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INTERSECTING PSI-CLASSES ON TROPICAL aMon

MICHAEL KERBER AND HANNAH MARKWIG

ABSTRACT. We apply the tropical intersection theory as suggested .iylighalkin and
developed in detail by L. Allermann and J. Rau to computerseigtion products of trop-
ical Psi-classes on the moduli space of rational tropicalesi We show that in the case
of zero-dimensional (stable) intersections, the resyltiombers agree with the intersec-
tion numbers of Psi-classes on the moduli space-wiarked rational curves computed in
algebraic geometry.

1. INTRODUCTION

A rational n-marked tropical curve is a metric tree withlabeled leaves and without 2-
valent vertices. Those curves are parametrized by the cw@tdsial structure of the un-
derlying (non-metric) tree and the length of each interitge The tropical moduli space
Mon (the space which parametrizes these curves) has the stwdta polyhedral com-

plex, obtained by gluing several copies of the positiveamltm’;63 — one copy for each

3-valent combinatorial graph withleaves (see section 2).

Recently, G. Mikhalkin (se¢ [M1]) introduced tropical R$asses on the moduli space of
rational tropical curves: fok € [n], the tropical Psi-clas¥y is the subcomplex of cones
of aon corresponding to tropical curves which have the propedy e leaf labeled with
the numbek is adjacent to a vertex of valence at least 4 (see defiritidn 3.

The aim of this article is to apply the concepts of tropic&tisection theory suggested by
G. Mikhalkin and developed in detail by L. Allermann and JuR@MZ2], [AR]) to compute
the intersection products of an arbitrary number of theselBsses.

In order to do this, we first recall the embedding of the modphceag, of n-marked
rational tropical curves into some real vector sp@géand other preliminaries) in section
2. On this spac®p, we construct in section 3 a tropical rational functiprfor all k € [n]
with the property that the Cartier divisor of the restrictiof f to (the embedding of)/g n

is (a multiple of) thek-th Psi-clas$Vk. We use this description in section 4 to compute the
weights on the maximal cones of the tropical fan obtaineah®srsecting an arbitrary num-
ber of tropical Psi-classes. As a special case, we competedights of (0-dimensional)
intersections oh — 3 tropical Psi-classes — they agree with the 0-dimensioneisection
product ofn — 3 Psi-classes on the moduli space of rationatarked curves computed in
algebraic geometry.
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2. PRELIMINARIES

In the sequeln will always denote an integer greater than 2.

An n-marked (rational) abstract tropical curve is a metric fre@hat is, a tree together
with a length function assigning to each non-leaf edge atipesieal number) without 2-
valent vertices and with leaves, labeled by numbefs, ..., n} (see [GaMa], definition
2.2). The spacero,, of all n-marked tropical curves has the structure of a polyhedral fa
of dimensiom — 3 obtained from gluing copies of the spd@éo for0<k<n—-3—one
copy for each combinatorial type of a tree witleaves and exactly bounded edges. Its
face lattice is given by < o if and only if the tree corresponding is obtained from
the tree corresponding by contracting bounded edges. For more details,[see [BHV],
section 2, orf[GaMa], section 2.

In order to recall howio, can be embedded from [GKM], we need the following nota-
tions:

Let7 :={Sc [n] : |9 = 2} denote the set of two-element subsetgmpi= {1,--- ,n}.
Consider the spadE(g) indexed by the elements af and define a map to this space via

op:R" — RE)
a +— (a&+3aj)jjer-

Let Q, denote the quotient vector spd@@/ im(®;), which has dimensiof) —n.

Furthermore, we define a map

On:Mon — R
C +— dist({i,j}){ijjer

where dist{i, j}) denotes the sum of the lengths of all bounded edges on thgu@jpath
between the leaf markadind the leaf markegl

Theorem 2.1. Using the magn, %o can be embedded as a tropical fan intq.Q

For a proof, see theorem 3.4 bf [GKM] or theorem 3.4 0of [SS].

