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FIRST STEPS IN TROPICAL INTERSECTION THEORY
LARS ALLERMANN AND JOHANNES RAU

ABSTRACT. We establish first parts of a tropical intersection thedtgmely, we define
cycles, Cartier divisors and intersection products betwibese two \ithout passing to
rational equivalence) and discuss push-forward and @adkb We do this first for fans
in R™ and then for “abstract” cycles that are fans locally. Witgamel to applications
in enumerative geometry, we finally have a look at rationaliedence and intersection
products of cycles and cycle classe®if.

1. INTRODUCTION

Tropical geometry is a recent development in the field of lalgie geometry that tries
to transform algebro-geometric problems into easier, [puwzembinatorial ones. In the
last few years various authors were able to answer questibesumerative algebraic
geometry using these techniques. In order to determineuhear of (classical) curves
meeting given conditions in some ambient space they caristiunoduli spaces of tropical
curves and had to intersect the corresponding tropicalitiond in these moduli spaces.
Since there is no tropical intersection theory yet the caapan of the arising intersection
multiplicities and the proof of the independence of the chaif the conditions had to be
repeated for every single problem without the tools of ab@ilated intersection theory

(see for examplé [GM][TKMY]).

A first draft of a general tropical intersection theory witligoroofs has been presented
by Mikhalkin in [M]. The concepts introduced there — if set tigorously — would
help to unify and solve the above mentioned problems and dvprovide utilities for
further applications. Thus in this paper we develop in détaibasics of a general tropical
intersection theory based on Mikhalkin’s ideas.

This paper consists of three parts: In the first part (sesfiofd) we firstly introduce affine
tropical cycles as balanced weighted fans modulo refinesrard affine tropical varieties
as affine cycles with non-negative weights. One would likeléfine the intersection of
two such objects but in general neither is the set-theoirggcsection of two cycles again
a cycle nor does the concept of stable intersection as intexdlin [RGST] work for arbi-
trary ambient spaces as can be seen in exdmple 3.10. Thevefontroduce the notion of
affine Cartier divisors on tropical cycles as piecewisegataffine linear functions modulo
globally affine linear functions and define a bilinear ingatioon product of Cartier divi-
sors and cycles. We then prove the commutativity of this pebdnd a projection formula
for push-forwards of cycles and pull-backs of Cartier dives In the second part (sec-
tions[3 -[8) we generalize the theory developed in the first fpaabstract cycles which
are abstract polyhedral complexes modulo refinements \ffitteacycles as local building
blocks. Again, abstract tropical varieties are just cyaléh non-negative weights. In both
the affine and abstract case a remarkable difference to &issichl situation occurs: We
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can define the mentioned intersection products on the ldveyaes, i.e. we can inter-
sect Cartier divisors with cycles and obtain a well-defingcle— not only a cycle class
up to rational equivalence as it is the case in classicabatge geometry. However, for
simplifying the computations of concrete enumerative nerslwe introduce a notion of
rational equivalence of cycles in sectidn 8. In the third gsectior ®) we finally use our
theory to define the intersection product of two cycles wititb@éent spac&®™. Here again
it is remarkable that we can define these intersections — freself-intersections — on
the level of cycles. We suppose this intersection produdtetadentical with thestable
intersectiordiscussed in [M] and [RGST] though we could not prove it yet.

There are three more articles related to our work that we twamention: In[[K] the author
studies the relations between the intersection productsrif varieties and the tropical
intersection product ofR™ in the case of transversal intersections. This articleasadly
related to[[ES]: In this work the authors give a descriptiérthe Chow cohomology of
a complete toric variety in terms dflinkowski weights These objects — representing
cocycles in the toric variety — are affine tropical cycle®Ritaccording to our definition.
Moreover, there is an intersection product of these Minkowights corresponding to
the cup product of the associated cocycles that can be atdcduVia afan displacement
rule. This rule equals the stable intersection of tropical cy@eR™ mentioned above for
the case of affine cycles. But there are also discrepandiegbe these two interpretations
of Minkowski weights: Morphisms of toric varieties as wedlmorphisms of affine tropical
cycles are just given by integer linear maps. However, th@irements for the fans are
quite different for both kinds of morphisms. Also the funi@abbehavior is totally different
for both interpretations: Regarded as toric cocycles, Mindki weights have pull-backs
along morphisms, whereas interpreted as affine tropicd¢sybey admit push-forwards.
In [ST] the authors study homomorphisms of tori and theiuicet morphisms of toric
varieties and tropical varieties, respectively. Gendlsidaite morphisms in this context
are closely related to push-forwards of tropical cyclesefmed in construction 42.

We would like to thank our advisor Andreas Gathmann for nuashelpful discussions
and his inspiring ideas that made this paper possible.

2. AFFINE TROPICAL CYCLES

In this section we will briefly summarize the definitions amdn® properties of our basic
objects. We refer td [GKM] for more details (but note that vée & slightly more general
definition of fan).

In the following sections\ will denote a finitely generated free abelian group, i.e.augr
isomorphic toZ" for somer € N, andV := A ®z R the associated real vector space
containingA as a lattice. We will denote the dual lattice in the dual vesijmace by
AV CVV.

Definition 2.1 (Cones) A conein V is a subsetr C V that can be described by finitely
many linear integral equalities and inequalities, i.e.ta$éhe form

o={zeVl|fi(z) =0,.... fr(x) =0, fry1(z) = 0,..., fn(2) > 0}

for some linear formgy, ..., f;v € AY. We denote by, the smallest linear subspace
of V' containinge and byA, the latticeV, N A. We define thedimensionof o to be the
dimension ofV/;,.
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Definition 2.2 (Fans) A fan X in V is afinite set of cones iir” satisfying the following
conditions:

(a) The intersection of any two conesihbelongs taX as well,

(b) every coner € X is the disjoint uniorr = UTeX:TcUT”’ wherer" denotes the

relative interior ofr, i.e. the interior ofr in V...

We will denote the set of alt-dimensional cones ok by X *). The dimensionof X

is defined to be the maximum of the dimensions of the conés.imhe fanX is called
pure-dimensionaif each inclusion-maximal cone iX has this dimension. The union of
all cones inX will be denoted X'| C V. If X is a fan of pure dimensioh then the cones
o € X are calledfacetsof X.

Let X be afan and € X acone. A coneg € X with 7 C ¢ is called afaceof 0. We
write this asr < o (or 7 < ¢ if in additionT C ¢ holds). Clearly we hav&, C V, and
A; C A, inthis case. Note that < o implies thatr is contained in a proper face (in the
usual sense) aof.

Constructior2.3 (Normal vectors)Let T < ¢ be cones of some fal in V with dim(r) =
dim(¢) — 1. This implies that there is a linear forfne AY that is zero orr, non-negative
ono and not identically zero oa. Letu, € A, be a vector generatingl, /A, = Z with
f(us) > 0. Note that its class, /. := [u,] € A,/A; does not depend on the choice of
u,. We callu, . the (primitive) normal vectoof o relative tor.

Definition 2.4 (Subfans) Let X, Y be fans inV. Y is called asubfanof X if for every
cones € Y there exists a cong € X such that C ¢’. In this case we writ&” < X and
define a maf’y x : ¥ — X that maps a cone € Y to the unique inclusion-minimal
cones’ € X with o C ¢’.

Definition 2.5 (Weighted fans) A weighted fan(X, wx) of dimensionk in V' is a fanX

in V of pure dimensiork, together with a mapy : X*) — Z. The numbewx (o) is
called theweight of the facetr € X *). For simplicity we usually writes(o) instead of
wx (o). Moreover, we want to consider tleenpty fan() to be a weighted fan of dimension
k for all k. Furthermore, by abuse of notation we simply wikfefor the weighted fan
(X, wy) if the weight functionvx is clear from the context.

Definition 2.6 (Tropical fans) A tropical fanof dimensionk in V is a weighted fan
(X,wy) of dimensiork satisfying the followingalancing conditiofior everyr € X (*=1):

Z wx(0) - ug/r =0€ V/V,.

o:T<0o

Let (X,wx) be aweighted fan of dimensidnin V and X * the fan
X*:={r € X|r < o forsome facet € X with wx (o) # 0}.

(X" wx+) = (X", wx|x+m) is called thenon-zero pardf X and is again a weighted
fan of dimensiork in V' (note thatX* = () is possible). ObviouslyX*, wx) is a tropical
fan if and only if (X, wy ) is one. We call a weighted faiX, wx ) reducedf all its facets
have non-zero weight, i.e. {iX,wx) = (X*,wx+) holds.

Remark2.7. Let (X,wx) be a tropical fan of dimensioh and letr € X®* 1. Let
o1,...,on be all cones inX with o; > 7. For alli letv,,,, € A be a represen-
tative of the primitive normal vectou,,, € A/A;. By the above balancing condition
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we havervzle(ai) Vg, /7 = Ar for some); € A;. Obviously we have\, =
gcdwx (01),...,wx(oN)) -XT for some furtherXT € A,. We can represent the great-

est common divisor by a linear combination geg (c1),...,wx(on)) = aqwx(o1) +

-+ anywx(oy)with ag, ..., ay € Z and define
50'1»/7' =V )r — QG X'r

for all i. Note thatv,, ,, is a representative of,, /., too. Replacing alb,, /, by v,, /,» we
can always assume thit~ | wx (0) - v,/, = 0 € A.

Definition 2.8 (Refinements) Let (X, wx) and (Y, wy ) be weighted fans il’. We call
(Y, wy) arefinemenbpf (X, wy) if the following holds:

(@ Y*<g X*,
(b) [Y*[ = |X~|and
() wy (o) = wx(Cy- x-(0)) for everys € (Y*)dim(¥)),
Note that property (b) implies that eith&* = Y* = § or dim(X) = dim(Y"). We call
two weighted fangX,wx) and (Y,wy) in V equivalent(write (X,wx) ~ (Y,wy)) if
they have a common refinement. Note th&t wx )and(X*, wX|(X*)<d;m<X))) are always
equivalent.
Remark2.9. Note that for a weighted faiX,wx) of dimensionk and a refinement
(Y, wy ) we have the following two properties:
(@) |X*| = |Y™*|, i.e. the supportX *| is well-defined on the equivalence class'of
(b) for every coner € Y(*~1) there are exactly two cases that can occur: Either

dim Cy x (1) = k ordim Cy x () = k — 1. In the first case all cones ¢ Y'(*)
with o > 7 must be contained i€y, x (7). Thus there are precisely two such
conesr; andog with wy (01) = wy (02) andu,, ) = —u,,,-. Inthe second case
we have a 1:1 correspondence between cenesY () with 7 < ¢ and cones
o' € X with Cy x (1) < ¢’ preserving weights and normal vectors.

Construction2.10 (Refinements)Let (X, wx ) be a weighted fan andl be any fan in/’
with | X| C |Y]. LetP := {ocNo'|loc € X,0’ € Y}. IngeneralP is not a fan inV" as can

be seen in the following example:

X Cr

173
FansX andY suchthafo No’|loc € X,0’ € Y} is nota fan.
HereP containsr; = o2 N o, butalsor, = o1 N o}, andr; = o3 N o). Hence property

(b) of definition 2.2 is not fulfilled. To resolve this, we dedin
XNY :={oec P} e P4 with r C o}.
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Note thatX N Y is now a fan inV. We can make it into a weighted fan by setting
mey(O') = WX(Omeﬂx(O')) forall o € (X N Y)(dim(X)). Then(X ny, mey) is

a refinement of X, wy ). Note that if(X,wx) and (Y, wy) are both weighted fans and
|X| = |Y'| we can form both intersections N'Y andY N X. Of course, the underlying
fans are the same in both cases, but the weights may diffee #iey are always induced
by the first complex.

The following setting is a special case of this constructlaet (X, wx ) be a weighted fan
of dimensionk in V and letf € AY be a non-zero linear form. Then we can construct a
refinement of X, wx ) as follows:

Hy:={{z e V|f(z) <0}, {z e V[f(z) = 0}, {z € V[f(z) = 0}}

is afaninV with |[H;| = V. Thus we havéX| C |H | and by our above construction we
getarefinementXy,wx,) := (X N Hy,wxnm,) of X.

Obviously we still have to answer the question if the eq@mak of weighted fans is indeed
an equivalence relation and if this notion of equivalenceéd-defined on tropical fans.
We will do this in the following lemma:

Lemma 2.11.

