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Preface

Tropical geometry

Tropical geometry is a rather new field of algebraic geometry that uses combinatoric meth-
ods to study algebro-geometric questions. A certain tropicalisation process assigns a pure-
dimensional polyhedral complex in Rn to each algebraic variety. The resulting tropical
objects inherit many properties from the initial varieties and are often easier to work with;
therefore, the aim is to transfer results back from the tropical to the algebraic side. Tropical
geometry has been successfully applied to many areas of algebraic geometry such as enu-
merative geometry, elimination theory [ST08], Brill-Noether theory [CDPR12], and the
study of real inflection points of real algebraic curves [BLdM12].

The starting point for the success of tropical methods in enumerative geometry has been
Mikhalkin’s correspondence theorem [Mik05] which states that, in many cases, counting
tropical curves leads to the same result as counting algebraic curves. Thereafter, tropi-
cal geometry has been used to achieve many new insights and results in both complex
and real enumerative geometry including [GM07b, BBM, SS] in the complex case and
[IKS09, GMS, IKS] in the real case.

As in classical algebraic geometry, an elaborated intersection theory is expected to become
an extremely important tool in tropical enumerative geometry. This is why this thesis aims
to extend and generalise the existing tropical intersection theory as well as to apply inter-
section theory to gain new insights about tropical moduli spaces. We take a combinatorial
approach to tropical geometry, which means that we work with tropical objects regardless
of whether they are tropicalisations of algebraic varieties. However, tropicalisations are an
important class of examples, and the classical theory often serves as a guide to its tropical
counterpart.

Results of this thesis

The following is a list of the main results of this thesis:

• In proposition 2.1.6 we show the connection between tropical intersection prod-
ucts with rational functions and intersection products of piecewise polynomials
with complete fans, which describe the canonical map from equivariant to ordi-
nary Chow cohomology groups of the corresponding toric varieties.

• We use piecewise polynomials as local ingredients to establish the notion of trop-
ical cocycles and define an intersection product of cocycles with (abstract) trop-
ical cycles in section 2.3. Using the connection to toric geometry, we prove the
Poincaré duality for vector spaces in theorem 2.3.10. Furthermore, we show in
theorem 3.8.1 that each subcycle of a matroid variety can be cut out by a cocycle.
If the subcycle has dimension 0 or codimension 1, then there is exactly one such
cocycle (cf. corollary 3.8.8).
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6 PREFACE

• For any matroid variety contained in another matroid variety, corollary 3.2.15
gives explicit rational functions whose inductive intersection product with the
bigger matroid variety is the smaller one.

• In definition 3.3.3 we construct an intersection product of cycles on matroid va-
rieties (and hence also on smooth varieties) via intersection with the diagonal,
thus generalising the intersection products of [AR10] and [All12]. By theorem
3.7.9 our intersection product of cycles also agrees with the recursive intersec-
tion product constructed in [Sha].

• In section 3.6 we generalise the construction of the pull-back of cycles given in
[All12] to morphisms whose domain and target space locally look like matroid
varieties and relate our pull-back to tropical modifications and to pull-backs of
cohomology classes on complete toric varieties.

• Theorem 3.7.6 states that every cycle in a matroid variety is rationally equivalent
to a unique fan cycle and thus generalises the corresponding result for vector
spaces in [AR].

• We show in theorem 4.1.5 that moduli spaces of n-marked abstract rational
curves are matroid varieties (modulo lineality spaces) and thus admit an inter-
section product of cycles.

• We introduce a tropical fibre product in sections 4.2 and 4.5 .

• Sections 4.3 and 4.4 are devoted to defining families of curves over smooth va-
rieties and showing that every morphism from a smooth variety to the moduli
space of abstract rational curves induces a family of curves. Furthermore, corol-
lary 4.5.8 states that one can pull back families of curves along morphisms of
smooth varieties.

• We introduce an alternative, inductive way of constructing moduli spaces of n-
marked abstract rational curves in section 4.4; this is done by taking the modifi-
cation along the diagonal of the fibre product of two copies of the moduli space
over the forgetful maps.

The thesis contains material from my articles [FR], [Fra] and [FH]. In particular, part of the
thesis is the outcome of joint work with Johannes Rau and Simon Hampe. The introduction
of each chapter contains information about the contributions each of us made.
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CHAPTER 1

Preliminaries – the existing tropical intersection theory

In this introductory chapter we recall the main constructions and results of the previously
existing tropical intersection theory. The chosen approach is purely tropical and does not
rely on any classical or toric results. The intersection product of rational functions with
tropical cycles constitutes the heart of the theory outlined in this chapter and is the main
ingredient for the construction of an intersection product of cycles in vector spaces. A
remarkable difference to the classical theory is that tropical rational functions can be re-
stricted to any subcycle, without risking to become identically −∞ (the tropical zero) on a
component. This leads to the the pleasant situation that tropical intersection products can
be computed on the level of cycles, rather than only on classes modulo rational equivalence.

This chapter mainly covers the theory developed by Lars Allermann and Johannes Rau
in [AR10, AR]. However, our presentation of the material follows to a great extent the
presentation used in [Rau09].

1.1. Tropical cycles in vector spaces and morphisms

In this section we recall the very basic definitions and constructions of tropical intersection
theory. In particular, the section covers tropical cycles, sums of cycles, stars of cycles
around cells as well as tropical morphisms and push-forwards of cycles.

Notation 1.1.1. In this thesis V = Λ ⊗Z R will always denote the real vector space
associated to a lattice (that is a free Z-module of finite rank) Λ.

Definition 1.1.2. A (rational convex) polyhedron in V is a set of the form

σ = {x ∈ V : λ1(x) = a1, . . . , λr(x) = ar, λr+1(x) ≥ ar+1, . . . , λs(x) ≥ as},
for some integer linear forms λi in the dual lattice Λ∨ and some ai ∈ R. Faces τ of a
polyhedron σ are strict subsets of σ that are obtained by changing some of the defining
inequalities into equalities; in this situation we write σ > τ . (We sometimes use the
notation σ ≥ τ if we do not want to exclude σ = τ .) We denote by Vσ the linear subspace
of V generated by (differences of vectors in) a polyhedron σ. Accordingly we set Λσ :=
Λ∩Vσ . The dimension of a polyhedron σ is just the vector space dimension of Vσ . A cone
is a polyhedron whose defining equalities and inequalities can be chosen to satisfy ai = 0
for all i.

Definition 1.1.3. A polyhedral complex X is a finite set of polyhedra in V satisfying

• Every face of a polyhedron in X is again in X .
• The intersection of two polyhedra in X is a face of both (and thus again in X ).

Following [Rau09] we often refer to elements of a polyhedral complex as cells. A poly-
hedral complex is pure-dimensional if all its maximal cells have the same dimension; its
dimension is then the dimension of its maximal cells. We denote the set of d-dimensional
cells in X by X (d), and set X (≤d) := ∪di=0X (i). Top-dimensional cells are called facets,
whereas one- and zero-dimensional cells are called edges and vertices respectively. A fan
is a polyhedral complex all of whose cells are cones.
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8 1. PRELIMINARIES – THE EXISTING TROPICAL INTERSECTION THEORY

Example 1.1.4. Let X ,Y be polyhedral complexes in V and let X ′ be a polyhedral com-
plex in V ′. Then the intersection

X ∩ Y := {σ ∩ α : σ ∈ X , α ∈ Y}
is a polyhedral complex in V and the cross product

X × X ′ := {σ × σ′ : σ ∈ X , σ′ ∈ X ′}
is polyhedral complex in V ×V ′. IfX ,Y (resp.X ,X ′) are fans, then so is their intersection
(resp. cross product). The cross product of pure-dimensional polyhedral complexes is again
pure-dimensional, whereas the intersection of pure-dimensional polyhedral complexes is
in general not pure-dimensional.

Example 1.1.5. Let λ be an integer linear form and let a ∈ R. Then the set

H(λ,a) := {{x ∈ V : λ(x) ≥ a}, {x ∈ V : λ(x) ≤ a}, {x ∈ V : λ(x) = a}}
is a polyhedral complex in V . If a = 0, then Hλ := H(λ,0) is a complete fan (that is a fan
the union of whose cones is equal to the whole vector space V ).

Definition 1.1.6. A weighted polyhedral complex is a pure-dimensional polyhedral com-
plex together with a weight function ωX : X (dimX ) → Z on its facets. The support
|X | ⊆ V of a weighted polyhedral complex is the union of the facets of non-zero weight.

Definition 1.1.7. Let τ be a face of codimension 1 of a polyhedron σ. We call vσ/τ ∈ Λ
a (representative of the) primitive normal vector of σ modulo τ if the following conditions
hold:

• The class of vσ/τ generates Λσ/Λτ , that means Z · vσ/τ + Λτ = Λσ .
• If λ is a linear form whose minimal locus on σ is τ , then λ(vσ/τ ) > 0.

Definition 1.1.8. A weighted polyhedral complex X is called balanced (or tropical) if it
satisfies the following balancing condition for every codimension one cell τ ∈ X (dimX−1):∑

σ∈X :σ>τ

ωX (σ) · vσ/τ ∈ Vτ .

The following pictures show a 1-dimensional tropical polyhedral complex (with vertices
(0, 0), (1, 1), (5/2, 3/2)) and the 2-dimensional tropical fan L3

2 defined in the next exam-
ple.
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Example 1.1.9. Let Λ = Zn and let {e1, . . . , en} be the standard basis of Rn and e0 :=
−(e1 + . . .+ en). For I ( {0, 1, . . . , n} we define the |I|-dimensional cone

σI := 〈−ei : i ∈ I〉 :=

{∑
i∈I

λi(−ei) : λi ≥ 0

}
.
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For k ∈ {0, 1, . . . , n} the pure-dimensional fan Lnk consists of cones σI , with |I| ≤ k.
By assigning each maximal cone of Lnk the trivial weight 1, we obtain a balanced fan: If
|I| = k − 1, then the maximal cones around σI in Lnk are σI∪{i}, with i 6∈ I . Moreover,
we have vσI∪{i}/σI = −ei. Since∑

i/∈I

−ei =
∑
i∈I

ei ∈ VσI

we can conclude that Lnk is balanced. Note that the support of Lnk is the set of points
(x1, . . . , xn) in Rn such that the maximum max{x1, . . . , xn, 0} is attained at least n−k+1
times.

Definition 1.1.10. Let X ,Y be two weighted polyhedral complexes in V . Then Y is a
refinement of X if the following hold:

• There is an equality of supports |X | = |Y|.
• Every cell α ∈ Y with α ⊆ |Y| is contained in a cell of X .
• If σ is the unique facet in X containing the facet α ∈ Y (of non-zero weight),

then their weights agree: ωX (σ) = ωY(α).

Definition 1.1.11. Note that the previous definitions only give conditions on cells of non-
zero weight. Cells of weight zero solely exist for technical reasons (for example to be able
to define the sum of two tropical cycles).

Remark 1.1.12. Let X ,Y be two weighted polyhedral complexes of dimension d with
|X | ⊆ |Y|. Assigning their intersection the weight function of X , i.e. setting

ωX∩Y(σ ∩ α) := ωX (σ),

for cells σ ∈ X , α ∈ Y whose intersection is of dimension d, turns X ∩Y into a refinement
of X . If |X | = |Y|, then X ∩Y is a common refinement of X and Y if and only if we have
ωX (σ) = ωY(α) for every facets whose intersection σ ∩ α is of dimension d. Therefore,

X ∼ Y :⇔ X ∩ Y is a refinement of X and Y

is an equivalence relation of weighted polyhedral complexes.

Remark 1.1.13. Let Y be a refinement of X . Let σ ∈ X be the inclusion-minimal cell
containing the codimension 1 cell α ∈ Y . If dimσ > dimα, then all β ∈ Y with β > α
have to be contained in σ; it follows that there are exactly two such cells and that they
have opposite primitive normal vectors. As they have the same weight by the definition
of refinement, we see that Y is balanced around α in this case. If dimσ = dimα, then
there is a bijection between facets in Y around α and facets in X around σ which preserves
weights and primitive normal vectors. It follows that Y is balanced if and only if X is
balanced.

Definition 1.1.14. A tropical cycle X in a vector space V is an equivalence class of bal-
anced polyhedral complexes (in V ) modulo refinement. If X is a representative of the
tropical cycle X , then we say that X is a polyhedral structure of X and that X is the cycle
associated to X . The support |X| and the dimension dimX of a tropical cycle X are just
the support and the dimension of a polyhedral structure of X . Note that the dimension of
the cycle X = ∅ is not well-defined. A fan cycle X is the cycle associated to a balanced
fan, which in turn is called a fan structure of X . A tropical (fan) cycle associated to a
balanced polyhedral complex all of whose weights are non-negative is called tropical (fan)
variety.

Example 1.1.15. The fan cycle associated to Lnk (cf. example 1.1.9) is denoted by Lnk .
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Example 1.1.16. Let X ,X ′ be polyhedral structures of tropical cycles X,X ′ in vector
spaces V, V ′. Then it is easy to see that the polyhedral complex X × X ′ together with the
weight function

ωX×X ′(σ × σ′) := ωX (σ) · ωX ′(σ′)
is a balanced polyhedral complex. We denote by X ×X ′ the cycle associated to X × X ′.
We easily see that |X ×X ′| = |X| × |X ′|.

The following remark introduces an important class of tropical varieties – tropicalisations
of algebraic varieties.

Remark 1.1.17. The algebraically closed field of Puiseux series K := C{{t}} over C has
elements

∑
i∈N cit

ai , where the ci are non-zero complex numbers and a1 < a2 < a3 < . . .
are rational numbers having a common denominator. It comes with the natural valuation

val : K∗ → Q ⊆ R,
∑
i∈N

cit
ai 7→ a1.

Componentwise taking the negative of this valuation gives the map

Val : (K∗)n → Rn, (x1, . . . , xn) 7→ (− val(x1), . . . ,− val(xn)).

Now let I ⊆ K[x1, x
−1
1 , . . . , xn, x

−1
n ] be a prime ideal and V (I) ⊆ (K∗)n the associated

irreducible algebraic variety in the torus. Then the closure in Rn of the image of V (I)
under the valuation map Val is the support of a (dimV (I))-dimensional tropical variety
Trop(V (I)), i.e. we have

Val(V (I)) = |Trop(V (I))|.
The tropical variety Trop(V (I)) can be obtained in the following way: For a polynomial
f =

∑
bux

u ∈ K[x1, x
−1
1 , . . . , xn, x

−1
n ] and a point p ∈ Rn one sets

Wp := max

{
val(bu) +

n∑
i=1

piui : bu 6= 0

}
,

as well as

Up :=

{
u : bu 6= 0, val(bu) +

n∑
i=1

piui = Wp

}
,

and defines the initial form of f with respect to p to be

inp(f) :=
∑
u∈Up

h(bu)xu ∈ C[x1, x
−1
1 , . . . , xn, x

−1
n ],

where h(
∑
i∈N cit

ai) := c1 ∈ C. The initial ideal of I with respect to p is

inp(I) := 〈inp(f) : f ∈ I〉.
The fundamental theorem of tropical geometry states that we have an equality

{p ∈ Rn : inp(I) 6= 〈1〉} = Val(V (I)).

It turns out that this set is the support of a (not canonically defined) pure-dimensional
rational polyhedral complex X such that inp(I) is constant on the relative interior of every
cell. It has been shown that the polyhedral complex X can be made balanced by giving it
the weight function

ωX (σ) =
∑

P∈Ass(inp(I))

mult(P, inp(I)),

where p is any point in the relative interior of σ and the sum runs over the associated prime
ideals of inp(I). Now Trop(V (I)) is the tropical variety associated to X and is called
the tropicalisation of V (I). If I can be generated by polynomials whose coefficients are
in C (rather than in K), then Trop(V (I)) is a fan variety; this is often referred to as the
constant coefficient case. More details about tropicalisations of algebraic varieties can be
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found in numerous articles (using various approaches) such as [EKL06], [Spe05, chapter
2], [SS04, section 2], [Dra08, section 4], [Kat09, lemma 4.15], [JMM08], [Pay09,Pay] and
[MS, chapter 3].

Definition 1.1.18. A cycle Y is a subcycle of the cycle X if |Y | ⊆ |X|. The set of k-
dimensional subcycles of X is denoted by Zk(X). If X is a fan cycle, then Z fan

k (X) is the
set of its k-dimensional fan subcycles.

A curve in a tropical surface

In order to be able to define a sum of tropical cycles we need the following lemma.

Lemma 1.1.19. Let Y1, Y2 be subcycles of a cycleX . Then there are polyhedral structures
Y1,Y2,X of Y1, Y2, X such that the underlying polyhedral complexes satisfy

Yi = X (≤dimYi).

If Y1, Y2, X are fan cycles, then they also have fan structures fulfilling the above property.

PROOF. We choose arbitrary polyhedral structures Ỹi, X̃ of Yi, X . Let λ1, . . . , λs be
integer linear forms and a1, . . . , as real numbers such that every cell in the union Ỹ1∪Ỹ2∪
X̃ can be written as

{x ∈ V : λj(x) = aj , λp(x) ≥ ap : j ∈ J, p ∈ P}
for suitable subsets J, P ⊆ {1, . . . , s}. Now we define for Z ∈ {Y1,Y2,X} that

Z := Z̃ ∩ H(λ1,a1) ∩ . . . ∩H(λs,as)

(cf. example 1.1.5 and remark 1.1.12). By construction, Y1,Y2,X are polyhedral struc-
tures of Y1, Y2, X , and every cell of Yi is also a cell of X . Finally, we set X := X and
define Yi to be the polyhedral complex X (≤dimYi) with the weight function

ωYi(σ) :=

{
ωYi(σ), if σ ∈ Yi
0, else

.

It is obvious that the whole construction can be performed on the level of fans if all involved
cycles are fan cycles. �

Construction 1.1.20. Let Y1, Y2 ∈ Zk(X) be two subcycles of X . Lemma 1.1.19 allows
us to choose polyhedral structures Y1,Y2 of Y1, Y2 which are equal as polyhedral com-
plexes. (Note that in general these Yi have cells of weight zero.) Then the sum Y1 + Y2 is
just the cycle associated to the above polyhedral complex with weight function ωY1

+ωY2
.

As |Y1 + Y2| ⊆ |Y1| ∪ |Y2| ⊆ |X|, Y1 + Y2 is again a subcycle of X . It follows that the
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addition of cycles turns Zk(X) into a group with neutral element ∅. One can see in the
same way that Z fan

k (X) is a group if X is a fan cycle.

Remark 1.1.21. By linearly extending the tropicalisation process of remark 1.1.17, one
can define the tropicalisation of a pure-dimensional algebraic cycle

∑p
i=1 λiXi in (K∗)n

to be the tropical cycle
∑p
i=1 λi Trop(Xi) in Rn.

Let X be a polyhedral structure of a tropical cycle X . The next construction shows how to
turn the neighbourhood U(τ) := ∪σ∈X :σ≥τ Int(σ) of a cell τ ∈ X into a tropical cycle.
Here Int(σ) denotes the relative interior of the cell σ. This will be very useful to perform
intersection-theoretic computations locally.

Definition and Construction 1.1.22. Let X be a polyhedral structure of a cycle X and let
τ ∈ X be a cell. Consider the quotient map q : V → Vτ . For a cell σ ≥ τ we denote by σ̄
the cone generated by the image q({x− y : x ∈ σ, y ∈ τ}). The star of X around τ is the
weighted fan

StarX (τ) := {σ̄ : σ ∈ X , σ ≥ τ}, with ωStarX (τ)(σ̄) := ωX (σ).

The balancing of X clearly implies the balancing of StarX (τ); so one can denote its asso-
ciated fan cycle by StarX(τ).
If p is a point inX , then we see that the support |StarX(p)| consists of vectors v ∈ V such
that p+ εv ∈ |X| for small, positive ε.

The star of max{0, x, y, z, x+ y + z − 1} · R3 around the origin is L3
2.

Remark 1.1.23. The star around a point of the tropicalisation of an algebraic variety is
again the tropicalisation of an algebraic variety, namely

StarTrop(V (I))(p) = Trop(V (inp(I)).

This was proved in [Spe05, proposition 2.2.3] and [MS, proposition 3.3.5].

Definition 1.1.24. A cycle X is called irreducible if every (dimX)-dimensional subcycle
of X is an integer multiple of X . A balanced polyhedral complex is locally irreducible if
the greatest common divisor of all its (non-zero) weights is 1 and for all τ ∈ X (dimX−1)

the star StarX (τ) is either a multiple of a vector space or an irreducible curve. It is an
easy consequence of [Rau09, remark 1.2.11] that local irreducibility is preserved under
refinement; this allows us to call a tropical cycle locally irreducible if it has a locally
irreducible polyhedral structure.

Definition 1.1.25. A pure-dimensional polyhedral complex X is connected in codimen-
sion 1 if for any maximal cells σ, α ∈ X there is a sequence of maximal cells σ =
σ1, σ2, . . . , σr = α in X such that the intersection of two consecutive cells σi ∩ σi+1
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is of codimension 1. A tropical cycle X is called connected in codimension 1 if some (and
thus any) polyhedral structure of X is connected in codimension 1.

Proposition 1.1.26 ([Rau09, lemma 1.2.29]). Let X be a locally irreducible cycle which
is connected in codimension 1. Then X is also irreducible.

Definition 1.1.27. A map V ⊇ A→ V ′ is called integer affine linear if it is a sum l + v′,
where v′ ∈ V ′ and l is induced by a Z-linear map Λ → Λ′ on the associated lattices. Let
X,Y be tropical cycles. A morphism f : X → Y is a map from |X| to |Y |which is locally
integer affine linear. We call polyhedral structuresX ,Y ofX,Y compatible with respect to
the morphism f if f(σ) ∈ Y for all σ ∈ X . A morphism f is an isomorphism if there is a
morphism g : Y → X such that f ◦g = id|Y , g ◦f = id|X and ωX (σ) = ωY(f(σ)) for all
cells σ ∈ X for some (and thus any) compatible polyhedral structures X ,Y of X,Y . Note
that each morphism admits compatible polyhedral structures (cf. [Rau09, lemma 1.3.4]).

Remark 1.1.28. Let f : X → Y be a morphism and let X ,Y be compatible polyhedral
structures ofX,Y . Let τ ∈ X . The morphism f is affine linear in a neighbourhood around
τ (cf. [Rau09, remark 1.3.2]). As σ > τ in X implies that f(σ) ≥ f(τ) in Y the linear
part of f around τ induces a morphism fτ : StarX(τ)→ StarY (f(τ)).

Definition 1.1.29. Let f : X → Y be a morphism of tropical cycles X in V and Y in V ′.
Let X ,Y be polyhedral structures of X,Y which are compatible with respect to f . Then
the push-forward f∗X ∈ ZdimX(Y ) ofX along f is the cycle associated to the polyhedral
complex

f∗X := {f(σ) : σ ∈ X is contained in a maximal cell of X on which f is injective},

with weight function

ωf∗X (α) :=
∑

σ∈X(dimX)

f(σ)=α

ωX (σ) · |Λ′α/fσ(Λσ)|,

where the second term in the sum is the cardinality of the finite group Λ′α/fσ(Λσ) and fσ
is the linear part of f around σ. Note that it was shown in [Rau09, lemma 1.3.6] (and in
[GKM09, proposition 2.25] in the case of fan cycles) that the weighted polyhedral complex
f∗X is balanced. The push-forward of a subcycleC ofX along f is defined to be the push-
forward of the restriction of f to C, i.e. f∗C := (f|C)∗C. This gives us a homomorphism
of groups

f∗ : Zd(X)→ Zd(Y ), C 7→ f∗C.

Example 1.1.30. Let π : R2 → R be the projection to the first coordinate. We want
to compute the push-forward π∗C of the curve C depicted below. Note that the depicted
polyhedral structures of C and R are compatible with respect to the morphism π and that
all weights are assumed to be 1, unless told otherwise.

2

σ1

σ2

π−→ α

Then π∗C = 3 · R: For example

ωπ∗C(α) = ωC(σ1) · |Z/2Z|+ ωC(σ2) · |Z/Z| = 2 + 1 = 3,
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where C is the polyhedral structure of C shown in the picture. In the same way we can
compute that the push-forward of C along the projection to the second coordinate is equal
to 1 · R.

Proposition 1.1.31. Let f : X → Y , g : Y → Z, f ′ : X ′ → Y ′ be morphisms of tropical
cycles. Let C,D,C ′ be subcycles of X,Y,X ′. Then the following hold:

• |f∗C| ⊆ |f(C)|
• (g ◦ f)∗C = g∗(f∗C)
• (f × f ′)∗(C × C ′) = f∗C × f ′∗C ′.
• Push-forwards are local in the following sense: If X ,Y are compatible polyhe-

dral structures of X,Y and α ∈ Y(k), then

Starf∗X (α) =
∑

σ∈X (k):f(σ)=α

|Λ′α/fσ(Λσ)| · fσ∗ StarX (σ).

PROOF. Proofs of the second and fourth statement can be found in [Rau09, remark
1.3.9] and [Rau09, lemma 1.3.7]. The other statements are obvious. �

1.2. Intersecting with rational functions

In this section we outline the construction of intersecting tropical cycles with rational func-
tions introduced in [AR10, section 3]. We also state the main properties of this intersection
product, most notably the projection formula which connects the notions of pull-back and
push-forward.

Definition 1.2.1. Let X be a tropical cycle. A rational function on X is a piecewise affine
linear function ϕ : |X| → R; that means there is a polyhedral structure X of X such that
ϕ is integer affine linear on every cell of X . In other words, the restriction of ϕ to each cell
σ ∈ X is a sum ϕ|σ = ϕσ + aσ of an integer linear form ϕσ ∈ Λ∨σ and a real constant aσ .
We define R(X) to be the (additive) group of rational functions on X .
A rational fan function on a fan cycle X is a rational function which is linear on the cones
of some fan structure of X . The group of rational fan functions is denoted by Rfan(X).

Definition 1.2.2. Let ϕ be a rational function on the cycle X and let X be a polyhedral
structure of X such that ϕ is affine linear on every cell of X . We define the weighted
polyhedral complex ϕ · X to be the polyhedral complex X \ X (dimX) together with the
weight function (on the codimension 1 cells in X )

ωϕ·X (τ) :=
∑

σ∈X :σ>τ

ωX (σ) · ϕσ(vσ/τ )− ϕτ

( ∑
σ∈X :σ>τ

ωX (σ) · vσ/τ

)
.

It was shown in [AR10, proposition 3.7] and [Rau09, proposition 1.2.13] that ϕ · X is
balanced; we denote the associated cycle by ϕ ·X ∈ ZdimX−1(X). Note that ϕ ·X does
not depend on the choices of the polyhedral structure of X (use the argument of remark
1.1.13) and representatives of primitive normal vectors vσ/τ .

Remark 1.2.3. Let ϕ be a rational function which is affine linear on the cells of the poly-
hedral structure X of X . Then the graph Γ̃ϕ,X := {σ̃ : σ ∈ X}, with σ̃ := {(x, ϕ(x)) :
x ∈ σ} and inherited weights, is a weighted polyhedral complex in V × R. In general,
Γ̃ϕ,X is not balanced at codimension 1 cells τ̃ . It was shown in [AR10, construction 3.3,
proposition 3.7] and [Rau09, construction 1.2.5, proposition 1.2.13] that the graph of ϕ can
be made balanced by adding cells of the form τ̃+({0}×R≤0) (with τ ∈ X \X (dimX)) and
assigning the new top-dimensional cells the weights ω(τ̃) := ωϕ·X (τ). The intersection
product ϕ · X can thus be seen as the intersection of (the closure of) the completed graph
of ϕ with the hyperplane at infinity V × {−∞}. This coincides with the classical (that is
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algebro-geometric) idea that the intersection with a rational function describes its zeroes
and poles because −∞ is the tropical zero and cells of negative weights can be interpreted
as poles.

1 1

R× {−∞}

Completed graph of max{−x, x, 1} and its intersection with R× {−∞}.

Remark 1.2.4. It is easy to see that intersections with rational functions have the following
properties:

• The restriction of a rational function ϕ onX to a subcycle Y is a rational function
on Y . Therefore, we can define ϕ · Y := ϕ|Y · Y .

• If ϕ is an affine linear function, then ϕ ·X = 0.
• We denote by |ϕ| the domain of non-linearity of the rational function ϕ (which

means that |ϕ| is the set of points x ∈ |X| around which ϕ is not affine linear).
Then we have |ϕ ·X| ⊆ |ϕ|.

• Definition 1.2.2 gives rise to a multilinear intersection product

R(X)× . . .× R(X)× Zk(X) → Zk−p(X),

(ϕ1, . . . , ϕp, C) 7→ ϕ1 · · ·ϕp · C.
• If X is fan cycle and ϕ ∈ Rfan(X), then ϕ ·X is a fan cycle.

Remark 1.2.5. The intersection product of a rational function with a tropical cycle is
again a well-defined cycle. This is an important difference to the classical case where in-
tersection products are only defined on cycle classes modulo rational equivalence. Another
distinction is that tropical rational functions can always be restricted to subcycles which
will prove useful to compute self-intersections.

Example 1.2.6. Consider the rational function ϕ = max{x1, . . . , xn, 0} on Rn. In order
to compute the intersection product ϕ · Lnk we first notice that ϕ is linear on the cones of
Lnk . For a subset I ( {0, 1, . . . , n} with |I| = k − 1 we obtain by example 1.1.9 and
definition 1.2.2 that

ωϕ·Lnk (σI) =
∑
i 6∈I

ϕσI∪{i}(−ei)− ϕσI

∑
i6∈I

−ei


=

∑
i 6∈I

ϕ(−ei) +
∑
i∈I

ϕ(−ei)

= ϕ(−e0) = 1.

This means that ϕ · Lnk = Lnk−1 and Lnk = max{x1, . . . , xn, 0}n−k · Rn.

