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TROPICAL ENUMERATIVE INVARIANTS OF F0 AND F2

MARINA FRANZ AND HANNAH MARKWIG

Abstract. There is an equation relating numbers of curves on F0 = P
1
× P

1

satisfying incidence conditions and numbers of curves on F2 satisfying inci-
dence conditions. The purpose of this paper is to give a tropical proof of this
equation (for some cases). We use two tropical methods. The first method
proves the formula for rational curves. We use induction on the degree and
two Kontsevich-type formulas for curves on F0 and on F2. The formula for
F2 was not known before and is proved using tropical geometry. The second
method proves the formula for small degree and any positive genus and uses
lattice paths.

1. Introduction

In tropical geometry, algebraic curves are replaced by certain balanced piece-wise
linear graphs called tropical curves. Tropical geometry has gained lots of atten-
tion recently. One of the interesting results is that we can determine numbers of
algebraic curves on toric surfaces satisfying incidence conditions by counting the
corresponding tropical curves instead (Mikhalkin’s Correspondence Theorem, see
[8]). This is true in particular for the toric surfaces F0 = P

1 × P
1 and F2. The

tropical numbers can be determined using certain lattice paths in the polygon dual
to the toric surface (see [8], theorem 2).

Gromov-Witten invariants can be thought of as “virtual” solutions to enumerative
problems. They are deformation invariants, thus they coincide for the two surfaces
F0 and F2. For F0, Gromov-Witten invariants are enumerative, i.e. they count
curves on F0 satisfying incidence conditions. For F2, they are not, but it is known
how they are related to enumerative numbers. Therefore there is an equation
relating the enumerative numbers of F0 and F2.

The purpose of this paper is to give a tropical proof of this equation (for some
cases), using Mikhalkin’s Correspondence Theorem.

Let us introduce this equation in more details. Let C denote the class of a general
section of F2 and F the class of the fiber of ruling. Then the Picard group of F2

is generated by C and F . The exceptional curve is linearly equivalent to C − 2F .
The Picard group of F0 is generated by two fibers of ruling which we will denote
by C and F as well. We can degenerate F2 to F0 such that the class aC + bF on
F2 degenerates to the class aC + (a + b)F on F0. Then for nonnegative a, b with
a+ b ≥ 1 we have
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N
g
F0

(a, a+ b) =
a−1∑

k=0

(
b+ 2k

k

)

N
g
F2

(a− k, b+ 2k). (1)

where Ng
F0

(a, a+ b) and N
g
F2

(a, b) denote the numbers of nodal irreducible curves
of genus g of class aC + (a + b)F in F0 (resp. of class aC + bF in F2) through
4a+2b+g−1 points in general position. (See [1], theorem 3.1.1, for rational curves
and [12], section 8.3, for arbitrary genus.)

Let us now introduce the analogous tropical numbers. The polygon corresponding
to the divisor class aC + (a + b)F on F0 is a rectangle with vertices (0, 0), (a, 0),
(a, a+ b) and (0, a+ b), the polygon corresponding to the divisor class aC + bF on
F2 is a quadrangle with vertices (0, 0), (a, 0), (a, b) and (0, 2a+ b).

b

aa

a

a + b 2a + b

We consider plane tropical curves dual to these polygons. Thus, we consider plane
tropical curves of degree ∆F0

(a, a + b) and ∆F2
(a, b), where ∆F0

(a, a + b) denotes
the multiset of the vectors (−1, 0) and (1, 0) each a+ b times and (0,−1) and (0, 1)
each a times and ∆F2

(a, b) denotes the multiset of the vectors (−1, 0) 2a+ b times,
(0,−1) a times, (1, 0) b times and (2, 1) a times. We denote by N g

F0
(a, a+ b) (resp.

N g
F2

(a, b)) the number of irreducible plane tropical curves of degree ∆F0
(a, a + b)

(resp. ∆F2
(a, b)) and genus g through 4a+2b+ g− 1 points in general position (see

[8]).

Our central result is the following theorem:

Theorem 1.1

The following equation holds for

• nonnegative integers a, b with a+ b ≥ 1 and g = 0, and for
• 0 ≤ a ≤ 2, b ≥ 0 with a+ b ≥ 1 and any g ≥ 0:

N g
F0

(a, a+ b) =
a−1∑

k=0

(
b+ 2k

k

)

N g
F2

(a− k, b+ 2k). (2)

Of course this theorem (and even the more general case) is an immediate conse-
quence of equation 1 and Mikhalkin’s Correspondence theorem which states that
N

g
F0

(a, a+ b) = N g
F0

(a, a+ b) and Ng
F2

(a, b) = N g
F2

(a, b). However, we want to give
a proof within tropical geometry.

We use two different tropical methods to prove theorem 1.1.

To prove the statement for nonnegative a, b with a + b ≥ 1 and g = 0, we use
induction on the degree and generalizations of Kontsevich’s formula for enumerative
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numbers on F0 and F2. While Kontsevich’s formula for F0 (see theorem 2.13) was
known and can be proved without tropical geometry ([4], section 9), our formula for
F2 (see theorem 2.12) is new and was derived using tropical geometry. To derive a
Kontsevich-type formula tropically, we compute numbers of curves satisfying point
and line conditions and mapping to a special point in tropical M0,4 under the
forgetful map. To prove Kontsevich’s formula for P2, one can show that all such
curves have a contracted bounded edge and can thus be interpreted as reducible
tropical curves ([6]). For F2, this statement is no longer true. Instead, we get a
correction-term corresponding to curves that do not have a contracted bounded
edge. We show that these curves can also be interpreted as reducible curves in a
different way.

To prove theorem 1.1 for 0 ≤ a ≤ 2, b ≥ 0 with a + b ≥ 1 and any g ≥ 0, we use
Mikhalkin’s lattice path algorithm to count tropical curves (see theorem 2 of [8])
and observations about those lattice paths from [7].

Unfortunately, it seems that none of the above methods can be generalized to other
cases easily.

The paper is organized as follows. In section 2, we prove our tropical Kontsevich
formulas for F0 and F2. In section 3, we use those formulas to prove theorem 1.1
for a, b with a+ b ≥ 1 and g = 0 using induction. In section 4, we prove theorem
1.1 for 0 ≤ a ≤ 2, b ≥ 0 with a+ b ≥ 1 and any g ≥ 0 using lattice paths.

We would like to thank Ionut Ciocan-Fontanine and Andreas Gathmann for helpful
discussions and Flavia Stan for help with the Mathematica package MultiSum.

2. Tropical Kontsevich formulas for F0 and F2

To derive tropical Kontsevich formulas for F0 and F2, we generalize the ideas of [6].
Let us start by recalling some notations we will use.

Notation 2.1

Let ∆ = ∆F2
(a, b) and let Mlab

0,n(R2,∆) denote the space of rational parametrized

tropical curves in R
2 of degree ∆, with #∆ + n ends all of which are labelled, and

n of which are contracted ends (see definition 4.1 of [5]). Let

ft : Mlab
0,n(R2,∆) → M0,4

denote the forgetful map which forgets all ends but the first 4 contracted ends (see
definition 4.1 of [6]), and

evi : Mlab
0,n(R2,∆) → R

2

the evaluation at the contracted end labelled i (see definition 3.3 of [6]). Pick two
rational functions ϕA and ϕB on M0,4 (in the sense of [2], definition 3.1) that
correspond to abstract tropical curves λA (resp. λB) where the ends x1 and x2

come together at a vertex (resp. where x1 and x3 come together) and where the
length parameter of the bounded edge is very large.

Remark 2.2

Note that we use the space of parametrized tropical curves with labelled ends here.
The reason is that one can show that this space is a tropical fan (proposition 4.7
of [5]) and that we can thus use the tropical intersection theory from [2]. Since
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we want to count tropical curves without the labels of the non-contracted ends, we
have to divide by a factor of |G|, where G is the group of possible permutations of
the labels. In the Kontsevich formula we want to prove (theorem 2.12), we sum over
all possibilities to split the degree ∆ = ∆F2

(a, b) into two smaller degrees. To be
precise, we would have to sum over all possibilities to pick a labelled subset of non-
contracted ends forming the smaller degrees. This factor together with the factors
for labelling the ends in the small degrees exactly cancel with the total factor of
|G|. In the following, we will therefore neglect the fact that non-contracted ends
are labelled.

The difference of ϕA and ϕB is globally given by a bounded rational function
on M0,4. Therefore, the tropical Cartier divisors [ϕA] and [ϕB ] are rationally
equivalent and by lemma 8.5 of [2] their pull-backs [ft∗ ϕA] · Mlab

0,n(R2,∆) and

[ft∗ ϕB] ·Mlab
0,n(R2,∆) are rationally equivalent as well.

