
with the same length as the longest intervalkof

~
4

)

X
s
Y

After any possible refinement the faeetwhich is the most left in the upper interval of
X, is open on the left side, but will be mapped on a left closestfa. We call 5 the
intersection of the preimage ofwith the longest interval ok . Thenf; (o) N f1(5) is a

line segment as well 8§ (o) andf; (¢), but the images are not the same which contradicts
c. Thusf is not a morphism.
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Example2.29 If we take the tropical orbit spac€/G from Examplé2.24, then the canon-
ical map to the diagonal line iR? is a morphism of orbit spaces. But the homeomorphism
which goes in the opposite direction is not a morphism, beedacally at the origin it can
not be expressed by a linear map.

Remark2.30. The reason we ask conditianto be fulfilled is to define images of the
polyhedra later on. Thus, after refinement, each polyhestonld map to one polyhedron
and the image of the polyhedral complex should be a polythedraplex as well. In
particular conditiors of Definition[2.9 has to be fullfiled. Therefore, differentages of
polyhedra should intersect in lower dimension than the makdimension of them. Or in
other words¢ ensures: in Definition[2.9.

Construction2.31 As in the case of fans (Construction 2.24 [GKM]) we can deftree t
image orbit space. LeX/G be a purelyn-dimensional orbit space, and €/ H be any
orbit space. For any morphisX/G — Y/H consider the following set:

Z = {f(o),0is contained in a con& of X ™ with f is injective ong}

Note, thatZ is in general not a polyhedral complex. It satisfies all ctads of Defini-
tion[2.9 and Definitioh 2.10 except possilly) of Definition[2.9 (since there might be
overlaps of some regions). However, we can choose a profieemeent to turnZ into a
polyhedral complex. Thus, if we denote the weighted polyalecbmplex defined by all
representatives of all classks with o € Z by H o Z, we get an orbit spacH o Z/H.

If moreoverX /G is a weighted orbit space we tufifX/G) into a weighted orbit space.
After choosing a refinement foX andY such thatf (o) is a cone inY” for eacho € X,
we set
wrx/a) (') = > wx (0) - |Alon/ F(A)]
[ol€X/G™:[f(a)]=[0"]
foranyo’ € (H o Z)(™.

Proposition 2.32. Let X /G be ann-dimensional tropical orbit spacé;/ H an orbit space,
andf : X/G — Y/H a morphism. Therf(X/G) is ann—dimensional tropical orbit
space (provided thaf(X/G) is not empty).

Proof. By construction,f(X/G) is ann—dimensional weighted orbit space. Thus we
have to prove only the balancing condition. The proof workthe same way as for fans
in [GKM] (Notice that by Corollary2.25 the balancing coridit can be checked without
taking into account the group operation). O

Definition 2.33 (Irreducible tropical orbit space)Let X/G be a tropical orbit space of
dimensiom. We call X /G irreducibleif for any refinementX /G of X/G and anyy’/G C
X/G,Y # () with dim(Y/G) = n the following holds: if for allo € Y one has

o € X" thenY and X are equal. (The equality holds on the level of orbit spaces,
the weights can be different. In the case of different wesgitte hasvy = A - wy for

A € Q # 0). Equivalent to this definition is to say thai/G is irreducible if for any
Y/G C X/G,Y # (with dim(Y/G) = n andY is closed inX one hay” = X.

Corollary 2.34. Let X/G andY/H be tropical orbit spaces of the same dimensioim
V=A®RandV’' = A’ ® R, respectively, and lef : X/G — Y/H be a morphism.
Assume thaY’/ H is irreducible andf(X/G) = Y/H as topological spaces. Then there
is an orbit spacé&/H in V' of dimension smaller than with |Y;| C |Y| such that
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(@) each point) € |Y'|\|Yo] lies in the interior of a cone, € Y of dimensiom;

(b) each pointP? € f=1(]Y|\|Yo|) lies in the interior of a conep € X of dimension
n,

(c) for@ € |Y|\|Ys| the sum

mult[p] f
[Pl,PelX|:f([P)=(Q]
does not depend af, where the multiplicitynult p) f of f at[P] is defined to be

wx/c(orp) A

mult = AL Aoyl
[P] f WY/H(UfQ]) U[Q]/f( [ ])l

Proof. If we can show thalf (X/G) = AY/H (i.e. the image ofX/G is Y/G and the
weights differ by the multiplication ok € Q) the proof works as i [GKM] for fans.

