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TROPICAL DESCENDANT GROMOV-WITTEN INVARIANTS

HANNAH MARKWIG AND JOHANNES RAU

ABSTRACT. We define tropical Psi-classes onM0,n(R2, d) and consider intersection products of Psi-
classes and pull-backs of evaluations on this space. We showa certain WDVV equation which is sufficient
to prove that tropical numbers of curves satisfying certainPsi- and evaluation conditions are equal to the
corresponding classical numbers. We present an algorithm that generalizes Mikhalkin’s lattice path algo-
rithm and counts rational plane tropical curves satisfyingcertain Psi- and evaluation conditions.

1. INTRODUCTION

Psi-classesψi are certain divisor classes on spaces of stable curves or stable maps,Mg,n orMg,n(Pr, d),
which arise as the first Chern class of the line bundle whose fiber over a point(C, x1, . . . , xn) (or
(C, x1, . . . , xn, f)) is the cotangent space ofC atxi. They are for example useful to count curves with
tangency conditions. To count curves that satisfy incidence conditions (e.g. pass through given points),
one defines evaluation maps on the space of stable maps,evi : Mg,n(Pr, d) → P

r that send a stable map
(C, x1, . . . , xn, f) to the imagef(xi) of the marked pointi. Then we can pullback the conditions via the
evaluation map. Finally, we can intersect pullbacks of evaluation maps and Psi-classes onMg,n(Pr, d).
The degrees of such top-dimensional intersection productsare called descendant Gromov-Witten invari-
ants and have been studied in Gromov-Witten theory.
The aim of this paper is to define tropical analogues of rational descendant Gromov-Witten invariants
in the plane and to show that, under certain assumptions on the distribution of the Psi- and evaluation
conditions, they coincide with their conventional counterparts.
To do so, we use the constructions of moduli spaces of abstract and parameterized rational tropical
curves as tropical varieties and the definition of evaluation maps on the latter ones ([SS04], [GKM07],
[Mi07]). Moreover, [Mi07] already defines Psi-classes on the space of abstract tropical curvesM0,n

and [KM07] deals with their intersections. In this paper, wedefine Psi-classes on the space of parame-
terized tropical curves. Together with the intersection theory of [Mi06] and [AR07], we have all tools
to define descendant Gromov-Witten invariants. We show thatthese invariants are independent of the
position and “type” of the evaluation conditions and that they fulfill the string and divisor equation.
Then we show that the invariants also fulfill a certain WDVV equation which can be used to determine
the numbers recursively. As the classical numbers fulfill the same equations, it remains to compare the
initial numbers appearing in the recursion to show that the classical and tropical invariants coincide.
These results can only be achieved for invariants such that the Psi-conditions come together with point
conditions, and not alone or with line conditions. Note thatone should expect such restrictions as
we work with a non-compact moduli space that doesnot parametrize curves with components in the
“boundary” ofRn. Hence the tropical descendant Gromov-Witten invariants are different from the clas-
sical ones in some cases, namely whenever tropical curves are “missing” in the corresponding tropical
count. However, we show that this does not happen when Psi-conditions always come together with
point conditions.
To prove the WDVV equation we show that the weight of a curve inan intersection product can be
computed locally as the determinant of a map (which basically collects all evaluation maps) and then
proceed similarly to [GM05]. Finally, we present a tropicalalgorithm similar to Mikhalkin’s lattice path
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count ([Mi03]) to determine the numbers of rational plane tropical curves passing through points and
satisfying Psi-conditions.

Our definition of tropical descendant invariants partly agrees with Mark Gross’ definition which was
found independently in his study of mirror symmetry ([Gr09]).

The paper is organized as follows. In section 2, we recall some facts about tropical moduli spaces
and tropical intersection theory that we need. Then we definePsi-classes on the space of parametrized
tropical curves and tropical descendant invariants. In section 3 we define what it means for incidence
conditions to be general and what consequences arise for ourtropical descendant invariants if we choose
the conditions to be general. In section 4, we show that everytropical curve in an intersection product of
Psi-classes, point and line evaluationsandthe pullback of a point with a large coordinate inM0,4 under
the forgetful map contains a contracted bounded edge. Thus the tropical curve can be interpreted as a
reducible curve by cutting it along this contracted boundededge. In section 5 we show that the weight
of a tropical curve in a zero-dimensional intersection product can be computed using a determinant of
a linear matrix. We use this in section 6 to show that the weight of tropical curves with a contracted
bounded edge can be (almost) split into two factors corresponding to the irreducible components. In
section 7, we show the string equation and the divisor equation for our tropical descendant invariants. In
section 8 finally, we collect our results to prove that our tropical descendant invariants satisfy a certain
WDVV equation, and we conclude that the tropical invariantsare equal to the corresponding classical
invariants that satisfy the same recursion. In section 9, wedescribe an algorithm similar to the lattice
path count that determines tropical descendant invariants.

We would like to thank A. Gathmann and M. Kerber for useful discussions.

2. DEFINING THE INVARIANTS

First of all, let us briefly recall the constructions from [AR07] that we need here:

A cycleX is a balanced (weighted, pure-dimensional, rational and polyhedral) complex (resp. fan) in
R

n. The top-dimensional polyhedra (resp. cones) inX are calledfacets, the codimension one polyhedra
(resp. cones) are calledridges. The integer weights assigned to each facetσ are denoted byω(σ).
Balancedmeans that the weighted sum of the primitive vectors of the facetsσ around a ridgeτ ∈ X

∑

σ∈X(dim(X))

τ<σ

ω(σ)vσ/τ

vanishes “moduloτ ”, or, precisely, lies in the linear vector space spanned byτ , denoted byVτ . Here,
a primitive vectorvσ/τ of σ moduloτ is a integer vector inZn that points fromτ towardsσ and
fulfills the primitive condition: The latticeZvσ/τ + (Vτ ∩ Z

n) must be equal to the latticeVσ ∩ Z
n.

Slightly differently, in [AR07] the class ofvσ/τ moduloVτ is called primitive vector andvσ/τ is just a
representative of it.
For us, a polyhedronσ is always understood to be closed. The(relative) interiorInt(σ) is the topological
interior ofσ in its affine span (e.g.Int({P}) = {P}). Thesupport ofX , denoted by|X |, is the union
of all facets inX with non-zero weight.

A (non-zero) rational function onX is a functionϕ : |X | → R that is affine (resp. linear) with rational
slope on each polyhedron (resp. cone). Thedivisor ofϕ, denoted bydiv(ϕ) = ϕ · X , is the balanced
subcomplex (resp. subfan) ofX constructed in [AR07, 3.3], namely the codimension one skeleton
X \X(dim X) together with the weightsωϕ(τ) for each ridgeτ ∈ X . These weights are given by the
formula

ωϕ(τ) =
∑

σ∈X(dim(X))

τ<σ

ω(σ)ϕσ(vσ/τ ) − ϕτ

(

∑

σ∈X(dim(X))

τ<σ

ω(σ)vσ/τ

)

,

whereϕσ : Vσ → R denotes the linear part of the affine functionϕ|σ. Note that the balancing condition
ofX aroundτ ensures that the argument ofϕτ is an element ofVτ . If ϕ is globally affine (resp. linear),
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all weights are zero, which we denote byϕ · X = 0. Let thesupport ofϕ, denoted by|ϕ|, be the
subcomplex ofX containing the points whereϕ is not locally affine. Then we have|ϕ · X | ⊆ |ϕ|.
Furthermore, the intersection product is bilinear (see [AR07, 3.6]). As the restriction of a rational
function to a subcycle is again a rational function, we can also form multiple intersection products
ϕ1 · . . . · ϕl ·X . In this case we will sometimes omit “·X” to keep formulas shorter. Note that multiple
intersection products are commutative (see [AR07, 3.7]).

By abuse of notation, acycle is also a class of balanced fans with common refinement and agreeing
weights. Arational functionϕ on such a class is just a rational function on a fanX contained in the class.
We can generalize our intersection product to such classes of fans[X ] by definingϕ · [X ] := [ϕ ·X ]. In
the following, we try to avoid these technical aspects whenever possible. We will also omit the brackets
distinguishing between fans and their classes, hoping thatno confusion arises.

A morphism of cyclesX ⊆ R
n andY ⊆ R

m is a mapf : |X | → |Y | that comes from a linear map from
Z

n to Z
m and that maps each polyhedron (resp. cone) ofX into one ofY . Such a morphismpulls back

rational functionsϕ on Y to rational functionsf∗(ϕ) = ϕ ◦ f onX . Note that the second condition
of a morphism, which is not required in [AR07], makes sure that we do not have to refineX further.
f∗(ϕ) is already affine (resp. linear) on each cone. Furthermore, we canpush forward subcyclesZ of
X to subcyclesf∗(Z) of Y . This is due to [GKM07, 2.24 and 2.25] in the case of fans and can easily
be generalized to complexes. We can omit further refinementshere if we assume thatf(σ) ∈ Y for all
σ ∈ X . Theprojection formula(see [AR07, 4.8]) connects all the above constructions via

f∗(f
∗(ϕ) ·X) = ϕ · f∗(X).

Moreover, let us recall the basic facts of rational equivalence introduced in [AR07, section 8]. The
degreeof a zero-dimensional cycleZ is just the sum of all weights. Hence the push-forward of a
zero-dimensional cycle preserves degree. IfX is a one-dimensional cycle, andϕ is aboundedrational
function, thendeg(ϕ ·X) = 0 (see [AR07, 8.3]). The pull-back of a bounded rational function is again
bounded. Two functions are calledrationally equivalentif they differ by the sum of a bounded and
a globally linear function. Hence (and by linearity of the pull-back) rational equivalence is preserved
when pulled back.

An example for functions that are rationally equivalent is given by translations of functions onRn.

Lemma 2.1(Translations are rationally equivalent). Leth be a rational function onRn, choosev ∈ R
n

and considerh′ with h′(x) := h(x+ v). Thenh andh′ are rationally equivalent.

Proof. LetX be a subdivision ofRn on whichh is a rational function. For each coneσ ∈ X , lethσ be
the linear part of the affine functionh|σ. Take the maximum of the finitely manyhσ(v), σ ∈ X and call
it c. Now,X subdivides the line segmentx+ λv, λ ∈ [0, 1] into q line segments of lengthλi contained
in some polyhedronσi. This meansh(x+ v) can be expressed ash(x) + hσ1(λ1v) + . . .+ hσq

(λrv),
where

∑

i λi = 1. This implies
h(x+ v) − h(x) ≤ c,

which proves thath′ − h is bounded. �

In the following, we will apply these constructions and results to the case of Psi- and evaluation classes
on the space of rational plane curves.

The tropical analogueM0,n of the space of stablen-marked curves is the space of trees, or (a quotient
of) the tropical Grassmanian ([SS04], [GKM07], [Mi07]). Thus an abstract tropical curve is just a tree
with n marked ends and whose bounded edgese are equipped with a lengthl(e) ∈ R>0. The fanM0,n

is stratified by cones corresponding to combinatorial typesof trees. The facets correspond to3-valent
trees.
The tropical analogueM0,n(R2, d) of the space of stable maps has been studied in [GKM07]. An
element ofM0,n(R2, d) is an abstract tropical curveΓ (i.e. a tree) together with a maph : Γ → R

2 such
that the image satisfies the balancing condition and marked ends are contracted to a point. An important
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feature of this definition is that it also allows to contract bounded edges, as it will happen in section 4
and 6. If we furthermore also label thenon-contractedends, we obtain the spaceMlab

0,n(R2, d). The
advantage of this space is that, after choosing the vertex ofone marked end as root vertex, we can identify
Mlab

0,n(R2, d) with Mn+3d × R
2, where the second factor describes the position of the root vertex in

R
2 (cf. [GKM07]). In particular, in this senseMlab

0,n(R2, d) is a tropical variety. For enumerative
purposes, its difference toM0,n(R2, d) cumulates in nothing but a factor(d!)3 by which each invariant
in Mlab

0,n(R2, d) must be divided to get the corresponding one inM0,n(R2, d). Note that, independent of
the choice of a root vertex, there exists a forgetful mapft′ : Mlab

0,n(R2, d) → Mn+3d forgetting just the
position of the image of a curve inR2. This forgetful mapft′ : Mlab

0,n(R2, d) → Mn+3d is a morphism
of tropical varieties, as after choosing a root vertex and identifyingMlab

0,n(R2, d) with Mn+3d ×R
2, ft′

is just the projection onto the first factor.

Analogues of Psi-classes on tropicalM0,n have been defined recently ([Mi07]).ψi with i = 1, . . . , n
is the codimension one subcycle that consists of cones corresponding to trees where the marked endi
is at a4- or higher-valent vertex. How such Psi-classes intersect is discussed in [KM07]. To do so, Psi-
classesψi, i = 1, . . . , n are defined as divisors of rational functionsfi onM0,n cf. [KM07, proposition
3.5]. AsM0,n is simplicial, the functionfi can be defined by specifying its values on the primitive
vectors of the rays contained inM0,n. These rays are given by curves with only one bounded edge
splitting up the marked ends into two setsI ·∪ J = [n]. Let vI|J be the corresponding primitive vector
and assume w.l.o.g.i ∈ I, thenfi is defined by

fi(vI|J ) =
|J | (|J | − 1)

(n− 1)(n− 2)
.

Note that we denote byfi a multiple of what is calledfi in [KM07], such that we obtaindiv(fi) = ψi.
We use these functions to pull back Psi-classes toMlab

0,n(R2, d).