(a) The relation “~" is an equivalence relation on the set bfdimensional weighted
fansinV.

(b) If (X,wx) is a weighted fan of dimensidn and (Y,wy) is a refinement then
(X,wx) is a tropical fan if and only if Y, wy ) is one.

Proof. Recall that a fan and its non-zero part are always equivatahthat a weighted fan
X is tropical if and only if its non-zero pait * is. Thus we may assume that all our fans
are reduced and the proof is the same asin [GKM, section 2]. O

Having done all these preparations we are now able to int®the most important objects
for the succeeding sections:

Definition 2.12 (Affine cycles and affine tropical varieties)et (X, wx ) be a tropical fan
of dimensionk in V. We denote by(X, wx)] its equivalence class under the equivalence
relation “~” and by Z2% (V') the set of equivalence classes

ZM(V) = {[(X,wx)]|(X,wx) tropical fan of dimensiot in V}.

The elements o (V') are calledaffine (tropical)k-cyclesin V. A k-cycle [(X,wx)]
is called anaffine tropical varietyif wx (o) > 0 for everyo € X(*). Note that the last
property is independent of the choice of the representafiVeX, wx)]. Moreover, note
that0 := [0] € Z (V) for everyk. We defing|[(X,wx)]| := |X*|. This definition is
well-defined by remark 2] 9.

Construction2.13 (Sums of affine cycles)Let [(X,wx)] and [(Y,wy )] be k-cycles in
V. We would like to form a fanX + Y by taking the unionX U Y, but obviously
this collection of cones is in general not a fan. Using appate refinements we can
resolve this problem: Let; () > 0,..., fn,(z) >0, fn,41(2) =0, ..., fn(z) =0and
g1(x) >0,...,9a: () >0, 9r,+1(x) =0, ..., gm(x) = 0 be all different equalities and
inequalities occurring in the descriptions of all the cobe®nging toX andY respec-
tively. Using construction 2,10 we get refinements

X::XﬂHflﬂ"'ﬂHfNmHglm"'mHgM
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of X and B
Y:=YNH,N---NHp, NHy N---NHyg,,

of ¥ (note that the final refinements do not depend on the ordeedditiyle refinements).
A cone occurring inX or Y is then of the form

U_{ fi(z) <0, fi(x)=0, fi(x)>0,| iel, jeJ keK, }

| gr(x) <0, gy(x)=0, gw(x)>0| idel, j/el, KeK

for some partiton§UJUK = {1,..., N}and'UJ'UK’ = {1,..., M }. Now, all these
coness belong to the fari y, N- - -NHy, NH,, N---NH,,, as well and henc& UY fulfills
definitionZ2. Thus, now we can define tem ofX andY tobeX +Y := XUY together
with weightswx v (0) := wg(0) + wy (o) for every facet ofX + Y (we setwg(o) := 0
if o does not occur ifd € {X,Y}). By construction(X + Y,wxy ) is again a tropical
fan of dimensiort. Moreover, enlarging the sefs;}, {g;} by more (in)equalities just
corresponds to refinements & andY and only leads to a refinement &f + Y. Thus,
replacing the set of relations by another one that also descthe cones ik andY’, or
replacingX orY by refinements keeps the equivalence c|a&s+Y, wx 1y )] unchanged,
i.e. taking sums is a well-defined operation on cycles.

This construction immediately leads to the following lemma

Lemma 2.14. Z (V) together with the operation “+” from construction 2.3 fosxan
abelian group.

Proof. The class of the empty fah = [0)] is the neutral element of this operation and
[(X, —wx)] is the inverse element §fX, wx)] € Z2E(V). O

Of course we do not want to restrict ourselves to cycles wtlimm someR™. Therefore we
give the following generalization of definitign 2]12:

Definition 2.15. Let X be a fan inV. An affinek-cycle inX is an elemenf(Y, wy )] of
Z# (V) such thatY *| C | X|. We denote by (X) the set ofk-cycles inX. Note that
(Z¢(X), +) is a subgroup of 22 (V), +). The elements of the gromiﬁg&lx_l(X) are
calledWeil divisorson X.. If [(X,wx )] is a cycle inV thenZ ([(X, wx)]) := Z# (X ™).

3. AFFINE CARTIER DIVISORS AND THEIR ASSOCIATEDWEIL DIVISORS

Definition 3.1 (Rational functions) Let C' be an affinek-cycle. A (non-zero) rational
function onC' is a continuous piecewise linear functign: |C| — R, i.e. there exists
a representativeX, wx ) of C such that on each cone € X, ¢ is the restriction of an
integer affine linear functiop|, = A + ¢, A € AY, ¢ € R. Obviously,c is the same on all
faces byc = ¢(0) and\ is uniquely determined by and therefore denoted lpy, := A.
The set of (non-zero) rational functions 6fis denoted byC* (C).

Remark3.2 (The zero function and restrictions to subcyclef)e “zero” function can be
thought of being the constant functiero, thereforelC(C) := K*(C) U {—oo}. With
respect to the operatiomsax and+, K£(C) is a semifield.

Let us note an important difference to the classical caseiLige an arbitrary subcycle of
Candy € K*(C). Theny| p| € K*(D), whereas in the classical case it might become
zero. This will be crucial for defining intersection prodsinbt only modulo rational equiv-
alence. On the other hand, the definition of rational fumsigiven above, requiring the
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function to be defined everywhere, seems to be restrictivenvdompared to the classical
case, even so “being defined” does not imply “being regutagitally. In some cases (see
remark8.6) it would be desirable to generalize our definitidiile preserving the above
restriction property.

As in the classical case, each non-zero rational fungtion C' defines a Weil divisor, i.e.
acycleinzaff . | (C). The idea of course should be to describe the “zeros” and4jol
of p. A naive approach could be to consider the grapp of IV x R and “intersect it with
V x {—oo} andV x {+o00}”. However, our functiorp takes values only iR, in fact. On
the other hand, the graph ¢fis not a tropical object as it is not balanced: Wheris not
linear, our graph gets edges that might violate the balgnoimdition. So, we first make
the graph balanced by adding new faces in the additionadtitre(0, —1) € V' x R and
then apply our naive approach. Let us make this precise.

Construction3.3 (The associated Weil divisor).et C' be an affing:-cycleinV = A ® R
andy € K*(C) a rational function orC. Let furthermore(X,w) be a representative
of C on whose face9 is affine linear. Therefore, for each conec X, we get a cone
7 := (id x¢,)(0) in V x R of the same dimension. Obviously, := {5|c € X} forms

a fan which we can make into a weighted fdn,, @) by ©(¢) := w(o). Its supportis just
the set-theoretic graph gf — ©(0) in | X| x R.

For7T < o with dim(7) = dim(o) — 1 letv,,, € A be a representative of the normal
vectoru, .. Then, (vg/T, gog(vg/f)) € A x Z is a representative of the normal vector
uz /7. Therefore, summing around a cof®ith dim 7 = dim7 = k — 1, we get

Z (D(6) (Ucr/‘raspa'(vcr/‘r)): Z w(U)Ua'/Ta Z SOO'(M(O')UO'/T)

erd ceXx® oex ™)
P T<o T<o

From the balancing condition fqtX, w) it follows that)" . vu)., ., w(0)vs)r € Vi,

which also mean$" )., <o W(0)Vo/r, 0r (X e xtrirey w(0)Vs)7)) € Vz. There-
fore, moduloVz;, our first sum equals

0, Y wo@@os) —or( D wlohoss) | €V xR

ocex® cex
T<0o T<0o

So, in order to “makel’,, @) balanced at”, we add the con& := 7 + ({0} x R<g)
With Weight&(d) = e xto.r <o 2o (@(0)0/7) = 1 ( exwrao (0007 ). AS

obviously[(0,—1)] = uy/z € (V x R)/Vz, the above calculation shows that then the
balancing condition aroungholds. In other words, we build the new faiY,, &), where

F:& = I'y,U {7’ + ({0} x R<o)|7 € Ty \ F&k)} )
(‘D/|F(k) = ‘Da
S+ {0} xR0) = D @olwlohor) —er( D wlohuoyr)
cex™® cex®
T<0o T<0o

if dim7==%— 1.
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I, CRZ2xR
«— new edge

o2 CQR2

g3

Construction of a Weil divisor.

This fan is balanced around &ll € Fff_l). We will show that it is also balanced at alll
“new” cones of dimensiok — 1 in propositior 3.7.

We now think of intersecting this new fan with x {—oo} to get our desired Weil divisor
(As our weights are allowed to be negative, we can forget almtersecting also with

V x {+o0}). This construction leads to the following definition.

Definition 3.4 (Associated Weil divisors)Let C be an affingi-cycle inV = A ® R and
p € K*(C) arational function orC'. Let furthermore( X, w) be a representative @f
on whose cones is affine linear. We defindiv(p) == ¢ - C == [(UF) X@,w,)] €
Z (0), where

w@:X(kfl) — 7,

T = Z @a(w(U)vg/r)—ﬁpr( Z w(a)vg/T)

cex® sex®
T<0o T<0o

and thev, /. are arbitrary representatives of the normal vectqrg..
Let D be an arbitrary subcycle @f. By remar 3.2, we can define: D := | p, - D.

Remark3.5. Obviously,w,(7) is independent of the choice of thg ., as a different
choice only differs by elements ¥, .

Our definition does also not depend on the choice of a repi@sen( X, w): Let (Y, v)

be a refinement of X,w). Forr € Y1 two cases can occur (see also renjark 2.9):
Let7 := Cy x(7). If dim 7" = k, there are precisely two conesmak o,00 € Y*),
which then fulfill Cy, x (01) = Cy,x(02) and therefore.,, ;, = —u,, /-, v(01) = v(0o2)
andy,, = @g,. Itfollows thatv,(r) = 0. If dim7" = k — 1, Cy,x gives a one-to-one
correspondence betweén ¢ Y*)|r < o} and{cs’ € X(*) |7’ < o’} respecting weights
and normal vectors, and we hayg = ¢, , (o). It follows thatv, (1) = w,(7'). So the
two weighted fans we obtain are equivalent.

Remark3.6 (Affine linear functions and sumsl.et ¢ € K£*(C) be globally affine linear,
i.e. ¢ = M| + cforsome) € AV, ¢ € R. Then obviouslyy - C' = 0.

Let furthermore) € K*(C') be another rational function @il. Frome, +v¢, = (p+¢),
it followsthat(p +¢)-C=¢-C+v-C.
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Proposition 3.7(Balancing Condition and Commutativity)

(a) LetC be an affiné:-cycle inV = A@R andy € K£*(C) arational function orC'.
Thendiv(e) = ¢-C'is an equivalence class of tropical fans, i.e. its repreatwes
are balanced.

(b) Lety € K*(C) be another rational function of¥’. Then it holds) - (¢ - C) =
@ (¥-C).

Proof. (a): Let(X,w) be a representative ¢f on whose coneg is affine linear. Pick a

0 € X(*=2) We choose an elemeitc AV with \|y, = ¢,. By remark3.B, we can go
onwithy — A — p(0) € £*(C) instead ofp. By dividing outVjy, we can restrict ourselves
to the situationlim X = 2,0 = {0}.

By a further refinement (i.e. by cutting an possibly occurivadfspace into two pieces
along an additional ray), we can assume that all cenes X are simplicial. Therefore

each two-dimensional cone € X is generated by two unique raysr’ € X, i.e.

o =71+ 7. We denote

X(U) = [AO' : A‘r + AT/] = [Aa’ : ZuT/{O} + ZUT’/{O}]a

whereu. /oy andu, (o, denote the primitive normal vectors introduced in congtonc
[2.3. Then we get

[Ur/10}] = x(0)Ug/r mod V.

This equation can be shown for example as follows: The liegggnsion of the following
function

index: A, \ A, — Z,
v = [Ny Zug oy + Zo)

to A, is in fact trivial onA.. Therefore it can also be considered as a function g ;.
But by definitions we know indéx,, /) = 1 (asu. (o, and any representative af; ;-
form a lattice basis oA,) and indexu, /{0}) = x(o), which proves the claim.

This means that we can rewrite the balancing conditioX @froundr € X only using
the vectors generating the rays, namely

w(o)
> Lo Vr
rex® x(@)

T+7/eX(®)

m

= )\TUT/{O}’

where) is a coefficient inR ando denotes + 7 in such sums. Of course, we can also
compute the weight,, (7) of 7 in div(p):

wo(r) = Y %w(ur'/{oﬁ = Arp(ur/g03)

g
rex™
T+7/€X(®?)