By assumption we have, thf{X/G) = Y/ H, as orbit spaces (without weights). Further,
by Propositioh 2.32f (X /G) is a tropical orbit space. Because of irreducibility we have
f(X/G) = \Y/H as tropical orbit spaces. O

In contrast to the case of fans we need in the Corollary thenagson f (X/G) = Y/H.
This is due to the fact, that we use non-closed polyhedrauseee what happens if we do
not assume the above equality.

Example2.35 Let G be the trivial group and{ C R andY C R be open intervals of
weight one withX & V. Let f : X — Y be the inclusion.

X
s
Y

Then, all conditions of the corollary but the equality arkilled and the corollary does not
hold.

Definition 2.36 (Rational function) LetY/G be a tropical orbit space. We defineadio-
nal functiony onY/G to be a continuous functiop : |Y| — R such that there exists a
refinement (X, | X|, {ms }oex),wx), {Ms}scx) of Y fullfiling: for each facesc € X
the mapy o m ! is locally integer affine-linear. Furthermore, we demarat fho g = f,
forall g € G. (Remark: by refinements we can directly assume fhataffine linear on
each general cone.)

Definition 2.37 (Orbit space divisor) Let X/G be a tropical orbit space, arda rational
function onX /G. We define a divisor of to bediv(¢) = ¢- X/G = [(UZ!, XD wy)]
/G, wherew, is given as follows:

wg: XED o Q,
T = Z d)d(/\a/rw(a')va/r)_(bT( Z Aa'/T{")(a.)va'/T)

ceXx® cex®
T<Oo T<O
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Remark2.38 The following two remarks can be proved analogously to tlepof Propo-
sition[2.23.

1. The definition above is independent of the choggn, (i.e. if we have different
sets of)\’s fulfilling the definition of a tropical orbit space, the @or will be the
same for both sets ofs).

2: If |G,| < oo forall o € X1 and the numbef{oc > 7}| < oo forall 7 €
X (=2) theng - X is a tropical orbit space.

3. MODULI SPACES OF ELLIPTIC TROPICAL CURVES

In this section we show that the moduli spaces of tropicalesiof genug with j-invariant
greater thar) have a structure of tropical orbit space.

Definition 3.1 (n-marked abstract tropical curveshn abstract tropical curvis a pair (,

§) such thaf" is a connected graph, aid= T'\ {1-valent verticek has a complete inner
metricé (i.e. the edges adjacent to two verticed odre isometric to a segment, the edges
adjacent to one vertex @f are isometric to a ray and the edges adjacent to no vertEx of
are isometric to a line). The edges adjacent to no or to gxaot vertex ofl* are called
unbounded, the other edges are called bounded. The untsbaddes have length infinity.
The bounded edges have a finite positive length. For sinyphlge denote an abstract
tropical curve byl". An n-marked abstract tropical curigea tuple U, z1, ..., x,,) formed

by an abstract tropical cunteand distinct unbounded edges ..., x,, of I which are rays.
Two such marked tropical curveB (x4, ..., z,) and (F, 21, ..., Lp) are calledsomorphic
(and will from now on be identified) if there exists an isorgdtom I to T, mappinge; to
i, = 1,...,n (i.e. there exists a homeomorphigm— r identifying x; andz; and such
that the edges df are mapped to edges Eﬂ)y an affine map of slope1.).

For a more detailed definition of an abstract tropical cuee[§&M3] definition 2.2. The
unbounded edges are calledvesas well.

Remark3.2 We can parameterize each edfeof a curvel’ by an intervall0, [(E)] for
bounded edges and , co) or (—oo, o) for unbounded edges, whelfg?) is the length

of the edge. For the choice of the direction in the bounded easchoose which vertex
of E is parameterized by. Such a parameterization is callednonical We do not
distinguish between the unbounded edgand the vertex adjacent to it and call the vertex
alsox;.

Definition 3.3 (n-marked abstract topical curves of genlisWe call ann-marked abstract
tropical curve to be ofienusl if the underlying graph has exactly one simple cycle.

