
ABSOLUTE AND RELATIVE GROMOV-WITTEN INVARIANTSOF VERY AMPLE HYPERSURFACESANDREAS GATHMANNAbstra
t. For any smooth 
omplex proje
tive variety X and smooth veryample hypersurfa
e Y � X, we develop the te
hnique of genus zero relativeGromov-Witten invariants of Y in X in algebro-geometri
 terms. We prove anequality of 
y
les in the Chow groups of the moduli spa
es of relative stablemaps that relates these relative invariants to the Gromov-Witten invariantsof X and Y . Given the Gromov-Witten invariants of X, we show that theserelations are suÆ
ient to 
ompute all relative invariants, as well as all genuszero Gromov-Witten invariants of Y whose homology and 
ohomology 
lassesare indu
ed by X.Mu
h work has been done re
ently on Gromov-Witten invariants related to hy-persurfa
es. There are essentially two di�erent problems that have been studied.The �rst one is the question: how 
an one 
ompute the Gromov-Witten invariantsof a hypersurfa
e from those of the ambient variety [Be℄,[G℄,[K℄,[LLY℄? The se
ondproblem, mainly studied from the point of view of symple
ti
 geometry, is the the-ory of relative Gromov-Witten invariants of a hypersurfa
e [IP1℄,[IP2℄,[LR℄,[R℄,[V℄.The goal of this paper is to show that these two problems that have been studied
ompletely independently so far are in fa
t very 
losely related.Let X be a smooth 
omplex proje
tive variety and Y � X a smooth very amplehypersurfa
e. We start by giving a very short des
ription of our method to 
omputethe genus zero Gromov-Witten invariants of Y in terms of those of X , skipping allte
hni
al details.Fix n � 1 and � 2 H2(X). For m � 0, we let �M(m) (the oÆ
ial notationwill be �M(m;0;:::;0)(X; �)) be a suitable 
ompa
ti�
ation of the moduli spa
e ofall irredu
ible stable maps (P1; x1; : : : ; xn; f) to X su
h that f has multipli
ity atleast m to Y at the point x1. Obviously, �M(0) should be just the ordinary modulispa
e of stable maps to X . On the other hand, �M(Y ��+1) should 
orrespond to themoduli spa
e of stable maps to Y , as all irredu
ible 
urves in X having multipli
ityY � �+1 to Y must a
tually lie inside Y . Moreover, �M(m+1) is a subspa
e of �M(m)of (expe
ted) 
odimension one.The strategy is now obvious: if we 
an des
ribe the (virtual) divisor �M(m+1) in�M(m) interse
tion-theoreti
ally in terms of known 
lasses (and our main theorem2.6 does pre
isely that), then we 
an 
ompute interse
tion produ
ts on �M(m+1) ifwe 
an 
ompute them on �M(m). Iterating this pro
edure for m from 0 to Y ��, thismeans that we 
an 
ompute the Gromov-Witten invariants of Y if we 
an 
omputethe Gromov-Witten invariants of X . In fa
t, we will show in a forth
oming paperthat this method reproves and generalizes the well-known \mirror symmetry" typeformulas for Gromov-Witten invariants of 
ertain hypersurfa
es [Be℄,[G℄,[LLY℄.1991 Mathemati
s Subje
t Classi�
ation. 14H10,14N10,14J70.Funded by the DFG s
holarship Ga 636/1{1.1



2 ANDREAS GATHMANNLet us make the step from multipli
ity m to m + 1 a bit more pre
ise. It iseasily seen that there is a se
tion of a line bundle L(m) on �M(m) whose zero lo
usdes
ribes exa
tly the 
ondition that f vanishes to order at least m+ 1 along Y atx1. Hen
e one would na��vely expe
t that �M(m+1) is just the �rst Chern 
lass ofL(m), whi
h turns out to be m + ev�Y (where  is the 
otangent line 
lass and evthe evaluation map at the �rst marked point). However, this intuition breaks downfor those stable maps where x1 lies on a 
omponent that is 
ompletely mapped toY by f (see the pi
ture in 
onstru
tion 2.1), as f a
tually has in�nite multipli
ityto Y at x1 in this 
ase. Thus we get 
orre
tion terms from redu
ible 
urves of thatkind in our �nal equation. These 
orre
tion terms are quite 
ompli
ated, but they
an be re
ursively 
omputed as they are made up of invariants of smaller degree.In this paper we will de�ne more general spa
es than the �M(m) mentioned above.Namely, we allow the spe
i�
ation of multipli
ities to Y not only at the point x1but at all marked points. We 
all those moduli spa
es the spa
es of relative stablemaps, and equip them with virtual fundamental 
lasses. Interse
tion produ
ts onthem are then 
alled relative Gromov-Witten invariants. Of 
ourse, they have theobvious (possibly virtual) geometri
 interpretation as numbers of 
urves havinggiven multipli
ities to Y and satisfying some additional in
iden
e 
onditions.It should be said 
learly that the spe
i�
ation of more than one multipli
ity isnot ne
essary if one only wants to 
ompute the Gromov-Witten invariants of Y fromthose of X . However, the general 
ase �ts ni
ely into the pi
ture and establishesthe 
onne
tion to the existing literature on relative Gromov-Witten invariants, asthese invariants have only been 
onsidered so far in the 
ase where the sum ofthe multipli
ities is equal to Y � � (i.e. where \all interse
tion points with Y aremarked").The outline of the paper is as follows. In se
tion 1 we de�ne the moduli spa
es ofrelative stable maps and de�ne their virtual fundamental 
lasses. The 
onstru
tionof the line bundles L(m) and the moduli spa
es for the 
orre
tion terms mentionedabove is given in se
tion 2. At the end of this se
tion we state our main theorem2.6 that des
ribes how the moduli spa
es of relative invariants 
hange if one ofthe multipli
ities is in
reased by one. The proof of this theorem is done in twosteps. In the �rst step in se
tion 3 we look at the spe
ial 
ase where Y � X isa hyperplane in proje
tive spa
e. In this 
ase no virtual fundamental 
lasses areneeded, and the main theorem is established by purely geometri
 analysis. Theideas for the main proofs of this se
tion are taken from [V℄. In the se
ond step inse
tion 4, we prove the general 
ase by \pulling ba
k" the result for hyperplanesin PN along the morphism �Mn(X; �)! �Mn(PN ; d) indu
ed by the 
omplete linearsystem jY j. Finally, in se
tion 5 we prove that the main theorem 
an be usedto 
ompute the absolute and relative Gromov-Witten invariants of Y in terms ofthe Gromov-Witten invariants of X . In a forth
oming paper, we will study thestru
ture of these 
omputations and give some expli
it examples.A few remarks seem in order how this work is related to the existing literature.The original ideas and motivation for our paper 
ome from the work of R. Vakil[V℄, who proved the main theorem under the following restri
tions: Y � X is ahyperplane in PN , the sum of the pres
ribed multipli
ities is equal to the degree ofthe 
urves, and one of the multipli
ities is raised from zero to one. It is interestingto note that he used the main theorem in the opposite dire
tion, namely to 
omputethe invariants of X from those of Y . But the algorithm used there is very spe
i�
to the 
ase of a hyperplane in PN ; it does not work for general Y � X .



GROMOV-WITTEN INVARIANTS OF VERY AMPLE HYPERSURFACES 3All methods that have been known so far to 
ompute Gromov-Witten invariantsof hypersurfa
es Y � X need the existen
e of a torus a
tion on X and use thete
hniques of equivariant 
ohomology and �xed point lo
alization. In the 
asewhere Y is Calabi-Yau or Fano, the \mirror symmetry" results of A. Givental [G℄and B. Lian et al. [LLY℄ relate the Gromov-Witten invariants of Y to those of Xand express them in terms of 
ertain hypergeometri
 fun
tions. Our methods are
ompletely di�erent; they do not pla
e any restri
tions on the variety X and do notrequire Y to be Calabi-Yau or Fano. In a forth
oming paper we will show that ourequations a
tually lead to the same hypergeometri
 fun
tions as mentioned above.Re
ently A. Bertram [Be℄ has found another way to 
ompute 
ertain Gromov-Witten invariants of Calabi-Yau and Fano hypersurfa
es in proje
tive spa
e. Healso uses the torus a
tion method, but does the a
tual 
omputations in a di�erentway. It seems that his 
omputations are 
losely related to ours, but the exa
trelation to our methods is still un
lear.Relative Gromov-Witten invariants of any genus have been introdu
ed in sym-ple
ti
 geometry by A. Li and Y. Ruan [LR℄ as well as E. Ionel and T. Parker[IP1℄,[IP2℄. They have been de�ned for any 
odimension two symple
ti
 submani-fold Y of a symple
ti
 manifold X . The main appli
ation in symple
ti
 geometry isthe splitting formula that expresses the Gromov-Witten invariants of a symple
ti
sum X1#YX2 in terms of the relative Gromov-Witten invariants of Y in X1 andX2. E. Ionel has informed me that [IP2℄ together with the results announ
ed in[IP1℄ 
an be used to prove a statement in the symple
ti
 
ategory that is analogousto our main theorem.The author would like to thank T. Graber, J. Harris, and R. Vakil for numerousdis
ussions. This work has been done at the Harvard University, to whi
h theauthor is grateful for hospitality.1. Moduli spa
es of relative stable mapsWe begin with the des
ription of the set-up and the de�nition of the modulispa
es of relative stable maps. Let X be a smooth 
omplex proje
tive variety andY � X a smooth very ample hypersurfa
e. For notational 
onvenien
e, we denoteby A�(X) the ring of algebrai
 
ohomology 
lasses of X modulo torsion, and byH+2 (X) the group of e�e
tive algebrai
 homology 
lasses of dimension two, modulotorsion.Let � = (�1; : : : ; �n) be an n-tuple of non-negative integers. As usual, for su
han n-tuple we de�ne j�j := n and P� := Pni=1 �i. If � = (�1; : : : ; �n) and�0 = (�01; : : : ; �0m), we write � [ �0 for (�1; : : : ; �n; �01; : : : ; �0m). For 1 � k � n, wewrite �� ek for (�1; : : : ; �k � 1; : : : ; �n).Let n � 0 and let � 2 H+2 (X) be a non-zero homology 
lass. We denote by�Mn(X; �) := �M0;n(X; �) the Deligne-Mumford sta
k of n-pointed genus zero stablemaps to X of 
lass � as de�ned in [BM℄.The moduli spa
e �MY� (X; �) that we want to 
onstru
t should be thought of asa 
ompa
ti�
ation of the spa
e of all irredu
ible stable maps (P1; x1; : : : ; xn; f) toX of 
lass � that meet Y in the points xi with multipli
ity �i for all i. We de�neit �rst as a subset of the set of geometri
 points of �Mn(X; �), but we will see soonthat it has the stru
ture of a 
losed substa
k of �Mn(X; �).De�nition 1.1. With notations as above, we de�ne �MY� (X; �) to be the lo
us in�Mn(X; �) of all stable maps (C; x1; : : : ; xn; f) su
h that