Example 1.2.7. Let ϕ be a rational function on a cycle X which is affine linear on the
cells of the polyhedral structure X of X . We saw in remark 1.2.3 that the completed
graph Γϕ,X of ϕ is a balanced polyhedral complex in V × R. Its associated cycle (which
does not depend on the chosen polyhedral structure of X) is denoted by Γϕ,X and called
the modification of X along ϕ. (Sometimes one is only interested in the codimension 1
cycle along which the modification is performed, rather than in the actual function. In that
case, one speaks of the modification of X along the cycle ϕ ·X , although this is not quite
well-defined.) Modifications which have been introduced in [Mik06, section 3.3] often
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inherit some properties of their underlying cycle (see for example [All10, theorems 4.2.5
and 4.2.6]). We claim that modifications can be expressed as

Γϕ,X = max{ϕ ◦ π, y} ·X × R,

where π : X × R → X is the projection to X and y is the R-coordinate in X × R. To
see this, we first notice that max{ϕ ◦ π, y} is affine linear on the cells of the polyhedral
structure

Z := {σ̃ + ({0} × R≥0) : σ ∈ X} ∪ {σ̃ + ({0} × R≤0) : σ ∈ X} ∪ {σ̃ : σ ∈ X}

of X × R, where σ̃ = (id×ϕ)(σ) was defined in remark 1.2.3. There are two kinds of
codimension 1 cells in Z whose weights we want to compute:

• If σ ∈ X (dimX), then the facets in Z adjacent to σ̃ are σ̃ + ({0} × R≥0) and
σ̃ + ({0} × R≤0) with respective (representatives of) primitive normal vectors
(p, ϕ(p)+1) and (p, ϕ(p)−1), where p is a point in σ. It follows that the weight
of σ̃ in max{ϕ ◦ π, y} · Z is 1.

• If τ ∈ X (dimX−1), then π induces one-to-one correspondences between the
facets in Z adjacent to τ̃ + ({0} × R≥0) resp. τ̃ + ({0} × R≤0) and the the
facets in X adjacent to τ , as well as between their primitive normal vectors.
Since max{ϕ ◦ π, y} is equal to the linear function y on each facet around σ̃ +
({0} × R≥0), and equal to the rational function ϕ ◦ π on each facet adjacent to
σ̃ + ({0} × R≤0), we can conclude that

ωmax{ϕ◦π,y}·Z(τ̃ + ({0} × R≥0)) = 0,

as well as

ωmax{ϕ◦π,y}·Z(τ̃ + ({0} × R≤0)) = ωϕ·X (τ).

Definition and Construction 1.2.8. Let ϕ be a rational function on a cycleX and letX be
a polyhedral structure such that ϕ is affine linear on every cell of X . For a cell τ ∈ X we
choose an affine linear function l onX such that (ϕ−l)|τ = 0. Then ϕτ ∈ Rfan(StarX(τ))
is the rational fan function on StarX(τ) induced by ϕ − l (see [Rau09, section 1.2.3] for
more details). Note that in fact ϕτ depends on the chosen affine linear function l and is
thus only defined up to adding a linear function; however this does not affect intersection
products with ϕτ (cf. remark 1.2.4). If τ = p is a point, then ϕp can be obtained by
restricting ϕ to a small neighbourhood of p, composing it with the translation by −p,
normalising (such that 0 maps to 0) and finally extending it linearly to StarX(p).

Proposition 1.2.9. Let ϕ,ψ be rational functions on a cycle X . Let X be a polyhedral
structure of X such that ϕ is affine linear on every cell of X . Then the following properties
hold:

• Starϕ·X(τ) = ϕτ · StarX(τ),
• ϕ · (ψ ·X) = ψ · (ϕ ·X).

PROOF. The first property has been proved in [Rau09, proposition 1.2.12] and used
to reduce the second statement to the case of two-dimensional fan cycles X . The commu-
tativity was then showed in [Rau09, proposition 1.2.13] and [AR10, proposition 3.7]. �

We have seen in remark 1.2.4 that the support of ϕ · X is contained in the domain of
non-linearity of ϕ. The following example illustrates that it is not an equality in general.

Example 1.2.10. Let X be the balanced fan in R2 consisting of cones 〈±ei〉 (all of them
having weight 1), where e1, e2 forms the standard basis of R2. Let ϕ be the function which
is linear on the cones of X and satisfies ϕ(e1) = 1, ϕ(e2) = −1, ϕ(−ei) = 0. Then the
weight of the origin in ϕ · X is 0; thus we see that |ϕ · X | = ∅ ( {0} = |ϕ|.
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The following proposition gives two sufficient conditions for equality.

Proposition 1.2.11 ([Rau09, lemmas 1.2.25 and 1.2.31]). Let ϕ be a rational function on
a tropical cycle X . Then the following hold:

• If ϕ is convex (i.e. it is locally the restriction of a convex function on V ) and X
is a tropical variety (i.e. has only non-negative weights), then |ϕ ·X| = |ϕ|, and
ϕ ·X has only non-negative weights.

• If X is locally irreducible, then |ϕ ·X| = |ϕ|.

Remark 1.2.12. Example 1.2.10 shows that in general the assignment

R(X)/L(X)→ ZdimX−1(X), ϕ 7→ ϕ ·X,

where L(X) denotes the group of affine linear functions on X , is not injective. The easiest
example of the assignment not being surjective is the example of a point (with weight 1) in
the cycle X = 2 ·R (i.e. the cycle R with weight 2). An example which cannot by fixed by
allowing rational slopes is (R · e1)×{0} in the cycle (R · e1 +R · e2)×R, where {e1, e2}
is the standard basis of R2 and the sum is a sum of tropical cycles.

We use proposition 1.2.11 to prove a lemma that will be useful in later sections.

Lemma 1.2.13. Let x1, . . . , xn be a basis of the dual lattice Λ∨. IfX is a non-zero tropical
fan variety in V , then max{x1, . . . , xn, 0} ·X is again a non-zero tropical fan variety.

PROOF. As max{x1, . . . , xn, 0} is convex we know by proposition 1.2.11 that the
intersection product max{x1, . . . , xn, 0} · X is a tropical fan variety whose support is
the domain of non-linearity |max{x1, . . . , xn, 0}|X |. The balancing condition and the
positivity of the weights of X imply that X cannot be fully contained in a cone of Lnn.
This allows us to conclude that |max{x1, . . . , xn, 0}|X | contains the origin and is thus not
empty. Therefore, max{x1, . . . , xn, 0} ·X is not the zero cycle.

�

We now give the definition of the pull-back of a rational function along a morphism.

Definition 1.2.14. Let f : X → Y be a morphism of tropical cycles and let ϕ be a rational
function on Y . Then the pull-back of ϕ along f is the rational function f∗ϕ := ϕ ◦ f ∈
R(X). Note that if ϕ is affine linear on the cells of the polyhedral structure Y , andX , Y are
compatible with respect to f , then f∗ϕ is affine linear on the cells of X . The pull-back of a
rational fan function along a linear morphism of fan cycles is again a rational fan function.

Lemma 1.2.15 ( [AR10, lemma 9.6], [Rau09, lemma 1.5.4]). Let X,X ′ be tropical cycles
in V, V ′. Let ϕ be a rational function on X and π : V × V ′ → V the projection to the first
factor. Then we have

(ϕ ·X)×X ′ = π∗ϕ · (X ×X ′).

The projection formula connects the notions of push-forward and pull-back and is an ex-
tremely valuable tool for computations.

Proposition 1.2.16 ([AR10, proposition 4.8], [Rau09, theorem 1.3.11]). Let f : X → Y
be a morphism of tropical cycles. Let C be a subcycle ofX and let ϕ be a rational function
on Y . Then the following equation holds in ZdimC−1(Y ):

ϕ · f∗C = f∗(f
∗ϕ · C).

Remark 1.2.17. One can define a Cartier divisor on a tropical cycle X to be an open
cover {Ui} of X together with rational functions ϕi on the open sets Ui whose differences
ϕi−ϕj are (locally) affine linear functions on the overlaps Ui∩Uj . By gluing together the
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local intersection products (which are defined as in definition 1.2.2), one obtains a well-
defined codimension 1 subcycle of X – the associated Weil divisor. The affine linearity
condition on the overlaps ensures that the associated Weil divisor does not depend on any
choices. As this intersection product is local, proposition 1.2.11 and the projection formula
immediately extend to Cartier divisors. We will introduce a more general construction in
the next chapter, so we will not give more details here; instead we refer to [AR10, section
6] and [Rau09, section 1.2.5] where Cartier divisors are discussed in great detail.

1.3. Intersecting cycles in vector spaces

We summarise the construction of an intersection product of tropical cycles in vector
spaces in this section. This was presented in [AR10, section 9] and is based on the idea
to intersect the the cross product of the cycles, whose intersection product one wants to
compute, with rational functions that cut out the diagonal of the vector space.

Definition 1.3.1. The diagonal ∆X of a tropical cycle X is the push-forward

∆X := d∗X ∈ ZdimX(X ×X)

along the morphism d : X → X ×X, x 7→ (x, x).

Notation 1.3.2. For a vector space V = Λ⊗Z R of dimension n we fix a basis x1, . . . , xn
of the dual lattice Λ∨. When we consider the product V × V , in order to differentiate
between the two factors, we denote the coordinate functions of the first factor V by xi and
the coordinate functions of the second factor by yi.

Lemma 1.3.3. The diagonal of the vector space V can be cut out by the rational functions
max{xi, yi}, which means that

∆V = max{x1, y1} · · ·max{xn, yn} · V × V.

Furthermore, max{x1, y1} · · ·max{xn, yn} ·X ×Y is a subcycle of the diagonal ∆V for
any cycles X,Y in V .

PROOF. The first statement is obvious for n = 1; for greater n it follows by induction
using lemma 1.2.15. Wee see by remark 1.2.4 that

|max{x1, y1} · · ·max{xn, yn}·X×Y | ⊆ |max{x1, y1}|∩. . .∩|max{xn, yn}| = |∆V |,

which implies the second claim. �

Definition 1.3.4. Let π : V ×V → V be the projection to the first factor. The intersection
product of two cycles X ∈ Zn−r(V ) and Y ∈ Zn−s(V ) in the n-dimensional ambient
space V is defined to be

X · Y := π∗(max{x1, y1} · · ·max{xn, yn} ·X × Y ) ∈ Zn−r−s(V ).

Remark 1.3.5. We can immediately conclude that the intersection product of cycles has
the following properties:

• It follows by lemma 1.3.3 that the definition of the intersection product does
not depend on the chosen projection (i.e. we could as well project to the second
factor). As the rational functions max{xi, yi} are symmetric, this implies that
the intersection product is commutative, i.e

X · Y = Y ·X.

• Lemma 1.3.3 also implies that

|X · Y | ⊆ π(|X × Y | ∩ |∆V |) = |X| ∩ |Y |.
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• Definition 1.3.4 gives a bilinear intersection product

Zn−r(V )× Zn−s(V )→ Zn−r−s(V ), (X,Y ) 7→ X · Y,
which can be restricted to the class of fan cycles (that means that the intersection
of two fan cycles is again a fan cycle).

• It follows by the projection formula (proposition 1.2.16), proposition 1.2.15 and
the commutativity of intersecting with rational functions that

ϕ · (X · Y ) = (ϕ ·X) · Y
for every rational function ϕ on X .

• If X ,Y are polyhedral structures of X,Y , then (X ∩ Y)(n−codimX−codimY )

together with a certain weight function (which might assign weight 0 to some
maximal cells) is a polyhedral structure of the intersection product X · Y .

• The intersection product of two tropical varieties (i.e. cycles with only non-
negative weights) is again a tropical variety. This is an easy consequence of
proposition 1.2.11 as the functions max{xi, yi} are convex.

Theorem 1.3.6. Let X,Y, Z be arbitrary cycles of respective codimension r, s, p in V .
Then the following hold:

• The intersection product is associative, i.e. (X · Y ) · Z = X · (Y · Z).
• V ·X = X .
• If there are rational functions ϕi such that X = ϕ1 · · ·ϕr · V , then

X · Y = ϕ1 · · ·ϕr · Y.
• The intersection product is local; this means that for any τ ∈ X ∩Y of dimension

smaller or equal to n− r − s we have

StarX·Y (τ) = StarX(τ) · StarY (τ),

where X ,Y are any polyhedral structures of X,Y .

PROOF. This was proved in [Rau09, proposition 1.5.9, proposition 1.5.3, corollary
1.5.6, proposition 1.5.8] as well as in [AR10, theorem 9.10, corollary 9.5, corollary 9.8].

�

Remark 1.3.7. The third part of the previous theorem implies that we have indeed

X · Y = π∗(∆V · (X × Y )),

which was the initial idea for the definition of the intersection product. Furthermore, it fol-
lows that the intersection product does not depend on the choice of rational functions that
cut out the diagonal. In particular, it is independent of the choice of coordinate functions
in notation 1.3.2.

Remark 1.3.8. The intersection product of two cycles is again a well-defined cycle, rather
than a cycle class modulo rational equivalence as it is in the classical case. Note that this
is also true for self-intersections.

We use the intersection product of cycles to define the degree of a cycle in Rn.

Definition 1.3.9. The degree of a zero-dimensional cycleC =
∑m
i=1 λiPi in Rn is defined

to be deg(C) :=
∑m
i=1 λi ∈ Z. The degree of a cycle C ∈ Zk(Rn) is deg(C) :=

deg(C · Lnk ), where Lnk is the fan cycle of example 1.1.15.

Remark 1.3.10. It follows from theorem 1.3.6 and example 1.2.6 that a k-dimensional
subcycle C of Rn has degree deg(max{x1, . . . , xn, 0}k · C) and that the fan cycles Lnk
have degree 1. We also know from lemma 1.2.13 that non-zero tropical fan varieties have
a positive degree.
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Remark 1.3.11. Most of the intersection theory presented so far has been implemented by
Simon Hampe in [Ham]. His programme can also graphically display tropical curves and
surfaces. In particular, all surfaces that are coloured green in this work have been created
using [Ham]. (The grey surfaces have been produced using [All2].)

Next we introduce an alternative (and equivalent) intersection product of tropical fan cy-
cles, which originates from toric intersection theory. Therefore, we need the following
notation.

Notation 1.3.12. Tropical subfans (i.e. subfans that fulfil the balancing condition) of a
tropical fan X are called Minkowski weights in X . We denote by Zk(X ) the additive
group of k-dimensional Minkowski weights in X .

Remark 1.3.13. Let X ∈ Z fan
n−k(V ), Y ∈ Z fan

n−p(V ) be fan cycles in the n-dimensional
vector space V . We choose fan structures X ,Y,∆ of X,Y, V such that X and Y are
Minkowski weights in ∆ (cf. lemma 1.1.19). We know by [FS97, theorem 2.1] that the
Minkowski weights X ,Y correspond to Chow cohomology classes γX ∈ Ak(X(∆)),
γY ∈ Ap(X(∆)) of the complete toric variety X(∆). This is particularly nice as it turns
out that the fan displacement rule given in [FS97, proposition 3.1, theorem 3.2] to compute
the cup product γX ∪γY ∈ Ak+p(X(∆)) can also be used to compute the tropical intersec-
tion productX ·Y ∈ Z fan

n−k−p(V ) of the corresponding tropical cycles (see [Kat12, theorem
4.4] or [Rau09, theorem 1.5.17]). That means that for τ ∈ (X ∩ Y)(n−k−p) and a generic
vector v ∈ V we have

ωX·Y(τ) =
∑
|Λ/Λσ + Λσ′ | · ωX (σ) · ωY(σ′),

where the sum runs over all maximal cells σ ∈ X , σ′ ∈ Y which contain τ and satisfy
σ∩(σ′+v) 6= ∅. The underlying tropical idea is to slightly move one of the cycles in order
to make the two cycles intersect transversally and then simply read off their intersection
product. We refer to [RGST05, section 4], [Mik06, definition 4.4], [Rau09, corollary
1.5.16] for more details.

The following remark states that, under some assumptions, computing intersection prod-
ucts commutes with tropicalisation.

Remark 1.3.14. Let K be the field of Puiseux series (cf. remark 1.1.17) and let X,Y be
algebraic varieties in (K∗)n whose tropicalisations Trop(X) and Trop(Y ) meet properly,
i.e. the intersection of polyhedral structures of Trop(X) and Trop(Y ) is a polyhedral
complex of pure dimension dimX + dimY − n. Then [OP, corollary 5.1.2] states that

Trop(X · Y ) = Trop(X) · Trop(Y ),

where the right-hand side is an intersection product of tropical varieties in Rn and the left-
hand side is the tropicalisation of the refined intersection cycle X · Y (cf. [Ful98, sections
8.1 and 8.2]). Note that the assumption that the tropicalisations meet properly is really
needed: The curves V (x+ y+ 1) and V (tx+ y+ 1) do not intersect in (K∗)2. However,
their tropicalisations, L2

1 and the translation of L2
1 by the vector (−1, 0), intersect set-

theoretically in the unbounded line segment (−∞,−1]×{0} and intersection-theoretically
in the point (−1, 0) with multiplicity 1.

1.4. Rational and numerical equivalence

In this section we state the main results about tropical rational equivalence. Although
tropical intersection products are well-defined on the level of cycles, it is nevertheless often
useful to intersect rationally equivalent cycles in order to simplify the computations. The
concept of tropical rational equivalence, which was introduced in [AR10, chapter 8] and
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[AR], is especially useful in enumerative geometry where one is usually only interested in
the number of objects satisfying given conditions, rather than the actual objects.

Definition 1.4.1. A subcycle C of a cycle X is rationally equivalent to 0 on X if there
exist a morphism f : C ′ → X and a bounded rational function ϕ on C ′ such that C =
f∗ϕ ·C ′. Two subcycles ofX are rationally equivalent onX if their difference is rationally
equivalent to 0 on X . Note that rational equivalence is clearly reflexive and symmetric;
the transitivity follows from gluing together the morphisms fi : C ′i → X as well as
the bounded rational functions ϕi to obtain a morphism C ′1

.∪C ′2 → X and a bounded
rational function ϕ on the disjoint union C ′1

.∪C ′2. We call Ad(X) := Zd(X)/ ∼rat the
d-dimensional Chow group of X .

Remark 1.4.2. It follows immediately from the definition that two cycles that are ratio-
nally equivalent onX are also rationally equivalent on every cycle Y withX ∈ ZdimX(Y ).

Remark 1.4.3. Definition 1.4.1 is somewhat different from its classical counterpart and
therefore requires some explanation: First, the requirement that C is a push-forward f∗ϕ ·
C ′ rather than just an intersection product ϕ · C ′ makes rational equivalence compatible
with push-forwards. This adjustment is indeed needed as was demonstrated in [AR10, re-
mark 8.6]. Second, the reason why one requests the rational function ϕ to be bounded is
that one does not want it to have non-zero slope in the boundary of C ′. Otherwise, ϕ · C ′
might have hidden boundary components which our intersection theory does not capture
as our tropical cycles are, in general, not compact. For example, max{x, 0} · R can be
regarded to have a hidden simple pole in plus infinity since max{x, 0} approaches this
point with slope 1. In the absence of this boundary point, one obviously does not want
{0} = max{x, 0} · R to be rationally equivalent to zero on R. We refer to [Mey10, sec-
tion 2.3] for a detailed study of intersection theory on compact tropical toric varieties and
note that in [Mey10, section 2.4] the definition of rational equivalence on these compact
varieties does not require the rational function to be bounded.

Definition 1.4.4. The cycles C,D ∈ Zd(X) are numerically equivalent on X if

deg(ϕ1 · · ·ϕd · C) = deg(ϕ1 · · ·ϕd ·D)

for all rational functions ϕi on X .

Lemma 1.4.5 ([AR, lemma 2]). Let C be rationally equivalent to 0 on X . Then the
following hold:

• If ϕ is a rational function on X , then ϕ · C is rationally equivalent to 0 on X .
• If Y is a cycle, then C × Y is rationally equivalent to 0 on X × Y .
• If f : X → Y is a morphism, then f∗C is rationally equivalent to 0 on Y .
• If X = V and D is a cycle in V , then C ·D is rationally equivalent to 0 on V .
• If C is zero-dimensional, then deg(C) = 0.
• IfA,B are rationally equivalent onX , then they are also numerically equivalent

on X .

Definition 1.4.6. Let σ be a polyhedron in V . Then the recession cone of σ is

rc(σ) := {v ∈ V : ∃x ∈ σ such that x+ R≥0 · v ⊆ σ}.

Let X be a cycle in V and let X be a polyhedral structure of X such that {rc(σ) : σ ∈ X}
is a fan (cf. [Rau09, lemma 1.4.10]). The recession cycle δ(X) ∈ Z fan

dimX(V ) of X is the
fan cycle associated to the fan {rc(σ) : σ ∈ X} with weight function

ω(α) :=
∑

σ∈X :rc(σ)=α

ωX (σ).

We refer to [Rau09, section 1.4.3] for more details about recession cones and cycles.
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3

2

2

1

A curve of degree 3 and its recession cycle.

Theorem 1.4.7. The morphism of groups Zd(V ) → Z fan
d (V ), X 7→ δ(X) induces an

isomorphism Ad(V ) → Z fan
d (V ). In other words, the recession cycle δ(X) is the only fan

cycle which is rationally equivalent in V to the cycle X . For all cycles X,Y in V , one has
δ(X · Y ) = δ(X) · δ(Y ). Furthermore, two cycles in V are rationally equivalent if and
only if they are numerically equivalent.

PROOF. The first part was proved in [AR, theorems 6 and 7, remark 9]. The second is
an immediate consequence of [Rau09, proposition 1.4.15]. �

Remark 1.4.8. The fact that translating a cycle in V does not change its equivalence class
justifies why the fan displacement formula in remark 1.3.13 does not depend on the chosen
translation vector.

Remark 1.4.9. It follows from remark 1.3.10 and theorem 1.4.7 that non-zero tropical
varieties in Rn have positive degree.

Proposition 1.4.10 ([All10, proposition 2.2.2]). Let X ∈ Z fan
dimX(V ) be a fan cycle. Then

every subcycle C of X is numerically equivalent (on X) to its recession cycle δ(C).



CHAPTER 2

Piecewise polynomials and tropical cocycles

In this chapter we use piecewise polynomials to define tropical cocycles, generalising the
notion of tropical Cartier divisors to higher codimensions. Groups of cocycles are tropical
analogues of Chow cohomology groups. We introduce an intersection product of cocycles
with tropical cycles – the counterpart of the classical cap product – and prove that this gives
rise to a Poincaré duality on vector spaces.

Piecewise polynomials are used in toric geometry to describe equivariant Chow cohomol-
ogy rings. In [KP08] the authors describe a method to assign a Minkowski weight in a
complete fan ∆ to a piecewise polynomial on ∆ and therefore suggest using piecewise
polynomials in tropical geometry. If ∆ is unimodular (i.e. corresponds to a smooth toric
variety), their assignment is even an isomorphism.

We show that the assignment of [KP08], which describes the canonical map from equivari-
ant to ordinary Chow cohomology rings of the corresponding toric variety, agrees with the
(inductive) intersection product of tropical rational functions introduced in definition 1.2.2.
This motivates us to use piecewise polynomials as local ingredients for tropical cocycles.
It turns out that each piecewise polynomial on an arbitrary tropical fan cycle is a sum of
products of rational functions; this can be used to intersect cocycles with tropical cycles.
One should note that, in contrast to the classical cap product, our intersection product is
well-defined on the level of cycles, not only on classes modulo rational equivalence. We
deduce a Poincaré duality on vector spaces from the isomorphism between the groups of
piecewise polynomials and Minkowski weights on complete, unimodular fans.

A construction similar to piecewise polynomials on fans has been introduced independently
in [Est]: Esterov defines tropical varieties with (degree k) polynomial weights and their
(codimension 1) corner loci which are tropical varieties with (degree k − 1) polynomial
weights.

This chapter mainly consists of the material of my article [Fra].

2.1. Intersecting with piecewise polynomials

In this section we define intersection products of piecewise polynomials with tropical fan
cycles using the known intersection products of rational functions and representations of
piecewise polynomials as sums of products of rational functions. This intersection product
agrees with the intersection product of [KP08] emerging from toric geometry and inherits
the expected properties from the intersection product with rational functions.

In order to fix our notation we start by recalling the definition of a piecewise polynomial
on a (not necessarily tropical) fan F .

Definition 2.1.1. Let σ be a (rational) cone in the vector space V = Λ ⊗Z R correspond-
ing to a lattice Λ. We define Pk(σ) to be the set of functions g : σ → R that extend
to a homogeneous polynomial of degree k on the subspace Vσ having integer coefficients
(that means g ∈ Symk(Λ∨σ ) – the degree k part of the symmetric algebra Sym(Λ∨σ )).
A piecewise polynomial of degree k on a (rational) fan F in V is a continuous function

23
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h : |F | → R on the support of F such that the restriction h|σ ∈ Pk(σ) for each cone
σ ∈ F . The sum of two degree k piecewise polynomials h, h′ on F is defined point-
wise, i.e. (h + h′)(x) := h(x) + h′(x). As the Pk(σ) are additive groups, the sum
h + h′ is again a piecewise polynomial on F . The (additive) group of piecewise poly-
nomials of degree k on the fan F is denoted by PPk(F ). Since products of homogeneous
integer polynomials are again homogeneous integer polynomials, the pointwise multipli-
cation of two piecewise polynomials h ∈ PPk(F ), h′ ∈ PPl(F ) is in PPk+l(F ). We call
PP∗(F ) :=

⊕
k∈N PPk(F ) the graded ring of piecewise polynomials on F . Finally, we

define L PPk−1(F ) := 〈{l · h : l linear, h ∈ PPk−1(F )}〉 to be the subgroup of PPk(F )
generated by linear functions.

Remark 2.1.2. Note that piecewise polynomials of degree 1 are the same as rational fan
functions and that restrictions of piecewise polynomials to subfans are again piecewise
polynomials (of the same degree).

We are ready to state the above-mentioned result of Katz and Payne, which was proved in
chapter 1, proposition 1.2, theorem 1.4 of [KP08].

Definition and Theorem 2.1.3. Let ∆ be a complete, unimodular (i.e. every cone is gener-
ated by a part of a lattice basis) fan in the n-dimensional vector space V . If {v1, . . . , vn}
is a basis of Λ, then we can regard the elements v∗1 , . . . , v

∗
n of its dual basis as integer

linear functions on V , which means v∗i ∈ P1(V ). For two cones τ < σ ∈ ∆(n), with σ
generated by v1, . . . , vn, one can thus define eσ,τ :=

∏
i:vi 6∈τ

1
v∗i

to be the inverse of the

product
∏
vi /∈τ v

∗
i ∈ Pn−dim(τ)(V ). Let 1 ≤ k ≤ n and h ∈ PPk(∆). For a maximal

cone σ ∈ ∆, hσ denotes the polynomial on V that agrees with h on σ. Then for any
τ ∈ ∆(n−k)

ch·∆(τ) :=
∑

σ∈∆(n):σ>τ

eσ,τhσ

is an integer. Furthermore,

h ·∆ :=
(

∆(≤n−k), ch·∆

)
is a tropical fan, and the assignment

PPk(∆)/L PPk−1(∆)→ Zn−k(∆), h 7→ h ·∆

is an isomorphism of groups. The fan cycle associated to h · ∆ is independent under
refinement of ∆ and is denoted by h · V .

Remark 2.1.4. All previous notions have counterparts in toric intersection theory: As we
have already mentioned in remark 1.3.13, [FS97, theorem 2.1] states that for any complete
n-dimensional fan ∆, the groups Zn−k(∆) of Minkowski weights are canonically iso-
morphic to (ordinary) Chow cohomology groups Ak(X(∆)) of the complete toric variety
X(∆). Furthermore, groups of piecewise polynomials PPk(F ) on any fan F are canon-
ically isomorphic to equivariant Chow cohomology groups Ak

T(X(F )) of the associated
toric variety X(F ) [Pay06, theorem 1]. Katz and Payne showed in [KP08, theorem 1.4]
that, under these identifications, the canonical map Ak

T(X(∆)) → Ak(X(∆)) is given by
intersections with piecewise polynomials h 7→ h ·∆.

Example 2.1.5. Let {e1, e2} be the standard basis of R2 and let ∆ be the complete fan
with maximal cones 〈−e1, e1 + e2〉, 〈−e2, e1 + e2〉 and 〈−e1,−e2〉. We write x := e∗1,
y := e∗2 and see that the dual bases are given by {y, y − x}, {x, x − y} and {−x,−y}
respectively. Let h ∈ PP2(∆) be the piecewise polynomial shown in the picture.
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x2

y2

0

Then h ·∆ is the origin with weight

ch·∆({0}) =
y2

y(y − x)
+

x2

x(x− y)
+

0

(−x)(−y)
=
−xy2 + yx2

xy(x− y)
= 1.

Note that h = (max{x, y, 0})2 = max{x, y} ·max{x, y, 0} is a product of rational func-
tions and that max{x, y, 0}·max{x, y, 0}·∆ and max{x, y}·max{x, y, 0}·∆ (as product
of rational functions with cycles defined in the previous section) give the origin with weight
1 too.

If a piecewise polynomial on a complete fan ∆ is a product of rational (i.e. piecewise
linear) functions ϕi, then there are two ways of defining its intersection product with ∆:
we can either intersect inductively with the rational functions ϕi or use the formula of
theorem 2.1.3. In the previous example both ways led to the same result. We show in the
following proposition that this is true in general:

Proposition 2.1.6. Let ∆ be a complete, unimodular fan in V , and let ϕ1, . . . , ϕk be ra-
tional functions on V which are linear on every cone of ∆. Let h = ϕ1 · · ·ϕk ∈ PPk(∆).
Then h · V = ϕ1 · · ·ϕk · V , where the products on the right-hand side are products of
rational functions with cycles (cf. definition 1.2.2).

In order to prove this proposition we need the following lemma.

Lemma 2.1.7. Let ϕ be a rational fan function on a fan cycle X which is linear on
the cones of the unimodular fan structure X of X . For a ray r of X with primitive
integral vector vr, let Ψr be the function which is linear on the cones of X , satisfies
Ψr(vr) = 1, and maps the primitive integral vectors of all other rays of X to 0. Then
ϕ =

∑
r∈X (1) ϕ(vr) ·Ψr.