Set n = #∆ and choose rational functions ϕ1, ϕ2, ϕ31, ϕ32 . . ., ϕn1, ϕn2 on R
2

that correspond to tropical curves L1 and L2 of degree ∆F2
(1, 0) and to points

p3, . . . , pn ∈ R
2 in general position. We can set ϕ1 = max{x − p11, 2(y − p12), 0}

and ϕ2 = max{x− p21, 2(y − p22), 0} to get L1 and L2 in this case.

Because of the above, we have

deg([ev∗
1 ϕ1 · ev

∗
2 ϕ2 ·

n∏

i=3

(ev∗
i ϕi1 · ev

∗
i ϕi2) · ft

∗ ϕA ·Mlab
0,n(R2,∆)])

= deg([ev∗
1 ϕ1 · ev

∗
2 ϕ2 ·

n∏

i=3

(ev∗
i ϕi1 · ev

∗
i ϕi2) · ft

∗ ϕB ·Mlab
0,n(R2,∆))].

(3)

Remark 2.3

Both above expressions are 0-dimensional tropical intersection products as defined
in [2], even if the set-theoretical intersection is higher-dimensional. If we pick the
conditions to be general however, the set-theoretical intersection equals the support
of the intersection product. That means that the intersection products above equal
the sums of tropical curves in Mlab

0,n(R2,∆) that satisfy the conditions, i.e. that
pass through L1, L2, p3, . . . , pn and map to λA resp. λB ∈ M0,4 under ft, counted
with multiplicity. This can be shown analogously to [9], lemma 3.1.

The following lemma will enable us to compute the multiplicity with which we have
to count each curve satisfying the conditions in the intersection product:

Lemma 2.4

Let X be an abstract tropical variety (in the sense of [2], definition 5.12) of dimen-
sion k and ϕ1, . . . , ϕk rational functions on X. Moreover, let P ∈ X be a point
in the interior of a cone σ of maximal dimension in X. Assume that ϕi is of the
form ϕ = max{ψi, χi} locally around P , where ψi, χi : X → R denote Z-affine
functions with ψi(P ) = χi(P ). Let (ψi − χi)L denote the linear part of the affine
function (ψi − χi) and let A be the (k × k)-matrix with entries ((ψi − χi)L(uj))i,j

for a basis u1, . . . , uk of the lattice underlying X at σ. Then the coefficient of P in
the intersection product ϕ1 · . . . · ϕk ·X is equal to ω(σ) · | det(A)|.
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Proof:

The computation of the coefficient of P in the intersection product is local around
P . Thus, we may assume that X is a tropical fan in some vector space V and extend
σ to the affine vector space Vσ spanned by σ. Furthermore, we may consider the
rational functions ϕi = max{ψi, χi} on the whole space Vσ. Moreover, we may
replace the rational functions max{ψi, χi} by max{ψi, χi} − χi = max{ψi − χi, 0}
as changing a rational function by a linear function does not affect the intersection
product. We define the morphism g = (ψ1 − χ1, . . . , ψk − χk) : X → R

k. Then we
have ϕi = g∗µi for µi : Rk → R; (a1, . . . , ak) 7→ max{ai, 0} and for all 1 ≤ i ≤ k.
By the projection formula ([2], proposition 4.8) the multiplicity of P ∈ X in the
intersection product ϕ1 · . . . ·ϕk · σ = g∗µ1 · . . . · g∗µk · σ is equal to the multiplicity
of 0 in R

k in the intersection product g∗(g
∗µ1 · . . . · g∗µk · σ) = µ1 · . . . µk · g∗σ. For

dimensional reasons the cycle g∗σ is the whole target space R
k with some weight.

But this weight is ω(σ) · | det(A)|. Note µ1 · . . . ·µk ·Rk is the origin with weight 1.
This finishes the proof. �

Remark 2.5

If σ is a cone in Mlab
0,n(R2,∆), it corresponds to a combinatorial type, i.e. a home-

omorphism class of a graph plus direction vectors for all edges (see [6], 2.9). We
can deform a parametrized tropical curve (Γ, h, xi) within σ by changing the length
of the bounded edges or translating the image h(Γ). Thus a basis for the lattice
underlying Mlab

0,n(R2,∆) at σ is given by the position of a root vertex h(V ) and
the length of all bounded edges. By remark 3.2 of [6], the absolute value of the
determinant of the matrix A from lemma 2.4 above is independent from the choice
of a root vertex and an order of the bounded edges.

Example 2.6

Assume σ is the cone in Mlab
0,4(R

2,∆F2
(1, 0)) corresponding to the combinatorial

type pictured below.

`

1

0

´

`

2

1

´

`

−1

−1

´

`

0

−1

´

`

−1

0

´

x4

x2

x1

x3

Following remark 2.5, we choose the position of h(x1) and the lengths l1, . . . , l5 of
the bounded edges as coordinates for σ.
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x1

l5

l1
l2

x3

x2

l4 l3

h(x1)

x4

The following curve C inside σ (where h(x1) = (0, 0), l1 = 2, l2 = 1
2 and l3 =

l4 = l5 = 1) goes through the points P1 (which is cut out by max{x, 0} and
max{y, 0}) and P2 (cut out by max{x, 1} and max{y,−2}) and through L1 (cut
out by max{x− 3, 2y − 2, 0}) and L2 (cut out by max{x+ 1, 2y+ 3, 0}) and maps
to the abstract tropical curve with x1 and x3 at one vertex and length parameter
1 under ft. Denote by λ a rational function on M0,4 that cuts out this curve.

x1

L1

x3

x4 x2

P1 = (0, 0)

P2 = (1,−2)

(3, 1)

(−1,−1.5)

L2

l1 = 2
l2 = 1

2
l3 = 1
l5 = 1

l4 = 1

Because C satisfies the conditions, it contributes to the intersection product

ev∗
1(max{x, 0}) · ev∗

1(max{y, 0}) ev∗2(max{x, 1}) · ev∗
2(max{y,−2})

· ev∗
3(max{x− 3, 2y − 2, 0}) · ev∗

4(max{x+ 1, 2y + 3, 0})

· ft∗(λ) ·Mlab
0,4(R

2,∆F2
(1, 0)).

Let us compute the multiplicity with which it contributes using lemma 2.4. Locally
at h(x3), the function max{x − 3, 2y − 2, 0} equals max{2y − 2, 0} and locally at
h(x4), the function max{x+ 1, 2y+ 3, 0} equals max{x+ 1, 2y+ 3}. Hence locally
we have

ev∗
3(max{x− 3, 2y − 2, 0}) = max{2h(x3)y − 2, 0} and

ev∗
4(max{x+ 1, 2y + 3, 0}) = max{h(x4)x + 1, 2h(x4)y + 3}.

We can rewrite the pullbacks along ev1 and ev2 analogously. Locally, ft equals
the map that sends a curve in σ with coordinates (h(x1), l1, . . . , l5) to l3. We also
have to write the linear part of the evaluation pullbacks in the basis of σ, i.e. in
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h(x1), l1, . . . , l5. For this, note first that

h(x2) = h(x1) + l1 ·

(
1

0

)

+ l3 ·

(
−1

−1

)

+ l5 ·

(
0

−1

)

,

h(x3) = h(x1) + l1 ·

(
1

0

)

+ l2 ·

(
2

1

)

and

h(x4) = h(x1) + l1 ·

(
1

0

)

+ l3 ·

(
−1

−1

)

+ l4

(
−1

0

)

.

Thus, the linear part of 2h(x3)y − 2 equals

2h(x1)y + 2l2

and the linear part of h(x4)x + 1 − 2h(x4)y − 3 equals

h(x1)x + l1 − l3 − l4 − 2(h(x1)y − l3) = h(x1)x − 2h(x1)y + l1 + l3 − l4.

So, if we plug for example the vector which has a 1 at l2 and 0 everywhere else into
the linear part of 2h(x3)y − 2, we get 2. If we plug the vector which has a 1 at l4
and 0 everywhere else into the linear part of h(x4)x + 1 − 2h(x4)y − 3, we get −1.
Continuing like this, we can see that the matrix A equals:

h(x1)x h(x1)y l1 l2 l3 l4 l5
(P1)x 1 0 0 0 0 0 0
(P1)y 0 1 0 0 0 0 0
(P2)x 1 0 1 0 −1 0 0
(P2)y 0 1 0 0 −1 0 −1
L1 0 2 0 2 0 0 0
L2 1 −2 1 0 1 −1 0
ft 0 0 0 0 1 0 0

Since | det(A)| = 2, the curve C contributes with multiplicity 2 to the intersection
product above.

Notation 2.7

Let C be a curve contributing to a 0-dimensional intersection product as in ex-
ample 2.6 consisting of evaluation pullbacks and the pullback of a curve in M0,4

under ft (resp. only evaluation pullbacks). Then we denote by multev× ft(C) (resp.
multev(C)) the multiplicity with which C contributes to the intersection product,
which equals the absolute value of the determinant of the linear part of the com-
bined evaluation and forgetful maps, as we have seen in 2.4.