Note thataon is @ marked fan (see definition 2.12 6f [GKM]): Letbe a cone an@

be the corresponding tropical curve where all lengths ofnded edges are chosen to be
one. Thert is generated by the rays (C;), whereC; denotes a curve obtained fradrby
shrinking all but one bounded edge to length 0. In particulay,, is a simplicial fan and
thedn(Ci) form a basis for the span of the cone. They even form a uninantalsis which
follows from proposition 5.4 of [GiMa] (note that there, dfdrent lattice and a different
embedding ofi(g, is used).
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Notation2.2. For each subsétc [n] of cardinality 1< |I| < n—1, define a vector, € REG)
via

g [T HIATI=1
YT Y0, otherwise.

Note thatv, is the image undeg, of a tree with one bounded edge of length one, the
marked ends with labels ihon one side of the bounded edge and the marked ends with
labels in[n] \ I on the other, hence = vy,

Fork € [n], we defineVi ;= {v; : k¢ 1 and|l| = 2}.

Lemma 2.3. For any ke [n], the linear span of the sek¥quals Q = R(g)/ im(®p).

Proof. We prove that foiS= {s;,5} € 7, the Sth standard unit vectas R(3) is the
sum of a linear combination of elementspand an element of if®y).

First assume thd&t ¢ S= {s1,%}. Then it follows immediately from the definitions o§
and®, thates = (—vs+ Pn(es, +€s,))/2, wherees denotes the-th unit vector inR".

Now assume thaB = {s1,k}. We claim that

1
€s = é < \ —(Dn(a)> ) (1)
leT :INS={s1}
wherea € R" is the vector with entries
n—-4, ifi=s
a =<0, ifi=k
1 otherwise

Check this equality in each componéht= {ty,t}.
The entry there is equal to one if and onlylin T| = 1 — note thak; € 1.

If SNT =0, then®,(a)T =2 and we hav@l N T| = 1iff | contains one element af.

If SNT = {k}, thendp(a)r =1 and we havfl NT| =1iff | = {s1} UT\ {k}.

If SNT = {s1}, then®,(a)t =n—3andwe havll NT| =1iff | #T.

If SNT = {s1,k}, then®dy(a)r =n—4 and we havf NT| =1 for all (n—2) choices of .

It follows that forT # S, we have

V| — CDn(a)> =0

<|err INS={s1} T

and forT = S, we have

( v|—d3n(a)> =n—-2—(n—-4)=2,
leT 1 INS={s1} T

hence equatioi{1) holds. O
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Lemma 2.4. The sum over all elementg & Vi (from notatiod 2.P) is an elementiim(®p),

hence
Z/VS:OGQn.
VsEVK

Proof. If k¢ T, then there ar€™; ®) (2) two-element subse®e [n]\ {k} with the property
thatSNT = 1, hencgy vs)T = 2(n— 3) in this case. Ik € T, then the number of subsets
Se [n]\ {k} satisfying|SNT| =1 equalsn— 2, hence(y vs)t = n— 2 in this case. It
follows that

Z/ vs=®,(n—3,...,n—3,1,n—3,...,n—3)
VseVk

with entry 1 at positiork.

Lemma and Definition 2.5. Every element & Q, has a unique representation

V= )\sVs
VseVk
with As > O for all S andAs = O for at least one & 7. We will call such a representation
in the future gpositive representation efwith respect td.

Proof. As [Vi| = (",%) = dim(Qn) + 1 (see notation2]2), the vectors\4f subdivideQy
into a fan whose dirfQn) + 1 top-dimensional cones are spanned by a choice of@im
vectors ofV. Eachv lies in a unique cone and its positive represenation is goyethe
linear combination of the spanning vectors of the cone. aveepresentation

V= )\5VS
VsEVK
with As > 0 for all S, the unique positive representation with respedftoan be found by
subtractingy yeey, (MiNsAs)Vs. O

Remark2.6. It follows that a map fromvk to R>o gives rise to a well-defined convex
piecewise-linear function on the spa@g via f (3 Asvs) := 3 Asf (vs).