~—
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Let us now check the balancing conditiongf C' around{0} by plugging in these equa-
tions. We get

w(o)
> weMry = Y (o) P /o)) 0y
rex™m rrex®
T+7/€X ()
= Y Arlur (o))t oy
reXx@

By Commutingr and7’ in the first summand we get

w(o)
> welMury = Y (o) Pl on) /0y
TeEX® rrlex®
TH+T/€X (2
= > Al oy)ursqo0)
reX (1)
w(o)
= Y olur/qop) Yo e |~ Avuno)
x(o)
rex@) ex@®
T+ €X(2)

=0 (balancing condition arount)

= 0.

This finishes the proof of (a).

(b): Let (X, w) be a representative 6f on whose coneg and) are affine linear. Pick a
6 € X(*=2)_ By the same reduction steps as in case (a), we can agaictrestselves to
dim X = 2, 0 = {0}. With the notations and trick as in (a) we get

wen(= 3 %wuw{o})w(uﬁw})=ww,¢<{0}>,
7-T+Tr//ee))(((<l2)>

which finishes part (b). O

Definition 3.8 (Affine Cartier divisors) Let C be an affing:-cycle. The subgroup of glob-
ally affine linear functions iiC*(C') with respect tot is denoted by)* (C'). We define the
group of affine Cartier divisors @f to be the quotient groupiv(C') := K*(C)/O*(C).
Let [p] € Div(C) be a Cartier divisor. By remafk=3.6, the associated Weilsdivi
div([¢]) := div(yp) is well-defined. We therefore get a bilinear mapping

. Div(C) x 220y - Z2 (),
(¢, D) = [¢l-D=¢-D,
calledaffine intersection product
Example3.9 (Self-intersection of hyperplaned)et A = Z™ (and thusV = R"), let
e1,...,e, be the standard basis vectorsZfi andeg := —e; — -+ — ¢,,. By abuse of
notation our ambient cycle BR" := [({R"},w(R™) = 1)]. Let us consider the “linear

tropical polynomial’h = z1 &+ - - &1, 90 = max{z,...,x,,0} : R" — R. Obviously,
I is a rational function in the sense of definitfon|3.1: For emdbset’ C {0,1,...,n} we
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denote by ; the simplicial cone of dimensiod| generated by the vectorse; fori € 1.
Thenh is integer linear on alb;, namely

0 ifo&¢ Tl
h|o.,(x1,...,xn)={ it0¢1,

x; Iifthereexistsan € {1,...,n}\I.
Let L} be thek-dimensional fan consisting of all cones with |I| < k and weighted with
the trivial weight functionvz,». ThenL7, is a representative &" fulfilling the conditions
of definition[3.1. We want to show
b hRT = (L0 ). @

——
k times

This follows inductively from - [L ;] = [L}], so it remains to computer;, (o) for

all I with [I| = k < n. LetJ := {0,1,...,n} \ I. Obviously, the(k + 1)-dimensional
conesofL}, , containingr; are precisely the cones;,,j € J. Moreover—e; is arep-
resentative of the normal vectog, . /o, Note alsothatforall e I', I’ C {0,1,...,n}

we haveh, , (—e;) = h|s,, (—ei) = h(—e;). Using this we compute

WLZ+1=h(GI) = Zka+1 Iru{j} hglu{j}(_ej)
JjeJ

UI<Zka+1 GIU{]} >
—_——

jeJ
=1

Z'LEI
= Z h(—e;) + Z h(—e;)
JjeJ el

= h(—eo) +h(=e2) + -+ h(=en)

= 140+ +0=1=wrn(o1),
which impliesh - [L}, ] = [L}] and also equatio().
We can summarize this example as follows: Firstly, for aitralpolynomialf, the asso-
ciated Weil divisorf - R™ coincides with the locus of non-differentiabiliy( /) of f (see

[RGST, section 3]), and secondly, “thefold self-intersection of a tropical hyperplane in
R™ is given by its(n — k)-skeleton together with trivial weights all equalto

Example3.10 (A rigid curve) Using notations from example_3.9, we consider as ambient
cycle the surface := [L3] = T (21 ® z2 ® x5 ® 0) in R3. In this surface, we want to
show that the curv&® := [(R - er,wr(R - eg) = 1)] € Z3(S), whereeg := e; + ea,
has negative self-intersection in the following sense: Westruct a rational functiop on

S whose associated Weil divisor 18 and show thatr - R = ¢ - ¢ - S is just the origin
with weight —1. This curve and its rigidness were first discussedin [M, Exad.11.,
Example 5.9.].

Let us construcl. First we refinel3 to L by replacingo; o) andoyg 3y with oy gy,
O{R}s O{R2}» O{0,—R}» O{—Rr} @ndo(_p 3y (using again the notations from examplel 3.9
ande_pr := —er = ep + e3). We definep : |S| — R to be the unique function that is
linear on the faces af g and fulfills

0,—e1,—e9,—e3,—e_p—0, —egr—1 and — er+— —1.
Analogous t¢ 319, we can compute for 1,2
wrg,e(0piy) = o(—eo) + p(—e3) + p(—er) =14+ 0-1=0,



12 LARS ALLERMANN AND JOHANNES RAU

The rigid curveR in S.

fori =0,3
WLpe(ouy) = o(—€1) + o(—e2) + p(—e—g) =0+ 0+0=0,
and finally

WLre(0(ry) = @(—e1) + p(—e2) —p(—er) =0+0—(=1) =1,
WEae(o{—ry) = p(—e€0) + p(—e3) —p(—e—r) =14+0+0=1,

which means>- S = R. Now we can easily compute- ¢-.S = ¢- R on the representative
{o(r},0{—Ry, {0} } (with trivial weights) of R:

wrx({0}) = p(—er) + p(—e_g) = —14+0=—1.

Thereforep - ¢ - S = [({0},w({0}) = —1)]. Note that we really obtain a cycle with
negative weight, not only a cycle class modulo rational egjance as it is the case in
“classical” algebraic geometry.

4. PUSH-FORWARD OF AFFINE CYCLES AND PULLBACK OF CARTIER DIVISORS

The aim of this section is to construct push-forwards of eg@nd pull-backs of Cartier
divisors along morphisms of fans and to study the interaafdboth constructions. To do
this we first of all have to introduce the notion of morphism:

Definition 4.1 (Morphisms of fans) Let X be a fan inV’ = A ®z R andY be a fan in
V' = A @z R. A morphismf : X — Y is aZ-linear map, i.e. a map frofX| C V to
|Y| € V' induced by &-linear mapf : A — A’. By abuse of notation we will usually
denote all three mapg fandf@l id by the same lettef (note that the last two maps
are in general not uniquely determined py X — Y’). A morphism of weighted fans is a
morphism of fans. A morphism of affine cycl¢s [(X,wx)] — [(Y,wy)] is @ morphism
offansf : X* — Y™*. Note that in this latter case the notion of morphism doeglapend
on the choice of the representatives by remark 2.9.
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Given such a morphism the following construction shows howild the push-forward
fan of a given fan. Afterwards we will show that this constroie induces a well-defined
operation on cycles.

Construction4.2. We refer to [GKM, section 2] for more details on the followiogn-
struction. Let(X,wx) be a weighted fan of pure dimensienin V= A @7 R, letY be
any fanin¥V’ = A’ ®z R and letf : X — Y be a morphism. Passing to an appropriate
refinement of X, wx) the collection of cones

f+X :={f(0)|o € X contained in a maximal cone &f on which f is injective}

is a fan inV’ of pure dimensiom. It can be made into a weighted fan by setting
wr.x (o) = Yo wx(0)- 1AL/ F(A)]
ceX):f(o)=0’

for all o/ € f.X(). The equivalence class of this weighted fan only dependsen t
equivalence class ¢fX, wx).

Example4.3 Let X be the fan with conesy, 7, 73, {0} as shown in the figure

R?2 D X
T3

fi
T1 {0} R

T2

and letwx(r;) = 1 fori = 1,2,3. Moreover, letY := R be the real line and the
morphismsfy, fo : X — Y be given byfi(x,y) := = + y and fa(x,y) := z respec-
tively. Then(f1).X = (f2).X = {{z <0},{0},{z > 0}}, butw(s). x({z < 0}) =
wip).x({z > 0}) = 2andw(s,), x {r < 0}) = w(s,). x({z > 0}) = 1.

Proposition 4.4. Let (X,wx) be a tropical fan of dimensionin V = A ® R, letY be

any faninV’ = A’ @z Rand letf : X — Y be a morphism. Thefi. X is a tropical fan
of dimensiom.

Proof. A proof can be found in [GKM, section 2]. O

By constructiol 4.2 and propositibn #.4 the following defari is well-defined:

Definition 4.5 (Push-forward of cycles)LetV = A ®z R andV’ = A’ @7 R. Moreover,
letX € Z25(V),Y € Z&H (V') andf : X — Y be amorphism. Fd{Z,wz)] € Z#(X)
we define

Fl(Z,w2)] = [(f(Z%), w5, z+)] € ZT(Y).

Proposition 4.6 (Push-forward of cycles)LetV = A @z RandV’ = A’ ®z R. Let
X € 7228 (v)yandY € Z* (V') be cycles and lef : X — Y be a morphism. Then the
map

ZiN(X) — Z}T(Y) : C— f.C
is well-defined and-linear.
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Proof. It remains to prove the linearity: Lét4,w4) and (B,wg) be two tropical fans
of dimensionk with A = A*, B = B* and|A|,|B| C |X*|. We want to show that
f«(A+ B) ~ f.A+ f.B. RefiningA andB as in construction 2.13 we may assume that
A,BC A+ B.SetAd:= A+ Band

wi(o) = { wA(UO): Ieflsee 4
for all facetss € A. Analogously, sef3 := A + B with according weights. Thed ~
AandB ~ B. Carrying out a further refinement of + B like in constructiol 412
we can reach thaf.(A + B) = {f(o)|oc € A+ B contained in a maximal cone dff +
Bon whichf is injective}. UsingA = B = A+ B = A+ Bwegetf,A = f,B =
f«(A+ B) = f.(A+ B) and it remains to compare the weights:

Wi arp (o) = > wi (o) AL/ f(As)|

c€(A+B)®):f(o)=0"

= > [w(0) +wg()] - 1AL/ F(As)]
c€(A+B)*):f(o)=0"

= Y wilo) AL/ f(A)] +
ceA®): f(o)=0"

> wplo) AL /1(8,)]

ceB®):f(o)=0"
wy,4(0") +w; 5(0)

for all facetss’ of f,(A+B). Hencef,(A+B) ~ f.(A+B) = f,A+ f.B ~ f, A+ f.B
as weighted fans. O

Our next step is now to define the pull-back of a Cartier divids promised we will prove
after this a projection formula that describes the intéoadietween our two constructions.

Proposition 4.7 (Pull-back of Cartier divisors)LetC' € Z2f(V) and D € Z2 (V') be
cyclesinV = A®zRandV’ = A’ ®z R respectively and lef : C' — D be a morphism.
Then there is a well-defined addlinear map

Div(D) — Div(C) : [h] — f*[h] := [ho f].

Proof. The maph — h o f is obviouslyZ-linear on rational functions and maps affine
linear functions to affine linear functions. Thus it remaiagrove that: o f is a rational
function if h is one: Therefore lefX,wx) be any representative df, let (Y,wy) be
a reduced representative bf such that the restriction df to every cone inY” is affine
linear and letfy : V. — V' be aZ-linear map such thaty | = f. SinceZ :=

{fy'(e")|o’ € Y}isafaninV and|X| C |Z| we can construct the refinemekit :=
X nZof X suchthato f is affine linear on every cone df. This finishes the proof. [

Proposition 4.8 (Projection formula) Let C € Z¥ (V) and D € Z*(V’) be cycles in

V =A®zRandV’' = A’ ®; R respectively and lef : C — D be a morphism. Let
E € ZM(C) be a cycle and lepp € Div(D) be a Cartier divisor. Then the following
equation holds:

¢ (f.E) = f(f ¢ E) € Z}T, (D).
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Proof. Let E = [(Z,wz)] ande = [h]. We may assume thd&f = Z* andh(0) = 0.
Replacing” by a refinement we may additionally assume tfdt is linear on every cone
of Z (cf. definition[3:1) and that

f+«Z = {f(0)|o € Z contained in a maximal cone & on which f is injective}

(cf. constructio 4]2). Note that in this caids linear on the cones of. 7, too. Let
o’ C |D| be a cone (not necessarly € f.Z) such thath is linear ono’. Then there
is a unique linear map,- : V!, — R induced by the restriction|,. Analogously
for f*h,,0 C |C|. For conesr < o € Z of dimensionk — 1 and k respectively let
v,/r € A be a representative of the primitive normal veaigy. € A/A; of construction
[2.3. Analogously, for’ < o’ € f.Z of dimensiork — 1 andk respectively lev, /. be a
representative o, /. € A’/A’,. Now we want to compare the weighted fans(f.2)
andf.(f*h - Z): Letr’ € f.Z be a cone of dimensiokh— 1. Then we can calculate the
weight of 7 in h - (f.Z) as follows:

o' EfuZioc! >T!

wh(f.2)(T) = ( z wr, z(o") - hg/(vc//T/)>
—h.,./ ( z wf*z(cr/) ~vg//7/>

o' EfuZioc! >T!