4 ANDREAS GATHMANN(i) f(xi) 2 Y for all i with �i > 0,(ii) f�Y �Pi �ixi 2 A0(f�1(Y )) is e�e
tive.If there is no risk of 
onfusion we will write �M�(X; �) instead of �MY� (X; �).Remark 1.2. Condition (i) is obviously ne
essary for (ii) to make sense. The 
y
le
lass f�Y 2 A0(f�1(Y )) is well-de�ned by [F℄ 
hapter 6 as the interse
tion produ
tY � C in Y �X C = f�1(Y ). Note that the Chow groups of a s
heme are equalto the Chow groups of its underlying redu
ed s
heme (see [F℄ example 1.3.1 (a)),so we may repla
e f�1(Y ) by its underlying redu
ed s
heme above. So, by abuseof notation, if we talk about 
onne
ted (resp. irredu
ible) 
omponents of f�1(Y )in the sequel we will always mean 
onne
ted (resp. irredu
ible) 
omponents of theunderlying redu
ed s
heme of f�1(Y ).Remark 1.3. For degree reasons, the spa
e �M�(X; �) is obviously empty if P� >Y � �, so we will ta
itly assume from now on that P� � Y � �.Remark 1.4. The Chow group A0 of a point as well as of (
onne
ted but not ne
-essarily irredu
ible) genus zero 
urves is just Z, so 
ondition (ii) in de�nition 1.1
an be reformulated as follows: for any 
onne
ted 
omponent Z of f�1(Y ) we musthave(i) if Z is a point, it is either unmarked or a marked point xi su
h that themultipli
ity of f at xi along Y is at least �i,(ii) if Z is one-dimensional, let C(i) for 1 � i � r be the irredu
ible 
omponentsof C not in Z but interse
ting Z, and let m(i) be the multipli
ity of f jC(i) atZ \ C(i) along Y . Then we must haveY � f�Z + rXi=1m(i) � Xxi2Z �i:Example 1.5. Let X = P3, Y = H a plane, � = 5 � [line℄, and � = (1; 2). Inthe following pi
ture, the 
urve on the left is in �M(1;2)(X; �), whereas the one onthe right is not (
ondition (ii) of remark 1.4 is violated for the line marked Z, as1 + 1 6� 2 + 1).
H

C

21

H

C

21
ZThe �rst thing we will do is to study the spa
e �M�(X; �) in the spe
ial 
asewhere X = PN and Y = H is a hyperplane. In this 
ase, we will write �M�(X; �)as �M�(PN ; d), where d = H � �. The main result of this se
tion is that the generalelement of �M�(PN ; d) 
orresponds to an irredu
ible stable map whose image is not
ontained in H , i.e. that the 
urves in �M�(PN ; d) are exa
tly those that 
an bedeformed to an irredu
ible 
urve that still satis�es the given multipli
ity 
onditionsand that is not 
ontained in H . (Here and in the following, by \the 
urve C 
anbe deformed to a 
urve satisfying a property P" we mean that there is a family ofstable maps su
h that the 
entral �ber is C and the general �ber has P .)



GROMOV-WITTEN INVARIANTS OF VERY AMPLE HYPERSURFACES 5De�nition 1.6. We de�ne M�(PN ; d) to be the subset of �M�(PN ; d) of all stablemaps (C; x1; : : : ; xn; f) with C �= P1 and f(C) 6� H .Remark 1.7. We will often 
onsider �rst the easier 
ase of the spa
es �M�(PN ; d)with the additional 
ondition that P� = d. (This is the situation that has beenstudied in [V℄.) In this 
ase, 
ondition (ii) in de�nition 1.1 a
tually means thatf�H �Pi �ixi = 0 2 A0(f�1(H)). Correspondingly, the 
onditions in remark 1.4read as follows: for any 
onne
ted 
omponent Z of f�1(H) we must have(i) if Z is a point, it is a marked point xi with �i being equal to the multipli
ityof f at xi along H ,(ii) if Z is one-dimensional, let C(i) for 1 � i � r be the irredu
ible 
omponentsof C not in Z but interse
ting Z, and let m(i) be the multipli
ity of f jC(i) atZ \ C(i) along H . Then we must havedeg f jZ + rXi=1m(i) = Xxi2Z �i:Lemma 1.8. The spa
e M�(PN ; d) has the stru
ture of an irredu
ible and lo
ally
losed substa
k of �Mn(PN ; d).Proof. The lo
us of irredu
ible stable maps (P1; x1; : : : ; xn; f) 2 �Mn(PN ; d) su
hthat f(P1) 6� H 
an be written asMn(PN ; d)n �Mn(H; d), so it is open in �Mn(PN ; d).On the other hand, the 
ondition that f vanishes to order at least �i along H at xiis 
losed, so M�(PN ; d) is the interse
tion of a 
losed subset with an open subsetin �Mn(PN ; d). It is irredu
ible as there is a surje
tive rational mapC 2n �H0(P1;O(d�P�)) �H0(P1;O(d))N 9 9 K M�(Pn; d)(a1; b1; : : : ; an; bn; f0; f1; : : : ; fN) 7! (P1; (a1 :b1); : : : ; (an :bn); f)where f(z) = f(z0 : z1) = (f0(z) � nYi=1(z1ai � z0bi)�i : f1(z) : � � � : fN (z))whose domain spa
e is irredu
ible.Lemma 1.9. The 
losure of M�(PN ; d) in �Mn(PN ; d) is 
ontained in �M�(PN ; d).Proof. This follows from the 
ontinuity of interse
tion produ
ts. To be more pre
ise,let C be a point in the 
losure of M�(PN ; d). By lemma 1.8 there is a family� : T ! �Mn(PN ; d) of stable maps over a smooth 
urve T with a distinguishedpoint 0 2 T su
h that �(0) = C and �(t) 2 M�(PN ; d) for t 6= 0. We have toprove that �(0) 2 �M�(PN ; d). As it is obvious that �(0) satis�es 
ondition (i) ofde�nition 1.1, it remains to show (ii).The family � is given by the data (C; x1; : : : ; xn; f) where � : C ! T is a 
urveover T , the xi : T ! C are se
tions of �, and f : C ! PN is a morphism. SetCH = f�1(H) and 
onsider the 1-
y
les f�H and Pi �ixi(T ) in A1(CH ). Byassumption, the 
y
le 
 := f�H �Pi �ixi(T ) is e�e
tive (it might however have
omponents over 0 2 T 
oming from f�H). Applying [F℄ proposition 11.1 (b) tothe 
y
les f�H and 
 +Pi �ixi(T ) we see that the spe
ialization of f�H at t = 0is equal to the limit 
y
le of 
 +Pi �ixi(T ) as t ! 0. As the limit 
y
le of 
 fort! 0 is e�e
tive, we have shown that �(0) satis�es (ii). This shows the lemma.



6 ANDREAS GATHMANNDe�nition 1.10. Let C = (C; x1; : : : ; xn; f) 2 �M�(PN ; d) be a stable map. Anirredu
ible 
omponent Z of C is 
alled an internal 
omponent of C if f(C) �H , and an external 
omponent otherwise. A sub
urve of C is a stable map C0 =(C 0; x01; : : : ; x0m; f 0) 2 �M�0(PN ; d0) 
onstru
ted from C as follows. Let C 0 be anyproper 
onne
ted sub
urve of C, and let f 0 = f jC0 . The marked points x01; : : : ; x0mare the marked points xi 
ontained in C 0, together with all the interse
tion pointsof C 0 with the other irredu
ible 
omponents of C. We assign multipli
ities �0 =(�01; : : : ; �0m) to the points x01; : : : ; x0m as follows: The points xi on C 0 will have theirgiven multipli
ity �i. The interse
tion points with other irredu
ible 
omponents ofC will be assigned the multipli
ity of f 0 along H at that point if the point lies on anexternal 
omponent of C 0, and 0 otherwise. Let d0 be the degree of f 0 on C 0. Thefollowing pi
ture shows an example of this 
onstru
tion, where the marked pointsare labeled with their multipli
ities.
H

1 3
2 1

H

3
2

0C C’Lemma 1.11. Let C 2 �M�(PN ; d) be a stable map and assume that P� = d. LetC0 = (C 0; x01; : : : ; x0n; f 0) be a sub
urve of C with the following property: if Z is aninternal irredu
ible 
omponent of C 
ontained in C 0, then any adja
ent irredu
ible
omponent of Z in C is also 
ontained in C 0. (For example, the sub
urve in thepi
ture above satis�es this property.) Then P�0 = d0.Proof. The 
ondition P� = d means that f�H �P�ixi = 0 2 A0(f�1(H)).We 
laim that also f 0�H �P�0ix0i = 0 2 A0(f 0�1(H)), whi
h then implies thatP�0 = d0. In fa
t, this 
an be 
he
ked on the 
onne
ted 
omponents of f 0�1(H).Let Z be a 
onne
ted 
omponent of f 0�1(H). By assumption, there are only twopossibilities:� C and C 0 are lo
ally isomorphi
 in a neighborhood of Z, i.e. Z is also a
onne
ted 
omponent of f�1(H). Therefore, (f 0�H�P�0ix0i)jZ = 0 2 A0(Z).� Z is an interse
tion point of C 0 with CnC 0 that lies on an external 
omponentof C 0. Then, by de�nition of a sub
urve, Z is a marked point of C0 withmultipli
ity equal to the multipli
ity of f 0 along H at Z. In parti
ular, wehave again that (f 0�H �P�0ix0i)jZ = 0 2 A0(Z).This proves the lemma.Lemma 1.12. A stable map C = (C; x1; : : : ; xn; f) 2 �M�(PN ; d) 
an be deformedto an irredu
ible 
urve in �M�(PN ; d) if one of the following 
onditions is satis�ed:(i) C has only internal 
omponents.(ii) P� = d, and C 
onsists exa
tly of one internal 
omponent C(0) and r ex-ternal 
omponents C(1); : : : ; C(r) interse
ting C(0) for some r � 0 (i.e. C isa \
omb", with the 
entral 
omponent being internal and the teeth external,see the pi
ture in 
onstru
tion 2.1). Moreover, in this 
ase C 
an even bedeformed to an irredu
ible 
urve that is not 
ontained in H (whi
h is thenobvious unless r = 0).