Definition 2.2 (Psi-classes for parameterized curves). For i = 1, . . . , n we definethei-th Psi-class on
Mlab

0,n(R2, d) to beψi := div(ft′∗(fi)).

Remark2.3. It can be shown that two rational functions onMlab
0,n(R2, d) (or M0,n) defining the same

divisor cycle only differ by the restriction of a globally linear function. Hence, the choice of the func-
tions defining our Psi-classes is not really important for intersection-theoretic purposes. This justifies
that throughout our paper we use the specific functionft∗(fi) to describeψi and in particular define

ψi · Y := ft′∗(fi) · Y,

whereY is an arbitrary subcycle ofMlab
0,n(R2, d). Note also that for our purposes we do not really need

that the function describingψi is (nearly) unique. The only thing we need to know is contained in the
following lemma.

Lemma 2.4(Products of Psi-classes). Let r1, . . . , rn be positive integers and let

X =

n
∏

k=1

ψrk

k ·Mlab
0,n(R2, d)

be a product of Psi-classes. ThenX is the codimension-
∑

k rk-subfan ofMlab
0,n(R2, d) consisting of

conesσ corresponding to trees such that for each vertexV we haveval(V ) = K(IV ) + 3, whereIV
denotes the set

IV = {k ∈ [n] : endxk is adjacent toV } ⊂ [n]

andK(I) is a short notation forK(I) =
∑

k∈I rk. The weight ofσ equals

ω(σ) =

∏

V K(IV )!
∏n

k=1 rk!
.
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Proof. Choose a root vertex and identifyMlab
0,n(R2, d) with M0,n+3d × R

2. Thenft′ is just the projec-
tion on the first factor and we can apply [AR07, 9.6], i.e. instead of intersecting the pull-backs of thefk

on the product, we can just intersect thefk on the first factor and then multiply withR2. Thus,

X =

(

n
∏

k=1

ψrk

k ·M0,n+3d

)

× R
2,

where hereψk denotes a Psi-class inM0,n+3d. But in the case of non-parameterized curves, it is proved
in [KM07, 4.1] that the valence of the vertices and the weights of the facets satisfy the formulas of the
statement. Multiplying withR2 does not disturb this, as the weight ofR

2 is one and as the combinatorics
of a curve remain unchanged underft′. �

Remark2.5. In particular the preceding lemma says thatψi consists of those curves whose marked
endi is adjacent to an at least4-valent vertex (where bounded edges as well as marked ends and non-
contracted ends count towards the valence).

Later on, we will also use theforgetful map

ft : Mlab
0,n(R2, d) → M0,4,

which forgets the map of a given curveC to R
2 and all its ends but the first four marked ends (it also

“stabilizes”, which means that, after forgetting one marked end, it replaces all two-valent vertices by
straight edges while adding up lengths).

Lemma 2.6. The forgetful mapft : Mlab
0,n(R2, d) → M0,4 is a morphism of cycles.

Proof. Let ftn : M0,n → M0,n−1 be the forgetful map that just forgets thei-th end of ani-marked
non-parameterized curve. It is shown in [GKM07, 3.9] thatftn is a morphism for all integersn ≥ 4.
As mentioned above, the mapft′ is a morphism, too. Thus, the statement follows from the formula
ft = ft5 ◦ . . . ◦ ftn ◦ ft′. �

Moreover, we use theevaluation maps

evi : Mlab
0,n(R2, d) → R

2

assigning to a curveC the position of itsi-th marked end. It is shown in [GKM07, 4.8] that these maps
are also morphisms of cycles. Along these morphisms we will pull back lines and points.

Definition 2.7 (Lines). A lineG is a one-dimensional cycle inR2 that is the divisor of a tropical poly-
nomial of degree one. In other words, lines are divisors of translations of the functionsmax{x, y, 0},
max{x, 0}, max{y, 0} or max{x, y}.

max{x, y}max{x, y, 0} max{x, 0} max{y, 0}

Lines of typemax{x, y, 0} are also callednon-degenerated.

We would like to pull back lines and points along an evaluation mapevi. However, up to now, pull
backs are only defined for functions, not for cycles. Of course, we can choose rational functions cutting
out the line resp. point in question and pull them back instead. In the following lemma we will show
that, for our purposes, the choice of describing functions plays no role.
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Notation2.8. We use the following notation: We have a total number ofl+m+n marked ends, which
are subdivided into the three setsL ·∪M ·∪N = {1, . . . , l +m + n}, such that|L| = l, |M | = m and
|N | = n. In the following, the endsi ∈ L are unrestricted, the endsj ∈ M are restricted by linesGj

(see 2.7) and the endsk ∈ N have to meet pointsPk. Furthermore we fix numbersrk, k ∈ N describing
how many Psi-classes we require atk ∈ N .

Lemma 2.9. Consider the intersection product

Z :=
∏

j∈M

ev∗
j (Gj)

∏

k∈N

ev∗
k(Pk)ψrk

k ·Mlab
0,l+m+n(R2, d),

whereev∗
j (Gj) stands forev∗

j (h) with a functionh cutting outGj and ev∗
k(Pk) stands forev∗

k(h1) ·
ev∗

k(h2) with functionh1, h2 cutting outPk. ThenZ is well-defined, i.e. it does not depend on the
chosen rational functions.

Proof. Let ev := evi be an evaluation map andG be a line. First we check that the intersection product
ev∗(G) · Mlab

0,l+m+n(R2, d) does not depend on the rational function describingG: Choose the vertex
of the endi as root vertex and identifyMlab

0,l+m+n(R2, d) with M0,l+m+n+3d ×R
2. Thenev is just the

projection onto the second factor. By [AR07, 9.6] we deduce

ev∗(G) · (M0,l+m+n+3d × R
2) = M0,l+m+n+3d ×G,

which shows independence of the describing function.
Now letX = ϕ1 ·. . .·ϕr ·Mlab

0,l+m+n(R2, d) be a cycle given by arbitrary rational functionsϕ1, . . . , ϕr.
Then, by commutativity of the intersection product, the cycle

ev∗(G) ·X = ϕ1 · . . . · ϕr · ev
∗(G) ·Mlab

0,l+m+n(R2, d)

is also well-defined. The same arguments work if we consider apointP instead ofG. But this suffices
to conclude inductively that the big intersection productZ is also well-defined. Moreover note that
the same argument also shows that our choice of the functionfi describingψi does not matter in this
intersection product. �

We are now ready to define our tropical descendant Gromov-Witten invariants.

Proposition and Definition 2.10. Letd, l,m, n andrk, k ∈ N be positive integers such that

l +m+ n+ 3d− 3 + 2 = m+ 2n+
∑

k∈N

rk. (1)

Then we define thetropical descendant Gromov-Witten invariant〈τ0(0)lτ0(1)m
∏

k∈N τrk
(2)〉d to be

the number

〈τ0(0)lτ0(1)m
∏

k∈N

τrk
(2)〉d :=

1

(d!)3
deg





∏

j∈M

ev∗
j (Gj)

∏

k∈N

ev∗
k(Pk)ψrk

k ·Mlab
0,l+m+n(R2, d)



 .

As indicated by the notation, this number only depends ond, l,m, n, rk, k ∈ N , but noton the linesGj

and the pointsPk.

Proof. Lemma 2.1 says that we can move around our points and lines arbitrarily, namely by translating
the describing functions, without changing the degree. It remains to show that the type of the lines does
not matter, for example the type ofG1. We will show thatev∗

1(G1) · F does not depend on the choice
of the lineG1 for a one-dimensional cycleF , where

F =
∏

j∈M\{1}

ev∗
j (Gj)

∏

k∈N

ev∗
k(Pk)ψrk

k ·Mlab
0,l+m+n(R2, d)

To see this, we have to use lemma 3.7 which requires general conditions and therefore is stated and
proven in the next section of this article. It states thatev1∗(F ) has only standard outer directions
−e1,−e2 ande1 + e2. Knowing this, we push forwardev∗

1(G1) ·F via ev1, which does not change the
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degree and use the projection formula ([AR07]). It tells us thatev1∗(ev
∗
1(G1)·F ) = G1 ·ev1∗(F ). Now,

asev1∗(F ) has only standard outer directions (at least for general conditions, which we can assume),
any line intersectsev1∗(F ) in the same number of points, not depending on the type. Note that lemma
3.7 does not care about the types of the lines appearing in theproduct ofF . Thus we can apply the above
argument inductively and see that the types of all linesGj can be changed arbitrarily without changing
the degree of the intersection product. �

Remark2.11. The dimension of the spaceMlab
0,l+m+n(R2, d) = M0,m+n+l+3d × R

2 is l +m + n +
3d− 3 + 2 since a3-valent tree withm+ l+ n+ 3d ends hasl+m+ n+ 3d− 3 bounded edges. The
codimension of the intersection of Psi-classes is

∑

k∈N rk. The pullback of a line has codimension1
and the pullback of a point codimension2. Hence the requirement (1) is equivalent to a0-dimensional
expected dimension of the intersection.

Notation2.12. We will use theτ -notation in a more general meaning: A product
(

∏

i∈I

τri
(ci)
)

d

(with round brackets) stands fora cycle inMlab
0,|I|(R

2, d), obtained as the intersection product where we
replace thei-th factorτri

(ci) by ψri

i ev∗(Ci). Here,Ci is some pointPi if ci = 2, some lineGi (of
some type) ifci = 1 and the whole spaceR2 (which means you can omit this pull-back) ifci = 0; thus
ci describes the codimension ofCi. If

(
∏

i∈I τri
(ci)
)

d
is zero-dimensional, we denote, as before, by

〈
∏

i∈I

τri
(ci)〉d =

1

(d!)3
deg

(

∏

i∈I

τri
(ci)
)

d

the degree of the product above divided by(d!)3. Note that a factorτ0(0) can not be dropped in this
notation as it stands for a marked end that does not have to meet any condition at all.

Remark2.13. Later on, we will also allow the factorft∗(λ) in this notation, whereλ is an element
in M0,4 and ft∗(λ) stands for the pull-back of a rational function onM0,4 describingλ. Two such
functions differ by an affine one, and so do the pull-backs. Hence, the intersection product containing
ft∗(λ) as factor is still well-defined.

3. GENERAL INCIDENCE CONDITIONS

The invariants defined in 2.10 are well-defined also for “special” incidence conditions, e.g. if we choose
all pointsPi to coincide. In this case thesetof curves fulfilling the conditions is of too big dimension, but
our intersection theory ensures that the corresponding intersection product still has the correct dimension
and degree. However, many of the following arguments still require a notion of “general incidence
conditions” that ensures that our intersection product equals the set-theoretical count of curves fulfilling
the incidence conditions (up to weights).

Let us start with the case of pulling back a single line inR
2. LetX be a subcomplex ofMlab

0,n(R2, d),
let f : X → R

2 be a map that is the restriction of a linear map (e.g. morphisms like f = evi) and let
G be a line inR

2. Let f−1(G) be the subcomplex ofX containing all polyhedraσ ∩ f−1(δ) for all
σ ∈ X andδ ∈ G (whereδ denotes a cone in the polyhedral complexG). Recall that the interior of a
polyhedronInt(σ) denotes its topological interior in its affine span.

Lemma 3.1. There exists a open dense subsetU ⊂ R
2 such that forv ∈ U and a translationG′ := G+v

ofG, it holds:

(a) The subcomplexf−1(G′) is either empty or of pure codimension1 in X .
(b) The interior of a facet off−1(G′) is contained in the interior of a facet ofX .
(c) For an elementC in the interior of a facet off−1(G′), the imagef(C) lies in the interior of a

facet ofG.
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Proof. Letσ be a facet ofX andδ a one-dimensional polyhedron ofG. Consider the mapq ◦ fσ, where
fσ : Vσ → R

2 is the extension off |σ to Vσ andq : R
2 → R

2/Vδ is the quotient map. This composition
has either rank1 (in which caseker(q ◦ fσ) has codimension one inVσ; hence, for a general translation
δ′ of δ, the polyhedronσ ∩ f−1(δ′) is either empty or of codimension1 and intersecting the interior
of σ) or has rank0 (thenσ ∩ f−1(δ′) is empty for a general translation ofδ′ of δ). As there are only
finitely many pairsσ, δ, the set of vectorsv ∈ R

2 such that these statements are true simultaneously is
still open and dense. But note that all facets off−1(G′) can be obtained in this way for some pairσ, δ.
This shows part (a) and (b).
Furthermore, letV ∈ R

2 be the vertex ofG (if G is of typemax{x, y, 0}). Applying the same argument
to V shows that for a general translationV ′ := V + v, the preimagef−1(V ′) has at least codimension
2, which proves part(c). �

Definition 3.2. LetZ be an intersection product of the form(
∏

i∈I τri
(ci))d with incidence conditions

Ci. DefineX :=
∏

i∈I ψ
ri

i · Mlab
0,|I|(R

2, d). We call the conditionsgeneralif the following holds:

(a) The subcomplexS of X containing all pointsC ∈ X fulfilling evi(C) ∈ Ci has dimension
dim(S) = dim(Z).

(b) The interior of a facet ofS is contained in the interior of a facet ofX .
(c) The interior of a facetσ of S maps to the interior of a facet ofCi underevi.
(d) Any intersectionCi ∩ Cj , i, j ∈ I has expected codimensionci + cj .

