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TROPICAL DESCENDANT GROMOV-WITTEN INVARIANTS

HANNAH MARKWIG AND JOHANNES RAU

ABSTRACT. We define tropical Psi-classes MO,n(Rz,d) and consider intersection products of Psi-
classes and pull-backs of evaluations on this space. We atventain WDVV equation which is sufficient
to prove that tropical numbers of curves satisfying cerRsi and evaluation conditions are equal to the
corresponding classical numbers. We present an algortlatngeneralizes Mikhalkin's lattice path algo-
rithm and counts rational plane tropical curves satisfyiagain Psi- and evaluation conditions.

1. INTRODUCTION

Psi-classes); are certain divisor classes on spaces of stable curvedibe sﬂmpsﬁgm orﬁgﬂn(]P’T, d),
which arise as the first Chern class of the line bundle whose fiker a point(C, z1,...,2,) (or
(C,x1,...,24, f)) is the cotangent space 6fatz;. They are for example useful to count curves with
tangency conditions. To count curves that satisfy incigezanditions (e.g. pass through given points),
one defines evaluation maps on the space of stable maps)/, ,,(P", d) — P" that send a stable map
(C,x1,...,x,, ) tothe imagef (x;) of the marked point. Then we can pullback the conditions via the
evaluation map. Finally, we can intersect pullbacks of eation maps and Psi-classesih, ,, (P, d).
The degrees of such top-dimensional intersection produwetsalled descendant Gromov-Witten invari-
ants and have been studied in Gromov-Witten theory.

The aim of this paper is to define tropical analogues of rafidescendant Gromov-Witten invariants
in the plane and to show that, under certain assumptionsendigitribution of the Psi- and evaluation
conditions, they coincide with their conventional couptats.

To do so, we use the constructions of moduli spaces of abstratparameterized rational tropical
curves as tropical varieties and the definition of evalumtimps on the latter ones ([S$04], [GKMO07],
[Mi07]). Moreover, [Mi07] already defines Psi-classes oa #pace of abstract tropical curvs, ,,
and [KMO7] deals with their intersections. In this paper,dedine Psi-classes on the space of parame-
terized tropical curves. Together with the intersecticgotly of [Mi06] and [ARQT], we have all tools
to define descendant Gromov-Witten invariants. We showttieste invariants are independent of the
position and “type” of the evaluation conditions and thathulfill the string and divisor equation.
Then we show that the invariants also fulfill a certain WDV\atjon which can be used to determine
the numbers recursively. As the classical numbers fulfdlshme equations, it remains to compare the
initial numbers appearing in the recursion to show that thssical and tropical invariants coincide.
These results can only be achieved for invariants suchltlea®si-conditions come together with point
conditions, and not alone or with line conditions. Note thae should expect such restrictions as
we work with a non-compact moduli space that doesparametrize curves with components in the
“boundary” of R™. Hence the tropical descendant Gromov-Witten invariargsldferent from the clas-
sical ones in some cases, namely whenever tropical cure€'snassing” in the corresponding tropical
count. However, we show that this does not happen when Psiittans always come together with
point conditions.

To prove the WDVV equation we show that the weight of a curvannintersection product can be
computed locally as the determinant of a map (which basicalllects all evaluation maps) and then
proceed similarly td[GM0O5]. Finally, we present a tropialjorithm similar to Mikhalkin’s lattice path
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count ([Mi03]) to determine the numbers of rational plaraptcal curves passing through points and
satisfying Psi-conditions.

Our definition of tropical descendant invariants partlyesgr with Mark Gross’ definition which was
found independently in his study of mirror symmetily ([Gr09]

The paper is organized as follows. In sectidn 2, we recallesfants about tropical moduli spaces
and tropical intersection theory that we need. Then we dé&fsielasses on the space of parametrized
tropical curves and tropical descendant invariants. Itice@d we define what it means for incidence
conditions to be general and what consequences arise ftnopical descendant invariants if we choose
the conditions to be general. In sectidn 4, we show that evepjcal curve in an intersection product of
Psi-classes, point and line evaluati@msithe pullback of a point with a large coordinateAr, 4 under
the forgetful map contains a contracted bounded edge. Heusdpical curve can be interpreted as a
reducible curve by cutting it along this contracted bounelége. In sectiohl5 we show that the weight
of a tropical curve in a zero-dimensional intersection piciccan be computed using a determinant of
a linear matrix. We use this in sectibh 6 to show that the weddlropical curves with a contracted
bounded edge can be (almost) split into two factors cormedipg to the irreducible components. In
sectiorL¥, we show the string equation and the divisor eguédir our tropical descendant invariants. In
sectior 8 finally, we collect our results to prove that oupical descendant invariants satisfy a certain
WDVV equation, and we conclude that the tropical invariaarts equal to the corresponding classical
invariants that satisfy the same recursion. In sedfion 9deseribe an algorithm similar to the lattice
path count that determines tropical descendant invariants

We would like to thank A. Gathmann and M. Kerber for usefutdissions.

2. DEFINING THE INVARIANTS

First of all, let us briefly recall the constructions from [BR that we need here:

A cycle X is a balanced (weighted, pure-dimensional, rational arighedral) complex (resp. fan) in
R™. The top-dimensional polyhedra (resp. conesYiare calledacets the codimension one polyhedra
(resp. cones) are calleiiges The integer weights assigned to each facetre denoted by (o).
Balancedmeans that the weighted sum of the primitive vectors of thetkar around a ridge € X

Z W(U)UU/T

an(dim(X))
T<o

vanishes “modula™, or, precisely, lies in the linear vector space spanned,bgenoted by,. Here,
a primitive vectorv, /. of o modulor is a integer vector irZ." that points fromr towardso and
fulfills the primitive condition: The lattic&v, . + (V; N Z™) must be equal to the latticé, N Z".

Slightly differently, in [ARO7] the class of,, ,, moduloV; is called primitive vector and, /. is just a
representative of it.

For us, a polyhedrom is always understood to be closed. Tredative) interiorInt(c) is the topological
interior of o in its affine span (e.glnt({P}) = {P}). Thesupport ofX, denoted by X |, is the union
of all facets inX with non-zero weight.

A (non-zero) rational function oiX is a functiony : | X| — R that is affine (resp. linear) with rational
slope on each polyhedron (resp. cone). @hasor of ¢, denoted byliv(y) = ¢ - X, is the balanced
subcomplex (resp. subfan) df constructed in[JARO7, 3.3], namely the codimension oneetkel
X \ X (dimX) together with the weights,, () for each ridger € X. These weights are given by the

formula
wom) = Y w@eelve) —er( D wlohuor):
an(dim(X)) G’GX(dim(X))
T<0o T<o

wherey, : V, — R denotes the linear part of the affine functipfa.. Note that the balancing condition
of X aroundr ensures that the argumentof is an element of/;.. If ¢ is globally affine (resp. linear),
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all weights are zero, which we denote by X = 0. Let thesupport ofp, denoted by|¢|, be the
subcomplex ofX containing the points wherg is not locally affine. Then we have - X| C |¢|.
Furthermore, the intersection product is bilinear (SeeGAR3.6]). As the restriction of a rational
function to a subcycle is again a rational function, we cao dbrm multiple intersection products
o1+ ... - X. In this case we will sometimes omitX” to keep formulas shorter. Note that multiple
intersection products are commutative (See [AR07, 3.7]).

By abuse of notation, aycleis also a class of balanced fans with common refinement arebagy
weights. Arational functiony on such a class is just a rational function on aXanontained in the class.
We can generalize our intersection product to such claggeas| X] by definingy - [X] := [p- X]. In
the following, we try to avoid these technical aspects whkenpossible. We will also omit the brackets
distinguishing between fans and their classes, hopingitabnfusion arises.

A morphism of cycleX C R™® andY C R™isamapf : |X| — |Y]| that comes from a linear map from
7™ to Z™ and that maps each polyhedron (resp. coney afito one ofY". Such a morphisrpulls back
rational functionsy onY to rational functionsf*(¢) = ¢ o f on X. Note that the second condition
of a morphism, which is not required in [ARO07], makes surd tha do not have to refin& further.
f*(¢) is already affine (resp. linear) on each cone. Furthermoes;ampush forward subcycleg of
X to subcycles’.(Z) of Y. This is due to[[GKMOQF, 2.24 and 2.25] in the case of fans amdezssily
be generalized to complexes. We can omit further refinentertsif we assume thgt(o) € Y for all

o € X. Theprojection formula(see [ARQ7, 4.8]) connects all the above constructions via

F(f (@) - X) = ¢ fu(X).

Moreover, let us recall the basic facts of rational equivedeintroduced in[JARO7, section 8]. The
degreeof a zero-dimensional cycl& is just the sum of all weights. Hence the push-forward of a
zero-dimensional cycle preserves degreeX lis a one-dimensional cycle, ardis aboundedational
function, thendeg(y - X)) = 0 (see[[ARQY, 8.3]). The pull-back of a bounded rational fiorcts again
bounded. Two functions are calledtionally equivalentf they differ by the sum of a bounded and
a globally linear function. Hence (and by linearity of thdlgaack) rational equivalence is preserved
when pulled back.

An example for functions that are rationally equivalentiigeg by translations of functions dd™.

Lemma 2.1(Translations are rationally equivalent)eth be a rational function ofR™, choosey € R"
and consideh’ with 4/(z) := h(z + v). Thenh and”’ are rationally equivalent.

Proof. Let X be a subdivision oR™ on which# is a rational function. For each coaec X, let h, be
the linear part of the affine functidn . Take the maximum of the finitely mary, (v), o € X and call
it c. Now, X subdivides the line segment+ \v, A € [0, 1] into ¢ line segments of length; contained
in some polyhedrom;. This means:(z + v) can be expressed &$x) + ho, (Mv) + ... + ho, (Arv),
where) . \; = 1. Thisimplies

h(z 4+ v) — h(x) < e,

which proves thab’ — h is bounded. O

In the following, we will apply these constructions and fiesto the case of Psi- and evaluation classes
on the space of rational plane curves.

The tropical analogug ,, of the space of stable-marked curves is the space of trees, or (a quotient
of) the tropical Grassmanian ([SS04], [GKMO07], [Mi07]). Ghan abstract tropical curve is just a tree
with » marked ends and whose bounded edga® equipped with a lengtlie) € R~(. The fanM, ,,

is stratified by cones corresponding to combinatorial tygfasees. The facets correspond3twalent
trees.

The tropical analogué\, ,,(R?,d) of the space of stable maps has been studied in [GKM07]. An
element ofM, ,,(R?, d) is an abstract tropical cunie(i.e. a tree) together with a map: I' — R? such
that the image satisfies the balancing condition and marnkesl @e contracted to a point. An important
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feature of this definition is that it also allows to contraotinded edges, as it will happen in secfidn 4
and[®. If we furthermore also label tm®n-contractecends, we obtain the spa(ze{'(itjl(Rz, d). The
advantage of this space is that, after choosing the vertenemarked end as root vertex, we can identify
M'&?L(R% d) with M, 34 x R?, where the second factor describes the position of the rextéx in

R? (cf. [GKMOT7]). In particular, in this sensa/l'&EL(R?,d) is a tropical variety. For enumerative
purposes, its difference 91, ,,(R?, d) cumulates in nothing but a factd!)® by which each invariant
in M&%(RQ, d) must be divided to get the corresponding ongig ,,(R?, d). Note that, independent of
the choice of a root vertex, there exists a forgetful rftap /\/l'(i?l(RQ, d) — M,, ;34 forgetting just the
position of the image of a curve i>. This forgetful mapft’ : M2 (R?,d) — M,, 434 is @ morphism

of tropical varieties, as after choosing a root vertex aeiiying M@° (R?, d) with M,, 434 x R, ft/

is just the projection onto the first factor.