GROMOV-WITTEN INVARIANTS OF VERY AMPLE HYPERSURFACES 7(iii) P� = d, and C has exa
tly two irredu
ible 
omponents C(1) and C(2), bothbeing external.Proof. To show (i), note that by de�nition every 
urve with f(C) � H lies in�M�(PN ; d), so �Mn(H; d) � �M�(PN ; d). But it is well-known that the spa
e ofirredu
ible 
urves inside �Mn(H; d) is dense, so C 
an be deformed to an irredu
ible
urve in �M�(PN ; d).(ii) has been shown in [V℄ theorem 6.1. (In fa
t, in the notations used in [V℄,our 
urve C is an element of a spa
e Y with suitable de
orations as introdu
ed in[V℄ de�nition 3.7.)Finally, in the 
ase (iii) it is easy to 
onstru
t an expli
it deformation. Choosehomogeneous 
oordinates z0; : : : ; zN on PN su
h that H is given by the equationz0 = 0. The map f : C ! PN is then given by se
tions s0; : : : ; sN of a suitable linebundle L on C. We may assume that the 
oordinates are 
hosen su
h that the sido not vanish at C(1) \ C(2) (as for s0 note that s0(C(1) \ C(2)) = 0 would meanthat the interse
tion point lies on H , so it must be a marked point by remark 1.7(i), hen
e it must be non-singular, whi
h is a 
ontradi
tion). Let Di = (si) be theasso
iated divisors, in parti
ular D0 =P�ixi.Now let W be the blow-up of C � P1 at the point (0; 0), 
onsidered as a one-dimensional family of 
urves by the proje
tion map � :W ! C . We 
an identify the�ber ��1(0) with C(1) [ C(2). The points xi 2 ��1(0) 
an be extended to se
tions~xi of �, giving rise to an extended divisor ~D0 = P�i~xi. In the same way one
an �nd divisors ~Di on W su
h that ~Dij��1(0) = Di for all i. As Pi
 W = Pi
 C,these divisors will be linearly equivalent and de�ne a line bundle ~L on W su
hthat ~Lj��1(0) = L. Moreover, after possibly restri
ting the base C to a smalleropen neighborhood of 0 we 
an assume that the ~Di are base-point free. Finally,we 
an 
hoose se
tions ~si of ~L su
h that (~si) = ~Di and ~sij��1(0) = si. Then(W; ~x0; : : : ; ~xn; (~s0 : � � � : ~sN )) is a family of stable maps whose 
entral �ber is Cand whose general element is in M�(PN ; d).Lemma 1.13. Let C = (C; x1; : : : ; xn; f) 2 �M�(PN ; d) be a redu
ible stable mapand assume that P� = d. Then C 
an be deformed to a stable map in �M�(PN ; d)with fewer nodes.Proof. This is essentially obtained from lemma 1.12 by gluing. Pi
k a node P 2 Cand a sub
urve C(0) = (C(0); x(0)1 ; : : : ; x(0)n(0) ; f (0)) 2 �M�(0)(PN ; d(0)) of C as follows:(i) If C has a node 
onne
ting two internal 
omponents of C, let P be this nodeand let C(0) be the 
onne
ted 
omponent of f�1(H) 
ontaining P .(ii) Otherwise, if C has a node 
onne
ting an internal 
omponent Z to an external
omponent of C, let P be this node and let C(0) be Z together with all adja
ent(ne
essarily external) 
omponents of C.(iii) Otherwise, let P be any node of C (ne
essarily 
onne
ting two external 
om-ponents of C) and let C(0) be the two irredu
ible 
omponents of C meetingat P .Let C(1); : : : ; C(r) with r � 0 be the 
onne
ted 
omponents of CnC(0).In any 
ase, we 
an deform C(0) to an irredu
ible map in �M�(0)(PN ; d(0)) bylemma 1.12 (in the 
ases (ii) and (iii) it follows from lemma 1.11 thatP�(0) = d(0)).So let � : T ! �M�(0)(PN ; d(0)) be a deformation of C(0) for some smooth pointed
urve (T; 0), i.e. �(0) = C(0) and for all 0 6= t 2 T the 
urve �(t) is irredu
ible.



8 ANDREAS GATHMANNThis deformation is given by a family � : ~C ! T of 
urves, se
tions ~x1; : : : ; ~xn of� and a map ~f : ~C ! PN . For all 1 � i � r, the interse
tion point of C(0) andC(i) is one of the marked points of C(0), hen
e 
orresponds to a marked point of �,say ~xi. Note that in all 
ases (i) to (iii) above, the deformation � has the propertythat ~f(~xi(t)) 2 H for all t 2 T if this is true for t = 0. In parti
ular, there areT -valued proje
tive automorphisms  i : T ! PGL(N) keeping H �xed su
h that i(t)( ~f (~xi(0))) = ~f(~xi(t)). The indu
ed a
tion of PGL (N) on the moduli spa
es�M�(i)(PN ; d(i)) makes  i into a deformation of C(i) over T su
h that for all t 2 Tthe marked point 
orresponding to C(0) \ C(i) is mapped to the same point in PNby the families � and  i. This means that the families � and  i 
an a
tually beglued to give a deformation of the original 
urve C. This deformation smoothes thenode P .Proposition 1.14. The 
losure of M�(PN ; d) in �Mn(PN ; d) is equal to �M�(PN ; d).In parti
ular, �M�(PN ; d) has the stru
ture of an irredu
ible, proper, redu
ed sub-sta
k of �Mn(PN ; d).Proof. \�" has been shown in lemma 1.9, so it remains to show \�". Let C 2�M�(PN ; d) be a stable map. Assume �rst that P� = d. Using lemma 1.13 indu
-tively, we 
an deform C to an irredu
ible 
urve in �M�(PN ; d). If this irredu
ible
urve does not lie inside H then we are done, otherwise use the r = 0 
ase of lemma1.12 (ii).If k = d�P� > 0, let �0 = �[(1; : : : ; 1) su
h thatP�0 = d. By adding markedpoints (and possibly introdu
ing new 
ontra
ted 
omponents) it is easy to �nd astable map C0 2 �M�0 that maps to C under the forgetful morphism �Mn+k(PN ; d)!�Mn(PN ; d). By the above, C0 
an be deformed to an irredu
ible 
urve inM�0(PN ; d),whi
h indu
es a deformation of C to an irredu
ible 
urve in M�(PN ; d).Hen
e we �nally have shown that �M�(PN ; d) is 
losed. So by giving it theredu
ed substa
k stru
ture, we get a proper, redu
ed substa
k of �Mn(PN ; d) whi
his irredu
ible by lemma 1.8.Lemma 1.15. The moduli spa
e �M�(PN ; d) has the following properties:(i) If k = d �P� > 0 and we let �0 = � [ (1; : : : ; 1) su
h that P�0 = d, thenthere is a degree-k! generi
ally �nite 
over �M�0(PN ; d) ! �M�(PN ; d), givenby forgetting the last k marked points and stabilizing.(ii) �M�[(0)(PN ; d) is the universal 
urve over �M�(PN ; d). In parti
ular, if � =(0; : : : ; 0) then �M�(PN ; d) = �Mj�j(PN ; d).(iii) The moduli spa
e �M�(PN ; d) is purely of the expe
ted dimension, whi
h isdim �Mj�j(PN ; d)�P� = d(N + 1) +N � 3 + j�j �P�.Proof. To show (i), note that from the parametrization of M�(PN ; d) given in theproof of lemma 1.8 one 
an see that the general element of M�(PN ; d) 
orrespondsto a stable map (P1; x1; : : : ; xn; f) su
h that f�H is equal to Pi �ixi plus a unionof k = d �P�i distin
t unmarked points with multipli
ity one. Obviously, themap �M�0(PN ; d) ! �M�(Pn; d) is �nite over these elements, and it has degree k!,
orresponding to the 
hoi
e of order of the k added marked points.As in the proof of (i), the statement of (ii) is obvious on the dense open subset of�M�(PN ; d) des
ribed above, and it extends to the 
losures be
ause of the 
atnessof the map �Mn+1(PN ; d)! �Mn(PN ; d).



GROMOV-WITTEN INVARIANTS OF VERY AMPLE HYPERSURFACES 9Finally, (iii) has been shown in [V℄ proposition 5.7 if P� = d. Otherwise use(i) �rst. Alternatively, (iii) 
an be read o� from the parametrization given in theproof of lemma 1.8.Remark 1.16. The sta
k �M�(PN ; d) is in general singular, even in 
odimension one(see [V℄ 
orollary 4.16). However, it is smooth at all points (P1; x1; : : : ; xn; f) 2M�(PN ; d). In fa
t, for these 
urves the obstru
tion spa
e for deformations inside�M�(PN ; d) is H1(P1; f�T 0PN), where f�T 0PN is the kernel of the 
omposite mapf�TPN ! f�NH=PN ! (f�NH=PN)jZwith Z being the zero-dimensional subs
heme of P1 having length �i at the pointxi for all i. But as both these maps are surje
tive on global se
tions (for the se
ondone note that f�NH=PN = O(d) and P� � d), it follows that H1(P1; f�T 0PN) = 0.However, we will not need any smoothness results in our paper.Now we return to the general 
ase of the moduli spa
e �MYn (X; �) where X is anysmooth proje
tive variety and Y � X a smooth very ample hypersurfa
e. One of themain problems is that these spa
es will in general not have the expe
ted dimension.This means in parti
ular that we need virtual fundamental 
lasses, whi
h 
annotbe obtained using the te
hniques above. To over
ome this problem, we use thelinear system jY j to get a map X ! PN , and 
onsider the spa
e �MY� (X; �) as the\interse
tion" of two problems we already know: (a) stable maps in X and (b)stable maps in PN with given multipli
ities to the hyperplane H � PN indu
ed byY .We �x the following notation: let ' : X ! PN be the morphism determined byjY j, and let H � PN the hyperplane su
h that Y = '�1(H). As d := Y � � > 0,the map ' indu
es a morphism � : �Mn(X; �)! �Mn(PN ; d) (see [BM℄).Remark 1.17. Let C 2 �Mn(X; �). As the 
onditions (i) and (ii) of de�nition 1.1pull ba
k ni
ely, it is obvious that C 2 �MY� (X; �) if and only if �(C) 2 �MH� (PN ; d).De�nition 1.18. By the previous remark, the spa
e �MY� (X; �) has the stru
tureof a proper 
losed substa
k of �Mn(X; �) by requiring the diagram of in
lusions�MY� (X; �) //