Remark 2.8

Note that by [6], proposition 3.8, multev(C) equals the usual multiplicity of a
tropical curve as defined in [8], 4.15, i.e. the multiplicity with which it contributes
to the count of N g

F2
(a, b).

In the following, we want to describe both sides of equation 3 in detail. We want to
study the set of curves that satisfy the conditions, and their multiplicity. We will
see that we can interpret the curves as reducible curves, and count the contributions
from each component separately. This will lead to the formula of theorem 2.12 we
want to prove.
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Remark 2.9

Using the notations from 2.1, let C be a tropical curve in Mlab
0,n(R2,∆) passing

through L1, L2, p3, . . . , pn and mapping to λA under ft (hence a curve C that
contributes to the left hand side of equation 3 with multiplicity multev× ft(C)). We
would like to generalize proposition 5.1 of [6], which states that C has a contracted
bounded edge. However, this is not true in the case of F2. We can have curves like
the one shown in the following picture (where the length l is very large) which do
allow a very large M0,4-coordinate.

l

SC ′

Even though those curves fail to have a contracted bounded edge, we can still
interpret them as reducible curves by cutting off the part which is far away to the
right (in the picture denoted by S). The remaining part (in the picture denoted by
C′) is a reducible curve of degree ∆F2

(a−1, b+2). The existence of such curves with
a very large M0,4-coordinate leads to the second part of the sum in the recursion
formula of theorem 2.12. The part S which is far away to the right is called a string
following [6], definition 3.5.

Lemma 2.10

Using the notations from 2.1, let C ∈ Mlab
0,n(R2,∆) be a tropical curve that passes

through L1, L2, p3, . . . , pn, maps to λA under ft and has a non-zero multiplicity
multev× ft(C). Then either

(1) C has a contracted bounded edge or

(2) C contains a string

(see remark 2.9) that can be moved to the right.

Proof:

The beginning of the proof is similar to proposition 5.1 of [6].

We will show that the set of all points ft(C) is bounded in M0,4 where C runs over
all curves C ∈ Mlab

0,n(R2,∆) with non-zero multiplicities multev× ft(C) that satisfy
the conditions but have no contracted bounded edge and no string moving to the
right as in the picture. By proposition 2.11 of [10] there are only finitely many
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combinatorial types in Mlab
0,n(R2,∆). Thus, we may restrict ourselves to tropical

curves C of a fixed combinatorial type α. Furthermore, we may assume the curves
corresponding to α are 3-valent.

Let C be such a curve and let C′ be the curve obtained from C by forgetting the first
and the second marked point. Then C′ has a string Γ′ which follows analogously to
remark 3.7 of [6]. We claim that using the string, we can deform C′ in a 1-parameter
family within its combinatorial type without changing the images of the marked
points. To see this, assume first that there is a vertex V contained in the string such
that the directions of the adjacent edges do not span R

2 (case (A) in the picture
below). Then we can change the lengths of the adjacent edges without changing
the image inside R

2, in particular without changing the image of any marked point.
Next assume that there is no such vertex contained in the string (case (B)). Then
we can take one of the ends of the string (which is necessarily non-contracted) and
move it slightly in a non-zero direction modulo its linear span. Consider the next
vertex V and let v be the adjacent edge not contained in the string. Then v is
non-contracted and our moved end will meet the affine span of v at some point P .
So we change the length of v such that it ends at P (while keeping the position
of its second vertex fixed). Then we also move the second edge of the string to
P and go on to the next vertex. Continuing like this, we produce a 1-dimensional
deformation of C′ that keeps the images of the marked points fixed.

V

P

v

(A) (B)

Assume we could deform C′ in a more than 1-dimensional family while keeping
the images of the marked points fixed. Then C′ moves in an at least 1-dimensional
family with the image point under all evaluations and the forgetful map fixed. Then
multev× ft(C) = 0, which is a contradiction to our assumption. In particular, we
can see that we cannot have more than one string. Note that the edges adjacent to
Γ′ must be bounded since otherwise we would have two strings.

Now we show that the 1-dimensional deformation of C′ is either bounded itself or
does not affect the image under ft. From this, the statement follows.

First assume that there are bounded edges adjacent to Γ′ to both sides of Γ′ as
shown in (i). Then the deformation of C′ with the combinatorial type and the
conditions fixed are bounded to both sides. This means that the lengths of all
inner edges are bounded except possibly the edges adjacent to x1 and x2. This is
sufficient to ensure that the image of these curves under ft is bounded in M0,4,
too.
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Γ′ Γ′

v4

w1

v2

w2

w3
v3

v1
v1

v2

v3

v4

w1

w2

w3

Γ′

(i) (ii) (iii) (iv)

Now assume that all bounded edges adjacent to Γ′ are on one side of Γ′ (say after
picking an orientation of Γ′ on the left side). Denote the direction vectors of the
edges of Γ′ by v1, . . . , vk and the direction vectors of the adjacent bounded edges
by w1, . . . , wk−1. As above, the movement of Γ′ to the left with the combinatorial
type and the conditions fixed is bounded. If one of the directions wi+1 is obtained
from wi by a right turn, then the edges corresponding to wi and wi+1 meet to the
right of Γ′ as shown in (ii). This restricts the movement of Γ′ to the right with
the combinatorial type and the conditions fixed, too, since the edge corresponding
to vi+1 then receives length 0. Hence, as above, the image of these plane tropical
curves under ft is bounded in M0,4 as well. Thus, we may assume that for all i,
1 ≤ i ≤ k − 2 the direction wi+1 is either the same as wi or obtained from wi by a
left turn as shown in (iii). The balancing condition then ensures that for all i both
the directions vi+1 and −wi+1 lie in the angle between vi and −wi. Therefore, all
directions vi and −wi lie in the angle between v1 and −w1. In particular, the string
Γ′ cannot have any self-intersections in R

2. We can therefore pass to the local dual
picture where the edges dual to wi correspond to a concave side of a polygon whose
other two edges are dual to v1 and vk as shown in (iv). But note that both v1 and
vk are outer directions of a plane tropical curve of degree ∆. Thus, v1 and vk must
be
(
−1
0

)
,
(

0
−1

)
,
(
1
0

)
or
(
2
1

)
. Consequently, their dual edges have direction vectors

±
(

0
−1

)
, ±
(
1
0

)
, ±
(
0
1

)
or ±

(
−1
2

)
. We have to distinguish two cases

(a) v1 and vk are
(

0
−1

)
and

(
2
1

)
, i.e. their dual edges have direction vectors

±(−1, 0) and ±(−1, 2)
(b) v1 and vk are not

(
0
−1

)
and

(
2
1

)
.

In case (b) the triangles spanned by two of those vectors do not admit any further
integer points. Therefore we have k = 2 and the string consist just of the two
unbounded edges corresponding to v1 and v2 that are connected to the rest of the
plane tropical curve by exactly one internal edge corresponding to w1. It remains to
show that for all possibilities for v1 and v2 in case (b) the union of the corresponding
edges finally becomes disjoint from at least one of the chosen curves L1 and L2 as
the length of the edge corresponding to w1 increases. This can be proved by a
case-by-case analysis as shown in the following picture:
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w1

v2

v1
v2

v1

w1

w1

v1

v2 v2

v1
w1

L1

L2

L1

L2 L2

L1 L1

L2

In case (a) the triangle spanned by the two vectors
(
−1
0

)
and

(
−1
2

)
admits exactly

one further integer point.

w̌2 = (0, 1)

v̌k = v̌3 = (−1, 2)

v̌2 = (−1, 1)

v̌1 = (−1, 0)

w̌1 = (0, 1)

In the picture, we denote the duals of the vectors vi and wi by v̌i and w̌i. Thus, in
case (a) we may have k = 3 and the string Γ′ may consist of the two unbounded
edges corresponding to v1 and v3 and the bounded edge corresponding to v2 that
is connected to the rest of the plane tropical curve by the two edges corresponding
to w1 and w2. In this case, the movement of the string is indeed not bounded to
the right. Then we are in case (2) of lemma 2.10. This finishes the proof of the
lemma. �

Lemma 2.11

Let C be a curve of type (2) of lemma 2.10 then

multev× ft(C) = multev1
(C1) · multev2

(C2) · 2 · (C1 · L1)x1
· (C1 · L2)x2

where multevi
(Ci) denotes the multiplicity of the evaluation map at the #∆i −

1 points of x3, . . . , xn that lie on Ci for i ∈ {1, 2} and (C′ · C′′)p denotes the
intersection multiplicity of the plane tropical curves C′ and C′′ at the point p ∈
C′ ∩C′′. Here, C1 and C2 denote the two irreducible components of the part C′ of
C that we get when cutting off the string S as in remark 2.9.