Analogues of Psi-classes on tropicel, ,, have been defined recently ([MiO7})y; withi = 1,...,n

is the codimension one subcycle that consists of conessgngling to trees where the marked énd

is at a4- or higher-valent vertex. How such Psi-classes intersedisicussed i [KMQ7]. To do so, Psi-
classes);,i = 1,...,n are defined as divisors of rational functiofison M, ,, cf. proposition
3.5]. As M, is simplicial, the functionf; can be defined by specifying its values on the primitive
vectors of the rays contained i, ,,. These rays are given by curves with only one bounded edge
splitting up the marked ends into two séts/.J = [n]. Letv;; be the corresponding primitive vector
and assume w.l.o.g.€ I, thenf; is defined by

|JI(J]=1)
(n—1)(n—-2)

Note that we denote by; a multiple of what is called; in [KMO7], such that we obtaidiv(f;) = ;.
We use these functions to pull back Psi-classest#, (R?, d).

filvrg) =

Definition 2.2 (Psi-classes for parameterized curvasyri = 1,...,n we definethei-th Psi-class on
MES (R, d) to bew; := div(ft™ ().

Remark2.3. It can be shown that two rational functions M'&EL(R?, d) (or My ) defining the same
divisor cycle only differ by the restriction of a globallynkear function. Hence, the choice of the func-
tions defining our Psi-classes is not really important foeisection-theoretic purposes. This justifies
that throughout our paper we use the specific fundtid(y;) to describa); and in particular define

wi Y = ftl*(fi) . K

whereY is an arbitrary subcycle of/l'g‘?l (R?,d). Note also that for our purposes we do not really need
that the function describing; is (nearly) unique. The only thing we need to know is contdiimethe
following lemma.

Lemma 2.4(Products of Psi-classes)etr, ..., r, be positive integers and let
X =[] v - ME%(R?,d)
k=1

be a product of Psi-classes. Théhis the codimensior)-, r;-subfan of M (R?, d) consisting of
coneso corresponding to trees such that for each vertéxve haveval(V) = K(Iy) + 3, wherely
denotes the set
Iy = {k € [n] : endz is adjacenttoV} C [n]
and K (I) is a short notation for< (1) = >, ., 7x. The weight ot equals
[y K(Iv)!

2O =
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Proof. Choose a root vertex and identuyl'(ikjl(RQ, d) with Mg ,, 134 x R2. Thenft’ is just the projec-
tion on the first factor and we can apply [AR07, 9.6], i.e. @t of intersecting the pull-backs of tlig
on the product, we can just intersect theon the first factor and then multiply witR?. Thus,

X = (H i 'MO,n+3d> x R2,

k=1
where here);, denotes a Psi-class ity ,,+34. Butin the case of non-parameterized curves, itis proved
in 4.1] that the valence of the vertices and the weigiftthe facets satisfy the formulas of the
statement. Multiplying witfiR? does not disturb this, as the weigh®f is one and as the combinatorics
of a curve remain unchanged und€r O

Remark2.5. In particular the preceding lemma says thiatconsists of those curves whose marked
end: is adjacent to an at leagtvalent vertex (where bounded edges as well as marked exdsoam
contracted ends count towards the valence).

Later on, we will also use thirgetful map
ft : MRZ(RQ, d) — Mo,

which forgets the map of a given cur¢eto R? and all its ends but the first four marked ends (it also
“stabilizes”, which means that, after forgetting one markad, it replaces all two-valent vertices by
straight edges while adding up lengths).

Lemma 2.6. The forgetful mayt : M (R?,d) — My 4 is a morphism of cycles.

Proof. Let ft,, : My, — My —1 be the forgetful map that just forgets tixth end of ani-marked
non-parameterized curve. It is shown[in [GKMO07, 3.9] tigtis a morphism for all integers > 4.
As mentioned above, the mdg is a morphism, too. Thus, the statement follows from the fdem
ft = ft50...0ft, oft’. O

Moreover, we use thevaluation maps
ev; : /\/llo‘a’t,)l(RQ, d) — R?

assigning to a curv€ the position of its-th marked end. It is shown i [GKM07, 4.8] that these maps
are also morphisms of cycles. Along these morphisms we willgack lines and points.

Definition 2.7 (Lines). A line G is a one-dimensional cycle iR? that is the divisor of a tropical poly-
nomial of degree one. In other words, lines are divisorsarighations of the functionsiax{z,y, 0},
max{z, 0}, max{y, 0} or max{z,y}.

max{z,y,0} max{z, 0} max{y, 0} max{z,y}
Lines of typemax{z, y,0} are also callethon-degenerated

We would like to pull back lines and points along an evaluatisapev;. However, up to now, pull
backs are only defined for functions, not for cycles. Of cepvge can choose rational functions cutting
out the line resp. point in question and pull them back irttda the following lemma we will show
that, for our purposes, the choice of describing functidaggno role.
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Notation2.8. We use the following notation: We have a total number-efm + n marked ends, which
are subdivided into the three sdis&) M UN = {1,...,l+m + n}, such thafL| = I, |M| = m and
|N| = n. In the following, the ends € L are unrestricted, the endse M are restricted by line&
(sed 2.7) and the endls= N have to meet point&},. Furthermore we fix numberg, k € N describing
how many Psi-classes we requiréiat N.

Lemma 2.9. Consider the intersection product
Z =[] evi(G)) [] evi(Po)vys - MES,,,.,. (R, d),

jeM keN
whereev’ (G;) stands forev’ (k) with a functionk cutting outG; andevy (Py) stands forevy (A1) -
evy(h2) with functionh,, ho cutting outP,. ThenZ is well-defined, i.e. it does not depend on the
chosen rational functions.

Proof. Letev := ev; be an evaluation map ardbe a line. First we check that the intersection product
ev*(G) - M{i?erJrn(RQ, d) does not depend on the rational function descrilfihgChoose the vertex
of the endi as root vertex and identify 125, . (R?, d) with Mo i mynt3a X R% Thenev is just the
projection onto the second factor. By [AR07, 9.6] we deduce

ev’ (G) ’ (M07l+m+n+3d X R2) = MO,l+m+n+3d x G,

which shows independence of the describing function.
Now letX = p1-...- ¢, -/\/l'(itl‘erJrn (R?, d) be a cycle given by arbitrary rational functiogs, . . . , ;..
Then, by commutativity of the intersection product, theleyc

ev'(G)- X =¢1...- ¢ ev'(G) -./\/ll(ikl)erJrn(RQ,d)

is also well-defined. The same arguments work if we consigiat P instead ofGG. But this suffices
to conclude inductively that the big intersection prodécis also well-defined. Moreover note that
the same argument also shows that our choice of the fungtidascribingy; does not matter in this
intersection product. O

We are now ready to define our tropical descendant Gromotelibvariants.
Proposition and Definition 2.10. Letd, I, m,n andry, k € N be positive integers such that
l+m+n+3d—3+2=m+2n+ Y 7 (1)
keN

Then we define thizopical descendant Gromov-Witten invarig (0)'70(1)™ [T, x 7ri (2))a to be
the number

m 1 * * Id
<7—0(0)l7—0(1) H Try (2)>d = W deg H ev; (Gj) H evy (Py) [ 'Ml(i?+m+n(R2, d)
kEN jeEM kEN
As indicated by the notation, this number only dependg,énn, n, r;, k € N, but noton the lines5;
and the points;,.

Proof. LemmdZ.1L says that we can move around our points and linésaaitig, namely by translating
the describing functions, without changing the degreeeritains to show that the type of the lines does
not matter, for example the type 6f. We will show thatev;(G1) - F does not depend on the choice
of the lineG, for a one-dimensional cyclg, where

F= H evi(G)) H ovi (Pt - M3, (R, d)
jeEM\{1} keEN

To see this, we have to use lemmal 3.7 which requires genemditims and therefore is stated and
proven in the next section of this article. It states that.(F') has only standard outer directions
—e1, —eg ande; + eo. Knowing this, we push forwarelvi (G,) - F viaevy, which does not change the
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degree and use the projection formula(JARO7]). It tellshag¢vy.(evi(G1)-F) = G1-evi.(F). Now,
asevi,(F) has only standard outer directions (at least for generaditions, which we can assume),
any line intersectsv.(F') in the same number of points, not depending on the type. Natdemma
[3.7 does not care about the types of the lines appearing praokict of . Thus we can apply the above
argument inductively and see that the types of all li6escan be changed arbitrarily without changing
the degree of the intersection product. O
Remark2.11 The dimension of the space({, . (R?,d) = Mo minsi+sa X R?iS1+m+n+
3d — 3 + 2 since a3-valent tree withm + [ 4+ n + 3d ends ha$ + m + n + 3d — 3 bounded edges. The
codimension of the intersection of Psi-classe} Js. ,, 7+. The pullback of a line has codimension
and the pullback of a point codimensidnHence the requiremerifl (1) is equivalent to-dimensional
expected dimension of the intersection.

Notation2.12 We will use ther-notation in a more general meaning: A product

( H Tr; (CZ)) d
iel
(with round brackets) stands farcycle in/\/l'(il"ﬂ (R?%,d), obtained as the intersection product where we
replace the-th factorr,,(¢;) by ¥;" ev*(C;). Here,C; is some pointP; if ¢; = 2, some lineG; (of
some type) ift;; = 1 and the whole spadg? (which means you can omit this pull-back)if= 0; thus
¢; describes the codimension ©f. If (Hiel Trs (Ci))d is zero-dimensional, we denote, as before, by

1
(L7 (e)a = gz des (] (@)
el iel
the degree of the product above divided (@§)®. Note that a factor,(0) can not be dropped in this
notation as it stands for a marked end that does not have tbangeondition at all.

Remark2.13 Later on, we will also allow the factdit™(\) in this notation, where\ is an element
in My 4 andft*(\) stands for the pull-back of a rational function @, 4 describing\. Two such
functions differ by an affine one, and so do the pull-backsndéethe intersection product containing
ft*(\) as factor is still well-defined.

3. GENERAL INCIDENCE CONDITIONS

The invariants defined [n 2,110 are well-defined also for “&d&mcidence conditions, e.g. if we choose
all pointsP; to coincide. In this case theetof curves fulfilling the conditions is of too big dimensiomutb
our intersection theory ensures that the correspondirggettion product still has the correct dimension
and degree. However, many of the following arguments sijjuire a notion of “general incidence
conditions” that ensures that our intersection producaésfine set-theoretical count of curves fulfilling
the incidence conditions (up to weights).

Let us start with the case of pulling back a single lindih Let X be a subcomplex QM'(?EL (R2%,d),
let f : X — R? be a map that is the restriction of a linear map (e.g. morphigka f = ev;) and let
G be aline inR?. Let f~1(G) be the subcomplex ok containing all polyhedra N f~1(4) for all
o € X and¢é € G (wherej denotes a cone in the polyhedral compléx Recall that the interior of a
polyhedronint(s) denotes its topological interior in its affine span.

Lemma 3.1. There exists a open dense suliget R? such thatfow € U and a translatiorG’ := G+v
of G, it holds:

(@) The subcomplex—1(G") is either empty or of pure codimensibin X .

(b) The interior of a facet of ~!(G’) is contained in the interior of a facet of .

(c) For an element in the interior of a facet off ~!(G’), the imagef (C) lies in the interior of a
facet ofG.
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Proof. Leto be afacet ofX andd a one-dimensional polyhedron@f Consider the mapo f,, where
f» : Vo — R?is the extension of |, to V,, andq : R? — R?/Vj is the quotient map. This composition
has either rank (in which caseker(q o f,) has codimension one i, ; hence, for a general translation
§" of §, the polyhedronr N f~1(&') is either empty or of codimensionand intersecting the interior
of o) or has rank (theno N f=1(4’) is empty for a general translation &f of §). As there are only
finitely many pairss, 6, the set of vectors € R? such that these statements are true simultaneously is
still open and dense. But note that all facets'of (G’) can be obtained in this way for some paiji.
This shows part (a) and (b).

