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Abstract

We study Gromov-Witten invariants on the blow-up of P
n at a point, which is

probably the simplest example of a variety whose moduli spaces of stable maps do

not have the expected dimension. It is shown that many of these invariants can

be interpreted geometrically on P
n as certain numbers of rational curves having a

multiple point of given order at the blown up point. Moreover, all these invariants

can actually be calculated, giving enumerative invariants of P
n which have not

been known before.

0 Introduction

Over the last few years, Gromov-Witten invariants have become a very powerful tool in
enumerative geometry. Let us briefly recall their definition. If X is an n-dimensional
smooth complex projective variety and β ∈ H2(X) a homology class, then for every
N ≥ 3 one defines a moduli space M̄N(X, β) of genus zero N -pointed stable maps into
X, which is a compactification of the space of all maps f : C → X, where C is a smooth
N -pointed rational curve (which is allowed to vary) [BM]. If X is a convex variety, i.e. if
h1(C, f ∗TX) = 0 for all f : C → X, then this moduli space is a smooth Deligne-Mumford
stack of the expected dimension

virt dim M̄N(X, β) = −KX · β + n− 3 +N.

Now if α1, . . . , αN ∈ A∗(X) are cohomology classes whose codimensions sum up to
virt dim M̄N(X, β), one defines the associated Gromov-Witten invariant by

ΦX(α1, . . . , αN | β) = (p∗1α1 · · · p
∗
NαN) · [M̄N(X, β)] (∗)
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where pi : M̄N(X, β) → X are the obvious evaluation maps and [M̄N(X, β)] denotes
the fundamental class of M̄N(X, β). Geometrically, this invariant can be interpreted as
the number of rational curves in X of homology class β which pass through generically
chosen subvarieties Vi ⊂ X with [Vi] = αi.

If X is not a convex variety, however, the actual dimension of M̄N(X, β) will in general
be greater than the expected one, such that the above definition of the Gromov-Witten
invariants is not applicable. In this case, K. Behrend [B] has shown recently that it is
possible to define a virtual fundamental class

[M̄N(X, β)]
virt ∈ Avirt dim M̄N (X,β)(M̄N(X, β))

such that, if one uses this class in (∗) instead of the usual fundamental class, this defines
Gromov-Witten invariants (satisfying the usual axioms [KM]) on an arbitrary smooth
complex projective variety X. Of course, in this case there is no longer an obvious
geometric interpretation of the invariants.

In this paper, we study this construction in the case where X = P̃
n is the blow-up of

projective n-space in a point P ∈ P
n. Let H ′ be the class of a line in P

n and E ′ be the
class of a line in the exceptional divisor E. We consider the commutative diagrams

M̄N(P̃
n, dH ′ − eE ′)

φ
−−−→ M̄N(P

n, dH ′)

p̃i





y





y

pi

P̃
n π

−−−→ P
n

and show that, although there are components in M̄N(P̃
n, dH ′−eE ′) whose dimension is

too large, these are actually mapped by φ to a subspace in M̄N(P
n, dH ′) whose dimension

is smaller than the expected one, which means that they are irrelevant if one can
compute the intersection products on the moduli space M̄N(P

n, dH ′). This is obviously
the case if all the classes αi in the Gromov-Witten invariant are pullbacks of classes on
P
n. Hence, in this case it will again be possible to give a geometric interpretation of the

invariants.

It is even possible to give an interpretation of the Gromov-Witten invariants on P̃
n in

terms of curves on P
n: via strict transform, curves of degree d in P

n which pass through
P with total multiplicity e correspond to curves in P̃

n of homology class dH ′−eE ′. This
will lead to our main result (proposition 4.5):

Let d > 0, e ≥ 0 and α1, . . . , αN ∈ A
≥1(Pn) such that

∑

i

(codimαi − 1) = d (n+ 1)− e (n− 1) + n− 3.

Let P ∈ P
n be a point. Choose generic subschemes Vi ⊂ P

n with [Vi] = αi (in a sense
that will be made precise).

Then the number of rational curves in P
n (purely 1-dimensional subvarieties birational

to P
1) of degree d which have non-empty intersection with all Vi and which pass through
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the point P with total multiplicity e, where each such curve C is counted with multiplicity

](C ∩ V1) · · · ](C ∩ VN),

is equal to the Gromov-Witten invariant on P̃
n

ΦP̃n(π
∗α1, . . . , π

∗αN | dH
′ − eE ′).

Moreover, it will be shown that all Gromov-Witten invariants of P
n can be computed

using the First Reconstruction Theorem of Kontsevich and Manin [KM] and some initial
data that we will calculate.

In the case n = e = 2, our results reproduce the numbers of rational curves of degree d
in P

2 having a node in P and passing through 3d− 3 further points in the plane, which
have already been computed last year by R. Pandharipande [P] using different methods.

I have been informed that L. Göttsche and R. Pandharipande have been working on
Gromov-Witten invariants of multiple blow-ups of P

2 and their geometric interpretation.

The paper is organized as follows: In section 1 we will give a correspondence between
stable maps to X and embedded curves in X. In section 2 we calculate the cohomology
h1(C, f ∗TP̃n) for all maps f : C → P̃

n which will enable us in section 3 to prove the state-
ment on the dimension of the image of the map φ : M̄N(P̃

n, dH ′− eE ′)→ M̄N(P
n, dH ′)

that was mentioned above. The proof of our main result on the geometric meaning of
the invariants on P̃

n will be given in section 4. Finally, in section 5 we show how to
calculate the invariants on P̃

n and give some examples.

Notations and Conventions. We will always work over the ground field C of complex
numbers. If X is an n-dimensional smooth projective variety, we follow [BM] and let

H+
2 (X) = {β ∈ HomZ(PicX,Z) | β(L) ≥ 0 whenever L is ample}

be the semigroup of ”positive homology classes” in X. If N > 3 and β ∈ H+
2 (X),

we denote by M̄N(X, β) the Deligne-Mumford stack of N -pointed stable maps in X of
genus zero and homology class β as defined in [BM]. In this paper, the terminology
stable map will always be used to denote a stable map of genus zero. A stable map
(C, x1, . . . , xN , f) will be called irreducible if the curve C is, and reducible otherwise.

If α ∈ Ac(X) is a cycle, we denote the codimension of α by c = codimα. If α1, . . . , αN ∈
A∗(X) are cycles on X whose codimensions sum up to the virtual dimension

virt dim M̄N(X, β) = −KX · β + n− 3 +N

of M̄N(X, β), then K. Behrend [B] has defined an associated Gromov-Witten invariant
which is denoted by

ΦX(α1, . . . , αN | β) = (p∗1α1 · · · p
∗
NαN) · [M̄N(X, β)]

virt

where pi : M̄N(X, β) → X are the evaluation maps and [M̄N(X, β)]
virt is the virtual

fundamental class of the moduli space M̄N(X, β).
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1 Stable maps and their images

Gromov-Witten invariants are concerned with stable maps into X. Since our final aim
is to make statements about the numbers of rational curves embedded in a variety X,
we start by collecting some relations between these two points of view. So let us begin
by defining the moduli spaces between which we will find a correspondence later.