Proof:

Since multev× ft(C) equals the absolute value of the determinant of the map ev× ft
in local coordinates, we set up the matrix A for ev× ft as in lemma 2.4 and com-
pute its determinant. The local coordinates are the position of a root vertex and
the length of all bounded edges, respectively the coordinates of the images of the
contracted edges and the length coordinate of the bounded edge of the image under
ft in M0,4. Because of remark 2.5, the absolute value of the determinant does not
depend on the special choice of such coordinates.

There are exactly two bounded edges that connect the string S with the rest of
the curve. We denote these bounded edges by E′ and E′′ and the unique bounded
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edge that is contained in the string by E. Their lengths are denoted by l′, l′′ and
l, respectively.

C2

C1

E′
S

E
E′′

As the length of the M0,4-coordinate is very large and there is no contracted
bounded edge, the lengths l′, l and l′′ must count towards the length of the M0,4-
coordinate. That is, x1 and x2 have to be on one side of those three edges and x3

and x4 on the other. Let us call the part with x1 and x2 C1, and assume without
restriction that E′ belongs to C1. Put the root vertex on the E′-side. Then the
columns of the matrix A corresponding to the lengths l′ and l′′ read:

l′ l′′

evaluation at a point behind E′ 0
0

0
0

evaluation at a point behind E′′ 1
0

−1
0

M0,4-coordinate 1 1

If we add the column corresponding to the length l′ to the column corresponding to
the length l′′, then the column corresponding to the length l′+l′′ has only one entry
2 and all other entries 0. Thus, we get a factor of 2 and to compute the determinant
of the matrix A we may drop both the M0,4-row and the column corresponding to
the edge E′′.

Now, we consider the first marked point x1. We require that the plane tropical
curve C passes through L1 at this point. Let E1 and E2 be the two adjacent edges
of x1. We denote their common direction vector by v =

(
v1

v2

)
and their lengths by

l1 and l2, respectively. We may assume that the root vertex is on the E1-side of
x1. Assume that both E1 and E2 are bounded. If x1 is contracted to a point on an
unbounded edge of L1 with direction vector

(
u1

u2

)
, then the columns of the matrix

corresponding to l1 and l2, respectively, read

evaluation at ... l1 l2
... x1 |u2v1 − u1v2| 0
... a point reached via E1 from x1 0 0
... a point reached via E2 from x1 v v

Note that there are two rows for each marked point x3, . . . , xn that is reached via
E1 or E2 from x1 and there is one row for the marked point x2. If we subtract
the column corresponding to l2 from the column corresponding to l1, then we
obtain a column with only one non-zero entry. So for the determinant we get
(C1 · L1)x1

as a factor and may drop both the row corresponding to x1 and the
column corresponding to l1. Now assume that one of the edges E1 and E2 is
unbounded. Assume that E1 is bounded and E2 is unbounded. Then there is
a column corresponding to l1 but no column corresponding to l2. The column
corresponding to l1 has only one non-zero entry and the same argument as above
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holds. Note that it is not possible that both E1 and E2 are unbounded. Taking
the factor (C1 · L1)x1

into account, we can now forget the marked point x1 and
straighten the 2-valent vertex to produce only one bounded edge out of E1 and E2.

If we forget the marked point x2, we obtain a factor of (C1 ·L2)x2
in the same way.

Now, we consider again the string S. Remember that we split up the plane tropical
curve C at this string into the two parts C1 and C2. We choose the boundary
vertex of the bounded edge E′ at the C1-side as root vertex and denote it by V .
Then the matrix reads

lengths lengths
evaluation at a ... root in C1 l′ l in C2

... point behind E′ I2 ∗ 0 0 0

... point behind E′′ I2 0
(
1
0

) (
−1
−1

)
∗

where I2 denotes the 2 by 2 unit matrix. Assume there are n1 marked points
besides x1 and x2 on C1 and n2 marked points besides x3 and x4 on C2, where
n1 + n2 = n− 4 = #∆ − 4 = 4a+ 2b − 4. Assume the degree of C1 is ∆F2

(a1, b1)
and the degree of C2 is ∆F2

(a2, b2). Then a1 + a2 = a− 1 and b1 + b2 = b+2 as we
observed in remark 2.9. Since multev× ft(C) 6= 0 we must have n1 = 4a1 + 2b1 − 1
and n2 + 2 = 4a2 + 2b2 − 1 (because then the curves will be fixed by the points).
Thus (after forgetting x1 and x2) C1 has n1 + 4a1 + 2b1 = 2n1 + 1 unbounded
edges and thus 2n1 − 2 bounded edges. Hence 2n1− 2 length coordinates belong to
bounded edges in C1. C2 has n2 + 2 + 4a2 + 2b2 = 2n2 + 5 unbounded edges and
thus 2n2 + 2 length coordinates belong to C2. Furthermore, there are n1 points
behind E′ and there are n2 + 2 points behind E′′.

If we add the l′-column to the l-column and then multiply the l-column by −1, then
we obtain the following matrix whose determinant has the same absolute value as
the determinant that we are looking for.

lengths lengths
evaluation at a ... root in C1 l′ l in C2

... point behind E′ I2 ∗ 0 0 0

... point behind E′′ I2 0
(
1
0

) (
0
1

)
∗

Note that this matrix has a block form. The block at the top right is a zero block.
We denote the top left block of size 2n1 by A1 and the bottom right block of size
2n2+4 by A2. Then, the determinant that we are looking for is | det(A1)|·| det(A2)|.

But the matrix A1 is the matrix of evaluation at marked points in C1 and A2

is the matrix of evaluation at marked points in C2. Thus, we have | det(A1)| =
multev1

(C1) and | det(A2)| = multev2
(C2).

Together, we have multev× ft(C) = multev1
(C1) · multev2

(C2) · 2 · (C1 · L1)x1
· (C1 ·

L2)x2
. �

We are now ready to prove the main result of this section:
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Theorem 2.12 (tropical Kontsevich formula for F2)
Let a and b be non-negative integers with a+ b ≥ 1. Then

N 0
F2

(a, b) =
1

2

∑

φ21
(a1, b1)N

0
F2

(a1, b1)N
0
F2

(a2, b2)

+
1

2

∑

φ22
(a1, b1)N

0
F2

(a1, b1)N
0
F2

(a2, b2)

where the first sum goes over all (a1, b1) and (a2, b2) satisfying

(a1, b1) + (a2, b2) = (a, b),

0 ≤ a1 ≤ a, 0 ≤ b1 ≤ b and (0, 0) 6= (a1, b1) 6= (a, b), and the second sum goes over
all (a1, b1) and (a2, b2) satisfying

(a1, b1) + (a2, b2) = (a− 1, b+ 2),

0 ≤ a1 ≤ a− 1 and 0 < b1 < b+ 2. We use the shortcuts φ21
(a1, b1) for

φ21
(a1, b1) = (2a1 + b1)(2a2 + b2)(a1b2 + a2b1 + 2a1a2)

(
4a+ 2b− 4

4a1 + 2b1 − 2

)

− (2a1 + b1)(2a1 + b1)(a1b2 + a2b1 + 2a1a2)

(
4a+ 2b− 4

4a1 + 2b1 − 1

) (4)

and φ22
(a1, b1) for

φ22
(a1, b1) = 2(2a1 + b1)(2a2 + b2)(b1b2)

(
4a+ 2b− 4

4a1 + 2b1 − 2

)

− 2(2a1 + b1)(2a1 + b1)(b1b2)

(
4a+ 2b− 4

4a1 + 2b1 − 1

)

.

(5)

Proof:

Let C be a curve passing through L1, L2, p3, . . . , pn and mapping to λA under
ft, i.e. a curve that contributes to the left hand side of equation 3 because of
remark 2.3. By lemma 2.4 and notation 2.7, it has to be counted with multiplicity
multev× ft(C). We will show that C can be interpreted as a reducible curve, and
that its multiplicity multev× ft(C) can be split into factors corresponding to the
irreducible components.

Because of lemma 2.10 we know that C either has a contracted bounded edge or a
string that can be moved to the right as in remark 2.9.

If it has a contracted bounded edge, then it is possible that this edge is adjacent to
the marked ends x1 and x2. Then the two marked ends are contracted to the same
point in R

2, which has to be an intersection point of L1 and L2. Let us call this
point p. Let C′ denote the curve that arises after forgetting the marked point x1.
Analogously to 5.5.a) of [6] we can show that multev× ft(C) = multev′(C′)·(L1.L2)p,
where ev′ now denotes the evaluation of x2 at a point combined with all other
point evaluations and (L1.L2)p denotes the intersection product of L1 and L2 at
p. Instead of counting those curves C, we can hence count curves C′ meeting the
points p3, . . . , pn and an intersection point of L1 and L2. Since (L1.L2) = 2 by
the tropical Bézout’s theorem (4.2 of [11]), we can conclude that those curves C
contribute 2N 0

F2
(a, b) to the left hand side of equation 3.