Remark3.3. Let S be the subcomplex ofX containing all the curvesC ∈ X fulfilling evi(C) ∈ Ci.
Note thatZ is a subcomplex ofS. This follows from the facts that the support of an intersection product
is contained in the support of the intersecting rational function and that the support of a pull-back is
contained in the preimage of the support of the pulled-back function. Note that in general we have
S = Z (as sets) ifdim(S) = dim(Z) is satisfied, the only thing that can happen in principle is that
there are facets ofZ which get0 as a weight in the intersection product, although they are facets ofS.
For the intersection products we work with, this cannot happen though, since we only have a weight
of 0 if the setS is of higher dimension (see section 5). Hence for us the incidence conditions being
general implies that|Z| equals the set of curves satisfying the incidence conditions, anddeg(Z) equals
the number of curves satisfying the conditions, counted with weight.

Lemma 3.4. The set of general conditions in the space of all conditions (which can be identified with
some bigRN collecting all the translation vectors) is open and dense.

Proof. The set of conditions fulfilling 3.2 (d) is obviously open anddense. The remaining follows from
recursively applying 3.1 toX andev1, thenX∩ev−1

1 (C1) andev2, and so on. More precisely, ifci = 0
we have nothing to do in this step, ifCi is a line, we apply 3.1, and ifCi is a point, we apply 3.1 twice
for two lines intersecting set-theoretically in the singlepointCi. �

Remark3.5. We also consider the following case: LetX be a1-dimensional subcycle ofMlab
0,n(R2, d)

and consider the forgetful mapft : Mlab
0,n(R2, d) → M0,4. We callλ ∈ M0,4 general, if λ /∈ ft(X(0))∪

M
(0)
0,4, whereX(0) denotes the vertices ofX andM(0)

0,4 denotes the single vertex ofM0,4. This ensures
that all points inft |−1

X (λ) lie in the interior of a one-dimensional polyhedron ofX .

The following lemma describes the combinatorial type of thecurves which satisfy general incidence
conditions.

Lemma 3.6. LetZ be an intersection product of the form(τ0(0)lτ0(1)m
∏

k∈N τrk
(2))d with general

conditions. Then

(b’) For a curveC in the interior of a facet the following holds: All endsk ∈M ∪N lie at different
vertices and the valence of a vertex isrk + 3 if k ∈ N is adjacent to it and3 otherwise.
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Proof. Because of remark 3.3 we know thatZ ⊂ S. In addition, condition 3.2 (a) says thatZ andS
have the same dimension and therefore (b) and (c) also hold for curves in the interior of a facet ofZ.
Let C be in the interior of a facet ofZ. Condition 3.2 (d) implies thatevi(C) 6= evj(C) for all
i ∈ M ∪ N , j ∈ N , as in this caseCi ∩ Pj is empty. If i, j ∈ M would lie at the same vertex this
would induce either a contracted bounded edge (which contradicts 3.2 (a)) or valence greater than3 of
this vertex (which contradicts 3.2 (b)). Hence all ends inM ∪ N must lie at different vertices. The
statement about the valence of the vertices follows from 3.2(b) and the description ofX in 2.4. �

As a first application of our notion of general conditions we can now prove the lemma which we
promised and needed in the independence statement 2.10.

Lemma 3.7. Let F be a one-dimensional cycle of the form(τ0(0)τ0(0)lτ0(1)m
∏

k∈N τrk
(2))d with

general conditions. Letx denote the marked end corresponding to the first factorτ0(0). Then all of the
unbounded rays of the push-forwardevx∗(F ) have standard directions−e1,−e2 ande1 + e2.

Proof. Let σ be a facet ofF . For a curve in the interior ofσ two possibilities can occur: Eitherx is
adjacent to a higher-valent vertex. Then by 3.6 also an endk ∈ N interpolating the pointPk lies at this
vertex. Therefore,evx(σ) = evk(σ) = {Pk}.
Secondly,x might be adjacent to a3-valent vertex. Sincex itself is contracted, the two other edges
which are adjacent are mapped to lines with opposite direction (because of the balancing condition).
That means locally the image looks like a straight line with the marked pointh(x) on it. We can deform
a curve inσ in a one-dimensional family (thus coveringσ) by changing the length of the two adjacent
edges and thus making the pointh(x) move on the line. This movement is unbounded if and only if
one of these two edges is an end. But thenevx(σ) points to the same direction as this end, which is by
definition one of the standard directions or0. �

4. CONTRACTED EDGES

Let F be a one-dimensional cycle of the form(τ0(0)lτ0(1)m
∏

k∈N τrk
(2))d with general conditions.

Remember that this implies that|F | equals the set of curves satisfying the conditions.

Notation4.1. We fix the type of the first four ends in the sense that we assume from now on1 ∈ L,
2 ∈M and3, 4 ∈ N .

As before we denote byft the forgetful mapft : Mlab
0,l+m+n(R2, d) → M0,4, which forgets the embed-

ding and all ends but the first four marked ends. It is the aim ofthis section to show that for a very large
M0,4-coordinateλ, the curves inft−1(λ) ∩ F (i.e. curves with such a largeM0,4-coordinate) must
contain a contracted bounded edge. We will use the contracted bounded edge in section 6 to split such
curves into two components.

Definition 4.2. LetC be a curve inMlab
0,l+m+n(R2, d). For two different marked endsi1, i2, we denote

byS(i1, i2) the smallest connected subgraph ofC containingi1 andi2 and call itthe string ofi1 andi2.
Such a stringS(i1, i2) is calledmovableif i1, i2 ∈ L ∪ E, whereE denotes the set of non-contracted
ends, and ifS(i1, i2) does not intersect (the closure) of anyk for k ∈ N .

Lemma 4.3. LetC be a curve in the interior of a facet ofF . ThenC contains a movable stringS.

Proof. We knowdim(F ) = 1, codim(F ) = m + 2n +
∑

k∈N rk anddim(Mlab
0,l+m+n(R2, d)) =

l+m+ n+ 3d− 3 + 2. Plugging in all this indim(F ) + codim(F ) = dim(Mlab
0,l+m+n(R2, d)) leads

to
l + 3d = n+

∑

k∈N

rk + 2.

On the other hand we can compute the number of connected components ofΓ \
⋃

k∈N k̄: Removingk
increases the number of connected components byrk + 1 as the valence of the adjacent vertex isrk + 3
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by 3.6. So, after removing alln ends, we arrive at1 +n+
∑

k∈N rk connected components. The above
equation tells us that there is one more end inL∪E then there are connected components and therefore
at least two endsi1, i2 ∈ L ∪ E lie in the same component. HenceS(i1, i2) is a movable string. �

By construction all vertices of a movable string are 3-valent.

Lemma 4.4. Let σ be a facet ofF such that the corresponding interior curves donot contain a con-
tracted bounded edge. Then the image ofσ underft is bounded.

Proof. Let C be a curve in the interior ofσ. We will deformC in a one-dimensional family insideσ.
Sinceσ is one-dimensional itself, this family coversσ. By lemma 4.3 there exists a movable stringS
in C. In the following, we show that eitherσ is bounded (i.e. the deformation ofC is bounded) orft is
constant onσ (i.e. the deformation ofC does not affectft).
Let V be a vertex inS. We callV degeneratedif we can deformC one-dimensionally locally around
V , i.e. if

(a) either one of the adjacent edges is a marked endi ∈ L,
(b) or one of the adjacent edges is a marked endj ∈ M and the linear spans of the corresponding

lineGj at evj(C) and of the other two edges adjacent toV coincide (i.e. if the curveC and the
lineG do not intersect transversally atevj(C)),

(c) or all edges adjacent toV are non-contracted, but their span nearV is still only one-dimensional;
w.l.o.g. we denote the edge alone on one side ofV by v and the two edges on the other side by
v1, v2.

(b) (c)(a)

v1 v1v2 v2

Gj

j

v

v2

v1

i

If such a degenerated vertex exists, the1-dimensional deformation of the curves insideσ is given by
moving this vertex and changing the lengths of the adjacent edges accordingly. We show that this move-
ment is either bounded or, if not, the changed lengths do not influenceft.
Consider the cases (a) and (b) and letv1, v2 be the two other edges adjacent toV . At least one of the two
edges, sayv1, is bounded. Then the movement is unbounded only ifv2 is unbounded. Butv2 cannot
be contracted, as thenv1 would also be contracted (andbounded). But this means thatft forgetsv2 and
therefore also the length ofv1.
Now consider the case (c). The balancing condition saysv = v1 + v2 (by abuse of notation we denote
the direction vectors by the same letters as the edges), which in particular implies thatv is not primitive
and hence the edgev has to be bounded. Now again, if we require the movement ofV to be unbounded,
v1 andv2 must be unbounded. But they are also non-contracted which means thatft forgets them and
the length ofv.
So we are left with the case that all vertices ofS are non-degenerated. We can still describe the de-
formation of the curves insideσ using the movement of the string: Take one of the ends of the string
(which is necessarily non-contracted) and move it slightlyin a non-zero direction modulo its linear span.
Consider the next vertexV and letv be the adjacent edge not contained in the string. Then two things
can happen:
If v is non-contracted (case A), our moved end will meet the affinespan ofv at some pointP (asV is
non-degenerated). So we change the length ofv such that it ends atP (while keeping the position of its
second vertex fixed). Then we also move the second edge of the string toP and go on to the next vertex.
If v is contracted (case B), our assumptions ensure that it is a marked endj ∈ M and that the corre-
sponding lineGj intersects our curve transversally atV . Thus our moved edge will again meetGj at
some point and by changing the lengths of the adjacent edges appropriately, the obtained curve will still
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meetGj .

jcase B:case A:

S

S

Gj

In this way we can make our way through the string and finally obtain a deformation of the whole curve.
Note that the non-degeneracy of all the vertices ensures that all edges of the stringmustchange their
positions modulo their linear span and, hence, that all edges adjacent to, but not contained in the string
mustchange their length. In particular this means we cannot havemore non-contracted ends adjacent
to our string: Then we would have two different strings providing two independent deformations of the
curves insideσ, which is a contradiction asσ is one-dimensional.
Let us summarize: Our stringS is generated by two unique non-contracted endsi1, i2, all of its vertices
are3-valent and the adjacent edges not contained in the string are either bounded or marked ends inM ,
where the corresponding lineGj intersects transversally. The deformation only moves the string S; the
adjacent edges are shortened or elongated and the other parts of the curve remain fixed. We want to
show that, even if the movement is unbounded, the consideredM0,4-coordinate is bounded.
If there are bounded edges adjacent toS to both sides ofS as in picture (a) below then the movement
of the string is bounded. (This is true because if we move the string to either side, we can only move
until the length of one of the adjacent bounded edges shrinksto 0.) So we only have to consider the
case when all adjacent bounded edges ofS are on the same side ofS, say on the right side as in picture
(b) below. Label the edges ofS (respectively, their direction vectors) byv1, . . . , vk and the adjacent
bounded edges of the curve byw1, . . . , wk−1 as in the picture. As above the movement of the string to
the right is bounded. If one of the directionswi+1 is obtained fromwi by a left turn (as it is the case for
i = 1 in the picture) then the edgeswi andwi+1 meet on the left ofS. This restricts the movement of
the string to the left, too, since the corresponding edgevi+1 then shrinks to length0.

(a) (b)

w3

v1

w2

w3

(c)

v4

v3

v2

v1
w1

v1

v4 w3

w2

w1

(d)

v1

v2

w1

(e)

v4

w1

w2v2

v3

S S

S

So we can assume that for alli the directionwi+1 is either the same aswi or obtained fromwi by a
right turn as in picture (c). The balancing condition then shows that for alli both the directionsvi+1 and
−wi+1 lie in the angle betweenvi and−wi (shaded in the picture above). Therefore, all directionsvi

and−wi lie within the angle betweenv1 and−w1. In particular, the image of the stringS cannot have
any self-intersections inR2. We can therefore pass to the (local) dual picture (d) where the edges dual
towi correspond to a concave side of the polygon whose other two edges are the ones dual tov1 andvk.

But note that there are no such concave polygonswith integer verticesif the two outer edges (dual to
v1 andvk) are two of the vectors±(1, 0), ±(0, 1), ±(1,−1) that can occur as dual edges of an end of
a plane tropical curve of degreed. Therefore the string can consist at most of the two endsi1 andi2



12 HANNAH MARKWIG AND JOHANNES RAU

that are connected to the rest of the curve by exactly one bounded edgew1. This situation is shown in
picture (e).

In this case the movement of the string is indeed not bounded to the left. Note that thenw1 is the only
internal edge whose length is not bounded. But by our assumptions1, 3 and4 cannot lie onS but must
lie on the other side ofw1; hence its length does not influenceft. This finishes the proof.

�

5. COMPUTING WEIGHTS

In this section we prove that the weight of a curve in a zero-dimensional intersection product can be
computed as the (absolute value of a) determinant of the linear map that basically collects all the eval-
uation morphisms (and forgetful morphism if present). We will use this to express the weight of a
reducible curve (in the sense that it contains a contracted bounded edge) in terms of the weights of the
two components.

The following statement connects intersection products with determinants.

Let V = R ⊗ Λ be a real vector space of dimensionn with underlying latticeΛ and leth1, . . . , hn ∈
Λ∨ be linear functions onΛ resp. V . By H : V → R

n we denote the linear map given byx 7→
(h1(x), . . . , hn(x)). Choose lattice bases ofΛ andZ

n and consider the matrix representation ofH with
respect to these bases. Obviously, the absolute value of thedeterminant of this matrix is independent of
the choice of bases; hence we denote it by| det(H)|.
On the other hand, we can consider the rational functionsϕi = max{hi, 0} onV . To do so, we giveV
the fan structure consisting of all cones on which eachhi is either positive or zero or negative. These
rational functions form a zero-dimensional intersection product, which obviously consists of only{0}
with a certain weight.