Definition 1.1 Let X be a smooth projective variety over C, 0 6= β ∈ H+
2 (X) a fixed

homology class, and N ≥ 3.

(i) A relevant map in X is a (genus zero) stable map (C, x1, . . . , xN , f) such that
[f(C)] = f∗[C] = β ∈ H+

2 (X), i.e. there is no irreducible component of C on
which f is a finite covering. (The map f may, however, contract some irreducible
components of C to a point.) The set of all such relevant maps in X modulo
isomorphism can be regarded as a substack of M̄N(X, β). It will be denoted by
RMN(X, β).

(ii) The set of all irreducible relevant maps (i.e. relevant maps as above whose under-
lying curve C is irreducible) such that f−1(f(xi)) = {xi} for all i will be denoted
by RM ′

N(X, β).

(iii) A relevant curve in X is defined to be a tuple (D, y1, . . . , yN), where D is a
(purely) 1-dimensional, closed, connected subvariety of X with [D] = β such that
every irreducible component of D is rational (i.e. birational to P

1, not necessarily
smooth), and where the yi are points onD, not necessarily distinct. LetRCN(X, β)
be the set of all such relevant curves.

Remark. We call such maps ”relevant maps” because we will show later (see proposi-
tion 4.4) that, under favourable circumstances, we can arrange that all curves counted
by the Gromov-Witten invariants are of this type.

The first property we want to show is that every relevant curve is the image of some
relevant map. This and the following results in this section will be set-theoretic, since
this is all we need.

Proposition 1.2 Let X be a smooth projective variety, 0 6= β ∈ H+
2 (X), and N ≥ 3.

Then there is a natural surjective map

µ : RMN(X, β)→ RCN(X, β)

which is given by

µ(C, x1, . . . , xN) = (f(C), f(x1), . . . , f(xN)).

Proof. Let (C, x1, . . . , xN , f) be a relevant map in X. We have to show that
(f(C), f(x1), . . . , f(xN)) is a relevant curve.

4



• Obviously, f(C) ⊂ X is a 1-dimensional, closed, connected subvariety of X with
f(xi) ∈ f(C).

• By definition of a relevant map, [f(C)] = f∗[C] = β.

• Every irreducible component of f(C) can be written as f(C0) with C0 a rational
irreducible component of C. Since C0 is rational, so is f(C0).

This shows that (f(C), f(x1), . . . , f(xN)) is a relevant curve.

To show the surjectivity of the map µ, let (D, y1, . . . , yN) be a relevant curve in X and
D = D1 ∪ · · · ∪Dm its decomposition into irreducible components.

By assumption, each Di is a rational curve, hence we can find rational maps fi : Ci → Di

with Ci ∼= P
1 for all i. Of course, the fi have to be surjective morphisms. Moreover, we

have f∗[Ci] = Di, since the fi are birational.

Now the procedure to glue the fi : Ci → X to a map f : C → X and to choose
points x1, . . . , xN ∈ C such that (C, x1, . . . , xN , f) becomes a relevant map with image
(D, y1, . . . , yN ) under µ is rather obvious, but nevertheless we will give it in detail.

Since D is connected, we can assume that its components Di are numbered in such a
way that for each i = 2, . . . ,m there is an a(i) ∈ {1, . . . , i− 1} such that there exists a
point y′i ∈ Di ∩Da(i).

Now, for every y ∈ D which is either one of the yk or one of the y′i, do the following:

If y = y′i for exactly one i = 2, . . . ,m, but y 6= yk for all k = 1, . . . , N , then glue Ci and
Ca(i) together at a point which is mapped to y both by fi and by fa(i).

If y = yk for exactly one k = 1, . . . , N , but y 6= y′i for all i = 2, . . . ,m, then choose some
point xk in some Ci with fi(xk) = y.

In all other cases, let C ′y be a smooth rational curve and let f ′y : C ′y → {y} be the
constant map. If y 6= y′i for all i = 2, . . . ,m, glue C ′y to some point in some Ci which is
mapped to y. Otherwise, for any component Ci such that y = y′i or i = a(j) for some
j with y = y′j, choose a point on this component which is mapped to y and glue it at
this point to some point on C ′y. In both cases, for every k with y = yk choose a point
xk ∈ C

′
y. (All points chosen on C ′y, the xk as well as the points glued to the Ci, have to

be distinct.)

Now let C be the union of all Ci and C ′y, glued together as described above. Let
f : C → X be the map induced by fi and f

′
y. Then, as can be seen from the construction,

(C, x1, . . . , xN , f) is a relevant map with image (D, y1, . . . , yN) under µ. Hence, the map
µ is surjective. 2

The next result will eventually allow us to establish a one-to-one correspondence between
certain stable maps and their images.

Lemma 1.3 Let

µ′ = µ|RM ′
N (X,β) : RM

′
N(X, β)→ RCN(X, β)
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be the restriction of the map considered in proposition 1.2. Then

(i) the image of µ′ is contained in the subset of RCN(X, β) parametrizing irreducible
curves.

(ii) µ′ is injective.

(iii) The stable maps in RM ′
N(X, β) have no non-trivial automorphisms.

Proof. If (C, x1, . . . , xN , f) ∈ RM
′
N(X, β), then C is irreducible, so f(C) is irreducible,

too. This shows (i).

Let (C, x1, . . . , xN , f) and (C ′, x′1, . . . , x
′
N , f

′) be two relevant maps in RM ′
N(X, β) having

the same image

(f(C), f(x1), . . . , f(xN)) = (f ′(C ′), f ′(x′1), . . . , f
′(x′N)).

Since C ∼= C ′ ∼= P
1 and f , f ′ are birational, we can consider the composition α : f−1 ◦f ′

which is a also a birational map and therefore an isomorphism between C ′ and C.
Because of the condition f−1(f(xi)) = {xi}, α maps each x′i to xi and hence induces
an isomorphism between the two relevant maps, so they represent the same element
in RM ′

N(X, β), which proves (ii). Finally, the isomorphism constructed is obviously
unique, which shows (iii). 2

2 Calculation of the obstruction h1(C, f ∗TX̃)

We now start to study the relation between stable maps on a variety X and on its blow-
up X̃ in a point P ∈ X. Our main problem will be that X̃ is never a convex variety
in the sense of [K], since there are always stable maps (C, x1, . . . , xN , f) whose image is
contained in the excepional divisor where h1(C, f ∗TX̃) does not vanish (see e.g. lemma
2.2). Hence, we expect the moduli spaces of stable maps into X̃ to have the ”wrong”
dimension. Indeed, it is easy to give an example, even for curves that do not lie entirely
in the exceptional divisor:

Example. Let X = P
n and denote by H ′ the class of a line in X. We consider curves

of degree d, whose moduli space is well known to have the expected dimension, namely

dim M̄N(X, dH
′) = virt dim M̄N(X, dH

′) = d (n+ 1) + n− 3 +N.