If x1 and x2 are not adjacent to the contracted bounded edge, then there have to be
bounded edges to both sides of the contracted bounded edge, since all other marked
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points have to meet different points. If there are bounded edges on both sides of the
contracted bounded edge, we can cut the bounded edge thus producing a reducible
curve with two new contracted ends z1 and z2. Let us call the two components C1

and C2. Since C maps to λA under ft, x1 and x2 have to be on C1. Let us call
the degree of C1 ∆F2

(a1, b1) and the degree of C2 ∆F2
(a2, b2), then we must have

(a1, b1) + (a2, b2) = (a, b), 0 ≤ a1 ≤ a, 0 ≤ b1 ≤ b and (0, 0) 6= (a1, b1) 6= (a, b).
Analogously to 5.5.b) of [6], we can forget x1 and x2 thus producing a factor of
(C1.L1)x1

· (C1.L2)x2
. (By abuse of notation, we use the xi here for the point in

R
2 to which the end xi is contracted to.) With the same arguments as in 5.5.b) of

[6], we can see that

multev× ft(C) = multev1
(C1)multev2

(C2)(C1 · C2)z1=z2
(C1.L1)x1

· (C1.L2)x2
,

where multev1
(C1) denotes the multiplicity of the evaluation at the points on C1.

Note that 4a1+2b1−1 of the other marked points have to be on C1. Now instead of
counting the curves C with a contracted bounded edge and bounded edges on both
sides, we can pick 4a1+2b1−1 of the points p5, . . . , pn (

(
4a+2b−4

4a1+2b1−1

)
possibilities) and

count curves C1 through those points, and C2 through the remaining points. Again
by tropical Bézout’s theorem we have (C1.L1) = (2a1 +b1) choices to attach x1 and
(C1.L2) = (2a1 + b1) choices to attach x2, and we have (C1.C2) = (a1b2 + a2b1 +
2a1a2) choices to glue C1 and C2 to a possible C. Thus those curves contribute

∑

(2a1 + b1)(2a1 + b1)(a1b2 +a2b1 +2a1a2)

(
4a+ 2b− 4

4a1 + 2b1 − 1

)

N 0
F2

(a1, b1)N
0
F2

(a2, b2),

where the sum goes over all (a1, b1) + (a2, b2) = (a, b), 0 ≤ a1 ≤ a, 0 ≤ b1 ≤ b

and (0, 0) 6= (a1, b1) 6= (a, b). In the formula we want to prove, we can see this
contribution negatively on the right hand side.

Finally, if C has a string as in remark 2.9, then by lemma 2.11 we can conclude
that C contributes

multev× ft(C) = multev1
(C1) · multev2

(C2) · 2 · (C1 · L1)x1
· (C1 · L2)x2

.

Instead of counting such curves C, we can pick 4a1 +2b1−1 of the points p5, . . . , pn

(
(

4a+2b−4
4a1+2b1−1

)
possibilities) and count curves C1 of degree ∆F2

(a1, b1) through those

points, and C2 of degree ∆F2
(a2, b2) through the remaining points, where now

(a1, b1) + (a2, b2) = (a− 1, b+ 2). There are again (2a1 + b1) possibilities to attach
x1 and also (2a1 + b1) possibilities to attach x2 to C1. There are b1b2 choices to
pick the edges E′ and E′′ to which we can attach the string S. Hence those curves
contribute

∑

2(2a1 + b1)(2a1 + b1)(b1b2)

(
4a+ 2b− 4

4a1 + 2b1 − 1

)

N 0
F2

(a1, b1)N
0
F2

(a2, b2),

where now the sum goes over all (a1, b1) + (a2, b2) = (a− 1, b+ 2), 0 ≤ a1 ≤ a− 1,
0 < b1 < b+ 2 and (0, 0) 6= (a1, b1) 6= (a, b). In the formula we want to prove, this
contribution appears negatively on the right hand side.

Performing the same analysis for the right hand side of equation 3 and collecting
the terms to the different sides, the statement follows.

�
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The following formula for F0 can be proved analogously. The proof is easier in
fact, since all curves have a contracted bounded edge and the special case of curves
having a string that can be moved to the right as in remark 2.9 does not occur
here. We therefore skip the proof. For more details, see [3].

Theorem 2.13 (tropical Kontsevich formula for F0)
Let a and b be non-negative integers with a+ b ≥ 1. Then

N 0
F0

(a, a+ b) =
1

2

∑

φ0(a1, a1 + b1)N
0
F0

(a1, a1 + b1)N
0
F0

(a2, a2 + b2)

where the sum goes over all (a1, b1) and (a2, b2) satisfying

(a1, a1 + b1) + (a2, a2 + b2) = (a, a+ b),

0 ≤ a1 ≤ a, −a1 ≤ b1 ≤ b + a2 and (0, 0) 6= (a1, a1 + b1) 6= (a, a + b). We use the
shortcut φ0(a1, a1 + b1) for

φ0(a1, a1 + b1) = (2a1 + b1)(2a2 + b2)(a1b2 + a2b1 + 2a1a2)

(
4a+ 2b− 4

4a1 + 2b1 − 2

)

− (2a1 + b1)(2a1 + b1)(a1b2 + a2b1 + 2a1a2)

(
4a+ 2b− 4

4a1 + 2b1 − 1

)

.

(6)

3. The proof for nonnegative a, b with a+ b ≥ 1 and g = 0

Recall the equation from theorem 1.1 we want to prove. Note that for k = a we
would obtain a summand

(
b+2a

a

)
N 0

F2
(0, (b + 2a)) which is 0 for all a, b ∈ Z≥0 with

a + b ≥ 1 except for a = 0 and b = 1. As in this special case the statement still
holds, we may add this summand for k = a and deal with the slightly modified
equation

N 0
F0

(a, a+ b) =

a∑

k=0

(
b+ 2k

k

)

N 0
F2

(a− k, b+ 2k).

We will see later that this is useful.

Example 3.1

Let us consider the formula for small a in more detail. For a = 0 and a = 1 we
have N 0

F0
(a, a+ b) = N 0

F2
(a, b) for all b ∈ Z≥0. Hence, in these cases the Gromov-

Witten invariants are enumerative for F2 as well. For a = 2 and b = 0 we have
N 0

F2
(2, 0) = 10 while the associated Gromov-Witten invariant is N 0

F0
(2, 2) = 12.

This is the first interesting case. The formula gives a interpretation of the difference
2 in terms of a deformation of F2:

N 0
F0

(2, 2) = 12 = 10 + 2 × 1 = N 0
F2

(2, 0) +

(
2

1

)

N 0
F2

(1, 2) +

(
4

2

)

N 0
F2

(0, 4)

︸ ︷︷ ︸

=0

.

We need the following combinatorial indentity involving binomial coefficients for
our proof.
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Lemma 3.2

Let n, m, k ∈ N. Then

k∑

i=0

(mi+ n(k − i) − 2i(k − i))

(
n

i

)(
m

k − i

)

= 2 · n ·m ·

(
n+m− 2

k − 1

)

.

Proof:

The equation is essentially a consequence of Vandermonde’s identity which states
that

k∑

i=0

(
n

i

)(
m

k − i

)

=

(
n+m

k

)

.

Using this we have

k∑

i=0

mi

(
n

i

)(
m

k − i

)

=

k∑

i=0

nm

(
n− 1

i− 1

)(
m

k − i

)

= nm

(
n+m− 1

k − 1

)

and

k∑

i=0

n(k − i)

(
n

i

)(
m

k − i

)

=

k∑

i=0

nm

(
n

i

)(
m− 1

k − i− 1

)

= nm

(
n+m− 1

k − 1

)

and

k∑

i=0

(−2i(k − i))

(
n

i

)(
m

k − i

)

= −2

k∑

i=0

nm

(
n− 1

i− 1

)(
m− 1

k − i− 1

)

= −2nm

(
n+m− 2

k − 2

)

as i
(
n
i

)
= n

(
n−1
i−1

)
and (k − i)

(
m

k−i

)
= m

(
m−1

k−i−1

)
and thus

k∑

i=0

(mi+ n(k − i) − 2i(k − i))

(
n

i

)(
m

k − i

)

= 2nm

((
n+m− 1

k − 1

)

−

(
n+m− 2

k − 2

))

= 2nm

(
n+m− 2

k − 1

)

where the last equality follows by Pascal’s rule.