Lemma 5.1. The weight of{0} appearing inϕn · . . . · ϕ1 · V is equal to| det(H)|.

Proof. Let us first assume thath1, . . . , hn form a lattice basis ofΛ∨ with dual basis̃h1, . . . , h̃n.
We computeϕ1 ·V : For each ridgeτ of V (with the fan structure described above) there exists a unique
j such thatτ ⊆ h⊥j . Then there are two facets containingτ (wherehj is positive resp. negative) and the

corresponding (representatives of the) primitive vectorsareh̃j resp.−h̃j. Therefore the weight ofτ in
the intersection productϕ1 · V can be computed as

ωϕ1(τ) = max{h1(h̃j), 0} + max{h1(−h̃j), 0} = h1(h̃j) + 0 = h1(h̃j).

Hence, when omitting cones with weight0, ϕ1 · V consists of all cones contained inh⊥1 and all weights
are1. Now we can apply induction onh2|h⊥

1
, . . . , hn|h⊥

1
and conclude thatϕn · . . . · ϕ1 · V produces

{0} with weight1.
On the other hand, the matrix representation ofH with respect to the basis̃h1, . . . , h̃n for Λ and the
standard basis forZn is just the unit matrix. Hence,| det(H)| = 1, which proves the statement in the
special case.
General case: For generalh1, . . . , hn we can choose a lattice basisl1, . . . , ln of Λ∨ such that

h1 = a1,1l1,
h2 = a2,1l1 + a2,2l2,

...
hn = an,1l1 + . . .+ an,nln,

where theai,j are integers. Then we get| det(H)| = | det((ai,j))| = |a1,1 · . . . · an,n|.
On the other hand, let us compute thatϕn · . . . · ϕ1 · V produces{0} with weight |a1,1 · . . . · an,n|.
We saw in the special case thatmax{l1, 0} · V is l⊥1 with weight1. The above equations tell us that
max{h1, 0} = |a1,1| ·max{l1, 0}. Using the linearity of the intersection product, we deducethatϕ1 ·V
is l⊥1 with weight |a1,1|. Now we apply induction onn again: After restricting all functions tol⊥1 , we
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can omit all termsai,1l1 in the above equations (in particular we can omit the first equation). Hence
we can apply our induction hypothesis and conclude thatϕn · . . . · ϕ2 · l⊥1 produces{0} with weight
|a2,2 · . . . · an,n|. Hence,ϕn · . . . · ϕ2 · (ϕ1 · V ) = |a1,1| · ϕn · . . . · ϕ2 · l⊥1 = {0} with weight
|a1,1 · . . . · an,n|. �

With this tool we can express all weights occurring in a zero-dimensional intersection product in terms
of absolute values of determinants.

Notation 5.2. Let Z be a zero-dimensional intersection product of the form(τ0(0)lτ0(1)m
∏

k∈N τrk
(2))d or of the form(ft∗(λ) · τ0(0)lτ0(1)m

∏

k∈N τrk
(2))d with general conditionGj and

Pk (andλ, resp.). The set of curvesS that fulfill the incidence conditions set-theoretically isfinite
by 3.2 (a). For simplicity, let us furthermore assume that all pointsPk = (p1, p2) are described by
the rational functionsmax{x, p1} andmax{y, p2} on R

2 and that all linesGj are vertical, i.e. of type
max{x, 0} (i.e. are given by a rational functionmax{x, cj}). λ can be described bymax{x, λ}, where
x is the coordinate of the ray in whose interiorλ lies (see 3.5).

DenoteX :=
∏

k∈N ψrk

k · Mlab
0,n(R2, d). We then consider the morphisms

ev : X → R
m × (R2)n,

C 7→
(

(

evj(C)x

)

j∈M
,
(

evk(C)
)

k∈N

)

,

respectively

ft× ev : X → M0,4 × R
m × (R2)n,

C 7→
(

(ft(C),
(

evj(C)x

)

j∈M
,
(

evk(C)
)

k∈N

)

,

whereevj(C)x denotes the first coordinate of the pointevj C ∈ R
2. Thus, these morphisms evaluate at

each endi ∈M ·∪N and keep all coordinates ifi ∈ N and only the first coordinate ifi ∈M .
LetC be a curve in the interior of a facetσ of X (and withft(C) not being the vertex ofM0,4). Then
ev (resp.ft× ev) is affine in a neighborhood ofC and we define|detC(ev)| (resp.| detC(ft× ev)|) to
be| det(H)|, whereH is the linear part ofev (resp.ft× ev) atC.

Theorem 5.3. The zero-dimensional intersection productZ (as in notation 5.2) can be computed as

Z =
∑

C∈S

|detC(ev)| · C,

resp.
Z =

∑

C∈S

|detC(ft× ev)| · C,

i.e. the weight of a curveC ∈ Z is just|detC(ev)| (resp.| detC(ft× ev)|).

Proof. EachC ∈ Z is contained in the interior of a facetσ of X (see 3.2 (a)). In 2.4 the weight ofσ in
X was computed to be

ω(σ) =

∏

V K(IV )!
∏n

k=1 rk!
.

But we know from 3.6 that no two marked ends lie at a common vertex and hence

K(IV ) =

{

rk if k is adjacent toV ,
0 otherwise.

Therefore we can cancel the fraction definingω(σ) down to1.
As the computation of the weight ofC is local, we can replaceX by V := R · σ. On the other hand,
locally aroundC, all the pull backs alongev and ft are of the formmax{a, c}, wherea is an affine
function onV andc is a constant. To be more precise,a is exactly one of the coordinate functions of
ev (resp. ft× ev). Now, up to translations and subtracting constant terms, we are in the situation of
5.1: The weight ofC equals the absolute value of the determinant of linear mapH whose coordinate
functions are the linear parts of the affine functionsa. ThusH is the linear part ofev (resp. ft× ev)
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on V , and we can conclude that the weight ofC in Z is precisely| det(H)| = | detC(ev)| (resp.
= | detC(ft× ev)|). �

Remark5.4. If we dropped the requirement that Psi-conditions are only allowed at marked ends that
are also restricted by a point condition, we could still prove a formula similar to the above one: For a
zero-dimensional intersection product of arbitrary Psi- and evaluation classes, the weights can still be
computed as the absolute value of an appropriate determinant times the weight of the corresponding facet
inX . In particular, this shows that such weights are always positive, as well as the degree of the product.
Hence, whenever classical descendant Gromov-Witten invariants are negative (e.g.〈τ1(1)τ0(2)〉alg

1 =
−1), we have an example of classical invariants that donot coincide with their tropical counterparts as
we define them.

6. SPLITTING CURVES

Now we want to think of curves with a contracted bounded edge as reducible curves. We do that
basically by cutting the contracted bounded edge. We have toshow that the weight of the curveC is
(almost) the product of the two weights of the two curves thatarise after cutting. We use the description
of weight in terms of determinants from section 5.

Notation6.1. As in section 4 we assume1 ∈ L, 2 ∈ M and3, 4 ∈ N . Additionally we require from
now onL = {1} (i.e. the marked end1 is the only “free” end) andr3 ≥ 1 (i.e. the marked end is
restricted by at least one Psi-class).

LetZ be a zero-dimensional cycle of the form(ft∗(λ) · τ0(0)τ0(1)m
∏

k∈N τrk
(2))d with general con-

ditionGj andPk andλ, as in 5.2. LetC ∈ Z.

Construction6.2. AssumeC satisfying| detC(ev× ft)| 6= 0 has a contracted bounded edgee. Cut the
bounded edgee, thus producing two marked ends. In this way we get two curvesC1 andC2 that both
have a new marked end in the place ofe. LetLi, Mi andNi be the subsets ofL, M andN of marked
ends inCi. Let li,mi andni be the sizes of these subsets. Letdi be the degree ofCi. Denote by

evMi∪Ni
:
∏

j∈Ni

ψ
rj

j · [Mlab
0,li+ni+mi+1(R

2, di)] → R
mi+2ni

the map that evaluates the first coordinate for the points inMi and both coordinates for the ends inNi

(as in 5.2). Denote by

eve :
∏

j∈Ni

ψ
rj

j · [Mlab
0,li+ni+mi+1(R

2, di)] → R
2

the evaluation ate at both coordinates, and by(eve)x the evaluation at the first coordinate. Denote by
C̃i the curveCi where we remove the marked ende and straighten the2-valent vertex which appears.

Let
Zi :=

∏

j∈Mi

ev∗
j (Gj) ·

∏

k∈Ni

ev∗
k(Pk) · ψrk

k · [Mlab
0,li+ni+mi+1(R

2, di)]

denote the corresponding intersection products.

Notation6.3. We pullback a general pointλ ∈ M0,4 (i.e. not the vertex) via the forgetful mapft :
Mlab

0,1+m+n(R2, d) → M0,4. There are3 types of such general points, corresponding to the3 types of
abstract tropical curves with4 marked ends. The ends1 and2 can be together at a vertex, or the ends
1 and3, or the ends1 and4. We use the following short notation: ifft(C) is in the ray corresponding
to the type where1 and2 are together at a vertex, we sayft(C) = 12/34 (and analogously in the other
cases).

Lemma 6.4. LetC be as in construction 6.2 and stick to the notations from there. If ft(C) = 12/34
(then {1} = L1, sol1 = 1 andl2 = 0), then eitherd1 = 0 andL1 ∪M1 ∪N1 = {1, 2}, or d1, d2 > 0
and there are3 cases to distinguish (of which the first and last are symmetric):



TROPICAL DESCENDANT GROMOV-WITTEN INVARIANTS 15

(a) dim(Z1) = 0 anddim(Z2) = 2,
(b) dim(Z1) = 1 anddim(Z2) = 1, or
(c) dim(Z1) = 2 anddim(Z2) = 0.

If ft(C) = 13/24 thend1, d2 > 0 and the analogous3 cases are to distinguish.

Proof. If there were two contracted edges, then all evaluations (i.e.2n+m coordinates) would depend
only on 1 + m + n + 3d − 3 −

∑

ri = m + 2n − 1 coordinates, so we get| detC(ev× ft)| = 0.
So we can assume now there is only one contracted bounded edgee. Sincee has to count towards the
M0,4-coordinate to satisfy| detC(ev× ft)| 6= 0, 1, j ⊂ L1 ∪M1 ∪ N1 andk, l ⊂ L2 ∪M2 ∪ N2 if
ft(C) = 1j/kl.
Let us first consider the case where one of thedi’s is zero. This implies that all edges of the correspond-
ing curveCi are contracted. As we cannot have more contracted bounded edges,Ci is a star-shaped
curve containing only a single vertexV . But 3.6 states that the ends2, 3, 4 ∈ M ∪ N all lie at dif-
ferent vertices. Thus the casesd1 = 0, ft(C) = 13/24 andd2 = 0 cannot occur, whereas in the
remaining cased1 = 0, ft(C) = 12/34 the single vertexV must be3-valent which is the same as
L1 ∪M1 ∪N1 = {1, 2}.
Let us now assumed1, d2 > 0. It remains to show thatdim(Z1) + dim(Z2) = 2 which follows since

dim(Z1) + dim(Z2)

=3d1 −
∑

k∈N1

rk −m1 − 2n1 + 3d2 −
∑

k∈N2

rk −m2 − 2n2

= 3d−
∑

k∈N

rk −m− 2n = 2

where the last equality follows sinceZ is zero-dimensional and thus3d−
∑

k∈N rk−1 = m+2n+1. �

Remark6.5. In the following, we will choose bases in order to write down an explicit matrix represen-
tation for the mapev× ft or ev locally on a cone. For a coneσ of Mlab

0,n(R2, d) corresponding to a
combinatorial type (i.e. an abstract graphΓ (without length) together with all direction vectors) we pick
a root vertexV of Γ and choose the coordinates of the pointh(V ) ∈ R

2 to which this vertex is mapped
as two coordinates. The remaining coordinates ofσ are given by the lengths of the bounded edges. For
the spacesR2 or R that describe our incidence conditions locally, we choose the standard basis vectors.
It follows from remark 3.2 of [GM05] that the absolute value of the determinant does not depend on any
of the choices we make.

Lemma 6.6. LetC be as in construction 6.2 and stick to the notations from there. If ft(C) = 12/34

andd1 = 0 we want to show| detC(ev× ft)| = (G2 · C̃2)h(e) · | detC̃2
(evM2∪N2)|. For the other three

cases from lemma 6.4 we want to show:

(a) | detC(ev× ft)| = | detC1(evM1∪N1)| · | detC2(evM2∪N2 × eve)|,
(b) | detC(ev× ft)| = (C̃1 · C̃2)h(e) · | detC̃1

(evM1∪N1)| · | detC̃2
(evM2∪N2)|, or

(c) | detC(ev× ft)| = | detC1(evM1∪N1 × eve)| · | detC2(evM2∪N2)|.

Proof. For all cases, note first that the matrix of| detC(ev× ft)| has a column with only zeros except
one1. This is the column corresponding toe. Sincee is contracted, it is not needed for any evaluation.
But it is needed for theM0,4-coordinate, so it has zeros except a1 in theft-row. We can delete this row
and column without changing the absolute value of the determinant. Call the matrix with the deleted
row and columnA. Then| det(A)| = | detC(ev× ft)|.