Now consider curves on the blow-up X̃ having homology class dH ′. Of course, the virtual
dimension remains the same as above, but now we have new possibilities of realizing
curves with this homology class using reducible curves where parts of it are lying in the
exceptional divisor E: for example, take the strict transform C1 of any curve of degree
d on X passing e times through the blown up point. This curve has homology class
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dH ′ − eE ′, where E ′ denotes the class of a line in E ∼= P
n−1. Since passing through P

gives n− 1 conditions, the dimension of the space of such curves is (at least)

D1 = d (n+ 1)− e (n− 1) + n− 3.

Now take any curve C2 in the exceptional divisor E ∼= P
n−1 of degree e, the space of

such curves has dimension en+ n− 4. To be able to glue it to C1, we have to require it
to pass through one of the points where C1 meets the exceptional divisor, which gives
n− 2 conditions on C2. Hence, for the choice of C2, we have

D2 = en− 2

degrees of freedom. Now we can consider reducible curves made up of two components
C1 and C2 as above, these curves have homology class dH ′ and hence give, together
with N marked points, a subspace of M̄N(X̃, dH

′). But the dimension of this space is
(at least)

D1 +D2 +N = d (n+ 1) + n− 3 +N + e− 2

which is bigger than the expected dimension of M̄N(X̃, dH
′) if e > 2.

It will be the aim of this section to calculate h1(C, f ∗TX̃) if f : C → X̃ is a map from a
prestable curve of genus zero to X̃. This will tell us more precisely which parts of the
moduli spaces have the ”correct” dimension.

First we introduce some notation which will be used throughout the rest of the paper
when dealing with blow-ups. Let X be a smooth n-dimensional projective variety,
n ≥ 2. We will soon specialize to the case where X = P

n, but for the moment we keep
it arbitrary.

Let X̃ be the blow-up of X in a fixed point P ∈ X, such that we have a cartesian
diagram

E
i

−−−→ X̃




y





y

π

P −−−→ X

By a Mayer-Vietoris type argument (see e.g. [GH], ch. 4.1) one sees that

H2(X̃) = H2(X)⊕ Z · E ′

where E ′ is the class of a line in the exceptional divisor E ∼= P
n−1.

In the case X = P
n we will denote both the hyperplane class of X as well as its pullback

to X̃ by H. The class of a line will be denoted H ′.

We now start by proving a lemma which will allow us in favourable cases to reduce the
calculation of h1(C, f ∗TX̃) to computations that do not involve X̃ but only X.
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Lemma 2.1 Let C be a smooth curve and f : C → X̃ a morphism such that f(C) 6⊂ E.
Let D := f ∗(E), which is an effective divisor on C. Then there is a commutative
diagram of sheaves on C

f ∗π∗TX(−D) →f ∗π∗TX

@
@@

¡
¡¡

↘
↗

f ∗TX̃

where all the three morphisms are injective, and all of them are isomorphisms away from
the support of D.

Proof. Since E = P ×X X̃, we have i∗ΩX̃/X = ΩE/P = ΩE. As ΩX̃/X has support on
E, this can be rewritten as i∗ΩE = ΩX̃/X . Hence, there is an exact sequence of sheaves

on X̃
0→ π∗ΩX → ΩX̃ → i∗ΩE → 0.

Dualizing, we get
0→ TX̃ → π∗TX → Ext1(i∗ΩE,OX̃)→ 0.

By duality ([HR], thm. III 6.7), we have

Ext1(i∗ΩE,OX̃) = i∗ Ext
1(ΩE, NE/X̃) = i∗TE(−1),

therefore we get a morphism π∗TX → i∗TE(−1) which we can restrict to E to get a
morphism π∗TX |E → i∗TE(−1) fitting into a commutative diagram

0 −−−→ π∗TX(−E) −−−→ π∗TX −−−→ π∗TX |E −−−→ 0
∥

∥

∥





y

0 −−−→ TX̃ −−−→ π∗TX −−−→ i∗TE(−1) −−−→ 0

From this we can deduce the existence of a map π∗TX(−E)→ TX̃ giving a commutative
diagram

π∗TX(−E) →π∗TX

@
@@

¡
¡¡

↘
↗

TX̃

with all three morphisms injective. Finally, apply the functor f ∗ to get the desired result

f ∗π∗TX(−D) →f ∗π∗TX

@
@@

¡
¡¡

↘
↗

f ∗TX̃

Since f(C) 6⊂ E by assumption, the morphisms are still injective, and certainly they are
also isomorphisms away from the support of D. 2
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We are now ready to compute the relevant cohomology groups in the case where C = P
1

andX = P
n, namely h1(C, f ∗TX̃(−ε)) for ε ∈ {0, 1}, where f

∗TX̃(−ε) is to be understood
as (f ∗TX̃)⊗OC(−ε).

Lemma 2.2 Let C = P
1, X = P

n, f : C → X̃ a morphism, and ε ∈ {0, 1}.

(i) If f(C) 6⊂ E or f is a constant map then h1(C, f ∗TX̃(−ε)) = 0.

(ii) If f(C) ⊂ E and the map f : C → E ∼= P
n−1 has degree e > 0 then

h1(C, f ∗TX̃(−ε)) = e− 1 + ε.

Proof. (i): If f is a constant map, the assertion is trivial, so let us assume that the
homology class of the map is f∗[C] = dH ′ − eE ′ with d > 0, e ≥ 0. We have d = f ∗H
and e = f ∗E, and since f ∗(H − E) is an effective divisor on C, it follows that e ≤ d.

By lemma 2.1, there is a commutative diagram

f ∗π∗TX(−e− ε) →f ∗π∗TX(−ε)

@
@@

¡
¡¡

↘
↗

f ∗TX̃(−ε)

where, in particular, the map f ∗π∗TX(−e− ε)→ f ∗TX̃(−ε) is injective and an isomor-
phism on a dense open subset of C. Hence we have an exact sequence

0→ f ∗π∗TX(−e− ε)→ f ∗TX̃(−ε)→ Q→ 0

with some sheaf Q on C which has zero-dimensional support. Therefore, to prove the
lemma, it suffices to show that h1(C, f ∗π∗TX(−e− ε)) = 0. But this follows easily from
the Euler sequence, pulled back to C and twisted by OC(−e− ε):

0→ OC(−e− ε)→ (n+ 1)OC(d− e− ε)→ f ∗π∗TX(−e− ε)→ 0,

since d− e− ε ≥ −ε ≥ −1.