�

Proof of theorem 1.1 for non-negative a, b with a+ b ≥ 1 and g = 0:
We will prove that the statement holds for all integers a ≥ 0 and b ≥ −a with
2a + b ≥ 1 by induction on 2a + b. Note that b may be negative. But as b ≥ −a
and 2a + b ≥ 1 we have a + b ≥ 0 and hence the left hand side is well defined.
On the right hand side we may have negative entries. We define N 0

F2
(a, b) to be

0 for all b < 0, a ≥ 0. In particular, we conclude that the statement holds for all
non-negative integers a and b with a+ b ≥ 1.
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The induction beginning for a = 0 and b = 1 resp. a = 1 and b = −1 is straight
forward, we need to use the extra summand with k = a however.

Now let a ≥ 0 and b ≥ −a be integers such that 2a+ b ≥ 1.

We can assume that the statement holds for all integers ai ≥ 0 and bi ≥ −ai with
1 ≤ 2ai + bi < 2a+ b.

First let us consider the left hand side. We know by theorem 2.13 that

2N 0
F0

(a, a+ b) =
∑

φ0(a1, a1 + b1)N
0
F0

(a1, a1 + b1)N
0
F0

(a2, a2 + b2)

where the sum goes over all (a1, b1) and (a2, b2) satisfying (a1, a1 + b1) + (a2, a2 +
b2) = (a, a+b), 0 ≤ a1 ≤ a, −a1 ≤ b1 ≤ b+a2 and (0, 0) 6= (a1, a1 +b1) 6= (a, a+b),
and φ0(a1, a1 + b1) is defined by equation 6.

As 2a1 + b1 < 2a+ b and 2a2 + b2 < 2a+ b for all a1, a2, b1 and b2 we have by the
induction hypothesis that N 0

F0
(a1, a1 + b1) =

∑a1

i=0

(
b1+2i

i

)
N 0

F2
(a1 − i, b1 + 2i) and

N 0
F0

(a2, a2 + b2) =
∑a2

j=0

(
b2+2j

j

)
N 0

F2
(a2 − j, b2 + 2j). Hence we have

2N 0
F0

(a, a+ b) =
∑

φ0(a1, a1 + b1) ·

(
a1∑

i=0

(
b1 + 2i

i

)

N 0
F2

(a1 − i, b1 + 2i)

)

·





a2∑

j=0

(
b2 + 2j

j

)

N 0
F2

(a2 − j, b2 + 2j)





=

a∑

k=0

k∑

i=0
j=k−i

∑
((

b1 + 2i

i

)(
b2 + 2j

j

)

φ0(a1, a1 + b1)

· N 0
F2

(a1 − i, b1 + 2i)N 0
F2

(a2 − j, b2 + 2j)

)

Let us consider the range of a1 and b1 in the third sum for a fixed k and i. As
N 0

F2
(a1 − i, b1 + 2i) = 0 for all 0 ≤ a1 < i and N 0

F2
(a2 − j, b2 + 2j) = 0 for all

0 ≤ a2 < j (i.e. for all a− 0 = a ≥ a− a2 = a1 > a− j = a− k + i) we can forget

about the summands where 0 ≤ a1 < i or a− k+ i < a1 ≤ a. As
(
b1+2i

i

)
= 0 for all

b1 < −i and
(
b2+2j

j

)
= 0 for all b2 < −j (i.e. for all b − b2 = b1 > b+ j) the range

of those b1 which give a contribution is −i ≤ b1 ≤ b + j. We may add summands
for −2i ≤ b1 < −i and b + j < b1 ≤ b + 2j since they are 0 anyway. Hence we
may restrict our attention to those (a1, a1 + b1) + (a2, a2 + b2) = (a, a + b) with
i ≤ a1 ≤ a−k+ i and −2i ≤ b1 ≤ b+2j such that (0, 0) 6= (a1, a1 + b1) 6= (a, a+ b).
With the definitions

a′1 := a1 − i a′2 := (a− k) − a′1 = a2 − j

b′1 := b1 + 2i b′2 := (b + 2k) − b′1 = b2 + 2j

this is equivalent to considering all pairs

(a′1, b
′
1) + (a′2, b

′
2) = (a− k, b+ 2k)

with

0 ≤ a′1 ≤ a− k and 0 ≤ b′1 ≤ b+ 2k such that (0, 0) 6= (a′1, b
′
1) 6= (a, b).

Let the sums in the following equation go over those pairs now. Then
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2N 0
F0

(a, a+ b) =
a∑

k=0

k∑

i=0
j=k−i

∑
((

b′1
i

)(
b′2
j

)

φ0(a
′
1 + i, a′1 + b′1 − i)

· N 0
F2

(a′1, b
′
1)N

0
F2

(a′2, b
′
2)

)

=

a∑

k=0

∑
( k∑

i=0
j=k−i

(
b′1
i

)(
b′2
j

)

φ0(a
′
1 + i, a′1 + b′1 − i)

· N 0
F2

(a′1, b
′
1)N

0
F2

(a′2, b
′
2)

)

where

φ0(a
′
1 + i, a′1 + b′1 − i)

= (2a′1 + b′1)(2a
′
2 + b′2)(a

′
1b

′
2 + a′2b

′
1 + 2a′1a

′
2

+ b′2i+ b′1j − 2ij)

(
4a+ 2b− 4

4a′1 + 2b′1 − 2

)

− (2a′1 + b′1)(2a
′
1 + b′1)(a

′
1b

′
2 + a′2b

′
1 + 2a′1a

′
2

+ b′2i+ b′1j − 2ij)

(
4a+ 2b− 4

4a′1 + 2b′1 − 1

)

= (2a′1 + b′1)(2a
′
2 + b′2)(a

′
1b

′
2 + a′2b

′
1 + 2a′1a

′
2)

(
4a+ 2b− 4

4a′1 + 2b′1 − 2

)

− (2a′1 + b′1)(2a
′
1 + b′1)(a

′
1b

′
2 + a′2b

′
1 + 2a′1a

′
2)

(
4a+ 2b− 4

4a′1 + 2b′1 − 1

)

+ (2a′1 + b′1)(2a
′
2 + b′2)(b

′
2i+ b′1j − 2ij)

(
4a+ 2b− 4

4a′1 + 2b′1 − 2

)

− (2a′1 + b′1)(2a
′
1 + b′1)(b

′
2i+ b′1j − 2ij)

(
4a+ 2b− 4

4a′1 + 2b′1 − 1

)

by equation (6) in theorem 2.13.

Let us stop here and consider the right hand side of the equation we want to prove.
We have by Theorem 2.12

a∑

k=0

(
b+ 2k

k

)

2N 0
F2

(a− k, b+ 2k)

=

a∑

k=0

(
b+ 2k

k

)

·
(∑

φ21
(a1, b1)N

0
F2

(a1, b1)N
0
F2

(a2, b2)

+
∑

φ22
(a1, b1)N

0
F2

(a1, b1)N
0
F2

(a2, b2)
)

where the first sum goes over all pairs such that (a1, b1) + (a2, b2) = (a− k, b+ 2k)
and the second sum goes over all pairs such that (a1, b1)+(a2, b2) = (a−(k+1), b+
2(k+ 1)). We use the shortcuts φ21

(a1, b1) and φ22
(a1, b1) as defined in equation 4

and 5.
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Since for k = 0 the binomial coefficient
(
b+2(k−1)

k−1

)
is 0 and for k = a there are no

a1 and b1 which satisfy (a1, b1) + (a2, b2) = (a− (k+ 1), b+ 2(k+ 1)) we can merge
the two sums and get

a∑

k=0

∑
(((

b+ 2k

k

)

φ21
(a1, b1) +

(
b+ 2(k − 1)

k − 1

)

φ22
(a1, b1)

)

· N 0
F2

(a1, b1)N
0
F2

(a2, b2)

)

where the sum now goes over all pairs such that (a1, b1)+ (a2, b2) = (a− k, b+ 2k).

Thus it remains to show that

a∑

k=0

∑
( k∑

i=0
j=k−i

(
b1

i

)(
b2

j

)

φ0(a1 + i, a1 + b1 − i)

)

· N 0
F2

(a1, b1)N
0
F2

(a2, b2)

=
a∑

k=0

∑
((

b+ 2k

k

)

φ21
(a1, b1) +

(
b+ 2(k − 1)

k − 1

)

φ22
(a1, b1)

)

· N 0
F2

(a1, b1)N
0
F2

(a2, b2).

Therefore we will show that

k∑

i=0
j=k−i

(
b1

i

)(
b2

j

)

φ0(a1 + i, a1 + b1 − i)

=

(
b+ 2k

k

)

φ21
(a1, b1) +

(
b+ 2(k − 1)

k − 1

)

φ22
(a1, b1)

for all k ∈ {0, ..., a} and for all integers 0 ≤ a1, a2 ≤ a− k, 0 ≤ b1, b2 ≤ b+2k with
a1 + a2 = a− k, b1 + b2 = b+ 2k and (0, 0) 6= (a1, b1) 6= (a− k, b+ 2k).