Furthermore, let € R? be the vertex oy (if G is of typemax{x, y,0}). Applying the same argument
to VV shows that for a general translatidh := V + v, the preimagef —1 (V') has at least codimension
2, which proves partc). O

Definition 3.2. Let Z be an intersection product of the for[, . ; 7, (c;))a With incidence conditions
C;. DefineX := [[,c; ¢ -M'&k"ﬂ(RQ, d). We call the conditiongeneralif the following holds:
(a) The subcomple¥ of X containing all point”' € X fulfilling ev;(C) € C; has dimension
dim(S) = dim(2).
(b) The interior of a facet of' is contained in the interior of a facet &f.
(c) The interior of a facet of S maps to the interior of a facet 6f; underev;.
(d) Any intersectiorC; N Cj, 4, j € I has expected codimension+ c;.

Remark3.3. Let S be the subcomplex oX containing all the curve§’ € X fulfilling ev,(C) € C;.
Note that” is a subcomplex of. This follows from the facts that the support of an intergecproduct

is contained in the support of the intersecting rationaktfiom and that the support of a pull-back is
contained in the preimage of the support of the pulled-baciction. Note that in general we have
S = Z (as sets) ifdim(S) = dim(7) is satisfied, the only thing that can happen in principle &t th
there are facets of which get0 as a weight in the intersection product, although they aret&ofS.
For the intersection products we work with, this cannot teapghough, since we only have a weight
of 0 if the setS is of higher dimension (see sectibh 5). Hence for us the émdd conditions being
general implies thdtZ| equals the set of curves satisfying the incidence conditianddeg(Z) equals
the number of curves satisfying the conditions, countet witight.

Lemma 3.4. The set of general conditions in the space of all conditiantsi¢h can be identified with
some bigR" collecting all the translation vectors) is open and dense.

Proof. The set of conditions fulfilling_3]2 (d) is obviously open affehse. The remaining follows from
recursively applying 311 t& andev,, thenX Nev; ' (C;) andevs, and so on. More precisely,df = 0
we have nothing to do in this step,df; is a line, we applf 311, and &; is a point, we appliZ3]1 twice
for two lines intersecting set-theoretically in the singt@nt C;. O

Remark3.5. We also consider the following case: L¥tbe al-dimensional subcycle OM'&%(RQ, d)
and consider the forgetful madp: M (R?, d) — Mo 4. We call\ € Mo 4 generalif A ¢ ft(X (©)U
/\/l((fi, whereX (%) denotes the vertices of and/\/lé?zl denotes the single vertex 8fl, 4. This ensures
that all points inft |;<1()\) lie in the interior of a one-dimensional polyhedronf

The following lemma describes the combinatorial type of theves which satisfy general incidence
conditions.

Lemma 3.6. Let Z be an intersection product of the forfw, (0)!79(1)™ [T,.c 5 7 (2))a With general
conditions. Then

(b") ForacurveC in the interior of a facet the following holds: All ends= M U N lie at different
vertices and the valence of a vertexjs+ 3 if k € IV is adjacent to it and otherwise.
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Proof. Because of remafk 3.3 we know théatc S. In addition, condition 312 (a) says thatand S
have the same dimension and therefore (b) and (c) also hotaifees in the interior of a facet &f.

Let C be in the interior of a facet of. Condition[3.2 (d) implies thatv,;(C) # ev;(C) for all
i€ MUN, j € N, as in this cas€; N P; is empty. Ifi, j € M would lie at the same vertex this
would induce either a contracted bounded edge (which cdictsa3.2 (a)) or valence greater thaiof
this vertex (which contradicfs 3.2 (b)). Hence all ends\inu N must lie at different vertices. The
statement about the valence of the vertices follows fron{(k8.2nd the description of in[Z4. O

As a first application of our notion of general conditions vanaow prove the lemma which we
promised and needed in the independence statémemt 2.10.

Lemma 3.7. Let F' be a one-dimensional cycle of the fo(m (0)70(0) 70(1)™ [T .c n Tr (2))a With
general conditions. Let denote the marked end corresponding to the first fagg¢d). Then all of the
unbounded rays of the push-forward,.(F") have standard directionse;, —e; ande; + es.

Proof. Let o be a facet ofF". For a curve in the interior of two possibilities can occur: Either is
adjacent to a higher-valent vertex. Ther{byl 3.6 also arkeadV interpolating the poinf?, lies at this
vertex. Thereforegv, (o) = evi (o) = {P:}.

Secondly,z might be adjacent to &-valent vertex. Since: itself is contracted, the two other edges
which are adjacent are mapped to lines with opposite doedtiecause of the balancing condition).
That means locally the image looks like a straight line whih inarked poink(x) on it. We can deform

a curve ino in a one-dimensional family (thus coveriag by changing the length of the two adjacent
edges and thus making the pofntz) move on the line. This movement is unbounded if and only if
one of these two edges is an end. But thep(o) points to the same direction as this end, which is by
definition one of the standard directionsfor O

4. CONTRACTED EDGES

Let F be a one-dimensional cycle of the formy (0)!7o(1)™ [T, 5 7. (2))a With general conditions.
Remember that this implies thdt| equals the set of curves satisfying the conditions.

Notation4.1. We fix the type of the first four ends in the sense that we assvone fiow onl € L,
2 € M and3,4€ N.

As before we denote bfy the forgetful magt : M'(ikl’+m+n(R27 d) — M4, which forgets the embed-
ding and all ends but the first four marked ends. It is the aithisfsection to show that for a very large
M, s-coordinate), the curves inft~*(\) N F (i.e. curves with such a larg#1, 4-coordinate) must
contain a contracted bounded edge. We will use the conttédctended edge in sectibh 6 to split such

curves into two components.

Definition 4.2. Let C be a curve inM[§?+m+n (R?,d). For two different marked ends, i, we denote
by S(i1,12) the smallest connected subgrapltoéontainingi; andi, and call itthe string ofi; andis.
Such a stringS (i1, i2) is calledmovableif i1,i, € L U E, whereE denotes the set of non-contracted

ends, and ifS(iy, i2) does not intersect (the closure) of dnjor k € N.

Lemma 4.3. LetC be a curve in the interior of a facet @f. ThenC contains a movable strin§.

Proof. We knowdim(F) = 1, codim(F) = m + 2n + Y,y 7% anddim(M@& . (R?,d)) =

I 4+m+n+ 3d— 3+ 2. Plugging in all this indim(F) + codim(F) = dim(M@&b,  (R? d)) leads
to
I+3d=n+ Y r+2
keN
On the other hand we can compute the number of connected ecanfsoofl’ \ |, v k: Removingk
increases the number of connected componentg byl as the valence of the adjacent vertex;st+ 3
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by[3.8. So, after removing all ends, we arrive at +n+ ), _ 7 connected components. The above
equation tells us that there is one more end in £ then there are connected components and therefore
at least two ends,, i» € L U E lie in the same component. Hen8éi4, i2) is a movable string. [

By construction all vertices of a movable string are 3-valen

Lemma 4.4. Leto be a facet off’ such that the corresponding interior curves dot contain a con-
tracted bounded edge. Then the image oihderft is bounded.

Proof. Let C be a curve in the interior of. We will deformC' in a one-dimensional family inside.
Sinceo is one-dimensional itself, this family covers By lemma4.B there exists a movable strifig
in C. In the following, we show that either is bounded (i.e. the deformation 6fis bounded) oft is
constant orr (i.e. the deformation of’ does not affectt).

Let V' be a vertex inS. We callV degeneratedf we can deformC' one-dimensionally locally around
V,ie.if

(a) either one of the adjacent edges is a marked end,,

(b) or one of the adjacent edges is a marked grdM and the linear spans of the corresponding
line G; atev,;(C) and of the other two edges adjacenit@oincide (i.e. if the curvé&’ and the
line G do not intersect transversally at; (C')),

(c) orall edges adjacent 10 are non-contracted, but their span n&as still only one-dimensional;
w.l.0.g. we denote the edge alone on one sid¥ &y v and the two edges on the other side by

V1, V2.
(a) (b) (c)
[ J
/ /
/ /
v / [ v ! v U1 v
1 ® 2 1 2

Gj V2

If such a degenerated vertex exists, thdimensional deformation of the curves insiglés given by
moving this vertex and changing the lengths of the adjacgegaccordingly. We show that this move-
ment is either bounded or, if not, the changed lengths donfloienceft.

Consider the cases (a) and (b) andletv, be the two other edges adjacenitoAt least one of the two
edges, says, is bounded. Then the movement is unbounded only i unbounded. But, cannot
be contracted, as then would also be contracteau(d bounded). But this means thatforgetsv, and
therefore also the length of .

Now consider the case (c). The balancing condition saysv; + vy (by abuse of notation we denote
the direction vectors by the same letters as the edges)hwiijzarticular implies that is not primitive
and hence the edgehas to be bounded. Now again, if we require the movemeVittofbe unbounded,
v1 andve must be unbounded. But they are also non-contracted whiemsnthatt forgets them and
the length ofv.

So we are left with the case that all verticesfre non-degenerated. We can still describe the de-
formation of the curves inside using the movement of the string: Take one of the ends of tirgyst
(which is necessarily non-contracted) and move it sligintly non-zero direction modulo its linear span.
Consider the next verteX and letv be the adjacent edge not contained in the string. Then twgshi
can happen:

If v is non-contracted (case A), our moved end will meet the affpan ofv at some poin (asV is
non-degenerated). So we change the lengthsafch that it ends aP (while keeping the position of its
second vertex fixed). Then we also move the second edge dfithgt® P and go on to the next vertex.
If v is contracted (case B), our assumptions ensure that it isrkech@&nd;j € M and that the corre-
sponding lineGG; intersects our curve transversallylat Thus our moved edge will again me&t at
some point and by changing the lengths of the adjacent eggesyariately, the obtained curve will still
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meetG);.

case A: case B:

In this way we can make our way through the string and finalbaioba deformation of the whole curve.
Note that the non-degeneracy of all the vertices ensureésthadges of the stringwustchange their
positions modulo their linear span and, hence, that all @ddg@cent to, but not contained in the string
mustchange their length. In particular this means we cannot hawe non-contracted ends adjacent
to our string: Then we would have two different strings pding two independent deformations of the
curves insider, which is a contradiction as is one-dimensional.

Let us summarize: Our string is generated by two unique non-contracted endé, all of its vertices
are3-valent and the adjacent edges not contained in the strengitirer bounded or marked endshif,
where the corresponding lir@; intersects transversally. The deformation only moves tiiegsS; the
adjacent edges are shortened or elongated and the othgropaine curve remain fixed. We want to
show that, even if the movement is unbounded, the considetgg-coordinate is bounded.

If there are bounded edges adjacenstto both sides of5 as in picture (a) below then the movement
of the string is bounded. (This is true because if we move titiegsto either side, we can only move
until the length of one of the adjacent bounded edges shtmkg So we only have to consider the
case when all adjacent bounded edgeS afe on the same side 6f say on the right side as in picture
(b) below. Label the edges df (respectively, their direction vectors) by, ..., v, and the adjacent
bounded edges of the curve by, ..., w,_1 as in the picture. As above the movement of the string to
the right is bounded. If one of the directiomg, ; is obtained fromw; by a left turn (as it is the case for
¢ = 1in the picture) then the edges andw;,; meet on the left of5. This restricts the movement of
the string to the left, too, since the corresponding edge then shrinks to length.

S
V4 w3
wa
ol w1
@) (b) (d) (e)

So we can assume that for althe directiomwu;; is either the same as; or obtained fromw; by a
right turn as in picture (c). The balancing condition theawgs that for alli both the directions; ; and
—w;+1 lie in the angle between; and—w; (shaded in the picture above). Therefore, all directions
and—uw; lie within the angle betweem, and—w;. In particular, the image of the strirf§ycannot have
any self-intersections iR2. We can therefore pass to the (local) dual picture (d) whezestiges dual
to w; correspond to a concave side of the polygon whose other tgyesaare the ones dual i@ andvy, .

But note that there are no such concave polygeitis integer verticesf the two outer edges (dual to
vy andwy,) are two of the vectors:(1,0), £(0,1), £(1, —1) that can occur as dual edges of an end of
a plane tropical curve of degrele Therefore the string can consist at most of the two endmdis
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that are connected to the rest of the curve by exactly onedsxiadger; . This situation is shown in
picture (e).
In this case the movement of the string is indeed not bourmlétktleft. Note that them; is the only

internal edge whose length is not bounded. But by our assangadt, 3 and4 cannot lie onS but must
lie on the other side af);; hence its length does not influenite This finishes the proof.