As a tropical counterpart of thginvariant, we take the length of the cycle as it was sug-
gested in[[M3], [V] and[[KM]. Motivations for this choice cdre found, for example, in
[KMM1], [KMMZ2]land [Sp].

Definition 3.4 (j-invariant). For ann-marked curvd of genusl, the sum of the lengths
of all edges forming the simple cycle is called fhiavariant of I".

Definition 3.5 (Combinatorial type) Thecombinatorial typeof an abstract tropical curve
(T, 6) is the grapH".
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Remark and DefinitioB.6. All curves given by Definitiof 3]1 of the same combinatorial
type or the combinatorial type one gets by contracting bedneldges of the graph of
the combinatorial type can be embedded in a suit&jteby the lengths of the bounded
edges and therefore this set of curves has a topologicaitstau(called combinatorial
cone). Thus, the set of all-marked abstract tropical curves of gerusith this induced
topological structure on each combinatorial cone (the s@ame glued together along faces
representing the same curves) is a topological space.

Definition 3.7 (abstractM, ,,). The spaceM ,, is defined to be the topological space of
all n-marked abstract tropical curves (modulo isomorphismi e following properties:

(a) the curve has exactlyleaves,
(b) all vertices of the curves have valence at I8asind
(c) the genus of the curve is
The topology of this space is the one defined in the previomsirke and definition.

Example3.8. The moduli space o2-marked abstract tropical curves of gerluand the
curves corresponding to the faces are given in the followinture:

Now we construct a map fromv1, ,, to a tropical orbit space in the following way. For
each curve” € M, , leta be an arbitrary point of the cycle 6f. We define a new curve

C which we get by cutting” alonga and inserting two leaved = z,, 1, andB = z,. -

at the resulting endpoints (if we cut along a vertex we hawdetde if the edges adjacent
to the vertex which are not in the cycle are adjacem tor to B). This curve is am + 2
marked curve (not of genug with up to2 two-valent vertices (at the endsand B).

2 1

1 2

FIGURE 1. Construction of am + 2-marked curve from am-marked
genust curve.

Let 7 be the set of all subsefsC {1,...,n + 2} with |S| = 2. In order to embed\; ,,
into a quotient oR("z") we consider the following map:

dist,, : Ml,n — n/Gn
(Ca Ty,... ,:En) — [(diStF(xia Ij)){i,j}eT]
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whereV,,, G,, anddistr(z;, ;) are defined as follows. We denote &tr(z;, z;) the
distance between,; andz; (that is the sum of the lengths of all edges in the unique path
fromz; to ;) in C, wherez,, 1, = A andz,, 12 = B.

Letb € RE. If we denote byb;, 0 < i < ¢, theith entry ofb, then the vector spadg, is

n+2

isomorphicth(”;z)*”*1 and is given by, = R(" )/(én(R"H < s >) where

o, :R" — Rt — R
b — (0,0,00=b — (b +b))pisrers

ands € R("”) is a vector such that

1 ifi=n+lorj=n+landi#n+2+#j,
sij=14 —1 ifi=n+20rj=n+2andi #n+1#j,
0 otherwise.

The groupG,, is generated by the matrixand the matriced/,, p € {1, ..., n}, where

Loif (4,5}, {k, 1}) = ({m,n + 1}, {m,n +2}), m <n,
or ({Z,]}, {kvl}) = ({m,n + 2}1 {m,n—|— 1})a m < n,
L gy, kay = or{i,j} = {k,1} andi, j ¢ {n+1,n + 2},
orif {i,j} = {n+ L,n+ 2} = {k,1},
0 otherwise.

1 i {i, 5} = {k, 1}

or ({é, 7}, {k, 1}) = ({p,n + 2}, {n+ 1,n + 2}),
or({i,j}, {k,1}) = ({p, 3}, {gin+ 1}), 5 #n+ 2,
or({i, 5}, {k.1}) = ({p. g1, {p,n +2}), j #n+2,
or({i,j}, {k,1}) = ({p. i} {n+ Ln +2}),

My (i.5), (k) = nt+l+£j4n+2,

-1 if ({i,j},{k,l})z({p,n—i—l},{n—i—Ln—i—?}),
or ({17}, {k,1}) = ({p, ). {Gin +2}), j#n + 1,
or ({i.j}, {k,1}) = ({p, i} Apn+ 1)), § #n + 1,
0 otherwise.