Lemma2.7. Let| C [n]with1 < |[I| < n—21and assume without restriction tha#k. Then
a positive representation of & Q,, with respect to ¥(as in definitiofi 26 and notatidn 2.2)
is given by
V| = Vs.
SC|,V56VK

Proof. Let|l| =m, | ={i1,...,im}. We claim that

= —(M=2)-®p(e, +...+6,).
V| <SC%EVKVS> (Mm—2)-®p(e, +...+6,)

Check this equality in each componént= {t1,t2}. If T C I, then(v;)t = 0. There are
m— 2 choices foivg such thatS containst; and notty, and the same number of choices
such thatS containst; and nott;. Hence the first sum of the right hand side contributes
2(m—2). As

Pn(e, +...+6,)T=2
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we get 0 altogether. IfT N1| = 1, then(v; )t = 1. On the right hand side, there are- 1
choices ofSsuch thaS containsT N1, and

O, +...+e,)T=1
If TNl =0, both sides are equal to 0. O

3. PSI-CLASSES AS DIVISORS OF RATIONAL FUNCTIONS

Let us start by reviewing some of the tropical intersectioeory from [AR]. Acycle X

is a balanced, weighted, pure-dimensional, rational amghedral fan inR". The integer
weights assigned to each top-dimensional coree denoted byw(o). By |X|, we denote
the union of all cones oX in R". Balancedmeans that the weighted sum of the primitive
vectors of the facets; around a cone € X of codimension 1

Z OJ(CIi )uoi /T

lies in the linear vector space spannedbgienoted by;. Here, gorimitive vector , ; of
o; modulot is a integer vector iZ" that points front towardso and fulfills the primitive
condition: The lattic€Zug, /; + (Vx N Z") must be equal to the latticé; NZ". Slightly
differently, in [AR] the class ofi; , moduloV; is called primitive vector andg, /; is just
a representative of it.

Cycles are only considered up to refinements, i.e. we wilsmar two cycles equivalent
if they have a common refinement.

A (non-zero) rational function on ¥ a continuous piece-wise linear functipn|X| — R
that is linear with rational slope on each cone. Wieil-divisor of¢ on X, denoted by
div(¢), is the balanced subcomplex (resp. subfanXalefined in construction 3.3. of
[AR], namely the codimension one skeletonofogether with weightsy(t) for each cone
T € X of codimension 1. These weights are given by the formula

W(1) =y ¢ (w(0i)Ug, /1) — ¢ (Z w(ci)uci/T> 7

where the sum goes again over all top-dimensional neiglsaafar

Now let us repeat the definition of tropical Psi-class.

Definition 3.1 (see [M1], definition 3.1.) Fork € [n], the tropical Psi-clas¥y C o is
defined to be the weighted fan consisting of those cldsed4)-dimensional cones that
correspond to tropical curves with the property that thé hearked with the numbek is
adjacent to a vertex with valence 4. The weight of each codefised to be equal to one.

A motivation for this definition is given in [M1]. Another miwation is that if one evaluates
the classicalp; on 1-strata oMo, i.e. on rational curves whose dual graphs are 3-valent
except for one 4-valent vertex; we get 0 if the 4-valent veisenot adjacent to the leaf

To the author’s knowledge, E. Katz is about to prepare a pregat explains more about
the connection of tropical and classical Psi-classes.

In a recent article, G. Mikhalkin defines an embedding of {hece/o , as a tropical fan

into R(g)(nﬁ, with the property that the tropical Psi-clalg has the structure of a tropical
subfan, i.e. satisfies the balancing condition (5e€ [MEoptbm 3.1 and proposition 3.2).
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Here, we prefer to work with the embedding®@b » in Qn as described in section 2. We
will see later in this section that,(Wx) C Qn is a tropical fan — this will follow directly
from the proof of propositiof 3|5, which states that (a nplétiof) ¢, (W) is the Weil-
divisor associated to a rational function.

By abuse of notation we will in the following not distinguibbtweertVy anddn(W¥x) C Qn.

Notation3.2 For anyk € [n], let fx be the extension of the maf > vs+— 1 to Q, (see
notatio 2.2 and remafk2.6).

Lemma 3.3. The map { is linear on each cone offg.