In particular, we also see that h1(C, f ∗π∗TX(−ε)) = 0, which will be needed in the proof
of part (ii).

(ii): We consider the normal sequence

0→ TE → i∗TX̃ → NE/X̃ → 0.

As NE/X̃ = OE(−1), pulling back to C and twisting by OC(−ε) yields

0→ f ∗TE(−ε)→ f ∗TX̃(−ε)→ OC(−e− ε)→ 0.

By the remark at the end of part (i), applied to E ∼= P
n−1 instead of X = P

n, we see
that h1(C, f ∗TE(−ε)) = 0. Since h1(C,OC(−e− ε)) = e− 1 + ε, the result follows. 2

Finally, we consider the case where C is a genus 0 prestable curve in the sense of [BM],
i.e. a curve with at most ordinary double points as singularities and whose arithmetic
genus is zero.
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Proposition 2.3 Let C be a genus 0 prestable curve, X = P
n, and f : C → X̃ a

morphism. Let e′ = e′(C) be ”the sum of the exceptional degrees of all components of C
which are mapped into E”, i.e.

e′ :=
∑

C′

{ e | C ′ is an irreducible component of C such that f∗[C
′] = e · E ′ }.

Then h1(C, f ∗TX̃) ≤ e′, with strict inequality holding if e′ > 0.

Proof. The proof is by induction on the number of irreducible components of C. If
C itself is irreducible, the statement follows immediately from lemma 2.2.

Now let C be reducible, so assume C = C0 ∪ C
′ where C ′ ∼= P

1, C0 ∩ C
′ = {Q}, and

where C0 is a prestable curve for which the induction hypothesis holds. Consider the
exact sequences

0→ f ∗TX̃ → f ∗0TX̃ ⊕ f ′
∗
TX̃

ϕ
→ f ∗QTX̃ → 0

0→ f ′
∗
TX̃(−Q)→ f ′

∗
TX̃

ψ
→ f ∗QTX̃ → 0

where f0, f
′, and fQ denote the restrictions of f to C0, C

′, and Q, respectively.

From these sequences we deduce that

dim cokerH0(ϕ) = h1(C, f ∗TX̃)− h1(C0, f
∗
0TX̃)− h1(C ′, f ′

∗
TX̃)

dim cokerH0(ψ) = h1(C ′, f ′
∗
TX̃(−Q))− h1(C ′, f ′

∗
TX̃).

Since we certainly have dim cokerH0(ϕ) ≤ dim cokerH0(ψ), we can combine these equa-
tions into the single inequality

h1(C, f ∗TX̃) ≤ h1(C0, f
∗
0TX̃) + h1(C ′, f ′

∗
TX̃(−Q)).

Now, by the induction hypothesis on f0, we have h1(C0, f
∗
0TX̃) ≤ e′(C0) with strict

inequality holding if e′(C0) > 0. On the other hand, we get h1(C ′, f ′∗TX̃(−Q)) ≤ e′(C ′)
by lemma 2.2. Since e′(C) = e′(C0) + e′(C ′), the proposition follows by induction. 2

3 The morphism φ : M̄N(X̃, β − eE ′)→ M̄N(X, β)

The proposition 2.3 shows us that, at least in the case X = P
n, problems with nonvan-

ishing h1(C, f ∗TX̃) only arise if some irreducible components of C are mapped into the
exceptional divisor. Since these components are contracted by the map π : X̃ → X, we
are led to study the relation between stable maps in the blow-up X̃ and their image in
X.

Let Mτ (X, β) denote the substack of M̄N(X, β) of those stable maps (C, x1, . . . , xN , f)
where (C, x1, . . . , xN) has a fixed topology which is encoded in the graph τ as introduced
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in [BM]. We will not need the details of this encoding in this paper, all that will be
important for us is that there is a stratification of M̄N(X, β) by the Mτ (X, β) for all
possible τ , such that in each stratum we have a fixed structure of the singularities of the
curve C, and the marked points lie in fixed components of C. Since we only consider
stable maps, there is only a finite number of possible graphs τ for given N and β.

Note that this is not the stack M̄τ (X, β) as defined in [BM].

By the functorial properties of moduli spaces of stable maps [BM], the map π : X̃ → X
induces morphisms φ : M̄N(X̃, β − eE ′) → M̄N(X, β) for all e, where β ∈ H+

2 (X) and
where we use the decomposition H2(X̃) = H2(X)⊕ Z ·E ′. We may restrict these maps
to the case where the underlying curves have topology τ , so we also get morphisms

φτ :Mτ (X̃, β − eE ′)→ M̄N(X, β).

As we have seen in the example above, the dimension of the stack M̄N(X̃, β− eE
′) may

be larger than its virtual dimension, which is

virt dim M̄N(X̃, β − eE ′) = χ(C, f ∗TX̃) +N − 3

= n−KX · β − e (n− 1) +N − 3

= virt dim M̄N(X, β)− e (n− 1).

The aim of this section is to prove the following proposition:

Proposition 3.1 Let X = P
n and φ : M̄N(X̃, β − eE ′) → M̄N(X, β) be the morphism

as above. Then

dimφ(M̄N(X̃, β − eE ′)) ≤ virt dim M̄N(X̃, β − eE ′).

Moreover, if R ⊂ M̄N(X̃, β − eE ′) denotes the subspace of all reducible stable maps in
M̄N(X̃, β − eE ′) (i.e. the maps (C, x1, . . . , xN , f) with C reducible), then

dimφ(R) < virt dim M̄N(X̃, β − eE ′).

Proof. Since the moduli spacesMτ (X̃, β−eE
′) form a stratification of M̄N(X̃, β−eE

′),
it is enough to show the statement for the restricted maps φτ . Hence we fix a topology
τ and associate to it the following numerical invariants:

• Let S be the number of nodes of a curve with topology τ . We divide this number
into S = SEE + SXX + SXE, where SEE (resp. SXX , SXE) denotes the number of
nodes joining two exceptional components of C (resp. two non-exceptional com-
ponents, or one exceptional with one non-exceptional component). Here and in
the following we call an irreducible component of C exceptional if it is mapped by
f into the exceptional divisor and it is not contracted by f , and non-exceptional
otherwise.
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• Let P be the (minimal) number of additional marked points which are necessary
to stabilize C. We divide the number P into P = PE + PX , where PE (resp. PX)
is the number of marked points that have to be added on exceptional components
(resp. non-exceptional components) of C to stabilize C.