Now let ft(C) = 12/34 andd1 = 0, it follows L1 ∪M1 ∪ N1 = {1, 2}. We want to show that the
boundary vertexV of e in C2 is 3-valent, too. Assume it is not, then there has to be a marked end with
a Psi-condition adjacent toV . But this marked end is inN and thus required to meet a point. This is
a contradiction, since the point is not on the line that2 is required to meet (cf. 3.2 (d)). So lete1 and
e2 be the two other edges adjacent toV and assume first that both of them are bounded. Denote their
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common direction vector (up to sign) byv = (v1, v2) and their lengths byl(e1), l(e2). Assume that the
root vertex is on thee1-side ofe. Then the entries of the matrixA corresponding tol(e1) andl(e2) are

↓ evaluation at. . . l(e1) l(e2)
2 (1 row) v1 0
points reached viae1 from 2 (1 or 2 rows) 0 0
points reached viae2 from 2 (1 or 2 rows) v v

We see that after subtracting thel(e2)-column from thel(e1)-column we again get one column with
only one non-zero entryv1. So for the determinant we getv1 as a factor, dropping the corresponding
row and column (which means removinge and straightening the2-valent vertex), so we get| det(A)| =

v1 · | detC̃2
(evM2∪N2)| = (C̃2 · G2)h(e) · | detC̃2

(evM2∪N2)|. Essentially the same argument holds if
one of the adjacent edges — saye2 – is unbounded: in this case there is only anl(e1)-column which
has zeroes everywhere except in the one2-row where the entry isv1.

Next, letdim(Z1) = 0 anddim(Z2) = 2. Denote byai the dimension of
∏

k∈Ni

ψrk

k · Mlab
0+li+mi+ni+1(R

2, di),

that is,

ai = 3di + li +mi + ni + 1 −
∑

k∈Ni

rk − 1.

Sincedim(Z1) = 0 we havem1 + 2n1 = a1 and sincedim(Z2) = 2 we havem2 + 2n2 = a2 − 2. Let
the boundary vertexV of e in C1 be the root vertex forC. Choose the following order of coordinates:
start with the root vertex, then bounded edges inC1, next bounded edges inC2. Start with the marked
ends inC1 and then add the marked ends inC2. Then the matrixA is in block form: because the points
on C1 need only the root vertex and the bounded edges ofC1, they need the firsta1 = m1 + 2n1

coordinates, and have0 after that. So there is a0 block on the top right, and the top left is just the matrix
of evM1∪N1 atC1. So| det(A)| = | detC1(evM1∪N1)| · | det(B)| whereB denotes the lower right box.
Consider the matrix ofevM2∪N2 × eve atC2, and let the root vertex be the boundary vertex ofe in C2.
Then this matrix has two more rows and columns thanB, namely the root vertex columns and the rows
corresponding toeve. But since these two rows start with a2× 2 unit matrix block and have zeros after
that, we can see that| det(B)| = | detC2(evM2∪N2 × eve)|.

The third case is symmetric. Finally, assumedim(Z1) = 1 anddim(Z2) = 1, i.e.m1 + 2n1 = a1 − 1
andm2 +2n2 = a2−1. First we want to show that the two vertices ofe are3-valent. Assume the vertex
in C1, V , is not3-valent, then there must be a marked endi with a Psi-class adjacent toV . But this end
is inN then, so it is required to meet a pointPi ∈ R

2. Sincedim(Z1) = 1 we can moveC1 locally in
a1-dimensional family such that all incidence conditions arestill defined. LetC′

1 be an element of this
family. SinceC′

1 has to meetPi as well, we can glueC′
1 toC2 thus producing a curveC in Z. This is a

contradiction since the dimension ofZ is 0.

Since the argument is symmetric it follows that both vertices of e are3-valent. Denote the two edges
adjacent toe in C1 by e1 ande2 and the two edges inC2 adjacent toe by e3 ande4. Assume first that
all of those edges are bounded. Let the boundary vertexV of e in C1 be the root vertex forC. Then the
matrixA reads:

lengths inC1 lengths inC2

root (a1 − 4 cols) l(e1) l(e2) l(e3) l(e4) (a2 − 4 cols)

(2n1 +m1 ends behinde1 I2 ∗ v 0 0 0 0
rows) ends behinde2 I2 ∗ 0 −v 0 0 0

(2n2 +m2 ends behinde3 I2 0 0 0 w 0 ∗
rows) ends behinde4 I2 0 0 0 0 −w ∗

whereI2 is the2 × 2 unit matrix, and∗ denotes arbitrary entries. Now addv times the root columns
to the l(e2)-column, subtract thel(e1)-column from thel(e2)-column and thel(e4)-column from the
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l(e3)-column to obtain the following matrix with the same determinant:

lengths inC1 lengths inC2

root (a1 − 4 cols) l(e1) l(e2) l(e3) l(e4) (a2 − 4 cols)

(2n1 +m1 ends behindE1 I2 ∗ v 0 0 0 0
rows) ends behindE2 I2 ∗ 0 0 0 0 0

(2n2 +m2 ends behindE3 I2 0 0 v w 0 ∗
rows) ends behindE4 I2 0 0 v w −w ∗

Note that this matrix has a block form with a zero block at the top right. Denote the top left block (of
size2n1 +m1 = 2 + a1 − 4 + 1) byA1 and the bottom right (of size2n2 +m2 = 3 + a2 − 4) byA2,
then| det(A)| = | detA1 · detA2|.

The matrixA1 is precisely the matrix for the evaluation mapevM1∪N1 of C̃1 (which arises fromC1

after forgetting the marked end corresponding toe) if we choose the other vertex ofe2 as the root vertex.
Hence| detA1| = | detC̃1

(evM1∪N1)|. In the same way the matrix for the evaluation mapevM2∪N2 of

C̃2, if we again forget the marked end corresponding toe and now choose the other vertex ofe3 as the
root vertex, is the matrixA′

2 obtained fromA2 by replacingv andw in the first two columns by the first
and second unit vector, respectively. ButA2 is simply obtained fromA′

2 by right multiplication with the
matrix

(

v w 0
0 0 I2n2+2

)

which has determinantdet(v, w). So we conclude that

| detA2| = | det(v, w)| · | detA′
2| = (C1 · C2)h(e) · |detC̃2

(evM2∪N2)|.

�

Remark6.7. The following “converse” of lemma 6.4 and lemma 6.6 is also true: For each choice of
C̃2 satisfying all conditions but2 and each choice of an intersection point ofC̃2 with G2 we can add a
contracted bounded edge and the two marked ends1, 2 on the other side to built exactly one possible
C. The curveC then contributes(G2 · C̃2)h(e)| detC̃2

(evM2∪N2)| to the count. By Bézout’s theorem

([RST03]), each choice of̃C2 contributesd2 · | detC̃2
(evM2∪N2)| = d · | detC̃2

(evM2∪N2)|.

For each choice ofC1 satisfying the conditions inL1 ∪M1 ∪N1 and each choice ofC2 satisfying the
conditions inL2 ∪M2 ∪N2 plus in addition the conditionh(e) = p we get exactly one possibleC by
gluing the two curves alonge. This curveC contributes to the count with weight| detC1(evM1∪N1)| ·
| detC2(evM2∪N2 × eve)| (and the other way round).

For each choice of̃C1 andC̃2 satisfying the conditions inL1 ∪M1 ∪ N1 andL2 ∪M2 ∪ N2 and for
each choice of pointsP ∈ C̃1 andQ ∈ C̃2 that map to the same image point inR

2 we can glueP andQ
along a contracted bounded edge and thus built exactly one possibleC. The curveC contributes to the
count with weight(C1 · C2)h(e) · | detC̃1

(evM1∪N1)| · | detC̃2
(evM2∪N2)|. By Bézout’s theorem, each

choice ofC̃1 andC̃2 thus contributesd1 · d2 · | detC̃1
(evM1∪N1)| · | detC̃2

(evM2∪N2)|.

7. STRING AND DIVISOR EQUATION

In this section we prove two lemmas which deal with the case ofan extra end in a top-dimensional
intersection product that is restricted either by no condition at all (string equation) or by only a line
condition (divisor equation).
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Lemma 7.1(String equation). For tropical descendant Gromov-Witten invariants the following equality
holds:

〈τ0(0) · τ0(0)l · τ0(1)m ·
∏

k∈N

τrk
(2)〉d

=
∑

k∈N
rk>0

〈τ0(0)l · τ0(1)m · τrk−1(2) ·
∏

k 6=k′∈N

τrk′
(2)〉d

Proof. Choose incidence conditionsGj , Pk such that they are general for all the derived intersection
products

Z := (τ0(0) · τ0(0)l · τ0(1)m ·
∏

k∈N

τrk
(2))d,

Zk := (τ0(0)l · τ0(1)m · τrk−1(2) ·
∏

k 6=k′∈N

τrk′
(2))d

(note thatZ lives in Mlab
0,1+l+m+n(R2, d), whereas theZk lives in Mlab

0,l+m+n(R2, d)). Then 3.2 (a)
tells us that the products just consist of the set of curves fulfilling the incidence conditions and having
required valences, with the additional data of a weight for each curve.
Let C′ be a curve inZk. Then we obtain a curveC ∈ Z by attaching the additional end, sayx, to the
vertexVk at which the endk lies. Let us check that the weight ofC′ in Zk andC in Z coincide. As our
conditions are general,C′ lies in a facetσ′ of ψrk−1

k ·
∏

k 6=k′∈N ψ
rk′

k′ ·Mlab
0,l+m+n(R2, d) andC lies in

a facetσ of
∏

k∈N ψrk

k ·Mlab
0,1+l+m+n(R2, d)). Moreover, the map

ftx : Mlab
0,1+l+m+n(R2, d) → Mlab

0,l+m+n(R2, d)

forgetting the additional endx mapsσ Z-isomorphically toσ′ (the inverse is given by adding1 to Vk as
above). The evaluation mapsevk onσ are just obtained as pull-backsftx∗(ev

′
k), whereev′

k denotes the
corresponding evaluation map onσ′. Hence, the weights ofC andC′ coincide.
It remains to check that eachC ∈ Z is obtained in the above way fromC′ ∈ Zk for uniquek ∈ N .
Uniqueness is clear, as by 3.6 (b’) all endsk ∈ N lie at pairwise different vertices and hencex can not
be adjacent to more than one endk ∈ N . On the other hand, to show that it is adjacent to ak ∈ N with
rk > 0, it suffices to show thatx cannot be adjacent to a3-valent vertex. If it were, at least one of the
other two adjacent edges, sayE would be bounded (otherwise the abstract graph were not connected).
But then, we could change the length ofE (and accordingly the length of the other edge if necessary)
without changing the coordinates of the marked ends, which contradicts the fact that the set of curves
fulfilling our given conditions is finite by 3.2 (a).

�

Lemma 7.2(Divisor equation). For tropical descendant Gromov-Witten invariants the following equal-
ity holds:

〈τ0(1) · τ0(0)l · τ0(1)m ·
∏

k∈N

τrk
(2)〉d = d · 〈τ0(0)l · τ0(1)m ·

∏

k∈N

τrk
(2)〉d

Proof. First we choose general incidence conditions. Because of 2.10 we can assume that the line
conditions are all vertical lines, i.e. of typemax{x, 0}. Then for all curvesC in (τ0(1) · τ0(0)l · τ0(1)m ·
∏

k∈N τrk
(2))d we know that their weight is equal to| detC(ev)|, whereev denotes the product of all

evaluation maps (evaluation of thex-coordinate for all lines, both coordinates for all points)(theorem
5.3). Assumex is the additional marked end with line conditionG (but without Psi-condition).x has
to be adjacent to a3-valent vertex (see 3.6). Exactly as in lemma 6.6 we can see that | detC(ev)| =

(G · C̃)h(x) · | detC̃(evx)| whereC̃ is the curve we get when forgettingx (i.e. removing it fromC
and straightening the2-valent vertex) andevx is the product of all other evaluations. Thus any curve in
(τ0(1)·τ0(0)l ·τ0(1)m ·

∏

k∈N τrk
(2))d gives us a curve in(τ0(0)l ·τ0(1)m ·

∏

k∈N τrk
(2))d by removing
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the marked endx. Conversely, given a curvẽC in (τ0(0)l · τ0(1)m ·
∏

k∈N τrk
(2))d we can pick a point

p ∈ (G · C̃) and attach a marked end to get a curveC ∈ (τ0(1) · τ0(0)l · τ0(1)m ·
∏

k∈N τrk
(2))d. Since

(G · C̃) =
∑

p(G · C̃)p = d by tropical Bézout’s theorem ([RST03]), the statement follows. �

8. RECURSION

Now we sum up the results of the preceding sections to a certain WDVV equation. We also show in
this section that this WDVV equation together with the string and the divisor equation are sufficient
to show that the tropical invariants coincide with the classical ones. To distinguish our tropical in-
variants that we denote by〈τ0(0)lτ0(1)m

∏

k∈N τrk
(2)〉d from the classical ones, we use the notation

〈τ0(0)lτ0(1)m
∏

k∈N τrk
(2)〉alg

d for the classical invariants.

Theorem 8.1. The tropical descendant invariants as defined in 2.10 satisfy the following WDVV equa-
tion if r3 > 0:

〈τ0(1)m
∏

k∈N

τrk
(2)〉d+

∑

D · 〈τ0(0)τ0(1)τ0(1)m1

∏

k∈N1

τrk
(2)τ0(e)〉d1 · 〈τr3(2)τr4(2)τ0(1)m2

∏

k∈N2

τrk
(2)τ0(f)〉d2

=
∑

D · 〈τ0(0)τr3(2)τ0(1)m1

∏

k∈N1

τrk
(2)τ0(e)〉d1 · 〈τ0(1)τr4(2)τ0(1)m2

∏

k∈N2

τrk
(2)τ0(f)〉d2

where

D =
(d1!)