O

5. COMPUTING WEIGHTS

In this section we prove that the weight of a curve in a zeroetisional intersection product can be
computed as the (absolute value of a) determinant of thadimap that basically collects all the eval-
uation morphisms (and forgetful morphism if present). Wl wsge this to express the weight of a
reducible curve (in the sense that it contains a contracteddbed edge) in terms of the weights of the
two components.

The following statement connects intersection products determinants.

LetV = R ® A be a real vector space of dimensienith underlying latticeA and lethy, ..., h, €
AV be linear functions om\ resp. V. By H : V — R" we denote the linear map given by+—
(h1(z),...,hy(x)). Choose lattice bases afandZ™ and consider the matrix representatiorfbfvith

respect to these bases. Obviously, the absolute value deteeminant of this matrix is independent of
the choice of bases; hence we denote if &yt (H)|.

On the other hand, we can consider the rational functigns max{h;,0} onV. To do so, we givé’
the fan structure consisting of all cones on which eagcls either positive or zero or negative. These
rational functions form a zero-dimensional intersectiooduct, which obviously consists of on{y)}
with a certain weight.

Lemma 5.1. The weight of 0} appearing ing,, - ... - 1 - V is equal to| det(H)|.

Proof. Let us first assume thag, . . ., h,, form a lattice basis of " with dual basisii, ..., .
We computep, - V': For each ridge of V' (with the fan structure described above) there exists aueniq
j such that- C hj. Then there are two facets containingwhereh; is positive resp. negative) and the

corresponding (representatives of the) primitive veoaamesfzj resp. —ﬁj. Therefore the weight of in
the intersection produgt; - VV can be computed as

wwl (T) = max{hl(hj), O} + max{hl(—hj), O} = hl(hj) + 0= hl(hj)
Hence, when omitting cones with weighty; - V' consists of all cones contained/ig and all weights
arel. Now we can apply induction ohl2|h%, cee hn|h% and conclude thap,, - ... - 1 - V produces
{0} with weight1.
On the other hand, the matrix representatiorfiofvith respect to the basifsl, ceey h,, for A and the
standard basis fd£" is just the unit matrix. Hencedet(H)| = 1, which proves the statement in the

special case.
General case: For general, .. ., h,, we can choose a lattice basis. . ., [, of AV such that
hi = ail,
hy = az1li + azzals,
h, = amlll + ...+ amnl,“
where theu, ; are integers. Then we gedet(H)| = |det((a; ;)| = |a1,1 - - - an,nl-
On the other hand, let us compute that- ... - ¢1 - V produces{0} with weight|ai 1 - ... - an nl.

We saw in the special case thatx{l;,0} - V is I~ with weight1. The above equations tell us that
max{hi,0} = |a1,1]-max{l1,0}. Using the linearity of the intersection product, we dedtheg, - V'
is [{- with weight|a; ;|. Now we apply induction om again: After restricting all functions th-, we
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can omit all termsy; 1/; in the above equations (in particular we can omit the firsta¢ign). Hence
we can apply our induction hypothesis and conclude ¢ghat . .. - 2 - I~ produces{0} with weight
laga « ... annl. Hence,p, - ... o+ (p1 - V) = lata] - @n - ... - @2 -l = {0} with weight
|a171~...-an_,n|. D

With this tool we can express all weights occurring in a zéirmensional intersection product in terms
of absolute values of determinants.

Notation 5.2 Let Z be a zero-dimensional intersection product of the fofm(0)'7o(1)™
[Tien 7 (2))a or of the form(ft* () - 79(0) 70(1)™ [T,c 5 7 (2))a With general conditiorG; and
P, (and ), resp.). The set of curve$ that fulfill the incidence conditions set-theoreticallyfisite
by[3.2 (a). For simplicity, let us furthermore assume thapelnts P, = (p1,p2) are described by
the rational functionsnax{z, p; } andmax{y, po} on R? and that all lines7; are vertical, i.e. of type
max{x, 0} (i.e. are given by a rational functianax{x, ¢; }). A can be described hyiax{xz, A}, where
x is the coordinate of the ray in whose interiolies (se€35).

DenoteX := [], oy 5" - M'g;{?l(R?, d). We then consider the morphisms
ev: X — R™x (R?",

¢ ((evﬂ'(c)z)jeM’(evk(c))kez\/)’
respectively

foxev: X — MogxR™x (R?)",
C ((ft(C),(er(C)m)jeM,(er(C))keN)a

whereev;(C), denotes the first coordinate of the paint C' € R?. Thus, these morphisms evaluate at
eachend € MU N and keep all coordinatesife N and only the first coordinate ife M.

Let C be a curve in the interior of a facetof X (and withft(C') not being the vertex aM 4). Then

ev (resp.ft x ev) is affine in a neighborhood @ and we definddetc (ev)| (resp.|detc (ft x ev)]) to
be|det(H)|, whereH is the linear part oév (resp.ft x ev) atC.

Theorem 5.3. The zero-dimensional intersection produc{as in notatioi 5.2) can be computed as

7 = Z |dete(ev)| - C,
cesS
resp.
7Z = Z |dete(ft x ev)| - C,
ces
i.e. the weight of a curv€' € Z is just|detc(ev)| (resp.| detc (ft x ev)]).

Proof. EachC € Z is contained in the interior of a facetof X (sed 3.2 (a)). I 214 the weight ofin
X was computed to be
!
W(U) = 7HVnK(IV) .
[Tz !
But we know froni3.5 that no two marked ends lie at a commorexaahd hence

| 7, if kis adjacenttd/,
K(lv) _{ 0 otherwise.

Therefore we can cancel the fraction defining) down tol.

As the computation of the weight @f is local, we can replac& by V := R - o. On the other hand,
locally aroundC, all the pull backs alongv andft are of the formmax{a, ¢}, wherea is an affine
function onV andc is a constant. To be more preciseis exactly one of the coordinate functions of
ev (resp. ft x ev). Now, up to translations and subtracting constant ternesare in the situation of
E1: The weight ofC equals the absolute value of the determinant of linear iiaphose coordinate
functions are the linear parts of the affine functiansThus H is the linear part otv (resp. ft x ev)



14 HANNAH MARKWIG AND JOHANNES RAU

on V, and we can conclude that the weight@fin Z is precisely|det(H)| = |detc(ev)| (resp.
= | dete(ft x ev)]). O

Remark5.4. If we dropped the requirement that Psi-conditions are olibwad at marked ends that
are also restricted by a point condition, we could still gr@formula similar to the above one: For a
zero-dimensional intersection product of arbitrary Paid avaluation classes, the weights can still be
computed as the absolute value of an appropriate deteritimas the weight of the corresponding facet
in X. In particular, this shows that such weights are alwaystipesias well as the degree of the product.
Hence, whenever classical descendant Gromov-Witteniaarare negative (e.qﬁu)m(z)ﬁ"g =
—1), we have an example of classical invariants thahdbtcoincide with their tropical counterparts as
we define them.

6. SPLITTING CURVES

Now we want to think of curves with a contracted bounded edgeeducible curves. We do that
basically by cutting the contracted bounded edge. We hagbdw that the weight of the cun@ is
(almost) the product of the two weights of the two curves #ree after cutting. We use the description
of weight in terms of determinants from sectidn 5.

Notation6.1 As in sectioi## we assumee L, 2 € M and3,4 € N. Additionally we require from
now onL = {1} (i.e. the marked end is the only “free” end) and; > 1 (i.e. the marked end is
restricted by at least one Psi-class).

Let Z be a zero-dimensional cycle of the foitit* (A) - 70(0)7o0(1)™ [T,.c x 7 (2))a With general con-
dition G; andP; and)\, as inb.2. LeC € Z.

Construction6.2 AssumeC satisfying| detc (ev X ft)| # 0 has a contracted bounded edgeCut the
bounded edge, thus producing two marked ends. In this way we get two cué@eandCs that both
have a new marked end in the placecol et L;, M; andN; be the subsets df, M and N of marked
ends inC;. Letl;, m; andn; be the sizes of these subsets. tLgbe the degree af’;. Denote by

EVM;UN; H 1/);] ’ [Mloa:z+ni+mi+l(R23di)] - RmiJrQni

JEN;
the map that evaluates the first coordinate for the poinfg/jrand both coordinates for the ends/if
(as in5.2). Denote by

eve: [ 05 IMED g1 (R d)) — R

JEN;
the evaluation at at both coordinates, and ljyv. ). the evaluation at the first coordinate. Denote by
C; the curveC; where we remove the marked endnd straighten th-valent vertex which appears.
Let

Zii= I ev;(G) - T evi(Pe) - v - IMED s omos (RZ, )]
JEM; kEN;

denote the corresponding intersection products.

Notation6.3. We pullback a general point € M 4 (i.e. not the vertex) via the forgetful médp :
M%fhmm(RQ, d) — My 4. There are3 types of such general points, corresponding to3tiypes of
abstract tropical curves with marked ends. The endsand2 can be together at a vertex, or the ends
1 and3, or the endd and4. We use the following short notation: fif(C) is in the ray corresponding
to the type wheré and2 are together at a vertex, we séyC) = 12/34 (and analogously in the other
cases).

Lemma 6.4. Let C' be as in construction 6.2 and stick to the notations fromehéf ft(C) = 12/34
(then {1} = Ly, sol; = 1 andi, = 0), then eitherd; = 0andL; U M; U Ny = {1,2},0rd;,ds > 0
and there are3 cases to distinguish (of which the first and last are symmetri
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(@) dim(Z;) = 0 anddim(Z3) = 2,
(b) dim(Z;) =1 anddim(Z;) =1, or
(c) dim(Z;) = 2 anddim(Z3) = 0.

If ft(C') = 13/24 thend;, d2 > 0 and the analogous cases are to distinguish.

Proof. If there were two contracted edges, then all evaluatioasXi. + m coordinates) would depend
onlyonl+m+n+3d—3—>r, = m+ 2n — 1 coordinates, so we g¢tletc(ev x ft)| = 0.
So we can assume now there is only one contracted bounded e@gecee has to count towards the
M 4-coordinate to satisfydetc(ev x ft)| # 0, 1,7 C L1 U My U Ny andk,l C Ly U My U Ny if
ft(C) = 15 /kl.

Let us first consider the case where one ofdfigis zero. This implies that all edges of the correspond-
ing curveC; are contracted. As we cannot have more contracted boundgs &d is a star-shaped
curve containing only a single vertdk. But[3.8 states that the ends3,4 € M U N all lie at dif-
ferent vertices. Thus the casés = 0,{t(C) = 13/24 andds, = 0 cannot occur, whereas in the
remaining casel; = 0,ft(C) = 12/34 the single verte¥” must be3-valent which is the same as
LiUM; UN, ={1,2}.

Let us now assumé, d; > 0. It remains to show thatim(Z;) + dim(Z3) = 2 which follows since

=3dy — Z T —mi — 2ny + 3ds — Z TE — Mo — 2N
k€N k€N
=3d — Zrk—m—2n22
kEN
where the last equality follows sincgis zero-dimensionaland th@d—3» ", _ \ e —1 = m+2n+1. O

Remark6.5. In the following, we will choose bases in order to write downexplicit matrix represen-
tation for the magev x ft or ev locally on a cone. For a cone of M[® (R?, d) corresponding to a
combinatorial type (i.e. an abstract grapkwithout length) together with all direction vectors) welpi
aroot vertexy of I and choose the coordinates of the pdifit’) € R? to which this vertex is mapped
as two coordinates. The remaining coordinates afe given by the lengths of the bounded edges. For
the space®? or R that describe our incidence conditions locally, we chobsestandard basis vectors.

It follows from remark 3.2 of [GMOB] that the absolute valudlme determinant does not depend on any
of the choices we make.