The orbits of all elements 6f ®,(R") > + < s > underG,, are trivial and thu§/, /G,

is well defined. By the following lemma, the definition of thamlist,, is well defined as
well.

Lemma 3.9. Lgté and C* be two curves resulting from two different cuts of a cufe
The images of andC* are the same i,,/G,,.

Proof. Let us fix an orientation of the simple cycle irC' and letdist(C') anddist(C*) be
the images undetistr of C andC*. The orientatiorv of the simple cycle irC' induces
an orientation of the edges connectitgand B of C andC*. By applying the mag to
dist(C) anddist(C*) if necessary we can assume that the induced orientationfgas
the As to theBs. Let us denote by, A, B (resp.a*, A*, B*) the cut and the inserted edges
corresponding to curvé' (resp.C*). We denote byl the distance o3 to A* in the curve
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cut ata anda*. Let L be the subset of marked points of the component contaiRiAg.
Then the following equality holds:

dist(C) = H M, - dist(C*) +d - s.
peL
O

Remark3.10 The main idea in our definition comes from the rational case [&KM]).
After cutting the curve we get a new curve without cycles. §hibe distance of two points
in the new curve is well defined. Then, as in the rational casbave to mod out the image
of ®,,. In addition we have to get rid of all the choices we made dyitfire construction of
A andB. These choices can be expressed by the following three tipesa

(a) The shift of the point on one edge of the cycle (which corresponds to the addition
of an element ok s >).

(b) Interchangingd and B, which corresponds to the matrix

(c) The pointa jumps over the vertex adjacent to an unbounded edgehe matrix
corresponding to this operationiig,. If the pointa jumps over a bounded edgg
the matrix corresponding to this operation is the produetiofatricesM; with i
is connected with by edges not intersecting the cycle.

To get a polyhedral complex we put
U,:V, — V,/G,

and
X, = W, (dist, (M)

As general polyhedrons we take the cones induced by the catabial cones inM; ,,,
defined in Remark and Definitidn_3.6. Thus,, is a group acting onX,, and we can
consider the quotient topology on the orbit spa€e/G,, (see Definition 2.13). To have
a weighted orbit space we choose all weights to be equal toTmshow that the spaces
M, », have a structure of tropical orbit space, we have to showttat, and.X,,/G,, are
homeomorphic and that,, /G,, fulfills the balancing condition.

Proposition 3.11. Let X,,, G, and M, ,, be as above. Thef : M;, — X,,/G,,
(Cyzy1,. .. y) — [(distr (@, 27))] (i, jye7 IS @ homeomorphism.

Proof. Surjectivity is clear from the definition, arfélis a continuous closed map. Thus, it
remains to show thaff is injective. To show this, we prove that out of each repredare

of an elemenfx] in the target we can construct some numbers which are the fearmach
representative df]. If these numbers determine a unique preimage, the injgcillows.
For this we take the following numbers which are independétiie representative:

J = Tpt1,n+2 = length of the circle,
d; = (Tin+1 + Tint2 — J)/2 = distance from to the circle,
dik = |(Tint1 + T, nt2) — di — di, — j| = distance of andk on the circle.

If there are more than three marked edges.i, with d;_ ;, equals or j, than we have to
determine the distances these edges have one to each atihesinBe these distances do
not depend on the cycle, the edgeskin encoding these distances are invariant urider
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Thus, we can reconstruct these distances, by consideemydjection (not necessarily or-
thogonal) ofz] to the fixed part of the cone (and thus the fixed part of eactesgmtative)
in which [z] lies. Thus, all distances are given, injectivity followslame are done. O

Proposition 3.12. The weighted orbit spac¥,, /G, is a tropical orbit space.