3 · (d2!)
3

d!3

and the sums range over all

e+ f = 2, e, f ≥ 0,

M1 ·∪M2 = M \ {2},

N1 ·∪N2 = N \ {3, 4} and

E1 ·∪E2 = E,E1, E2 6= ∅.

Here,E denotes the set of non-contracted ends, andE1 is subset of non-contracted ends such that each
of the standard directions−e1,−e2, e1 + e2 appearsd1 times.

The equation can be rewritten as

〈τ0(1)m
∏

k∈N

τrk
(2)〉d+

∑

〈τ0(0)τ0(1)τ0(1)m1

∏

k∈N1

τrk
(2)τ0(e)〉d1 · 〈τr3(2)τr4(2)τ0(1)m2

∏

k∈N2

τrk
(2)τ0(f)〉d2

=
∑

〈τ0(0)τr3(2)τ0(1)m1

∏

k∈N1

τrk
(2)τ0(e)〉d1 · 〈τ0(1)τr4(2)τ0(1)m2

∏

k∈N2

τrk
(2)τ0(f)〉d2

where now the sums range over all

e+ f = 2,

M1 ·∪M2 = M \ {2},

N1 ·∪N2 = N \ {3, 4} and

d1 + d2 = d, d1, d2 > 0.
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Proof. It follows from rational equivalence that

〈τ0(0)τ0(1)m
∏

k∈N

τrk
(2) ft∗(λ)〉d

=
1

(d!)3
deg





∏

j∈M

ev∗
j (Gj)

∏

k∈N

ev∗
k(Pk)ψrk

k · ft∗(λ) ·Mlab
0,1+m+n(R2, d)





does not depend on the choice ofλ ∈ M0,4. Thus we can pick a very largeλ1 on the ray12/34 of
M0,4 and a very largeλ2 on the ray13/24 and set the degree equal for those two values. Denote by

Z := deg





∏

j∈M

ev∗
j (Gj)

∏

k∈N

ev∗
k(Pk)ψrk

k · ft∗(λ1) ·M
lab
0,1+m+n(R2, d)



 .

We show that the left hand side of the above sum equals1
d!3 times the degree ofZ. Analogously one

can show that the right hand side equals1
d!3 times the degree of the analogous intersection product with

λ2, which finishes the proof. By theorem 5.3 we know that

Z =
∑

C∈S

|detC(ft× ev)| · C,

whereS is the set of curves inMlab
0,1+m+n(R2, d) satisfying the point and line conditions and mapping

to λ1 underft. LetF = (τ0(0)τ0(1)m
∏

k∈N τrk
(2))d, thenF is a one-dimensional cycle. Letσ be a

cone ofF corresponding to curves without a contracted bounded edge.Then lemma 4.4 says that the
image ofσ underft is bounded. Since we pickedλ1 to be very large, we therefore know thatσ cannot
contribute to the degree ofZ. Hence allC ∈ S contain a contracted bounded edge. Pick a curveC ∈ S,
then we know by 6.4 that we can cut the contracted edge thus producing two curvesC1 andC2 with an
extra marked ende.

If the degree ofC1, d1, equals0 then we know by 6.6 that

|detC(ft× ev)| = (G2 · C̃2)h(e) · |detC̃2
(evM2∪N2)|,

whereG2 denotes the line condition for the marked end2 andC̃2 denotes the curve that we get from
C2 by forgetting the additional marked ende. By 6.7 we know that each choice of̃C2 satisfying all
conditions inL2 ∪M2 ∪N2 = L ∪M ∪N \ {1, 2} contributesd · |detC̃2

(evM2∪N2)| possible curves
C (counted with weight). Thus the contribution toZ from curvesC such thatd1 = 0 equals

d ·
∏

j∈M\{2}

ev∗
j (Gj)

∏

k∈N

ev∗
k(Pk)ψrk

k ·Mlab
0,m−1+n(R2, d)

which by the divisor equation (7.2) equals
∏

j∈M

ev∗
j (Gj)

∏

k∈N

ev∗
k(Pk)ψrk

k ·Mlab
0,m+n(R2, d).

Multiplying by the factor 1
d!3 , we can see that those curves contribute

〈τ0(1)m
∏

k∈N

τrk
(2)〉d

to 1
d!3 degZ.

Now assume thatd1 > 0 and denote as in 6.2

Zi :=
∏

j∈Mi

ev∗
j (Gj) ·

∏

j∈Ni

ev∗
j (pj) ·

∏

j∈Ni

ψ
rj

j · [Mlab
0,li+ni+mi+1(R

2, di)].

Then we know by 6.4 that one of the following three cases hold:

(a) dim(Z1) = 0 anddim(Z2) = 2 or
(b) dim(Z1) = 1 anddim(Z2) = 1 or
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(c) dim(Z1) = 2 anddim(Z2) = 0.

We know by 6.6 that in the first case,

|detC(ev× ft)| = |detC1(evM1∪N1)| · |detC2(evM2∪N2 × eve)|,

whereeve now denotes the evaluation on both coordinates of the new marked ende. By 6.7 we know
that for each choice ofC1 andC2 satisfying the conditions we get exactly one possibleC. But by 5.3
we know that

Z1 =
∑

C1

|detC1(evM1∪N1)| · C1,

and analogously

ev∗
e(P ) · Z2 =

∑

C2

|detC2(evL2∪M2∪N2 × eve)| · C2,

Thus we get a contribution ofdeg(Z1) · deg(ev∗
e(P ) · Z2) to deg(Z), respectively

(d1!)
3 · (d2!)

3

d!3
〈τ0(0)τ0(1)τ0(1)m1

∏

k∈N1

τrk
(2)〉d1 · 〈τr3(2)τr4(2)τ0(1)m2

∏

k∈N2

τrk
(2)τ0(2)〉d2

to 1
d!3 degZ.

Analogously, we get a contribution of

(d1!)
3 · (d2!)

3

d!3
〈τ0(0)τ0(1)τ0(1)m1

∏

k∈N1

τrk
(2)τ0(2)〉d1 · 〈τr3(2)τr4(2)τ0(1)m2

∏

k∈N2

τrk
(2)〉d2

in the last case.

In the second case, we know by 6.6 that

|detC(ev× ft)| = (C̃1 · C̃2)h(e) · |detC̃1
(evM1∪N1)| · |detC̃2

(evM2∪N2)|

and by 6.7 we know that each choice ofC̃1 andC̃2 satisfying the conditions gives us

d1 · d2 · |detC̃1
(evM1∪N1)| · |detC̃2

(evM2∪N2)|.

Since

(fte)∗(Zi) =
∑

C̃i

|detC̃i
(evMi∪Ni

)| · C̃i

(wherefte denotes the map which forgets the marked pointe) and since

d1 · 〈τ0(0)τ0(1)τ0(1)m1

∏

k∈N1

τrk
(2)〉d1 = 〈τ0(0)τ0(1)τ0(1)m1

∏

k∈N1

τrk
(2)τ0(1)〉d1

and

d2 · 〈τr3(2)τr4(2)τ0(1)m2

∏

k∈N2

τrk
(2)〉d2 = 〈τr3(2)τr4(2)τ0(1)m2

∏

k∈N2

τrk
(2)τ0(1)〉d2

by the divisor equation we get a contribution of

(d1!)
3 · (d2!)

3

d!3
〈τ0(0)τ0(1)τ0(1)m1

∏

k∈N1

τrk
(2)τ0(1)〉d1 · 〈τr3(2)τr4(2)τ0(1)m2

∏

k∈N2

τrk
(2)τ0(1)〉d2 .

Finally, there are
(

d
d1

)3
choices of the setsE1 andE2 if we fix d1 andd2.

�
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Lemma 8.2. Choose strictly positive integersr, d such that1 + 3d− 3 + 2 = 2 + r. Then the classical
one-marked-point invariant〈τr(2)〉alg

d equals

〈τr(2)〉alg
d =

1

(d!)3
.

Proof. We use two (classical) WDVV equations ([FP95] or, more detailed but unpublished, [Ko]) with
four marked points. If we compute〈τ0(0)τ0(1)2τr(2) ft∗(λ)〉alg

d for the two special pointsλ = 12/34
andλ = 13/24 onM0,4, then we get

〈τ0(1)2τr(2)〉alg
d = 〈τ0(0)τr(2)τ0(2)〉alg

d

as illustrated by the following picture:

degree:

=

L L

R
2

L

LR
2

P, ψr

0 dd 0

P, ψr

For 〈τ0(0)τ0(1)τ0(2)τr−1(2) ft∗(λ)〉alg
d we get

〈τ0(1)τr−1(2)τ0(2)〉alg
d = 〈τ0(0)2τr−1(2)〉alg

d−1

as illustrated by

P, ψr−1

=

L

R
2

L

PR
2

0 d− 1d 1

P

degree:

P, ψr−1

Now, applying string and divisor equation where possible and plugging in the left hand side of the first
equation in the right hand side of the second equation produces

d3 · 〈τr(2)〉alg
d = 〈τr−3(2)〉alg

d−1.

Together with the initial invariant〈τ0(0)2τ0(2)〉alg
0 = 1, this proves the lemma. �

Lemma 8.3. Choose strictly positive integersr, d such that1 + 3d− 3 + 2 = 2 + r. Then the tropical
one-marked-end invariant〈τr(2)〉trop

d equals

〈τr(2)〉trop
d =

1

(d!)3
.

Proof. Choosing the single marked ende as root vertex, we getMlab
0,1(R

2, d) = M0,1+3d ×R
2 and the

two projections areft′ andeve. Recall that Psi-classes for parameterized curves are justpull-backs of
Psi-classes alongft. Using [AR07, 9.6], we get

〈τr(2)〉trop
d =

1

(d!)3
deg

(

(ft′(ψe))
r · eve(P ) · (M0,1+3d × R

2)
)

=
1

(d!)3
deg

(

(ψr
e ·M0,1+3d) × (P · R2)

)

=
1

(d!)3
,

where in the last step we usedeg(ψr
e · M0,1+3d) = 1 (cf. [KM07, 4.2]). �
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Theorem 8.4. Letd, l,m, n andrk, k ∈ N be positive integers withd > 0 such that

l +m+ n+ 3d− 3 + 2 = m+ 2n+
∑

k∈N

rk.

Then the corresponding tropical and classical descendant invariants coincide, i.e.

〈τ0(0)lτ0(1)m
∏

k∈N

τrk
(2)〉trop

d = 〈τ0(0)lτ0(1)m
∏

k∈N

τrk
(2)〉alg

d .

Proof. The tropical string, divisor and WDVV equations proved in the preceding sections are also ful-
filled by the corresponding classical invariants. Hence, wecan use these equations to reduce our invari-
ants to such ones for which we know or can prove that they coincide.
1. case:rk = 0 for all k ∈ N (i.e. no Psi-classes)
After applying string and divisor equation, we can assume that l = 0 = m. Using 5.3, we see that the
numbersI trop(d; 0, 0, n; 0) are equal to the numbersNd defined in [GM05, 3.4, 3.9]. It is well-known
that these numbers coincide with the classical ones (see [Mi03] and [GM05, 5.6]).
2. case: existsk ∈ N with rk > 0 (i.e. at least one Psi-class)
subcase I:n = 1
After applying string and divisor equation, we can assume that l = 0 andm = 0. The two last preceding
lemmas show that in this case the classical and tropical invariants coincide.
subcase II:n ≥ 2
After applying string and divisor equation, we can assume that l = 0 andm = 1. In particular, if
m = 0, we can use the divisor equation to add a line condition, which introduces a factor1d and
therefore leads to rational numbers. Then we can use both thetropical (see theorem 8.1) and the
classical WDVV equation ([FP95] or [Ko]) and express〈τ0(1)

∏

k∈N τrk
(2)〉d in terms of invariants

〈τ0(0)l′τ0(1)m′ ∏

k∈N ′ τr′

k
(2)〉d′ with n′ +

∑

k∈N ′ r′k < n+
∑

k∈N rk. Repeating this procedure, we
eventually end up withn′ = 1 (subcase I) orr′k = 0 for all k ∈ N ′, which is the 1. case. �

9. LATTICE PATHS

In this section, we present a lattice-paths algorithm to determine the numbers

〈
∏

k∈N

τrk
(2)〉d =

1

(d!)3
deg

(

∏

k∈N

ev∗
k(Pk)ψrk

k ·Mlab
0,n(R2, d)

)

i.e. numbers of curves with Psi- and point conditions (and noline conditions; all other numbers can be
easily computed using string and divisor equation). Note that in this case we need

3d− 1 = n+
∑

k∈N

rk

to get a zero-dimensional cycle.

We use the fact that if we choose general point conditions, the intersection product
∏

k∈N ev∗
k(Pk)ψrk

k ·

Mlab
0,n(R2, d) equals set-theoretically the set of all points corresponding to curves satisfying the Psi- and

the point conditions (see 3.3). Each such curveC has to be counted with weight, and it is counted with
the weight 1

d!3 | detC(ev)| (see theorem 5.3), whereev denotes the product of all evaluation maps (at
both coordinates). Note that no such curve can have a string since this would provide a deformation of
the curve described in the proof of 4.4, which contradicts 3.2 (a).

We pick a certain configuration of points and count dual Newton subdivisions of curves passing through
the points and satisfying the Psi-conditions. The dual Newton subdivisions are in fact dual to the image
h(Γ) ⊂ R

2 of the graph in the plane. In particular, the labels of the non-contracted ends are lost. That
means we have to count tropical curves without labels on the non-contracted ends, and then multiply
with the number of possibilities to set labels.
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There is a mapc : Mlab
0,n(R2, d) → M0,n(R2, d) which forgets the labels of the non-marked ends.