Proof. Let T be a cone an@ the tropical curve of the combinatorial type corresponding
to T with all lengths equal to one. The conés generated by vectoks corresponding to
curves where all but one bounded edg€afre shrunk to length 0. Assumés generated
byvi,,...,v,, and letk ¢ [; for all i. Then each poinpin T is given by a linear combination
p=Y{_1 MV, where they are non-negative. We can find a positive representation

Vi, = AisVs

VsE Vi
for eachv;; using lemm&2]7 (where eashs s either 1 or 0, depending on whett®c |;
or not). We claim that

r

p= ngvk (i;M)\i,S)VS ()

is a positive representation @fwith respect tovk. It is obvious that the|_; liAi s are
non-negative. It remains to show that there is at leastsech thaty|_, iAi s = 0. Let

a,b € [n] be leaves in different connected component€§fk (whereC\ k denotes the
graph produced fron® by removing the closure of the unbounded edge labkleick.
including the end vertex d.) There are at least two such connected components, due to
the fact thak is adjacent to an at least 3-valent vertex. ThHer= {a,b} is not contained

in any of the set$. Hence\; r = 0 for alli. In particulary{_; jiA; 1 = 0 and the equation

[ is a positive representation. Therefore

f(p) = fk< % (ilui)\i,s)vs> = % (2“‘)‘“3) i (Vs)

andfy is linear ont. O

Remark3.4. Let us explain in more detail how to compute diy) for a d-cycle Z of
Mon. We require thaZ is supported on the cones afp , corresponding to combinatorial
types. Asfy is linear on each cone by lemial3.2, the locus of non-diftébitity of fy is
contained in cones of codimension 1AfGiven a cona of codimension 1 irZ, we need
to compute the weigh(t) of the coner

0.)('[) = Z fi ((*)(Gi)uoi/T) — fi <Zw(0i)u0i/r>

wherea; denote the top-dimensional neighboring cones, of(a;) their weight andg,
their primitive vectors. In our case the primitive vectors given by the structure of
a marked fan: each primitive vector corresponds to a to adabpurve with only one
bounded edge of length 1. Eaal  is equal tov; for a subset; C [n] (assume ¢ I; for
alli). (The marked leaves inare on one side of the bounded edge.)fAs defined on the
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setVi, we need to find a positive representation oftige, with respect to/ (sedZ.b and
[2.8). This can be done using lemmal2.7. Also, we need to findiiymrepresentation of
Si w(oi)uc,i/T. Given a representatiany, ; = Y tey Ai TVr (note that allk; 1 are either O or
1 by the above), the following equality holds

> W(0i)Ug;/r = Zw(ci)(TZ/ NiTvr) = TZ/ (Y w(oi)ir)vr.

Of coursey; w(oj)Ai T > 0 for all T, but the equation above is not necessarily a positive
representation, since it is possible that none of the cioefiis is zero. To make it a positive
representation, we have to subtrgetevkminTevk(zi w(oi)AiT)vr. Then

Z fk((*)(ci)uoi/T) - fk( Z (.O(Oi)uoi/T)
— IZTEZ/k&)(Oi))\i,T - (TEZ/k(IZ(A)(O'i))\i,T) ~ 2 kTmei\?((z w(0i)AiT))

:Trréi\z(IZw(Gi))\i,T)' (n;l)’ |

becauséV| = (”51). That s, in order to determine the weight of the carie div(fy), we
only have to determine the value mi, (3 w(0i)Ai 7). Recall thatjt = 1if T C I and
0 else. Hence

min ($ @(o)hir) =min( 5 (o).
Proposition 3.5. Let f be as in notatiol 3]12. Then the divisor fifi 4/g, is

div(fy) = <n; 1) W,

wherediv( fy) is defined in 3.4 ofAR] and Wy is defined in definition 3] 1.

Proof. We may assume without restriction tHat= 1. By lemmd_3.B, the locus of non-
differentiability of f1 is contained in the cones of codimension 196§,. A conet of
codimension 1 im{g, corresponds to the combinatorial type of a tropical cu@weith
one 4-valent vertex. LeA; denote the subset &f] consisting of the ends which can be
reached from this 4-valent vertex via the adjacent eglge, the subset which can be
reached viae, and so on. Without restriction & A; and 2€ A;. The three neighboring
conesoi, 02 andas of T are given by the three possible resolutions of the 4-valertex

in two 3-valent vertices (i.e. the three possible ways toaddw edge which produces two
3-valent vertices instead of the one 4-valent).
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The primitive vectom,  is given by the tropical curve where all edges except the new
edgee (which is introduced by resolving) are shrunk to length Onégethe three primitive
vectors are

VajuAy = VAgUA, 5 VALUA3 = VAL UA, and VauA, = VAUAz-

By lemmdZ.Y, the positive representations of these thriegtjye vectors with respect to

V; (sed Z.b) are

Z VT, Z VT , respectively Z VT,
TCAzUA4 TCAUA, TCAUA3

(where in each case the sum goes oveT & V).