Proof. To show the balancing condition we have to consider the cadeanes and the
facets adjacent to them. If there is more than one vertex erciticle of a curve corre-
sponding to a point on a facet, then the stabilizer is triaiad we are in the same case as
for the My ,,. If there is only one vertex on the cycle we have the stabiliZg1}, the
identity and/ (see above). The curves corresponding to the points in teeadn of the
codim-1 face have exactly ongvalent vertex. This vertex can be adjacent to the circle or
not. Let us consider these two cases separately. The seasadsttrivial (the stabilizers
are the same for all three facets and the balancing condgitime same as faM ,,),
thus let us assume, that thesalent vertex is at the circle. Qualitatively, the codinface,
which we callr, corresponds to a curve as in the following picture:

A 1

B T2
FIGURE 2. A tropical curve with 4-valent vertex.

By assumption, there is only one vertex on the cycle. We oohsiler the case with two
endsz; andz,, because if we have a tree insteadwpfthe calculation is the same for
each leaf of the tree. To verify the balancing condition fapical orbit spaces given in
definition[2.3T, we have to consider the three facets aroadacer. Let o, (resp.o2)
belong to the insertion of the edge withandz; (resp.A andx;) on the same side. Then,
o1 andoy lie in the samé&= --orbit. Thus, if we take the same notation as in the picture we
get the following condition:

There exists\1, A2 > 0, A\;, /7 + A5, /> = 1 such that

)‘01/7" +)‘02/T'

O = = O

—_ 0 O =
N —

ORr P Pk P, O

—
—

This condition is fullfiled for\,, ,» = A,,,» = % Thus we have indeed a tropical orbit
space. (|

Remark3.13 In Exampleg3.B we have seen the topological picture of theulicpace
M, . Unfortunately it is not possible to give a picture of theresponding polyhedral
complex sinceX, has infinitely many cones. But let us see a description of ét the
vector entries be labeled as in the previous proof and'1etCs, Cs, C, be the cones cor-
responding to the four different combinatorial cones ingheture of Exampl€3]8, where
C1 is the left,Cs the second leftCs the third left and”, the right combinatorial type. The
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group and represantantives of the coesCs, Cs, C, (labeled by the same name) are the

following:
] +b-
0
1
1
1
1

S OO OO
S oo+ OO
O OO OO
OO O OO
SO O OO
= O O o oo
S OO OO
SO O O~
O OO+~ O
OO~ OO
O = O OO
|
[
S~——

|b>0}, 02:{0,'

DO N =
DO N =
= O = O O

G:<
+b-

e
|
——
(=

b> 0}, Cy = {a-

] la,b € R>g,a+b> 0},
0

1

0

1 |a,b€R20,b> 0}
0

_= O = OO

0 1

All other cones of the underlying polyhedral complex areegiby ¢g{C;} for g € G and

i€{1,2,3,4}.

=]

Now we define a tropical orbit space corresponding to therpatarized genus-1 curves in
R2,

Definition 3.14 (Tropical MQ%E(RT,A)). A parameterized labeled-marked tropical
curve of genus 1 iR" is a tuple(T, z1, ..., N, h), whereN > n is an intege(I,
z1, ..., xy) is an abstractV-marked tropical curve of genus andh : I' — R" is a
continuous map satisfying the following conditions.

(a) On each edge df the maph is of the formh(t) = a + ¢ - v for somea € R”
andv € Z". The integral vector occurring in this equation if we pick faob' the
canonical parameterization startinglate OF is denotedv(E, V') and is called
thedirectionof E (atV). If E is an unbounded edge afdis its only boundary
point we writev(E) instead ofv(E, V') for simplicity.

(b) Forevery verteX” of I' we have thebalancing condition

> (B V)=0.

E|VEDE

(c) v(z;) = 0fori = 1,...,n (i.e. each of the firsh leaves is contracted hy),
whereas(z;) # 0 for ¢ > n (i.e. the remainingV — n ends are “non-contracted
ends”).

Two labeledr-marked tropical curve, z, . .., zx, h) and(T, Z1, ..., Zx, h) iNR” are
called isomorphic (and will from now on be identified) if tieeis an isomorphisnp :
(T, z1,...,2n) — (I, Z1,...,2Zn) Of the underlying abstract curves such thaty = h.
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Letm = N — n. Thedegreeof a labeledn-marked tropical curvé&' of genusl as above
is defined to be thew-tuple A = (v(zp41), ..., v(zn)) € (Z"\{0})™ of directions of its
non-contracted ends. Tlembinatorial typef I is given by the data of the combinatorial
type of the underlying abstract marked tropical cu(lez, ...,z x) together with the
directions of all its (bounded and unbounded) edges. Fromarg the numberV will
always be related to andA by N = n + #A and thus will denote the total number of
(contracted or non-contracted) ends oframarked curve of genukin R” of degreeA.