Now let C = (C, x1, . . . , xN , f) ∈Mτ (X̃, β− eE
′) be a stable map of topology τ , and let

TCφτ : TMτ (X̃,β−eE′),C → TM̄N (X,β),φ(C)

be the differential of the map φτ at the point C. As we always work over the ground
field of complex numbers, to prove the proposition it suffices to show that

dim imTCφτ ≤ virt dim M̄N(X̃, β − eE ′)

for all C, and that strict inequality holds if τ is a topology corresponding to reducible
stable maps.

The tangent space TMτ (X̃,β−eE′),C is given by the hypercohomology group [K]

TMτ (X̃,β−eE′),C = H
1(T ′C → f ∗TX̃)

where T ′C = TC(−x1 − · · · − xN) and where we put the sheaves T ′C and f ∗TX̃ in degrees
0 and 1, respectively. This means that there is an exact sequence

0→ H0(C, T ′C)→ H0(C, f ∗TX̃)→ TMτ (X̃,β−eE′),C → H1(C, T ′C)

(note that the first map is injective because C is a stable map). By Riemann-Roch we
get χ(C, T ′C) = S + 3−N . Moreover, by proposition 2.3 we have

dimH0(C, f ∗TX̃) ≤ χ(C, f ∗TX̃) + e′ (∗)

where e′ is the ”sum of the exceptional degrees of the components of C” as introduced
there. It follows that

dimTMτ (X̃,β−eE′),C ≤ χ(C, f ∗TX̃) + e′ +N − S − 3

= virt dim M̄N(X̃, β − eE ′) + e′ − S.

We will now study the map

φ′ : H0(C, f ∗TX̃)/H
0(C, T ′C)→ TM̄N (X,β),φ(C)

induced by the composition of the maps H0(C, f ∗TX̃)→ TMτ (X̃,β−eE′),C → TM̄N (X,β),φ(C)

considered above. To prove the proposition, we will show that

dimkerφ′ ≥ e′ − S

and that strict inequality holds in certain cases. Obviously, we may assume that e′−S ≥
0.
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Let C0 be a maximal connected subscheme of C consisting only of exceptional com-
ponents of C. Let f0 be the restriction of f to C0 and let Q1, . . . , Qa be the nodes
of C which join C0 with the rest of C (they are of type SXE). Now every section of
f ∗0TE(−Q1 − · · · − Qa) can be extended by zero to a section of f ∗TX̃ which is mapped
to zero by φ′ since these deformations take place entirely within the exceptional divisor.
As E ∼= P

n−1 is a convex variety, we have

h0(C0, f
∗
0TE) = χ(C0, f

∗
0TE) = n− 1 + n · e′(C0)

and therefore we can estimate the dimension of the space of deformations that we have
just found:

h0(C0, f
∗
0TE(−Q1 − · · · −Qa)) ≥ n− 1 + n · e′(C0)− (n− 1) a.

(The right hand side of this inequality may well be negative, but nevertheless the state-
ment is correct also in this case, of course.)

We will now add up these numbers for all possible C0, say there are B of them. The sum
of the e′(C0) will then give e′ = e′(C), and the sum of the a will give SXE. Note that
there is a PE-dimensional space of infinitesimal automorphisms of C, i.e. a subspace of
H0(C, T ′C), included in the deformations that we have just found, and that these do not
give non-trivial elements in the kernel of φ′. Therefore we have

dimkerφ′ ≥ B (n− 1) + ne′ − (n− 1)SXE − PE

= (n− 1) · (B + e′ − SXE) + e′ − PE

≥ B + e′ − SXE + e′ − PE (B + e′ − SXE ≥ 0 since e′ ≥ S)

= e′ − S + (B + e′ + SEE − PE) + SXX . (+)

Hence, it is certainly sufficient to show that PE ≤ B + e′ + SEE.

To show this, we look at the exceptional components of C where marked points have to
be added to stabilize C. We have to distinguish three cases:

• Components on which two points have to be added, and whose (only) node is
of type SEE: those give a contribution of 2 to PE, but they also give at least 1
to e′ and to SEE (and every node of type SEE ”belongs” to at most one such
component).

• Components on which two points have to be added, and whose (only) node is of
type SXE: those give a contribution of 2 to PE, but they also give at least 1 to e′

and to B (since such a component alone is one of the C0 considered above).

• Components on which only one point has to be added: those give a contribution
of 1 to PE, but they also give at least 1 to e′.

This finishes the proof of the ”≤”-part of the lemma.

To show the strict inequality if C is reducible, we again distinguish two cases:
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• e′ > 0: Then, by lemma 2.3, the inequality (∗) is already strict.

• e′ = 0: If C is reducible and e′ = 0, then we must have SXX > 0, hence we get
the strict inequality by (+).

This completes the proof. 2

4 Geometric interpretation of the Gromov-Witten

invariants on X̃

We start this section by proving some moving lemmas which will be needed to show
that, in favourable cases, the intersection product on the moduli space which defines
the Gromov-Witten invariants can be made transverse.

Lemma 4.1 Let X be a scheme of finite type and f : X → P
m a morphism. Then, for

a generic hyperplane H ⊂ P
m, we have:

(i) f−1(H) is (empty or) of pure codimension 1 in X.

(ii) If X is smooth then the divisor f−1(H) is a smooth subscheme of X counted with
multiplicity one.

Proof. See [J], cor. 6.11. 2

Lemma 4.2 Let X be a scheme of finite type, Y a smooth, connected, projective scheme,
and f : X → Y a morphism. Let L be a base point free linear system on Y . Then, for
generic D ∈ L, we have:

(i) f−1(D) is (empty or) purely 1–codimensional.

(ii) If X is smooth then the divisor f−1(D) is a smooth subscheme of X counted with
multiplicity one.

Proof. The base point free linear system L on Y gives rise to a morphism s : Y → P
m

where m = dimL. Composing with f yields a morphism X → P
m, and the divisors

D ∈ L correspond to the inverse images under s of the hyperplanes in P
m. Hence, the

statement follows from lemma 4.1, applied to the map X → P
m. 2

Lemma 4.3 Let X be a Deligne-Mumford stack of finite type, Yi smooth, connected,
projective schemes, and fi : X → Yi morphisms for i = 1, . . . , N . Let αi ∈ Aci(Yi)
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be cycles of codimensions ci ≥ 1 on Yi that can be written as intersection products of
divisors on Yi

αi = [D′i,1] · · · · · [D
′
i,ci

] (i = 1, . . . , N)

such that the complete linear systems |D′
i,j| are base point free (this always applies, for

example, in the case Yi = P
n). Let c = c1 + · · ·+ cN . Then, for almost all Di,j ∈ |D

′
i,j|,

we have:

(i) Vi := Di,1 ∩ · · · ∩Di,ci is smooth of pure codimension ci in Yi, and the intersection
is transverse. In particular, [Vi] = αi.