By remark3:4, the weight of dif1) alongt is equal to misey, (|{i : T C 1i}])- ("),
wherel; = AU A4, |2 = AU A, andls = Ax U A3 (since all weights of the neighbouring
cones are 1). There are two cases to distinguish. Assuméhfiit§tl} £ Ay, that is, there
exists a number ¥ a; € A;. Then forT = {az,2} the numbet{i : T C Ij}| is zero. Hence
the weight of diy f1) att is zero, and is not part of diy f1). Assume next thaty = {1}.
Then all vectorsr € V1 appear in the sum of the three primitive vectors. &gt A, and
az € Ag, thenT = {ap,a3} appears only once, that is, the numbgr: T C I;}| is one.
Hence the weight of dif1) alongt is (",%). In particular, diyf;) consists of the cones
given by a 4-valent tropical curves such that leaf 1 is adjat®the 4-valent vertex, and
each such cone has Weiq&‘n‘gl). It follows that div( f1) = (“51) Y. O

4. INTERSECTING TROPICALPSI-CLASSES

In the sequel of this section, given integkys.. . . ky € Z>o and a subsétc [n], we denote
K(I) = Sier ki. Using this notation, the main theorem of this section reed®llows:

Theorem4.1.The intersectioNP‘i1 N Wﬁ“ is the subfan ofifg » consisting of the closure
of the cones of dimensionn3 — K([n]) corresponding to abstract tropical curves C such
that for each vertex V of C we haval(V) = K(lv) + 3, where |, denotes the set

lv ={ie[n] : leaf % is adjacentto V andik> 1} C [n].
The weight of the facet(C) containing the poin$,(C) equals

_ Mvevie K('v)!_

@(0(0)) = S

Proof. We prove by induction o ([n]), that is, we compute the weighi(t) of a codi-
mension one ceft C |‘|i”:1L|Jiki in the intersection produap; r]{‘:lw!“. Let T be a ridge
of r]ir‘:lw!“ and letC be a curve parameterized oy As T is of codimension one, there
is by construction exactly one vert& of C of valence one higher than expected, i.e.
val(V) = K(ly) +4 — apart from the leaves with i € Iy = {i1,...,i|} there are exactly
K(lv)+4—|ly| edgesn,...a adjacent td/ as indicated in the picture below.
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ai

v
! ay

Using remark 34, we compute

w(T) = mi\r) ( ]Z w(oi)>
VTEVR . foa

whereo; denote the facets containingndv, ; = va, denote their primitive vectors.

Facetso containing the ridge parameterize curved such thaC is obtained fronC’ by
collapsing an edgE with verticesvs andV, to the verteX/. By assumption, we know that
the weight of such a facet equals
K(ly)!

w(oj) = ﬂﬂ%ﬂ K () )TK ()t =W - K (I, )TK (I, )1
where the first product goes over all vertidésof C’ different fromVy andV,. The normal
vector of such a cone; is by definition given by, ;; = Va,, whereA is the set of labels
on one of connecting component@f\ {E}. Assume without loss of generality thatis
in the connected component@f\ {E} containingv; and letA; C [n] denote the subsets
of labels of the other connected component.

Assume first thak; is not adjacent t&/. Then there exist a lea # x; in the connected
component o2\ {V} containingx;, hence the labed is not contained in any of the sets
A;. For anyT containings we thus haves ;. t - w(0i) = 0 and hence the minimum over
all T is 0, too. Consequently(t) = 0.

Assume thak; is adjacent td/, lets;,s; € [n]\ {1} be two labels. It suffices to prove that
5 o) = OKO)! (KW +D!E o (K(y) +1)
TCA

M ki! ki+1 ki +1
where the first product goes over all vertid&sof C different fromV.