PROOF. As ϕ and
∑
r∈X (1) ϕ(vr) ·Ψr are both linear on the cones of X it suffices to

compare their values on the primitive integral vectors of the rays of X where they agree by
construction. �

PROOF OF PROPOSITION 2.1.6. Let τ ∈ ∆(n−k) be an arbitrary codimension k cone
in ∆. By adding an appropriate linear function l, we can assume that the restriction ϕ1|τ

is identically zero. This does not change h · V since l · ϕ2 · · ·ϕk is in L PPk−1(∆). In the
following r, ri denote rays of ∆ with respective primitive integral vector v, vi. If α < σ are
cones in the unimodular fan ∆, then σ is the Minkowski sum of α and the dim(σ)−dim(α)
rays of σ that are not in α. We first assume that k = 1. The fact that ϕ1|τ = 0 implies that

ωϕ1·∆(τ) =
∑

r:τ+r∈∆(n)

ϕ1(v) =
∑

r:τ+r∈∆(n)

1

v∗
(ϕ1)τ+r = cϕ1·∆(τ),

where the sums run over Minkowski sums τ + r. Here the middle equality follows from
lemma 2.1.7 and the facts that ϕ1|τ = 0 and (Ψr)τ+r = v∗.
Now we assume that k > 1 and set g := ϕ2 · · ·ϕk. As ϕ1|τ = 0 the definition of
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intersecting with a rational function implies that τ has weight

ωϕ1···ϕk·∆(τ) =
∑

r:τ+r∈∆(n−k+1)

ωϕ2···ϕk·∆(τ + r) · ϕ1(v)

in ϕ1 · · ·ϕk ·∆. By induction on the degree of f this is equal to∑
r:τ+r∈∆(n−k+1)

c(ϕ2···ϕk)·∆(τ + r) · ϕ1(v)

=
∑

r:τ+r∈∆(n−k+1)

∑
σ∈∆(n):σ>τ+r

eσ,τ+r · gσ · ϕ1(v)

=
∑

σ>τ in ∆(n)

σ=τ+r1+...+rk

k∑
i=1

ϕ1(vi) · eσ,τ+ri · gσ

=
∑

σ>τ in ∆(n)

σ=τ+r1+...+rk

k∑
i=1

ϕ1(vi) · v∗i · eσ,τ · gσ

=
∑

σ>τ in ∆(n)

σ=τ+r1+...+rk

eσ,τ ·

(
g ·

k∑
i=1

ϕ1(vi)v
∗
i

)
σ

.

As in the induction start, we use ϕ1|τ = 0 to conclude that the above agrees with∑
σ>τ in ∆(n)

σ=τ+r1+...+rk

eσ,τ · (g · ϕ1)σ = ch·∆(τ).

�

Remark 2.1.8. There is an alternative way of deducing the k > 1 case of proposition
2.1.6 from the k = 1 case: As the canonical map A∗T(X(∆)) → A∗(X(∆)) is a ring
homomorphism it follows from remark 2.1.4 that

(ϕ1 · · ·ϕk) ·∆ = (ϕ1 ·∆) ∪ . . . ∪ (ϕk ·∆),

where the cup products on the right-hand side are computed using the fan displacement rule
(cf. remark 1.3.13). As the cup product of Minkowski weights agrees with the intersection
product of tropical cycles, theorem 1.3.6 implies that the above is equal to ϕ1 · · ·ϕk · ∆
(interpreted as an inductive intersection product with rational functions).

So far vector spaces are the only fan cycles admitting an intersection product with piece-
wise polynomials (cf. theorem 2.1.3). Therefore, our next aim is to define an intersection
product for arbitrary fan cycles. The idea is to write piecewise polynomials as sums of
products of rational fan functions and use these representations to define an intersection
product. We introduce some more notation:

Notation 2.1.9. The group of piecewise polynomials of degree k on a fan cycle X is
defined to be PPk(X) := {h : h ∈ PPk(X ) for some fan structure X of X}. Note that
sums and products of piecewise polynomials h, h′ on X are computed as in definition
2.1.1 using a fan structure of X on whose cones both h and h′ are polynomials. We set
L PPk−1(X) := 〈{l · h : l linear, h ∈ PPk−1(X)}〉.

Notation 2.1.10. Let F be a unimodular fan and let v1, . . . , vm be the primitive integral
vectors of the rays r1, . . . , rm of F . Then Ψri := Ψvi := Ψi ∈ PP1(F ) is the unique
function that is linear on the cones of F and satisfies Ψi(vj) = δij , where δij is the
Kronecker delta function. For a cone τ ∈ F we have a piecewise polynomial Ψτ :=∏
i:vi∈τ Ψi ∈ PPdim τ (F ). Note that Ψτ vanishes away from

⋃
σ>τ σ.
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Remark 2.1.11. Note that eσ,τ = (Ψτ )σ/(Ψσ)σ , where (Ψτ )σ denotes the polynomial
that agrees with the piecewise polynomial Ψτ on the cone σ.

As mentioned in [Bri96], one can show that the functions Ψτ generate the ring of piecewise
polynomials:

Proposition 2.1.12. Let h ∈ PPk(F ) be a piecewise polynomial of degree k on a unimod-
ular fan F . Then there exists a representation h =

∑
σ∈F (≤k) aσΨσ , where the aσ are

homogeneous integer polynomials of degree k − dim(σ) and the sum runs over all cones
of F of dimension at most k. In particular, piecewise polynomials on tropical fan cycles
are sums of products of rational functions.

PROOF. We use induction on the dimension of F , the case dimF = 0 being obvious.
We know by the induction hypothesis that there are homogeneous integer polynomials aσ
such that h||F1| =

∑
σ∈F (≤k)

1
aσΨσ , where F1 := {σ : σ ∈ F (p) with p < dimF}. Thus,

it suffices to show the claim for g := h −
∑
σ∈F (≤k)

1
aσΨσ ∈ PPk(F ). Now we use

induction on the number r of maximal cones in F . Let r = 1 and σ be the unique maximal
cone in F . By [Bri96, section 1.2], we know that the following sequence is exact:

0→ Ψσ Pk−dimF (F ) ↪→ PPk(F )
rest.→ PPk(F \ {σ})→ 0.

Here Pk−dimF (F ) denotes the group of homogeneous integer polynomials of degree k −
dimF on F . Since g||F\{σ}| = g||F1| = 0, it follows that there is a polynomial aσ such
that g = aσΨσ . Now let r > 1 and σ ∈ F be a maximal cone. By the induction hypothesis,
there are polynomials bτ such that g||F\{σ}| =

∑
τ∈F\{σ}(≤k) bτΨτ . Since the restriction

of g −
∑
τ∈F\{σ}(≤k) bτΨτ to F \ {σ} is 0, the claim follows from the exactness of the

above sequence. It remains to prove the “in particular” statement. Let h′ ∈ PPk(X) be
a piecewise polynomial on a fan cycle X . We choose a a fan structure X of X such that
h′ ∈ PPk(X ) and refine it to a unimodular fan structure X ′ (cf. [Ful93, section 2.6]).
Now we apply the first part of the proposition to h′ ∈ PPk(X ′); as the Ψσ are products
of rational functions and the homogeneous integer polynomials aσ are sums of products of
linear functions, it follows that h′ is a sum of products of rational functions. �

Before we use the previous proposition to construct an intersection product for any tropical
fan cycle, we give an interpretation of the intersection product of Ψα with a complete fan
in terms of toric intersection theory.

Remark 2.1.13. Let ∆ be a complete, unimodular fan in an n-dimensional vector space
and let α ∈ ∆ be a cone of dimension k. Then the weight of a cone τ ∈ ∆(n−k) in the
intersection product Ψα ·∆ is

cΨα·∆(τ) = deg(V (α) · V (τ)), (2.1)

where the right-hand side is the degree of the intersection product of the orbit closures
V (α) and V (τ) in the smooth, complete toric variety X(∆). To prove this, we first recall
that (Ψα)σ is zero if α is not a face of the maximal cone σ. If α and τ span a maximal
cone in ∆, then

cΨα·∆(τ) = eα+τ,τ · (Ψα)α+τ = 1 = deg(V (α) · V (τ)),

where the last equality follows from [Ful93, section 5.1] as V (α) and V (τ) intersect
transversally in the smooth toric variety X(∆). If α and τ do not span a cone in ∆, then
both sides are clearly zero. Finally, let us assume that the Minkowski sum α+τ ∈ ∆ is not
maximal. In order to compute the degree of V (α)·V (τ) we write V (α) as a product of divi-
sors D1 · · ·Dk and replace the Di by suitable rationally equivalent divisors Di+ div(χui)
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(cf. [Ful93, sections 3.3 and 5.1]). We can thus express the cycle class of V (α) · V (τ) as a
sum of transversal intersections. If r1, . . . , rs denote the rays of ∆, then we observe that∑

j

λjDrj = div(χu)⇔
∑
j

λjΨrj = 〈u, ·〉,

whereDrj denotes the divisor corresponding to the ray rj . This means that adding div(χu)
to a divisor Dr on the toric side corresponds to adding a linear function to the rational
function Ψr on the tropical side. In particular, both sides of equation (2.1) are not affected
by such a change and the claim follows from the two previous cases.

Remark 2.1.14. It was shown in [Bri96, corollary 3.1] that for any unimodular fan F ,

PPk(F )/L PPk−1(F )→ Ak(X(F )), Ψσ 7→ V (σ)

is an isomorphism. We note that by the Poincaré duality [Ful98, corollary 17.4], we can
regard the rational equivalence class V (σ) of the orbit closure corresponding to σ ∈ F (k)

as an element of the Chow cohomology group Ak(X(F )). If F is also complete, then
composing this isomorphism with the Kronecker duality isomorphism

Ak(X(F ))→ Hom(Ak(X(F )),Z), c 7→ [a 7→ deg(a ∩ c)]

(cf. [FMSS95, theorem 3]) gives another explanation for the formula of the previous re-
mark.

Proposition 2.1.12 together with the well-known intersections with rational functions en-
ables us to define an intersection product of piecewise polynomials with tropical fan cycles.
Later we will use this to construct an intersection product of cocycles with arbitrary cycles.

Definition 2.1.15. Let h ∈ PPk(X) be a piecewise polynomial on a fan cycle X ∈
Z fan
d (V ). By proposition 2.1.12 we can choose rational fan functions ϕij on X such that

h =
∑s
i=1 ϕ

i
1 · · ·ϕik ∈ PPk(X). This allows us to define the intersection of h with the

cycle X to be

h ·X :=

s∑
i=1

(ϕi1 · · ·ϕik ·X) ∈ Z fan
d−k(X).

In fact, we can define the intersection of h with any (not necessarily fan) subcycle of X in
this way.

We have seen in example 2.1.5 that representations of piecewise polynomials as sums
of products of rational functions are not unique. Therefore, we need to ensure that our
intersection product does not depend on the chosen representation:

Proposition 2.1.16. Let ϕi1, . . . , ϕ
i
k, γj1, . . . , γ

j
k, with k ≤ d be rational fan functions on

a fan cycle X ∈ Z fan
d (V ) such that h :=

∑
i∈I ϕ

i
1 · · ·ϕik =

∑
j∈J γ

j
1 · · · γ

j
k ∈ PPk(X).

Then we have the following equation of intersection products of rational functions with
cycles: ∑

i∈I
ϕi1 · · ·ϕik ·X =

∑
j∈J

γj1 · · · γ
j
k ·X.

The proof of the proposition makes use of the following technical lemma:

Lemma 2.1.17. Let cb1...bs be real numbers such that
∑
b1+...+bs=k

ab11 · · · abss ·cb1...bs = 0
for all ai > 0, where the sum runs over all non-negative integers b1, . . . , bs that sum up to
k. Then all cb1...bs are 0.
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PROOF. For a1 ∈ {1, . . . , k + 1} and any a2, . . . , as > 0 we have

0 =
∑

b1+...+bs=k

ab11 · · · abss · cb1...bs =

k∑
b1=0

ab11

∑
b2+...+bs=k−b1

ab22 · · · abss cb1...bs .

Since the Vandermonde matrix (ij)i=1,...,k+1,j=0,...,k is regular, it follows that∑
b2+...+bs=k−b1

ab22 · · · abss cb1...bs = 0

for all a2, . . . , as > 0 and all b1 ∈ {0, . . . , k}. Hence the claim follows by induction. �

PROOF OF PROPOSITION 2.1.16. We choose a unimodular fan structureX ofX such
that all ϕip, γ

j
p are linear on every cone of X . Let v1, . . . , vm be the primitive integral

vectors of the rays r1, . . . , rm of X . By lemma 2.1.7, ϕip =
∑m
s=1 ϕ

i
p(vs) · Ψs, and we

have

h =
∑
i∈I

ϕi1 · · ·ϕik

=
∑
i∈I

(
m∑
s=1

ϕi1(vs) ·Ψs

)
· · ·

(
m∑
s=1

ϕik(vs) ·Ψs

)
=

∑
i∈I

∑
1≤s1≤...≤sk≤m

∑
t1,...,tk:

{t1,...,tk}m={s1,...,sk}m

ϕi1(vt1) · · ·ϕik(vtk) ·Ψs1 · · ·Ψsk

=
∑

1≤s1≤...≤sk≤m

∑
t1,...,tk:

{t1,...,tk}m={s1,...,sk}m

∑
i∈I

ϕi1(vt1) · · ·ϕik(vtk)

︸ ︷︷ ︸
=:λs1...sk∈Z

·Ψs1 · · ·Ψsk ,

where {t1, . . . , tk}m = {s1, . . . , sk}m is an equality of multisets. The linearity and com-
mutativity of intersecting with rational functions [AR10, proposition 3.7] allow us to per-
form the same computation for the intersection product with X; thus we have∑

i∈I
ϕi1 · · ·ϕik ·X =

∑
1≤s1≤...≤sk≤m

λs1...sk ·Ψs1 · · ·Ψsk ·X.

Analogously we set

µs1...sk :=
∑

t1,...,tk:

{t1,...,tk}m={s1,...,sk}m

∑
j∈J

γj1(vt1) · · · γjk(vtk)

and use the same argument for the γjp to conclude that∑
i∈I

ϕi1 · · ·ϕik ·X−
∑
j∈J

γj1 · · · γ
j
k ·X =

∑
1≤s1≤...≤sk≤m

(λs1...sk − µs1...sk)︸ ︷︷ ︸
=:cs1...sk

·Ψs1 · · ·Ψsk ·X.

As Ψw1 · · ·Ψwk · X = 0 if the cone 〈w1, . . . , wk〉 /∈ X (this can be showed in the same
way as [All12, lemma 1.4]) the above is equal to∑

〈vs1 ,...,vsk 〉∈X

cs1...sk ·Ψs1 · · ·Ψsk ·X.

Note that the si are not necessarily pairwise disjoint; that means the sum runs over all
cones in X of dimension at most k. It suffices to prove that all cs1...sk occurring in the
above sum are equal to 0: Therefore, we fix integers 1 ≤ t1 < . . . < tk ≤ m such that
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〈vt1 , . . . , vtk〉 ∈ X (k) and claim that cs1...sk = 0 for all 1 ≤ s1 ≤ . . . ≤ sk ≤ m with
{s1, . . . , sk} ⊆ {t1, . . . , tk}: For all a1, . . . , ak > 0 we have

0 = (h− h)(a1vt1 + . . .+ akvtk)

=

 ∑
1≤s1≤...≤sk≤m

cs1...sk ·Ψs1 · · ·Ψsk

 (a1vt1 + . . .+ akvtk)

=
∑

1≤s1≤...≤sk≤m
{s1,...,sk}⊆{t1,...,tk}

cs1...sk

k∏
i=1

a
|{j:sj=ti}|
i

=
∑

b1+...+bk=k

ct1 . . . t1︸ ︷︷ ︸
b1 times

... tk . . . tk︸ ︷︷ ︸
bk times

ab11 · · · a
bk
k ,

where the last sum runs over non-negative integers bi that sum up to k. Now the claim
follows from lemma 2.1.17. �

Example 2.1.18. Let h ∈ PP2(L3
2) be the piecewise polynomial shown in the following

picture. LetX be the corresponding fan structure ofL3
2 having rays (−1, 0, 0), (−1,−1, 0),

(0,−1, 0), (0, 0,−1), (1, 1, 0), (1, 1, 1).

xy x2

xz

2xz

yzxz

2x2

y2 + xy

0 0

0

2xz

yzxz

0

y2 − xyσ1

σ2

σ3

σ4

h ∈ PP2(X ) ( PP2(L3
2) h+ 2x ·Ψa − x ·Ψb

We want to compute h · L3
2. Therefore, we use the idea of the proof of proposition 2.1.12

to obtain a representation of h as a sum of products of rational functions: We first make h
vanish on the rays of X by adding appropriate (linear) multiples of the rational functions
Ψr (with r a ray of X ). Doing this we obtain h+ 2x ·Ψa− x ·Ψb, where a = (−1,−1, 0)
and b = (1, 1, 1). Now it is easy to see that

h+ 2x ·Ψa − x ·Ψb = −Ψσ1
+ Ψσ2

+ Ψσ3
− 2 ·Ψσ4

.

As Ψσi · L3
2 = 1 · {0} for all i (cf. lemma 2.1.19) and intersection products with linear

functions are zero, we obtain by definition 2.1.15 that

h · L3
2 = (−1 + 1 + 1− 2) · {0} = −1 · {0}.

Alternatively we can compute our intersection product by extending h to a piecewise poly-
nomial h̃ on R3, multiplying it with a rational function that cuts out L3

2 and using the
formula of definition 2.1.3: Let e1, e2, e3 denote the standard basis vectors in R3 and let
e0 = −e1 − e2 − e3. The following table shows an extension h̃ of h to R3:
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Cone h̃ max{x, y, z, 0} · h̃
〈−e0,−e1, a〉 xy + y2 − z2 z(xy + y2 − z2)
〈−e0,−e2, a〉 2x2 − z2 z(2x2 − z2)
〈−e1,−e3, a〉 xy + xz + y2 0
〈−e2,−e3, a〉 2x2 + yz 0
〈−e0,−e2,−a〉 xz x2z
〈−e2,−e3,−a〉 xz + yz x(xz + yz)
〈−e0,−e1,−a〉 xz xyz
〈−e1,−e3,−a〉 xz + yz y(xz + yz)

By definition (h̃ ·max{x, y, z, 0}) · R3 is the origin with weight

z(xy + y2 − z2)

z(y − x)(z − y)
+

z(2x2 − z2)

z(x− y)(z − x)
+

0

(y − x)(−z)(−y)
+

0

(x− y)(−z)(−x)

+
x2z

z(x− y)(x− z)
+

x(xz + yz)

(x− y)(−z)x
+

xyz

z(y − x)(y − z)
+

y(xz + yz)

(y − x)(−z)y
,

which is equal to −1.
A third possibility is to compute the intersection product of max{x, y, z, 0} with the curve
h̃ · R3. We use definition 2.1.3 to see that h̃ · R3 is the curve that consists of rays
〈−e0〉, 〈−e3〉 (both of weight−1), 〈−e1〉, 〈−e2〉 (of weight−2 each) and 〈a〉 (of weight
1). For example, the weight of the ray 〈a〉 in h̃ · R3 is calculated as

ch̃·R3(〈a〉) =
xy + y2 − z2

z(y − x)
+

2x2 − z2

z(x− y)
+
xy + xz + y2

(y − x)(−z)
+

2x2 + yz

(x− y)(−z)
= 1.

Now it is easy to see that intersecting this curve with max{x, y, z, 0} gives the origin with
weight −1.

Lemma 2.1.19. Let X be a unimodular fan structure of a fan cycle X of dimension d. Let
σ ∈ X be a maximal cone. Then Ψσ ·X = ωX (σ) · {0}.

PROOF. Let v1, . . . , vd be the primitive integral vectors generating the rays of σ. It
follows from the definition of Ψvi and the intersection product with a rational function that
the weight of the cone 〈v1, . . . vi−1〉 in Ψvi · · ·Ψvd ·X is equal to the weight of 〈v1, . . . vi〉
in Ψvi+1

· · ·Ψvd · X . This implies the claim. �

We are ready to list the properties the intersection product with piecewise polynomials
inherits from the intersection product with rational functions. Therefore, we first notice that
piecewise polynomials can be pulled back along morphisms in the same way as rational
functions.

Definition 2.1.20. Let f : X → Y be a morphism of tropical fan cycles and let h ∈
PPk(Y ) be a piecewise polynomial on Y . Then the pull-back of h along f is f∗h :=

h ◦ f ∈ PPk(X). Note that h ◦ f is polynomial on the cones of X if h is polynomial on
the cones of Y and X ,Y are compatible with respect to f .

Proposition 2.1.21. Let h ∈ PPk(X) and h′ ∈ PPl(X) be piecewise polynomials on
a fan cycle X . The intersection product with piecewise polynomials has the following
properties:

(1) PPk(X)× Zl(X)→ Zl−k(X), (b, C) 7→ b · C is bilinear.
(2) If h ∈ L PPk−1(X), then h ·X = 0.
(3) h · (h′ ·X) = (h · h′) ·X = h · (h′ ·X).
(4) If Y is a fan cycle, then (h ·X)× Y = π∗h · (X × Y ), where π : X × Y → X

maps (x, y) to x.
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(5) h ·(f∗E) = f∗(f
∗h ·E) for a morphism of fan cycles f : Y → X and a subcycle

E of Y .

PROOF. These properties follow directly from definition 2.1.15 and the respective
properties of the intersection product with rational functions (remark 1.2.4, propositions
1.2.9 and 1.2.16, lemma 1.2.15). �

Remark 2.1.22. A piecewise polynomial h ∈ PPk(X) on a fan cycle X induces a piece-
wise polynomial hp ∈ PPk(StarX(p)) obtained by restricting h to a small neighbourhood
of p and then extending it in the obvious way to StarX(p). As h =

∑s
i=1 ϕ

i
1 · · ·ϕik implies

that hp =
∑s
i=1(ϕi1)p · · · (ϕik)p, it follows from proposition 1.2.9 that

hp · StarX(p) = Starh·X(p).

The rest of the section is devoted to comparing the notions of push-forwards and pull-backs
of piecewise polynomials introduced in [Bri96, section 2.3] to the tropical push-forward of
cycles and the tropical pull-back of piecewise polynomials.
Therefore, let F, F ′ be two unimodular fans in an n-dimensional vector space such that
each cone of F ′ is contained in a cone of F . Then the identity map on the underlying
lattice gives rise to a morphism π : X(F ′) → X(F ) of the corresponding smooth toric
varieties.

Remark 2.1.23. It is obvious that the pull-backs of piecewise polynomials defined in
2.1.20 and [Bri96, theorem 2.3(i)] are equal. By [Bri96, proposition 3.2(i)], this means
that our pull-back of piecewise polynomials describes the pull-back morphisms of Chow
cohomology groups π∗ : Ak(X(F ))→ Ak(X(F ′)).

Remark 2.1.24. Now, we assume additionally that ∆ := F and ∆′ := F ′ are complete.
Then [Bri96, theorem 2.3(iii)] defines the push-forward of a piecewise polynomial h ∈
PPk(∆′) along π to be given by

(π∗h)σ := e−1
σ,{0}

∑
σ′∈∆′(n):σ′⊆σ

eσ′,{0}hσ′ ,

where σ is a maximal cone in ∆. By [Bri96, proposition 3.2(ii)] this push-forward of
piecewise polynomials describes the push-forward π∗ : An−k(X(∆′)) → An−k(X(∆))
of the Chow homology groups of the corresponding smooth, complete toric varieties. Note
that An−k(X(∆)) ∼= PPk(∆)/L PPk−1(∆) by the Poincaré duality and remark 2.1.14,
and the same for ∆′.

y

x

x

y

7−→
y

x0

In the picture, π∗ maps the rational function max{x, y} = Ψh − Ψe to the rational func-
tion max{x, y, 0} = Ψh, where h := (1, 1), e := (−1,−1). In the toric setting, this
corresponds to π∗ : A1(Bl(P2))→ A1(P2) mapping H − E to H , where E is the excep-
tional divisor in the blow-up of the projective plane in a point and H is the class of a line.
The above example clearly shows that the push-forward of piecewise polynomials does not
agree with the push-forward of tropical cycles as the push-forward of the line R · h along
the identity is R · h and not L2

1.



2.2. ABSTRACT TROPICAL CYCLES 33

Proposition 2.1.25. With the notations and assumptions of remark 2.1.24, we have that
for any piecewise polynomials h ∈ PPk(∆′) and g ∈ PPn−k(∆)

g · (π∗h) · Rn = g · h · Rn.

PROOF. As g and π∗h are piecewise polynomials on ∆ definition 2.1.3 says that

(g · π∗h) ·∆ =
∑

σ∈∆(n)

eσ,{0} · (π∗h)σ · gσ

=
∑

σ∈∆(n)

∑
σ′∈∆′(n):σ′⊆σ

eσ′,{0} · hσ′ · gσ

=
∑

σ′∈∆′(n)

eσ′,{0} · hσ′ · gσ′

= g · h ·∆′,
which proves the claim. �

Corollary 2.1.26. With the notations and assumptions of remark 2.1.24 and ∆ = Lnn, we
have that for any piecewise polynomial h ∈ PPk(∆′)

(π∗h) · Rn = (deg(h · Rn)) · Lnn−k,
where deg(·) denotes the degree of a cycle introduced in definition 1.3.9.

PROOF. Since π∗h ∈ PPk(Lnn) and Lnn−k is irreducible we can conclude that (π∗h) ·
Rn is a multiple of Lnn−k. Therefore, it suffices to prove that h · Rn and (π∗h) · Rn have
the same degree which follows from proposition 2.1.25 using the piecewise polynomial
g = max{x1, . . . , xn, 0}n−k. �

2.2. Abstract tropical cycles

The aim of this section is to introduce abstract tropical cycles, that means cycles that are
not necessarily embedded in a vector space. An abstract tropical cycle is a topological
space with a weight function and local embeddings into tropical fan cycles. These local
embeddings allow us to extend intersection-theoretic operations to abstract cycles; in par-
ticular we will intersect tropical cocycles (on abstract cycles) with abstract subcycles in the
next section.

This section is based on an idea by Johannes Rau and is consistent with the definition
of smooth varieties introduced in [FR]. Compared to the abstract cycles of [AR10], the
abstract cycles presented in this section avoid many of the technical difficulties which have
arisen when intersection-theoretic operations have been performed. Other than that, there
is not much difference between these two definitions.

Definition 2.2.1. A weighted topological space (X,ωX , U) is a topological space X to-
gether with an integer weight function ωX : U → Z \ {0} on the dense open subset U
which is locally constant in U . Two weighted topological spaces are said to agree and will
be identified if the underlying topological spaces are equal and their weight functions agree
where both are defined.

Remark 2.2.2. Let X be a polyhedral structure (all of whose maximal cells have non-
zero weight) of a tropical cycle X in a vector space V . We can regard X as a topological
space by equipping it with the subspace topology of the euclidean topology in V and make
it weighted by giving each point contained in the relative interior of a maximal cell the
weight of the maximal cell. Note that the complement of the union of the codimension 1
cells is open and dense in X . It follows straight from the definition that the corresponding
weighted topological space does not depend on the chosen polyhedral structure.
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Definition 2.2.3. A weighted subspace C of a weighted spaceX is a subspace topology of
X which is itself weighted. For a weighted subspace C of X and an open set U in X we
equip the subspace topology C ∩ U with the weights inherited from C; that means we set
ωC∩U (p) := ωC(p) for all points p in the intersection of U and the domain of the weight
function ωC . If φ : U → W is a homeomorphism, then φ(C ∩ U) becomes a weighted
space by inheriting the weights of C ∩ U .
We say that a weighted subspace C of a vector space V (which contains a lattice and is
equipped with the euclidean topology) is an open cycle of dimension d if there are a cycle
D ∈ Zd(V ) and an open subset U ⊆ V such that C = D ∩ U . If D can be chosen to be a
fan cycle and U contains the origin, then we call C an open fan cycle.

Definition 2.2.4. An (abstract) tropical cycle of dimension d is a weighted topological
space X together with a finite open cover {Ui} and homeomorphisms

φi : Ui →Wi

such that:

• Each Wi is a euclidean open subset of a real vector space VWi (associated to a
lattice) and contains the origin.

• For all i the set R≥0 ·Wi := {λ · x : x ∈ Wi, λ ∈ R≥0} is the support of a
d-dimensional tropical fan cycle Xi in VWi such that the weight of each point
p ∈ Ui is equal to the weight of φi(p) in Xi (if both are defined).

• For each pair i, k, the transition map

φk ◦ φ−1
i : φi(Ui ∩ Uk)→ φk(Ui ∩ Uk)

is the restriction of an integer affine linear map.

As usually, we denote the underlying set of X by |X|.

Remark 2.2.5. The local blocks Xi of an abstract cycle X are uniquely defined by the
properties one and two of definition 2.2.4; this is why we insist that the sets Wi contain
the origin. Note that the first two conditions of the previous definition are equivalent to
requiring that each Wi (together with the weight function inherited from Ui) is an open fan
cycle in VWi .

Definition 2.2.6. An r-dimensional subcycle C of an abstract cycle X is a weighted sub-
space of X such that for all i the weighted space φi(C ∩ Ui) agrees with the intersection
of Wi and (the weighted topological space associated to) a tropical cycle Ci ∈ Zr(VWi).
The sum of two subcycles C,D (of the same dimension) is obtained by adding the local
cycles Ci and Di in VWi (cf. construction 1.1.20). Note that this does not depend on the
choice of local cycles Ci and Di. The group of r-dimensional subcycles of the abstract
cycle X is denoted by Zr(X).

Definition 2.2.7. The cross product X × X ′ of two tropical cycles X,X ′ is the product
topology with weight function ωX×X′(p, p

′) := ωX(p) · ωX′(p′) (if both weights are
defined) together with the open cover {Ui×U ′j} and homeomorphisms φi×φ′j . Note that
the local blocks of the cross product are just cross products of the local blocks.

Definition 2.2.8. A morphism f : X → Y of abstract tropical cycles X,Y is a continuous
map such that for all i, j the map

φYj ◦ f ◦ (φXi )−1 : WX
i ∩ φXi (f−1(UYj ))→ φYj (f(UXi )) ∩WY

j

on the charts is induced by an integer affine linear map of the ambient vector spaces. A
morphism f which respects the weights (i.e. ωX(p) = ωY (f(p)) if both are defined) is an
isomorphism if there is an inverse tropical morphism g : Y → X .