We use the identity from Lemma 3.2.

It is

k∑

i=0
j=k−i

(
b1

i

)(
b2

j

)

φ0(a1 + i, a1 + b1 − i)

(6)
=

k∑

i=0
j=k−i

[(
b1

i

)(
b2

j

)

·

(

(2a1 + b1)(2a2 + b2)(a1b2 + a2b1 + 2a1a2)

(
4a+ 2b− 4

4a1 + 2b1 − 2

)

− (2a1 + b1)(2a1 + b1)(a1b2 + a2b1 + 2a1a2)

(
4a+ 2b− 4

4a1 + 2b1 − 1

)

+ (2a1 + b1)(2a2 + b2)(b2i+ b1j − 2ij)

(
4a+ 2b− 4

4a1 + 2b1 − 2

)

− (2a1 + b1)(2a1 + b1)(b2i+ b1j − 2ij)

(
4a+ 2b− 4

4a1 + 2b1 − 1

))]
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=

( k∑

i=0
j=k−i

(
b1

i

)(
b2

j

))

·

(

(2a1 + b1)(2a2 + b2)(a1b2 + a2b1 + 2a1a2)

(
4a+ 2b− 4

4a1 + 2b1 − 2

)

− (2a1 + b1)(2a1 + b1)(a1b2 + a2b1 + 2a1a2)

(
4a+ 2b− 4

4a1 + 2b1 − 1

))

+

( k∑

i=0
j=k−i

(
b1

i

)(
b2

j

)

(b2i+ b1j − 2ij)

)

·

(

(2a1 + b1)(2a2 + b2)

(
4a+ 2b− 4

4a1 + 2b1 − 2

)

− (2a1 + b1)(2a1 + b1)

(
4a+ 2b− 4

4a1 + 2b1 − 1

))

=

(
b1 + b2

i+ j

)(

(2a1 + b1)(2a2 + b2)(a1b2 + a2b1 + 2a1a2)

(
4a+ 2b− 4

4a1 + 2b1 − 2

)

− (2a1 + b1)(2a1 + b1)(a1b2 + a2b1 + 2a1a2)

(
4a+ 2b− 4

4a1 + 2b1 − 1

))

+

(

2b1b2

(
b1 + b2 − 2

i+ j − 1

))(

(2a1 + b1)(2a2 + b2)

(
4a+ 2b− 4

4a1 + 2b1 − 2

)

− (2a1 + b1)(2a1 + b1)

(
4a+ 2b− 4

4a1 + 2b1 − 1

))

=

(
b1 + b2

i+ j

)(

(2a1 + b1)(2a2 + b2)(a1b2 + a2b1 + 2a1a2)

(
4a+ 2b− 4

4a1 + 2b1 − 2

)

− (2a1 + b1)(2a1 + b1)(a1b2 + a2b1 + 2a1a2)

(
4a+ 2b− 4

4a1 + 2b1 − 1

))

+

(
b1 + b2 − 2

i+ j − 1

)(

2(2a1 + b1)(2a2 + b2)b1b2

(
4a+ 2b− 4

4a1 + 2b1 − 2

)

− 2(2a1 + b1)(2a1 + b1)b1b2

(
4a+ 2b− 4

4a1 + 2b1 − 1

))

=

(
b+ 2k

k

)

φ21
(a1, b1) +

(
b+ 2(k − 1)

k − 1

)

φ22
(a1, b1)

where the last equality follows from equation (4) and (5). This completes the
proof. �

4. The proof for 0 ≤ a ≤ 2, b ≥ 0 with a+ b ≥ 1 and any g ≥ 0

First, we have to introduce another enumerative invariant, namely the numbers
Ñ g

F0
(a, a+ b) and Ñ g

F2
(a, b) of not necessarily irreducible plane tropical curves of

degree ∆F0
(a, a+ b) (resp. ∆F2

(a, b)) and genus g through 4a+ 2b+ g− 1 points in

general position (see [8]). Obviously, N g
F0

(a, a+ b) equals Ñ g
F0

(a, a+ b) minus the
number of reducible curves satisfying the conditions.
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By [8], theorem 2 we can determine the tropical enumerative numbers Ñ g
F0

(a, a+ b)

and Ñ g
F2

(a, b) both of F0 and F2 by counting λ-increasing lattice paths of length
4a + 2b + g − 1 in the polygon corresponding to the toric surface F0 respectively
F2 and the divisor class aC + (a+ b)F respectively aC + bF . (Each path has to be
counted with a certain multiplicity. For more information, see [8] or [7].) Here, we
fix λ to be of the form λ : R2 → R, λ(x, y) = x− εy, where ε is a small irrational
number.

We will first show the following modified version of theorem 1.1 and use this later
to prove the theorem for 0 ≤ a ≤ 2, b ≥ 0 with a+ b ≥ 1 and any g ≥ 0.

Lemma 4.1

The following equation holds for

• 0 ≤ a ≤ 1, b ≥ 0 with a+ b ≥ 1 and any g ∈ Z, and for
• a = 2, b ≥ 0 with a+ b ≥ 1 and any g ≥ 0:

Ñ g
F0

(a, a+ b) =

a−1∑

k=0

(
b+ 2k

k

)

Ñ g
F2

(a− k, b+ 2k). (7)

Proof:

If a = 0, then the polygon corresponding to F0 and bF equals the polygon cor-
responding to F2 and bF . It is just a vertical line of integer length b. Hence the
number of lattice paths agrees, since the polygon in which we count agrees.

If a = 1, then a path with 2b + 3 − g steps has to miss g lattice points of the
polygons dual to ∆F2

(1, b) resp. ∆F0
(1, b + 1). Since it cannot have any steps of

integer length bigger 1 in the boundary, it looks like the paths in the following
picture, where i+ j = g.

i

b+ 2 − i

i

b+ 1 − ij

b− j

j

b+ 1 − j

Thus the left hand side of the equation equals

∑

i+j=g

(
b+ 2 − i

j

)(
b− j

i

)

and the right hand side of the equation equals

∑

i+j=g

(
b+ 1 − i

j

)(
b+ 1 − j

i

)

which are both equal to
(
2b+2−g

g

)
because of Vandermonde’s identity.

Let a = 2 and g ≥ 0. Since a = 2, the sum on the right hand has only two
summands, as indicated in the following picture.
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= +(b + 2)

If g > 0, then no path of length 4a+ 2b + g − 1 = 2b + g + 7 fits into the second
polygon on the right hand side. Hence that summand is 0 in this case. If g = 0
then there is exactly one path of length 2b + 7 which fits into the second polygon
on the right hand side, and it counts with multiplicity 1:

Thus we have to show Ñ g
F0

(2, 2 + b) = Ñ g
F2

(2, b) if g > 0, and Ñ 0
F0

(2, 2 + b) =

Ñ 0
F0

(2, b) + b+ 2.

Let γ be any path in the polygon dual to ∆F0
(2, b + 2). We want to associate a

path γ′ in the polygon dual to ∆F2
(2, b) to it. First note that by lemma 3.6 and

remark 3.7 of [7], each path that does not count 0 has two sort of steps: some that
go down vertically and others that move exactly one column to the right (with a
simultaneous move up or down) — see the picture below. (Although stated for a
triangle in [7], this statement is with the same arguments true the polygons dual
to ∆F0

(a, a+ b) and ∆F2
(a, b).) We define γ′ in the following way: γ′ has two extra

steps in the first column, γ′ coincides with γ in the second column, and it has two
steps less in the last column:

γ γ′

More precisely, γ′(0) := (0, b+4), γ′(1) := (0, b+3), γ′(i) := γ(i−2) for all i ≥ 2 such
that the x -coordinate of γ(i) is less than or equal to 1 and γ′(i) := (2, γ(i−2)y −2)
for all i such that the x-coordinate of γ(i) is 2. Note that in the above picture the
lattice points which are not images of γ respectively γ′ are drawn white.

It is possible to associate γ′ to γ if γ(2b+ g + 7 − 2) is in the x = 2-column (recall
that γ has 2b+ g + 7 steps). Then γ(2b+ g + 7 − 2)y − 2 ≥ 0. This holds if g > 0
for any path, and if g = 0 for any path except the one which takes every step in
the first two columns and only one in the last column:
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γ0

We denote this path by γ0, and we always assume γ 6= γ0 in the following. Note
that the multiplicity of γ0 is equal to mult(γ0) =

(
b+2
b+1

)
= b+ 2.