Lemma 6.6. Let C be as in constructiof 6.2 and stick to the notations fromehéirft(C) = 12/34
andd; = 0 we want to showdetc (ev x ft)| = (Ga - Ca)u(e) - | det, (evar,un,)|. For the other three
cases from lemnia8.4 we want to show:

(a) | detc(ev X ft)| e | d~etcl~(eleuN1)| . | detc2 (eszuN2 X eve)|,
(b) |detc(ev X ft)| = (Ol : CQ)h(e) . |det(51 (eleuN1)| : |det6:2 (evM2uN2)|, or
(c) | detc(ev X ft)| e | detc, (eleuNl X eve)| . | detc, (evM2uN2)|.

Proof. For all cases, note first that the matrix|efetc (ev x ft)| has a column with only zeros except
onel. This is the column corresponding¢o Sincee is contracted, it is not needed for any evaluation.
But it is needed for théM, 4-coordinate, so it has zeros excefitia theft-row. We can delete this row
and column without changing the absolute value of the detemt. Call the matrix with the deleted
row and columrA. Then| det(A)| = |detc(ev X ft)].

Now let ft(C') = 12/34 andd, = 0, it follows L; U M; U N; = {1,2}. We want to show that the
boundary verteX¥” of e in Cs is 3-valent, too. Assume it is not, then there has to be a markeavith

a Psi-condition adjacent t. But this marked end is iV and thus required to meet a point. This is

a contradiction, since the point is not on the line that required to meet (cf_3.2 (d)). So let and

es be the two other edges adjacentifoand assume first that both of them are bounded. Denote their
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common direction vector (up to sign) by= (v, v2) and their lengths bi(e;), [(e2). Assume that the
root vertex is on the;-side ofe. Then the entries of the matrix corresponding té(e;) andi(ez) are

| evaluation at. .. | 1(e1) l(e2)
2 (1 row) vy 0
points reached via; from2 (1 or 2rows)| 0 0
points reached viay, from2 (1 or 2 rows)| v v

We see that after subtracting the:)-column from thel(e;)-column we again get one column with
only one non-zero entry;. So for the determinant we get as a factor, dropping the corresponding
row and column (which means removiagnd straightening th&-valent vertex), so we getlet(A)| =

vy - |detg, (evanun, )| = (Cy - G2)n(e) - | detg, (evar,un,)|. Essentially the same argument holds if
one of the adjacent edges — say— is unbounded: in this case there is onlylén )-column which
has zeroes everywhere except in the 2imew where the entry is;.

Next, letdim(Z;) = 0 anddim(Z2) = 2. Denote byu, the dimension of

H d’zk ’ M})ﬂ)li+mi+ni+1(R2’ dl)’

kEN;
that is,

a; =3d; +1; +m; +n; +1— Z rr — 1.
kEN;

Sincedim(Z;) = 0 we havemn; + 2n; = a7 and sincelim(Z;) = 2 we havems + 2ny = as — 2. Let
the boundary verte¥X of e in C, be the root vertex fo€'. Choose the following order of coordinates:
start with the root vertex, then bounded edge€'in next bounded edges . Start with the marked
ends inC; and then add the marked end<ip. Then the matrix4 is in block form: because the points
on Cy need only the root vertex and the bounded edge§ 9fthey need the first; = m; + 2n,
coordinates, and haweafter that. So there is@block on the top right, and the top left is just the matrix
of evar,un, atCy. So|det(A)| = | dete, (evarun, )| - | det(B)| whereB denotes the lower right box.
Consider the matrix ofv,z,un, X eve atCsy, and let the root vertex be the boundary vertex of Cs.
Then this matrix has two more rows and columns tiamamely the root vertex columns and the rows
corresponding tev.. But since these two rows start witl2a< 2 unit matrix block and have zeros after
that, we can see thatlet(B)| = | dete, (evanun, X eve)l.

The third case is symmetric. Finally, assudiey(Z;) = 1 anddim(Z,) = 1, i.e.mq +2n; = a1 — 1
andms +2no = as — 1. First we want to show that the two verticeseadre3-valent. Assume the vertex
in C1, V, is not3-valent, then there must be a marked eémdth a Psi-class adjacent 16. But this end
isin IV then, so it is required to meet a poiRt € R2. Sincedim(Z;) = 1 we can move’; locally in
al-dimensional family such that all incidence conditions stit defined. LetC] be an element of this
family. SinceC] has to meeP; as well, we can glu€’] to C5 thus producing a curv€' in Z. This is a
contradiction since the dimension &fis 0.

Since the argument is symmetric it follows that both verioée are3-valent. Denote the two edges
adjacent te in Cy by e; ande, and the two edges i@'; adjacent ta by e3 andey. Assume first that
all of those edges are bounded. Let the boundary véfteke in C; be the root vertex fo€'. Then the
matrix A reads:

lengths inC} lengths inCs

root (a; —4cols) I(e1) l(e2) l(es) l(es) (az — 4 cols)
(2n1 + m, | ends behind; | I * v 0 0 0 0
rows) ends behind, | I * 0 —-v 0 0 0
(2n9 + mo | ends behinds | I 0 0 0 w 0 *
rows) ends behind, | I 0 0 0 0 —w *

wherel, is the2 x 2 unit matrix, and« denotes arbitrary entries. Now addimes the root columns
to thel(ez)-column, subtract th&(e;)-column from thel(es)-column and thé(e4)-column from the
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l(e3)-column to obtain the following matrix with the same deteranit:

lengths inC} lengths inCy

root (a3 —4cols) I(er) | l(e2) I(e3) l(es) (az — 4 cols)
(2n1 +m;y | ends behind?; | I, * v 0 0 0 0
rows) ends behindz, | I * 0 0 0 0 0
(2n2 + mo | ends behind®s | I, 0 0 v w 0 *
rows) ends behindz, | I 0 0 v w o —w *

Note that this matrix has a block form with a zero block at iy tight. Denote the top left block (of
size2n; +my =2+ a1 — 4+ 1) by A; and the bottom right (of siz2ns + mo = 3 + ay — 4) by A,
then|det(A)| = | det A; - det As|.

The matrix A4, is precisely the matrix for the evaluation mepy, yn, Of Ch (which arises from’
after forgetting the marked end corresponding)td we choose the other vertex ef as the root vertex.
Hence| det A;| = [det (evar,un,)|. In the same way the matrix for the evaluation me&gy,u, of
C,, if we again forget the marked end corresponding &md now choose the other vertexagfas the
root vertex, is the matrixd/, obtained fromAs by replacingy andw in the first two columns by the first
and second unit vector, respectively. Butis simply obtained fromd’, by right multiplication with the

matrix
VoW 0
0 0 Iapyy2

which has determinanlet(v, w). So we conclude that
|det Ag| = [det(v,w)| - | det Ay| = (C1 - Ca)p(ey - [det s, (evar,uns)|-

O

Remark6.7. The following “converse” of lemmBa 6.4 and leminal6.6 is als®trFor each choice of
Cs satisfying all conditions bu2 and each choice of an intersection poin(bfwith G5 we can add a
contracted bounded edge and the two marked én2l®n the other side to built exactly one possible
C'. The curveC then contribute$Gs - éQ)h(e)| det, (evar,un,)| to the count. By Bézout's theorem

(IRST03]), each choice af’, contributesls - |detg, (evanun,)| = d - | detg, (evanun,)l-

For each choice of’; satisfying the conditions i, U M; U N; and each choice af; satisfying the
conditions inLs U M> U N5 plus in addition the conditioh(e) = p we get exactly one possibig by

gluing the two curves along This curveC' contributes to the count with weighdletc, (evars, un, )| -

| dete, (evarun, X eve)| (and the other way round).

For each choice of; andCs satisfying the conditions if,; U M; U Ny and L, U My U N» and for
each choice of point® € C, andQ e C, that map to the same image poinfRA we can glueP andQ
along a contracted bounded edge and thus built exactly osstpeC'. The curveC contributes to the
count with weight(C1 - C2) ) - | dets, (evar,un, )| - | detgs, (evar,un, )|- By Bézout's theorem, each

choice ofCy andC, thus contributes!; - ds - | et (evar,un, )| - |detgs, (evar,un,)|-

7. STRING AND DIVISOR EQUATION

In this section we prove two lemmas which deal with the casaméxtra end in a top-dimensional
intersection product that is restricted either by no cooditt all (string equation) or by only a line
condition (divisor equation).
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Lemma 7.1(String equation) For tropical descendant Gromov-Witten invariants thedwling equality
holds:

(10(0) - 70(0)" - 70 (1)™ - T 7 (2))a

keN

= (0 )™ 712 [ ()
ke k#k €N

Proof. Choose incidence conditiorts;, P, such that they are general for all the derived intersection
products

Z = (10(0) - 70(0)" - 1o ()™ - T 7 (2))as

kEN
Zi = (10(0) - o)™ - 71 (2) - [T 70 (2))a
k#k/ €N
(note thatZ lives in M3, . (R? d), whereas theZ; lives in M@, . (R? d)). Then32 (a)

tells us that the products just consist of the set of curvidliig the incidence conditions and having
required valences, with the additional data of a weight &mtecurve.

Let C’ be a curve inZ,. Then we obtain a curv€ € Z by attaching the additional end, sayto the
vertexV,, at which the end: lies. Let us check that the weight 6f in Z,, andC in Z coincide. As our

conditions are general}’ lies in a facet’ of ¢;* " - [iswen Uit - M 1,1, (R, d) andC lies in
afaceto of [T,y " - ME%, 11, 4n(R?,d)). Moreover, the map

fts : Ml(ili+l+m+n(R2a d) — Ml(itl)+m+n(R27 d)

forgetting the additional end mapso Z-isomorphically tas’ (the inverse is given by addinigto V}, as
above). The evaluation maps;, ono are just obtained as pull-backs..(ev},), whereev) denotes the
corresponding evaluation map eh Hence, the weights @' andC’ coincide.
It remains to check that eacll € Z is obtained in the above way froff € Z; for uniquek € N.
Uniqueness is clear, as by B.6 (b’) all erids N lie at pairwise different vertices and hencean not
be adjacent to more than one éné N. On the other hand, to show that it is adjacent foea N with
r, > 0, it suffices to show that cannot be adjacent todavalent vertex. If it were, at least one of the
other two adjacent edges, saywould be bounded (otherwise the abstract graph were noteobed).
But then, we could change the lengthif(and accordingly the length of the other edge if necessary)
without changing the coordinates of the marked ends, whictradicts the fact that the set of curves
fulfilling our given conditions is finite bly3]2 (a).

O

Lemma 7.2(Divisor equation) For tropical descendant Gromov-Witten invariants thedwling equal-
ity holds:

(ro(1) - 70(0)" - 7o ()™ - J] 70 (2))a = d - (70(0)" - 70 ()™ - [T 7. (2))a

keEN keN

Proof. First we choose general incidence conditions. Becau§eldf ®e can assume that the line
conditions are all vertical lines, i.e. of typeax{z,0}. Then for all curve€ in (7o(1) - 7o(0)" - 7o (1)™ -
[1ren 7 (2))a we know that their weight is equal {eletc (ev)|, whereev denotes the product of all
evaluation maps (evaluation of thecoordinate for all lines, both coordinates for all poinsleorem
E.3). Assumer is the additional marked end with line conditiéh(but without Psi-condition)z has

to be adjacent to 8-valent vertex (see_3.6). Exactly as in lemma 6.6 we can s#d dtc(ev)| =
(G- C“)h(m) - |detg(ev,)| whereC is the curve we get when forgetting (i.e. removing it fromC
and straightening th2-valent vertex) andv . is the product of all other evaluations. Thus any curve in

(70(1)-70(0)" 70 (1)™ [ T1en Tr (2))a gives us acurve iy (0)'- 70 (1)™ T Tj.c  7re (2))a by removing
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the marked end. Conversely, given a cun@ in (o(0)" - 7o(1)™ - [1ren 7 (2))a we can pick a point
p € (G- C) and attach a marked end to get a cutve (7o(1) - 79(0)" - 7o(1)™ - [Iren 74 (2))a- Since
(G-C)=3,(G-(C), = dby tropical Bézout's theoreni ([RST03]), the statemeribfus. O

8. RECURSION

Now we sum up the results of the preceding sections to a neW&lVV equation. We also show in
this section that this WDVV equation together with the giramd the divisor equation are sufficient
to show that the tropical invariants coincide with the dlesisones. To distinguish our tropical in-
variants that we denote biy, (0)'79(1)™ [T,.c y 7 (2))a from the classical ones, we use the notation

(10(0)! 70 (1) TThen Tra (2))9 for the classical invariants.