��

�MH� (PN ; d)
���Mn(X; �) � // �Mn(PN ; d)to be 
artesian. We de�ne the virtual fundamental 
lass [ �MY� (X; �)℄virt to be theone indu
ed by the virtual fundamental 
lass of �Mn(X; �) (see e.g. [B℄,[BF℄) andthe usual fundamental 
lass of �MH� (PN ; d), in the sense of the following remark.Remark 1.19. Let M1 and M2 be Deligne-Mumford sta
ks over a smooth Deligne-Mumford sta
k S. Let M =M1 �S M2, so that we have a 
artesian diagramM //

��

M1 �M2
��S � // S � S:



10 ANDREAS GATHMANNAssume that we are given 
lasses 
1 2 A�(M1) and 
2 2 A�(M2) (usually thoughtof as virtual fundamental 
lasses in this paper). Then the 
lass �!(
1 
 
2) inM will be 
alled indu
ed by 
1 and 
2. If the maps M1 ! S and M2 ! S arein
lusions, this is a
tually the usual re�ned interse
tion produ
t of 
1 and 
2. Thisis the 
ase in the above de�nition, but we mentioned the general 
ase here as wewill need it later on.By lemma 1.15 (iii), the virtual fundamental 
lass of �MY� (X; �) de�ned abovehas dimension dim �Mn(X; �)�P�, whi
h is the expe
ted dimension of �MY� (X; �).If X is a proje
tive spa
e and Y � X a hyperplane, it is obvious by de�nition thatthe virtual fundamental 
lass of �MY� (X; �) is equal to the usual one.2. In
reasing the multipli
itiesBy 
onstru
tion, �M�+ek (X; �) is a 
losed substa
k of �M�(X; �) of expe
ted
odimension one. The main goal of this paper is to 
ompute [ �M�+ek (X; �)℄virt as a
y
le in the Chow group of �M�(X; �). We start with the following na��ve approa
hdes
ribing the transition from multipli
ity �k to �k + 1 at the point xk.Constru
tion 2.1. Consider a moduli spa
e M = �Mn(X; �) and let C !M be theuniversal 
urve, with evaluation map ev : C ! X . Fix k with 1 � k � n andlet sk : M ! C denote the se
tion 
orresponding to the marked point xk. Lety 2 H0(OX (Y )) be the equation of Y . Choose an integer m � 0. We pull y ba
kto C by ev, take the m-jet relative to M of it and pull this ba
k to M by sk to geta se
tion �mk := s�kdmC=Mev�y 2 H0(M; s�kPmC=M (ev�OX(Y )));where PmC=M (ev�OX(Y )) denotes relative prin
ipal parts of order m (or m-jets) ofthe line bundle ev�OX(Y ), and dmC=M is the derivative up to order m (see [EGA4℄16.3, 16.7.2.1 for pre
ise de�nitions). Geometri
ally, �mk vanishes pre
isely on thestable maps that have multipli
ity at least m+1 to Y at the point xk. By [EGA4℄16.10.1, 16.7.3 there is an exa
t sequen
e0! L
mk 
 ev�kOX(Y )! s�kPmC=M (ev�OX(Y ))! s�kPm�1C=M (ev�OX(Y ))! 0where we set P�1C=M (ev�OX(Y )) = 0, and where Lk = s�k!C=M is the k-th 
otangentline, i.e. the line bundle on M whose �ber at a point (C; x1; : : : ; xn; f) is T_C;xk .Note that the last map in this sequen
e sends �mk to �m�1k for m > 0. Now restri
tthese bundles and se
tions to �M�(X; �). As all stable maps in �M�(X; �) havemultipli
ity (at least) �k at xk, the restri
tion of ��kk to �M�(X; �) de�nes a se
tion�k := ��kk j �M�(X;�) 2 H0(L
�kk 
 ev�kOX(Y )) = H0(O(�k k + ev�kY ))on �M�(X; �), where  k = 
1(Lk).The vanishing of this se
tion des
ribes exa
tly the 
ondition that a stable mapin �M�(X; �) vanishes up to order �k + 1 at xk . Hen
e na��vely one would expe
tthat �M�+ek(X; �) is des
ribed inside �M�(X; �) by the vanishing of this se
tion,and that [ �M�+ek (X; �)℄virt is given by(�k  k + ev�kY ) � [ �M�(X; �)℄virt: (1)



GROMOV-WITTEN INVARIANTS OF VERY AMPLE HYPERSURFACES 11This is not true, however, be
ause of the presen
e of stable maps with the propertythat the 
omponent on whi
h xk lies is mapped entirely into Y . Of 
ourse, the se
-tion �k vanishes on those stable maps, but they are in general not in �M�+ek (X; �).Hen
e, these stable maps will also 
ontribute to the expression (1). We will nowintrodu
e the moduli spa
es of the stable maps o

urring in these 
orre
tion terms.Informally speaking, generi
 stable maps in these 
orre
tion terms have r + 1 irre-du
ible 
omponents C(0); : : : ; C(r) for some r � 0, where C(0) (
alled the internal
omponent) is mapped into Y , and all C(i) for i > 0 (
alled the external 
ompo-nents) interse
t C(0) and have a pres
ribed multipli
itym(i) to Y at this interse
tionpoint (see the pi
ture below, where m(1) = 1 and m(2) = 2). The point xk has tolie on C(0). The initial multipli
ity 
onditions � as well as the homology 
lass �get distributed in all possible ways to the 
omponents C(i).
C

C(0)

(1)

(2) X

Y

C

xkWe now des
ribe this more formally.De�nition 2.2. Consider a moduli spa
e �M�(X; �) and 1 � k � n as above. Letr be a non-negative integer. Choose a partition A = (�(0); : : : ; �(r)) of � su
hthat �k 2 �(0). Let B = (�(0); : : : ; �(r)) be an (r + 1)-tuple of homology 
lasseswith �(0) 2 H+2 (Y ) and �(i) 2 H+2 (X)nf0g for i > 0 su
h that i��(0) + �(1) +� � � + �(r) = �, where i : Y ! X is the in
lusion. Finally, 
hoose an r-tupleM = (m(1); : : : ;m(r)) of positive integers. With these notations, we de�ne themoduli spa
e Dk(X;A;B;M) to be the �ber produ
tDk(X;A;B;M) := �Mj�(0)j+r(Y; �(0))�Y r rYi=1 �M�(i)[(m(i))(X; �(i))where the map from the �rst fa
tor to Y r is the evaluation at the last r markedpoints, and the map from the se
ond fa
tor to Y r is the evaluation at the lastmarked point of ea
h of its fa
tors. We de�ne the virtual fundamental 
lass ofDk(X;A;B;M) to be m(1)���m(r)r! times the 
lass indu
ed by the virtual fundamental
lasses of its fa
tors, in the sense of remark 1.19. The reason for the unusualmultipli
ity will be
ome 
lear in the proof of proposition 3.3.De�nition 2.3. With notations as in the previous de�nition, let D�;k(X; �) bethe disjoint union of the Dk(X;A;B;M) for all possible A, B, and M satisfyingY � i��(0) +Xi m(i) =X�(0) (2)(the reason for this 
ondition will be
ome 
lear in the following lemma). The virtualfundamental 
lass of D�;k(X; �) is de�ned to be the sum of the virtual fundamental
lasses of its 
omponents Dk(X;A;B;M).



12 ANDREAS GATHMANNLemma 2.4. In the 
ase where X = PN and Y = H is a hyperplane, the modulispa
es Dk(PN ; A;B;M) satisfying equation (2) of de�nition 2.3 are proper irre-du
ible substa
ks of �M�(PN ; d) of 
odimension one.Proof. Considering the de�nition of the spa
e Dk(X;A;B;M), the fa
t that it isirredu
ible follows from the following three observations:(i) �Mj�(0)j+r(H; d(0)) is irredu
ible,(ii) the evaluation maps �M�(i)[(m(i))(PN ; d(i))! H at the last marked point are
at and surje
tive (this follows from the a
tion of the group of automorphismsof PN keeping H �xed on the spa
e �M�(i)[(m(i))(PN ; d(i))),(iii) the �bers of the maps in (ii) are irredu
ible (by the Bertini theorem, as thespa
es �M�(i)[(m(i))(PN ; d(i)) itself are irredu
ible by proposition 1.14).Moreover, these arguments show that the dimension of Dk(PN ; A;B;M) is equalto dim �Mj�(0)j+r(H; d(0)) + rXi=1 dim �M�(i)[(m(i))(PN ; d(i))� r � (N � 1):By a qui
k 
omputation using lemma 1.15 (iii) this is equal todim �M�(PN ; d) +X�(0) � d(0) �Xi m(i) � 1;so the dimension statement follows from equation (2) of de�nition 2.3.The sta
k Dk(PN ; A;B;M) is visibly a 
losed substa
k of�Mj�(0)j+r(PN ; d(0))�(PN)r rYi=1 �Mj�(i)j+1(PN ; d(i));whi
h in turn is a 
losed substa
k of �Mn(PN ; d) by [BM℄ 
hapter 7 property III. Toprove that it is 
ontained in �M�(PN ; d) it suÆ
es to show that a general elementC = (C; x1; : : : ; xn; f) 2 Dk(PN ; A;B;M) satis�es the 
onditions of remark 1.4.As C is general, we have C = C(0) [ � � � [ C(r) where C(0) 2 Mr+j�(0)j(H; d(0))and C(i) 2 M�(i)[(m(i))(PN ; d(i)). The 
ondition of remark 1.4 is obvious for all
onne
ted 
omponents of f�1(H) besides C(0). As for C(0), the 
ondition is exa
tlythe \�" part of equation (2) of de�nition 2.3.Remark 2.5. We will see in proposition 4.4 that even for general X , the modulispa
es Dk(X;A;B;M) satisfying equation (2) of de�nition 2.3 are proper sub-sta
ks of �M�(X; �) of expe
ted 
odimension one. Thus we 
an view the virtualfundamental 
lass of the Dk(X;A;B;M) as well as of D�;k(X; �) as 
y
les in theChow group of �M�(X; �) whose dimension is equal to the expe
ted dimension of�M�(X; �) minus one.We 
an now state the main theorem of this paper.Theorem 2.6. With notations as above, we have(�k  k + ev�kY ) � [ �M�(X; �)℄virt = [ �M�+ek(X; �)℄virt + [D�;k(X; �)℄virtin the Chow group of �M�(X; �), for all 1 � k � n.The proof will be given at the end of se
tion 4.