The space (of the isomorphism classes) of all labeled paeainedn-marked tropical
curves of genu?ﬁvof a given degred\ in R", such that all vertices have valence at least
will be denotedM}?b (R, A). For the special choice

A=(—€0y e y=€0 5erey —Cryern,—€p)

with eg = —e; — - -- — ¢, and where each; occurs exactlyl times, we will also denote
this space bwag (R", d) and say that these curves have degiee

In the case of rational curves we can simply ta%%}“l (R™,A) = /\/l}f?\, x R" because

to build the moduli spaces of rational curvesii it suffices to fix the coordinate of
one of the marked ends (for examplg). For the case of genus-1 curves the situation is
more complicated. If we fix the combinatorial type of the @jrthe cycle imposes some
conditions on the lengths. In order to get a closed cycleériiage the direction vectors
of the cycle edges multiplied by their lengths have to surmowgeto. Further we have to get
rid of cells which are of higher dimension than expected. Wesse that these conditions
(closing of the cycle and getting rid of higher dimensiorells) can be expressed by some
rational functions.

Let X!*R = Xy x R" x Z". We defineGi" to be as group the same @&, acting
on X asGy before, onb € R” (that is the image of;) as identity and on € Z" as
follows:

I(v) = —v, Mp(v) = v — v(p).

As topology onf(}fj‘i,r, we take the product topology df i, Z" andR", where we con-
siderZ" with the discrete topology ari®d” with the standard Euclidean topology.

As mentioned above the direction vectors of the cycle mligdpby the lengths have to
sum up to zero. To ensure that the sum is indéedk use divisors. Therefore, we need
rational functions as defined in the second chapter. Theggerpf these rational functions
is to make sure that thigh coordinate ofA is mapped to théth coordinate of5.
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Proposition 3.15. For all 0 < i < r, we have a function
¢i: XA, — R

N

1 1 .

(agi2y,- - aN+1,N42),b,0) — §'max{i B E (agiky — agr,n41y) ve(9)
k=2

+ (ag1,v42y — aqng1,n423) (—0(i))

(a{l N+13)v(E))

N[ —

k=2

——(Z (ag10y = agen+2y) - vi(d)

(fl{l N+1} — G{N+1, N+2}) (i )

+(ag1n+23) - (=v(0)))}

which is rational and invariant unde@'3b.

Proof. The only thing to do is to show that this is indeed a functiaom, it is well defined.
For this we have to show, that is invariant under the addition ef- (s, 0, 0) (we identify

(s,0,0) with s) for c € R and the actions of andM,,. Letz € X2

Letc € R. Then, the value of - s+ underg; isd + Y"p_, (—c¢) -

,T

andd = ¢;(x).

vk (i). The second part

(szv:2 (—c) - vi(2)) is 0 due to the balancing condition, thus the value:@ndc - s +

is the same as before.

For I we get the same, because

(bi(I(a/{l,Q}u e 7a{N+1,N+2}7 b7 U))
N

1 1 .
= 5 . maX{i(E(; (a{l)k} — a{k)N+2}) vk(z)
+ (agi,n+1} — agnt1,n42}) (—(=v(0)) + (ag1,n42}) -

k=2

(ag

1 N

—5 Z agi gy — agrn+1y) k(i)
(

+ (ag1,n+2) — agnt1,n421) (—v(0) + (agi,n413) - (—

N

1 1 )
= 5 -max{:l:(—(§( (G{Lk} — a{k7N+1}) vk (7)
k=2

—v(i))

(=v(@)))))}

+ (aqy, N+2} — agny1,n+423) (—0(0) + (aga v41y) - 0(0))

1 .
—5(2 (agry = agen+2y) vi(d)

+ (a{l N41} — OqN41,N+2}) 0(1) + (agu np2y) - (—o(i
= ¢z(a{1,2}7 sy AINH1,N+2}5 b,v).

1))}

It remains to show the invariance with respecfy. Let us consider first the cage# 1.