2.3. INTERSECTING WITH TROPICAL COCYCLES 35

Remark 2.2.9. Abstract tropical cycles are more general than tropical cycles in vector
spaces: If X is a polyhedral structure of a cycle X in V , then we can regard X as an
abstract cycle with open cover {U(τ) : τ ∈ X minimal}, where U(τ) := ∪σ>τ Int(σ),
and translation homeomorphisms

φτ : U(τ)→ U(τ)− pτ ⊆ |StarX(pτ )|, x 7→ x− pτ ,
where pτ is a point in the relative interior of τ . It is clear that the definitions of morphisms
1.1.27 and 2.2.8 agree for cycles in vector spaces. Using the above reasoning we also
notice that subcycles of abstract cycles are themselves abstract cycles and that restrictions
of morphisms to subcycles are again morphisms.

Definition and Construction 2.2.10. Let f : X → Y be a morphism of abstract cycles.
We want to construct the push-forward f∗X ∈ ZdimX(Y ). For a point q in f(|X|) we
choose j such that q ∈ UYj . For every point p ∈ f−1{q} we choose ip such that p ∈
UXip . Let fpip,j : StarXip (φXip(p)) → StarYj (φ

Y
j (q)) be the morphism induced by the map

φYj ◦f ◦ (φXip)−1. Then the push-forward f∗X is locally (on Yj around q) given by the sum∑
p∈f−1{q}

(fpip,j)∗ StarXip (φXip(p)).

Note that all but finitely many of these summands are zero. As φip ◦ (φi′p)−1 induces
an isomorphism between StarXi′p

(φXi′p(p)) and StarXip (φXip(p)) the definition does not
depend on the choice of ip. An analogous argument allows us to conclude that the local
push-forwards agree on the overlaps and can thus be glued together to a cycle f∗X ∈
ZdimX(Y ). As usually, the push-forward f∗C of a subcycle C of X is defined to be the
push-forward (f|C)∗C of C along the restriction of f to C.

Remark 2.2.11. If f is a morphism of cycles in vector spaces, then definition 2.2.10 gives
the same result as definition 1.1.29. This follows immediately from the locality of pushing
forward stated in proposition 1.1.31.

2.3. Intersecting with tropical cocycles

In this section we use piecewise polynomials to define higher codimension cocycles on
abstract tropical cycles X as well as their intersection product. These cocycles generalise
the known Cartier divisors and satisfy the expected properties. We also show a Poincaré
duality on vector spaces.

We start by defining piecewise polynomials on open subsets of a tropical fan cycle.

Definition 2.3.1. Let X be a fan cycle in a vector space V and let U be a euclidean
open subset in |X|. A continuous function h : U → R is called piecewise polynomial
of degree k on U if it is locally around each point p ∈ U a finite sum

∑
j(h

j
p ◦ T jp ) of

compositions of (restrictions of) piecewise polynomials hjp ∈ PPk(StarX(p)) and trans-
lations T jp . We define hp ∈ PPk(StarX(p)) to be the (uniquely defined) sum of the hjp.
The group of piecewise polynomials of degree k on U is denoted by PPk(U). Further-
more, L PPk−1(U) is the group of piecewise polynomials h (of degree k) on U such that
hp ∈ L PPk−1(StarX(p)) for all points p ∈ U .

We now generalise the notion of Cartier divisors (i.e. codimension 1 cocycles) introduced
in [AR10, definition 6.1] by using piecewise polynomials (instead of piecewise linear func-
tions) as local descriptions:

Definition 2.3.2. A representative of a codimension k cocycle on the cycle X is defined
to be a set {(V1, h1), . . . , (Vp, hp)} satisfying
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• {Vi} is an open cover of |X|;
• (hj ◦ φ−1

i )|φi(Ui∩Vj) ∈ PPk(φi(Ui ∩ Vj)) for all i, j;
• ((hj − hk) ◦ φ−1

i )|φi(Ui∩Vj∩Vk) ∈ L PPk−1(φi(Ui ∩ Vj ∩ Vk)) for all i, j, k.

The sum of two (representatives of) codimension k cocycles {(Vj , hj)} and {(V ′k, h′k)} is
defined to be {(Vj∩V ′k), hj+h′k)}. We call two representatives of codimension k cocycles
{(Vj , hj)} and {(V ′k, h′k)} equivalent (and identify them) if we have for all i, s that

(gs ◦ φ−1
i )|φi(Ui∩Ks) ∈ L PPk−1(φi(Ui ∩Ks)),

where {(Ks, gs)} := {(Vj , hj)} − {(V ′k, h′k)}.
The group of codimension k cocycles on X is denoted by Ck(X). The multiplication of
two cocycles can be defined in the same way as the addition; therefore, there is a graded
ring C∗(X) :=

⊕
k∈N C

k(X) called the ring of cocycles.

Example 2.3.3. For any cycle X , C1(X) is the group of Cartier divisors Div(X) intro-
duced in [AR10, definition 6.1].

Example 2.3.4. Vector bundles π : F → X of degree r on tropical cyclesX have been in-
troduced in [All, definition 1.5]. A rational section s : X → F with open cover U1, . . . , Us
induces rational functions sij := p

(i)
j ◦Φi◦s : Ui → R (cf. [All, definition 1.18]). Here the

Φi are homeomorphisms identifying π−1(Ui) with Ui × Rr and the p(i)
j : Ui × Rr → R

are projections to the j-th component of Rr. For any k ≤ r one obtains the cocycle
s(k) := {(Ui,

∑
1≤j1≤...≤jk≤r sij1 · · · sijk)} ∈ Ck(X) (see [All, definition 2.1]).

We are now ready to construct an intersection product of cocycles with tropical cycles. As
cocycles are locally given by piecewise polynomials, the idea is to glue together the local
intersection products of definition 2.1.15.

Definition and Construction 2.3.5. Let h = {(Vj , hj)} ∈ Ck(X) be a codimension k
cocycle on a tropical cycle X . For a point p in X we choose i, j such that p ∈ Ui ∩ Vj . By
definition, (hj ◦φ−1

i )p ∈ PPk(StarXi(φi(p)) is a piecewise polynomial on the star around
φi(p). Thus we can define the local intersection (hj ◦ φ−1

i ) · (Xi ∩ φi(Ui ∩ Vj)) by

Star(hj◦φ−1
i )·(Xi∩φi(Ui∩Vj))(φi(p)) := (hj ◦ φ−1

i )p · StarXi(φi(p)).

As φk ◦ φ−1
i induces an isomorphism of the stars StarXi(φi(p)) and StarXk(φk(p)), the

definition does not depend on the choice of open set Ui.
We can glue together the local intersections to a subcycle h · X ∈ ZdimX−k(X) of X:
If p ∈ Ui ∩ Vj ∩ Vs, then ((hj − hs) ◦ φ−1

i )p ∈ L PPk−1(StarXi(φi(p)). Therefore, it
follows by part (2) of proposition 2.1.21 that the local intersections agree on the overlaps.

Remark 2.3.6. In the same way we can also intersect cocycles on X with any subcycle of
X . Hence, definition 2.3.5 gives rise to an intersection product

Ck(X)× Zl(X)→ Zl−k(X), (h,C) 7→ h · C.

Example 2.3.7. We consider the cocycle h = {(V1, h1), (V2, h2)} ∈ C2(R2) showed in
the following picture, where R = (−1,−1) and Q = (2, 2).
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V1

V2

V1 ∩ V2

0 (x+ 1)2

(y + 1)2

0
(x− 2)2

(y − 2)2

R

Q

Note that for p = (t, t) with −1 < t < 2 we have

(h1−h2)p = (h1)p−(h2)p = (max{x, y})2−(min{x, y})2 = (y+x)·max{x−y, y−x},
which is in L PP1(Starp(R2)) (cf. definition 2.3.1); hence h is indeed a cocycle. As (h1)R
is the piecewise polynomial of example 2.1.5 we conclude that the multiplicity ofR in h·R2

is 1. We can deduce from an analogous argument for the point Q that h · R2 = R+Q.

As in the case of Cartier divisors [AR10, proposition 7.6], we can pull back cocycles along
morphisms.

Definition 2.3.8. The pull-back f∗h ∈ Ck(Y ) of a codimension k cocycle h = {(Vj , hj)}
in Ck(X) along a morphism f : Y → X of abstract cycles is defined to be the cocycle
{(f−1(Vj), hj ◦ f)}.

Proposition 2.3.9. The following properties hold for cocycles h ∈ Ck(X) and h′ ∈
Cl(X) on a cycle X:

(1) Ck(X)× Zl(X)→ Zl−k(X), (b, C) 7→ b · C is bilinear.
(2) h · (h′ ·X) = (h · h′) ·X = h′ · (h ·X).
(3) h · (f∗E) = f∗(f

∗h · E) for a morphism f : Y → X and a subcycle E of Y .
(4) If Y is a cycle, then (h ·X)×Y = π∗h · (X ×Y ), where π : X ×Y → X maps

(x, y) to x.
(5) If D is rationally equivalent to 0 on X , then so is h ·D.

PROOF. We first notice that all statements except (5) can be verified locally (which
means for piecewise polynomials on fan cycles) and thus follow from proposition 2.1.21.
Using (3) the proof of (5) is the same as the proof of [AR, lemma 2(b)]. �

For the rest of the chapter we focus on cocycles on vector spaces. We use theorem 2.1.3 to
establish a Poincaré duality for this case:

Theorem 2.3.10. For any vector space V and any k ≤ n := dimV , the following is a
group isomorphism:

Ck(V )→ Zn−k(V ), h 7→ h · V.

PROOF. We first consider the corresponding local statement: Since every fan cycle
in V has a fan structure lying in a complete, unimodular fan (lemma 1.1.19 and [Ful93,
section 2.6] or [Rau09, proposition 1.1.2]), we can use theorem 2.1.3 to conclude that

PPk(V )/L PPk−1(V )→ Z fan
n−k(V ), h 7→ h · V

is an isomorphism.
For the global case we start by proving the surjectivity. So letC ∈ Zn−k(V ) be an arbitrary
subcycle of V . We choose an open cover {Vj} of V and translation functions Tj such that
Tj(C ∩ Vj) is an open fan cycle (cf. definition 2.2.3) for all j. By the local statement
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we can choose for each j a piecewise polynomial hj whose intersection with V is the fan
cycle associated to Tj(C ∩Vj). Then h = {(Vj , hj ◦Tj)} ∈ Ck(V ) is a cocycle satisfying
h · V = C. By construction the difference of two of these local functions gives a zero
intersection on the overlaps of two open sets, i.e. the local intersection (hj ◦Tj−hk ◦Tk) ·
(V ∩ V1 ∩ V2) = 0; therefore, the injectivity part of the local statement implies that the
third condition of definition 2.3.2 is fulfilled and h is indeed a cocycle on V .
The injectivity follows immediately from the local statement. �

Remark 2.3.11. Let X be a unimodular tropical fan and let Y be a Minkowski weight
of codimension k in X . We know by proposition 2.1.12 that the set {Ψτ : τ ∈ X (k)}
generates PPk(X )/L PPk−1(X ). Finding a piecewise polynomial on X that cuts out Y
therefore boils down to finding an integer solution of the system∑

τ∈X (k)

aτ (Ψτ · X ) = Y

of #X (dimY ) linear equations and variables aτ , τ ∈ X (k). Note that, unlessX is complete,
this system is in no way guaranteed to have a solution. In the case that X is complete and
k = 1, one can also find a rational function ϕ that cuts out Y by inductively determining the
linear functions ϕσ along a path of adjacent maximal cones of X [FS97, proof of corollary
2.4].
In order to find a concrete piecewise polynomial on a vector space V that cuts out a fan
cycle Y in V , one can thus use the strategy of lemma 1.1.19 to find fan structures such
that Y is a Minkowski weight in ∆, subdivide both to make Y a unimodular Minkowski in
the unimodular fan ∆ [Rau09, proposition 1.1.2] and then solve the above system of linear
equations. Note that this method leads to a potentially very large number of equations and
variables.



CHAPTER 3

Intersection theory on matroid varieties

Matroid varieties are a natural generalisation of tropicalisations of classical linear spaces.
They come with a natural fan structure given in terms of the flats of the underlying matroid,
and many matroid-theoretic operations translate nicely to the tropical world. All this makes
them natural candidates for the local building blocks of smooth tropical varieties.

In this chapter we construct an intersection product of cycles on matroid varieties (and
thus on smooth varieties) and show that it has the expected properties. Our intersection
product generalises and agrees with the intersection product of [All12] defined on cycles
that locally look like cross products of Lnk . We also construct a pull-back of cycles along
morphisms of smooth varieties and show that every cycle on a matroid variety is rationally
equivalent to its recession cycle and can be cut out by a cocycle.

Our strategy is to find rational functions on the product B(M) × B(M) that cut out the
diagonal of matroid variety B(M). These functions can then be used in the same way as
in [AR10, All12] to define an intersection product of cycles. It turns out that any matroid
variety contained in a bigger matroid variety can be cut out by rational functions given in
terms of the rank functions of the respective matroids. Since the class of matroid varieties
is closed under taking cross products and diagonals, this gives us the required functions.

In comparison to [All12], we cut out the diagonal by a product of explicitly given, symmet-
ric functions, rather than by a sum of products of rational functions output by an algorithm.
This is often beneficial in theoretical considerations and simplifies some proofs but comes
at the expense of finer fan structures. Furthermore, matroid varieties come with a natural
lineality space R · (1, . . . , 1). Although one is often more interested in the matroid vari-
ety modulo lineality space, we first introduce our intersection theory on matroid varieties.
We deal with the rather technical task of constructing an intersection product on a matroid
variety modulo lineality space from the intersection product on the matroid variety in the
fourth section.

An alternative approach to construct an intersection product on matroid varieties was pre-
sented by Shaw in [Sha]. She uses projections and modifications to give a recursive def-
inition that finally uses the known intersection product on Rn. We use the link between
pull-backs of cycles and tropical modifications to show that both intersection products ac-
tually agree.

Sections 1 to 7 mainly consist of joint work with Johannes Rau published in [FR]. As
every section contains ideas of both of us it is virtually impossible to single out the exact
contribution each of use made. However, it is fair to say that the overall idea for the project
of constructing an intersection product on matroid varieties by cutting out the diagonal
as well as the idea to present section 2 using matroid quotients rather than more ad hoc
intersection-theoretic computations are due to Johannes Rau, whereas section 7 is to a
large extent due to myself. Some new results are contained in sections 3 and 6. Section 8
mainly covers material published in [Fra].

39
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3.1. Matroid varieties

The aim of this section is to define matroid varieties and prove their main properties, most
of which have already been proven in one way or another in [FS05,AK06,MS,Spe08]. We
start by briefly recalling some equivalent definitions of matroids and refer to [Oxl92] for
further details about matroids.

Notation 3.1.1. Let E be a set and A ⊆ E, x ∈ E. In the context of matroid theory one
often writes A ∪ x for A ∪ {x} and A \ x for A \ {x}.

Definition 3.1.2. A matroid M = (E,B) is a finite set E together with a non-empty set B
of subsets of E satisfying the basis exchange property: If B1, B2 ∈ B and x ∈ B1 \ B2,
then there is an element y ∈ B2 \B1 such that (B1 \ x)∪ y ∈ B. Elements of B are called
bases of M , the set E (which is also sometimes denoted by E(M)) is called the ground
set of M . It can be shown that each basis of M has the same number of elements called
the rank r(M) of M .

We can assign each subset A of E a rank by setting

r(A) := max{|A ∩B| : B basis of M}. (3.1)

This gives us a rank function r : P(E)→ Z≥0 having the following properties:

(1) r(∅) = 0.
(2) If A ⊆ E and x ∈ E, then r(A) ≤ r(A ∪ x) ≤ r(A) + 1.
(3) IfA ⊆ E and x, y ∈ E such that r(A∪x) = r(A∪y) = r(A), then r(A∪x∪y) =

r(A).

The third property of the rank function is a consequence of the basis exchange property:
Assume that x, y /∈ A and r(A) = r(A ∪ x) = r(A ∪ y) = r(A ∪ x ∪ y) − 1. Then we
can choose bases B,B′ such that |B ∩ A| = r(A)− 1, {x, y} ⊆ B and |B′ ∩ A| = r(A),
B′ ∩ {x, y} = ∅. If z′ ∈ B′ \ (B ∪ A), then our assumptions cleary imply that only
elements of B \ (B′ ∪A ∪ {x, y}) can (potentially) be added to B′ \ z′ to form a basis of
M . But |B| = |B′| implies that |B′ \ (B ∪ A)| = |B \ (B′ ∪ A ∪ {x, y})| + 1, which
means that repeatedly using the basis exchange property in this way eventually leads to a
contradiction.

On the other hand one can show that a function r : P(E) → Z≥0 fulfilling the above
conditions is the rank function of the matroid whose bases are all subsets A ⊆ E that
satisfy |A| = r(A) = r(E).

The closure cl(A) of a subset A ⊆ E in the matroid M is

cl(A) := {x ∈ E : r(A ∪ x) = r(A)}.
In other words, the closure of A is the maximal subset of E that contains A and has the
same rank as A. If A1 ⊆ A2, then equation (3.1) implies that for all x ∈ E

r(A2 ∪ x)− r(A2) = 1⇒ r(A1 ∪ x)− r(A1) = 1;

thus cl(A1) ⊆ cl(A2). Closed sets (i.e. sets A with A = cl(A)) are called flats of M .
Knowing the above, it is easy to see that the flats of a matroid have the following properties:

(1) E is a flat of M .
(2) The intersection of two flats is again a flat.
(3) If {F1, . . . , Fp} are the minimal flats strictly containing a flat F , then E \ F is

the disjoint union of the Fi \ F .

The set of flats uniquely defines a rank function and thus a matroid, namely

r(A) := max{i : cl(∅) =: F0 ( F1 ( F2 ( . . . ( Fi = cl(A) is a chain of flats in M},
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where cl(A) is just the minimal flat of M containing A.

Remark 3.1.3. One can also describe the matroid M by its independent sets (i.e. sub-
sets of bases), its circuits (i.e minimal dependent sets) or its hyperplanes (i.e flats of rank
r(M)− 1). This means that inclusion-maximal independent sets are bases and that a set is
independent if and only if it does not contain any circuit.

Definition 3.1.4. A loop of a matroid M is an element a ∈ E(M) such that the set {a}
has rank 0; in other words, a is not contained in any basis of M . An element a ∈ E(M) is
a coloop in M if it is contained in every basis of M .

Convention 3.1.5. In the following, unless explicitly told otherwise, all matroids are as-
sumed to be loopfree, i.e. not to contain any loops.

Example 3.1.6. Let v1, . . . , vn be (non-zero) vectors in a vector space V over a field K.
Then the function r mapping a set A ⊆ {1, . . . , n} to the dimension of the linear span of
the set {vi : i ∈ A} is the rank function of a matroid. The independent sets of the matroid
correspond exactly to the linearly independent sets in {v1, . . . , vn}. Matroids of this form
are called realisable (or representable) over the field K.

Definition 3.1.7. The direct sum M ⊕N of two matroids M and N is the matroid whose
ground set is the disjoint unionE(M)

.∪E(N) and whose set of bases is the set {BM
.∪BN :

BM , BN bases of M,N respectively}. Note that a subset of E(M)
.∪E(N) is a flat of

M ⊕N if and only if it is a disjoint union FM
.∪FN of a flat FM of M and a flat FN of N .

Example 3.1.8. The Fano matroid F7 on the set {1, . . . , 7} is the matroid of rank 3 whose
rank one flats are the singletons and whose rank two flats are

{1, 2, 3}, {1, 4, 7}, {1, 5, 6}, {2, 5, 7}, {3, 4, 5}, {3, 6, 7}, {2, 4, 6}.

The anti-Fano (or non-Fano) matroid F−7 on {1, . . . , 7} is the matroid of rank 3 whose
rank one flats are the singletons and whose rank two flats are

{1, 2, 3}, {1, 4, 7}, {1, 5, 6}, {2, 5, 7}, {3, 4, 5}, {3, 6, 7}, {2, 4}, {2, 6}, {4, 6}.

The Fano matroid is realisable over the field K if and only if K has characteristic 2; the
anti-Fano matroid is realisable over K if and only if its characteristic is not 2 (cf. [Oxl92,
proposition 6.4.8]. Therefore, their direct sum F7 ⊕ F−7 is not realisable over any field.
This is not the smallest matroid that is not realisable over any field in the sense that there
are matroids of rank 4 on {1, . . . , 8} which have this property (cf. [Oxl92, propositions
6.1.10, 6.1.11, 6.4.10]).

We are ready to state the definition of a matroid fan and show that it fulfils the balancing
condition.

Definition 3.1.9. LetM be a matroid on the ground setE := {1, . . . , n}. Let {e1, . . . , en}
be the standard basis of Rn. Then B(M) is the fan of pure dimension r(M) which consists
of cones

〈F〉 :=

{
p∑
i=1

λi · VFi : λ1, . . . , λp−1 ≥ 0, λp ∈ R

}
,

where F = (∅ ( F1 ( . . . ( Fp−1 ( Fp = E) is a chain of flats in M , and VF =
−
∑
i∈F ei denotes the vector corresponding to the flat F . We make B(M) weighted by

assigning each maximal cone the trivial weight 1. Note that, by definition, B(M) has
lineality space R · (1, . . . , 1).

Proposition 3.1.10. Every matroid fan B(M) is balanced.
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PROOF. Let r := r(M) and let τ = 〈∅ ( F1 ( F2 ( . . . ( Fr−1 = E〉 be an
arbitrary cone of codimension 1 in B(M). Then there exists s such that r(Fi) = i for i ≤ s
and r(Fi) = i+ 1 for i ≥ s+ 1. The facets around τ are of the form

〈∅ ( F1 ( . . . ( Fs ( F ( Fs+1 ( . . . ( Fr−1 = E〉,

where F is a flat of M . Thus it suffices to prove the equality∑
Fs(F(Fs+1

F flat

VF = VFs+1
+ (|{F : F flat with Fs ( F ( Fs+1}| − 1) · VFs ∈ Vτ ,

whose right-hand side is clearly contained in Vτ . The equality of vectors is clear for co-
ordinates j /∈ Fs+1 (as the entries on both sides are 0) and for coordinates j ∈ Fs (as
the entry is − |{F : F flat with Fs ( F ( Fs+1}| on both sides). For j ∈ Fs+1 \ Fs the
claim follows from the fact that j is contained in exactly one of the flats between Fs and
Fs+1, namely in cl(Fs ∪ j). Note that it cannot be contained in more than one by the third
property on flats of a matroid. �

Definition 3.1.11. A tropical cycle is called matroid variety if it is the cycle associated to
a matroid fan B(M). The matroid variety associated to B(M) is denoted by B(M).

Our next aim is to show how the support of a matroid variety can be described in terms of
the bases of the underlying matroid.

Definition 3.1.12. Let M be a matroid on the ground set E = {1, . . . , n}. For p ∈ Rn we
define the p-weight of a basis B to be the sum

∑
i∈B pi. Then Bp is defined to be the set

of bases of M that have minimal p-weight.

Lemma 3.1.13. With the notation of the previous definition, we have that Mp := (E,Bp)
is indeed a matroid.

PROOF. Let a1 < a2 < . . . < as such that the sets {a1, . . . , as} and {p1, . . . , pn} are
equal. We set Ai := {j : pj ≤ ai} and claim that

Bp = {B : B basis of M, |B ∩Ai| = r(Ai) for all i}. (3.2)

We first prove the existence of a basis B1 of M with |B1 ∩Ai| = r(Ai) for all i: We
choose x1 ∈ A1. For 2 ≤ i ≤ r(M), we set

ji := min{q : r(Aq) > i− 1}

and choose an element xi ∈ Aji \ cl({x1, . . . , xi−1}). An easy induction shows that
r({x1, . . . , xi}) = i for all i. Hence B1 := {x1, . . . , xr(M)} is a basis of M which
satisfies by construction that |B1 ∩Ai| = r(Ai).
The next step is to prove that any element B2 ∈ Bp is in the right-hand side set of (3.2).
As B2 is a basis of M , we have that |B2 ∩ Ai| ≤ r(Ai) = |B1 ∩ Ai| for all i. Since
|B2 ∩As| = |B1 ∩As| = r(M), this implies that

|B1 ∩ (As \As−1)| ≤ |B2 ∩ (As \As−1)|.

Now we use the basis exchange property to inductively replace elements of B2 ∩ (As \
As−1) by elements of B1∩ (As \As−1). Note that we can really replace them by elements
of B1 ∩ (As \ As−1) because replacing them by elements of B1 ∩ As−1 is impossible by
the p-minimality of B2. This allows us to conclude that the above inequality is in fact an
equality. But then |B2∩As−1| = |B1∩As−1| and, after the above-described replacements
have taken place, B2 ∩ (As \As−1) = B1 ∩ (As \As−1). Therefore, we can continue our
procedure of exchanging elements and show inductively that |B2 ∩Ai| = |B1 ∩Ai| for all
i, which proves equality (3.2).
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Now we need to show that the set Bp satisfies the basis exchange property. So letB1, B2 ∈
Bp and x ∈ B1 \B2. Let i be such that x ∈ Ai \Ai−1 (where A0 := ∅). We set

B3 := (B2 ∩Ai) ∪ (B1 \Ai) ∈ Bp

to be the basis that is obtained from B2 by inductively exchanging elements of (B2 \B1)\
Ai of the highest p-weight (in this set) by an element ofB1\B2 (which then has necessarily
the same p-weight by the p-minimality of B2). The basis exchange property of M and the
p-minimality ofB1 imply that there is an y ∈ (B3∩(Ai\Ai−1))\B1 such that (B1\x)∪y
is in B and, because it has the same p-weight as B1, also in Bp. Since y is also in B2, this
proves the claim. �

Remark 3.1.14. Note that equality of sets (3.2) is equivalent to the statement that every p-
minimal basis can be produced by the greedy algorithm (cf. [Oxl92, theorem 1.8.5, exercise
5 of section 1.8]).

Proposition 3.1.15. The support of a matroid variety B(M) is given by

|B(M)| = {p ∈ Rn : Mp is (still) loopfree}.

PROOF. We use the notation of the proof of lemma 3.1.13. It is clear from the defini-
tion of a matroid fan that p ∈ |B(M)| if and only if all Ai are flats in M .
If p ∈ |B(M)|, then all Ai are flats and we can choose a maximal chain of flats ∅ =: F0 (
F1 ( . . . ( Fr(M) := E of M that comprises all Ai. As for any choices xi ∈ Fi \ Fi−1,
the set {x1, . . . , xr(M)} is a basis of Mp (cf. proof of lemma 3.1.13), we can conclude that
every element of E is part of a basis of Mp; hence Mp is loopfree.
If p /∈ |B(M)|, then we can choose i such that Ai is not a flat and x ∈ cl(Ai) \ Ai. But
then a basis B of Mp cannot contain x because otherwise |B ∩ cl(Ai)| > r(Ai), which is
impossible. Hence x is a loop in Mp. �

Remark 3.1.16. Let M be a matroid with loops l1, . . . , ls ∈ E(M). Let M \ {l1, . . . , ls}
be the matroid which has ground set E(M) \ {l1, . . . , ls} and whose bases are exactly
the bases of M (note that this is a special case of the deletion operation we will introduce
in definition 3.2.3). Then B(M) can be regarded as the matroid fan B(M \ {l1, . . . , ls})
living in the boundary xl1 = . . . = xls = −∞. We will not need this construction and
refer to [Sha, definition 2.20] and [Mey10, proposition 4.25] instead. Note that without
deleting the loops ofM , definition 3.1.9 (adjusted by replacing the empty set by its closure
{l1, . . . , ls}) would lead to a fan that is not balanced. Furthermore, the equality of supports
in proposition 3.1.15 would obviously not hold.

Remark 3.1.17. The support of a matroid variety can also be described in terms of the
circuits of the matroid: The support |B(M)| is the set of points p ∈ Rn such that the
maximum max{pi : i ∈ C} is attained at least twice for every circuit C of the matroid.
This has been shown in [MS, theorem 5.2.6].

Example 3.1.18. Let us consider uniform matroids Uk,n, the easiest class of matroids, in
great detail: Uk,n is the matroid whose ground set is [n] := {1, . . . , n} and whose set
of bases is {A ⊆ [n] : |A| = k}. It is easy to see that its rank function is rUk,n(A) =
min{|A|, k} and its flats are [n] and all subsets of [n] which contain at most k − 1 el-
ements. A subset of [n] is a circuit of Uk,n if it has exactly k elements. The matroid
Uk,n is realisable as it can be obtained by choosing n generic vectors in Ck in example
3.1.6. The maximal cones in B(Uk,n) are of the form 〈∅ ( {i1} ( {i1, i2} ( . . . (
{i1, i2, . . . , ik−1} ( {1, . . . , n}〉, where the ij are pairwise distinct elements of [n]. In
other words the maximal cones have the form

{(x1, . . . , xn) ∈ Rn : xi1 ≤ xi2 ≤ . . . ≤ xik−1
≤ xp1 = xp2 = . . . = xpn−k+1

},
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where {p1 . . . , pn−k+1} = [n] \ {i1, . . . , ik−1}. It is not hard to see that the map

B(Uk,n)→ Ln−1
k−1 × R, (x1, . . . , xn) 7→ ((x1 − xn, . . . , xn−1 − xn), xn)

is an isomorphism of tropical varieties. It is worth noticing that the fan structure B(Uk,n)
is much finer than the usual fan structure Lnk × R of Lnk × R.

Example 3.1.19. The following picture shows the matroid fan B(U3,4) (modulo its lineal-
ity space R · (1, 1, 1, 1)).

If e1 := (1, 0, 0, 0), then we have

BM−e1 = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}}, BMe1
= {{2, 3, 4}};

so −e1 is contained in B(M), whereas e1 is not (since 1 is a loop in Me1 ).

Next we want to use proposition 3.1.15 to show that a direct sum of matroids corresponds
to a cross product of matroid varieties.

Lemma 3.1.20. Let M,N be matroids. Then the two tropical varieties B(M ⊕ N) and
B(M)× B(N) are equal.