GROMOV-WITTEN INVARIANTS OF VERY AMPLE HYPERSURFACES 133. Proof of the main theorem for hyperplanes in PNIn this se
tion we will prove the main theorem 2.6 in the 
ase where X = PNand Y = H is a hyperplane. Most of the proofs are generalized versions fromthose in [V℄, where the generalizations are quite straightforward. Re
all that in
onstru
tion 2.1 we de�ned a se
tion �k of a suitable line bundle on �M�(PN ; d)su
h that the zero lo
us of �k has 
lass �k  k + ev�kH and des
ribes exa
tly thosestable maps (C; x1; : : : ; xn; f) where f vanishes to order at least �k +1 along H atxk. For simpli
ity, we will restri
t ourselves �rst to the 
ase P� = d (note thatthe term [ �M�+ek (PN ; d)℄virt in the main theorem is then absent for degree reasons).We begin by proving a set-theoreti
 version of the main theorem.Lemma 3.1. Assume that P� = d. Then the zero lo
us of the se
tion �k on�M�(PN ; d) is equal to D�;k(PN ; d).Proof. By 
onstru
tion, it is obvious that �k vanishes on D�;k(PN ; d), so let usprove the 
onverse. Let C = (C; x1; : : : ; xn; f) 2 �M�(PN ; d) be a stable map with�k(C) = 0.Assume �rst that xn is an isolated point of f�1(H). As f vanishes to order atleast �k + 1 along H at xk, this is a 
ontradi
tion to remark 1.7 (i).So xn is not an isolated point of f�1(H). Let C(0) be the 
onne
ted 
omponentof f�1(H) 
ontaining xk, and let C(1); : : : ; C(r) be the 
onne
ted 
omponents ofCnC(0). Let m(i) be the multipli
ity of f jC(i) at C(0) \ C(i) along H , let d(i) bethe degree of f on C(i), and let �(i) be the 
olle
tion of the multipli
ities �j su
hthat xj 2 C(i). Then it is obvious that C 2 Dk(PN ; A;B;M) with A, B, M as inde�nition 2.2. Moreover, equation (2) of de�nition 2.3 is satis�ed by remark 1.7 (ii)applied to C(0), hen
e it follows that C 2 D�;k(PN ; d).Remark 3.2. As the spa
es Dk(PN ; A;B;M) are irredu
ible and of 
odimensionone by lemma 2.4, lemma 3.1 tells us that in the 
aseP� = d we must have(�k  k + ev�kH) � [ �M�(PN ; d)℄ =X�A;B;M [Dk(PN ; A;B;M)℄virtfor some �A;B;M , where the sum is taken over allA;B;M for whi
hDk(PN ; A;B;M)o

urs in D�;k(PN ; d). Note that the virtual fundamental 
lass of Dk(PN ; A;B;M)was de�ned to be m(1)���m(r)r! times the usual one (where r = jM j), but that on theother hand every irredu
ible 
omponent of the zero lo
us of �k (whi
h is of the formDk(PN ; A;B;M) for some A, B, M) gets 
ounted r! times in the above sum, 
orre-sponding to the 
hoi
e of order of the external 
omponents C(1); : : : ; C(r). Hen
e,to prove the main theorem for hyperplanes in PN in the 
ase P� = d, we have toshow that �k vanishes along Dk(PN ; A;B;M) with multipli
ity m(1) � � �m(r).We will now prove the main theorem for X = P1 and Y = H a point, in the
ase where P� = d. The proof is very similar to the proof of [V℄ proposition 4.8,in fa
t (modulo notations) identi
al up to the end where the se
tion �k 
omes intoplay, so we will only sket
h these identi
al parts and refer to [V℄ for details.Proposition 3.3 (Main Theorem for H � P1;P� = d). If P� = d, then(�k  k + ev�kH) � [ �M�(P1; d)℄ = [D�;k(P1; d)℄virtin the Chow group of �M�(P1; d), for all 1 � k � n.



14 ANDREAS GATHMANNProof. Let Dk(P1; A;B;M) be a 
omponent of D�;k(P1; d). By equation (2) ofde�nition 2.3 we know that P�(0) = Pim(i), 
all this number d0. Moreover, wemust obviously have r > 0.We start by de�ning two easier moduli spa
es that model lo
ally the situationat hand (in a sense that is made pre
ise later). Fix a point P 2 P1 distin
t fromH . LetM � �Mj�(0)j+r(P1; d0) be the 
losure of all degree-d0 irredu
ible stable maps(P1; (xi)1�i�j�(0) j; (yi)1�i�r ; f) su
h thatf�H =Xi �(0)i xi and f�P =Xi m(i)yi:Let D � �Mj�(0)j+r(P1; d0) be the 
losure of all degree-d0 redu
ible stable maps(C(0) [ � � � [ C(r); (xi)1�i�j�(0) j; (yi)1�i�r ; f) with r + 1 
omponents su
h that� f 
ontra
ts C(0) to H , and C(i) \ C(0) 6= ; for all 1 � i � r,� xi 2 C(0) for all 1 � i � j�(0)j,� (f jC(i))�H = m(i)(C(i) \ C(0)) and (f jC(i))�P = m(i)yi for all 1 � i � r.General elements of these moduli spa
es look as follows (the pi
ture represents the
ase � = (0; 4; 1) and M = (2; 3)):
H P

PI 1

A general element in A general element in

PI 1

M D

H P

y1

y2

3x
1x
2x

Cy2

y1
2x

x3

x1

C

f fC

C

(0)

(1)

C (2)

In short, in addition to our usual multipli
ity requirements for f�H we requiremultipli
ities m(i) over the point P (so that the 
urves C(i) in D are rami�ed
ompletely over H and P for i > 0).We are now ready to 
ompute the multipli
ity of �k to Dk(P1; A;B;M) at ageneral element C0 = (C 0; x01; : : : ; x0n; f 0). Let C = (C; (xi); (yi); f) be the uniquestable map in D whose internal 
omponent C(0) is equal to the internal 
omponentof C0, viewed as a marked 
urve whose marked points are the xi and the pointsC(0) \ C(i).By 
onstru
tion, the stable maps C and C0 are �etale lo
ally isomorphi
 aroundC(0), so let (U; (xi); f jU ) be a suÆ
iently small 
ommon �etale neighborhood of C(0).By [V℄ proposition 4.3 the deformation spa
es of C in M and C0 in �M�(P1; d) areprodu
ts one of whose fa
tors is the deformation spa
e of (U; (xi); f jU ), viewed as amap from U to P1 satisfying the given multipli
ity 
onditions at the points xi. Asthe se
tion �k is de�ned on this 
ommon fa
tor, the order of vanishing of �k alongDk(P1; A;B;M) in �M�(P1; d) at the point C0 is equal to its order of vanishing alongD in M at the point C.To simplify the 
al
ulations even further, we will now �x the marked 
urve(C; (xi); (yi)). Consider the morphism � : M ! �Mj�(0)j+r given by forgetting themap f and stabilizing if ne
essary. Note that � will 
ontra
t all external 
omponentsof C as they only have two spe
ial points, so � maps C to a general point of �Mj�(0)j+r.



GROMOV-WITTEN INVARIANTS OF VERY AMPLE HYPERSURFACES 15Denote by M 0 � M and D0 � D the �bers of this morphism over �(C). Then themultipli
ity we seek is equal to the multipli
ity of �k along D0 in M 0 in the pointC. But general elements in M 0 are a
tually easy to des
ribe expli
itly: 
hooseg1; g2 2 OP1(d0) with asso
iated divisors(g1) =Xi �(0)i xi and (g2) =Xi m(i)yiwhere xi and yi are now �xed points in P1, determined by the element �(C) 2�Mj�(0)j+r. Then a general stable map in M 0 is of the formC� = (P1; (xi); (yi); f) where f : P1 ! P1; x 7! (�g1(x) : g2(x))for � 2 C � . (Here we have 
hosen 
oordinates on the target P1 su
h that H = (0 : 1)and P = (1 : 0).) The lo
us D0 � M 0, whi
h is set-theoreti
ally the zero lo
us of�k, 
orresponds to the degeneration �! 0.After a �nite base 
hange we 
an extend the family fC�g to � = 0. The 
entral�ber C0 of this extended family is equal to C.Let z be a lo
al 
oordinate around xk 2 P1. This means that z is a lo
al
oordinate around xk on all C� with � 6= 0, and in fa
t it extends to a lo
al
oordinate around xk for � = 0. Consider the lo
al trivialization of the line bundleL
�kk 
 ev�kO(H) given by dz(xk)
�k 
h(xk) 7! 1 (where h 2 H0(P1;O(H)) is these
tion vanishing at H that is used to de�ne �k). Then by 
onstru
tion, the se
tion�k on the family C� is given by � 7! ��k�z�k �g1(z)jz=xk in this lo
al trivialization. Inparti
ular, this has a zero of �rst order in � at � = 0. This means that the 
lass ofthe zero lo
us of �k on M 0 is(�k  k + ev�kH) � [M 0℄ = 1 � [C�℄for general �.Finally, as the automorphism group of a general C� is trivial, whereas the auto-morphism group of C is Zm(1) � � � � �Zm(r), we 
on
lude that(�k  k + ev�kH) � [M 0℄ = m(1) � � �m(r) � [C℄:Hen
e the statement of the proposition follows from remark 3.2.Corollary 3.4 (Main Theorem for H � PN ;P� = d). If P� = d, then(�k  k + ev�kH) � [ �M�(PN ; d)℄ = [D�;k(PN ; d)℄virtin the Chow group of �M�(PN ; d), for all 1 � k � n.Proof. (Compare to [V℄ theorem 6.1.) By the previous proposition we 
an assumethat N � 2. Consider a general element C = (C; x1; : : : ; xn; f) of a 
omponentDk(PN ; A;B;M) of D�;k(PN ; d). Let A � H be a general (N � 2)-plane. Theproje
tion from A in PN indu
es a rational map �A : �Mn(PN ; d) 9 9 K �Mn(P1; d). By[V℄ proposition 5.5 the map �A is de�ned and smooth at C. Moreover, �A mapsDk(PN ; A;B;M) to Dk(P1; A;B;M) at the points of Dk(PN ; A;B;M) where it isde�ned, and the se
tion �k on �M�(P1; d) pulls ba
k along �A to the se
tion �kon �M�(PN ; d). Hen
e the multipli
ity of �k on �M�(PN ; d) along Dk(PN ; A;B;M)is the same as the multipli
ity of �k on �M�(P1; d) along Dk(P1; A;B;M). The
orollary then follows from proposition 3.3 and remark 3.2.