(ii) V := f−11 (V1) ∩ · · · ∩ f
−1
N (VN) is of pure codimension c in X. In particular, if

dimX < c then V = ∅.

(iii) If dimX = c and X contains a dense, open, smooth substack U such that each
geometric point of U has no nontrivial automorphisms then V consists of exactly
(f ∗1α1 · · · f

∗
NαN)[X] points of X (which lie in U and are counted with multiplicity

one).

Proof. (i) follows immediately by recursive application of lemma 4.1 to the schemes
Yi.

If X is a scheme, then (ii) follows by recursive application of lemma 4.2. If X is a
Deligne-Mumford stack, then it has an étale cover S → X by a scheme S, so (ii) holds
for the composed maps S → X → Yi. But since the map S → X is étale, the statement
is also true for the maps X → Yi.

A Deligne-Mumford stack U whose generic geometric point has no nontrivial automor-
phisms always has a dense open substack U ′ which is a scheme (see e.g. [V]. To be more
precise, U is a functor and hence an algebraic space ([DM], ex. 4.9), but an algebraic
space always contains a dense open subset U ′ which is a scheme ([Kn], p. 25)). Since
U ′ is dense in X and therefore has smaller dimension, applying (ii) to the restrictions
fi|X\U ′ : X\U ′ → Yi gives that V is contained in the smooth scheme U ′, hence it suffices
to consider the restrictions fi|U ′ : U ′ → Yi. But since U ′ is a smooth scheme, we can
apply lemma 4.2 (ii) recursively and get the desired result. 2

We are now ready to give a geometric interpretation of the Gromov-Witten invariants on
P̃
n with only non-exceptional classes. First, we show that the invariants can be thought

of as certain numbers of stable maps to P̃
n.

Proposition 4.4 Let X = P
n, 0 6= β ∈ H+

2 (X) and e ∈ Z. Let α1, . . . , αN ∈ A≥1(X)
such that

∑

i codimαi = virt dim M̄N(X̃, β − eE ′). Choose generic subschemes Vi ⊂ X
with [Vi] = αi in the sense of lemma 4.3, which do not meet the blown up point P , such
that the Vi may also be regarded as subschemes of X̃.

Then the number of stable maps (C, x1, . . . , xN , f) ∈ M̄N(X̃, β − eE ′) passing through
the Vi (i.e. such that f(xi) ∈ Vi) is finite and equal to the Gromov-Witten invariant

ΦX̃(π
∗α1, . . . , π

∗αN | β − eE ′).
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Moreover, all these stable maps are contained in the space RM ′(X̃, β− eE ′) (see defini-
tion 1.1), and they are all counted with multiplicity one in the Gromov-Witten invariant.

Remark. In particular, if e < 0 and β 6= 0 it follows that

ΦX̃(π
∗α1, . . . , π

∗αN | β − eE ′) = 0

for all α1, . . . , αN ∈ A
∗(X), because there are no irreducible curves in X̃ with homology

class β − eE ′ for e < 0, β 6= 0.

Proof. For i = 1, . . . , N consider the commutative diagram

M̄N(X̃, β − eE ′)
φ

−−−→ M̄N(X, β)

p̃i





y





y

pi

X̃
π

−−−→ X

where pi, p̃i are the evaluation maps at the i-th marked point. By definition [B], the
Gromov-Witten invariant mentioned in the proposition is equal to

ΦX̃(π
∗α1, . . . , π

∗αN | β − eE ′) = (p̃∗1π
∗α1 · · · p̃

∗
Nπ

∗αN) · [M̄N(X̃, β − eE ′)]virt (∗)

where [M̄N(X̃, β − eE ′)]virt denotes the virtual fundamental class. As shown in propo-
sition 2.3, we have h1(C, f ∗TX̃) = 0 whenever C is irreducible. Therefore, on this part
of the moduli space, the virtual fundamental class coincides with the usual one (since,
by construction of virtual fundamental classes, this can be checked locally). This means
that if I ⊂ M̄N(X̃, β − eE ′) is the substack consisting of irreducible maps and Ī its
closure, then one can write

[M̄N(X̃, β − eE ′)]virt = [Ī] + γ ∈ Avirt dim M̄N (X̃,β−eE′)(M̄N(X̃, β − eE ′))

where γ is some cycle in M̄N(X̃, β − eE ′) whose support is entirely contained in the
substack R ⊂ M̄N(X̃, β − eE ′) of reducible stable maps. But, by proposition 3.1, we
have dimφ(R) < virt dim M̄N(X̃, β − eE ′), therefore, by lemma 4.3 (ii) applied to the
restrictions pi|φ(R) : φ(R)→ X one concludes that, for generic choice of the Vi, there are
no stable maps in φ(R) passing through the Vi. This means that there are no reducible
stable curves in M̄N(X̃, β− eE

′) passing through the Vi. In particular, the contribution
in (∗) coming from the cycle γ vanishes, and we have

ΦX̃(π
∗α1, . . . , π

∗αN | β − eE ′) = (p̃∗1π
∗α1 · · · p̃

∗
Nπ

∗αN) · [Ī].

So we only have to evaluate an intersection product with the usual fundamental class
on Ī. By lemma 4.3 (ii) this means that the number of stable maps passing through the
Vi is finite and we are simply counting the number of such maps, although we do not
yet know whether they are counted with multiplicity one.
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We do know, however, that all stable maps passing through the Vi are irreducible, which
means, for example, that we can restrict ourselves to the case e ≥ 0 since otherwise there
certainly are no such curves. But we can restrict this even further. For example, we
can assume that none of these maps is a finite covering map: for each irreducible finite
covering map f : P

1 → X̃ of degree a > 1 and homology class β − eE ′, there is also
an irreducible stable map f ′ : P

1 → X̃ of homology class (β − eE ′)/a. But the moduli
space of maps of homology class (β − eE ′)/a is smaller than that of β − eE ′, since, if
β = dH ′ for some d > 0,

virt dim M̄N(X̃, β − eE ′)− virt dim M̄N(X̃, (β − eE ′)/a)

= −KX · β − e(n− 1) +
1

a
(KX · β + e (n− 1))

= (d (n+ 1)− e (n− 1)) · (1−
1

a
)

= [(d− e) · (n+ 1) + 2e] · (1−
1

a
)

> 0 since d ≥ e ≥ 0

(note that on the space of irreducible curves, the virtual dimension coincides with the
actual one). Hence by lemma 4.3 (ii), for generic Vi there are no maps f ′ as above
passing through the Vi, and therefore there are also no finite covering maps f : P

1 → X.