This map is a cover, the number of preimages is the number of ways to set labels. The biggest number
of preimages isd!3. However, not every point in a facet has this number of preimages: the curve in
M0,0(R

2, 2) pictured below has only 4 preimages, not 8, since the two endsin direction(−1, 0) are not
distinguishable.

R
2

LetC′ ∈
∏

k∈N ψrk

k ·Mlab
0,n(R2, d) and letC be the curve after forgetting the labels of the non-contracted

ends. Assume that the facetσ in M0,n(R2, d) in whichC lies hass preimages under the cover above.
ThusC has to be counted withs

d!3 | detC′(ev)|. Assume thatC hast verticesV1, . . . , Vt such that
bij non-contracted ends of the same direction−ej are adjacent toVi (wherej goes from0 to 2 and
e0 := −e1 − e2). ThenνC :=

∏t
i=1

∏2
j=0

1
bij !

= s
d!3 and we have to countC with νC | detC′(ev)|.

First, we want to understand this weight locally in terms of vertex multiplicities. We define another
weight that we denote bymult(C) and we show that it is equal toνC | detC′(ev)|.

Definition 9.1. Let C′ ∈
∏

k∈N ψrk

k · Mlab
0,n(R2, d) and letC be the curve after forgetting the labels

of the non-contracted ends. Define the weightmult(C) asνC times the product of the multiplicities of
those (necessarily 3-valent) vertices without any marked ends on them (see [Mi03], definition 2.16).

Example 9.2. Let C be the curve as in the picture below. (For this example, we chose some other
degree, notd, to keep the picture nice.) As in remark 6.5 we choose coordinates to write down an
explicit matrix forev. ChooseV to be the root vertex. Then the matrix ofev is









1 0 v1,1 0
0 1 v1,2 0
1 0 0 v2,1

0 1 0 v2,2









.

The absolute value of the determinant is equal to| det(v1, v2)|, which is the multiplicity of the3-valent
vertexV .

Γ

h

V

p2

x1

x2

p1

v2

v1

R
2

Lemma 9.3. LetC′ ∈
∏

k∈N ψrk

k · Mlab
0,n(R2, d) and letC be the curve after forgetting the labels of

the non-contracted ends. ThenνC | detC′(ev)| = mult(C) if C has no string.

Proof. We have to show that| detC′(ev)| equals the product of multiplicities of all3-valent vertices
without marked end.
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This is an induction on the number of bounded edges. Curves with no bounded edge satisfy
| detC′(ev)| =

∏

V mult(V ) = 1 (the product is empty). Curves with2 bounded edges (as the one
in the example 9.2) need to have the two marked ends at the two “outer” vertices, because otherwise
there is a string. So as in the example, there is one “interior” 3-valent vertex without a marked end, and
| detC′(ev)| is the multiplicity of the vertex.

Now we can assume we have 4 or more bounded edges. (The number of bounded edges is even,2n−2.)
We choose one such that there are still bounded edges on both sides of it. (If such an edge does not exist,
it means we have a “star-shaped” tropical curve with one vertex in the middle and all bounded edges
around. If one of those bounded edges was not adjacent to a marked end,C has a string, so we can
assume that all bounded edges are adjacent to a marked end. Ifthere is no marked end in the middle, we
then haveb+ 2 = 2b whereb is the number of bounded edges, sinceb+ 2 is the number of coordinates
of this cone, and2b is the number of coordinates of theb marked ends. Sob = 2 and we are in the
situation of the example. If there is a marked end in the middle, we haveb + 2 = 2b + 2 so b = 0,
so this curve has no bounded edge and counts one. Now we can assume we do not have a star-shaped
curve, and there is in fact a bounded edge with bounded edges on both sides.) Then we cut this edge
to get two curvesC1 andC2. Let Ii denote the subset of marked ends onCi and letei be the number
of non-contracted ends ofCi. We make the cut edge a new non-contracted end ofCi, soCi has in fact
ei + 1 non-contracted ends, one of them the special new end. Assume

#I1 ≤ e1 − 2 −
∑

k∈I1

rk,

then if we remove all the closures of marked ends (as in lemma 4.3) we get
∑

k∈I1

rk + #I1 + 1

connected components, which is less than or equal to
∑

k∈I1

rk + e1 − 2 −
∑

k∈I1

rk + 1 = e1 − 1.

So there must be a connected component which has two non-contracted ends ofC (not the new end of
C1). HenceC has a string, which contradicts the assumption. We have

#I1 + #I2 = n = 3d− 1 −
∑

rk = e1 + e2 − 1 −
∑

rk.

Therefore
#I1 = e1 −

∑

k∈I1

rk and#I2 = e2 − 1 −
∑

k∈I2

rk

without restriction. As in remark 6.5, we pick coordinates to write down an explicit matrix forev. C1

has
e1 + #I1 − 2 −

∑

k∈I1

rk = 2#I1 − 2

bounded edges. We pick the root vertex to be the boundary vertex of the cut edge inC1. We order the
basis elements such that the root vertex comes first, then thebounded edges inC1, then the cut edge,
then the bounded edges inC2. We order the basis ofR2n such that the marked ends inC1 come first
and then the marked ends inC2. Then the matrix ofev for C is a block matrix. The block on the top
left is just the matrix ofev for C1 — so by induction, the product of multiplicities of 3-valentunmarked
vertices ofC1. The top right block is0, because no marked end onC1 needs a bounded edge ofC2. The
bottom right block has the same determinant as the matrixev for C2, when we add a marked end on the
cut edge and make its end vertex the root vertex. So the determinant of this block is again by induction
the product of multiplicities of 3-valent unmarked vertices inC2. This proves the claim. �

Now we know that 1
(d!)3 deg

(
∏

k∈N ev∗
k(Pk)ψrk

k · Mlab
0,n(R2, d)

)

equals the number of all curvesC ∈

M0,n(R2, d) satisfying the Psi- and the point conditions, each counted with weightmult(C). We want
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to simplify this count even further: we do not want to count parametrized tropical curvesC = (Γ, xi, h),
but we want to count their images inR2.

Definition 9.4. LetC = (Γ, xi, h) ⊂
∏

k∈N ψrk

k ·Mlab
0,n(R2, d). In the imageh(Γ), some edges may lie

on top of each other. Mark each edge in the imageh(Γ) by a partition reflecting the weights of all edges
which map onto this image edge. The imageh(Γ) together with those partitions is called thelabelled
imageof C.

Example 9.5. The following picture shows a tropical curve and its labelled image.

(1, 1)
h

Γ

(1, 1, 1) (3)

R
2

Given a labelled image, there can be different possible parametrizations. Ambiguity may for example
arise if the labelled image comes from a parametrization that maps vertices on top of each other. We
could then also parametrize this labelled image with a graphwhere the two vertices are replaced by only
one. To avoid this ambiguity, we need a slightly more specialnotion of general conditions, which we
call restricted general conditions. This definition is cooked up in such a way that we exactly avoid all
ambiguity and make parametrizations unique.

Definition 9.6. A curveC = (Γ, xi, h) is calledsimple, if it satisfies:

(a) the maph is injective on vertices,
(b) if h(V ) ∈ h(e) for a vertexV and an edgee thenV is adjacent to an edgee′ which is mapped

on top ofe,
(c) if two edgese ande′ are mapped on top of each other, then they share a vertex,
(d) assumep ∈ R

2 is a point through which more than two edges pass. Divide the edges into
equivalence classes depending on the slope of the line to which they are mapped. Then we have
at most2 equivalence classes.

Definition 9.7. The subset ofR2n of restricted general conditionsis defined to be the subset of the
set of general conditions such that only simple curvesC ∈

∏

k∈N ψrk

k · Mlab
0,n(R2, d) pass through the

points (i.e. satisfyev(C) = (P1, . . . , Pn)).

Remark9.8. It is easy to see that the subset of restricted general conditions is still open and dense.
Points which are not restricted general admit a non-simple curve. Being not simple sums up to codimen-
sion 1 conditions, hence only the image underev of certain lower-dimensional subsets of

∏

k∈N ψrk

k ·

Mlab
0,n(R2, d) is not restricted general.

Lemma 9.9. Given a labelled image of a tropical curve through restricted general conditions, there is
exactly one abstract tropical curve(Γ, xi) and one maph parametrizing this labelled image and sending
the marked ends to thePi.

Proof. Clearly there is a parametrizationC = (Γ, xi, h) of the labelled image, we just need to show that
it is unique. Since thePi are general,C cannot have a contracted bounded edge. If it had a contracted
bounded edge, we could vary the length of this edge without changing the image, in contradiction to
3.2(a). Hence all edges can be seen in the imageh(Γ). Due to the conditions for being simple, we can
also distinguish the images of vertices and the images of alledges in the labelled image. Because of the
labels we know whether edges lie on top of each other. If thereare edges lying on top of each other, then
we know that they have to share a vertex. If there is a vertexV with two edges of the same direction,
it has to be more than 3-valent. If it was3-valent, then by the balancing condition the 3 edges would
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be mapped to a line. At least one of the 3 edges is bounded, and so we could change the length of this
edge (and accordingly the lengths of the other two edges, if necessary) without changing the image of
the curve. That contradicts 3.2(a). SinceV is more than3-valent, there must be a marked end adjacent
to it. It is not possible that2 (or more) of the pointsPi lie on a line with a direction that can be the
direction of an edge. Thus if we have two edges in the labelledimage on top of each other, there must
be exactly one adjacent vertex which passes through a pointPi. Thus we know that the edges have to
be connected at that vertex when we built the parametrization. �

Definition 9.10. LetC be a curve in
∏

k∈N ψrk

k · Mlab
0,n(R2, d) passing through restricted general con-

ditions. Draw a dual Newton subdivision to the imageh(Γ) and label the dual edges also with the
partitions belonging to the edges of the labelled imageh(Γ). This is called alabelled dual Newton
subdivision. Mark the polygons dual to vertices which are adjacent to a marked endxi. Those marked
polygons in∆d together with the partitions belonging to their boundary edges is called theset of dual
marked polygons ofC.

Example 9.11.The following picture shows the labelled dual Newton subdivision to the labelled image
from example 9.5. Next to it, we can see the set of dual marked polygons ofC.

(1, 1, 1) (3)

(1, 1)

(1, 1, 1) (3)

(1, 1)

Our aim is to count dual marked polygons to curves in
∏

k∈N ψrk

k · Mlab
0,n(R2, d). To do that, we have

to choose a special point configurationP as our condition. This configuration is chosen is such a way
that the set of dual marked polygons can be described as something like a generalized lattice path that
we call arag rug. We will now first introduce labelled lattice paths and rag rugs, and then show that
the count of rag rugs equals the count of labelled images of curves in

∏

k∈N ψrk

k ·Mlab
0,n(R2, d) passing

throughP (with weightmult(C)).

Let ∆d be the triangle with endpoints(0, 0), (d, 0) and(0, d). Fix λ to be a linear map of the form

λ : R
2 → R : (x, y) 7→ x− εy,

whereε is a small irrational number. Recall that a pathγ : [0, n] → R
2 is called a lattice path if

γ|[j−1,j], j = 1, . . . , n is an affine-linear map andγ(j) ∈ Z
2 for all j = 0 . . . , n. Forn = 1, . . . , n, we

call γ|[j−1,j]([j − 1, j]) astep(thej-th step) of the lattice pathγ. A lattice path is calledλ-increasing if
λ ◦ γ is strictly increasing. Letp := (0, d) andq := (d, 0) be the points in∆ := ∆d whereλ|∆ reaches
its minimum (resp. maximum). LetG be a line inR

2 orthogonal toker(λ). ThenG divides the plane
into two halfplanes. We will denote the upper one byH+ and the lower one byH−.

Definition 9.12. A labelledλ-increasing lattice pathin ∆ is aλ-increasing lattice path fromp to q such
that thek-th step is labelled by a partitionαk = ((αk)1, . . . , (αk)rk

) of the integer length of this step,
that is (αk)1 + . . .+ (αk)rk

= #(Z2 ∩ γ([k − 1, k])) − 1.

Remark9.13. Let δ be a labelledλ-increasing lattice path fromp to q whose image is contained in the
boundary∂∆ and whose steps are labelled with partitions consisting of only ones. All those paths will
be possible end paths for the recursion defining multiplicity. The following picture shows 3 examples
for ∆3.
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(1)

(1)

(1) (1, 1) (1, 1, 1)

(1)(1)

(1)

(1)

(1, 1)

(1, 1)

(1) (1)

γ1 γ2 γ3

Definition 9.14. We define thepositive multiplicityµ+ (resp.negative multiplicityµ−) of a labelled
λ-increasing lattice path recursively as follows:

(a) For a possible end pathδ as in remark 9.13 goingclockwisefrom p to q (resp.counterclockwise)
with n steps we defineµ±(δ) :=

∏n
k=1 1/(|αk|!), where|αk| denotes the size of the partition

of thek-th step (recall it has to be a partition with only ones as entries).
(b) For a labelledλ-increasing lattice pathγ which is not a possible end path, assume that thek-th

and thek + 1-th step form the firstleft (resp.right) corner of the pathγ. (If no such turn exists,
we defineµ±(γ) := 0.)