Theorem 8.1. The tropical descendant invariants as definedInR.10 setiief following WDVV equa-
tion if r3 > 0:

(ro(1)™ TT 7 (2))at

keN

ZD ’ <T0(0)T0(1)T0(1)m1 H Try, (2)T0(e)>d1 ’ <TT3 (2)TT4(2)TO(1)m2 H Try, (2)70(f)>d2

kEN; kEN,

=Y D ()7 2)r(1)™ T 7 @mo(e)ar - (o7, 2)10()™ T 70 (2)70(f))as

kEN, kEN>

where

_ (d)? - (do)?
b= d'3
and the sums range over all

e+f=2ef>0,
MyU My =M\ {2},
NiUN; =N\ {3,4} and
E\UEy =E FEy,Es # 0.

Here, E denotes the set of non-contracted ends, Bnds subset of non-contracted ends such that each
of the standard directionse;, —es, e1 + e appearsd; times.

The equation can be rewritten as

(ro(1)™ TT 7 (2))at

kEN

> O™ [T m@m0(@)d - (7 @2)70, 2)70()™ T 70 (2)70(f))as

kEN, kEN,
=Y (1O @) (1)™ ] me@m0(e)ar - (ro(W)rrs(2)70(1)™* TT 700 (2)70(£)) e
kEN, kEN>

where now the sums range over all

e+ f=2

My UMy = M\ {2},
NiUN; =N\ {3,4} and
dy +do =d,dy,ds > 0.
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Proof. It follows from rational equivalence that

(r0(0)70(1)™ TT 70 () 6" (N))a

keN

keN

1
‘@FM(H“W”H“ﬂW%Hw»w@MMwm>
' jeM

does not depend on the choice)ofe M, 4. Thus we can pick a very large on the rayl2/34 of
M, 4 and a very large\; on the rayl3/24 and set the degree equal for those two values. Denote by

Z = deg (H ev;(Gj) H evi(Pe)pk - ft* (A1) .Ml(ilhme(R?’d)) .

JjEM keN

We show that the left hand side of the above sum qu}glﬁmes the degree of. Analogously one
can show that the right hand side equg}gtimes the degree of the analogous intersection product with
A2, which finishes the proof. By theordmb.3 we know that

7Z = Z |dete(ft x ev)| - C,
ces
whereS is the set of curves iM'&LmM(RQ, d) satisfying the point and line conditions and mapping
to A; underft. Let F = (70(0)70(1)™ [[,cn 7 (2))a, thenF is a one-dimensional cycle. Letbe a
cone of F corresponding to curves without a contracted bounded etigen lemm#& 414 says that the
image ofo underft is bounded. Since we picked to be very large, we therefore know thatannot
contribute to the degree &f. Hence allC' € S contain a contracted bounded edge. Pick a cahe S,

then we know by 614 that we can cut the contracted edge thasipirg two curve€); andCs, with an
extra marked end.

If the degree of”y, dy, equal®) then we know by 616 that
|detc(ft X ev)| = (GQ . é?)h(e) . |detc~2 (evM2uN2)|,

whereG, denotes the line condition for the marked endnd C,, denotes the curve that we get from
C, by forgetting the additional marked erd By [6.7 we know that each choice 6% satisfying all
conditions inLy U M> U N2 = LU M U N \ {1, 2} contributesi - |[det, (evar,un,)| possible curves
C (counted with weight). Thus the contributionXofrom curvesC' such thatl; = 0 equals

d- I evi@) I1 eviPowis - Mg, 14, (R%,d)
JEM\{2} keN

which by the divisor equatiof (4.2) equals

IT ev; @) T evi(Pe)ys - MES, 1, (R?, d).

JjEM keN
Multiplying by the factord—}g, we can see that those curves contribute

(o)™ TT 7 (2))a
keN

to # deg Z.
Now assume that; > 0 and denote as [n 8.2

Zi= 1 evi@)- T ) T 057 MR (B2 )

JEM; JEN; JEN;
Then we know by 6]4 that one of the following three cases hold:

(@) dim(Z;) = 0 anddim(Z;) = 2 or
(b) dim(Z;) = 1 anddim(Z,) =1 or
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(c) dim(Z;) = 2 anddim(Z3) = 0.
We know by[6.6 that in the first case,

|detc(ev X ft)| = |detcl (eleuN1)| . |detc2 (eszuN2 X eve)|,

whereev, now denotes the evaluation on both coordinates of the newedamde. By[6.4 we know
that for each choice af’; andC; satisfying the conditions we get exactly one possiBleBut by[5.3
we know that

Zl = Z |detc1 (eleUN1)| . Cl,
Cy

and analogously

evi(P)- Zy =Y |detc,(evL,unmun, X eve)| - Ca,
Cy

Thus we get a contribution @feg(Z;) - deg(ev?(P) - Z3) to deg(Z), respectively

3 3
@D @m )™ TT 7@, - (7 @ @)™ [T 702002

kEN: kEN2
to # deg Z.

Analogously, we get a contribution of

3. 3
@D @mWm)™ TT 7o @0, - (@) 2701 [T 702D

kEN, kEN>

in the last case.

In the second case, we know|by]6.6 that

|detc(ev X ft)| = (él -ég)h(e) . |detC:1 (eVM]UN1)| . |detc~2 (eVM2UN2)|

and by[6.Y we know that each choice@f andC, satisfying the conditions gives us
d1 . dg . |detc~1 (eVIWlUNl)| . |detc~2 (evM2uN2)|.

Since

(fte)(Zi) = > |dete (evar,un,)| - Cs
ot
(whereft, denotes the map which forgets the marked pejrand since
d - (O™ T me@)ar = oO@n@Wmm)™ [T m@mD)a

keN, kEN,

and

dz - (70 ()74 (2)10(1)™ [ 72 = (75 27, 2)70(1)™ T 700 (2)70(1))

kEN: kEN:

by the divisor equation we get a contribution of

3 3
GOy 0)m(ro)™ T e @0 -y 2 @701 [T 720 2701

kEN; kEN3

Finally, there are{ddl)3 choices of the set&; andE, if we fix d; andds.
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Lemma 8.2. Choose strictly positive integersd such thatl + 3d — 3 + 2 = 2 4+ r. Then the classical
one-marked-point invariant (2))39 equals

. 1
<Tr(2)>dlg - (d')3 .

Proof. We use two (classical) WDVV equations ([FP95] or, more dethbut unpublished[ [Ko]) with
four marked points. If we computey(0)7o(1)%7,(2) ft*()\))j'g for the two special pointa = 12/34
and\ = 13/24 on M, 4, then we get

(o(1)*7(2))3° = (10(0)7: (2)70(2)3°
as illustrated by the following picture:

L L Poyr L
R2 Poyr _ R2 L
d d 0

degree: 0

For (70(0)70(1)70(2)71(2) ft*(1))39 we get
(r0(1) 71 (2)70(2))39 = (70(0)27,_1(2))29,

L P7 1br—l P7 1br—l L
R2 P _ R2 P
d d—1 1

degree: 0

as illustrated by

Now, applying string and divisor equation where possiblé plugging in the left hand side of the first
equation in the right hand side of the second equation pexsiuc

& (m(2))° = (T2
Together with the initial invariantro(0)%7(2))29 = 1, this proves the lemma. O

Lemma 8.3. Choose strictly positive integersd such thatl + 3d — 3 + 2 = 2 + . Then the tropical
one-marked-end invariarit,.(2))"’" equals

tro 1
<Tr(2)>d b= (d')3

Proof. Choosing the single marked en@s root vertex, we get/l'&'{ (R?,d) = Mo 1434 x R? and the
two projections arét’ andev,.. Recall that Psi-classes for parameterized curves ar@juisbacks of
Psi-classes alonfy. Using [ARO7, 9.6], we get

(2" = (d})s deg ((ft'(1))" - eve(P) - (Mo,1130 X R?))

B ﬁdeg ((1/%: Mo, 1+434) X (P RQ))

1

(dh)?’
where in the last step we udeg(¢. - Mg 14+34) = 1 (cf. [KMO7| 4.2]). O
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Theorem 8.4. Letd, [, m,n andry, k € N be positive integers withh > 0 such that

l—|—m—|—n—|—3d—3+2:m+2n—|—2m.
kEN

Then the corresponding tropical and classical descendargdriants coincide, i.e.

tro aI
T 208 = ') T @)

keN keEN

Proof. The tropical string, divisor and WDVV equations proved ie fireceding sections are also ful-
filled by the corresponding classical invariants. Hencecareuse these equations to reduce our invari-
ants to such ones for which we know or can prove that they @enc
1. caser, = 0forall k € N (i.e. no Psi-classes)
After applying string and divisor equation, we can assunag¢/te= 0 = m. Using[5.3, we see that the
numbersl'™P(d; 0,0, n;0) are equal to the numberg; defined in[GMO05, 3.4, 3.9]. It is well-known
that these numbers coincide with the classical ones[(s€&3]Mind [GMO5, 5.6]).
2. case: exists € N with r;, > 0 (i.e. at least one Psi-class)
subcase In =1
After applying string and divisor equation, we can assuraé/th- 0 andm = 0. The two last preceding
lemmas show that in this case the classical and tropicatianis coincide.
subcase lIn > 2
After applying string and divisor equation, we can assuna th= 0 andm = 1. In particular, if

= 0, we can use the divisor equation to add a line condition, kvimtroduces a facto»}l and
therefore leads to rational numbers. Then we can use botlrapial (see theorefn 8.1) and the
classical WDVV equation [([EP95] of [Ko]) and expre8s(1) [ ..y 7. (2))a in terms of invariants
(10(0)" 70 ()™ TTyen: vy, (2))a With 0/ + 37, 7, < n+ Y e v - Repeating this procedure, we
eventually end up with’ = 1 (subcase I) or), = 0 for all £ € N’, which is the 1. case. O

9. LATTICE PATHS

In this section, we present a lattice-paths algorithm teweine the numbers

<H Tre(2))a = (d}) deg (H evy (Pr)y ,/\/llab b (R?, )>

keEN keN

i.e. numbers of curves with Psi- and point conditions (andim@conditions; all other numbers can be
easily computed using string and divisor equation). No# iththis case we need

3al—1:n—i—27°;C
keN

to get a zero-dimensional cycle.

We use the fact that if we choose general point conditiomsittersection produd, . ; evy (Pr)v,* -
ME® (R?, d) equals set-theoretically the set of all points correspagth curves satisfying the Psi- and
the point conditions (sée 3.3). Each such cufvieas to be counted with weight, and it is counted with
the Welghtd,,g | detc(ev)| (see theoremi 5. 3), whers denotes the product of all evaluation maps (at
both coordinates). Note that no such curve can have a sinog this would provide a deformation of
the curve described in the proof[of #.4, which contradic?(3).

We pick a certain configuration of points and count dual Nevaiebdivisions of curves passing through
the points and satisfying the Psi-conditions. The dual Mevgubdivisions are in fact dual to the image
h(I') C R? of the graph in the plane. In particular, the labels of the-nontracted ends are lost. That
means we have to count tropical curves without labels on ¢imeaontracted ends, and then multiply
with the number of possibilities to set labels.
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There is a map : M2P(R2 d) — M, ,(R?,d) which forgets the labels of the non-marked ends.
This map is a cover, the number of preimages is the number ys weset labels. The biggest number
of preimages isl!>. However, not every point in a facet has this number of prgisa the curve in
Mo 0(R?,2) pictured below has only 4 preimages, not 8, since the two iendisection(—1,0) are not
distinguishable.