( Z ( Z wz(o) - |A:7’/f(A0)|> : hg/(’Ug//T/)>

olefsZio'>1" \oezk).f(o)=0’

—hf/( ) ( ) wz(0)~|Aé//f(Aa)l>~’Uo//r/>

o'€fxZ:a’'>1" \oez(®):f(o)=0'

- ( > wz(0) - [Nj(o)/F(Ac)] - hf(U)(“f(U)/T’))

ceZ(B): f(o)>T!

—h ( > wz(0) [N/ f(Ao)] -vfw)/r')

oeZF):f(o)>T!

Now let 7’ € f.(f*h - Z) of dimensionk — 1. The weight ofr’ in f.(f*h - Z) can be
calculated as follows:

Wi, (o) (1) = > wienz(T) - |A7 ) F(AL)]

re(frh-z)F-1);
fry=r'

— Z ( Z wz(a)f*hg(vg/.r)

re(f h-z)k=D; \oez(®:o>r
f(r)=r’

— ( S walo)- />) AL/ F(AL)]

ocezZ(F)io>T
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- > ( > wr(0)hyo) (f(Veyr))

re(frh-z) k=1, ceZ(k) o>
F=r

=y ( > WZ(U)'f(va/f)>> AL/ F(AS)]-

cez(k):o>T

Note thatf (v,/,) = [AL, /(AL + Zf (Vo)) - Vor jrr + Aoz € A fOr somed, - € AL,
Sinceh(,)(Ao,r) = hyr) (Ao ) these parts of the corresponding summands in the first
and second interior sum cancel using the linearity f . Moreover, note that(v, /) =

Ao.r € AL, for thoses > 7 on which f is not injective and that the whole summands
cancel in this case. Thus we can conclude that the sum doebange if we restrict the
summation to those > 7 on which f is injective. Using additionally the equation

|A:7’/f(AU)| = |A;"/f(AT)| ’ |A:7’/( {r’ + Zf(vo/r))l

we get
Wi sz (7)) = > ST w2 (o) [Ny [ F D) By (V5o o)
TE(f*h-Z)(kfl): oez(F);
f(r)=r" o>T1,f(o)>7/

= he > wz(0) - [Ny [ F(Ae)] - sy

oez(F);
o>1,f(o)>7!

- ( > wz (o) - [N/ f(Ao)] - hf(cr)(vf(a)/f/)>

ceZ(F):f(a)>T!

—h ( > wz(0) - [N}y /f(As)] 'W(a)/r’) :
oeZk):f(o)>T!

Note that for the last equation we used again the linearity.of We have checked so
far that a cone”’ of dimensionk — 1 occurring in bothh - (f.Z) and f.(f*h - Z) has the
same weight in both fans. Thus it remains to examine thosesgtir), 7 € Z(*~1) such
that f is injective on7 but not on anyr > 7: In this case all vectors, ,, are mapped to
A'y(.)- Again, hy () = hy(r) and by linearity ofr s (;) all summands in the sum cancel as
above. Hence the the weight 6f7) in f.(f*h - Z)is0andy - (f.E) = [h- (f«Z)] =
[ (f*h-2)) = [ ("0 E). O

5. ABSTRACT TROPICAL CYCLES

In this section we will introduce the notion of abstract icgb cycles as spaces that have
tropical fans as local building blocks. Then we will genaathe theory from the previous
sections to these spaces.

Definition 5.1 (Abstract polyhedral complexespn (abstract) polyhedral complég a
topological spacéX | together with a finite seX of closed subsets ¢ | and an embed-
ding mapy, : 0 — R" for everyo € X such that
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() X is closed under taking intersections, i@.N ¢’ € X for all 0,0’ € X with

onao #10,

(b) everyimager, (o), o € X isarational polyhedron not contained in a proper affine
subspace oR",

(c) for every pair, o’ € X the concatenatiop,, o @;/1 is integer affine linear where
defined,

d) | X]= U ¢, (ps(c)°), wherep,(c)° denotes the interior af, (o) in R™-.
ceX

For simplicity we will usually drop the embedding maps and denote the polyhedral
complex(X, | X|, {¢-|oc € X}) by (X, |X]) orjust by X if no confusion can occur. The
closed subsets € X are called thepolyhedraor faces of(X,|X|). Foro € X the
open seb™ := ¢ (¢, (c0)°) is called therelative interior ofs. Like in the case of fans
the dimensionof (X, | X|) is the maximum of the dimensions of its polyhed(&, | X|)

is pure-dimensionaif every inclusion-maximal polyhedron has the same dinmmsiVe
denote byX (") the set of polyhedra i, | X |) of dimensiom. Letr, o € X. Like in the
case of fans we write < o (or7 < o) if 7 C o (or 7 C o respectively).

An abstract polyhedral compléX, | X |) of pure dimensiom together with a mapx :
X — 7 is calledweighted polyhedral complexf dimensiom: andwx (o) the weight
of the polyhedrowr € X (). Like in the case of fans the empty compliis a weighted
polyhedral complex of every dimension If ((X,|X]),wx) is a weighted polyhedral
complex of dimensiom then let

X*:={r € X|r C o for somes € X™ with wx (0) # 0}, |X*| := U T C|X].
TEX*

With these definitiong(X*, |X*|),wX|(X*)<n)) is again a weighted polyhedral complex
of dimensiom, called thenon-zero parof ((X, | X|),wx). We call a weighted polyhedral
complex((X, | X|),wx) reducedf ((X,|X|),wx) = (X*,|X*|),wx~) holds.

Definition 5.2 (Subcomplexes and refinementget (X, | X|, {¢s}) and (Y, Y], {¢-})
be two polyhedral complexes. We c&l, | X|, {¢,}) asubcomplexof (Y, Y|, {¢}) if

@ X[ <Y,
(b) foreveryos € X existst € Y with o C 7 and

(c) theZ-linear structures oK andY” are compatible, i.e. for a padr, 7 from[(b] the
mapsy, o ¢! andy, o ¢! are integer affine linear where defined.

We write (X, | X|,{¢-}) < (Y,]Y], {¢);}) in this case. Analogous to the case of fans we
define a mapCxy : X — Y that maps a polyhedron iX to the inclusion-minimal
polyhedron inY” containing it.

We call a weighted polyhedral compléX, | X |), wx) arefinemenof ((Y,|Y]),wy) if

(@) (X7 [ X)) = (Y, [Y™]),
(b) [ X~| = [¥~,
() wx(0) = wy (Cx~y=(0)) forall o € (X*)dimX)),

Definition 5.3 (Open fans) Let (ﬁ,wﬁ) be a tropical fan irR™ andU C R™ an open
subset containing the origin. The sét:= F N U := {o N Ul|o € F} together with the
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induced weight functiow is called aropen (tropical) fann R™. Like in the case of fans
let|F'| := U, . o'. Note that the open fafi contains the whole information of the entire

fan F asF = {Rx - o’|0’ € F}.

Definition 5.4 (Tropical polyhedral complexesh tropical polyhedral complegf dimen-
sionn is a weighted polyhedral compl€kX, | X|), wx) of pure dimensiom together with
the following data: For every polyhedrenc X* we are given an open fafi, in some
R™ and a homeomorphism

8= | ()R
o'eX*,0' Do
such that
(@) foralle’ € X*,0/ D o holds®,(c’' N S,) € F, and®, is compatible with the

Z-linear structure on’, i.e. @, o 90;,1 andy, o ®_ ! are integer affine linear where
defined,

(b) wx(0') = wr, (B, (0’ N S,)) for everys’ € (X*)™) with ¢’ D o,

(c) forevery paito, 7 € X* there is an integer affine linear malp , and a commuta-
tive diagram

Sy NSy — 2w &.(S,NS,) .

Q“J,N Aor

$,(S, N S,)

For simplicity of notation we will usually drop the mags, and write((X, |X|),wx) or
justX instead of ((X, | X|),wx), {®,}). Atropical polyhedral complex is calle@duced
if the underlying weighted polyhedral complex is.

Example5.5. The following figure shows the topological spaces and th@gositions
into polyhedra of two such abstract tropical polyhedral ptares together with the open
fan F, for every polyhedromr:

\\ I

S, -

Construction 5.6 (Refinements of tropical polyhedral complexes) et
(((X,]X]),wx),{®,}) be a tropical polyhedral complex and Igl’, |Y|),wy ) be a re-
finement of its underlying weighted polyhedral compléX(, | X|),wx). Then we can
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make((Y; |Y]),wy) into a tropical polyhedral complex as follows: We may asstinae
X andY are reduced as we do not pose any conditions on polyhedrangitfht zero.
Fix somer € Y and lete := Cy,x (7). By definition of refinement, for every’ € Y
with 7/ > 7 there iso’ € X, ¢/ > o with 7/ C ¢’. ThusS, C S, and we have a map
U, = ®,ls. : S, = V. (S,;) C R". It remains to givel,(S,) the structure of an
open fan: We may assume tHat} C . (7) (otherwise replac& . by the concatenating
of ¥, with an appropriate translatidhi., apply 7, to FX and®, and change the maps
A, andA, , accordingly). Lett X := {Rxq - o’|0’ € FX} be the tropical fan associ-
ated toFX and letFY" be the set of coneBY := {Rx - U.(7/)|r < 7’ € Y}. Note that
the conditions on th&-linear structures oX andY to be compatible and o, to be
compatible with theZ-linear structure onX assure thaf?Y" is a fan inR"-. In fact, Y
with the weights induced by is a refinement o(ﬁ;’(, wgx ). Thus the map¥ ;. together

with the open fango N ¥.(S,)|o € FY}, 7 € Y fulfill all requirements for a tropical
polyhedral complex.

Remarls.7. If not stated otherwise we will from now on equip every refirrof a trop-
ical polyhedral complex coming from a refinement of the uhdieg weighted polyhedral
complex with the tropical structure constructein 5.6.

Definition 5.8 (Refinements and equivalence of tropical polyhedral corggle Let C;, =
(X1, 1 X1]), wx, ), {®X1}) and Cy = (((X2, | X2]), wx,), {®22}) be tropical polyhe-
dral complexes. We cafl’; a refinemenbf C; if

(@) ((Xo,|X2|),wx,) is arefinement of( X1, | X1|),wx, ) and

(b) Cy carries the tropical structure induced by like in constructiof 56, i.e. if
C) = (((Xz, |X2]), wx, ), {5?22 ) is the tropical polyhedral complex obtained

from C; and the refinemeri{ X», | X»|), wx,) then the mapfi)fz2 o (®X2)~! and
$X2 o (8X2)~! are integer affine linear where defined.

We call two tropical polyhedral complexés andCs equivalent(write C; ~ Cs) if they
have a common refinement (as tropical polyhedral complexes)

Remark5.9. Note that different choices of translation mapsin constructiod 516 only
lead to tropical polyhedral complexes carrying the sampited structure in the sense
of definition[5.8[(B). In particular definition 3.8 does notpeéed on the choices we
made in construction 5.6. Note moreover that refinement§(of, | X |),wx), {®,}) and
((Y,]Y|),wy) in construction 516 only lead to refinements(6fY, |Y|), wy ), {¥,}).