PROOF. The equality of the supports follows from the obvious equality of matroids

(M ⊕N)(p,q) = Mp ⊕Nq.
As all occurring weights are 1, that also shows the equality of cycles. �

Our next remark concerns the local structure of matroid varieties. It turns out that they
locally (around each point) look like matroid varieties again.

Lemma 3.1.21. Let B(M) be a matroid variety and p a point in B(M). Then we have

StarB(M)(p) = B(Mp).

PROOF. The statement follows from the obvious identity Mp+εv = (Mp)v for any
vector v ∈ Rn and sufficiently small, positive ε. �

Next we aim at showing that matroid varieties are irreducible. We do this by proving
that they are locally irreducible and connected in codimension 1. Let us introduce some
notation first.
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Notation 3.1.22. Let F = (∅ = F0 ( F1 ( . . . ( Fk−1 ( Fk = E) and G = (∅ = G0 (
G1 ( . . . ( Gs−1 ( Gs = E) be chains of flats of a matroid M . If {F1, . . . , Fk} ⊆
{G1, . . . , Gs}, then we call F a subchain (of flats) of G and G a superchain of F . If F is a
flat with Fi ( F ( Fi+1 for some i, then there is a unique way to add F to the chain F ;
we denote the resulting chain of flats by F ∪ F .

Lemma 3.1.23. Every matroid variety B(M) is connected in codimension 1.

PROOF. The equivalence relation on the set of facets of B(M)

σ ∼ α :⇔ σ and α are connected via cones of codimension 1

leads to the decomposition into equivalence classes B(M)(r(M)) =
.∪ki=1Xi. We turn the

Xi into weighted fans by assigning to each facet the trivial weight 1 and adding the appro-
priate lower dimension cones. By construction the fans Xi fulfil the balancing condition
and the sum of their associated cycles Xi is B(M). Let Y ∈ {X1, . . . ,Xk,B(M)}. We
claim that the set of facets of max{x1, . . . , x|E|}j · Y is

{〈F〉 ∈ Y : F = (∅ ( F1 ( . . . ( Fr(M)−j−1 ( E), Fi flat of rank i in M},
each of them having weight 1. As plugging in j = r(M)−1 shows that k = 1, this suffices
to prove the lemma.
We show the claim by induction. Let G := (∅ =: G0 ( G1 ( . . . ( Gr(M)−j−2 (
Gr(M)−j−1 := E) be a chain of flats with r(Gi) = i for i ≤ p and r(Gi) = i + 1 for
p + 1 ≤ i ≤ r(M) − j − 2 such that 〈G〉 ∈ Y . By the induction hypothesis the facets of
max{x1, . . . , x|E|}j · Y around 〈G〉 correspond exactly to chains G ∪ F , where F is a flat
with Gp ( F ( Gp+1. Recall that∑

F flat withGp(F(Gp+1

VF = VGp+1 + (|F flat with Gp ( F ( Gp+1| − 1) · VGp .

As ϕ := max{x1, . . . , x|E|} is linear on the cones of Y and satisfies ϕ(VF ) = −1 if
F = E and 0 otherwise, the weight of the cone 〈G〉 in ϕj+1 · Y is

∑
F flat withGp(F(Gp+1

ϕ(VF )− ϕ

 ∑
F flat withGp(F(Gp+1

VF


= −ϕ(VGp+1),

which implies the claim. �

Note that the previous proof also shows the following lemma as a byproduct:

Lemma 3.1.24. Let M be a matroid of rank r on the set E. Let L := R · (1, . . . , 1).
Then max{x1, . . . , x|E|} ·B(M) = B(T (M)), where the truncation T (M) is the matroid
obtained fromM by removing all flats of rank r−1 (i.e. rT (M)(A) = min{rM (A), r−1}).
In particular, max{x1, . . . , x|E|}r−1 · B(M) = L.

Lemma 3.1.25. Every matroid variety B(M) is locally irreducible and thus by lemma
3.1.23 also irreducible.

PROOF. Let τ be a cone of codimension 1 in B(M) and let F = (∅ = F0 ( F1 (
. . . ( Fr(M)−2 ( Fr(M)−1 = E) be the corresponding chain of flats in M . Then there
is a unique p such that r(Fi) = i for i ≤ p and r(Fi) = i + 1 else. The facets of B(M)
around τ correspond exactly to the chains of flats F ∪ F , with Fp ( F ( Fp+1. Let s
be the number of such flats. As each element of Fp+1 \ Fp is contained in exactly one of
these flats, we can conclude that s − 1 of the corresponding vectors are always linearly
independent in V/Vτ . It follows that StarB(M)(τ) is isomorphic to Ls−1

1 which is clearly
irreducible. �
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Next we show that matroid varieties have degree 1.

Lemma 3.1.26. Let B(M) be a matroid variety of dimension r in Rn. Then, we have
max{x1, . . . , xn, 0}r ·B(M) = 1 · {0}. In particular, matroid varieties have degree 1 (cf.
definition 1.3.9).

PROOF. We set ϕ := max{x1, . . . , xn, 0}. In order to obtain a fan structure of B(M)
on whose cones ϕ is linear, we subdivide each cone 〈∅ ( F1 ( . . . ( Fp ( E〉 ∈ B(M)
into cones 〈

VF1
, . . . , VFp , VE

〉
,
〈
VF1

, . . . , VFp
〉
,
〈
VF1

, . . . , VFp ,−VE
〉
,

and call the resulting fan structure X . As ϕ(VF ) = 0 for all flats F of M , we have

ωϕr·X ({0}) = ωϕr−1·X (〈−VE〉) · ϕ(−VE) = ωϕr−1·X (〈−VE〉).
In order to prove that this weight is 1, we show by induction that for all k ∈ {1, . . . , r}

ωϕk·X (〈VF1
, . . . , VFr−k−1

,−VE〉) =

{
1, if r(Fi) = i for all i
0, else

.

Let s ∈ {1, . . . , r − k} and let (∅ =: F0 ( F1 ( . . . ( Fr−k−1 ( Fr−k := E) be a
chain of flats with r(Fi) = i for i ≤ s − 1 and r(Fi) = i + 1 for s ≤ i < r − k. We set
τ = 〈VF1

, . . . , VFr−k−1
,−VE〉 and see that the induction hypothesis implies that

ωϕk·X (〈VF1 , . . . , VFr−k−1
,−VE〉)

=
∑

Fs−1(F(Fs

ωϕk−1·X (τ + 〈VF 〉) ·
=0︷ ︸︸ ︷

ϕ(VF )−ϕτ

 ∑
Fs−1(F(Fs

=1︷ ︸︸ ︷
ωϕk−1·X (τ + 〈VF 〉) ·VF


=− ϕτ (VFs),

where the sums run over flats F of M and τ + 〈VF 〉 denotes the Minkowski sum of τ and
the ray generated by VF . But −ϕτ (VFs) = 1 if s = r − k and 0 otherwise. �

Remark 3.1.27. There is another natural fan structure of matroid varieties, where two
points p, q ∈ B(M) are in the relative interior of the same cone if and only if Mp =
Mq . The fan structure B(M) we use in this thesis was first introduced in [AK06] and
is often called fine subdivision (or fine fan structure) because it is a refinement of the
other fan structure (which in turn is called coarse subdivision). Note that it is an immediate
consequence of equation (3.2) thatMp is constant in the relative interior of a cone of B(M)
so that B(M) is indeed a refinement of the coarse fan structure. It is even true that the
coarse subdivision is the coarsest fan structure of B(M). In order to prove this, it suffices
to show that for all codimension one cones 〈F〉 ∈ B(M) that are contained in exactly two
facets 〈F ∪ G1〉 and 〈F ∪ G2〉 of B(M), the equality Mp = Mp+VG1

= Mp+VG2
holds,

where p is a point in the relative interior of 〈F〉. Let B ∈ Bp and let Fs, Fs+1 be the flats
of F such that rM (Fs) = s, rM (Fs+1) = s+ 2. By equation (3.2) we have |B ∩ Fs| = s
and |B ∩ (Fs+1 \ Fs)| = 2. As |B ∩ Gi| ≤ rM (Gi) = s + 1 and Fs+1 \ Fs is a disjoint
union of G1 \ Fs and G2 \ Fs, it follows that |B ∩G1| = |B ∩G2| = s+ 1. This implies
that, as required, B ∈ Bp+VGi for i ∈ {1, 2}.

Every matroid M can be decomposed into a direct sum M = M1⊕· · ·⊕Mk of connected
submatroids which is unique up to reordering (cf. [Oxl92, corollary 4.2.13]). It follows
from lemma 3.1.20 that the dimension of the (maximal) lineality space of B(M) is greater
or equal to the number of connected components k. Here, a lineality space L of a tropical
cycle C in Rn is a subspace of Rn such that C is invariant under translations by vectors
in L. We note that the maximal lineality space of a matroid variety is just the inclusion-
minimal cone of its coarse subdivision and refer to section 3.4 for further terminology
about lineality spaces. The next lemma states that equality holds.
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Lemma 3.1.28. LetM be a matroid on the ground set E and let B(M) be the correspond-
ing matroid variety. Let L be its maximal lineality space. Then the equation

dim(L) = number of connected components of M

holds. In particular, if M is connected, then L is just spanned by (1, . . . , 1).

PROOF. It clearly suffices to show that M is disconnected if dim(L) > 1. So let us
assume that L is more than the span of (1, . . . , 1). Then L must contain some vector VS
with ∅ ( S ( E. The fact that VS is contained in the lineality space of B(M) means that
MλVS stays the same for all λ ∈ R; in particular, MVS = M . Hence all bases of M have
the same VS-weight, which means that they have the same number of elements in S (resp.
E\S). Therefore, r(S)+r(E\S) = r(M) which implies by [Oxl92, proposition 4.2.1] that
S is a separator (that is, a union of connected components). HenceM is disconnected. �

3.2. Matroid quotients and rational functions

In this section we prove that any matroid variety which is a subcycle of another matroid
variety can be cut out of the bigger matroid variety by a product of rational functions given
in terms of the rank functions of the two matroids. We will see in the next section that the
ability to do so constitutes the cornerstone to an intersection product of cycles on matroid
varieties. The close connection between the matroid operations deletion and contraction
and tropical modifications will be crucial in this section.

Remark 3.2.1. It follows straight from the definition that for two matroids M,N on the
same ground set E we have

{flats of N} ⊆ {flats of M} ⇒ B(N) ⊆ B(M) ⇒ |B(N)| ⊆ |B(M)|.
As it is also clear that a vector which is in the support of a matroid variety and all of whose
entries are either 0 or −1 must correspond to a flat of the matroid, we conclude

|B(N)| ⊆ |B(M)| ⇔ B(N) ⊆ B(M) ⇔ {flats of N} ⊆ {flats of M}.
In the following, we often write B(N) ⊆ B(M) in this situation. We should notice that
every matroid fan is a subfan of the matroid fan corresponding to the trivial matroid (whose
only basis is E).

Lemma 3.2.2. Let M and N be matroids of rank r resp. s such that B(N) ⊆ B(M). Let
A ⊆ B be arbitrary subsets of E. Then the equation

rM (A)− rN (A) ≤ rM (B)− rN (B)

holds. Plugging in A = ∅ and B = E, we obtain

rN (A) ≤ rM (A) ≤ rN (A) + r − s.

PROOF. As clM (A) ⊆ clN (A) for any set A, we can assume that A and B are closed
in M . By induction, we can also assume rM (B) − rM (A) = 1, i.e. B = clM (A ∪ x)
for an element x ∈ B \ A. It follows that clN (B) = clN (clM (A ∪ x)) = clN (A ∪ x);
hence rN (B) − rN (A) ≤ 1, which proves the claim. Another proof can be found in
[Oxl92, proposition 7.3.6]. �

We will now see that there is a notion in matroid theory which captures containment of ma-
troid varieties. This notion is based on the following standard constructions for matroids.

Definition 3.2.3. Let Q be a matroid on the set E
.∪R. Then the deletion Q \ R is the

matroid on E given by the rank function

rQ\R(A) = rQ(A),
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whereas the contraction Q/R is the (potentially not loopfree) matroid on E given by

rQ/R(A) = rQ(A ∪R)− rQ(R).

Note that Q/R is loopfree if and only if R is a flat in Q. The next proposition describes
both operations in terms of flats.

Proposition 3.2.4 ([Oxl92, proposition 3.3.1]).

(1) F is a flat of Q/R if and only if F ∪R is a flat of Q.
(2) F is a flat of Q \R if and only if there is a flat F ′ in Q such that F = F ′ \R.

Example 3.2.5. Recall that the rank function of the uniform matroid Uk,n is given by
A 7→ min{|A|, k}. By definition the deletion Uk,n \ n is the matroid on the ground set
{1, . . . , n− 1} with rank function

{1, . . . , n− 1} ⊇ A 7→ min{|A|, k};

hence Uk,n \n = Uk,n−1. The contraction Uk,n/n has ground set {1, . . . , n− 1} and rank
function

{1, . . . , n− 1} ⊇ A 7→ min{|A ∪ n|, k} − 1 = min{|A|, k − 1}.

Hence we have Uk,n/n = Uk−1,n−1. Note that the matroid variety corresponding to the
contraction B(Uk,n/n) is a subcycle of the matroid variety corresponding to the deletion
B(Uk,n \ n).

The next definition (following [Oxl92, section 7.3]) combines deletions and contractions.

Definition 3.2.6. LetM andN be matroids of rank r resp. s on the same ground setE. We
call N a quotient of M if there are a set R and a matroid Q on the ground set E

.∪R such
that M = Q \R and N = Q/R. In this case, we have r− s = rQ(E) + rQ(R)− rQ(Q).
Furthermore, if r − s = 1, we call N an elementary quotient of M .

The following proposition relates containment of matroid varieties to quotients.

Proposition 3.2.7. The matroid variety B(N) is a subcycle of B(M) if and only if N is a
quotient of M .

PROOF. IfN is a quotient ofM , then it follows straight from the definitions that every
flat of N is also closed in M . This proves one implication.

For the other direction, let us assume B(N) ⊆ B(M). First, we fix a set R with r − s
elements. We define a matroid Q on E

.∪R by assigning to each subset I
.∪J ⊆ E

.∪R the
rank

rQ(I
.∪J) = min{rM (I) + |J |, rN (I) + r − s}. (3.3)

Using the inequalities of lemma 3.2.2 and plugging in I
.∪∅, I .∪R and ∅ .∪R, we see that

Q \R = M and Q/R = N .

It remains to check that rQ is indeed a rank function. The first criterion is trivial, the second
one follows from the corresponding property of rM and rN . As for the third criterion, for
a given A = I

.∪J , we note that if adding an element x does not increase the first term
of the minimum in equation (3.3), then it does not increase the second term either, as we
have rN (I ∪ x) − rN (I) ≤ rM (I ∪ x) − rM (I) by lemma 3.2.2. So the third property
follows from the respective property of rN (if the minimum in equation (3.3) is attained in
the second term) and rM (otherwise). This finishes the proof. �

Remark 3.2.8. Note that the matroid Q we constructed is minimal in the following sense:
It is loopfree, R is independent and closed in Q and r(Q) = r(M).
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We divide the problem of finding rational functions that cut out B(N) from B(M) (if
B(N) ( B(M)) into two parts: First we reduce it to the case that r(M) = r(N) + 1
by finding a chain of intermediate matroid varieties between the two matroid varieties.
Thereafter, we give a rational function on B(M) which cuts out B(N).

We use proposition 3.2.7 to prove the following proposition.

Proposition 3.2.9. Let M and N be matroids of rank r and s respectively such that
B(N) ⊆ B(M). For i ∈ {0, 1, . . . , r − s} we define Mi to be the matroid on the ground
set E(M) whose rank function is given by

rMi
(A) := min{rN (A) + i, rM (A)}.

Then the matroids Mi have the properties that M0 = N , Mr−s = M , r(Mi) = r(N) + i
and B(Mi) ⊆ B(Mi+1).

PROOF. Let Q be the matroid we constructed in the previous proof (cf. (3.3)) and
assume R = {1, . . . , r − s}. Then

Mi = (Q \ {1, . . . , i})/{i+ 1, . . . , r − s};

thus the Mi are indeed matroids. It is clear that M0 = N , Mr−s = M and one can read
off the rank functions that r(Mi) = r(N) + i. One way to see that B(Mi) ⊆ B(Mi+1) is
to use proposition 3.2.4 to conclude that

F flat of Mi ⇔ ∃ S ⊆ {1, . . . , i} such that F ∪ {i+ 1, . . . , r − s} ∪ S flat of Q,

which implies that each flat of Mi is also a flat of Mi+1 and therefore B(Mi) ⊆ B(Mi+1).
�

Remark 3.2.10. The matroid-theoretic counterpart of the above statement can be found in
[Oxl92, proposition 7.3.5].

We next want to look into the geometric meaning of deletions and contractions in matroid
theory. Therefore, let Q be a matroid on the set E

.∪R and let B(Q) be its matroid variety
in RE

.
∪R. Assume that R is a flat of Q (i.e. Q/R is loopfree) and that there exists a basis

B of Q such that R ∩B = ∅ (i.e. r(Q) = r(Q \R)). From that, we construct two tropical
cycles in RE . First, the projection map πR : RE

.
∪R → RE produces the push-forward

(πR)∗(B(Q)). Second, we can take the closure of B(Q) in (R ∪ {−∞})E
.
∪R and perform

the intersection B(Q)∩(RE×{−∞}R) with a coordinate plane at infinity. In other words,
a point p ∈ RE is in B(Q)∩R if and only if there is a real number λp (that depends on p)
such that (p,−λ, . . . ,−λ) is in B(Q) for all λ ≥ λp. Let us denote the resulting set/cycle
in RE by B(Q)∩R. Now, the following statement relates these geometric constructions to
the matroid-theoretic notions of contraction and deletion.

Lemma 3.2.11. With the notations and assumptions from above, we see that the deletion
of R corresponds to projecting, i.e.

B(Q \R) = (πR)∗ B(Q),

and the contraction of R corresponds to intersecting with the appropriate coordinate hy-
perplane at infinity, i.e.

B(Q/R) = B(Q)∩R.

Moreover, the map πR : B(Q)→ B(Q \R) is generically one-to-one, meaning that every
point in the relative interior of a maximal cone of B(Q\R) has exactly one preimage under
the morphism πR.
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σ

π{3}−−−−−→

π{3}(σ)

In the picture, σ = 〈∅ ( {1} ( {1, 4} ( {1, 2, 3, 4}〉 ∈ B(U3,4) and π{3}(σ) = 〈∅ (
{1} ( {1, 4} ( {1, 2, 4}〉 ∈ B(U3,3).

PROOF. For the first equation, let σ be a cone in B(Q) and let G = (∅ ( G1 (
. . . ( Gr = E

.∪R) be the corresponding chain of flats in Q. Then the projection of σ
along πR is obviously given by the chain F with Fi = Gi \R, which is a chain of flats in
Q \R. Note that it is possible that Fi+1 = Fi for some i, in which case projecting reduces
the dimension of the cone σ. Hence πR(σ) is a cone in B(Q \ R). Furthermore, for any
maximal chain F of flats in Q\R, there is exactly one “lifted” chain G in Q, namely given
by Gi = clQ(Fi). Note that G is maximal as Gi ( Gi+1 for all i and we assumed that Q
and Q \ R have the same rank. Thus for each maximal cone of B(Q \ R) there is exactly
one maximal cone in B(Q) mapping to it (with trivial lattice index) and πR is one-to-one
over points in the relative interior of maximal cones in B(Q \R).

For the second equation, we have the following chain of equivalences.

p ∈ B(Q)∩R ⇔ (p,−λ, . . . ,−λ) ∈ B(Q) for large λ
⇔ Q(p,−λ,...,−λ) loopfree for large λ
⇔ for all a ∈ E there exists a basis B of Q such that a ∈ B, |B ∩R| = rQ(R)

and B ∩ E is p-minimal
⇔ for all a ∈ E there exists a p-minimal basis B′ of Q/R such that a ∈ B′

⇔ (Q/R)p loopfree ⇔ p ∈ B(Q/R)

In the middle step we use that basesB′ ofQ/R are exactly obtained asB′ = B∩E, where
B is basis of Q with |B ∩ R| = rQ(R). This can be easily seen from definition 3.2.3 and
was proved in [Oxl92, corollary 3.1.9]. �

We now turn to the case of elementary quotients. Using the above description we will see
that they are in fact related to tropical modifications (cf. example 1.2.7). This observation
was first made by Shaw in [Sha, proposition 2.22].

Proposition 3.2.12. Let M and N be matroids of rank r resp. r − 1 such that B(N) ⊆
B(M). Let Q be a matroid of rank r on E

.∪{e} with Q\ e = M and Q/e = N . (Note that
Q exists by proposition 3.2.7.) Then B(Q) is a modification of B(M) along the divisor
B(N). The modification function ϕ is linear on the cones of B(M) and satisfies

ϕ(VF ) = rN (F )− rM (F ),

for all flats F of M . This implies in particular that

ϕ · B(M) = B(N).
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PROOF. We know by proposition 3.2.4 and definition 3.2.3 that clQ(F ) ∈ {F, F ∪ e}
and rQ(F ∪ e)− rQ(F ) = rN (F )− rM (F ) + 1 for all flats F of M . Let ϕ be as defined
above. Our previous considerations allow us to conclude that

(VF , ϕ(VF )) = VclQ(F ) ∈ RE
.
∪{e}.

Therefore, the graph of ϕ is contained in B(Q). Let G = (∅ =: G0 ( G1 ( . . . (
Gr(Q) = E

.∪{e}) be a maximal chain of flats in Q and let F be the chain of flats in M
obtained by intersecting each Gi with E. Let us first assume that Gi+1 6= Gi ∪ e for all i.
Then F is a maximal chain of flats in M and 〈G〉 is the graph of the restriction of ϕ to 〈F〉.
Now we assume that we are in the opposite case and let i such that Gi+1 = Gi ∪ e. Then
〈F〉 ∈ B(M) has codimension 1 and 〈G〉 ⊆ (id×ϕ)(〈F〉) + ({0} × R≤0). This implies
that B(Q) is the tropical completion of the graph of ϕ (cf. remark 1.2.3 and example 1.2.7).
Therefore, we can conclude by remark 1.2.3 and lemma 3.2.11 that

ϕ · B(M) = B(Q)∩e = B(N).

�

Remark 3.2.13. It is not hard to use definition 1.2.2 to concretely compute the intersection
product ϕ ·B(M) of the previous proposition. However, the resulting alternative proof has
the obvious disadvantage that it does not make clear the underlying geometric idea.

Example 3.2.14. Let M be a matroid with ground set E and recall that its truncation
T (M) is the matroid obtained by removing all flats of rank r(M) − 1 from M . Then the
function ϕ of proposition 3.2.12 is linear on the cones of B(M) and satisfies ϕ(VE) =
−1 and ϕ(VF ) = 0 for all other flats of M . Since ϕ is equal to the rational function
max{x1, . . . , x|E|}, this gives an alternative proof of lemma 3.1.24.

Let us now collect the results of propositions 3.2.9 and 3.2.12 in the following important
corollary.

Corollary 3.2.15. Let M,N be matroids such that B(N) is a codimension k subcycle of
B(M). For i ∈ {1, . . . , k} let ϕi be the rational function which is linear on the cones of
B(M) and satisfies

ϕi(VF ) =

{
−1, if rM (F )− rN (F ) ≥ i
0, else

,

for all flats of M . Then we have

ϕ1 · · ·ϕk · B(M) = B(N).

3.3. The intersection product on matroid varieties

This section is devoted to defining an intersection product of cycles on matroid varieties
and showing that it does not depend on the chosen functions representing the diagonal and
has the expected properties. For some special cases we express the intersection product of
two matroid varieties on a third matroid matroid variety in terms of the rank functions of
the three matroids. There is not much hope to do that in general as we cite examples of
intersections of matroid varieties that are not again matroid varieties.

First we use the results of the previous section to find rational functions cutting out the
diagonal ∆B(M) in the product B(M) × B(M). The only thing which is left to do is
to observe that both ∆B(M) and B(M) × B(M) are indeed matroid varieties. We know
already from lemma 3.1.20 that B(M)×B(M) = B(M⊕M). Next, we give the necessary
definition concerning the diagonal ∆B(M). As usually, ∆B(M) denotes the push-forward
of B(M) along the map B(M)→ B(M)× B(M), x 7→ (x, x).
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Definition 3.3.1. LetM be a matroid on the setE. We define ∆M to be the matroid having
the ground set E

.∪E and the rank function r∆M
(A

.∪B) := rM (A ∪B).

It is easy to see that r∆M
satisfies the axioms of a rank function and that

{F .∪F : F flat in M}

is the set of flats in ∆M . Therefore, |B(∆M )| =
∣∣∆B(M)

∣∣, and we can conclude that the
cycles

B(∆M ) = ∆B(M)

are equal. Now we are ready to state the following main result which is a direct conse-
quence of corollary 3.2.15.

Corollary 3.3.2. Let M be a matroid of rank r. For i ∈ {1, . . . , r} let ϕi be the function
that is linear on the cones of B(M ⊕M) and satisfies

ϕi(VF ) =

{
−1, if rM (A) + rM (B)− rM (A ∪B) ≥ i
0, else

,

for all flats F = A
.∪B of M ⊕M . Then the rational functions ϕ1, . . . , ϕr ∈ R(B(M) ×

B(M)) cut out the diagonal ∆B(M), i.e.

∆B(M) = ϕ1 · · ·ϕr · B(M)× B(M).

As an immediate consequence of this fact, in complete analogy to [AR10, definition 9.3]
and [All12, definition 1.16], we can now define an intersection product of cycles in matroid
varieties.

Definition 3.3.3. Let M be a matroid of rank r and let C,D be subcycles of B(M) of
codimension s and p. We define the intersection product C ·D ∈ Zr−s−p(B(M)) of the
cycles C and D in B(M) as

C ·D = π∗(ϕr · · ·ϕ1 · C ×D),

where the ϕi are the rational functions of the previous corollary and π : B(M)×B(M)→
B(M) is the projection to the first factor.

Note that here and in the following, we a priori stick to the definition of the functions ϕi in
corollary 3.3.2. However, we will see later that the definition is independent of all choices.

Remark 3.3.4. The intersection product of the previous definition has been implemented
for some cases in [Ham]. However, the number of maximal cones of the matroid fan
B(M ⊕M) on which the rational functions ϕi are defined grows very fast with the rank of
M . Looking for a more economical way of implementing intersection products of cycles
is therefore an active field of research.

Example 3.3.5. We compute the self-intersection in B(U3,4) of the matroid variety as-
sociated to the matroid N whose flats are ∅, {1, 2}, {3, 4}, {1, 2, 3, 4}. The functions
ϕ1, ϕ2, ϕ3 are linear on the cones of B(U3,4 ⊕ U3,4) and are given on the vectors cor-
responding to flats F of U3,4 ⊕ U3,4 by

ϕ3(VF ) =

{
−1, if F = E

.∪E
0, else

,

ϕ2(VF ) =

{
−1, if F ∈ {A .∪E : |A| ≥ 2} ∪ {E .∪A : |A| ≥ 2} ∪ {A .∪A : |A| = 2}
0, else

,
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ϕ1(VF ) =

{
−1, if F ∈ {A .∪B : (|A|, |B| ≥ 1, (A ⊆ B or B ⊆ A)) or |A|, |B| ≥ 2}
0, else

.

As B(N ⊕N) is a subfan of B(U3,4 ⊕ U3,4) the functions ϕi are also linear on the cones
of B(N ⊕ N). Now it is easy to see that ϕ3 · B(N ⊕ N) consists of cones 〈∅ ( F1 (
F2 ( E

.∪E〉, with rN⊕N (Fi) = i (all of them having weight 1). If F = A
.∪B is a flat in

N ⊕N , then the weight of the cone σF := 〈∅ ( F ( E
.∪E〉 in ϕ2 · ϕ3 · B(N ⊕N) is

ωϕ2·ϕ3(σF ) =

{
ϕ2(V(A∪B)

.
∪(A∪B))− ϕ2(VE

.
∪E), if {rN (A), rN (B)} = {0, 1}

−ϕ(VF ), if rN⊕N (F ) = 2

=

{
1, if A = B ∈ {{1, 2}, {3, 4}}
0, else

.

Finally, the weight of R · VE .
∪E in ϕ1 · ϕ2 · ϕ3 · B(N ⊕N) is

ωϕ1·ϕ2·ϕ3·B(N⊕N)(R · VE .
∪E) = ϕ1(V{1,2}

.
∪{1,2}) + ϕ1(V{3,4}

.
∪{3,4})− ϕ1(VE

.
∪E)

= −1− 1− (−1) = −1.

Taking the push-forward we obtain that B(N) ·B(U3,4) B(N) is (the cycle associated to)
R · (1, 1, 1, 1) with weight (−1).

We need the following lemma to prove the basic properties of the intersection product.

Lemma 3.3.6. Let C,D be cycles in B(M). Then ϕr · · ·ϕ1 · C × D is a subcycle of
∆B(M). In particular, the definition of C ·D does not depend on the chosen projection.

PROOF. We prove by induction over k that

|ϕk · · ·ϕ1 · C ×D| ⊆ |ϕk · · ·ϕ1 · B(M)× B(M)| .

for all k = 1, . . . , r, where the case k = r proves the claim. It is clear that

|ϕk · ϕk−1 · · ·ϕ1 · C ×D| ⊆ |ϕk||ϕk−1···ϕ1·C×D||,

where the right-hand side is the locus of non-linearity of the restriction of ϕk to the support
of ϕk−1 · · ·ϕ1 · C ×D. By the induction hypothesis, the right-hand side is contained in

|ϕk||ϕk−1···ϕ1·B(M)×B(M)||.

Since ϕk−1 · · ·ϕ1 · B(M) × B(M) is a matroid variety, and hence locally irreducible, it
follows by proposition 1.2.11 that

|ϕk||ϕk−1···ϕ1·B(M)×B(M)|| = |ϕk · · ·ϕ1 · B(M)× B(M)| .