We get:

1
d+ 1 (((a{l,N+1} +a{p N+2} T O{N+1,N+2} — G{1,N+2} —

a{p,N+1})
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+(agn41,n+2})) - vp(i) + (agi,ntoy — agny1,n+2}) (0p(0) + (agi,nt1y)
(=wp(i)) — ((a{l,NJrl} + agp,Nt2} + AN+, N2} — {1, N+2} — Q{p,N+1})

—(agn+1,8+21)) - vp(i) + (agi N1y — aqns1,n+42}) (0p(0) = (agrnt2y) - (vp(4)))

=d.
In the case = 1, we have:
N
1 .
d=+ Z(Z(ak,NJrl + a1, N2 + a{Np1, N2} — Ok, N2} — G{1N+1)) - Vk(D)F
k=2

(ant1,8+2) - (=0(4)) + (ant1,8+2) - (—v(7))

N
- Z(ak,NJrl + a1, N2 + a{N41,N42} — Ok, N+2} — O{1,N+1}) - Vk(i)—
=2

(—any1n+42) - (0(0) = (a1, 42) - (—0(2))) = d.
Thus,¢; is a rational function. O
Remark3.16 We multiply the function by%, because locally the condition that the cy-
cle closes leads to the functiomx {(3 Zszz (agipy —akN+13) k(i) + (aginio)

—agnt1,8+23) (—v(i)) +(agi,n413) (i), 0}. We changed the function slightly because
of the symmetry we need for the orbit space structure.

Now we can define the tropical orbit space we are interestby aonstructing the tropical
orbit space cut out by the rational functiofs
M op(RT,A) = 61+ 6, (XPR ./GRP), see Definitiof 2.37

The set of cones OM'ﬁEL,tmp(RT, A) is denoted byX* . The rational functions assure

that A and B are mapped to the same point.

Example3.17. Let us consider the following map:

To Ty L2

T4
Zs3 T4

To ensure thah, defined byh(zs) = (), h(z1) = d - (}), h(z2) =d- (}) +a- (}) and
h(zs) =c- ((IJ) is the map of a tropical curve we need= c andb = d, which is the case
for elements ofAM'® (R", A) due to the fact that the direction vectors multiplied by

1,n,trop
the lengths sum up to zero.

The rational function®; define weights on the resulting facets on the divisor. Sihee t
stabilizers are finite the divisor is a tropical orbit spasevell. Let us now consider the case
r = 2. The weights we get from the definition of the rational fuantare the following.
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(a) The image of the cycle is two-dimensional:
the condition, that the cycle closes uplit is given by two independent linear
equations:; andas on the lengths of the edges of the cycle (which is a subset of
the bounded edges); thus, the weight is given by the indexeoffitap:

( ai ) L2+ HTS g2

ag

(b) The image of the cycle is one-dimensional:
because of the chosen rational function, we obtain thaethas to be one four-
valent vertex on the cycle. If not, the weight would be zerdlmncorresponding
face. Letm - v andn - u with u € Z?,m,n € Z, andged(n,m) = 1 be the
direction vectors of the cycle (this is the same notatiomd&M]). If we denote
by v € Z? the direction of one other edge adjacent to thealent vertex, the
weight is| det(u, v)|. If n = m = 1 and no point lies on the circle, the stabilizer
of the corresponding face consists of two elements. Theswight of the orbit
space has to be divided Ryin this case.

(c) The image of the circle is 0-dimensional. Due to the raidunction we get the
weights - | det(u, v)| (notation as in[KM]) if there is &—valent vertex adjacent to
the cycle,u, v are two of the three non-cycle directions outgoing from thgex.

If there is no5—valent vertex the weight would be zero by the definition of the
rational function.

Proposition 3.18. Fori = 1,...,n the map
ev; : XlibA,r - R
(L 21,...an,h) — h(x;)

is invariant under the group operations.

Proof. The mapev; is given by

N
1
evi(z) = b+ 3 <Z (a{1,k} - a{k,i}) Vg + (a{1,N+1} - a{NJrl,i}) (v)
k=2
+(ag1,ny2y — agint2}) (—U)> . 1)

Recall thath = h(x;). Itis invariant undes, because the value added byo the differ-
ENCESI{1 N+1} —A{N+1,i} anda{17N+2} — Qi N+2} is 0.
The map!/ changes only the order of the two last summands.