Construction 5.10 (Refinements) Let (((X,|X],{¥s}),wx),{®,}) and
(Y, |Y],{¢+}),wy),{¥,}) be reduced tropical polyhedral complexes such that
(Y,]Y]) < (X,|X]|) and the tropical structures ok andY agree, i.e. for every € Y
ando := Cy x(7) € X the mapsl,o®_ ! and®,oV ! are integer affine linear where de-
fined. Moreover let (((X',|X'|,{¢/}),wx/),{®.,}) be a reduced
refinement of (((X, |X|,{¢s}),wx),{®s}). Like in the case of fans we will
construct a refinement (((YﬂX’, |YmX’|,{wf,”X'}),wyﬁX/),{\I/TY/”X'}) of
(Y, |Y],{¥+}),wy ), {¥,}) such thatyY N X', |Y N X'|)< (X’,|X’|) and the tropical
structures ory’ N X’ and X’ agree:

Fix 0 € X. Note that the compatibility conditions on tt#linear structures ofX’,
X andY, X respectively (cf.[5IZ (¢)) assure that (o'), o/ € X' with o/ C o as
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well asp, (1), 7 € Y with 7 C o are rational polyhedra ifR"~. Thus in this case
vo (0! NT) = p,(0’) N ¢, (7) is a rational polyhedron, too. L&f, , = R"~ be the
smallest affine subspace Bf'> containingy, (¢’ N 7). We can considep, |, - to be a
maps’ N7 — R™ . We can hence construct the underlying weighted polyhedralplex
of our desired tropical polyhedral complex as follows: Bet= {rN¢'|r € Y, o' € X'},
YNX = {re€ Pl ¢ Pdm) .7 C 7, Y nX'| := |Y] andwynx/ (1) :=
wy (Cynx .y (7)) forall + e (Y n X)) |t remains to define the maps, "X’
and UY,"X": For everyr’ € Y N X’ choose a triplet’ € X', 7 € Y,0 € X such
thato’ N7 = 7 ando’,7 C o and set)X,"X" = ¢,|,n,. With these definitions
the weighted polyhedral compléky” N X', |Y N X'|, {#:YX"X'}), wynx/) is a refinement
of (Y, |Y],{¢-}),wy). Thus we can apply constructién 5.6 to obtain magg, X"}
that endow our weighted polyhedral complex with the tropgteucture inherited from
((Y,|Y|,{¥+}),wy). Note that the compatibility property between the tropatalictures
of Y andX is bequeathed t& N X’ and X", too.

Lemma 5.11. The equivalence of tropical polyhedral complexes is an\edence rela-
tion.

Proof. Let C1 = (((X1,|X1]),wx,), {®5'}), Co = ((X2,|Xz2|),wx,), {P52}) and

Cs = (((Xs,|X3]),wx,), {®2}) be tropical polyhedral complexes such tigt ~ C,

via a common refinemert®; = (((Y1,[Y1]),wy,), {®2}) andCs ~ C5 via a common
refinementD, = (((Y2, [Y2|),wy,), {®¥2}). We have to construct a common refinement
of C; andCs: First of all we may assume that; andD- are reduced. Using construction
we get a refineme?; := (((Y1 N Yz, [Y1 NY2|), wyiny,), {®X17*2}) of Dy with

(Y1 NYa, Y1 NY;3])< (Ys, |Y2|) and a tropical structure that is compatible with the tropica
structure onDs,. It is easily checked thaDs is a refinement oD, too. O

Definition 5.12 (Abstract tropical cycles)Let ((X, | X|),wx ) be ann-dimensional tropi-
cal polyhedral complex. Its equivalence clagsy, | X|),wx)] is called an(abstract) trop-
ical n-cycle The set ofn-cycles is denoted by,,. Since the topological spa¢d& | of

a tropical polyhedral comple X, | X|), wx) is by definition invariant under refinements
we define| [((X,|X|),wx)] | := |X*|. Like in the affine case, an-cycle ((X, |X|),wx)

is called an(abstract) tropical varietif wx (o) > 0 forall o € X,

LetC € Z, andD € Z;, be two tropical cyclesD is called an(abstract) tropical cycle
in C or asubcycle ofC' if there exists a representatiVE 7, | Z|),wz), {¥-}) of D and a
reduced representativé( X, | X |),wx), {®,}) of C such that

@) (Z,|12]) 2 (X, |X]),

(b) the tropical structures o and X agree, i.e. for everyr € Z the maps
v, o @6; () @nd®c, (70 v ! are integer affine linear where defined.

The set of tropicak-cycles inC' is denoted byZ, (C).

Remark and Definitio®.13 (a) Let X be a finite set of rational polyhedra &", f €
Hom(Z",Z) a linear form and € R. Then let

Hypy = {{a: e R"[f(x) < b}, {z € R"|f(z) = b}, {z e R"|f(x) > b}}

Like in the case of fans (cf.  constructidn_2.10) we can formissf :=
{oNnd'lo € X,0' € Hyp}andX N Hyy := {0 € P[P 7 € PU™@) with 7 C o}.
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(b) Again letX be a finite set of rational polyhedraRi*. Let {f; < b;|i = 1,..., N} be

all (integral) inequalities occurring in the descriptioinadl polyhedra inX. Then we can
construct the seX N Hy, », N--- N Hy, p, - Note that for every collection of polyhedra
X this setX N Hy, 5, N--- N Hyy by is @ (usual) rational polyhedral complex (i.e. for
every polyhedrom € X every face (in the usual sense)®is contained inX and the
intersection of every two polyhedra i is a common face of each). Moreover note that
the result is independent of the order of theand if {g; < ¢;|i = 1,..., M} is a dif-
ferent set of inequalities describing the polyhedr&irthenX N Hy, 5, N -~ N Hyfy by
andX NHg, , N---N Hy,, ., have a common refinement, nameélyn H¢, 5, N--- N
Hypy oy NHgyep NN Hgyp e

Construction5.14 (Sums of tropical cycles)Let C' € Z, be a tropical cycle. Like
in the affine case the set of tropickdcycles inC' can be made into an abelian group
by defining the sum of two such-cycles as follows: LetD, and Dy € Z(C) be
the two cycles whose sum we want to construct. By definitiarahare reduced rep-
resentativeq (X1, | X1]),wx, ), {®X'}) and (((X2,|Xz|),wx,), {®X*}) of C and re-
duced representativg$(Y, |Y]),wy ), {®Y}) of D; and (((Z,|Z]),wz),{®Z}) of D,
suchthaty, |Y|)< (X4, |X1|) and the tropical structures dhand X, agree andZ, |Z|)<
(X2,|X2|) and the tropical structures dfi and X, agree. As ~” is an equivalence re-
lation there is a common refineme(ft X, | X |, {¢-}), wx), {®X}) of X; and X, which
we may assume to be reduced. Applying construéfion 5.20d40d X we obtain the trop-
ical polyhedral complex((Y N X, |Y N X|),wynx), {®Y"*}) which is a refinement of
Y, has a tropical structure that is compatible with the trapstructure onX and fulfils
(Y NX,|YNX|)<D(X,|X]). If we further apply constructidn 5.1L0 t6 and X we get a
refinement(((Z N X, |Z N X|),wznx), {®Z"*}) of Z with analogous properties. Now
fix some polyhedrom € X and letry,...,7. € YN X andr,.11,...,7s € ZN X be
all polyhedra ofY N X andZ N X respectively that are containeddn Note that prop-
erty (a) of definitiod 5.12 implies that for all= 1,...,r the imagep, (7;) is a rational
polyhedron inR"-. Like in remark and definitioR 513 Idtf; < b;]i = 1,..., N} be
the set of all integral inequalities occurring in the destioin of all polyhedrap, (7;),i =
1,...,sand letRy v :={p,(m)|i =1,..., 7} N Hp p, N--- N Hypypy aNdRY - =
{900(7—1')“ =r+l1,..., S}mel-,bl n-- 'meN-,bN' Thenp{;ﬁx = {(p;l(T”T € RgfﬂX}
andPg.y = {p; ' (1)|T € R}y } are a kind of local refinement 6f N X andZ N X
respectively, but taking the union over all maximal polyteed € X (™ does in gen-
eral not lead to global refinements as there may be overlapgebe polyhedra com-
ing from differento. We resolve this as follows: Far € X, 7 ¢ [J') X let

Py = {o € Py, x|7istheinclusion-minimal polyhedron of containinge} and
Py = Uyexmio € PEox|#7 € X"~V . p C 7}. Analogously forPg . and Py,.
Then letY := Py, U (U76X@>:i<n{ﬂo_ex<n)#gaTg|7-gEPQT}) and Z =

Pz U (UTGX@):K,L{HUGX(M:TCU To|Ts € ngT}). Moreover for everyr € Y U Z
choose some € X with 7 C o and lety), := ¢,|,. Note that by construction
(Y,|Y N X|) and(Z, |Z N X|) with structure maps,, 7 € X orr € Z respectively and
weight functionsuy andw induced byY” N X andZ N X are refinements af N X and
Z N X (we need here thaky v and R%. y were usual polyhedral complexeshii-).
Thus we can endow them with the tropical structures inheéfitemY N X andZ N X
respectively (cf. constructidn3.6). AX UY, |[Y N X|U|ZN X|) is a polyhedral complex
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now, we can form
(P, |P]),wp) = (X UY,[Y N X|U|Z N X]),wp),
wherewp (o) = wg(0) + w;z(o) for all o € P® (we setwy(o) := 0 for o ¢ O,
O e {Y, Z}). Recall that the tropical structures BhandZ are inherited front’ N X and
Z N X and are thus compatible with the tropical structuredonThus®X (SF) C |FX|
with weights induced fron® is an open fan (the corresponding complete tropical fan is
just the sum of the fans coming fromandZ). Thus we can seb, := & [gr : SF =
®X(SF) and can hence define the sum + D to be

Dy + Dy = [((PIP).wp). (8} ).

Note that the clasg((P, |P|),wp), {®.})] is independent of the choices we made, i.e. the
sumD; + D5 is well-defined.

Lemma 5.15. LetC € Z,, be a tropical cycle. The séf; (C) together with the operation
“+" from construction[5.14 forms an abelian group.

Proof. The class of the empty compléx= [)] is the neutral element of this operation and
[(Y,]Y]), —wy)] is the inverse element §f(Y, |Y]), wy )] € Zx(C). O

6. CARTIER DIVISORS AND THEIR ASSOCIATEDWEIL DIVISORS

Definition 6.1 (Rational functions and Cartier divisord)et C' be an abstradt-cycle and
let U be an open set ifC|. A (non-zero) rational function ofi is a continuous function
¢ : U — R such that there exists a representa((&, | X |, {mo }oex ), wx ) {Mo}oex)

of C such that for each faee € X the mapp o m ! is locally integer affine linear (where
defined). Theset of all non-zero rational functions @nis denoted bylC.(U) or just
K*(U).

If additionally for each face € X the mappo M ! is locally integer affine linear (where
defined),p is calledregular invertible The set of all regular invertible functions dn is
denoted byO[,(U) or justO*(U).

A representative of a Catrtier divisor 6his a finite set{ (U1, 1), ..., (U, 1)}, where
{U;} is an open covering diC| andy; € K*(U;) are rational functions ofy; that only
differ in regular invertible functions on the overlaps, ither words, for ali # j we have
vilvinu; — @jiluinu; € O*(Us N U;).

We define thesumof two representatives by(U;, ;) } + {(V;.¥;)} = {(U; NV}, i +
1)}, which obviously fulfills again the condition on the overdap

We call two representative$U;, ¢;)}, {(V;,v,)} equivalentf ¢, —1; is regular invertible
(where defined) for all, j, i.e. { (Ui, vi)} —{(V;, %)} = {(Wk, &)} With v, € O*(Wy).
Obviously, “+” induces a group structure on the set of eqeivee classes of representa-
tives with the neutral elemedt|C|, co)}, wherecy is the constant zero function. This
group is denoted bPiv(C) and its elements are call&thrtier divisors ort'.