�

Theorem 3.3.7. For all subcycles C,D,E of B(M), the following properties hold:

(1) |C ·D| ⊆ |C| ∩ |D|.
(2) If C and D are fan cycles, then C ·D is a fan cycle, too.
(3) (h · C) ·D = h · (C ·D) for any cocycle h on C.
(4) C · B(M) = C.
(5) C ·D = D · C.
(6) If C = h · B(M) for some cocycle h, then C ·D = h ·D.
(7) (C ·D) · E = C · (D · E).
(8) (C +D) · E = C · E +D · E.
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PROOF. (1) follows directly from lemma 3.3.6. Everything else except (4) can be
deduced in the same way as in the Rr-case (cf. [Rau09, 1.5.2, 1.5.5, 1.5.6, 1.5.9] or [AR10,
section 9]), namely: (2) follows from the fact that the ϕi are rational fan functions. (3)
follows from part three and four of proposition 2.3.9. The symmetry of the functions ϕi
and lemma 3.3.6 imply

C ·D = π1∗(ϕ1 · · ·ϕr ·C×D) = π2∗(ϕ1 · · ·ϕr ·D×C) = π1∗(ϕ1 · · ·ϕr ·D×C) = D·C,

where πi : B(M)×B(M)→ B(M) is the projection to the i-th factor. (6) is a direct con-
sequence of (3) and (4). The proof of (7) is completely analogous to [Rau09, proposition
1.5.9] and (8) is obvious.
It remains to prove (4). By (8) it suffices to prove (4) for irreducible cycles C. We know by
(1) that |C · B(M)| ⊆ |C|; hence the irreducibility of C implies that C · B(M) = λC · C
for some λC ∈ Z. We first note that the factors λP are the same for every point P in
B(M): For any point P , the recession fan of P ×B(M) is {0}×B(M); thus we know by
proposition 1.4.10 that

λP = deg(ϕr · · ·ϕ1 · P × B(M)) = deg(ϕr · · ·ϕ1 · {0} × B(M)) = λ{0}.

Now we use lemma 2.1.19 to choose a cocycle h ∈ CdimC(C) such that h · C 6= 0. Then
(3) implies that

λC · (h · C) = h · (C · B(M)) = (h · C) · B(M) = λ{0} · (h · C).

Hence λC = λ{0} for all cycles C. As λB(M) = 1, it follows that C ·B(M) = C for every
subcycle C. �

Remark 3.3.8. It follows from theorem 3.3.7 (6) that our intersection product is indepen-
dent of the choice of cocycle describing the diagonal ∆B(M), as each intersection product
can be calculated as

C ·D = π∗(∆B(M) · C ×D),

where the right-hand side is the push-forward of an intersection product of cycles on
B(M ⊕M).

The previous remark will be crucial for the proofs of the next lemmas concerning the
behaviour of our intersection product under automorphisms, cross products and locality.

Lemma 3.3.9. Let α : B(M)→ B(M ′) be an isomorphism of matroid varieties and let C
and D be two arbitrary cycles in B(M). Then the following equation holds:

α∗(C ·D) = α∗C · α∗D.

PROOF. If C is cut out by a cocycle, i.e. C = h · B(M), then the claim follows from
theorem 3.3.7 (6) and the projection formula (proposition 2.3.9) as

α∗(C ·D) = α∗(α
∗(α−1)∗h ·D) = (α−1)∗h · α∗D,

and
α∗C = α∗(h · α−1

∗ B(M ′)) = (α−1)∗h · B(M ′).

We apply this to β := α×α (the corresponding isomorphism between B(M)×B(M) and
B(M ′)×B(M ′)) and the cycles ∆B(M) and C ×D. By the previous remark, this suffices
to prove the claim. �

Lemma 3.3.10. Let A1, B1 be cycles in B(M1) and let A2, B2 be cycles in B(M2). Then

(A1 ×A2) · (B1 ×B2) = (A1 ·B1)× (A2 ·B2).
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PROOF. For i ∈ {1, 2} let hi be a piecewise polynomial satisfying hi · B(Mi) ×
B(Mi) = ∆B(Mi) (cf. corollary 3.3.2). Let πi : B(M1)× B(M2)× B(M1)× B(M2)→
B(Mi)× B(Mi) be the projection to the respective factors. Then

π∗1h1 · π∗2h2 · B(M1)× B(M2)× B(M1)× B(M2) = ∆B(M1)×B(M2).

Remark 3.3.8 allows us to use the function π∗1h1 · π∗2h2 in the definition of the intersection
product, which clearly implies the claim. �

Lemma 3.3.11. Let C,D be subcycles of the matroid variety B(M). Then we have

StarC·D(p) = StarC(p) · StarD(p),

where p ∈ |C|∩ |D| and the right-hand side is an intersection product of cycles in B(Mp).

PROOF. Let h be a piecewise polynomial on B(M) × B(M) that cuts out the diag-
onal ∆B(M) (cf. corollary 3.3.2). The locality of intersecting with piecewise polynomi-
als (remark 2.1.22) implies that h(p,p) ∈ PPr(M)(B(Mp) × B(Mp)) cuts out the cycle
Star∆B(M)

(p, p) = ∆B(Mp). Using the piecewise polynomial h(p,p) to define the intersec-
tion product on B(Mp) (which we are allowed to do by remark 3.3.8) we see that the claim
is a direct consequence of the locality of intersecting with piecewise polynomials. �

The following example illustrates that the ability to cut out the diagonal does not neces-
sarily lead to a well-defined intersection product having the properties listed in theorem
3.3.7.

Example 3.3.12. Let {e1, e2} be the standard basis of R2 and let X = R · e1 + R · e2 be
the sum (as tropical cycles) of the coordinate axes. Let Y be the fan structure of X × X
consisting of maximal cones〈(

a
0

)
,

(
a
a

)〉
,

〈(
0
a

)
,

(
a
a

)〉
,

〈(
a
0

)
,

(
0
b

)〉
,

with a, b ∈ {e1,−e1, e2,−e2}, a 6= b. Note that Y contains the diagonal. Let ϕ be the
function which is linear on the cones of Y and maps(

e1

0

)
,

(
0
e1

)
,

(
e1

e1

)
7→ 1,

(
−e1

−e1

)
,±
(
e2

e2

)
7→ −1,

and all other rays of Y to 0. A straightforward computation shows that ϕ ·X ×X = ∆X .
Let X1 = R · e1. Then another computation shows that

ϕ ·X ×X1 = R ·
(
e1

e1

)
+ R ·

(
e2

0

)
,

which is not a subcycle of ∆X . We see that the intersection product depends on the chosen
projection and is not commutative. If ψ is the function defined in the same way as ϕ but
with the roles of e1 and e2 interchanged, then ψ also cuts out the diagonal. As

ψ ·X ×X1 = −
(
R ·
(
e1

0

))
+ R ·

(
e1

e1

)
,

we see that the intersection product on X depends on the function which cuts out the
diagonal. Depending on the various choices, the intersection product of X and X1 on X
could be X , X1 or ∅.

Let us have a look at two more examples.

Example 3.3.13. Let N be the matroid of rank 3 on the ground set E = {1, 2, 3, 4, 5, 6}
whose rank 1 flats are exactly the 1-element subsets of E and whose flats of rank 2 are
{1, 2}, {3, 4}, {5, 6}, {1, 3, 5}, {1, 4, 6}, {2, 3, 6}, {2, 4, 5}. We would like to compute the
self-intersection of B(N) in the ambient cycle B(U4,6). The easiest way to do so is to use
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proposition 3.2.12 to find a rational function which cuts out B(N) from B(U4,6); we can
then use that function to compute our intersection product (see part (5) of theorem 3.3.7):
The rational function ϕ of proposition 3.2.12 is linear on the cones of B(U4,6) and satisfies
for all flats F of U4,6 that

ϕ(VF ) =

{
−1, if F ∈ {{1, 3, 5}, {1, 4, 6}, {2, 3, 6}, {2, 4, 5}, {1, 2, 3, 4, 5, 6}}
0, else

.

For a flat F of N , we set σF := 〈∅ ( F ( E〉. We compute

ωϕ·B(N)(σ{1}) = ϕ(V{1,2})+ϕ(V{1,3,5})+ϕ(V{1,4,6})−ϕ(VE) = 0−1−1−(−1) = −1,

and
ωϕ·B(N)(σ{1,2}) = ϕ(V{1}) + ϕ(V{2})− ϕ(V{1,2}) = 0 + 0− 0 = 0,

as well as

ωϕ·B(N)(σ{1,3,5}) = ϕ(V{1})+ϕ(V{3})+ϕ(V{5})−ϕ(V{1,3,5}) = 0+0+0−(−1) = 1.

For symmetry reasons it follows that (a fan structure of) B(N) ·B(U4,6) B(N) = ϕ · B(N)
consists of the cones σ{i} of weight −1, where i ∈ {1, . . . , 6} and σF of weight 1, where
F is in {{1, 3, 5}, {1, 4, 6}, {2, 3, 6}, {2, 4, 5}}.

Example 3.3.14. Let M be a matroid of rank 3. Every subset {F1, . . . , Fk} of flats of
M such that E(M) is the disjoint union of the Fi gives rises to a codimension 1 matroid
variety B(N) ( B(M). In fact every codimension 1 matroid subvariety of B(M) is given
by such a choice of flats of M . The function ϕ which is linear on the cones of B(M)
and satisfies ϕ(VF ) = rN (F ) − rM (F ) for all flats F of M cuts out B(N) from B(M).
Therefore, the self-intersection of B(N) in B(M) is

ϕ · B(N) =

(
k∑
i=1

ϕ(VFi)− ϕ(VE(M))

)
· L = (1− |{i : rM (Fi) = 2}|) · L,

where L denotes the lineality space R · (1, . . . , 1).

Remark 3.3.15. In [Spe08, proposition 3.1, theorem 3.6], Speyer gives the following
matroid-theoretic description of the intersection of two matroid varieties B(N) and B(N ′)
in the ambient cycle Rn. The matroid intersection N ∧ N ′ (defined in [Whi86, section
7.6]) is the matroid whose bases are the minimal sets in

{B ∩B′ : B basis of N,B′ basis of N ′}.

If r, s are the ranks of N,N ′, then the rank of N ∧N ′ is greater or equal to r + s− n and
equality is attained if and only if there exist bases B,B′ of N,N ′ satisfying B ∪B′ = [n].
Then the intersection product of B(N) and B(N ′) in Rn is

B(N) ·Rn B(N ′) =

{
B(N ∧N ′), if the rank of N ∧N ′ is r + s− n,
∅, otherwise.

We have seen in examples 3.3.5, 3.3.13 and 3.3.14 that the intersection of two matroid
varieties in a third matroid variety is in general not again a matroid variety. We would like
to have a matroid-theoretic description of such an intersection product in the case that it is
a matroid variety. The closest thing we have is the following proposition.

Proposition 3.3.16. Let B(N1),B(N2) be two subcycles of a matroid variety B(M). As-
sume that r(N2) = r(M)− 1. For any set A ⊆ E we set

rK(A) := rN1
(A) + rN2

(clN1
(A))− rM (clN1

(A)).

Then the following hold:
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(1) If rK is the rank function of a matroid K, then

B(N1) ·B(M) B(N2) =

{
B(K), if K is loopfree
∅, else

.

(2) If rK is not a rank function, then B(N1) ·B(M) B(N2) has a cone of negative
weight.

PROOF. We know by theorem 3.3.7 that B(N1) ·B(M) B(N2) = ϕ · B(N1), where ϕ
is linear on the cones of B(M) and satisfies ϕ(VF ) = rN2(F ) − rM (F ) for all flats F of
M (cf. proposition 3.2.12). For a flat F of N1, we have thus

rK(F ) = rN1
(F ) + ϕ(VF ).

We first assume that rK is a rank function. Let F = (∅ ( F1 ( . . . ( Fr(N1)−2 ( E)
be a chain of flats in N1. Then there is a unique p such that rN1(Fi) = i for i ≤ p and
rN1(Fi) = i+ 1 else.
If ϕ(VFp) = −1 or ϕ(VFp+1

) = 0, then 〈F〉 has weight 0 in ϕ · B(N1) (cf. lemma 3.2.2).
As in this case rK(Fp+1) = rK(Fp) + 2, there must be two consecutive flats in F which
have the same rank in K; therefore, F is not a chain of flats in K.
So it remains to consider the case that ϕ(VFp) = 0 and ϕ(VFp+1) = −1. Then the weight
of 〈F〉 in ϕ · B(N1) is

ωϕ·B(N1)(〈F〉) = 1− |{F : Fp ( F ( Fp+1 flat inN1 with ϕ(VF ) = −1}|.

We claim that ωϕ·B(N1)(〈F〉) ∈ {0, 1}: Otherwise there were two distinct flats Fp (
F,G ( Fp+1 in N1 with rK(F ) = rK(G) = rK(Fp) = p. As rK(F ∪G) = rK(Fp+1) =
p+ 1, this contradicts our assumption that rK is a rank function. It remains to show that

ωϕ·B(N1)(〈F〉) = 1⇔ F is a chain of flats in K.

If F is a chain of flats in K, then Fp is a flat in K which implies that rK(F ) = rK(Fp) + 1
for all flats F of N1 with Fp ( F ( Fp+1; hence ϕ(VF ) = 0 and ωϕ·B(N1)(〈F〉) = 1.
If F is not a chain of flats in K, then there is an i ≤ p such that Fi is not closed in
K (because one can easily read off rK that for i ≥ p + 1 all Fi are flats in K). We
choose x such that x ∈ clK(Fi) \ Fi. Then ϕ(VclN1

(Fi∪x)) = −1, which implies that
ϕ(VclN1

(Fp∪x)) = −1. Note that this also implies that x /∈ Fp because ϕ(VFp) = 0. Since
clK(Fi ∪ x) ⊆ clK(Fp+1) = Fp+1 we conclude that Fp ( clN1

(Fp ∪ x) ( Fp+1 is a flat
of N1. Therefore, ωϕ·B(N1)(〈F〉) = 0. This proves (1) as F is never a chain of flats in K
if K has loops because in that case ∅ is not a flat of K.
Let us show (2). It is clear that rK satisfies the first property of a rank function. The
assumption that r(N2) = r(M) − 1 ensures that it also fulfils the second property. If
rK is not a rank function, then we can choose a flat F of N1 and x, y ∈ E such that
rK(F ∪ x) = rK(F ∪ y) = rK(F ) and rK(F ∪ x ∪ y) = rK(F ) + 1. We choose a
chain F = (∅ ( F1 ( . . . ( Fr(N1)−2 ( E) of flats in N1 with Fp := F , Fp+1 :=
clN1

(F ∪ x ∪ y), rN1
(Fi) = i for i ≤ p and rN1

(Fi) = i+ 1 otherwise. Then

ωϕ·B(N1)(〈F〉) ≤ ϕ(VclN1
(F∪x)) + ϕ(VclN1

(F∪y))− ϕ(VFp+1
) = −1− 1− (−1) = −1.

�

Remark 3.3.17. One can use proposition 3.3.16 to obtain an inductive formula for the
intersection product B(N1) ·B(M) B(N2) in the case that B(N2) is of a higher codimension
(as long as all intermediate results are really rank functions).

Example 3.3.18. LetM be a matroid of rank r and let ϕ be the function which is linear on
the cones of B(M) and satisfies ϕ(VF ) = r(F )− |F |. Let F = (∅ ( F1 ( . . . ( Fr−2 (
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E) be a chain of flats with r(Fi) = i for i ≤ s and r(Fi) = i + 1 for i > s. Let S be the
set of flats of M strictly containing Fs and strictly contained in Fs+1. Then we have

ωϕ·B(M)(〈F〉) =
∑
F∈S

ϕ(VF )− ϕ(VFs+1)− (|S| − 1) · ϕ(VFs)

=
∑
F∈S

(s+ 1− |F |)− (s+ 2) + |Fs+1| − (|S| − 1)(s− |Fs|)

= |S| − 2.

This means that the weight in ϕ · B(M) of each cone τ ∈ B(M)(r−1) is the number of ad-
jacent cones of τ minus 2. Note that cones which have only two adjacent facets are a result
of a refinement (i.e. there is a coarser fan structure not containing the cone (cf. remarks
1.1.13 and 3.1.27)). Hence ϕ · B(M) can be regarded as the codimension one skeleton of
B(M). We should note that ϕ · B(M) is the natural generalisation of the definition of the
canonical divisor of tropical curves. Therefore, we denote ϕ · B(M) by KB(M) and show
that it satisfies the following adjunction formula: If B(N) is a codimension 1 subcycle of
B(M), then we have

KB(N) = (KB(M) + B(N)) ·B(M) B(N).

Let ϕ1, ϕ2 be functions which are linear on the cones of B(M) and satisfy ϕ1(VF ) =
rM (F )− |F |, ϕ2(VF ) = rN (F )− rM (F ) for all flats F of M . Then it follows by part (6)
of theorem 3.3.7 that

(KB(M) + B(N)) ·B(M) B(N) = (ϕ1 + ϕ2) · B(N) = KB(N).

Example 3.3.19. Let us consider again the Fano matroid F7 of example 3.1.8. Example
3.3.18 implies that the coarse and the fine fan structure of B(F7) are equal.

3.4. Dividing out the lineality space

So far, we have defined an intersection product on matroid fans B(M) which contain the
lineality space L = R · (1, . . . , 1). But in most applications, one is really interested in
B(M) modulo its lineality space L. Therefore, we will now discuss how to derive an
intersection product on B(M)/L from the known intersection product on B(M). First, let
us fix some terminology.

Let X be a polyhedral complex in a vector space V . The intersection L := ∩τ∈XVτ is
called the lineality space of X . If X is a fan, L is just the unique inclusion-minimal cone
of X . We define the polyhedral complex X/L in V/L by X/L := {q(τ)|τ ∈ X}, where
q : V → V/L is the quotient map. If X is weighted, q(σ) inherits the weight from σ.

Let X be a tropical cycle in V . A subspace L ⊆ V is called a lineality space of X if there
is a polyhedral structure X of X whose lineality space is L. In this case, we denote by
X/L the tropical cycle in V/L associated to X/L.

Let C be a cycle inX/L and let C be a polyhedral structure of C. We define the polyhedral
complex q−1(C) to be the collection of cells {q−1(σ)|σ ∈ C} (with weights inherited from
C). Furthermore, we define q−1(C) to be the tropical cycle associated to q−1(C). By
definition, L is a lineality space of q−1(C).
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q−1(C)

q−→
C

Cycle C in B(U2,3)/L and q−1(C) in B(U2,3).

Remark 3.4.1. It is easy to see that the cycles (X/L) × L and X are isomorphic if L
is a lineality space of X: We choose an integer linear map s : V/L → V such that
q ◦s = idV/L. Then X → X/L × L, x 7→ (q(x), x − s(q(x)) is an isomorphism with
inverse (x, l)→ s(x) + l.

Remark 3.4.2. Note that X/L = StarX(L) for any variety X with lineality space L.
Therefore, it follows by proposition 1.2.9 that (ϕ · X)/L = ϕL · X/L for any rational
function ϕ that is affine linear on a polyhedral structure with lineality space L. For L = R ·
(1, . . . , 1), this means that corollary 3.2.15 can be extended to the situation that B(N)/L ⊆
B(M)/L; i.e. there are rational functionsϕ1, . . . , ϕr on B(M)/L (with r := r(M)−r(N))
such that

B(N)/L = ϕ1 · · ·ϕr · B(M)/L

and the intermediate intersection products ϕk · · ·ϕr · B(M)/L are still matroid varieties
modulo L.

Example 3.4.3. Let X be a polyhedral structure of a cycle X . For τ ∈ X we have

StarX(τ) = StarX(p)/Vτ ,

where p is a point in the relative interior of τ . Moreover, if L is the lineality space of X , q
is the associated quotient map and σ is a cell of X/L, then

StarX/L(σ) = StarX(q−1(σ)).

For X = B(M), it follows by lemma 3.1.21 that

StarB(M)/L(σ) = B(Mp)/Vq−1(σ),

where p is a point in the relative interior of q−1(σ).

Tropicalisations of linear spaces constitute an important class of matroid varieties modulo
their natural lineality space:

Example 3.4.4. Let I ( C[x1, . . . , xn] be an ideal that is generated by linear forms. The
support of a linear form l = a1x1 + . . . + anxn + an+1 is defined to be supp(l) :=
{i : ai 6= 0}. The inclusion-minimal sets in {supp(l) : l ∈ I} are called the circuits
of I . They satisfy the circuit axioms of a matroid; so one can consider the matroid M
on the ground set {1, . . . , n + 1} whose circuits are the circuits of I . It turns out that
Trop(V (I)) is isomorphic to B(M)/L, with L = R · (1, . . . , 1) (see [MS, section 5.2] or
[Stu02, section 9.3]). That means that tropicalisations of linear spaces are matroid varieties
modulo lineality spaces. Furthermore, it was shown in [KP11, corollary 1.5] that a matroid
variety (modulo its natural lineality space) is a tropicalisation of a classical linear space
if and only if the the corresponding matroid is realisable over the corresponding field (cf.
example 3.1.6). A fast algorithm for the computation of tropicalisations of linear spaces
has been presented in [Rin]; it uses a fan structure of the tropicalisation which is slightly
finer than the coarse subdivision (and much coarser than the fine subdivision).
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The only thing we still need in order to define an intersection product on B(M)/L is the
following lemma:

Lemma 3.4.5. Let C,D be two cycles in a matroid variety B(M) and let us assume that
L is a lineality space of each. Then L is also a lineality space of C ·D.

PROOF. For all vectors v ∈ L we can define the translation automorphism αv :
B(M) → B(M) which sends x to x + v. For a subcycle of B(M), having L as lin-
eality space is equivalent to being invariant under all translations αv, v ∈ L. Now we use
lemma 3.3.9 to see that this property is passed from C and D to C ·D as

(αv)∗(C ·D) = (αv)∗C · (αv)∗D = C ·D.

�

Definition 3.4.6. Let B(M) be a matroid variety with lineality space L, and let C,D be
two tropical cycles in B(M)/L. We define the intersection product C ·D of C and D in
B(M)/L by

C ·D := (q−1(C) · q−1(D))/L,

where on the right-hand side we use the previously defined intersection product on B(M)
(cf. definition 3.3.3). In words, we first take preimages of C and D in B(M) and intersect
them. By lemma 3.4.5, the result has lineality space L which we divide out again.

Remark 3.4.7. This definition also works for cartesian products B(M)/L×B(M ′)/L′ as
they are equal to B(M ⊕M ′)/L× L′.

We are ready to state the main properties of the intersection product of cycles on matroid
varieties modulo lineality space.

Corollary 3.4.8. For all subcycles C,D,E of B(M)/L, the following properties hold:

(1) |C ·D| ⊆ |C| ∩ |D|.
(2) If C and D are fan cycles, then C ·D is a fan cycle, too.
(3) (h · C) ·D = h · (C ·D) for any cocycle h on C.
(4) C · B(M)/L = C.
(5) C ·D = D · C.
(6) If C = h · B(M)/L for some cocycle h, then C ·D = h ·D.
(7) (C ·D) · E = C · (D · E).
(8) (C +D) · E = C · E +D · E.
(9) If C,D are polyhedral structures of the tropical cycles C,D and τ is a cell in

(C ∩ D)≤(dim(B(M)/L)−codim(C)−codim(D)), then

StarC·D(τ) = StarC(τ) · StarD(τ),

where the intersection product on the left-hand side is computed in B(M)/L,
whereas the one on the right-hand side is in StarB(M)/L(τ) (cf. example 3.4.3).

(10) (A1 × A2) · (B1 × B2) = (A1 · B1) × (A2 · B2) if A1, B1 and A2, B2 are
subcycles of B(M1)/L1 and B(M2)/L2 respectively.

PROOF. Properties (1)-(8) follow straight from the respective property in theorem
3.3.7. (9) follows from lemma 3.3.11, example 3.4.3 and the fact that Starq−1 C(p) =
q−1 StarC(q(p)), where q : V → V/L is the quotient map and p is a point in q−1 C. (10)
is direct consequence of lemma 3.3.10. �

Our next aim is to show that the intersection product of cycles on a matroid variety modulo
lineality space can also be expressed as a push-forward along a projection of the intersec-
tion of the diagonal with the cross product of the cycles we want to intersect.
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Proposition 3.4.9. Let C,D be cycles in B(M)/L. Then ∆B(M)/L · (C ×D) = ∆C·D.
In particular, we have

C ·D = π∗(∆B(M)/L · C ×D),

where π : B(M)/L× B(M)/L→ B(M)/L is the projection to the first factor. Note that
this is how we defined our intersection product on matroid varieties (cf. remark 3.3.8).

To prove this we use the following lemmas:

Lemma 3.4.10. Let X be a tropical cycle with polyhedral structure X whose lineality
space is L. Let ϕ be a function which is affine linear on the cells of X and let C be a cycle
in X (not necessarily with lineality space L). Then the equation

ϕ · q−1 q∗(C) = q−1 q∗(ϕ · C)

holds, where q : X → X/L is the quotient map.

PROOF. We first note that by adding a globally affine linear function to ϕ, we can
assume that ϕ = q∗ ϕ̃ for a suitable function ϕ̃ on X/L. In this case, it is obvious from the
definitions and projection formula that both sides are equal to q−1(ϕ̃ · q∗(C)). �

Lemma 3.4.11. Let L be a lineality space of a matroid variety B(M) and q : B(M) →
B(M)/L the corresponding quotient map. Let C,D be cycles in B(M) such that L is a
lineality space of D. Then (q−1 q∗ C) ·D = q−1 q∗(C ·D).

PROOF. First, we split M into its connected components M =
⊕

iMi and pull back
the functions of corollary 3.3.2 that cut out the diagonal of B(Mi) × B(Mi) to B(M) ×
B(M). With the help of lemma 3.1.28 this gives us functions on B(M) × B(M) which
cut out the diagonal and are linear on the cones of a fan structure of B(M) × B(M) with
lineality space ∆L.

Now we set j : B(M) × B(M) → (B(M) × B(M))/∆L to be the quotient map. Then
we have (q−1 q∗ C) × D = j−1 j∗(C × D). Thus we are in the situation of the previous
lemma, and intersecting with the diagonal gives j−1 j∗(∆B(M) ·C ×D). After projecting,
this is q−1 q∗(C ·D), which finishes our proof. �

PROOF OF PROPOSITION 3.4.9. Let q : B(M)→ B(M)/L be the quotient map. For
any cycle A having lineality space L the following equality holds:

(q× q)−1∆A/L = (id× q)−1(id× q)∗∆A. (3.4)

The set-theoretic equality is clear; the equality of the cycles follows from the fact that
all involved weights are inherited by the weights of A. By definition of our intersection
products and equation (3.4) we have

∆B(M)/L · (C ×D) = ((q× q)−1∆B(M)/L · q−1 C × q−1D)/L× L
= (((id× q)−1(id× q)∗∆B(M)) · q−1 C × q−1D)/L× L,

as well as

∆C·D = ((q× q)−1(∆(q−1 C·q−1 D)/L))/L× L
= ((id× q)−1(id× q)∗(∆q−1 C·q−1 D))/L× L
= ((id× q)−1(id× q)∗(∆B(M) · q−1 C × q−1D))/L× L.

Now the claim follows from lemma 3.4.11. �

Remark 3.4.12. Let B(M)/L be a quotient of a matroid variety and assume we can cut out
the diagonal ∆B(M)/L in B(M)/L × B(M)/L with a a cocycle h. Then the intersection
product defined by h, that is

C ·D := π∗(h · C ×D),
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agrees with the one defined in 3.4.6. This follows from proposition 3.4.9 together with
property (6) of theorem 3.3.7.

Remark 3.4.13. Lemma 3.3.9 can be generalised to matroid varieties modulo lineality
spaces, i.e. we have

α∗(C ·D) = α∗C · α∗D
for any isomorphism α : B(M)/L → B(M ′)/L′. We first use remark 3.4.7 and write
B(M)/L = (B(M)×L′)/(L×L′) resp. B(M ′)/L′ = (L×B(M ′))/(L×L′). In other
words, we can assume that B(M) and B(M ′) lie in the same ambient vector space and
that L = L′. In this situation we can lift α to an isomorphism α̃ : B(M) → B(M ′) with
q ◦ α̃ = α ◦ q and use lemma 3.3.9.

We finish the section by giving a few examples.

Example 3.4.14. Let M = Uk+1,n+1 and L := R · (1, . . . , 1). Then B(M)/L is iso-
morphic to Lnk (cf. example 3.1.18). Thus we have reproved the result of [All12] that the
cycles Lnk admit an intersection product of cycles. It follows from remark 3.4.12 that both
intersection products agree.

Remark 3.4.15. Any matroid variety modulo its natural lineality space L = R · (1, . . . , 1)
is a cycle of degree 1 as by definition 1.3.9 and lemma 3.1.24

deg B(M)/L = deg(B(M)/L · U|E|−r(M)+1,|E|/L)

= deg[(B(M) · U|E|−r(M)+1,|E|)/L]

= deg[(max{x1, . . . , x|E|}r(M)−1 · B(M))/L]

= deg(L/L)

= 1.

This is not surprising as it is just the projectivised version of lemma 3.1.26. The converse
statement – that degree 1 fan cycles in Rn/L are matroid varieties modulo L – has been
proved in [Fin, theorem 6.5].

Example 3.4.16. In order to compute the self-intersection of the rigid lineC := R ·
(

1
1
0

)
in

L3
2 we have to intersect the preimage ofC in B(U3,4) with itself. This was done in example

3.3.5. Now we only need to divide out the lineality space and see that C ·L3
2
C = (−1) ·{0}

which agrees with the result obtained in [AR10, example 3.10].

C

D

P1,2

P0,3
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Example 3.4.17. Let D be the curve that has only trivial weights and consists of rays

generated by
(

−2
−3
0

)
,

(
2
2
−1

)
,

(
0
1
1

)
and let C be the the line R ·

(
1
1
0

)
. We want to use part

(6) of corollary 3.4.8 to compute the intersection product C ·D in L3
2. Therefore, let X be

the minimal fan structure of L3
2 that contains the edges of C. We observe that the rational

function ϕ that is linear on the cones of X and maps(
0
−1
0

)
7→ 0,

(
1
1
1

)
,

(
0
0
−1

)
,

(
1
1
0

)
7→ 1,

(
−1
−1
0

)
7→ −2,

(
−1
0
0

)
7→ −1

satisfies ϕ · L3
2 = C. Hence we can conclude that

C ·D = ϕ ·C =

(
ϕ

(
−2
−3
0

)
+ ϕ

(
2
2
−1

)
+ ϕ

(
0
1
1

))
· {0} = (−4 + 3 + 0) · {0} = (−1) · {0}.