Note that a celb satisfying the conditions above corresponds to a partiig J, =
Iv\{1,s1,%} =: M and a distribution of the labels among the leaves not labelled by
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somex;, i € MU{1,s1,5}. The total number of labels equalK(ly) +4—|M| and there
are exactlyK (3 ) + k1 + 1 — |Jv;| non-labelled edges at vertex. Hence we get

) | K(ly)+1— M|
Wi = W %U%zM(K(Jx/l)+k1)!(K(‘]V2)+k51+k52)!(K(Jv1)+k1+1—|3v1|>

and we want to see that this is equal to

(K(lv)+1)!
ki +1 '
The equality follows after proving the following identity

2, (Ol <K(|)K+111+_F— [ |> N %

I1C

settingl = Jy;, m= [M| andK = K(ly).
To see that this identity holds, multiply the left hand siojre(pf%lm)! and simplify:

(K(1) 4 ka)! - (K — (K (1) +kp))!
(et D) <|;4 (K() +ki+1— |I|)!~(K—K(I)—k1—m+|l|)!>

) (G 5, K 4Kk )

=(K—k)™+ 5 (ke + 1) (K1) + k)UK =K (1) — k)™
0#ICM

where we use the falling power notation
XPl=x-(x=1)-...- (x— p+1).

If we multiply the right hand side of equatidf (3) k?y% we get(K + 1), Thus the
identity follows from lemmaA.p.

(3)

O

Corollary 4.2. If the intersectiorw'il -...- Wk is 0-dimensional, i.e. K[n]) = n— 3, then
the (stable) intersectiolfv'il -...- Wk is just the origin{0}, with weight

(n—3)! -3
w({0}) = h - (kl?...,kn)'

Remark4.3. Forn> 3, Ietmovn denote the space ofpointed stable rational curves, that
is, tuples(C, p1, ..., pn) consisting of a connected algebraic cuBsef arithmetic genus 0
with simple nodes as only singularities and a collecten . ., p, of distinct smooth points
onC such that the number of automorphismgCofvith the property that the pointg are
fixed is finite.

Define the line bundle; onmo,n to be the unique line bundle whose fiber over each pointed
stable curveC, p1,..., pn) is the cotangent space Gfat p; and let¥; Al(mo,n) denote

its first Chern class. For & i <n, letk € Z>o such thaty{' ; ki = dim(Mgn) =n—3.
Then the following equation holds (see e[g. [HM], sectidD)2.

K K (n—3)!
- Lullw;...wrk,nzinn e
on i=1™"
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Hence the 0-dimensional intersection products of Psisel®n the moduli space of
marked rational algebraic curves coincides with its trapoounterpart.

Example4.4 (Psi-classes omfgs). If we intersect twoW-classes, the intersection is O-
dimensional. Hence there are (up to symmetry) only two dhfféintersection products to
compute:W% andW; - W,. Let us compute both. Let us start with ¢fy) - W1. By lemma
[3:3 we know that we only have to check the cones of codimertsiort’; — that is, the
cone{0}. The neighbors of0} in W; — that is, in this case, the top-dimensional cones of
Y, — correspond to tropical curves with 1 at a 4-valent vertex:

1 k1

i J

(Here we assume thdt, j,k,1} = {2,3,4,5}.) There are(g) = 6 of these cones. Each
such cone is generated by the primitive veatgy,. The sum over all primitive vectors is
0. Hence the weight of0} is given by

fl(V{i,j}) — fl(O) =6.
i,je{2,3,4,5},i#]

(By definition, all cones of; are of weight 1.) Thus the weight ¢D} in div(f1)- W is
6, and using propositidn 3.5, the weight{@f} in Wy - Wy is 1.