Example6.2. Let us give an example of a Cartier divisor which is not glbpdefined
by a rational function: As abstract cyolé we take the elliptic curvéX,] from example
(the brackets resemble the fact that, to be precise,keglti@ equivalence class of the
polyhedral complexXXs with respect to refinements). By, as we denote the two vertices
in X5. W.l.o.g. we can assume that the mags, map the pointsy; exactly to0 € R. Of
course, the stars,, , So, cover our whole spad€’| = | Xz|. So we can define the Cartier
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P1 0nSay 2 0N Say 11 — 1 on the overlaps

The Cartier divisorp defined in exampleg.2.

divisorg := [{(Sa,;%1), (Sasy, ¥2)}], Wherey; := max(0, ) o M, andyy := coo M,,
with ¢¢ the constant zero function. Let us check the condition orotlelaps: On one
open half of our curve the two functions coincide, whereashenother open half they
differ by a linear function. So we constructed an Cartieistivwhich can not be globally
defined by one rational function (&g can not be completed to a continuous function on
[}

Remark6.3 (Restrictions to subcyclesNote that, as in the affine case (see renark 3.2),
we can restrict a non-zero rational functipne K (U) to an arbitrary subcycl® C C,

i.e. olunp| € KH(U N |DJ). Itis also true that a regular invertible functigne O, (U)
restricted toD is again regular invertible, i.ep|ynp| € Op(U N |D|). Hence we can
also restrict a Cartier divisdf(U;, ¢;)}] € Div(C) to D by setting[{(U;, i)} |p =
{(Us 0 |D],ilu,nip))}] € Div(D). Let us also stress again that we still require our
objects to be defined everywhere (on a given open subset his causes problems like
for example in remark 816.

Constructiorb.4 (Intersection products).et C be an abstradt-cycle andp = [{(U;, ¢;)}]

€ Div(C) a Cartier divisor orC. By definition[6.1 and lemma®’.ll1, there exists a repre-
sentative( (X, | X, {mo }oex),wx ), {Ms}sex) Of C such that for ali ando € X the
map; o m, ! is locally integer affine linear (where defined). We can alssuane that

X = X*, as our functions are defined ¢fi| = | X*| at the most. We would like to define
the intersection produgi - C to be

[(((Y, |Y|’{mU}UEY)7wX,Lp), {Ms|sy : SY — |F;/|}Uey)],

where i X
—1 -1
Vi XD = Uo sy = U )" B = FY
i=0 oeY o'ey i=0

oCo’
andwy , is an appropriate weight function. So it remains to consteue, (1) for 7 €
X =D,
First, we do this pointwise, i.e. we construet ,,(p) for p € (7). Given ap € (7)™,
we pick ani with p € U,. LetV be the connected component &f.(U; N S;) con-
taining M, (p). Then the functionp; o M~!|;; can be uniquely extended to a rational
functiong; € ’C*([(FTWFT)])- Where(FT,wFT) is the tropical fan generated by the open
fan (F,wr, ). So, in the affine case, we can compute . (R-M; (7)) (see construction
[3.3 and definitio 314) and define , (p) :== w5 (R - M(7)).
This definition is well-defined, namely if we pick anottjawith p € U; and denote by”
the connected componentdf,. (U; N S;) containing)M-(p), we know by definition of a
Cartier divisor thatp; o M-t |yays — ©; © MY yny- is affine linear, hence; — ;s
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affine linear. By remark 316 we get: ;. (R- M. (1)) = Wi 5 (R - M,(1)).

The same argument shows that our definition does not depetie @hoice of a represen-
tative {(U;, i)} of .

But as(7)™ is connected, the continuous functior ,, : (7)"* — Z must be constant.
Hence, we define x (1) := wx,,(p) for somep € (7). With this weight function

(((Y, Y|, {mo}oey), wX,(p) AMo| gy }UEY)

is a tropical polyhedral complex.

Let us now check if the equivalence class of this complexdgpendent of the choice of
representatives af. Let thereford (X', |X'|, {ms }orex’),wx’),{ Mo }sex’) be are-
finement of((X, | X[, {mo }rex), wx), {Ms}toex) (we can again assumg’ = X'*).
Then, for eachv’ € X', the mapMc, (o) © M;,' embedsF,. into a refinement
of Fe (o) Applying the affine statement here (see remark 3.5), we ckethat for

eachr’ € X'*=1 it holdswx: (') = 0 (if dimCx: x(7') = k) or wx: (7)) =
wx,p(Cxr x (7)) (if dim Cx/ x(7') = k —1).

Definition 6.5 (Intersection products).et C' be an abstradt-cycle andp = [{(U;, vi)}] €
Div(C') a Cartier divisor orC. Let furthermorg((X, | X |, {ms}oex) wx), {Ms}oex)
be a representative 6f such that X | = |C| and for alli ando € X the mapyp; o m, ! is
locally integer affine linear (where defined). Tagssociated Weil divisativ(yp) = ¢ - C
is defined to be

k-1

[<((Y =Jx9 Jo {ma}aey),wx,w),{MU|S;/}U€Y)] € Zi1(C),

=0 ocY

whereSY =, eY( o’)"" andwyx ,, is the weight function constructed in construcfion 6.4.
oCo’

Let D € Z;(C) be an arbitrary subcycle @ of dimensionl. We define thentersection
product ofp with Dtobey - D := ¢|p - D € Z;_1(C).

Example6.6. Let us compute the Weil divisor associated to our Cartieisdivpy on the
elliptic curveC constructed in example.2. In fact, there is nothing to cat@épOne can
see immediately from the picture théitv () is just the vertexy; with multiplicity 1 (the
multiplicity of as is 0 as in order to compute it, one has to use the constantiéungt).
Let us stress that this single point can not be obtained asVdikdivisor of a (global)
rational function, as all such divisors must have “degreélds is defined precisely and
proven in remark8l4 and lemrhaB.3).

Proposition 6.7(Commutativity) Letp, ) € Div(C') be two Cartier divisors oi@'. Then
P-(p-C)=p- (- O).

Proof. Sayy = [{(Ui,¢:)}] andy = [{(V},4;)}]. Using lemmd5.11 we find a repre-
sentative(((X, | X|, {mes}oex),wx), {M,}sex) of C such tha X| = |C| and for all

i,j ando € X the mapsp; o m; ! andy; o m_ ! are locally integer affine linear (where
defined). FoW € X*~2), p € (6) andi, j with p € U; N'V; we get (using notations
from constructlorm4)uX¢¢( ) = Wxpu(DP) = Wi, 5.0 (R My(0)) and similarily
wx,p,p(0) = wg, by (R My(0)). Using the correspondmg statement in the affine case
now (see proposmoES 7 (b)), we deduce that the two weighttions are equal which
proves the claim. O
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7. PUSH-FORWARD OF TROPICAL CYCLES AND PULEBACK OF CARTIER DIVISORS

Definition 7.1 (Morphisms of tropical cycles)Let C' € Z,, andD € Z,, be two tropical
cycles. Amorphismf : C — D of tropical cycles is a continuous mgp: |C| — |D|

with the following property: There exist reduced repreatmes(((X, | X|),wx), {®s})

of C'and(((Y, |Y]),wy), {¥.}) of D such that

(a) for every polyhedron € X there exists a polyhedrenc Y with f(o) C g,

(b) for every pairo, from[(@) the map¥s o f o ;' : |[FX| — |FY| induces a
morphism of fansF;X — FY (cf. definition[4.1), whereX and " are the
tropical fans associated 6" andFY" respectively (cf. definition513).

First of all we want to show that the restriction of a morphigma subcycle is again a
morphism:

Lemma 7.2. LetC € Z, andD € Z,, be two cyclesf : C — D a morphism and
E € Z;(C) a subcycle of”. Then the magf| g : |E| — |D| induces a morphism of
tropical cyclesf|r : E — D.

Proof. By definition of morphism there exist reduced represergat{¢X, | X1|),wx,)

of C and ((Y,|Y|),wy) of D such that properties (a) and (b) in definitlon]7.1 are ful-
filled. By definition of subcycle there exist reduced repreatves((Z:,|Z1]|),wz,) of

E and((X2, |X2]),wx,) of C such that properties (a) and (b) in definition3.12 are ful-
filled, i.e. such thatZ,,|7:1|)< (X2, | X2|) and the tropical structures dh andX, agree.
As “~" is an equivalence relation there exists a common refinerfent| X |), wx) of
((X1,]X1]),wx,) and((Xa2,|X2]|), wx,) which we may assume to be reduced. Applying
construction[530 toZ; and X we obtain a refinement((Z,|7]),wz) :=
(Z1nX,|Z1NX]),wz,nx) of ((Z1,|Z1]),wz,) such that(Z, |Z]) < (X, |X|) and the
tropical structures o and X agree. Thus properties (a) and (b) of definifion 7.1 are
fulfilled by Z andY and the restricted mag| g : |E| — |D| gives us a morphism
fle: E— D. O

If we are given a morphism and a tropical cycle the followimgstruction shows how to
build the push-forward cycle of the given one along our maph

Construction7.3 (Push-forward of tropical cyclesjet C € Z, andD € Z,, be two
cycles and letf : ¢ — D be a morphism. Le{((X,|X|,{¢s}),wx),{®,}) and
(Y], {¢s}),wy),{¥-}) be representatives @f and D fulfilling properties (a) and
(b) of definition[7Z.1. Consider the collection of polyhedra

Z = {f(o)|o € X contained in a maximal polyhedron &f on which f is injective}.

In generalZ is not a polyhedral complex. We resolve this by subdividimgpolyhedra in
Z and refiningX accordingly:

Fix some polyhedro& € Y™ and letry, ..., 7, € Z be all polyhedra that are contained
in o. Property (b) of definitiof 711 implies thdt;(r;)|i = 1,...,r} is a set of rational
polyhedra inR"=. Like in remark and definitioR 513 letg; (z) < b;li = 1,...,N},

g; € Hom(Z"% Z), b; € R be all inequalities occurring in the description of all podygra
in{¢Yz(m)li =1,...,7} and let

= {d)g(ﬂ-)ﬁ:1,...,T}ﬂHG1’b1ﬂ"'ﬂHGN_’bN,
P = {¢g1(7)|T€Rgi}.

=
&
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Like in constructiof 5.114P; can be seen as a kind of local refinementZof But here
again taking the union over all maximal polyhedrac Y (™ does in general not lead
to a global refinement as there may be overlaps between pblytewming from dif-
ferents. We fix this as follows (cf.[534): FoF € V(™ and7 e J/,' Y@ let
Pg; .= {0 € P;|7Tistheinclusion minimal polyhedron &f containinge} and
Pzm = U&ey("w{@ S Pg|ﬂ7~' e ym-1bH . o, C 7}, Then 7 =
Pz mU (U;ey<i>:i<m{ﬂaey<m):;g T5|T5 € ng;}) is the set of polyhedra (without any
overlaps now) that shall induce our wanted refinement Jf Let T :=
{0 € X™)|fisinjectiveonc}, Qy = {r € X|flo € T : 7 C o} andQ, :=
(User{F1) 1 ()Ir € Z,7 € f(0)}). Then define¥ == Qo U Q1.

Let 7 € Q1 and chooser € T with 7 C o. Property (b) of definitioi_7]1 implies that
¥z o f o 5 tis integer affine linear where defined. Hengg(7) is a rational polyhedron
in R™. Denote byH, - the smallest affine subspacel®f- containingy, (7). We can
considerp, := ¢,|, to be amap, : 7 — H,. = R"". Note that by construction
(X,|X][,{e-}) is a polyhedral complex. We endow it with the weight functiog and
tropical structurg ®-X } induced byX . Now we are able to define

f.X := {f(0)|oc € X contained in a maximal polyhedron &f on which is injective}

and|f. X| := U, ¢, x 7. For every polyhedrom € f.X leto, € Y be the inclusion-
minimal polyhedron containing. Then define) := ¢,_|, : 7 — H,_, = R"", where
H,_ . C R"- isthe smallest affine subspace containing the rationahgalsory,_(7) €

Z. Note that this makeéf. X, |f. X|, {¢,}) into a polyhedral complex. Moreover note
that property (b) of definitioh 711 still holds foX andY. Hence we can assign weights
and tropical fans tgf, X as follows: Leto € f,.X, letoc € Y be the inclusion-minimal
polyhedron containing itand let, ..., 7. € X be all polyhedra withf(7;) = o that are
contained in a maximal ponhedronﬁf on whichf is injective. Then le5(S5) = FY
and tI)ff(Sn) = FT’? respectively be the corresponding open fans ﬁgd E’? be the
associated tropical fans. Property (b) of definifior 7.1Iier£pthatf,ﬁj;E C |f5Y| is again
a tropical fan (note that we do not need to refﬁﬁz to construct this push-forward). Thus
we can define

(B wppx ) = <U f*ﬁfvzw.f*ﬁ5> and FJX = FlXn05(8,)
i=1 i=1 ‘

(here again we assume th@l*ﬁg(r) =0if 7 ¢ f*ﬁf). Moreover we define

Oy = Vz|s, : Sy — |F§*X|.