W

LetC’ € [,y ¥t - M@ (R?, d) and letC be the curve after forgetting the labels of the non-conéhct
ends. Assume that the facein M, ,(R?, d) in which C lies hass preimages under the cover above.
ThusC has to be counted withyz | detcr(ev)|. Assume thaC' hast verticesVy, ..., V; such that
b;; non-contracted ends of the same directies); are adjacent td/; (wherej goes from0 to 2 and
eg:= —e1 — e3). Thenvg = Hle ]'[?Z0 b%, = 4z and we have to courdt with v¢| deter (ev)].

First, we want to understand this weight locally in terms eftex multiplicities. We define another
weight that we denote bywlt(C') and we show that it is equal i@ | detc- (ev)].

Definition 9.1. Let C" € [],cn ¥ - M'&EL(R?, d) and letC' be the curve after forgetting the labels
of the non-contracted ends. Define the weightt(C) asv¢ times the product of the multiplicities of
those (necessarily 3-valent) vertices without any markets@n them (see [Mi03], definition 2.16).

Example 9.2. Let C be the curve as in the picture below. (For this example, weselsome other
degree, notl, to keep the picture nice.) As in remdrk16.5 we choose coatdinto write down an
explicit matrix forev. Choosél to be the root vertex. Then the matrixef is

1 0 V1,1 0
0 1 V1,2 0
1 O O 12271

O 1 O 'U2_2

The absolute value of the determinant is equalktet(vy, v2)|, which is the multiplicity of the3-valent
vertexV'.

RQ

V2

p1 /

D2

U1

r

Lemma 9.3. LetC” €[],y ¥p* - ME2(R?,d) and letC be the curve after forgetting the labels of
the non-contracted ends. Thea| detc- (ev)| = mult(C) if C has no string.

Proof. We have to show thdtdet (ev)| equals the product of multiplicities of ad-valent vertices
without marked end.
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This is an induction on the number of bounded edges. Curvéls m6 bounded edge satisfy
|detcr(ev)| = [[,, mult(V) = 1 (the product is empty). Curves withbounded edges (as the one
in the exampl&912) need to have the two marked ends at theduter” vertices, because otherwise
there is a string. So as in the example, there is one “inteBimalent vertex without a marked end, and
| detcr (ev)| is the multiplicity of the vertex.

Now we can assume we have 4 or more bounded edges. (The nuibbenoed edges is evely —2.)
We choose one such that there are still bounded edges onitbeshod it. (If such an edge does not exist,
it means we have a “star-shaped” tropical curve with oneexert the middle and all bounded edges
around. If one of those bounded edges was not adjacent to kedchand,C' has a string, so we can
assume that all bounded edges are adjacent to a marked &metelis no marked end in the middle, we
then have + 2 = 2b whereb is the number of bounded edges, sihce2 is the number of coordinates
of this cone, an@®b is the number of coordinates of tlhemarked ends. Sb = 2 and we are in the
situation of the example. If there is a marked end in the neiddle haveh + 2 = 2b + 2 sob = 0,

so this curve has no bounded edge and counts one. Now we aanesge do not have a star-shaped
curve, and there is in fact a bounded edge with bounded edgbstb sides.) Then we cut this edge
to get two curve€’; andCs. Let I; denote the subset of marked ends(@rand lete; be the number
of non-contracted ends @f;. We make the cut edge a new non-contracted end; p§oC; has in fact

e; + 1 non-contracted ends, one of them the special new end. Assume

#I <e1—2- > 1,

kel
then if we remove all the closures of marked ends (as in lemBjave get

okt #h+1

kel
connected components, which is less than or equal to

ZTk+€1—2—Z7’k+1:61—1-
kel kel

So there must be a connected component which has two noracted ends of’ (not the new end of
C1). HenceC' has a string, which contradicts the assumption. We have

#Il-f—#Ig:n:?)d—l—ZT‘k=€1+€2—1—ZT‘;€.
Therefore
#11261— ZTkand#Igzeg—l— Z’I’k
kel kel
without restriction. As in remark 8.5, we pick coordinatesatrite down an explicit matrix foev. Cy
has
er+#0 —2— ) =24 —2
kel
bounded edges. We pick the root vertex to be the boundargweftthe cut edge id';. We order the
basis elements such that the root vertex comes first, thelnaineded edges i, then the cut edge,
then the bounded edges@. We order the basis d&2" such that the marked ends @ come first
and then the marked ends@3. Then the matrix obv for C' is a block matrix. The block on the top
left is just the matrix obv for C; — so by induction, the product of multiplicities of 3-valamimarked
vertices ofC;. The top right block i$), because no marked end 67 needs a bounded edge®@f. The
bottom right block has the same determinant as the matrfar C, when we add a marked end on the
cut edge and make its end vertex the root vertex. So the diet@nirof this block is again by induction
the product of multiplicities of 3-valent unmarked vergda C>. This proves the claim. O

Now we know thatss deg ([Txen evi(Pe)vy - ME (R?,d)) equals the number of all curves
Mo ., (R?, d) satisfying the Psi- and the point conditions, each couniéuweightmult(C). We want
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to simplify this count even further: we do not want to courigmaetrized tropical curves = (T, z;, h),
but we want to count their imagesR?.

Definition 9.4. LetC' = (', 2, h) C [;c v ¥3* - ME% (R?, d). In the imagen(I"), some edges may lie
on top of each other. Mark each edge in the image) by a partition reflecting the weights of all edges
which map onto this image edge. The imdd&) together with those partitions is called tlabelled
imageof C'.

Example 9.5. The following picture shows a tropical curve and its labetilmage.

R2

Given a labelled image, there can be different possiblerpaidzations. Ambiguity may for example
arise if the labelled image comes from a parametrizationhnieps vertices on top of each other. We
could then also parametrize this labelled image with a grelpdre the two vertices are replaced by only
one. To avoid this ambiguity, we need a slightly more speawigion of general conditions, which we
call restricted general conditions. This definition is cedkip in such a way that we exactly avoid all
ambiguity and make parametrizations unique.

Definition 9.6. A curveC = (T, z;, h) is calledsimple if it satisfies:

(a) the maph is injective on vertices,

(b) if (V) € h(e) for a vertexV and an edge thenV is adjacent to an edgé which is mapped
on top ofe,

(c) if two edges ande’ are mapped on top of each other, then they share a vertex,

(d) assumep € R? is a point through which more than two edges pass. Divide tlye® into
equivalence classes depending on the slope of the line whithéy are mapped. Then we have
at most2 equivalence classes.

Definition 9.7. The subset oR?" of restricted general conditionis defined to be the subset of the
set of general conditions such that only simple cues [], .y " - M'&?L(R?, d) pass through the
points (i.e. satisfgv(C) = (Pi1,..., Py)).

Remark9.8. It is easy to see that the subset of restricted general ¢onglits still open and dense.
Points which are not restricted general admit a non-simpiesc Being not simple sums up to codimen-
sion 1 conditions, hence only the image undeof certain lower-dimensional subsets|df, .y " -
ME® (R?,d) is not restricted general.

Lemma 9.9. Given a labelled image of a tropical curve through restrittgeneral conditions, there is
exactly one abstract tropical cur{&, x;) and one map parametrizing this labelled image and sending
the marked ends to th& .

Proof. Clearly there is a parametrizatich= (T, x;, h) of the labelled image, we just need to show that

it is unique. Since thé; are general(’ cannot have a contracted bounded edge. If it had a contracted
bounded edge, we could vary the length of this edge withoahgimg the image, in contradiction to
[B.2(a). Hence all edges can be seen in the infd@je. Due to the conditions for being simple, we can
also distinguish the images of vertices and the images efgjés in the labelled image. Because of the
labels we know whether edges lie on top of each other. If tasr@dges lying on top of each other, then
we know that they have to share a vertex. If there is a vértexith two edges of the same direction,

it has to be more than 3-valent. If it w8svalent, then by the balancing condition the 3 edges would
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be mapped to a line. At least one of the 3 edges is boundedcand sould change the length of this
edge (and accordingly the lengths of the other two edgegdéssary) without changing the image of
the curve. That contradidis 3.2(a). Siricds more thar-valent, there must be a marked end adjacent
to it. It is not possible tha2 (or more) of the points’; lie on a line with a direction that can be the
direction of an edge. Thus if we have two edges in the labéfledje on top of each other, there must
be exactly one adjacent vertex which passes through a phirithus we know that the edges have to
be connected at that vertex when we built the parametrizatio O

Definition 9.10. Let C be a curve i [, . v " - M'&El(RQ, d) passing through restricted general con-
ditions. Draw a dual Newton subdivision to the imag@") and label the dual edges also with the
partitions belonging to the edges of the labelled ima¢e). This is called dabelled dual Newton
subdivision Mark the polygons dual to vertices which are adjacent to &kethendr;. Those marked
polygons inA, together with the partitions belonging to their boundargeslis called theet of dual
marked polygons af’.

Example 9.11. The following picture shows the labelled dual Newton sulsiin to the labelled image
from examplé 9J5. Next to it, we can see the set of dual markédypns ofC'.

(LLD (3 (1,1,1) (3

\
/
/

N\ El» b N E &1

Our aim is to count dual marked polygons to curve$fip_  v,* - M'&’;(RQ, d). To do that, we have

to choose a special point configurati®nas our condition. This configuration is chosen is such a way
that the set of dual marked polygons can be described as simméike a generalized lattice path that
we call arag rug. We will now first introduce labelled lattice paths and ragsuand then show that
the count of rag rugs equals the count of labelled imagesmwesun] [, . v ¥;.* - M'(?EL (R2,d) passing
throughP (with weightmult(C")).

Let A4 be the triangle with endpoint9, 0), (d,0) and(0, d). Fix X to be a linear map of the form
MRS R: (2,y) — x — ey,

wheree is a small irrational number. Recall that a path [0,n] — R? is called a lattice path if
Yij=1.4,3 = 1,...,nis an affine-linear map ang(j) € Z*forallj =0...,n. Forn=1,...,n, we

call v[(;—1,;([7 — 1, ]) astep(the j-th step) of the lattice path. A lattice path is called-increasing if
Aoy is strictly increasing. Lep := (0, d) andg := (d, 0) be the points im\ := A, where\|a reaches
its minimum (resp. maximum). Le&f be a line inR? orthogonal toker()\). ThenG divides the plane
into two halfplanes. We will denote the upper onelthy and the lower one byi .

Definition 9.12. A labelled-increasing lattice patin A is a-increasing lattice path fromto ¢ such
that thek-th step is labelled by a partitiam, = ((a)1, - ., (ax)r, ) Of the integer length of this step,
thatis (ag)1 + ...+ (ag)r, = #(Z* N y([k — 1,k])) — 1.

Remark9.13 Let ¢ be a labelled\-increasing lattice path fromto ¢ whose image is contained in the
boundaryd A and whose steps are labelled with partitions consistingibf ones. All those paths will
be possible end paths for the recursion defining multiplicithe following picture shows 3 examples
for As.
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(1) (1,1) (1)
(1)
(1) 1) @) (1 (11 (1,1,1)
7 72 73

Definition 9.14. We define thepositive multiplicity;. (resp.negative multiplicityn._) of a labelled
A-increasing lattice path recursively as follows:

(a) For a possible end padtas in remark9.13 goingockwisefrom p to g (resp.counterclockwisp
with n steps we defing. (§) := [];_, 1/(|ox|!), where|ay| denotes the size of the partition
of the k-th step (recall it has to be a partition with only ones asiesjr

(b) For a labelled\-increasing lattice path which is not a possible end path, assume thatttie
and thek + 1-th step form the firskeft (resp.right) corner of the path. (If no such turn exists,
we defineuy (v) :=0.)