Now let us compute the weight d0} in div(f1) - W2. Three of the neighbors of0}
correspond to a curve as on the right, the other three to &@swon the left:

2 1 k 2 ik

i 1 i

(We assuméi, j,k} = {3,4,5}.) The primitive vectors of the first type avg; and they are
given as a positive combination with respec¥{o A positive combination for the primitive
vectors of the second typevs; j, + V2 + V{j ;- Their sum is of course again 0. Hence
the weight of{0} is
f1(Viza)) + f1(Viasy) + fi(Viasy) + (Vi3 +Vio4 +Viaay)
+ f1(Vi23) +Vi25) +Vi35y) + f1(Vi24) +Vi25) + Va5) — f1(0)
=1+1+1+34+3+3=12

Thus — using propositidn 3.5 again — the weigh{6f in W1 - W, is 2.
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Exampled.5 (Psi-classes amgg). Let us computéb?, respectively diyf;) - W1, onags.
To do so, we have to compute the weight of a cone of codimerisiont¥1. Such a cone
corresponds to a tropical curve with either another 4-\talertex (as on the left) or with a
5-valent vertex, to which 1 is adjacent (as on the right):

1 1ij k

i ok

A cone corresponding to the curve on the left has 3 neighbomgsponding to the 3
possible resolutions of the lower vertex. These three caregenerated by the primitive
vectorsvy; jy, Vij ki andvy; . Thus the weight of such a cone is

fa(viijy) + fu(Vii) + Fu(vij ) — Vi gy + Vi + Vi) =0,

and it does not belong twf. A cone corresponding to the curve on the right (where we
assume nowi, j,k} = {2,3,4} for simplicity) has 6 neighbors i1, 3 as on the right
and 3 as on the left (below the curve, the corresponding rlorecor for the cones are

shown):
. ]
1 2 9 1 1
X k
3 k 5 6
6
k 5 6 J k

Hence, the weight of this cone is

f1(Vi25y +Vi26) + Vis6) + f1(Vizs) + V36 + Vise)) + f1(Vias) + Va6 + Vise))
+ f1(viz3y) + fa(vioay) + f1(vizay)
— f1(Vi25) +V{26) + V(56 + Vi35) + V(36) T V(56 T V{45 + Via6)
+Vis6) +V(2,3) + V(2.4 + V(34})
=3+3+3+1+1+1— fl(ZV{5’5}) =12—-2=10,
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because the sum over all primitive vectors is not automigtieaitten as a positive com-
bination with respect t¥1 and we have to subtragt jcje (11, V{i,j} t0 make a positive
combination. By proposition 3.5, the weight of each suchedor? is one.

APPENDIXA. EQUATIONS NEEDED FOR THE PROOF THE MAIN THEOREMA.1

Letki,...,.km andK be integers. For a subsket [m] := {1,...,m} we use the notation
K(I) = Sicr k and the falling power notation

xPl=x-(x=1)-...- (x— p+1).
Lemma A.1. The following equation is satisfied:

K=K — Kk (1)m M = m. M-, (4)
0#1C[m|

Proof. The proof is an induction. We assume that equafion (4) hadsary p < m and
prove that it holds fom. The induction beginning holds trivially.

We use the well-known multinomial identity for falling povee

p! o] |

[ar]
X 5)
a+.Ta=p ap!-...-a!

(X + ... +x)P =
where theg; are nonnegative integers. Setk foralli=1,... mandxg=K — Yic[m ki.
Express each side of equatidh (4) as a linear combinatiomobmmialyga(’] . -xﬁa’} with
ap+...+a = m-— 1 and compare the coefficients. The coefficient of such a maiam
the right hand side of{4) equats- % = ao!Tfa! . The coefficient on the left hand side
equals

(1] =2)!(m—[I])!
Z aol...a!

where the sum is over all non-empty subseténdfsatisfyingy;c; & = ||| — 1. To prove
(@) we thus have to show the following identity for any tugés, ..., am) of nonnegative
integers satisfyingy + ... +am < m:

Z(l||—1)!(m—|||)!=m! (6)

where again the sum goes over latt [m] satisfyingyic a = |I| — 1. We use induction
ON Yicim & to prove equatior{6). If aly; = 0 then the only subsetsc [m] satisfying
Yicr@ = |I| — 1 are one-element subsets. Thereraref those and they all contribute a
summand ofilm— 1)! to the left hand side, so we haval altogether which equals the
right hand side. Now assume ttat . . ., a, are positive an@yp,1 = ... = am = 0 for some

p. Thenp < msincea; +...+am < m. We can write any subsétC [m] as a disjoint
unionl =JUl” whereJ C [p] andl’ € {p+1,...,m}. The sumy;., & depends only on
J, i.e. it is equal toy;c;a. As before we denot§;-;a by K(J). If we fix a setd we
can produce several possible subsedatisfyingK(J) = Yicja = Sic a = ||| — 1 by just
addingK(J) —|J|+1 elements of p+1,...,m}. Therefore we can write the left hand side
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of equation[(b) as

J;p}( |J|+1>K (m—1—K(J))!
(M= p)IK@)!(m—1-K())!

e |+0¢ch =[P+ m—p—-KQI)+ I - 1)!
=(m—p)(m—1)! +(m—p)! z K31 (m—1—K(J))mRI,

0+3C[p|

Subtract the contribution of the empty set from the rightchaitle of equation {6) and
divide by (m— p)!. Then we get

Hence[(®) follows if

K- m-1-K)M Pl =p.(m-1)P-1
0£JC[p]

which holds by the induction assumption @h (4). O

LemmaA.2. LetM={2,...,m+ 1} and let K= ¥ ;cm .1 ki Then the following equation
holds:

K—k)™+ 5 (ka+1)- (K1) +k) K=K (1) —kp)™ M = (K1) (7)
04TCM

Proof. The proof is a double induction da andm. We show that the equation is true for
ki = 0 and for allm. Next, we assume that it is true for &l — 1 and anymand for anyk;
andm-— 1 and show that it is true fdg andm. Fork; = 0, the equation reads

Km 4 (KON =k ()M = (K 4 1)
04T M

If we subtract ™ from the right hand side, we get

(K+1)m —Km
=((K+1)— (K=m+1))(K-...-(K—m+2))
:m.K[mfl]_

Thus the equation fok; = 0 follows from lemmd AL after relabeling the index $ét
Now we assume that the equation is truekpr- 1. Remember th& is defined aK =
Ki+ Siem ki, so if we replacé by ki — 1 then we also have to replaseby K — 1. Then
the equation reads

(K — k)M + k- (K(1) 4k — DITYK —K (1) = k)™ =M (8)
0£ICM



INTERSECTING PSI-CLASSES ON TROPICA/q 15

We subtract the left hand side of equatibh (8) from the leftchside of equatiori{7) and
get

2 Bt D (KO ) MK 1

- Ky - (K(1) + kg — DI (K — K (1) — k) M-I
0£ICM
= (K — ki — kp)Im-1
I:{J%'GM b
+ ; ((ka+ 1) (K (1) +ka) = ka(K(1) + ke = [1] + 1))
[I1>2

(K1) + k= DI (K =K (1) — k)]
which can be simplified to

z (K —kj — k)™
I={J},jeM

+ 3 (K +ka K1) k= D)2 =K (1) —ke)™ M (9)

=2
Now we subtract the right hand side of equatigh (8) from tgatrhand side of equation
(@) and get

(K+1)M kM —m. kM2 = § gm-1, (10)

j€

We want to apply equatiofll(7) fon— 1 and anyk; differently for each of then summands
above. To do so, we need to interpket- 1 as a sum ofm numbers. We choose the first
summand (i.e. the analogue k) to bek; +kj — 1 and the other summands to be the
(exceptk;). If we replacek; by ky +kj — 1, K by K — 1 andm by m— 1 in equation[{l7) it
reads

(K —ky —kj)I™
+ 5 (k) (KQ) +ka k= DIPHK — K () — kg — kj) M98 = KIm2
0AICM\{j}
Thus equatiorf(10) equals

K — kg — kj)Im-2
j;ﬂ( 1—kj)

+ S (ktky) - (K@) + ket kj - 1)N=YK — K () — kg — k)MP=2 (12)

0AICM\{j}

It remains to show that the expressiéh (9) equals expred&if)n To see this, note that
everyl C M yields a possiblel for every j € | by just deletingj. Thus|l|—1=J|.
Any | contributes a factor ofk; +k;) in the summand foj in (I). Thus it contributes
K(I)+kq - [1] in total, which equals the contribution il (9). O
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