16 ANDREAS GATHMANNCorollary 3.5 (Main Theorem for H � PN). We have(�k  k + ev�kH) � [ �M�(PN ; d)℄ = [ �M�+ek(PN ; d)℄ + [D�;k(PN ; d)℄virtin the Chow group of �M�(PN ; d), for all 1 � k � n.Proof. Let s = d�P�, and let �0 = �[(1; : : : ; 1) su
h thatP�0 = d. By 
orollary3.4 we know that(�0k  0k + ev0k�H) � [ �M�0(PN ; d)℄ = [D�0;k(PN ; d)℄virt (3)for 1 � k � n, where  0k is the k-th 
otangent line 
lass on �Mn+s(PN ; d), and ev0k theevaluation map �Mn+s(PN ; d) ! PN at the k-th marked point. We will show thatthe push-forward of this equation along the morphism � : �M�0(PN ; d)! �M�(PN ; d)that forgets the additional s marked points is exa
tly the statement of the 
orollary.First note that �0k = �k and ev0k = evk Æ �. For the 
omputation of the push-forward of  0k we may assume that �k > 0, as otherwise there is no  0k-term in(3). It is well-known that  0k = �� k + 
, where the 
orre
tion term 
 is the
lass of the lo
us of those stable maps C = (C; x1; : : : ; xn+s; f) where � 
ontra
tsthe irredu
ible 
omponent Z of C on whi
h xk lies, i.e. where Z is an unstable
omponent of the prestable map (C; x1; : : : ; xn; f). This 
an only happen if Zis 
ontra
ted by f , in parti
ular �k(C) = 0, so by lemma 3.1 the 
y
le 
 mustbe a union of some of the 
omponents of Dk(PN ; A;B;M) of D�0;k(PN ; d). Todetermine whi
h of them o

ur in 
, we 
an assume that C is a generi
 element ofsome Dk(PN ; A;B;M). It is easy to see that � 
ontra
ts Z = C(0) if and only ifr = jM j = 1, d(0) = 0, and the marked points on Z are xk and at least one of thepoints xn+1; : : : ; xn+s. If there is more than one of these points on Z, the map � haspositive-dimensional �bers on Dk(PN ; A;B;M), and hen
e ��[Dk(PN ; A;B;M)℄vanishes, hen
e we 
an assume that the marked points on Z are exa
tly xk andone of the forgotten points. Then �(C) 
ontra
ts Z, so by remark 1.7 the stablemap �(C) will be irredu
ible with multipli
ity �k + 1 at xk to H . This means that�(Dk(PN ; A;B;M)) = �M�+ek(PN ; d). As there is an s!-fold 
hoi
e of order of theforgotten marked points, we have shown that��
 � [M�0(PN ; d)℄ = s! � [ �M�+ek(PN ; d)℄and that therefore the left hand side of the push-forward of (3) by � is equal tos! � (�k  k + ev�kH) � [ �M�(PN ; d)℄ + �ks! � [ �M�+ek (PN ; d)℄: (4)Now we look at the right hand side of the push-forward of (3) by �. Consider a
omponent Dk(PN ; A;B;M) of D�0;k(PN ; d) and let C = (C; x1; : : : ; xn+s; f) be ageneri
 element of this 
omponent. For the push-forward of this 
omponent by �to be non-zero, the �bers of � have to be zero-dimensional, i.e. there must not be adeformation of C inside Dk(PN ; A;B;M) that 
hanges nothing but the position ofthe points xn+1; : : : ; xn+s. In parti
ular this means that we must have one of thefollowing two 
ases:� C(0) 
ontains none of the points xn+1; : : : ; xn+s, i.e. the points xn+1; : : : ; xn+sare just the s unmarked transverse points of interse
tion of �(C) with H . Inthis 
ase, the map � does not 
ontra
t any 
omponents of C, and it 
hangesno multipli
ities to H . Hen
e, the push-forward by � of all these 
omponentstogether is just s! � [D�;k(PN ; d)℄virt.
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ontra
ted 
omponent, i.e. d(0) = 0, r = jM j = 1, and the markedpoints on C(0) are exa
tly xk and one of the points xn+1; : : : ; xn+s. As above,the push-forward of su
h a 
omponent yields �M�+ek (PN ; d), and it o

urs withmultipli
ity (�k + 1) s!, where the fa
tor �k + 1 
omes from the de�nition ofthe virtual fundamental 
lass of Dk(PN ; A;B;M).Put together, we have shown that the push-forward of the right hand side of (3) by� is equal to s! � [D�;k(PN ; d)℄virt + (�k + 1) s! � [ �M�+ek(PN ; d)℄:Combining this with (4), we get the desired result.4. Proof of the main theorem for very ample hypersurfa
esLet X be a smooth 
omplex proje
tive variety and Y a smooth very amplehypersurfa
e. We �x the following notation. Let i : Y ! X be the in
lusion map.For � 2 H+2 (X) we denote by �Mn(Y; �) the disjoint union of all moduli spa
es�Mn(Y; �0) for �0 2 H+2 (Y ) su
h that i��0 = �. Consider the embedding ' : X ! PNgiven by the 
omplete linear system jY j and let H � PN be the hyperplane su
hthat '�1(H) = Y . There is an indu
ed morphism � : �Mn(X; �) ! �Mn(PN ; d),where d = Y � �. In this se
tion we will show that the \pull-ba
k" of the maintheorem for H � PN by � yields the main theorem for Y � X . The most diÆ
ultpart of the proof is to show that the spa
es D�;k(PN ; d) pull ba
k to D�;k(X; �)(proposition 4.4). Re
all that 
urves in D�;k(X; �) are redu
ible 
urves with one
omponent in Y (and some multipli
ity 
onditions). Hen
e we will show �rst thatthe moduli spa
es of 
urves in Y (lemma 4.2) and those of redu
ible 
urves in X(lemma 4.3) pull ba
k ni
ely under �.Convention 4.1. In this se
tion, all o

urring spa
es are equipped with virtual fun-damental 
lasses as follows.� The moduli spa
es of stable maps �Mn(�; �) have virtual fundamental 
lasses
onstru
ted e.g. in [B℄, [BF℄.� The moduli spa
es �M�(�; �), Dk(: : : ), and D�;k(: : : ) have virtual fundamental
lasses 
onstru
ted in de�nitions 1.18, 2.2, and 2.3, respe
tively.� The varieties Y , X , H , and PN are equipped with their usual fundamental
lass.� The virtual fundamental 
lass of a disjoint union of spa
es is the sum of thevirtual fundamental 
lasses of its 
omponents.� In any �ber produ
t V1 �V V2 o

urring in this se
tion, V will always besmooth and equipped with the usual fundamental 
lass. The virtual funda-mental 
lass of the �ber produ
t is then taken to be the one indu
ed by thevirtual fundamental 
lasses of V1 and V2 in the sense of remark 1.19.When we say that two spa
es V1 and V2 are equal we will always mean that V1and V2 are isomorphi
 and that [V1℄virt = [V2℄virt under this isomorphism. We willwrite this as V1 � V2.Lemma 4.2. For any n � 0 and � 2 H+2 (X) we have�Mn(Y; �) � �Mn(H; d)� �Mn(PN;d) �Mn(X; �):



18 ANDREAS GATHMANNProof. As Y = H \ X � PN , it follows from the de�nitions that the diagram ofin
lusions �Mn(Y; �) //

��

�Mn(X; �)
���Mn(H; d)  // �Mn(PN ; d) (5)is 
artesian. We denote by �X : �Mn+1(X; �) ! �Mn(X; �) the universal 
urve andby fX : �Mn+1(X; �)! X its evaluation map, and similarly for the moduli spa
es ofmaps to Y , H , and PN . Applying the fun
tor R�Y �f�Y to the distinguished triangleLX jY ! LY ! LY=X ! LX jY [1℄ (6)on Y , we get the distinguished triangleR�Y �(f�XLX)j �Mn+1(Y;�) ! R�Y �f�Y LY ! R�Y �(f�HLH=PN)j �Mn+1(Y;�)! R�Y �(f�XLX)j �Mn+1(Y;�)[1℄on �Mn(Y; �). By [B℄ proposition 5, the ve
tor bundle f�XLX is quasi-isomorphi
 to a
omplex K of ve
tor bundles on �Mn+1(X; �) su
h that R�X�K is also a 
omplex ofve
tor bundles. As �X is 
at, it follows from the theorem on 
ohomology and base
hange that (R�X�K) �Mn(Y;�) = R�Y �(Kj �Mn+1(Y;�)). The same argument appliesto f�HLH=PN instead of f�XLX , so we arrive at the distinguished triangle(R�X�f�XLX)j �Mn(Y;�) ! R�Y �f�Y LY ! (R�H�f�HLH=PN)j �Mn(Y;�)! (R�X�f�XLX)j �Mn(Y;�)[1℄: (7)Starting with the distinguished triangle of LH=PN instead of LY=X in (6), the same
al
ulation as above shows that we also have a distinguished triangle on �Mn(H; d)(R�PN�f�PNLPN)j �Mn(H;d) ! R�H�f�HLH ! R�H�f�HLH=PN! (R�PN�f�PNLPN)j �Mn(H;d)[1℄:But the �rst and se
ond term in this sequen
e are just L �Mn(PN;d)=Mn j �Mn(H;d) andL �Mn(H;d)=Mn , where Mn denotes the sta
k of prestable n-pointed rational 
urves.Hen
e we see that R�H�f�HLH=PN = L �Mn(H;d)= �Mn(PN;d). So (7) be
omes(R�X�f�XLX)j �Mn(Y;�) ! R�Y �f�Y LY ! L �Mn(H;d)= �Mn(PN;d)j �Mn(Y;�)! (R�X�f�XLX)j �Mn(Y;�)[1℄:As the �rst two terms in this sequen
e are the relative obstru
tion theories of�Mn(X; �) and �Mn(Y; �) over Mn, respe
tively, we get a homomorphism of thisdistinguished triangle toL �Mn(X;�)=Mn j �Mn(Y;�) ! L �Mn(Y;�)=Mn ! L �Mn(Y;�)= �Mn(X;�)! L �Mn(X;�)=Mn j �Mn(Y;�)[1℄:Hen
e, by [BF℄ proposition 7.5 it follows that  ![ �Mn(X; �)℄virt = [ �Mn(Y; �)℄virt in(5). This proves the lemma.
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h that Pi n(i) = n and Pi d(i) = d.Thena(�(i)) �Mn(0)+r(X; �(0))�Xr rYi=1 �Mn(i)+1(X; �(i))! � �Mn(0)+r(PN ; d(0))�(PN)r rYi=1 �Mn(i)+1(PN ; d(i))!� �Mn(PN;d) �Mn(X; �);where the union is taken over all (�(i)) with Y � �(i) = d(i) for all i, and where themaps to Xr and (PN)r are given in the same way as in de�nition 2.2.Proof. In the language of [BM℄, let � be the graph 
orresponding to rational 
urveswith 
omponents C(0); : : : ; C(r) su
h that C(0) \C(i) 6= ; for all i > 0 and C(i) hasn(i) marked points for i � 0. Let Mn be the sta
k of prestable n-pointed rational
urves, and letM� �Mn be the substa
k of � -marked prestable 
urves, as de�nedin [BM℄ de�nition 2.6. Moreover, we will abbreviate the moduli spa
es in thelarge bra
kets in the statement of the lemma as �M� (X; (�(i))) and �M� (PN ; (d(i))),respe
tively.Consider the 
ommutative diagram�M� (X; (�(i))) //