Define a finite set of lattice paths as follows:
e pick an integer with 0 < r < min{|ag|, |ok+1]},
e pick a setS of r pairs

S = {[(ak)ilv (Oék+1)j1]7 SO [(ak)ir’ (ak+1)jr]}
such that the multis€t(a )4, , - - -, (o )i, } IS @ subset of the multis¢tay )1, .. ., (ag)r, }
and the multiset {(ax+1)jy,...,(aktj)j.} is @a subset of the multiset
{(ak+1)1’ EERR) (ak+1)rk+1}'
Foreach = 1,...,r, build a triangleT;. s ; with one edge of integer lengflav,);, and one
edge of integer lengtfry,11);, (in the direction of the:-th resp.k + 1-th step). LetM, s be
the Minkowski sum of all triangle%,. s, for{ = 1,...,r, and edges; in direction of thek-th

step of integer lengthuy ) for all s which are not one of thg and edgeg; in direction of the

k + 1-th step of integer lengtfuy,11 ). for all ¢ which are not one of thg,. Label each edge
E of M, s with a partition reflecting the integer lengths of edgesf:, and edges of triangles
T, s, that contribute to&. Think of the polygon, s as sitting in the corner built by step
k andk + 1 of v, and define a new labellektincreasing lattice path,, s by going the other
way around)M,. s. If M, ¢ does not fit inside the polygof, we definey (v, ) = 0. The
positive multiplicity of this new labelled-increasing lattice path is known recursively, because
it includes a smaller area with the possible end paths. Weelefi

pe(y) = Z Z Area(Tys.1) - ... Area(Ty s.r) « it (Yr.5)s
T S

(whereArea(T) is the normalized lattice area, i.e. the area of the simpliéx vertices(0, 0),
(1,0) and(0, 1) is defined to be).

Example 9.15. For the 3 possible end paths from remdrk 9.13, we have multipligity(y;) = 1,
pi-(72) =  andu—(73) = 15

Example 9.16. The following picture shows an example of the recursion faefinition[9.14 to com-
pute the positive multiplicity of a labelled pathin As. The first left turn is from steg to step3. We
have3 choices forr: »r = 0, r = 1 orr = 2, since both the partition of stebas the partition of step
3 contain2 elements. No matter what we choose foithere is just one choice for the s&t(r pairs
consisting of all ones), since both partitions contain angs.

Forr = 0andS = 0, M, g is a square of siz2 which does not fit insidé\ 3. Therefore the multiplicity
Of ’}/07(2) = O



TROPICAL DESCENDANT GROMOV-WITTEN INVARIANTS 29

Forr = 1andS = {(1,1)}, M, s is a pentagon. The integer length of each new side is one. &he n
side of direction(0, 1) is labelled by the partitiofl ), because it comes from the edgein direction of
the 2-nd step of integer length which is not one of thé; in the set of pairsS. The new side of\/; ¢

of direction(1, —1) comes with labe(1), because it comes from a side of the triarifjlg; ; of integer
length1. The side of directiorfl,0) comes from an edge of ttgerd step which is not part of, and
gets label1) as well. The area df} g ; is one.

Forr = 2, we haveS = {(1,1), (1,1)}, andM> s is a triangle of siz& whose new side gets the label
(1,1) because it comes fromsides of the two triangle®, s, andT: s 2. The area of both triangles
15,51 andT; g o is one.

The picture shows how the recursion goes on after the firpt tke choices where = 0 for v, ¢ or
wherer = 1 for 5 g are left out because they yield to a path of multipli¢ityWe end up with one path
of multiplicity 1 and one of multiplicity}, sou(v) = 3.

(1,1)
(1,1)
v
N
1
(1.1) )
70,8 V1,8 V2,8
(1,1)
(1,1)
Definition 9.17. Let F' be a set ofi convex polytopeg)y, ..., @, insideA whose endpoints are lattice

points of A and whose boundary edgesre labelled by partitions. It is possible that a polyg@@nis
1-dimensional, i.e. just an edge itself, then it has two parts as labels, one for each outward pointing
normal vector. We calF’ arag rug of the form(ry, ..., r,) if the following conditions are satisfied:

(a) the (outside) label. of an edge: in the boundary of\,; is o = (1,1,...,1),

(b) two polygons?); and(@; intersect in at most one point,

(c) boundary edges whose outward normal vector points fifito(starting atG) (with their cor-
responding labels) form a labelledincreasing lattice path fromto ¢ that we will denote by
7,

(d) boundary edges whose outward normal vector pointshfito(with their corresponding labels)
form a labelled\-increasing lattice path fromto ¢ that we will denote byy—,
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(e) the order of the polytopé3, . . ., Q,, agrees with the obvious order given by the pathgesp.
/y_a
() the sum of the sizes of the partitions of the boundary eddé€); is equal tor; + 2,

Z lae| = 7 + 2.

ele €dge ofg,
We define the multiplicitys(F) to bepy (v4) - p—(v-).

Example 9.18. The following picture shows a rag rufj of the form(2,2,0,0) in A3, and the two
labelled A-increasing lattice pathg, and~_. For all edges of integer length one, the corresponding
partitions are just1) and we did not mark this in the picture. We have(y,) = 3 andu_(y-) = %
sou(F) =3

(3) (3)
“’”QA b; “’”b&
HM At 7

Definition 9.19. Givend, n and numbersry, ..., r,) we defineN,,(d, n, (r1,...,r,)) to be the num-
ber of rag rugs of fornfr, ..., r,), counted with multiplicity as defined [n 9117.

Remark9.20. Note that this definition generalizes Mikhalkin’s latticatp count (se€ [Mi03]). A\-
increasing lattice path from p to ¢ is a rag rug of form(0,...,0). We have to attach labe(g) to
each edge. The two paths and~_ agree withy. In the recursion for the lattice path count, we define
multy () depending on the multiplicity of two other pathsand~”. 4/ is the path that cuts the corner,
and~” is the path that completes the corner to a parallelogramuimefinition, we can choose= 0
orr = 1. Forr = 0, we haveS = () as only choice. The polygol ; is the parallelogram which is
equal to the Minkowski sum of the two steps of the corner. /Fer 1, we haveS = {(1,1)} as only
choice, and\V/; g is the triangle formed by the two steps of the corner. Sinkcpaatitions are just1),
also the end paths have only those partitions, so that teenefact only one end path, the path. It
has multiplicityl. Therefore our definition gives the same multiplicity instisase.

It is not true thatV,.(d, n, (11, ...,7,)) = (d1!)3 deg ([T, evi(Pr)vys - ME® (R%,d)), since we count
also reducible curves with the rag rugs.

We therefore have to modify the count and throw away the duadisisions corresponding to reducible
tropical curves.

Definition 9.21. Given a rag rugy and the two corresponding lattice paths and~_, perform the
recursion to compute their multiplicity and keep track c fiolygonsV,. s that the new paths, s in
the recursion enclose with,.. This way we end up with a set of labelled Newton subdivision®e
call this the set opossible labelled Newton subdivisions far The recursion allows us to assign a
multiplicity to a possible labelled Newton subdivision, tbat the multiplicity ofy is equal to the sum
of the multiplicities of the possible labelled Newton sulisions for~y.

Definition 9.22. Given a labelled Newton subdivision, draw a dual labelledgmand then the unique
tropical curve mapping to this image. This is well-defineditsposition inR? and the lengths of its
bounded edges. We say that the Newton subdivisiardsicibleif the tropical curve mapping to a
dual labelled image iseducible(again, this does not depend on the choice of dual labelledjén
Otherwise, we say it is irreducible.

Remark9.23 It is possible to express the reducibility condition in terof the Newton subdivision
itself and not in terms of the dual tropical curve. A labeltedrked Newton subdivision is reducible
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if and only if it admits a mixed subdivision where the markedygons@; remain unmixed (i.e. come
from sums of the forn); + v1 + ... + v, where thev; are vertices of the subdivision of theth
summand). For details, seée [M08].

Definition 9.24. For a rag rugy as defined ifi.9.17 define its irreducible multipliciiyult’ () to be

the multiplicity mult(+) minus the number of possible reducible Newton subdivisufited with

multiplicity). Givend, n and number$ry, ..., r,) we sayN/ (d,n, (r1,...,r,)) is the number of rag
rugs counted with their irreducible multiplicity.

Definition 9.25. Let P, = (F1,..., P,) denoten restricted general point conditions on the liGe
orthogonal toker(\) such that the distance betweéh and P, is much bigger than the distance
betweenP;_; and P;.

Lemma 9.26. LetC € [], ¥* - ME (R?, d) with ev(C) = P». Then the set of dual marked polygons
of C'is arag rug of the form{ry, ..., r,).

Proof. The polygonQ; dual toP; is convex and has to satisfy

Z lae| =i + 2,

ele edge ofg,

wherea, denotes the partition belonging ¢o This is true since the marked en¢g C T' is adjacent to

a vertex of valence; + 3 and we can see all edges (except the contracted:grid the labelled image
(and thus in their labelled dual Newton subdivision, to@u{side) labels of edges in the boundary of
A4 have only ones as entries, since the end€'@re all of weightl. That the boundaries of those
polygons form labelled-increasing lattice paths follows analogouslylto [MiO3R B (or [Ma0®6], 5.48
for more details). O

Theorem 9.27.The numbeW/,(d, n, (11, ..., y,)) from definitiod 9.2¥ equals the intersection product
(dlg)s deg (Hk evi (Pe)by" - MI&%(RQa d)) = ([1 7. (2))-

Proof. To determine gy deg (IT, evi.(Po)vy* - MG, (R?, d)), we can draw all labelled images of
tropical curves that pass through, and count them each with their weighitult(C') which is v¢
times the product of the multiplicities of non-marked vegs. We show that this count is equivalent to

counting irreducible possible labelled Newton subdivigdior all rag rugs of the fornfry, ..., r,).

The proof is a generalization of the proof of theorem 2[of [B]iOWe know that eaclt’ leads to a
rag rugyc as in lemma&9.26. Each rag rug yields a set of possible labslewvton subdivision, with
multiplicity. We will show that for each such possible ldeel Newton subdivision, there is a dual
tropical curveC throughP, of the same weight. At the same time, we show that for eacheatirv
through?P,, the dual labelled Newton subdivision is possible for treemagyyc.

Let v be a rag rug. The recursion for, yields possible subdivision ok, above the polygong);.
They correspond to the part of a tropical curve ab6veAnalogously, possible subdivisions for
correspond to the parts of tropical curves bel@wFrom lemm&3]3 it follows that weight of a tropical
curve can be computed locally, so the weightCbfs equal to the weight of the part abozetimes
the weight of the part belows. The same is true for the multiplicity of the dual Newton siision.
Therefore it is enough to show that for each subdivision atibe();, there is a dual part of a tropical
curve aboves of the same weight, and that each part of a tropical curve@aboig dual to a possible
subdivision above th€);. The corresponding statement for subdivisions below@end parts of
tropical curves belowr follows analogously, and thus the complete statementallo

For each poinf; € Py, draw edges emanating frol) of directions dual to the boundary edge<af
and with the same partitions as labels. Draw a (ifién H_ parallel toG, such that the strip betwe&h
andG’ encloses one intersection of the edges we have drawn thtbadh. This intersection of edges
corresponds to the first left turn of the path, since the distances between tAeare increasing. Let
us determine the possibilities how the tropical curve canmat this point. We should think about both
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edges as a set of edges of weights given by the partition. Echyeeither meet in &valent vertex, or
intersect. First, we pick less than the smaller number of edges in a set to determinertanwy edges
should meet in &-valent vertex. Then we pick a set ofpairs of weights to determine which edges
should meet in &-valent vertex. The other edges intersect. The weight lpaathe strip betweert:
andG’ is equal to the product of areas of triangles dual to3#valent vertices because of lemmal9.3.
The dual polygon is the Minkowski sum of those triangles amal remaining edges which intersect.
Therefore the recursion for the multiplicity of corresponds to the possibilities for a labelled image of
atropical curve in the strip betweéhandG’ and keeps track of the weight. The end paths which do not
have zero multiplicity are exactly those dual to ends ofation (1, 1) and weight one. The multiplicity

of such an end path corresponds to the correction fagtavith which we have to divide the weight of

a tropical curve if more than one non-contracted end is adjgto the same vertex. O

Example 9.28. The following picture shows how to couiit;(2)%7(2)?)3 using rag rugs. The left
column shows all rag rugs of the for(®, 0,2, 0) in the triangleAs. The middle column shows the
possible Newton subdivisions for the rag rugs and their iplidity. The third column shows sketches
of the dual tropical curves.
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