So, in the terminology of definition 1.1, we are only counting irreducible relevant maps.
Let us denote the subspace of irreducible relevant maps by Z ⊂ M̄N(X̃, β − eE ′).
Certainly, the locus RM ′

N(X̃, β − eE ′) ⊂ Z of the maps (C, x1, . . . , xN , f) in Z where
f−1(f(xi)) = {xi} for all i is dense in Z. Since RM ′

N(X̃, β − eE ′) is smooth and, by
lemma 1.3, the geometric points in RM ′

N(X̃, β−eE
′) have no non-trivial automorphisms,

we can apply lemma 4.3 (iii) to the restricted maps pi|Z : Z → X̃ and the statement of
the proposition follows. 2

Finally, we use the results of section 1 to reformulate this proposition in terms of em-
bedded curves in P

n with multiple points, which is our main result.

Proposition 4.5 Let d > 0, e ≥ 0 and α1, . . . , αN ∈ A
≥1(Pn) such that

∑

i

(codimαi − 1) = d (n+ 1)− e (n− 1) + n− 3.

Let P ∈ P
n be a point. Choose generic subschemes Vi ⊂ P

n with [Vi] = αi in the sense
of lemma 4.3.

Then the number of rational curves in P
n (purely 1-dimensional subvarieties birational

to P
1) of degree d which have non-empty intersection with all Vi and which pass through

the point P with total multiplicity e, where each such curve C is counted with multiplicity

](C ∩ V1) · · · ](C ∩ VN),
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is equal to the Gromov-Witten invariant on P̃
n

ΦP̃n(π
∗α1, . . . , π

∗αN | dH
′ − eE ′).

Proof. By proposition 4.4, for generic Vi the Gromov-Witten invariant mentioned in
the proposition counts maps (C, x1, . . . , xN , f) in RM

′
N(P̃

n, dH ′− eE ′) with multiplicity
one which pass through the Vi, and there are no further stable maps in M̄N(X̃, dH

′−eE ′)
passing through the Vi. By proposition 1.2 and lemma 1.3, this can be reformulated
by saying that we are counting irreducible relevant curves in P̃

n with multiplicity one
which pass through the Vi, i.e. rational curves C ⊂ P̃

n of homology class dH ′ − eE ′

together with points pi ∈ C such that pi ∈ Vi for all i. This is obviously the same as
counting rational curves C ⊂ P̃

n meeting all the Vi, and counting them with multiplicity
](C ∩ V1) · · · ](C ∩ VN).

But, using the strict transform of curves C ⊂ P
n under the blow-up π : P̃

n → P
n, there

is a one-to-one correspondence between rational curves in P
n of degree d which pass

through P with multiplicity e and rational curves in P̃
n with homology class dH ′− eE ′.

Of course, the property of meeting the subvarieties Vi is not affected by this strict
transform, hence the proposition follows. 2

5 Calculation of the Gromov-Witten invariants of

P̃
n

To compute the Gromov-Witten invariants of P̃
n, we recall the First Reconstruction

Theorem of Kontsevich and Manin.

Proposition 5.1 Let X be a smooth projective variety such that the algebraic part of
H∗(X) is generated as a ring by divisor classes on X. Then all Gromov-Witten invari-
ants ΦX(α1, . . . , αN | β) with αi ∈ A∗(X) and β ∈ H+

2 (X) can be reconstructed from
those with N = 3 and α3 ∈ A

1(X).

Proof. [KM] theorem 3.1, applied to the Gromov-Witten classes constructed in [B].
An explicit algoritm to compute the invariants is also given in [KM]. 2

Now we apply this result to the case of X = P̃
n. We set Hi = H i, Ei = −(−E)i, and

choose
B = {H0, H = H1, H2, . . . , Hn, E = E1, E2, . . . , En−1}

as a basis of A∗(P̃n). In the following, we consider only invariants whose classes are in
this basis.

Proposition 5.2 All Gromov-Witten invariants on P̃
n can be computed recursively by

proposition 5.1 using the initial data
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(i) ΦP̃n(pt, pt,H | H ′) = 1, where pt denotes the class of a point,

(ii) ΦP̃n(En−1, En−1, E | E
′) = −1,

(iii) ΦP̃n(α1, α2, α3 | H
′−E ′) = 1 if αi ∈ B and codimα1+codimα2+codimα3 = n+2,

(iv) ΦP̃n(α1, α2, α3 | dH
′+ eE ′) = 0 in all other cases where codimα3 = 1 and αi ∈ B.

Proof. Let ΦP̃n(α1, α2, α3 | dH
′ + eE ′) be an invariant with codimα3 = 1. Let

i = codimα1 and j = codimα2, such that 1 ≤ i, j ≤ n.

Case 1: d = 0, e > 0. Then the dimension condition reads

i+ j = e (n− 1) + n− 1 = (e− 1)(n− 1) + 2n− 2.

Since these curves are contained in the exceptional divisor, the Gromov-Witten invariant
is zero if there is a point class (or any other non-exceptional class) among the αi. Hence
we may assume that i+ j ≤ 2n− 2. But then it follows that e = 1 and α1 = α2 = En−1,
and we are in case (ii).

To prove (ii), note that for maps f : C → E of degree 1 into the exceptional divisor,
we have h1(C, f ∗TP̃n) = 0 by proposition 2.3, hence the corresponding moduli stack is
smooth of the expected dimension, and its virtual fundamental class coincides with the
usual one. Now consider the invariant

ΦP̃n(Hn−1 − En−1, Hn−1 − En−1, H − E | E ′).

The classes Hn−1 −En−1 and H −E are represented on P̃
n by the strict transform of a

line (resp. hyperplane) in P
n passing through P . These intersect the exceptional divisor

transversally in a point (resp. in a hyperplane in E), hence this Gromov-Witten invariant
simply counts the number of lines in E through two points in E (and intersecting a
hyperplane in E), which is 1.

Note that Gromov-Witten invariants ΦP̃n(α1, . . . , αN | eE
′) with e > 0 vanish if one of

the αi is a non-exceptional class, since one can choose a subvariety Vi ⊂ P
n representing

αi which does not pass through the exceptional divisor, such that there are no stable
maps of homology class eE ′ passing through Vi. Hence, by linearity of the Gromov-
Witten invariants it follows that

ΦP̃n(En−1, En−1, E | E
′) = −ΦP̃n(Hn−1 − En−1, Hn−1 − En−1, H − E | E ′) = −1,

which proves (ii).

Case 2: d > 0. Then we must have

0 ≤ (H − E)(dH ′ + eE ′) = d+ e

and the dimension condition is

i+ j = d (n+ 1) + e (n− 1) + n− 1

= (d+ e)(n− 1) + 2d+ n− 1. (∗)
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If d + e > 0, then we have i + j ≥ 2d + 2n − 2, therefore it follows that d = 1 and
α1 = α2 = pt, which is (i). The statement of (i) follows immediately from proposition
4.5.