��

�M� (PN ; (d(i))) //

��

M� 
���Mn(X; �) // �Mn(PN ; d) // Mnwhere none of the maps involves stabilization of the underlying prestable 
urves. By[B℄ lemma 10, the right square and the big square are 
artesian, so the left one is also
artesian. Moreover, by the same lemma,  ![ �Mn(X; �)℄virt = [ �M� (X; (�(i)))℄virt.Proposition 4.4. For any 1 � k � n we haveD�;k(X; �) � D�;k(PN ; d)� �Mn(PN;d) �Mn(X; �):In parti
ular, the moduli spa
es Dk(X;A;B;M) satisfying equation (2) of de�nition2.3 are proper substa
ks of �M�(X; �) of expe
ted 
odimension one.Proof. We 
onsider a 
omponentDk(PN ; A; (d(i));M) ofD�;k(PN ; d) and show thatthe �ber produ
t of this 
omponent with �Mn(X; �) over �Mn(PN ; d) is the union ofall Dk(X;A; (�(i));M) su
h that Y � �(i) = d(i).We start with the pull-ba
k 
ompatibility statement for general 
urves of theform C(0) [ � � � [C(r) with C(0) \C(i) 6= ;, as given in lemma 4.3. Taking the �berprodu
t of this equation with �Mn(0)+r(H; d(0)) over �Mn(0)+r(PN ; d(0)) (i.e. requiringthe 
entral 
omponent C(0) to lie in H) and using lemma 4.2 on the left hand sideyieldsa(�(i)) �Mn(0)+r(Y; �(0))�Xr rYi=1 �Mn(i)+1(X; �(i))! � �Mn(0)+r(H; d(0))�(PN)r rYi=1 �Mn(i)+1(PN ; d(i))!� �Mn(PN;d) �Mn(X; �):



20 ANDREAS GATHMANNThis 
an obviously be written in a more 
ompli
ated way asa(�(i)) �Mn(0)+r(Y; �(0))�Y r  Hr �(PN)r rYi=1 �Mn(i)+1(X; �(i))!! � �Mn(0)+r(H; d(0))�Hr  Hr �(PN)r rYi=1 �Mn(i)+1(PN; d(i))!!� �Mn(PN;d) �Mn(X; �):Note that H �PN �Mn(i)+1(PN ; d(i)) � �M~�(i)(PN ; d(i)) for all i > 0, where ~�(i) =(0; : : : ; 0; 1). So we geta(�(i)) �Mn(0)+r(Y; �(0))�Y r rYi=1 �M~�(i) (PN; d(i))� �Mn(i)+1(PN;d(i)) �Mn(i)+1(X; �(i))! � �Mn(0)+r(H;d(0))�Hr rYi=1 �M~�(i) (PN ; d(i))!� �Mn(PN;d) �Mn(X; �):Finally, we take the �ber produ
t of this equation with �M�(i)[(m(i))(PN ; d) over�M~�(i)(PN ; d) for all i > 0, yielding the same equation with the ~�(i) repla
ed by �(i)[(m(i)). By de�nition, this is then exa
tly the equation stated in the proposition.We are now ready to give the proof of our main theorem.Proof (of theorem 2.6). Consider the 
artesian diagram�M�(X; �) //

��

�M�(PN ; d)
���Mn(X; �) � // �Mn(PN ; d):The main theorem for H � PN (see 
orollary 3.5) gives an equation in the Chowgroup of �M�(PN ; d). We pull this equation ba
k by � to get an equation in theChow group of �M�(X; �). As the morphism � does not involve any 
ontra
tionsof the underlying prestable 
urves, the 
otangent line 
lass  k on �Mn(PN ; d) pullsba
k to the 
otangent line 
lass  k on �Mn(X; �). So by de�nition the left handside of 
orollary 3.5 pulls ba
k to (�k k + ev�Y ) � [ �M�(X; �)℄virt. In the same way,[ �M�+ek(PN ; d)℄ pulls ba
k to [ �M�+ek (X; �)℄virt. Finally, proposition 4.4 shows that[D�;k(PN ; d)℄virt pulls ba
k to [D�;k(X; �)℄virt.Remark 4.5. We expe
t that the statement of the main theorem 2.6 is true evenunder weaker assumptions on the hypersurfa
e Y . For example, if Y is not veryample but the 
omplete linear system jY j on X is base-point free, we still geta morphism X ! PN de�ned by jY j. The de�nition of the moduli spa
es ofrelative invariants essentially 
arries over without 
hange to this 
ase. The main(but probably little) problem is that the morphism � in the 
artesian diagram ofde�nition 1.18 now may involve stabilization of the underlying prestable 
urves.This makes many points in the arguments of this paper more subtle, but we expe
tthat a version of the main theorem 
an be proven also in this 
ase.
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ationsAs usual, the �rst thing to do to get enumerative results from moduli spa
esof maps is to de�ne invariants by interse
ting the virtual fundamental 
lass ofthe moduli spa
e with various 
otangent line 
lasses and pull-ba
ks of 
lasses viaevaluation maps. Note that from the spa
es �M�(X; �) we always have evaluationmaps evk to X for 1 � k � j�j, and in addition evaluation maps ~evk to Y for all kwith �k > 0.De�nition 5.1. Let � 2 H+2 (X), n � 0, k1; : : : ; kn � 0, and 
1; : : : ; 
n 2 A�(X).Then the restri
ted Gromov-Witten invariants of Y are de�ned asIYn;�(
1 k1 ; : : : ; 
n kn) = ev�1
1 �  k11 � � � ev�n
n �  knn � [ �Mn(Y; �)℄virt 2 Qif Pi(
odim 
i + ki) = vdim �Mn(Y; �). Similarly, for any � = (�1; : : : ; �n) therestri
ted relative Gromov-Witten invariants of Y � X are de�ned asI�;�(
1 k1 ; : : : ; 
n kn) = ev�1
1 �  k11 � � � ev�n
n �  knn � [ �M�(X; �)℄virt 2 QifPi(
odim 
i+ki) = vdim �M�(X; �). This de�nition 
an obviously be generalizedin the following two ways:(i) We 
an take 
ohomology 
lasses ~
k 2 A�(Y ) and the evaluation maps ~evk toY , instead of 
k 2 A�(X) and evk (provided that �k > 0 in the 
ase of therelative invariants). We will apply the same notation in this 
ase and justmark the 
ohomology 
lasses that are pulled ba
k from Y by a tilde.(ii) For the absolute invariants, we 
ould use a homology 
lass on Y instead ofsumming over all homology 
lasses on Y that push forward to a given 
lasson X . (We will never do this in this paper, however.)The invariants obtained in this way are 
alled the (unrestri
ted) Gromov-Witteninvariants of Y , or relative Gromov-Witten invariants of Y � X , respe
tively.Remark 5.2. Often the restri
ted invariants are really not restri
ted at all. As forgeneralization (i) in the above de�nition, in many 
ases every algebrai
 
ohomology
lass in Y 
omes from a (rational) algebrai
 
ohomology 
lass in X , notably if thedimension of Y is odd (by the Lefs
hetz theorem) or if X = PN and Y is a generi
hypersurfa
e that is not a quadri
 or the 
ubi
 surfa
e (by [S℄ proposition 2.1).Again by the Lefs
hetz theorem, (ii) is no generalization if the dimension of Y isat least 3.Remark 5.3. If we interse
t the main theorem 2.6(�k  k + ev�kY ) � [ �M�(X; �)℄virt = [ �M�+ek(X; �)℄virt + [D�;k(X; �)℄virtwith suitably many 
otangent line 
lasses or pull-ba
ks from 
lasses on X orY by the evaluation maps, we obviously get many relations among the relativeGromov-Witten invariants of Y � X , the Gromov-Witten invariants of X (for� = (0; : : : ; 0)), and the Gromov-Witten invariants of Y (as the moduli spa
esof stable maps to Y are in
luded as fa
tors in the spa
es D�;k(X; �)). As forD�;k(X; �) one uses the usual \diagonal tri
k" to express a 
omponentDk(X;A;B;M) = �Mj�(0)j+r(Y; �(0))�Y r rYi=1 �M�(i)[(m(i))(X; �(i))



22 ANDREAS GATHMANN(and its virtual fundamental 
lass) by the 
artesian diagramDk(X;A;B;M) //

��

�Mj�(0)j+r(Y; �(0))�Qri=1 �M�(i)[(m(i))(X; �(i))ev
��Y r �r

// Y r � Y r;i.e. interse
tion produ
ts on Dk(X;A;B;M) be
ome interse
tion produ
ts of thesame 
lasses on produ
ts of moduli spa
es of (absolute and relative) stable maps,with additional 
lasses 
oming from the diagonal. So the term [D�;k(X; �)℄virt inthe main theorem will turn into a sum of produ
ts of Gromov-Witten invariants ofY and relative Gromov-Witten invariants of Y � X .Remark 5.4. In what follows we only want to look at the restri
ted (relative)Gromov-Witten invariants. It is not obvious that this is possible, as even if weonly use pull-ba
ks of 
lasses from X at the marked points x1; : : : ; xn, the 
lassesfrom the diagonal tri
k in the terms D�;k(X; �) (see above) will throw in 
lassesfrom Y . To see that these do not do any harm we will �rst show in the next twolemmas that absolute as well as relative invariants vanish if they 
ontain exa
tly one
lass from Y and this 
lass lies in the orthogonal 
omplement A�(X)? of i�A�(X)in A�(Y ). (These lemmas 
an obviously be skipped if A�(X)? = ;, whi
h is oftenthe 
ase by remark 5.2).Lemma 5.5. Let ~
1 2 A�(X)? and 
2; : : : ; 
n 2 A�(X). Then for any � 2 H+2 (X)we have IYn;�(~
1 k1 ; 
2 k2 ; : : : ; 
n kn) = 0.Proof. (This is a variant of proposition 4 in [P℄.) Consider the 
artesian diagram(see lemma 4.2) Y i // X�Mn(Y; �) //