Thus, it remains to consider the magp,. We have three caseg:= 1,p = i,1 # p # i.
The sum we get differs frorfil) by the following expressions. Caset p # i:

5 (a1, N41} + OpN42} + OGN, N+2) — Q1 N2} — OpN+1}—
(@gi,N+1} + Qfp,N+2} T ON+1,N+2} — Qfi N2} — G{p,N+1})) " Up

1 1
+§ (a{l,N+1} - a{N+1,i}) (—vp) + 5(0{1,N+2} —agi,n+2y) - (vp) = 0.
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Casep = 1:
N
(a{k,NJrl} +ag1,N+2} T A{N+1,N+2} — O{k,N+2} — a{1,N+1}) C Vgt

b
I|
)
N =

1
(—@{N+1,N+2}) (v =)+ 3 (a{l,N+1} - a{N-i—l,i}) (—v1)

1
+§ (a{N+1,N+2}) . (—U + ’Ul) + 5 (a{l,N+2} — a{i,N+2}) . (’Ul) =0.

The last equation is true, because
N

E (a1,N4+2 + ant1,N+2 — a1, N+1)Uk = 0,01 =0
=2

and the rest of the sum

—_
N =

N
1 1
(Z 3 (0t vy —apniay) ve + 5 (Capvive) - (V)
k=2

+ (G{N+1,N+2}) : (—U)>

N =

is equal to

N
1
-3 <Z (a{l,k} - a{k,N+1}) Vg + (a{l,N+2} —a{N+1,N+2}) (—v)

k=2
1 N
+(ag1,n11}) '“) + (5 <Z (a1 = agr,N+2}) vk

k=2
+ (a{1,N+1} - a{N+1,N+2}) v+ (ag1,N+2}) (—U)> )

which is 0 because of the rational function which we have used to cactsk*} . (see
propositior 3.16).
Casep = i:

N
2 > = (agr.n+1y + afiNt2y + QUNHLNA2) — Ok N42) — AL N41}) VR

=2

—_

1 1
3 (a{N+1,N+2}) : (U - Uz') + 3 (a{l,N—i-l} - a{N—l—l,i}) (—Ui)
1 1
+§ (—a{N+1,N+2}) (v 4vi) + 3 (a{l,N+2} - a{i,N+2}) “(vi) = 0.
(Same reason as above.) O
Definition 3.19(Evaluation map) Fori = 1,...,n the map
ev; : ./\/llflﬂtr)lytrop (R",A) — R

(l",:vl, ... TN, h) [— h(:vz)

is called the-th evaluation maggnote that this is well-defined for the contracted ends since
for themh(x;) is a point inR").
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Proposition 3.20. With the tropical orbit space structure given above the eatbn maps
ev; : leg_,mp(ﬂv, A) — R" are morphisms of orbit spaces (in the sense of Definition

[2.27 andR" equipped with the trivial orbit space structure).

Proof. Since continuity is clear, we have to check conditians d in Definition[2.2T.
Since we can move the curve arbitrarilyl®i, conditiona is clear. Conditiorb is the same
as the case of fans treated|in [GKM]. Conditiois clear since each cone is mapped to the
wholeR" and the last condition follows from Proposition 3.18. O

Proposition 3.21. The mapf = evy x -+ X ev, X j : MPh | (R", A) — R+ s a
morphism of orbit spaces.

Proof. Since all open ends in the cones of the moduli space are cdnaoingthe limit of
the j-invariant to0, conditionc of Definition[2.27 is fulfilled. Thus, the statement follows
from Propositiof 3.20 and the fact thiais the projection on the coordinakg 4 5.

O
Theorem 3.22. Letd > 1 andn = 3d — 1. Then the number of parameterized labeled
n-marked tropical curves of genusand of degreel with fixed j-invariant which pass

throughn points in general position iiR? is independent of the choice of the configuration
of points.

Proof. Forn = 3d — 1 pointsM!*> . (R?, d) has the same dimensionB§™ x R-.

1,n,trop
Since all open ends are mappedimvariant equal, surjectivity follows by the balancing
condition. Thus, Propositidn 3.1 and Corollary 2.34 imblg theorem. O
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