Now assume that e = −d. Since any curve in P
n of degree d passing with multiplicity d

through a given point is a union of lines, the image of any stable map of homology class
dH ′ − dE ′ is simply a line passing through the exceptional divisor (note that it is not
possible to have a union of some lines since such a curve would not be connected in P̃

n).

So we consider the moduli space of lines in P̃
n intersecting E, which is canonically

isomorphic to E ∼= P
n−1 itself. The condition that such a line meets a generic linear

subspace of codimension k in P
n or E is given by a codimension k−1 linear subspace in

the moduli space E. Therefore, the moduli space of lines intersecting E and two linear
subspaces corresponding to α1 and α2 is

dimE − (i− 1)− (j − 1) = n− i− j + 1. (+)

So to get a non-zero invariant, we must have i+ j ≤ n+1. Therefore from (∗) it follows
that d = 1, in which case (+) is zero, such that there is exactly one line satisfying
the incidence conditions. Note that by lemma 2.3 the moduli stack of stable maps of
homology class H ′ − E ′ is smooth of the expected dimension, and we indeed count the
number of lines intersecting E and two classes representing α1 and α2. This proves (iii).

Finally, we have also shown that (i)–(iii) are the only non-zero invariants on P
n with

N = 3 and codimα3 = 2, which proves (iv). 2

A few numerical examples of invariants can be found in tables 1 to 3. There are some
remarks that can be made about these numbers:

• Let α1, . . . , αk be non-exceptional classes, i.e. αi ∈ π
∗A∗(Pn). If d > 0 then

ΦP̃n(α1, . . . , αn | dH
′ − E ′) = ΦP̃n(α1, . . . , αn, pt | dH

′).

This follows, for example, from proposition 4.5, since both sides count the number
of rational curves in P

n of degree d which meet subvarieties representing the αi
and one additional point.

This is no longer true if one of the αi is exceptional.

• Similarly, if α1, . . . , αk are non-exceptional classes, d > 0 and e < 0, then

ΦP̃n(α1, . . . , αn | dH
′ − eE ′) = 0.

Again, this follows from proposition 4.5 and is no longer true if one of the αi is
exceptional. Indeed, the invariants need not even be positive, so that there can be
no geometric interpretation of these invariants as numbers of curves (at least not
in an obvious way).
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• Again let α1, . . . , αk be non-exceptional classes. If e = 0 then

ΦP̃n(α1, . . . , αn | dH
′) = ΦPn(α1, . . . , αn | dH

′).

This can also be deduced from proposition 4.5. The Gromov-Witten invariants of
P
2 can be found e.g. in [KM] 5.2.1., and those of P

3 and P
4 in [JS].

• The numbers of rational curves of degree d in P
2 passing through 3d − 3 points

in the plane and in addition through the point P with multiplicity two, which we
have computed as Gromov-Witten invariants on P̃

2 (case e = 2 in table 1), have
already been calculated by R. Pandharipande in [P] by different methods, and
indeed the numbers agree.

• Consider the invariants ΦP̃2(pt, . . . , pt | dH ′ − (d − 1)E ′) for d > 1, where we
have 2d point classes in the invariant. A curve C of degree d in P

2 passing with
multiplicity d− 1 through a point P has genus

1

2
(d− 1)(d− 2)−

1

2
(d− 1)(d− 2) = 0,

i.e. it is always a rational curve. Hence the space of degree d rational curves with
a (d − 1)-fold point in P is simply a linear system of the expected dimension.
Therefore we have

ΦP̃2(pt, . . . , pt | dH ′ − (d− 1)E ′) = 1

which can also be seen in table 1.

• From the dimension of the moduli space of stable maps of homology class dH ′−eE ′

in P
2, it can be seen that the dimension of the space of degree d rational curves

in P
2 which pass through a given point with multiplicity e is 3d− 1− e. This can

also be understood geometrically by a dimension count as follows: if C ⊂ P
2 is a

curve of degree d having ordinary ki-fold points in the points Pi and no further
singularities, the genus g of the normalization of C is

g =
1

2
(d− 1)(d− 2)−

∑

i

1

2
ki (ki − 1)

Hence, if we already have an e-fold point at P , to get a rational curve we need
additional

1

2
(d− 1)(d− 2)−

1

2
e (e− 1)

double points. Now consider the linear system of degree d curves in P
2, which has

dimension 1
2
(d+1)(d+2)−1. Having an e-fold point at P gives 1

2
e (e+1) conditions,

and each of the above additional double points imposes one more constraint (since
the points where these double points occur are not specified). Hence the dimension
of the space of curves we considered is

1

2
(d+ 1)(d+ 2)− 1−

1

2
e (e+ 1)−

[

1

2
(d− 1)(d− 2)−

1

2
e (e− 1)

]

= 3d− 1− e.
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d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7
e = 0 1 1 12 620 87304 26312976 14616808192
e = 1 1 1 12 620 87304 26312976 14616808192
e = 2 0 0 1 96 18132 6506400 4059366000
e = 3 0 0 0 1 640 401172 347987200
e = 4 0 0 0 0 1 3840 7492040
e = 5 0 0 0 0 0 1 21504
e = 6 0 0 0 0 0 0 1

Table 1: Some Gromov-Witten invariants ΦP̃2(pt, . . . , pt | dH ′−eE ′), where the number
of point classes in the invariant is 3d− 1− e. By proposition 4.5, these are the numbers
of degree d rational curves in P

2 meeting 3d− 1− e generic points in the plane, and in
addition passing through the point P with multiplicity e.

d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8
e = 0 1 0 1 4 105 2576 122129 7397760
e = 1 1 0 1 4 105 2576 122129 7397760
e = 2 0 0 0 0 12 384 23892 1666128
e = 3 0 0 0 0 0 0 620 72528
e = 4 0 0 0 0 0 0 0 0

Table 2: Some Gromov-Witten invariants ΦP̃3(pt, . . . , pt | dH ′−eE ′), where the number
of point classes in the invariant is 2d − e. These are the numbers of rational curves of
degree d in P

3 meeting 2d− e generic points, and in addition passing through the point
P with multiplicity e.

d = 1 d = 2 d = 3 d = 4
e = −3 2925 4849635 25767926176 362956315020486
e = −2 −68 −35832 −89070592 −730861150688
e = −1 3 342 382720 1793900214
e = 0 0 0 −2332 −5810112
e = 1 1 −3 40 23825
e = 2 0 0 4 960
e = 3 0 0 0 45

Table 3: Some Gromov-Witten invariants ΦP̃3(E2, . . . , E2 | dH
′−eE ′), where E2 = −E

2

and the number of classes in the invariant is 4d− 2e.
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