Remark 3.4.18. We have seen in examples 3.3.13, 3.3.14 3.4.16 and 3.4.17 that intersec-
tion products of tropical varieties on matroid varieties (modulo lineality spaces) can have
negative weights, even if they intersect in the right dimension (as observed in 3.4.17). This
presents a stark contrast to both, the classical case and the case of intersection products in
vector spaces (cf. remark 1.3.5). There are a couple of technical and intuitive explanations
for this phenomenon:

• Contrary to case of vector spaces, the rational functions of corollary 3.3.2 that
cut out the diagonal are not convex for general matroids. Therefore, proposition
1.2.11 does not prevent intersection products from having negative weights.

• The strategy of remark 1.3.13 to slightly move subvarieties or to replace them
by rational equivalent cycles such that they intersect properly (i.e. in the right
dimension and in the interior of a maximal cell) does not work in general as
translations might cause subvarieties to leave the ambient variety. This is clearly
the case for the rigid line of example 3.4.16.

• Our ambient spaces are not compact, so intersection products might have hidden
components in the boundary. If these boundary components are too big, then
they may need to be compensated by negative weights in the interior. One can
prove that, defining suitable intersection multiplicities at infinite points, Bézout’s
theorem holds for curves on suitable compactifications of matroid varieties mod-
ulo lineality spaces. We refer to [Fra09, definition 3.8, theorem 3.13] for a very
detailed discussion of the case of L3

2 and to [BS, definitions 3.1 and 3.5] for
the general case. The (compactifications of the) curves C and D of example
3.4.17 intersect with multiplicity min{2 ·1, 3 ·1} = 2 in the boundary point P1,2

(see above figure) and with multiplicity min{2 · 1, 3 · 1} = 2 in P0,3. There-
fore, Bézout’s theorem forces the intersection multiplicity of the origin to be
deg(D) · deg(C)− 2− 2 = −1.

• Negative intersection products can also answer relative realisability questions,
i.e. whether the involved curves are tropicalisations of classical curves contained
in a classical linear space that tropicalises to the given tropical ambient space.
This is the topic of [BS] and will be further discussed in remark 3.7.10.

It is sometimes interesting to consider codimension 1 skeletons of cycles in tropical geom-
etry; for example, the codimension 1 skeleton of the moduli space of n-marked abstract
rational curvesMn consists of abstract curves which have at least one 4-valent vertex. We
saw in example 3.3.18 that matroid fans come with a natural choice of weight function to
give the codimension 1 skeleton the structure of a tropical cycle. The following example
answers the question of irreducibility of codimension 1 skeletons of tropical planes.

Example 3.4.19. LetM be a matroid of rank 3 and letX = B(M)/L be the corresponding
matroid variety modulo L = R · (1, . . . , 1). IfX is (isomorphic to) Ln2 , L

n
1 ×R or R2, then
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its codimension 1 skeleton is Ln1 , {0}×R or ∅ respectively, and thus irreducible. We want
to show that in all other cases the skeleton of X is reducible. By pooling parallel elements
(that is elements i, j with r({i, j}) = 1) we can assume that each singleton is a flat of M .
Let E(M) = {1, . . . , n}. Let us first assume that every flat of rank 1 is contained in at
least 3 flats of rank 2. As M 6= U3,n we know that there is at least one flat F of rank 2
that contains at least 3 elements. Remembering that the weight of a cone of the skeleton is
the number of adjacent cones minus 2, we can conclude that the skeleton of X has at least
n + 1 rays (corresponding to the n flats of rank 1 and F ). Since X is contained in Rn/L
this implies that its codimension 1 skeleton must be reducible.
Now let us assume that the flat {1} is only contained in two flats of rank 2, say {1, . . . , k}
and {1, k + 1, k + 2, . . . , n}, with 2 ≤ k ≤ n − 1. The axioms on the flats of M imply
that the remaining flats of rank 2 are exactly {i, j}, with 2 ≤ i ≤ k < j ≤ n. So the
skeleton ofX has rays corresponding to the flats {2}, . . . , {k}, {1, k+1, . . . , n} of weight
n − k − 1 and {k + 1}, . . . , {n}, {1, . . . , k} of weight k − 2. This is a reducible curve
unless k ∈ {2, n− 1} in which case X is isomorphic to Ln−2

1 × R.

3.5. Intersection product on smooth varieties

In this section we construct an intersection product of cycles on smooth (abstract) tropical
varieties by using the intersection product of the previous section locally.

Definition 3.5.1. An abstract tropical cycle X is called smooth variety if it looks locally
like a matroid variety modulo lineality space, i.e. if all Xi of definition 2.2.4 are matroid
varieties modulo lineality spaces.

Remark 3.5.2. We note that a cycle X in a vector space is smooth if and only if the star
StarX(p) around each point p of X is isomorphic to a matroid variety modulo lineality
space (cf. remark 2.2.9).

Remark 3.5.3. Let X be a smooth variety in a vector space. As the local building blocks
of X are locally irreducible we can conclude that X is also locally irreducible. If X is
connected, its smoothness implies that it is also connected in codimension 1. Therefore, it
follows from proposition 1.1.26 that connected smooth varieties are irreducible.

We are ready to define an intersection product C · D of cycles C,D on a smooth variety
X . The idea is to intersect the local cycles Ci, Di on Xi and then glue the resulting local
intersection products together to obtain a cycle in X .

Definition and Construction 3.5.4. Let C,D be tropical cycles (of codimension r, s) in a
smooth (abstract) d-dimensional variety X . Let Ci, Di be cycles in VWi such that

φi(C ∩ Ui) = Ci ∩Wi, φi(D ∩ Ui) = Di ∩Wi

(cf. definition 2.2.6). The fact that Xi is a matroid variety modulo lineality space allows
us to define the local intersection product (Ci ∩Wi) · (Di ∩Wi) to be the open cycle that
satisfies for all points p in |Ci| ∩ |Di| ∩Wi the equation

Star(Ci∩Wi)·(Di∩Wi)(p) = StarCi(p) · StarDi(p),

where right-hand side intersection product is computed in the matroid variety modulo lin-
eality space StarXi(p). Note that this does not depend on the choice of local cyclesCi, Di.
If p ∈ Ui ∩ Uk, then the map φk ◦ φ−1

i induces an isomorphism StarXi(φi(p)) →
StarXk(φk(p)) which maps the stars of Ci, Di around φi(p) to the stars of Ck, Dk around
φk(p); it follows that the local intersection products agree on the overlap Ui ∩ Uk (cf. re-
mark 3.4.13). Therefore, we can glue the local intersection products together to obtain the
global intersection product C ·D ∈ Zd−r−s(X).
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Remark 3.5.5. IfC,D are two subcycles of a smooth varietyX contained in a vector space
V , then the intersection product C ·D on X is just the unique subcycle of X satisfying

StarC·D(p) = StarC(p) · StarD(p)

for every point p ∈ X . Note that the right-hand side is an intersection product of cycles in
the matroid variety modulo lineality space StarX(p).

The following theorem is an immediate consequence of the local definition of our intersec-
tion product and corollary 3.4.8:

Theorem 3.5.6. Let X be a smooth tropical variety and let C and D be subcycles of X .
Then the following properties hold:

(1) |C ·D| ⊆ |C| ∩ |D|.
(2) (h · C) ·D = h · (C ·D) for any cocycle h on C.
(3) C ·X = C.
(4) C ·D = D · C.
(5) If C = h ·X , then C ·D = h ·D.
(6) (C ·D) · E = C · (D · E).
(7) (C +D) · E = C · E +D · E.
(8) (A1 × A2) · (B1 × B2) = (A1 · B1) × (A2 · B2) if A1, B1 and A2, B2 are

subcycles of the two smooth varieties X1 and X2 respectively.

Remark 3.5.7. Let f : X → Y be an isomorphism of smooth varieties and let C,D be
subcycles ofX . It is easy to see that we can extend remark 3.4.13 to this case (cf. definition
2.2.10); that means

f∗(C ·D) = f∗C · f∗D.
Moreover, we can extend proposition 3.4.9 and check locally that we have

C ·D = π∗(∆X · C ×D).

Remark 3.5.8. Let X be a smooth tropical variety. By gluing together the canonical
divisors KXi of the local blocks Xi of X (cf. example 3.3.18) we obtain a cycle KX ∈
ZdimX−1(X). Let C be a codimension 1 subcycle of X such that for all p ∈ C and i such
that p ∈ Ui

StarCi(φi(p)) = B(Np)/Lp ( B(Mp)/Lp = StarXi(φi(p))

for some matroids Np,Mp and lineality spaces Lp. Note that this condition implies that C
is smooth. Then it follows easily from the locality of the intersection product and example
3.3.18 that

KC = (KX + C) ·X C.

3.6. Pull-back of cycles

In this section we construct a pull-back of cycles along morphisms of smooth varieties.
A discussion of this construction for less general smooth varieties (in our terminology,
in the case of only uniform matroids) can be found in [All12, section 3]. We show that
modifications are a special case of our pull-back, which will be used to prove that our
intersection product agrees with the intersection product introduced in [Sha] in the next
section.

Definition 3.6.1. Let f : X → Y be a morphism of smooth tropical varieties. We define
the pull-back of a cycle C in Y to be

f∗C := π∗(Γf · (X × C)),

where π : X × Y → X is the projection to the first factor and Γf is the graph of f , which
means that Γf := γf ∗(X), with γf : X → X × Y, x 7→ (x, f(x)).
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Note that here Γf · (X×C) is an intersection product of cycles inX×Y , which is smooth
by our assumptions. We observe that the codimension of C in Y equals the codimension
of f∗C inX and that by theorem 3.5.6 we have |f∗C| ⊆ f−1|C|. Moreover, we obviously
have f∗(C + C ′) = f∗C + f∗C ′.

Example 3.6.2. Let us give some examples.

(1) Let f : X → Y be a morphism of smooth tropical varieties. Then f∗Y = X .
This follows easily from π∗Γf = X .

(2) If C = h · Y is a subcycle of Y cut out by a cocycle, then we have

f∗C = f∗h ·X.

If we denote the two projections of X × Y by πX and πY , then by definition
the function π∗Y h agrees on Γf with the function π∗Xf

∗h and the above equation
follows from the projection formula.

(3) Let id : X → X be the identity morphism. Then Γid = ∆X , and we conclude
id∗ C = X · C = C for all subcycles C of X .

(4) Let p : X × Y → Y be the projection to Y . Then Γp = X ×∆Y , and it follows
easily that p∗C = X × C for all subcycles C of Y .

(5) For i ∈ {1, 2}, let fi : Xi → Yi be a morphism of smooth varieties and let Ci be
a cycle in Yi. Then it follows by theorem 3.5.6(8) and proposition 1.1.31(3) that

f∗1C1 × f∗2C2 = (f1 × f2)∗(C1 × C2).

Our next goal is to prove the following properties of pull-backs:

Theorem 3.6.3. Let X , Y and Z be smooth tropical varieties and let f : X → Y and
g : Y → Z be two morphisms. Let C,C ′ be two cycles in Y , D a cycle in X and E a cycle
in Z. Then the following holds:

(1) C · f∗D = f∗(f
∗C ·D)

(2) f∗(C · C ′) = f∗C · f∗C ′
(3) (g ◦ f)∗E = f∗g∗E

Remark 3.6.4. The projection formula for cycles of the preceding theorem is a natural
generalisation of the projection formula for cocycles (cf. proposition 2.3.9) in the case
where f is a morphism of smooth varieties.

In a first step we prove the theorem for matroid varieties X,Y, Z. We need the following
lemma:

Lemma 3.6.5. Let f : X → Y be a morphism between matroid varieties. Then we have

({x} × Y ) · Γf = {(x, f(x))} (3.5)

for each point x of X .
Let g : Y → Z be another morphism of matroid varieties and set Φ : X → X × Y × Z,
x 7→ (x, f(x), g(f(x))). Then we have

Φ∗X = (Γf × Z) · (X × Γg). (3.6)

Analogously, if a : X → Z is a third morphism of matroid varieties and we set Φ : X →
X × Y × Z, x 7→ (x, f(x), a(x)), then we have

Φ∗X = (Γf × Z) · (Γa × Y ). (3.7)

Note that, by abuse of notation with regard to the order of the factors, (Γa × Y ) lives in
X × Y × Z.
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PROOF. We start with equation (3.5). It is obvious that the support of the left-hand
side is either the point (x, f(x)) or the empty set, so it suffices to check that the degree of
the left-hand side is 1. Taking the star around the point (x, f(x)), we can assume that x
is the origin. As x is cut out by rational functions on X (which is an easy consequence of
lemma 3.1.24), {x} × Y is cut out by the pull-backs of these functions and the projection
formula proves the claim.
For the equation (3.6), we start by noting that

|(Γf × Z) · (X × Γg)| ⊆ |(Γf × Z)| ∩ |(X × Γg)| = |Φ∗X|.

As Φ∗X is irreducible and both cycles have the same dimension, we can conclude that
both sides can only differ by a global factor. We can see that this factor is indeed 1 by
intersecting both sides with {x}×Y ×Z, where x ∈ |X| is any point. Equation (3.5) then
implies that we get 1 · {(x, f(x), g(f(x)))} on both sides.
Equation (3.7) can be proven completely analogously. �

PROOF OF THEOREM 3.6.3 FOR MATROID VARIETIES X,Y, Z . We give rather short
proofs of the three properties if X,Y, Z are matroid varieties. We skip the details of a cou-
ple of straightforward computations because they are completely analogous to the com-
putations in [All12, theorem 3.3]. In what follows, π := πX denotes the projection of a
product of X , Y and Z to the factor X .

To prove (1), it essentially suffices to show (f × id)∗∆Y = Γf , where f × id : X × Y →
Y × Y . Using this, a straightforward computation, which relies heavily on the projection
formula for piecewise polynomials (cf. proposition 2.1.21(5)) and (thus) on the ability to
express the diagonal of a matroid variety as a piecewise polynomial, shows that

C · f∗D = f∗π∗(Γf ·D × C) = f∗(f
∗C ·D).

The equation (f × id)∗∆Y = Γf is clear set-theoretically and, as Γf is irreducible, the
equality of weights can be checked using the first equation of lemma 3.6.5 and part (2) of
example 3.6.2.

To prove (2), we use (1) to show that

f∗(C · C ′) = π∗((Γf × Y ) · (X × ΓidY ) · (X × C × C ′))

and the equality (f∗C) ·D = π∗(Γf ·D × C) to see that

f∗C · f∗C ′ = π∗(π
∗
1,2Γf · π∗1,3Γf · (X × C × C ′)),

with π1,i : X × Y × Y → X × Y, (x, y1, y2) 7→ (x, yi). Using both the second and third
equality of lemma 3.6.5 (with a = f and g = id) together with part (4) of example 3.6.2,
we see that both terms coincide.

To prove (3), we compute that

(g ◦ f)∗E = π∗(Φ∗X · (X × Y × E)),

where Φ : X → X × Y × Z maps x to (x, f(x), g(f(x))), and use (1) to see that

f∗g∗E = π∗((Γf × Z) · (X × Γg) · (X × Y × E)).

Using the second equation of lemma 3.6.5 again, the claim follows. �

Remark 3.6.6. Let us stress again that the previous proof relies heavily on the existence of
a cocycle on X ×X that cuts out the diagonal. Therefore, we can only prove the theorem
for matroid varieties in this way.

In order to extend this proof to arbitrary smooth varieties we need another technical propo-
sition:
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Proposition 3.6.7. Consider the following commutative diagram of tropical morphisms.

B(M)
g−−−−→ B(N)

q

y yj

B(M)/L
f−−−−→ B(N)/K

Here L,K are lineality spaces and q, j are the respective quotient maps. Let C be a cycle
in B(N)/K. Then the following equality holds:

q−1 f∗C = g∗ j−1 C,

or equivalently
f∗C = (g∗ j−1 C)/L.

PROOF. Since the cycles Γf and Γg carry only trivial weights, the equality

|(q× j)−1Γf | = {(x, y) : x ∈ |B(M)|, j(y) = f ◦ q(x)} = |(id× j)−1(id× j)∗(Γg)|
implies the equality of cycles

(q× j)−1Γf = (id× j)−1(id× j)∗(Γg).

Let π : B(M)/L×B(N)/K → B(M)/L and π̃ : B(M)×B(N)→ B(M) be projections
to the first factor. It follows from the above equality that

f∗C = π∗(((q× j)−1Γf · (B(M)× j−1 C))/L×K)

= π∗(((id× j)−1(id× j)∗(Γg) · (B(M)× j−1 C))/L×K).

Applying lemma 3.4.11 to the quotient map (id× j), we see that the above is equal to

π∗(((id× j)−1(id× j)∗(Γg · (B(M)× j−1 C)))/L×K)

= π∗((id× j)∗(Γg · (B(M)× j−1 C))/L× {0})
= (π̃∗(Γg · (B(M)× j−1 C)))/L

= (g∗ j−1 C)/L.

�

PROOF OF THEOREM 3.6.3 FOR SMOOTH VARIETIES X , Y , Z . We have already
proved the claim for matroid varieties X , Y and Z. Therefore, let X,Y, Z be matroid
varieties modulo lineality spaces. As in remark 3.4.13 we can assume that X,Y, Z live in
the same ambient space Rn/L, that is X = B(M)/L, Y = B(N)/L and Z = B(K)/L
for some matroids M,N,K. We lift the morphisms f : B(M)/L → B(N)/L and g :

B(N)/L → B(K)/L to the morphisms f̃ : B(M) → B(N) and g̃ : B(N) → B(K)
induced by f × idL and g × idL (cf. remark 3.4.1). Now we use proposition 3.6.7 and the
respective properties for f̃, g̃ to conclude that theorem 3.6.3 also holds for the morphisms
f, g between matroid varieties modulo lineality spaces. Moreover, as all constructions are
based on intersection products and are therefore defined locally, the statements hold for all
smooth varieties. �

Remark 3.6.8. Let B(M) be a matroid variety with lineality space L and let q : B(M)→
B(M)/L be the quotient map. Then the pull-back q∗(C) coincides with q−1(C) as defined
previously. This is a direct consequence of proposition 3.6.7.

Remark 3.6.9. Let f : X → Y be a morphism of smooth tropical varieties such that
f∗X = Y . Then it follows from the first part of theorem 3.6.3 that f∗f∗C = C holds for
any cycle C in Y .

The following proposition relates the pull-back of a cycle along the restriction of a mor-
phism to the pull-back of the cycle along the original morphism.
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Proposition 3.6.10. Let f : X → Y and its restriction f|X′ : X ′ → Y be morphisms of
smooth tropical varieties. Then for every subcycle C of Y we have

(f|X′)
∗C = f∗C ·X ′,

where the right-hand side is an intersection product of cycles in X .

Our proof uses the following lemma whose proof is the same as the one given in [All10,
example 3.3.4] for a less general setting.

Lemma 3.6.11. Let X ′ be a smooth variety contained in the smooth variety X and let
i : X ′ ↪→ X be the corresponding inclusion morphism. Then for every subcycle C of X
we have

i∗C = X ′ ·X C.

PROOF. Let πX : X ′ ×X → X and πX′ : X ′ ×X → X ′ be the projections to the
respective factor. As the graph of i is equal to the diagonal ∆X′ , we obtain by part (4) of
example 3.6.2 and part (1) of theorem 3.6.3 that

i∗C = πX′∗(∆X′ ·X ′ × C) = πX∗(∆X′ · π∗XC) = X ′ · C.
�

PROOF OF PROPOSITION 3.6.10. We factorise the restriction into f|X′ = f ◦i, where
i : X ′ ↪→ X is the inclusion morphism. We know by part three of theorem 3.6.3 that
(f|X′)

∗C = i∗f∗C. Therefore, the claim follows from the previous lemma. �

Proposition 3.6.10 enables us to define pull-backs in a slightly more general setting.

Definition 3.6.12. Let X be a cycle in a vector space and let Y be a smooth variety. Let
VX be the smallest vector space containing X . Let f : X → Y be a morphism that can be
extended to a morphism f̃ : VX → Y . Then we define the pull-back of a cycle C in Y to
be

f∗C := f̃∗C ·X,
where the intersection product is computed in VX .

Remark 3.6.13. The pull-back of definition 3.6.12 is linear, preserves codimensions and
satisfies |f∗C| ⊆ f−1|C|. Furthermore, it satisfies the properties listed in example 3.6.2
and part (3) of theorem 3.6.3. Note that part (1) and (2) of theorem 3.6.3 are not well-
defined if X is not smooth.

Example 3.6.14. Let f : X → V be a globally affine linear morphism from a tropical
cycle in a vector space to a vector space. Then f can be extended to a morphism VX → V
and therefore each cycle C in V has a well-defined pull-back f∗C along f .

Remark 3.6.15. In definition 3.6.12 we required the morphism f to have an extension to
the whole vector space VX rather than to just have an extension to some smooth variety
X ′ that contains X . We do so to avoid any choices in the definition of the pull-back that
might result in a not well-defined pull-back. However, if, for whatever reason, there is
a canonical smooth variety X ′ that contains X such that one can uniquely extend f to a
morphism f̃ : X ′ → Y , one can define the pull-back of f∗C to be the intersection product
f̃∗C ·X′ X . This pull-back still satisfies the properties listed in the previous remark.

Our next aim is to compare our tropical pull-back of cycles with the classical pull-back of
Chow cohomology classes. Therefore, let Λ1 → Λ2 be a homomorphism of lattices giving
rise to a tropical morphism f : V1 → V2. Let ∆1,∆2 be fan structures of V1, V2 (i.e. com-
plete fans) such that for all σ1 ∈ ∆1 there is a cone σ2 in ∆2 such that f(σ1) ⊆ σ2. Then f
induces a morphism f : X(∆1) → X(∆2) of the corresponding complete toric varieties.
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Let di be the dimension of Vi. Recall that the group of Minkowski weights Zdi−k(∆i) is
isomorphic to the Chow cohomology group Ak(X(∆i)). As [FS97, corollary 3.7] gives a
combinatorial formula for the pull-back f

∗
: Ak(X(∆2)) → Ak(X(∆1)), showing that

the tropical pull-back satisfies the same formula is all we need to prove the equivalence of
the tropical and classical pull-back:

Proposition 3.6.16. Let C ∈ Zd2−k(∆2) be a Minkowski weight and letC be its associated
fan cycle. Then ∆

(≤d1−k)
1 together with the weights

ω(γ1) :=
∑

σ1∈∆
(d1)
1 :γ1≤σ1

∑
τ2∈C(d2−k):f(γ1)⊆τ2

mγ1
σ1,τ2 · ωC(τ2),

where

mγ1
σ1,τ2 :=

{
|Λ2/f(Λ1

σ1
) + Λ2

τ2 |, if f(σ1) ∩ (τ2 + v2) 6= ∅
0, else

,

where v2 is a generic vector in V2, is a fan structure of f∗C.

PROOF. Let πi : V1 × V2 → Vi be the projection to the respective factor. We use the
fan displacement rule (remark 1.3.13) to compute the intersection product Γf · (V1 × C).
We choose the fan structures Γ∆1

f := {(id×f)(σ1) : σ1 ∈ ∆1} of Γf ,

∆ := (∆1 ×∆2) ∩Hf(x)1−y1
∩ . . . ∩Hf(x)d2

−yd2

of V1 × V2 (cf. example 1.1.5) and

Y := (∆1 × C) ∩Hf(x)1−y1
∩ . . . ∩Hf(x)d2

−yd2

of V1 × C. Let (v1, v2) ∈ V1 × V2 be generic. As the chosen fan structures Γ∆1

f and Y
are Minkowski weights in ∆ we can use remark 1.3.13 to conclude that our intersection
product consists of cones τ ∈ ∆(d1−k) such that τ ∈ Γ∆1

f and π2(τ) ⊆ |C| of weight

ω(τ) =
∑
σ1,α

|(Λ1×Λ2)/((Λ1×Λ2)(id×f)(σ1)+(Λ1×Λ2)α)|·ω
Γ

∆1
f

((id×f)(σ1))·ωY(α),

where σ1 ∈ ∆
(d1)
1 with π1(τ) ≤ σ1 and α ∈ Y(d1+d2−k) such that τ ≤ α and

(id×f)(σ1) ∩ (α+ (v1, v2)) 6= ∅.
We notice that ω

Γ
∆1
f

((id×f)(σ1)) = ω∆1(σ1) = 1. We denote the unique cone of C that

contains the cone π2(α) by π2(α) and note that the weight of π2(α) in C is equal to ωY(α).
Next we observe that

(Λ1 × Λ2)/((Λ1 × Λ2)(id×f)(σ1) + (Λ1 × Λ2)α) → Λ2/(f(Λ1
σ1

) + Λ2
π2(α)

)

(x, y) 7→ y

is an isomorphism of lattices. To be able to sum over cones in C rather than over cones in
Y , we claim that for fixed σ1, τ as above the assignment{

α∈Y(d1+d2−k): α≥τ,
(id×f)(σ1)∩(α+(v1,v2)) 6=∅

}
→

{
β ∈ C(d2−k) : f(π1(τ)) ⊆ β, f(σ1) ∩ (β + v2) 6= ∅

}
α 7→ π2(α)

is a bijection. In order to prove the surjectivity we pick a cone β in the right-hand side set
and a point x ∈ σ1 such that f(x) − v2 ∈ β. Then the point (x − v1, f(x) − v2) is in
V1 × β. Now we choose a point p in the relative interior of τ and a real number λ � 0.
Since (x − v1, f(x) − v2) + λp is still in V1 × β we can choose a cone α ∈ Y(d1+d2−k)

that contains (x− v1, f(x)− v2) + λp and satisfies π2(α) = β. Note that τ is a face of α
as λ� 0.
To show the injectivity let α be a cone in the left-hand side set with π2(α) = β. Then
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there is an x ∈ σ1 such that (x − v1, f(x) − v2) ∈ α. As (v1, v2) is generic and thus
f(v1)i 6= (v2)i, this implies that α is contained in a uniquely defined maximal cone of
Hf(x)1−y1

∩ . . .∩Hf(x)d2
−yd2

, which in turn implies that α is uniquely determined by its
projection π1(α). Now we observe that the dimension of the intersection of translations of
subsets of linear spaces

(id×f)(σ1) ∩ ((V1 × β) + (v1, v2))

is at most d1−k = dim(τ). As this set is invariant under adding elements of τ and τ ≤ α,
this uniquely determines π1(α) and the assignment is injective.
Collecting our results we obtain that the weight of π1(τ) in f∗C is

ωf∗C(π1(τ)) = ω(τ) =
∑

σ1∈∆
(d1)
1 : π1(τ)≤σ1

∑
β∈C(d2−k):f(π1(τ))⊆β

m
π1(τ)
σ1,β

· ωC(β).

�

We now analyse the meaning of pull-backs in the case of modifications.

Lemma 3.6.17. Let Q, M and N be matroids and let e be an element in Q that is not a
coloop such that {e} is a flat in Q and Q \ e = M , Q/e = N . Consider the correspond-
ing projection π : B(Q) → B(M) and let ϕ be the modification function on B(M) (as
described in proposition 3.2.12). For any subcycle C of B(M), let C̃ be the modification
of C along (the restriction to C of) ϕ (cf. definition 1.2.7). Then the equality

C̃ = π∗C

holds.

π−→

Modification of a cycle and its intersection with B(N)

PROOF. In order to ease the notations, we assume that e = 1. We set n := |E(M)|.
Let p : Rn+1×Rn → Rn+1 be the projection to the first factor and let π̃ : Rn+1 → Rn be
the projection that forgets the first coordinate (that means π is the restriction of π̃ to B(Q)).
As B(Q) is the modification of B(M) along ϕ, the definition of modifications in example
1.2.7 implies that

π∗C = p∗(Γπ · B(Q)× C) = p∗(Γπ · (p∗max{π̃∗ϕ, x1} · (R× B(M)× C))),

where x1 is the coordinate that describes R. Now let Ψ := ϕ1 · · ·ϕr(M) be the product of
the rational functions of corollary 3.3.2 that cut out the diagonal ∆B(M). Note that all ϕi
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have natural extensions to Rn × Rn = B(Un,n ⊕ Un,n); hence this is also true for Ψ. We
have seen in the proof of theorem 3.6.3 for matroid varieties that

Γπ = (π × id)∗∆B(M) = (π̃ × id)∗Ψ · B(Q)× B(M).

Plugging this into the above equation and using the associativity and commutativity of
intersecting with piecewise polynomials, we see that π∗C is equal to

p∗(p
∗max{π̃∗ϕ, x1} · (π̃ × id)∗Ψ · (R× B(M)× C))

= max{π̃∗ϕ, x1} · p∗((π̃ × id)∗Ψ · (R× B(M)× C)),

which means that showing p∗((π̃ × id)∗Ψ · (R× B(M)×C)) = R×C is all we need to
finish our proof. This can be easily seen as

(π̃ × id)∗Ψ · (R× B(M)× C) = R×Ψ · (B(M)× C) = R×∆C .

�

Applying this lemma to a whole series of modifications and using theorem 3.6.3(3), we get
the following corollary.

Corollary 3.6.18. Let B(Q) and B(M) be matroid varieties of the same dimension such
that Q \R = M for a suitable independent flat R of Q. Let

B(Q) = B(M0)
π1→ B(M1)

π2→ . . .
π|R|→ B(M|R|) = B(M)

be a series of projections each forgetting one coordinate of R. Let C be a cycle in B(M)

and let C̃ be its repeated modification along the modification functions corresponding to
the projections π1, . . . , π|R|. Then

C̃ = π∗1 . . . π
∗
|R|C = (π|R| ◦ . . . ◦ π1)∗C = π∗RC

is in fact independent of the chosen series of modifications.
Moreover, let B(N) ⊆ B(M) be two matroid varieties and let Q be the matroid of the
proof of proposition 3.2.7 satisfying Q \ R = M and Q/R = N . Let C be any cycle in
B(M). Then the intersection product B(N) · C can be computed as (π∗C)∩R, where π :
B(Q)→ B(M). In other words, we get B(N) · C by performing a series of modifications
that lift C to a cycle in B(Q), and then intersecting with a boundary part.