Then the ma®,, o € f. X is 1:1 on polyhedra and we can endow the maximal polyhedra
of f.X with weightswy, x (-) coming fromF/+¥ in this way. These weights are obviously
well-defined by property (c) of the tropical polyhedral cdexgY” (cf. definition[5.4) and

the map,, for differente € f. X are obviously compatible. Hence we can define

[+C = (((f*X,|f*X|,{19‘r})7wf*X)7{@r}) GZH(D)-

Note that the clasg((f. X, | f+ X |, {V:}),wy. x),{©-})] is independent of the choices we
made. Thus construction 7.3 immediately leads to the faligw
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Corollary 7.4 (Push-forward of tropical cyclesyetC € Z, andD € Z,, be two cycles
andletf : C' — D be a morphism. Then for all there is a well-defined arid-linear map

Zx(C) — Zy(D) : Ev— f.E := (f|g)E.
Proof. The linearity can be proven similar to the affine case (cfppgition4.6). O

Our next aim is to define the pull-back of Cartier divisorst Bist we need the following

Lemma 7.5. LetC € Z,, and D € Z,, be two tropical cyclesandlet : C — D be a
morphism. By definition there exist reduced representafifeX, | X |, {¢vs }), wx), {®s})
of C and (((Y, Y], {v+}),wy), {¥.}) of D such that properties (a) and (b) in definition
[73 are fulfilled. Let(((Y1,|Y1|,{¢.. }),wy,),{¥..}) be a refinement of. Then there
is a refinement((X1, | X1|, {¢). }), wx,),{®,}) of X such that properties (a) and (b) of
definition 7.1 are fulfilled forX; andY;.

Proof. Let X; := {o N f~(7)|c € X,7 € Y1}. By property (b) of definitio_7]1 all
0o (o N f~1(7)) are rational polyhedra iit">. For everys’ € X; chooser € X such
thato’ = o N f~1(7) for somer € Y;. Then we can defing’, := ¢,|o : 0/ — Hy o =
R™, whereH, , is the smallest affine subspace®f- containingy,(c’). Moreover
let|X;| := | X|. Note that with these settindgs1, | X1|, {¢.}) is a polyhedral complex.
We can endow it with the weight functiany, and the tropical structurgd’, } induced by
X. Together withY; the tropical polyhedral comple( X1, | X1], {¢).}),wx,), {®..})
fulfills the requirements (a) and (b) of definitibn17.1. O

Proposition 7.6 (Pull-back of Cartier divisors)LetC' € Z, andD € Z,, be tropical
cycles and leff : C' — D be a morphism. Then there is a well-defined &nlihear map

Div(D) — Div(C) : [{(Us, hi)}] +— f*{(Us, ha)}] = [{(f 7 (U), ha o F)}]-

Proof. We have to show that o f € K& (f~1(U)) for h € K} (U) and thath o f €
OL(f~H(U)) for h € O3 (U). Then the rest is obvious.

So leth € K3, (U). Then there exists a representatiV&y, |Y|, {¢»}),wy ), {¥,}) of D
such that for every polyhedrenc Y the maphov; ! is locally integer affine linear. More-
over, sincef is a morphism there exist representativesy, | X |, {¢o }), wx ), {®-}) of C
and (Y7, |Y'],{¢/. }),wy), {¥”.,}) of D such that properties (a) and (b) of definition
[7.1 are fulfilled, i.e.f(c) C 5 € Y’ forall o € X and the map¥5 o f o ®_ ! induce mor-
phisms of fans. By lemn{a’4.5 we may assume that Y’. Now letoc € X and choose
somes € Y such thatf(c) C . Property (b) of definitiof 711 implies thait; o f o o *
and¥; o f o & ! are integer affine linear. Thuso f o ! = (hoys')o (s o fop,t)
is locally integer affine linear antlo f € K& (f~1(U)). If additionally h o U3 is lo-
cally integer affine linear then soso f o @' = (ho \Ifgl) o (¥zo0 fod,1). Hence
ho f e OL(f~1(U))forh € O3(U). O

Our last step in this chapter is to state the analogon of thiegion formula froni-48:

Proposition 7.7 (Projection formula) LetC' € Z,, and D € Z,, be two cycles and :
C' — D be amorphism. Lel' € Z;,(C') be a subcycle of andd € Div(D) be a Cartier
divisor. Then the following holds:

d-(f.0) = f.(f*d-C) € Zy1(D).
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Proof. The claim follows from the constructions ¢fC and f*d, from definition[6.5 and
propositiof4.B. O

8. RATIONAL EQUIVALENCE

We will now make some first steps in establishing a concepdtidmal equivalence.

We fix an abstract tropical cycld as ambient space and an arbitrary subgréup-
Div(A) of the group of Cartier divisors od. We define thePicard groupas the quo-
tient groupPic(A) := Div(A)/R. Let R, C Zi(A) denote the group generated by
{p-Clp € R,C € Zr11(A)}, i.e. by allk-dimensional cycles obtained by intersecting
a Cartier divisor fromR with an arbitrary(k + 1)-dimensional cycle. We define tiieth
Chow groupto be A (A) := Z;(A)/Ry.

Corollary 8.1 (Intersection products modulo rational equivalence)e map
- 1 Pic(A) x A(A) —  Ap_1(4),
(g, [D]) = [p-D]
is well-defined and bilinear.

Proof. By definition, foreacly € R, D € Z;(A) we havep- D € Ry_;. Let furthermore
v - C be an element iR, (wherep € R,C € Z;,(A)). Then it follows from proposition
[3.7 b) that for arbitrary) € Div(A) we getyy - (¢ - C) = ¢ - (¢ - C) € Ri—1. The claim
follows from the bilinearity of the intersection product. O

So far, our intersection theory takes place (at least lgcall R™, which can be consid-
ered as thex-dimensional tropical algebraic torus. Especially, if wengrated rational
equivalence by all rational functions o, the resulting Chow groups and intersection
products would be useless in enumerative geometry: As icldssical case, the divisor
of a rational function might have components in the “bougtiaf some compactification
of the “affine” varietyR"™. Therefore, in the following we restrict the functions tigah-
erate rational equivalence to those “whose divisor in amigabcompactification has no
components in the boundary”.

Definition 8.2 (Rational equivalence generated by bounded functiobs) A be an ab-
stract tropical cycle an®(A4) := {[(|A], ¢)]|¢ bounded be the group of all Cartier divi-
sors globally given by a bounded rational function. We deffiresPicard grou@ic(A) :=
Div(A)/R(A) and theChow groupsA;(A) as above. We call two Cartier divisors (two
k-dimensional subcycles resprationally equivalentif their classes irPic(A) (Ax(A)
resp.) are the same.

Let us prove that we do not divide out too much for applicagiomenumerative geometry.

Lemma 8.3. Let C' be an one-dimensional abstract tropical cyclec R(C') a bounded
rational function onC and (((X, | X|, {ms }oecx),wx), {Ms}-cx) a representative of’
such thaf X| = |C| and for allc € X the mapyp o m ! =: ¢, is integer affine linear.

Then
Y welfph) =0,

{ptex©
i.e. ¢ - C'is of degree zero.
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Proof. By definition, for all{p} € X () we have

wol{p}) = Y w(0)o(te)p}).
cex®
pEo
Note thatifc € X (1) contains two different vertices, s@yo andd, o, we havei, (9,0} =
—Uq /(5,01 If, Otherwise o contains less than two vertices,, (o) is a non-compact poly-
hedron and therefore can only be bounded if it is constant en Together we get

doowedrh) = > D w(0)po(tap)
{p}ex© {PreX©® gex®
pEoc
Z w(0)Po(Uo/{o0})
cex®
A do €0
+ Z w(0)po (Uo/(0,0)) + w(0) o (Us/{ar0})

ocex®
A1 010,020 Eo

= > w0
ocex®
0o €0
+ Z w(U)(QPU(ua/{ala}) - (pa(ud/{ala}))

cex™® _
31810.000 €a =0

= 0.

O

Remark8.4. As a consequence, for any cydec Z,(A) there is a well-defined morphism
deg: Ag(C) — Z:[MPL+ ...+ NP]— A +...+ A\

ForD € Ay(C) the number de@) is called thedegreeof D.
Moreover, by corollarf{ 811 there is a well-defined map of topducts

PiC(A)d — Z: ([¢1], - [Spdim(C)]) s ded[pr ... Pdim(C) * C1),

where A is our ambient cycle and is the dimension of”. Of course, this map is of
particular interest when dealing with enumerative questio

Of course, our chosen rational equivalerdtel) := {[(]A4], ¢)]|¢ bounded should also
be compatible with pull-back and push-forward. Howeverthe push-forward case we
face problems due to our definition of rational functions.t us first state the positive
result in the pull-back case.

Lemma 8.5 (Pull-back of rational equivalence).et C, D be tropical cycles and lef :
C' — D be a morphism between them. Then the pull-back BiapD) — Div(C), ¢ —
f*¢induces a well-defined map on the quotidpis(D) — Pic(C), [¢] — [f*¢].

Proof. We only have to show that for each eleméi?|, 1) € R(D) the pull-back Cartier
divisor f*(| D], ) lies in R(C'). But this follows from the trivial fact that the composition
1 o f of a bounded functiogy and an arbitrary mayf is again bounded. O
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Remarl8.6 (Push-forward of rational equivalenc@&he corresponding statement for push-
forwards is false! Let us again consider the elliptic cué/érom Exampld 6.P. On this
curve, the Weil divisor associated to the bounded rationattion « illustrated in the
picture below equaldiv(y) = ag + as — ag — ay.

le(’Q/J) =1+ oy —a3 — oy
+1 -1

°

aq (e71 - =

+1 -1

° °
(D) Qs

Let us now consider the cyclB obtained by identifyingyv; with a3 and the canonical
projection mapf : C' — D.

[e%% (e %]
C f D
U G
Qo a3

The push-forward ofliv(y)) under this morphism ig, div(v¥) = as — a4. But this Weil
divisor can obviously not be obtained by a rational functon?D. This problem is due to
our restrictive definition of rational functions (see rek{ar2). We are currently working
on a refined version of the related definitions.

9. INTERSECTION OF CYCLES INR"

So far we are only able to intersect Cartier divisors withlegcOur aim in this section is
now to define the intersection of two cycles with ambient eygt (with trivial structure
maps). But first we need some preparations:

Definition 9.1. Let (((X,|X],{¢s}),wx), {®-}) and (Y, Y], {¥+}),wy),{¥,}) be
tropical polyhedral complexes. We denote by

(X [XT{po ), wx ) {®s}) x (Y, V], {tr}), wy), {¥-})

their cartesian product
(((X X Ya |X| X |Y|a {ﬁUXT})aWXXY)v {GG’XT})a

where
XxY = {ox7loeX,TeY},
Doxr = Yo Xy :0xT— R xXR""
wxxy(ox7) = wx(o)- wy(r),
Opxr = @UX\IJT:S§XSX—>|FUX|><|FTY|.

Let FX and FY be the entire fans associated wity* and F¥ from above. Obvi-
ously, the productX x FY = {a x fla € FX,3 € FY} with weight function



32 LARS ALLERMANN AND JOHANNES RAU

Wix, py (@ X ) = wpx (@) - wpy (B) is again a tropical fan and thus its intersection
with |FX| x |EY| yields an open fan (cf. definitidn 3.3). Hence the cartesiaupct
(X x Y, | X| x |Y],{¥x+}),wxxv), {O0sx+}) iS @again a tropical polyhedral complex.

If C = [(X,wx)] andD = [(Y,wy)] are tropical cycles we define
CxD:=[X,wx)x (Y,wy)]

for (X,wx) x (Y,wy) as defined above. Note th@tx D does not depend on the choice
of the representative¥ andY'.

Remarkd.2 We can express the diagonali¥ x R"
(A, D] = [({(z, 2)|z € R}, 1)] € Zn(R" X R™)
as a product of Cartier divisors, namely
(A D] =91t - R* xR,

wherey; = [{(R™, max{0,z; — y;})}] € Div(R™ x R"), i = 1,...,n. We will use this
ability to define the intersection product of any two cycle®i".
Definition 9.3. Let 7 : R* x R® — R" : (z,y) — «. Then we define the intersection
product of cycles ilR™ by

Zn—k(R") X Zp(R")  —  Zp_p1(R")

(C,D) — C-D:=m.(A-(CxD)),

wherer,. denotes the push-forward as definedin 7.4AnAC' x D) := 1)y - - -1, - (C'x D)
with ¢, ..., as defined in remafkg.2.