Define a finite set of lattice paths as follows:
• pick an integerr with 0 ≤ r ≤ min{|αk|, |αk+1|},
• pick a setS of r pairs

S =
{

[(αk)i1 , (αk+1)j1 ], . . . , [(αk)ir
, (αk+1)jr

]
}

such that the multiset{(αk)i1 , . . . , (αk)ir
} is a subset of the multiset{(αk)1, . . . , (αk)rk

}
and the multiset {(αk+1)j1 , . . . , (αk+j)jr

} is a subset of the multiset
{(αk+1)1, . . . , (αk+1)rk+1

}.
For eachl = 1, . . . , r, build a triangleTr,S,l with one edge of integer length(αk)il

and one
edge of integer length(αk+1)jl

(in the direction of thek-th resp.k + 1-th step). LetMr,S be
the Minkowski sum of all trianglesTr,S,l for l = 1, . . . , r, and edgeses in direction of thek-th
step of integer length(αk)s for all s which are not one of theil and edgesft in direction of the
k + 1-th step of integer length(αk+1)t for all t which are not one of thejl. Label each edge
E of Mr,S with a partition reflecting the integer lengths of edgeses, ft, and edges of triangles
Tr,S,l that contribute toE. Think of the polygonMr,S as sitting in the corner built by step
k andk + 1 of γ, and define a new labelledλ-increasing lattice pathγr,S by going the other
way aroundMr,S . If Mr,S does not fit inside the polygon∆, we defineµ±(γr,S) = 0. The
positive multiplicity of this new labelledλ-increasing lattice path is known recursively, because
it includes a smaller area with the possible end paths. We define

µ±(γ) =
∑

r

∑

S

Area(Tr,S,1) · . . . · Area(Tr,S,r) · µ±(γr,S),

(whereArea(T ) is the normalized lattice area, i.e. the area of the simplex with vertices(0, 0),
(1, 0) and(0, 1) is defined to be1).

Example 9.15. For the3 possible end paths from remark 9.13, we have multiplicityµ−(γ1) = 1,
µ−(γ2) = 1

4 andµ−(γ3) = 1
12 .

Example 9.16. The following picture shows an example of the recursion fromdefinition 9.14 to com-
pute the positive multiplicity of a labelled pathγ in ∆3. The first left turn is from step2 to step3. We
have3 choices forr: r = 0, r = 1 or r = 2, since both the partition of step2 as the partition of step
3 contain2 elements. No matter what we choose forr, there is just one choice for the setS (r pairs
consisting of all ones), since both partitions contain onlyones.

Forr = 0 andS = ∅,M0,∅ is a square of size2 which does not fit inside∆3. Therefore the multiplicity
of γ0,∅ = 0.
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For r = 1 andS = {(1, 1)},M1,S is a pentagon. The integer length of each new side is one. The new
side of direction(0, 1) is labelled by the partition(1), because it comes from the edgees in direction of
the2-nd step of integer length1 which is not one of theil in the set of pairsS. The new side ofM1,S

of direction(1,−1) comes with label(1), because it comes from a side of the triangleT1,S,1 of integer
length1. The side of direction(1, 0) comes from an edge of the3-rd step which is not part ofS, and
gets label(1) as well. The area ofT1,S,1 is one.

For r = 2, we haveS = {(1, 1), (1, 1)}, andM2,S is a triangle of size2 whose new side gets the label
(1, 1) because it comes from2 sides of the two trianglesT2,S,1 andT2,S,2. The area of both triangles
T2,S,1 andT2,S,2 is one.

The picture shows how the recursion goes on after the first step. The choices wherer = 0 for γ1,S or
wherer = 1 for γ2,S are left out because they yield to a path of multiplicity0. We end up with one path
of multiplicity 1 and one of multiplicity1

2 , soµ+(γ) = 3
2 .

(1, 1)

(1, 1)

(1, 1)

γ

(1, 1)

(1, 1)

(1, 1)

γ0,S γ1,S γ2,S

(1, 1)

Definition 9.17. LetF be a set ofn convex polytopesQ1, . . . , Qn inside∆ whose endpoints are lattice
points of∆ and whose boundary edgese are labelled by partitions. It is possible that a polygonQi is
1-dimensional, i.e. just an edge itself, then it has two partitions as labels, one for each outward pointing
normal vector. We callF a rag rugof the form(r1, . . . , rn) if the following conditions are satisfied:

(a) the (outside) labelαe of an edgee in the boundary of∆d is αe = (1, 1, . . . , 1),
(b) two polygonsQi andQj intersect in at most one point,
(c) boundary edges whose outward normal vector points intoH+ (starting atG) (with their cor-

responding labels) form a labelledλ-increasing lattice path fromp to q that we will denote by
γ+,

(d) boundary edges whose outward normal vector points intoH− (with their corresponding labels)
form a labelledλ-increasing lattice path fromp to q that we will denote byγ−,
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(e) the order of the polytopesQ1, . . . , Qn agrees with the obvious order given by the pathsγ+ resp.
γ−,

(f) the sum of the sizes of the partitions of the boundary edges ofQi is equal tori + 2,
∑

e|e edge ofQi

|αe| = ri + 2.

We define the multiplicityµ(F ) to beµ+(γ+) · µ−(γ−).

Example 9.18. The following picture shows a rag rugF of the form(2, 2, 0, 0) in ∆3, and the two
labelledλ-increasing lattice pathsγ+ andγ−. For all edges of integer length one, the corresponding
partitions are just(1) and we did not mark this in the picture. We haveµ+(γ+) = 3 andµ−(γ−) = 1

6 ,
soµ(F ) = 1

2 .

γ−

γ+HM

(1, 1, 1)

(3) (3)

(1, 1, 1)

Definition 9.19. Givend, n and numbers(r1, . . . , rn) we defineNrr(d, n, (r1, . . . , rn)) to be the num-
ber of rag rugs of form(r1, . . . , rn), counted with multiplicity as defined in 9.17.

Remark9.20. Note that this definition generalizes Mikhalkin’s lattice path count (see [Mi03]). Aλ-
increasing lattice pathγ from p to q is a rag rug of form(0, . . . , 0). We have to attach labels(1) to
each edge. The two pathsγ+ andγ− agree withγ. In the recursion for the lattice path count, we define
mult±(γ) depending on the multiplicity of two other pathsγ′ andγ′′. γ′ is the path that cuts the corner,
andγ′′ is the path that completes the corner to a parallelogram. In our definition, we can chooser = 0
or r = 1. For r = 0, we haveS = ∅ as only choice. The polygonM0,∅ is the parallelogram which is
equal to the Minkowski sum of the two steps of the corner. Forr = 1, we haveS = {(1, 1)} as only
choice, andM1,S is the triangle formed by the two steps of the corner. Since all partitions are just(1),
also the end paths have only those partitions, so that there is in fact only one end path, the pathδ±. It
has multiplicity1. Therefore our definition gives the same multiplicity in this case.

It is not true thatNrr(d, n, (r1, . . . , rn)) = 1
(d!)3 deg

(
∏

k ev∗
k(Pk)ψrk

k ·Mlab
0,n(R2, d)

)

, since we count
also reducible curves with the rag rugs.

We therefore have to modify the count and throw away the dual subdivisions corresponding to reducible
tropical curves.

Definition 9.21. Given a rag rugγ and the two corresponding lattice pathsγ+ andγ−, perform the
recursion to compute their multiplicity and keep track of the polygonsMr,S that the new pathsγr,S in
the recursion enclose withγ±. This way we end up with a set of labelled Newton subdivisions. We
call this the set ofpossible labelled Newton subdivisions forγ. The recursion allows us to assign a
multiplicity to a possible labelled Newton subdivision, sothat the multiplicity ofγ is equal to the sum
of the multiplicities of the possible labelled Newton subdivisions forγ.

Definition 9.22. Given a labelled Newton subdivision, draw a dual labelled image and then the unique
tropical curve mapping to this image. This is well-defined upits position inR

2 and the lengths of its
bounded edges. We say that the Newton subdivision isreducibleif the tropical curve mapping to a
dual labelled image isreducible(again, this does not depend on the choice of dual labelled image).
Otherwise, we say it is irreducible.

Remark9.23. It is possible to express the reducibility condition in terms of the Newton subdivision
itself and not in terms of the dual tropical curve. A labelledmarked Newton subdivision is reducible
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if and only if it admits a mixed subdivision where the marked polygonsQi remain unmixed (i.e. come
from sums of the formQi + v1 + . . . + vt, where thevj are vertices of the subdivision of thej-th
summand). For details, see [M08].

Definition 9.24. For a rag rugγ as defined in 9.17 define its irreducible multiplicitymult′(γ) to be
the multiplicity mult(γ) minus the number of possible reducible Newton subdivision (counted with
multiplicity). Givend, n and numbers(r1, . . . , rn) we sayN ′

rr(d, n, (r1, . . . , rn)) is the number of rag
rugs counted with their irreducible multiplicity.

Definition 9.25. Let Pλ = (P1, . . . , Pn) denoten restricted general point conditions on the lineG
orthogonal toker(λ) such that the distance betweenPi andPi+1 is much bigger than the distance
betweenPi−1 andPi.

Lemma 9.26. LetC ∈
∏

k ψ
rk

k ·Mlab
0,n(R2, d) with ev(C) = Pλ. Then the set of dual marked polygons

ofC is a rag rug of the form(r1, . . . , rn).

Proof. The polygonQi dual toPi is convex and has to satisfy
∑

e|e edge ofQi

|αe| = ri + 2,

whereαe denotes the partition belonging toe. This is true since the marked endxi ⊂ Γ is adjacent to
a vertex of valenceri + 3 and we can see all edges (except the contracted endxi) in the labelled image
(and thus in their labelled dual Newton subdivision, too). (Outside) labels of edges in the boundary of
∆d have only ones as entries, since the ends ofC are all of weight1. That the boundaries of those
polygons form labelledλ-increasing lattice paths follows analogously to [Mi03], 8.27 (or [Ma06], 5.48
for more details). �

Theorem 9.27.The numberN ′
rr(d, n, (r1, . . . , rn)) from definition 9.24 equals the intersection product

1
(d!)3 deg

(
∏

k ev∗
k(Pk)ψrk

k ·Mlab
0,n(R2, d)

)

= 〈
∏

k τrk
(2)〉.

Proof. To determine 1
(d!)3 deg

(
∏

k ev∗
k(Pk)ψrk

k · Mlab
0,n(R2, d)

)

, we can draw all labelled images of
tropical curves that pass throughPλ and count them each with their weightmult(C) which is νC

times the product of the multiplicities of non-marked vertices. We show that this count is equivalent to
counting irreducible possible labelled Newton subdivision for all rag rugs of the form(r1, . . . , rn).

The proof is a generalization of the proof of theorem 2 of [Mi03]. We know that eachC leads to a
rag rugγC as in lemma 9.26. Each rag rug yields a set of possible labelled Newton subdivision, with
multiplicity. We will show that for each such possible labelled Newton subdivision, there is a dual
tropical curveC throughPλ of the same weight. At the same time, we show that for each curveC
throughPλ, the dual labelled Newton subdivision is possible for the rag rugγC .

Let γ be a rag rug. The recursion forγ+ yields possible subdivision of∆d above the polygonsQi.
They correspond to the part of a tropical curve aboveG. Analogously, possible subdivisions forγ−
correspond to the parts of tropical curves belowG. From lemma 9.3 it follows that weight of a tropical
curve can be computed locally, so the weight ofC is equal to the weight of the part aboveG times
the weight of the part belowG. The same is true for the multiplicity of the dual Newton subdivision.
Therefore it is enough to show that for each subdivision above theQi, there is a dual part of a tropical
curve aboveG of the same weight, and that each part of a tropical curve aboveG is dual to a possible
subdivision above theQi. The corresponding statement for subdivisions below theQi and parts of
tropical curves belowG follows analogously, and thus the complete statement follows.

For each pointPi ∈ Pλ, draw edges emanating fromPi of directions dual to the boundary edges ofQi

and with the same partitions as labels. Draw a lineG′ inH+ parallel toG, such that the strip betweenG
andG′ encloses one intersection of the edges we have drawn throughthePi. This intersection of edges
corresponds to the first left turn of the pathγ+, since the distances between thePi are increasing. Let
us determine the possibilities how the tropical curve can goon at this point. We should think about both
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edges as a set of edges of weights given by the partition. Edges can either meet in a3-valent vertex, or
intersect. First, we pickr less than the smaller number of edges in a set to determine howmany edges
should meet in a3-valent vertex. Then we pick a set ofr pairs of weights to determine which edges
should meet in a3-valent vertex. The other edges intersect. The weight locally in the strip betweenG
andG′ is equal to the product of areas of triangles dual to the3-valent vertices because of lemma 9.3.
The dual polygon is the Minkowski sum of those triangles and the remaining edges which intersect.
Therefore the recursion for the multiplicity ofγ+ corresponds to the possibilities for a labelled image of
a tropical curve in the strip betweenG andG′ and keeps track of the weight. The end paths which do not
have zero multiplicity are exactly those dual to ends of direction(1, 1) and weight one. The multiplicity
of such an end path corresponds to the correction factorνC with which we have to divide the weight of
a tropical curve if more than one non-contracted end is adjacent to the same vertex. �

Example 9.28. The following picture shows how to count〈τ2(2)2τ0(2)2〉3 using rag rugs. The left
column shows all rag rugs of the form(2, 0, 2, 0) in the triangle∆3. The middle column shows the
possible Newton subdivisions for the rag rugs and their multiplicity. The third column shows sketches
of the dual tropical curves.

(1, 1)(1, 1)

(1, 1)

1

4

(1, 1, 1)

(2)

(3)

(1, 1)

1

1

2

1
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(1, 1, 1)

(2)

(3)

(1, 1)

(1, 1)

(1, 1)

(1, 1)
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1
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reducible,
a mixed subdivision
coming from
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