It is too much to hope that the multiplicity of γ and γ′ coincides. Let us compute
the multiplicity of both paths. Note first that if γ has a step of lattice length bigger
1 in the x = 0- or the x = 2-column, then its multiplicity is 0 (and the same holds
for γ′), so we do not need to consider it. Let us assume γ has αi steps of lattice
length i in the column x = 1, and let t :=

∑

i≥2 αi · i. Denote by j the number of
free lattice points on x = 0, by i the number of free lattice points above the ones
taken by γ, and by s− j the number of free lattice points on x = 2. Let r := b+ 2.
Then there are r − α1 − t− i free lattice points on x = 1 below γ.

j
r − s + jα1

γ

r − j
i s − j

t

In the picture, r = 6, j = 3, i = 2, t = 2, α1 = 1 and s− j = 2.

By [7], proposition 3.8, the multiplicity of γ is equal to

mult(γ) = (Iα)2 ·

(
r − i− t

j

)(
r − j

i

)(
r − s+ j

r − α1 − t− i

)(
α1 + i

s− j

)

,

where Iα is a shortcut for
∏

i i
αi .

To see this, note that no step of lattice length bigger 1 on the column x = 1
can be part of a parallelogram, since on x = 0 and x = 2, only steps of lattice
length 1 are allowed. Thus the binomial factors above count the numbers of ways
to arrange parallelograms with edge length 1 (both above and below γ), and the
factor in front corresponds to the double areas of triangles involving the steps of
higher lattice length on x = 1 (see remark 3.9 of [7]).
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Analogously,

mult(γ′) = (Iα)2 ·

(
r − i− t

j

)(
r − j + 2

i

)(
r − s+ j − 2

r − α1 − t− i

)(
α1 + i

s− j

)

.

Proposition 3.8 of [7] is only stated for a triangles, but taking remark 3.10 of [7]
into account, it can be generalized to polygons dual to ∆F0

(a, a+ b) and ∆F2
(a, b)

with the same arguments.

As already said, in general mult(γ) will not be equal to mult(γ′). However, we
can take a set of paths γ in the rectangle such that the sum of the multiplicities
coincides with the sum of the multiplicities of the corresponding paths γ′ in the
dual of ∆F2

(2, b): We take all paths γ such that their values for αi (for all i) and s
coincides. That is, we let i vary from 0 to r − t − αi and j vary from 0 to s. We
denote the set of all those paths by Γ(s, (αi)i). The sum of the multiplicities of all
paths γ in the rectangle in Γ(s, (αi)i) is then equal to

(Iα)2 ·
s∑

j=0

r−α1−t∑

i=0

(
r − i− t

j

)(
r − j

i

)(
r − s+ j

r − α1 − t− i

)(
α1 + i

s− j

)

. (8)

The sum of the corresponding paths γ′ in ∆(2, b) is equal to

(Iα)2 ·
s∑

j=0

r−α1−t∑

i=0

(
r − i− t

j

)(
r − j + 2

i

)(
r − s+ j − 2

r − α1 − t− i

)(
α1 + i

s− j

)

. (9)

Using the Mathematica package MultiSum (see [14], respectively [13] for more in-
formation), we can show that the sum in (8) (neglecting the factor (Iα)2 which
coincides for both expressions anyway) — that we will denote by F (r, (αi)i, s) from
now on — fulfills the following recurrence:

(2r − s+ 2)(α1 + r − t+ 2) · F (r, (αi)i, s) − 2(r2 + α1r − tr + 4r − α1s− 2t+ 4)·

F (r + 1, (αi)i, s+ 1) − (s+ 2)(α1 − r + t− 2) · F (r + 2, (αi)i, s+ 2) = 0.

The sum in (9) — denoted by G(r, (αi)i, s) — satisfies the same recurrence. As
(α1 − r + t − 2) 6= 0 we only need to check the initial values r = α1 + t, r =
α1 + t + 1, s = 0 and s = 1 in order to show that the two sums are equal. If
r = α1 + t, F (r, (αi)i, s) = G(r, (αi)i, s) is easy to see. If r = α1 + t + 1, then
F (r, (αi)i, s) = G(r, (αi)i, s) is equivalent to

s∑

j=0

(
α1 + 1

s− j

)(
α1

s

)

=

s∑

j=0

(
α1

s− j

)(
α1 + 1

s

)

,

which is true by Vandermonde’s identity. If s = 0, F (r, (αi)i, s) = G(r, (αi)i, s) is
again easy. If s = 1, both sides can be seen to be equal to

(α1 + r − t)

(
2r − 1

r − α1 − t

)

+

(
2r − 2

r − α1 − t− 1

)

using Vandermonde’s identity.

Thus F (r, (αi)i, s) = G(r, (αi)i, s) holds and therefore the sum of the multiplicities
of all paths γ in Γ(s, (αi)i) is equal to the sum of multiplicities of the corresponding
paths γ′.
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At last, note that any path in the dual of ∆F2
(2, b) which is not equal to γ′ for some γ

in the rectangle counts with multiplicity 0, since we can not arrange parallelograms
as needed (see again proposition 3.8 and remark 3.9 of [7]):

To sum up, if g > 0 then the number of lattice paths in the rectangle is equal to

b−g+1
∑

s=0

∑

(αi)i

∑

γ∈Γ(s,(αi)i)

mult(γ) =

b−g+1
∑

s=0

∑

(αi)i

∑

γ∈Γ(s,(αi)i)

mult(γ′)

and the right hand side covers all paths in ∆(2, b) which do not count zero. Thus

Ñ g
F0

(2, 2 + b) =
∑

γ

mult(γ) =
∑

γ

mult(γ′) = Ñ g
F2

(2, b).

If g = 0 then the number of lattice paths in the rectangle is equal to

mult(γ0)+

b+1∑

s=0

∑

(αi)i

∑

γ∈Γ(s,(αi)i)

mult(γ)

=(b+ 2) +

b∑

s=0

∑

(αi)i

∑

γ∈Γ(s,(αi)i)

mult(γ′)

and thus
Ñ 0

F0
(2, 2 + b) = Ñ 0

F2
(2, b) + (b + 2)Ñ 0

F2
(1, b− 2).

�

Proof of theorem 1.1 for 0 ≤ a ≤ 2, b ≥ 0 with a+ b ≥ 1 and any g ≥ 0:
Let a = 0. Since we have to fit paths with 2b+ g − 1 steps inside a line of integer
length b, we get g = −b+ 1. Hence g ≥ 0 if and only if b = 1. This is the only case
in which we have an irreducible curve. For a = 0 and b = 1, the equation trivially
holds.

Let a = 1. Since we have to fit 2b+ g − 1 steps inside the polygons corresponding
to C + bF on F2 resp. C + (b + 1)F on F0, we have g ≤ 0. Again, there is only
one case in which we get an irreducible curve, namely g = 0. For g = 0, there is
only one path in both polygons, it counts with multiplicity one on both sides and
corresponds to an irreducible curve. Hence also in this case the equation is true.

Let a = 2. We know that the equation of lemma 4.1 is true, and we want to use
it in order to deduce the equation of theorem 1.1 by showing that the number of
reducible curves on both sides agrees. We use induction on b. For b = 0, we can
see easily that there are no reducible curves for both sides, so the equation follows.
Now we can assume that the equation is true for any c < b. Since g ≥ 0, there are
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no reducible curves of degree ∆F2
(1, b+ 2) that contribute to the right hand side.

How many reducible curves of degree ∆F2
(2, b) are there? A reducible curve C could

either be equal to (
⋃i

j=1 Cj) ∪ C′, i ≥ 1, where each Cj is of degree ∆F2
(0, 1) and

C′ is of degree ∆F2
(2, b′), where i+b′ = b, or it could be (

⋃i
j=1 Cj)∪ C̃1∪ C̃2, i ≥ 0,

where again each Cj is of degree ∆F2
(0, 1), C̃1 is of degree ∆F2

(1, b1) and C̃2 is of
degree ∆F2

(1, b2), with b1+b2+i = b. In the first case, we have i·0+g′−(i+1)+1 = g

if g′ is the genus of C′, so g′ = g + i. Since g′ is less than or equal to the number
of interior points in the polygon dual to ∆F2

(2, b′), it is less than or equal to

b′ + 1 = b − i + 1. Thus 2i ≤ b + 1 − g or i ≤ ⌊ b+1−g
2 ⌋ =: h. Hence from this

first case we get a contribution of
∑h

i=1 N
g + i
F2

(2, b− i) of reducible curves. In
the second case, we can show analogously that g1 + g2 = g + i + 1. But since
C̃1 and C̃2 are of degree ∆F2

(1, b1) resp. ∆F2
(1, b2), we have g1 = g2 = 0, hence

g+i+1 = 0 which is not possible since g ≥ 0. Thus by the induction assumption we
know that the total contribution of reducible curves on the right hand side equals
∑h

i=1 N
g + i
F0

(2, b− i+ 2). It is easy to see following the same arguments that we
have the same contribution on the left hand side. Thus theorem 1.1 follows. �
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