��

�M~�(X; �) //

��

~ev1 OO �Mn(X; �)�
��

ev1 OO

�Mn(H; d) // �M~�(H; d) j // �Mn(PN ; d)where ~� = (1; 0; : : : ; 0). Let � : �Mn+1(PN ; d) ! �Mn(PN ; d) be the universal mapand f : �Mn+1(PN ; d)! PN its evaluation map. Let E be the kernel of the surje
tivebundle morphism ��f�O(H)! ev�1O(H) given by evaluation. By [P℄ 
onstru
tion2.1 and proposition 4 we have that [ �Mn(H; d)℄ = j�(
top(E) � [ �Mn(PN ; d)℄). Inter-se
ting with [ �Mn(X; �)℄virt yields by lemma 4.2[ �Mn(Y; �)℄virt = i!(��
top(E) � [ �Mn(X; �)℄virt)
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lass 
 =  k1 � ev�2
2 �  k2 � � � ev�n
n �  kn is a
tuallyde�ned on �Mn(X; �). Therefore we getIYn;�(~
1 k1 ; 
2 k2 ; : : : ; 
n kn) = ~
1 � ~ev1�i!(
 � ��
top(E) � [ �Mn(X; �)℄virt)= ~
1 � i�ev1�(
 � ��
top(E) � [ �Mn(X; �)℄virt)= 0as ~
1 2 A�(X)?.Lemma 5.6. Assume that �1 > 0. Let ~
1 2 A�(X)? and 
2; : : : ; 
n 2 A�(X).Then I�;�(~
1 k1 ; 
2 k2 ; : : : ; 
n kn) = 0.Proof. We prove the statement by indu
tion on d = Y � �, n, and P�, in thatorder. This means: if we want to prove the statement for an invariant with 
ertainvalues of d, n, and P�, we assume that it is true for all invariants having(i) smaller d, or(ii) the same d and smaller n, or(iii) the same d, the same n, and smaller P�.For P� = 1, i.e. � = (1; 0; : : : ; 0), the statement follows by exa
tly the same
al
ulation as in the proof of lemma 5.5, just leaving out the fa
tor 
top(E). So we
an assume that P� > 1. If �1 > 1 set k = 1, otherwise 
hoose any k > 1 with�k > 0. By the main theorem 2.6 we have((�k � 1) k + ev�kY ) � [ �M��ek(X; �)℄virt = [ �M�(X; �)℄virt + [D��ek;k(X; �)℄virt:Interse
t this equation with ~ev�1~
1 �  k1 � ev�2
2 �  k2 � � � ev�n
n �  kn . The �rst termon the right hand side is then exa
tly the desired invariant. We will show that allother terms vanish.The term on the left hand side has the same d and n, and smaller P�. Theinvariant 
oming from the  k-summand has exa
tly one 
lass in A�(X)? and hen
evanishes by the indu
tion hypothesis. The same is true for the invariant 
omingfrom the ev�kY -term if k > 1. If k = 1, all 
lasses in the invariant 
ome from X ,but the invariant 
ontains the 
lass ev�1Y � ~ev�1~
1 = ~ev�1(~
1 � i�Y ), whi
h is zero as~
1 2 A�(X)?. Hen
e the left hand side of the equation vanishes.Now we look at the terms Dk(X;A;B;M) on the right hand side that giveprodu
ts of (relative) invariants by the diagonal tri
k as des
ribed in remark 5.3.Note that the 
lass of the diagonal in Y �Y isPi Ti
T_i , where fTig is a basis ofA�(Y ). If we 
hoose this basis su
h that it respe
ts the orthogonal de
ompositionA�(Y ) = i�A�(X) � A�(X)?, then Ti 2 A�(X)? if and only if T_i 2 A�(X)?.Hen
e the i-th diagonal (where 1 � i � r) will 
ontribute one 
lass ea
h to theinvariants for C(0) and C(i), and either both of them are in A�(X)? or none ofthem.For a given term Dk(X;A;B;M), the 
omponents C(i) for i > 0 all have eithersmaller d, or the same d and smaller n (the latter happens only if r = 1 and�(0) = 0). Hen
e by indu
tion hypothesis (i > 0) or lemma 5.5 (i = 0), we know forany i � 0 that the invariant for C(i) vanishes if it 
ontains exa
tly one 
lass fromA�(X)?. We show that this has always to be the 
ase for at least one i. Assumethat this is not true. We distinguish two 
ases:(i) x1 2 C(0). Then the external 
omponents C(i) 
an have at most one 
lassfrom A�(X)?, namely the 
lass from the diagonal. Hen
e by our assumption,they have no su
h 
lass, i.e. the diagonal 
ontributes a 
lass from i�A�(X) to



24 ANDREAS GATHMANNC(i) and hen
e also to C(0). But then the invariant for C(0) has exa
tly one
lass from A�(X)?, namely ~
1, whi
h is a 
ontradi
tion.(ii) x1 2 C(i) for some i > 0. Then by our assumption, the diagonals must
ontribute a 
lass from A�(X)? to C(i), and a 
lass from i�A�(X) to all otherC(j) with j > 0. But then we have again exa
tly one 
lass from A�(X)? inC(0), namely the one from the i-th diagonal. This is again a 
ontradi
tion.This shows the lemma.Corollary 5.7. Let X be a smooth proje
tive variety and Y � X a smooth veryample hypersurfa
e. Assume that the Gromov-Witten invariants of X are known.Then there is an expli
it algorithm to 
ompute the restri
ted Gromov-Witten invari-ants of Y as well as the restri
ted relative Gromov-Witten invariants of Y � X.Proof. This is now straightforward. We will 
ompute the absolute and relativeinvariants at the same time, and we will use re
ursion on the same variables as inthe previous lemma.Assume that we want to 
ompute a relative invariant I�;�(
1 k1 ; : : : ; 
n kn). IfP� = 0 then this is a Gromov-Witten invariant on X and therefore assumed to beknown. So we 
an assume that P� > 0. On the other hand, we 
an also assumethat P� � Y � � = d, as otherwise the invariant is zero anyway by de�nition.Choose k su
h that �k > 0 and interse
t the main theorem 2.6((�k � 1) k + ev�kY ) � [ �M��ek (X; �)℄virt = [ �M�(X; �)℄virt + [D��ek ;k(X; �)℄virt(8)with ev�1
1 �  k1 � � � ev�n
n �  kn . Then the �rst term on the right hand side isthe invariant that we want to 
ompute. We will show that all other terms in theequation are re
ursively known.This is obvious for the invariants on the left hand side, sin
e they have the samed, same n, and smaller P�. Now look at a term 
oming from Dk(X;A;B;M)on the right hand side, it is a produ
t of invariants for the 
omponents C(i) fori = 0; : : : ; r. First we will show that we only get produ
ts of restri
ted invariants.The invariant for the 
omponents C(i) for i > 0 
an have at most one 
lass fromA�(X)?, namely from the diagonal. But if it has exa
tly one it vanishes by lemma5.6, so it has none. This means that it is a restri
ted invariant, and moreover thatthe diagonal 
ontributes only 
lasses from A�(X) to the invariant for C(0). Thismeans that the invariant for C(0) is also a restri
ted one.Now, as in the previous lemma, the invariants for the 
omponents C(i) for i > 0all have either smaller d, or the same d and smaller n, and are therefore re
ursivelyknown. The Gromov-Witten invariant for the 
omponent C(0) 
an 
ertainly haveno bigger d. We will show now that it 
annot have the same d either. Assume the
ontrary, then we must have r = 0. But then the dimension 
ondition saysvdim �M�(X; �) = vdim �Mn(Y; �)() vdim �Mn(X; �)�X� = vdim �Mn(X; �)� d� 1; (9)i.e. P� = d + 1 > d, whi
h is a 
ontradi
tion. Hen
e also the invariant for C(0)has smaller d. In summary, we have seen that we 
an 
ompute the desired relativeGromov-Witten invariant.Now we 
ompute the absolute Gromov-Witten invariants for the same valuesof d and n. Assume that there is su
h an invariant IYn;�(
1 k1 ; 
2 k2 ; : : : ; 
n kn).



GROMOV-WITTEN INVARIANTS OF VERY AMPLE HYPERSURFACES 25Without loss of generality we may assume that n > 0 (if n = 0 we 
an just add onemarked point and require it to be on Y , whi
h 
hanges the invariant only by a fa
torof d a

ording to the divisor axiom). Set � = (d+1; 0; : : : ; 0). Now 
onsider exa
tlythe same equation (8) as above and interse
t it again with ev�1
1 � k1 � � � ev�n
n � kn .The dimension 
al
ulation (9) above then shows that the term [ �Mn(Y; �)℄virt andhen
e the desired Gromov-Witten invariant will appear on the right hand side of ourequation as one term among the Dk(X;A;B;M). The term 
oming from �M�(X; �)will vanish as P� > d, and all other terms are known re
ursively by exa
tly thesame arguments as above for the relative invariants.Remark 5.8. Although we have just shown that all restri
ted Gromov-Witten in-variants of Y � X 
an be 
omputed from the Gromov-Witten invariants of X ,only a very small subset of them is needed if one is only interested in the Gromov-Witten invariants of Y . First of all, analyzing the algorithm given in the proofabove, one sees that it is suÆ
ient to 
onsider relative invariants of the formI(�1;0;:::;0);�(
1 k11 ; 
2; : : : ; 
n), i.e. we need multipli
ities and 
otangent line 
lassesat only one of the marked points. In fa
t, in many 
ases it will be suÆ
ient to lookat invariants with only one marked point | the WDVV equations of Y 
an thenbe used to 
ompute all Gromov-Witten invariants of Y . In a forth
oming paperwe will give some expli
it examples along these lines and show how 
orollary 5.7
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