Having defined this intersection product of arbitrary cgdleR™ we will prove now some
basic properties. But as a start we need the following lemmas

Lemma 9.4. LetC € Z,(R") be a cycle with representati&, wy) and letyq, ..., ¥,
be the Cartier divisors defined in remdrk®.2. THefy, wx,) with

X; ={R"xo)N{(z,y) eR" x R"|z; =y, fori=j,...,n}lo € X},

wx, (R" x o) N{(z,y) € R" x R"|z; = y; fori=j,...,n}) :=wx (o)
is a representative af; - - - ¢, - R" x C.

Proof. We use induction op. Forj = n + 1 there is nothing to show. Now let the above
representative be correct for sorne- 1. We have to show thaX; is a tropical polyhedral
complex and that it represents - - - ¢, - R™ x C: Note that
dim (R x o) N {(z,y) € R”" x R"|a; = y; fori = j4,...,n}) )
<dim ((R™ x o) N {(z,y) e R" x R*|a; = y; fori=5+1,...,n})
forall o € X. HenceX is a tropical polyhedral complex. Moreover note that

Xj+1 = {Uﬂ {,Tj —Y; = O},O’ﬂ {,Tj —y; < O},O’ﬂ {.I'j —yj > 0}|U S Xj+1}
with weights induced by, is a refinement oX;;, such thainax{0, z; —y;} is linear

on every face oﬁN(jJrl. By @&) there are exactly two types of faces of codimension one in
XjJrl:

(i) R"xo)N{x;—y, =0fori=4j,...,n}witho € X, codim(c) = 0,
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(i) (R"xo)n{x;—y;=0fori=35+1,...,n; z; —y; <0}or
R*xo)N{z; —y;=0fori=35+1,...,n; z; —y; > 0}witho € X,
codim(o) =1,

where the faces of the second type are not containddiny) € R™ x R"|z; = y;}.
Hencemax{0,z; — y;} is linear on a neighborhood of every face of type (ii) and thus
these faces get weight zeronimx{0, z; — y,} - )N(j+1. The faces of type (i) are weighted
bywx,,,(R" xo)N{z;—y; = 0fori=j+1,...,n}) inmax{0,z; —y;} ~)~(j+1 since
x1— Y1, .., 2y — Y are part of a lattice basis ¢Z" x Z")¥. Thusmax{0,z; — y;} -
X;41 = X; andX; is a representative af; - - - 1, - R" x C. O

Corollary 9.5. LetC € Z;(R™) be a cycle. Then we have the equation:
R"-C =C.

Proof. Let (X,wx) be a representative @f, let7 : R” x R” — R" : (z,y) — « and
lety, ..., 1, be the Cartier divisors defined in rem&rk]9.2. By lenima 9.4 m@kthat
X1 ={{(z,z)|x € o}o € X} withwx, ({(z,z)|zr € 0}) =wx (o) is a representative of
Py, - R™ x C. Hence

R".C = 77*(7/)1"/)71 -R™ x C) = [W*(lele)] = [(X,(.UX)] =C.
O

Lemma 9.6. LetC' € Z,(R") and D € Z;(R™) be abstract cyclesp € Div(R") a
Cartier divisor andr : R™ x R™ — R™ :(x,y) — x. Then:

(p-C)xD=7"p-(CxD,).

Proof. We prove the statement for affine cycl@sD and an affine Cartier divisas. The
general case then follows by applying the statement locally

Choose arbitrary representativEésof D andh of ¢ and choose a representati¥eof C
such thath is linear on every face oK. This implies thatt*h is linear on every face of
X x Y, too. InX x Y we have two types of faces of codimension one:

() o x Twitho € X, 7 € Y,codim(c) = 1, codim(7) = 0,
(i) o xTwitho € X, 7 €Y, codim(o) = 0, codim(r) = 1.

For the second type the adjacent facets are exacthyatiwith 7 > 7. We getwy, (o x7) =
0inh-X xY asn*his linear ono x |Y'|. For the first type the adjacent facets are exactly
all o x 7 with ¢ > ¢ and the weights can be calculated exactly likefforX'. This finishes
the proof. O

Let C and D be cycles inR™. Assume that” can be expressed as a product of Cartier
divisors, i.e. there areq, ..., ¢, € Div(R"™) such thatC' = ¢, - -- 1 - R™. The obvious
questions are now how - D relates tap, - - - 1 - D and whethetp,. - - - ¢, - D depends

on the choice of the Cartier divisogs. To answer this question we first prove a somewhat
stronger statement:

Lemma 9.7. LetC' € Z,(R") andD € Z;(R™) be cycles ang» € Div(R™) a Cartier
divisor. Then we have the equality:

(p-C)-D=¢-(C-D).
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Proof. Letw : R® x R® — R" : (z,y) — « be like above. It holds:
(0-C)-D = m(D-(p-C)x D)
8.8 (- AN - C x D)
A w7 (A -C x D)
= ¢-(C-D).
O

Corollary 9.8. Let C € Zi(R™) be a cycle such that there are Cartier divisors
©1,--,0r € Div(R™) with @, --- 1 - R"” = C and letD € Z;(R"™) be any cycle.
Then

Proof. Applying lemmd9.F7 and lemnia 9.4 we obtain
O.D:((pr...<p1.Rn).D:(pr...wl.(RH.D):(pT‘...(pl.D_
0

Remark.9. Note that corollar{f 918 in particular implies that our defimm of the intersec-
tion product oriR™ (cf.[@.3) is independent of the choice of the Cartier divistescribing
the diagonalA.

Theorem 9.10.LetC, C’ € Z,(R"), D € Z;(R™) andE € Z,,(R™) be cycles. Then the
following equations hold:

@ C-D=D-C,
(b) (C+C")Y-D=C-D+C"-D,
(¢ (C-D)-E=C-(D-E).
Proof. (a): Lety,...,v¥, € Div(R" x R") be like defined in remafk9.2. Note that for

everyi € {1,...,n} the mapsmax{0,z; — y;} andmax{0,y; — z;} only differ by a
globally linear map and hence define the same Cartier divigars we get

Tu(1 - thn - O X D) = ma (Y1 -+ ¢ - D x C).
(b): Follows immediately by bilinearity of the interseatiproduct
Div(R" x R") x Z,(R" x R") — Z,_1(R" x R"),

linearity of the push-forward and the fact that + C’) x D = C x D+ C' x D.

(c): We will show thatA - C' x (m.(A-D x E)) = A - (m.(A-C x D) x E) :
Let7!2: (R")? — (R™)?: (2,9,2) — (z,y), 72 : (R?)3 — (R?)? : (2,9, 2) — (x,2)
and7?3 : (R")? — (R™)? : (x,y,2) — (y, z). An easy calculation shows that

A-Cx (m(AN-DxE))=A-1%Cx (A-DxE)) 1)
and

A (m(N-CxD)xE)=A-73((A-C x D) x E). 2
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Now let, ..., %, be the Cartier divisors defined in remark]9.2. We label themei€®
divisors with pairs of letterg;¥ to point out the coordinates they are acting on. We obtain

AN -Cx (e (A - D X E))
YA 72(0x (A D x E))
1t w2 (C X (77 - D X E)

L 22 g7 o (203 O x (1 0 D x )

L ()l () - () T () Y - O x D x E)
T2 Y () (1) - (%) s C x D x )
Ll (U () s (WY vE - C x D) x )

I

P gt w05 - O x D) x B)
A -7B(A-C x D) x E)
A (m(AN-C x D) x E).
This proves (d). O

1=

It remains to show that our intersection product is well4tedi modulo rational equiva-
lence. If this is the case the intersection product induaedloR™) clearly inherits the
properties of the intersection product #n(R™) we have proven in this section.

Proposition 9.11. The intersection produck,,_;(R"™) x Z,_;(R") — Z,_r_i(R")
induces a well-defined and bilinear map

An—k(R") X Ap 1 (R") — Ap—p1(R") = ([C], [D]) — [C] - [D] := [C'- DJ.

Proof. Leth - C € R, (cf. sectior8) and € Z, ;(R"). Using lemma&3]7 we can
concludethath - C)- D =h-(C-D) € Ry_j—i. O

Our last step in this section is to prove a Bézout-stylertedor a special class of tropical
cycles inR"™ calledP™-generic cyclesBut first we need some further definitions:

Definition 9.12. Let X be a tropical polyhedral complex & and letv € R™. We denote
by X (v) the translation

X):={oc+v|lce X}
of X alongu. If [X] = C € Z;(R™) thenC(v) := [X(v)]. Note that the clas€'(v) is
independent of the representati¥e

Definition 9.13. LetC' € Z,(R™) be a tropical cycle and It} be the tropical fan defined
in examplé_3.B. Then we define tbegree of” to be the number

deg(C) = deg(c ’ [L?odimX])a

where the second majg : Zp(R") - Z : MMPi+ ... + Ao P. — A1 + ...+ A is the
usual degree map. Then the még : Z,(R"™) — Z is obviously linear by definition.
Moreover, we define the degree [6f] € A (R") to bedeg([C]) := deg(C'). Note that
deg([C]) is well-defined by remark8.4.
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Lemma9.14. LetC € Z;(R™) andD € Z,,_;(R") be two tropical cycles of complemen-
tary dimensions. Then

deg(C - D) = deg(C(v1) - D(v2))
for all vectorsvy, v2 € R™. In particular deg(C) = deg(C(v)) for all v € R™.

Proof. Let 7 : R® x R®" — R" : (x,y) — « be the projection map as above and for
u=(ug,...,u,) € R" let
A(u) - (C x D) :=1(ur) - n(uy) - (C x D)

with 9; (u;) := [{(R", max{0, z;—y;+w; })}] € Div(R"xR™) be the intersection with the
translated diagonal (cf. definitidn .3). Note that theamdil functionmax{0, x; — v;} —
max{0,x; — y; + u; } is bounded and that henpg] = [¢;(u;)] € Pic(R™ x R™) for all 4.
It follows that

[A-(Cx D) =[Au)-(Cx D)] € Ay(R" x R")
and thus we get

deg(C-D) = deg

[l

I
o
> @
o0 0%
3
*
>
Q
—~
<
S
S~—
X
S
S
N
S~—
S~—
S~—
S~—

O

Definition 9.15 (P*-generic cycles) Let C € Z,(R"™) be a tropical cycle.C' is called
P"-genericif for one (and thus for every) representati¥eof C' holds: For every face
o € X there exists a polytopE, C R” of some dimension € {0,...,k} and a cone
o€ (Ly)*=m suchthatr C P, + 5.

Theorem 9.16(Bézout’s theorem)LetC' € Z,(R™) andD € Z,,_;(R™) be two tropical
cycles of complementary dimensions. Moreover, assume_tlatd D are P"*-generic.
Then:

deg(C - D) = deg(C) - deg(D).

Proof. Let (X, wx) be arepresentative 6f and(Y, wy ) be a representative @. Moving

X along a (generic) direction vectar= (ay,...,ay,) € R’;>O X RZgO’“ we can reach that
| X (a)| and|Y'| intersect in points in the interior of maximal faces onlymm@y | X (a)| N
Y[ ={Pjli=1,...,r;5 =1,...,s} with P;; = 0; N o7 for facets (we use the notation

introduced in example3.9 for the conesidf here)
e 0; € X(a)® with o; C o1, ky +ui € L (u;) and

° U} € Y("=k) with 0.;' Cofkt1,...ny TV € Lz_k(vj).

.....

Hence we can conclude thaf(a) - Y = 377, >>%_, wx(0i)wy (0})P;; and thus by
lemmd9.1h

deg(X -Y) = deg(X(a) - Y) = > Y wx(oi)wy (o))

i=1 j=1
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’ A
71 72

The intersection o (a) andY as described in 9.16.

Moreover we can deduce th&X (a)| N [L?_, (v1)| = {Pi1,...,Pi}. HenceX(a) -
L' (v1) =) :_, wx(o:;) P and again by lemn{a9.114

deg(X) = deg(X(a) - Ly, _j.(v1)) = wa(ai).

Analogously we obtain

deg(Y) = deg(Y - L} (u1)) = Zwy(q;).
j=1

Thus the claim follows. O
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