3.7. Rational equivalence on matroid varieties

The aim of this section is to extend the known results about rational equivalence on vector
spaces to matroid varieties modulo lineality spaces. Namely, we show that every subcycle
of a matroid variety modulo lineality space is rationally equivalent to its recession cycle and
that intersection products are compatible with rational equivalence. Moreover, we combine
this with the results of the previous section to show the equivalence of our intersection
product and the intersection product of [Sha].

We show in the next proposition that rational equivalence is compatible with dividing out
a lineality space. This will be used to see that rational equivalence is also compatible with
intersection products and pull-backs of cycles.
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A curve on B(U3,4)/L and its recession cycle.

Proposition 3.7.1. Let X be a cycle with lineality space L. Let C be a subcycle of X also
having lineality space L. Then C is rationally equivalent to zero on X if and only if C/L
is rationally equivalent to zero on X/L.

PROOF. AsX is isomorphic toX/L×L, it suffices to show thatC/L×L is rationally
equivalent to zero on X/L×L if and only if C/L is rationally equivalent to zero on X/L.
The if-implication is an immediate consequence of the second part of lemma 1.4.5. So let
us assume that C/L × L is rationally equivalent to zero. That means by definition that
there are a morphism f : A→ X/L×L and a bounded rational function ϕ on A such that
f∗(ϕ · A) = C/L × L. Let πX/L : X/L × L → X/L and πL : X/L × L → L be the
projections to the respective factor. We choose a piecewise polynomial h on L such that
h ·L = {0}. Now we just replace A by A′ := f∗π∗Lh ·A and check by projection formula
that (πX/L ◦ f)∗(ϕ ·A′) = C/L holds. �

Remark 3.7.2. Note that on matroid varieties modulo lineality spaces B(M)/L, intersec-
tion products and pull-backs of cycles are compatible with rational equivalence. In other
words, if C and C ′ are cycles in B(M)/L with C ∼ C ′, then also f∗C ∼ f∗C ′ and
C ·D ∼ C ′ ·D for any morphism f : B(N)/K → B(M)/L and any cycleD in B(M)/L.
This follows from the fact that cross products, intersections with rational functions as well
as push-forwards are compatible with rational equivalence (cf. lemma 1.4.5) together with
the previous proposition.

In order to prove that every cycle in B(M)/L is rationally equivalent to its recession cycle,
we introduce some more notation and prove the following lemmas.

Notation 3.7.3. If a is an element of the matroid M , we denote the corresponding projec-
tion B(M) → B(M \ a) by πa. Furthermore, if F is a chain of flats in M , then F \ a
denotes the chain of flats in M \ a obtained by intersecting each flat of F with E(M) \ a.

Lemma 3.7.4. Let a, b ∈ E(M) be no coloops and assume that {b} is a flat. Let C be a
subcycle of B(M) with πa∗C = 0. Then πa∗π∗bπb∗C = 0.

PROOF. We choose a polyhedral structure C of C which is compatible with the mor-
phisms πa, πb and each of whose cells is contained in some cone of B(M). As πa∗C = 0
we know that every cell of C is contained in a maximal cone 〈F〉 of B(M) satisfying
Fi+1 = Fi ∪ a for some i (cf. lemma 3.2.11). In order to simplify the notations we assume
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that b = |E(M)|. Let ϕ be the piecewise linear function on B(M \ b) which satisfies for
all flats G of M \ b that

ϕ(VG) =

{
−1, if b ∈ clM (G)

0, else
.

It follows from proposition 3.2.12 that B(M) is the modification of B(M \ b) along the
rational functionϕ. Hence π∗bπb∗C is the modification of πb∗C alongϕ (cf. lemma 3.6.17).
It is easy to see that ϕ is given on a cone 〈G〉 of B(M \ b) by

ϕ|〈G〉(x1, . . . , xb−1) = xp, with p ∈ Gz+1 \Gz and z s.t. b ∈ clM (Gz+1) \ clM (Gz).

We claim that for a chain of flatsF inM satisfying Fi+1 = Fi∪a for some i, the restriction
of ϕ to 〈F \ b〉 does not depend on xa: Assume the contrary is true; then our description
of ϕ implies that

b ∈ clM (Fi+1 \ b) and b /∈ clM (Fi \ b).
Note that clM (Fi+1 \ b) ⊆ Fi+1 and clM (Fi \ b) ⊆ Fi; thus clM (Fi \ b) = Fi \ b and
b ∈ Fi+1. As Fi+1 = Fi∪a, this implies that b ∈ Fi. Now Fi and clM (Fi \ b∪a) = Fi+1

are both minimal flats containing the flat Fi\b. But this is a contradiction since Fi ( Fi+1.

Let σ be a maximal cell of π∗bπb∗C of the form (id×ϕ)(πb(τ)), where τ is a maximal cell
of C. We can assume that the restriction of πa to σ is injective (otherwise πa(σ) does not
contribute to the push-forward). Since ϕ|πb(τ) does not depend on the a-th coordinate, we
can conclude that α := π{a,b}(σ) has the same dimension as σ. Let σ1, . . . , σp be the cells
of C mapped to α by π{a,b}. As πb is injective on σi, the cell σi turns into the cell

σ̃i := {(x1, . . . , xb−1, ϕ(x1, . . . , xb−1)) : ∃ xb : (x1, . . . , xb) ∈ σi}
in the cycle π∗bπb∗C. The σ̃i are exactly the cells of π∗bπb∗C mapped to πa(σ) by πa. Since
π{a,b}∗C = 0, we can conclude that πa(σ) has weight 0 in πa∗π∗bπb∗C.
Now, the claim follows from the balancing condition. �

Lemma 3.7.5. Let C be a subcycle of a matroid variety B(M). Assume that B(M) 6=
R|E(M)|. If πa∗(C) = 0 for all a ∈ E(M) that are not coloops of M , then A = 0.

PROOF. We choose a polyhedral structure C ofC such that every cell of C is contained
in a cone of B(M). Let F = (∅ ( F1 ( . . . ( Fr(M)−1 ( E(M)) be an arbitrary
maximal chain of flats of M . We choose i such that |Fi+1 \ Fi| > 1 and choose a ∈
Fi+1 \ Fi. The maximality of F implies that a is not a coloop. As πa is generically one-
to-one (lemma 3.2.11) and its restriction to 〈F〉 is injective, πa∗C = 0 implies that there
is no cell σ ∈ C whose relative interior is contained in the relative interior of 〈F〉.
Now we assume there is a cell σ of C whose relative interior is contained in the relative
interior of a codimension 1 cone 〈G〉 of B(M). Let F = (∅ ( F1 ( . . . ( Fr(M)−1 (
E(M)) be a maximal superchain (of flats) of G. As before we choose a ∈ Fi+1 \ Fi, with
i satisfying |Fi+1 \Fi| > 1. Only cells of C contained in 〈G〉 or a facet adjacent to 〈G〉 can
potentially be mapped to πa(σ) by πa. The first part of the proof thus implies that

0 = ωπa∗C(πa(σ)) = ωC(σ).

Continuing this way, we see that C = 0. �

Theorem 3.7.6. Every subcycle C of a variety B(M)/L is rationally equivalent (on
B(M)/L) to its recession cycle δ(C).

PROOF. By proposition 3.7.1 it suffices to show the statement for matroid varieties
B(M).
We first consider the case where {a} is a flat for every a ∈ E(M). We use induction on the
codimension of B(M). The induction start (B(M) = Rn) is covered by theorem 1.4.7. We
show that C is rationally equivalent on B(M) to a fan cycle: After renaming the elements,
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we can assume that {1, . . . , k} is the set of elements of E(M) that are not coloops. For
i ∈ {1, . . . , k} we set

C0 := C, Ci := Ci−1 − π∗i (πi∗Ci−1 − δ(πi∗Ci−1)).

By induction πi∗Ci−1 is rationally equivalent to δ(πi∗Ci−1). As pulling back preserves
rational equivalence, it follows that Ci is rationally equivalent to Ci−1. We set

N0 := C, Ni := Ni−1 − π∗i πi∗Ni−1,

and
F0 := 0, Fi := Fi−1 + π∗i δ(πi∗Ni−1).

It is easy to see that for all i the cycle Fi is a fan cycle, Ci = Ni + Fi, and πi∗Ni = 0.
Lemma 3.7.4 implies that πi∗Nk = 0 for all i; thus Nk = 0 by lemma 3.7.5. Therefore,
C is rationally equivalent to the fan cycle Fk. As δ(C) is the only fan cycle which is
rationally equivalent to C on Rn (theorem 1.4.7), we can conclude Fk = δ(C).
The general case follows from the observation that the projection πR : B(M)→ B(M \R)
is an isomorphism for R = clM ({a}) \ a. �

Summarising the results of theorem 3.7.6 and remark 3.7.2 we obtain the following corol-
lary.

Corollary 3.7.7. The map⊕
d∈N

Zd(B(M)/L)→
⊕
d∈N

Z fan
d (B(M)/L), C 7→ δ(C)

is a morphism of graded rings and induces a ring isomorphism⊕
d∈N

Zd(B(M)/L)/ ∼rat →
⊕
d∈N

Z fan
d (B(M)/L).

The next example answers the question of existence of lines of negative self-intersection
in smooth fan surfaces.

Example 3.7.8. Let M be a matroid of rank 3 and B(M)/L the corresponding tropical
surface. As every line is rationally equivalent to a fan line B(N)/L on B(M)/L, example
3.3.14 gives the self-intersection of any line on B(M)/L. For example, for every integer
p with −n−1

2 ≤ p ≤ 1 we can find a line on Ln2 which has self-intersection p. The other
extreme is the Fano matroid F7 which does not have a pair of disjoint flats of rank 2; hence
all lines on B(F7) have self-intersection 0 or 1.

We can now prove that our intersection product coincides with the intersection product of
[Sha]. The key ingredients are the fact that modifications can be expressed as pull-backs
(lemma 3.6.17), the ability to move cycles without changing the class of the intersection
product (as long as they do not leave the ambient cycle) and the locality of the intersection
product.

Theorem 3.7.9. Let B(M) be a matroid variety and let C,D be two cycles in B(M). We
denote by C.D the recursive intersection product defined in [Sha, definition 3.6]. Then this
intersection product coincides with the one defined in definition 3.3.3, i.e.

C.D = C ·D.

PROOF. The intersection product C.D of [Sha, definition 3.6] is defined recursively
via modifications and projections. Eventually, the recursion uses the known intersection
product on Rn. As both definitions agree on Rn (cf. remark 1.3.13) it remains to check
that our definition satisfies the recursion formula used in [Sha] to reduce the intersection
product on B(M) to intersection products on B(M \ a) and B(M/a)×R, where {a} is a
flat of rank 1 which is not a coloop. Note that this reduction step decreases the codimension
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of the ambient cycle in the first case and increases the dimension of the lineality space in
the second case, so that one really ends up with an intersection product in Rn eventually.
Let π : B(M)→ B(M \a) be the projection forgetting the a-th coordinate and let ϕ be the
corresponding modification function on B(M \ a) (cf. proposition 3.2.12). The recursion
formula is given by

C.D = π∗(π∗C.π∗D) + (ϕ · π∗C × R).ΘD + ΘC .(ϕ · π∗D × R) + ΘC .ΘD,

where ΘC = C − π∗π∗C, ΘD = D − π∗π∗D, and the first intersection product is in
B(M \ a), whereas the other products are computed in B(M/a) × R. This makes sense
as |ϕ · π∗C| ⊆ |B(M/a)| and |ΘC | ⊆ |B(M/a) × R| because ΘC is in the kernel of
π∗. Note that in [Sha] π∗E is defined as the (restricted) modification of E, but by lemma
3.6.17 we know that we can also use our pull-back instead. Writing C = π∗π∗C + ΘC

and D = π∗π∗D + ΘD we get

C ·D = π∗π∗C · π∗π∗D + π∗π∗C ·ΘD + ΘC · π∗π∗D + ΘC ·ΘD.

We first note that the first term equals π∗π∗C · π∗π∗D = π∗(π∗C · π∗D) by theorem
3.6.3, property (2). It remains to show the equality of the other three intersection products:
Since the cycles ΘC and ΘD can be moved into direction V{a} without leaving B(M),
B(M/a) × R = StarB(M)(p), where p is any interior point of 〈∅ ( {a} ( E〉, and
the cycles π∗π∗C and (ϕ · π∗C) × R agree on the faces of B(M) containing V{a}, the
three equalities follow from the locality of the intersection product and corollary 3.7.7. So
our intersection product satisfies the same recursion formula and therefore the definitions
agree. �

Remark 3.7.10. It was shown in [BS, theorem 3.7] that, for tropicalisations of linear
surfaces, the tropical intersection product of [Sha] – and therefore also our intersection
product – agrees with the algebraic intersection product computed in a suitable toric com-
pactification of the surface. More precisely, if C1 and C2 are algebraic curves in a plane
X ⊆ (C∗)n that is not contained in any translation of a strict subtorus of (C∗)n, then one
has the following equality of integers

Trop(C1) ·Trop(X) Trop(C2) = C1 ·X C2,

whereC1, C2, X are the closures ofC1, C2, X in the toric compactificationX(Σ) of (C∗)n
obtained as explained hereafter: Let ∆ be a primitive simplex that contains the convex hull
of the support of a system of equations describing X . Let Σ be the complete, unimodular
fan that is dual to ∆. Finally, one chooses a unimodular refinement Σ of Σ which contains
all edges of Trop(C1) and Trop(C2).
This equality is extremely useful to answer relative realisability questions: As the above
algebraic intersection product is non-negative for two distinct irreducible curves, one can
conclude that an irreducible tropical fan curve D in Trop(X), whose intersection product
with the tropicalisation of some irreducible curve in X (that does not tropicalise to D) is
negative, is not the tropicalisation of a curve in X (cf. [BS, corollary 3.10]). For example,
one can deduce that the curve D of example 3.4.17 is not the tropicalisation of a curve in
V (x+y+z+1) because it intersects Trop(x+y+z+1, x+y) with negative multiplicity.
Further obstructions for relative realisability can be deduced from the above equality of
intersection products by translating the adjunction formula to the tropical world; this was
done in [BS, section 4].

3.8. Cocycles on smooth varieties and more pull-backs

In this section we analyse cocycles on smooth varieties. We start by proving that each
subcycle of a matroid variety modulo lineality space can be cut out by a cocycle. As in the
proof of theorem 3.7.6 the idea is to use matroid deletions to exploit the known Rn case.
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Thereafter, we show a Poincaré duality in codimension 1 and dimension 0 for smooth
varieties.

Theorem 3.8.1. For any k ≤ d := dim(B(M)/L), the following morphism is surjective:

Ck(B(M)/L)→ Zd−k(B(M)/L), h 7→ h · B(M)/L.

PROOF. We first consider the case where L = {0} and {a} is a flat for every a ∈ E.
We use induction on the codimension of B(M): The induction start (B(M) = Rn) was
proved in theorem 2.3.10. LetC be an arbitrary subcycle of B(M) of codimension k. After
renaming the elements, we can assume that {1, . . . , p} is the set of elements of E which
are not coloops. For i ∈ {1, . . . , p} we set

C0 := C, Ci := Ci−1 − π∗i πi∗Ci−1,

where the πi : B(M) → B(M \ i) denote the projections forgetting the i-th coordinate.
The induction hypothesis allows us to choose cocycles hi ∈ Ck(B(M \ i)) such that
hi · B(M \ i) = πi∗Ci−1 for i ∈ {1, . . . , p}. Lemma 3.7.4 implies that πi∗Cp = 0 for all
i; thus Cp = 0 by lemma 3.7.5. It follows that

C =

p∑
i=1

π∗i πi∗Ci−1 =

p∑
i=1

π∗i (hi · B(M \ i)) =

(
p∑
i=1

π∗i hi

)
· B(M).

As πR : B(M) → B(M \ R) is an isomorphism for R = clM ({a}) \ a, this also implies
the claim for arbitrary matroid varieties B(M).
Now let C be a subcycle of B(M)/L. Since B(M) ∼= B(M)/L × L we can choose a
cocycle hwith h·(B(M)/L×L) = C×L. It follows that h·(B(M)/L×{0}) = C×{0}.
Therefore, we can conclude that s∗h ·B(M)/L = C, where s : B(M)/L→ B(M)/L×L
maps x to (x, 0). �

Remark 3.8.2. It follows in the same way that each fan cycle D ∈ Z fan
d−k(B(M)/L) is cut

out by a piecewise polynomial h ∈ PPk(B(M)/L).

Remark 3.8.3. An alternative proof (in the case of a trivial lineality space L = {0}) has
recently been found by Esterov in [Est, corollary 4.2]. His proof uses our representation of
the diagonal as a product of rational functions to reduce to the case of a vector space.

The rest of the section is devoted to showing that the (surjective) morphism of theorem
3.8.1 is an isomorphism in some cases. It is an open question whether this holds in general.

Proposition 3.8.4. Let d := dim(B(M)/L). Then the following is an isomorphism:

PP1(B(M)/L)/L PP0(B(M)/L)→ Z fan
d−1(B(M)/L), h 7→ h · B(M)/L.

PROOF. It remains to prove the injectivity. We can assume without loss of generality
that {a} is a flat in M for every a ∈ E. Let ϕ be a rational fan function with ϕ · B(M) =
0. The star StarB(M)(p) around each point p in the relative interior of a maximal cone
of B(M) is isomorphic to Rdim B(M); therefore, the locality of the intersection product
(remark 2.1.22) and the Rn case (theorem 2.3.10) imply that ϕ is linear around p. We can
thus assume that ϕ is linear on the cones of B(M). It is sufficient to show by induction
on the rank of F that ϕ(VF ) =

∑
a∈F ϕ(V{a}) for all flats F of M . The claim is trivial

for flats of rank 0 and 1. For a flat F of rank i ≥ 2, we choose a chain of flats ∅ = F0 (
F1 ( . . . ( Fi−2 ( F ( Fi+1 ( . . . ( Fr(M) = E, where each Fj has rank j. The
corresponding codimension 1 cone τ has weight

0 =
∑

G: flat inM
Fi−2 ( G ( F

ϕ(VG)− ϕ(VF )− (|{G flat in M : Fi−2 ( G ( F}| − 1) · ϕ(VFi−2)
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in ϕ · B(M) = 0. Therefore, the claim follows by induction. The B(M)/L case is an
immediate consequence of the B(M) case. �

Remark 3.8.5. The injectivity of intersecting with rational functions (i.e. of the map ϕ 7→
ϕ·X) can even be extended to the case of locally irreducible cyclesX by using proposition
1.2.11. We preferred to give a matroid-theoretic proof here.

Proposition 3.8.6. Let X be a locally irreducible fan cycle of dimension d which is con-
nected in codimension 1. Then

PPd(X)/L PPd−1(X)→ Z fan
0 (X) = Z, h 7→ h ·X

is an injective morphism of groups. As matroid varieties modulo lineality spaces are locally
irreducible and connected in codimension 1, the above is an isomorphism of groups if
X = B(M)/L.

For a proof we need the following lemma:

Lemma 3.8.7. Let X be a unimodular fan structure of a fan cycle X of dimension d. Let
σ1, σ2 ∈ X (d) be cones that have a common face τ ∈ X (d−1). If X is locally irreducible,
then

ωX (σ2) ·Ψσ1
− ωX (σ1) ·Ψσ2

= l ·Ψτ ,

for some linear function l on X .

PROOF. Let σ3, . . . , σk > τ be the remaining maximal cones in X adjacent to τ . Let
v1, . . . , vd−1, w1, . . . , wk be the primitive integral vectors such that τ = 〈v1, . . . , vd−1〉
and σi = 〈v1, . . . , vd−1, wi〉. As

ωX (σ2) ·Ψσ1
− ωX (σ1) ·Ψσ2

= Ψτ · (ωX (σ2) ·Ψw1
− ωX (σ1) ·Ψw2

),

we need a linear function l satisfying

l|σ1
= ωX (σ2) · (Ψw1)|σ1

, l|σ2
= −ωX (σ1) · (Ψw2

)|σ2
and l|σi = 0 for i ≥ 3.

The local irreducibility of X implies that v1, . . . , vd, w3, . . . , wk, w1 are linearly indepen-
dent. Thus there exists a linear function l such that l(w1) = ωX (σ2) and l(v) = 0 for
v ∈ {v1, . . . , vd−1, w3, . . . , wk}. By the balancing condition l(w2) = −ωX (σ1); hence l
satisfies the above conditions. �

PROOF OF PROPOSITION 3.8.6. Let h ∈ PPd(X) with h · X = 0. We choose a
unimodular fan structure X of X such that h ∈ PPd(X ). Then there exist aσ ∈ Z such
that h =

∑
σ∈X (d) aσ ·Ψσ in PPd(X)/L PPd−1(X). Fix a maximal cone α ∈ X . Since

X is connected in codimension 1 it follows by lemma 3.8.7 that Ψσ = ωX (σ)
ωX (α) · Ψα for all

maximal cones σ. Hence h =
(∑

σ∈X (d) aσ · ωX (σ)
ωX (α)

)
Ψα, and lemma 2.1.19 implies that

h = 0. �

We can prove the following corollary in a similar way as theorem 2.3.10.

Corollary 3.8.8. Let X be a smooth tropical variety and k ∈ {1,dimX}. Then the
following is an isomorphism of groups:

Ck(X)→ ZdimX−k(X), h 7→ h ·X.

PROOF. The injectivity follows directly from the local statement (proposition 3.8.4
resp. 3.8.6). Let C ∈ ZdimX−k(X). We choose an open cover {V ji } of X such that for
all i, j we have V ji ⊆ Ui and the weighted space φi(C ∩ V ji ) is (a translation of) an open
fan cycle contained in φi(V

j
i ). As the fan cycle associated to φi(V

j
i ) is a matroid variety

modulo lineality space, the local statement ensures that we can find piecewise polynomials
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hji ∈ PPk(φi(V
j
i )) cutting out φi(C ∩ V ji ). Then h = {(V ji , h

j
i ◦ φi)} ∈ Ck(X) is a

cocycle with h ·X = C. As in the proof of theorem 2.3.10 the difference of two of these
local functions gives a zero (local) intersection on the overlaps of the open sets, so by the
local statement h is indeed a cocycle. �

Remark 3.8.9. Proving the injectivity of

PPk(B(M)/L)/L PPk−1(B(M)/L)→ Z fan
dim B(M)/L−k(B(M)/L)

is all that remains to be done in order to generalise corollary 3.8.8 to arbitrary codimensions
k. Note that we also needed the injectivity of intersecting with piecewise polynomials to
prove the surjectivity in the preceding proof.

Remark 3.8.10. It is well-known that the equality of Cartier and Weil divisors on smooth
varieties also holds in classical algebraic geometry.

Remark 3.8.11. LetX be a tropical variety in a vector space that is locally irreducible and
connected in codimension one. Let p be a point in X . By lemma 1.2.13 there is a convex
rational function ϕ on StarX(p) such that ϕdimX ·StarX(p) = λ · {0} for some λ ∈ Z>0.
We can thus use the argument of the proof of corollary 3.8.8 to conclude from proposition
3.8.6 that there is a unique cocycle on X that cuts out λ · p.

We conclude the section by using corollary 3.8.8 to pull back points and codimension
1 cycles along morphisms with smooth targets. This could prove useful in enumerative
geometry, where point conditions are often described as pull-backs of points along certain
evaluation morphisms (see next section). Pull-backs of points will also be crucial to define
families of smooth rational curves over smooth tropical varieties as morphisms of tropical
varieties (with smooth target) all of whose fibres are smooth rational curves (plus two more
technical conditions) in the next chapter.

Construction 3.8.12. Let C be a codimension k subcycle of a dimension d cycle Y satis-
fying Ck(Y ) ∼= Zd−k(Y ). Let f : X → Y be a morphism. We can define the pull-back
of C along f to be f∗C := f∗h ·X , where h is the (unique) cocycle satisfying h · Y = C.
If X and Y are smooth, this coincides with the pull-back of cycles of definition 3.6.1.
Furthermore, pull-backs defined in this way clearly have the properties listed in example
3.6.1 and theorem 3.6.3. In particular, we can define pull-backs of points and codimension
1 cycles if Y is smooth, as well as pull-backs of arbitrary cycles if Y is a vector space.
Unfortunately, we could not prove that |f∗C| ⊆ f−1|C| holds in general if the domain of
f is not smooth (see also the following lemma).

Lemma 3.8.13. Let f : X → Y be a morphism with a smooth target cycle Y . If
ϕ1, . . . , ϕk are codimension 1 cocycles on Y such that all intermediate intersection prod-
ucts ϕi . . . ϕk · Y are locally irreducible (i.e. all local blocks are locally irreducible), then

|f∗(ϕ1 . . . ϕk) ·X| ⊆ f−1|ϕ1 . . . ϕk · Y |.

In particular, if C is a subcycle of Y and either

(1) dimC ∈ {0,dimY − 1}, or
(2) C = B(N)/L ⊆ Rn/L = Y ,

then |f∗C| ⊆ f−1|C|.

PROOF. As intersection products can be computed locally we can assume that f :
X → Y is a linear morphism between fan cyclesX and Y = B(M)/L and that ϕ1, . . . , ϕk
are rational functions. We set hi := ϕi · · ·ϕk and obtain by induction and proposition
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1.2.11 that

|f∗ϕi · f∗hi+1 ·X| ⊆ |(f∗ϕi)||f∗hi+1·X|| ⊆ |(ϕi ◦ f)|f−1|hi+1·Y ||
⊆ f−1|ϕi||hi+1·Y ||
= f−1|ϕi · hi+1 · Y |,

where |(f∗ϕi)||f∗hi+1·X|| denotes the domain of non-linearity of the restriction of the ra-
tional functions f∗ϕi to the support of the cycle f∗hi+1 ·X . For i = 1 this implies the first
claim. The second statement follows immediately from the first statement together with
the fact that all intermediate intersection products in corollary 3.2.15 are matroid varieties
and thus locally irreducible. �

Remark 3.8.14. Let Y be a tropical variety in a vector space which is locally irreducible
and connected in codimension one and let p be a point in Y . Let f : X → Y be a
morphism. Choosing a suitable λ ∈ Z>0 and the uniquely defined cocycle h on Y with
h · Y = λ · p, we can define the pull-back of p along f to be f∗p := 1

λf
∗h ·X . Note that

this pull-back might have rational weights: For example, the pull-back of any point p in
2 · R along the morphism R→ 2 · R, x 7→ x is the point p with weight one half.



CHAPTER 4

Intersection theory on the moduli spaceMn and families
of curves

This chapter presents some applications of the intersection theory introduced in the previ-
ous chapters. We show that the moduli spaces of both, abstract and parametrised, rational
tropical curves are isomorphic to matroid varieties modulo lineality spaces and thus admit
a well-defined intersection product of cycles. In particular, this implies the (previously
known) independence of the chosen points when counting rational curves through given
points.

We also define families of n-marked smooth rational tropical curves over smooth varieties
and construct a tropical fibre product in order to show that every morphism of a smooth
variety X to the moduli spaceMn induces a family of n-marked curves over X . As the
converse is also true – this was proved in [FH, theorem 4.5] – this gives Mn the struc-
ture of a fine moduli space having the forgetful map as universal family, rather than just
parametrising the set of n-marked abstract rational curves. We introduce an alternative,
inductive way of constructing the moduli spaceMn as a tropical modification of the fibre
product of two copies ofMn−1 overMn−2; this is of course very similar to the construc-
tion of the classical moduli space M0,n.

The new elements of the first section are joint work with Johannes Rau published in [FR].
Sections two, three and four mainly consist of joint work with Simon Hampe publicised in
[FH]; thereby I omitted proofs which were (completely or to a large extent) done by Simon
Hampe. It is also worth mentioning that a preliminary definition of families of curves not
using intersection theory has been introduced in my coauthor’s diploma thesis [Ham10]
which acted as a starting point for our joint research. The last section is new and has not
been published before.

4.1. Intersection product on the moduli space of rational curves

The aim of this section is to show that the moduli space Mn of n-marked abstract ra-
tional curves is isomorphic to a matroid variety modulo lineality space and thus admits a
well-defined intersection product of cycles. We start the section by briefly recalling the
construction ofMn.

For n ≥ 3 an n-marked abstract rational tropical curve Γ is a tree all of whose n leaves
have a unique marking in {1, . . . , n}, all of whose vertices have valence at least 3 and all
of whose internal edges (i.e. edges that are not leaves) are equipped with a positive length.
For l1, l2, l3 ∈ R≥0, the following is an example of a 6-marked abstract rational curve.

l3

1

2

5

6

3

4

l1 l2

81
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In [GKM09, section 3] the authors describe a simplicial tropical fanMn that parametrises
n-marked abstract rational curves; the associated fan cycle is therefore called moduli space
of n-marked abstract rational curves. By a slight abuse of notation we will refer to both
the tropical fan and the associated fan cycle by Mn. The relative interiors of cones in
Mn correspond to combinatorial types (i.e. the graphs without the metrics) of n-marked
rational curves; their boundary consists of curves whose combinatorial type is obtained by
inductively merging pairs of adjacent vertices of the initial combinatorial type (this can be
regarded as shrinking some of the edge lengths to zero – the opposite operation is often
referred to as resolving some vertices of valence greater than 3). The local coordinates (in
each cone) are the lengths of the internal edges. As an n-marked rational curve has at most
n − 3 internal edges (the maximum being attained if every vertex has valence 3) we see
that Mn has dimension n − 3. The edges of Mn are generated by vectors vI|n := vI
(with I ( {1, . . . , n}, 1 < |I| < n− 1) corresponding to abstract curves with exactly one
bounded edge of length 1 separating the leaves with labels in I from the leaves with labels
in the complement of I . For I1, . . . , Ik ( {1, . . . , n}, 〈vI1 , . . . , vIk〉 is a cone inMn if
and only if for all pairs i, j we have either Ii ⊆ Ij or Ii ⊆ {1, . . . , n} \ Ij .

2

4

1

3

5

6

1

v{2,4} = v{1,3,5,6} ∈M6

The idea used to give Mn the structure of a tropical fan (with only trivial weights) is
to identify an n-marked abstract rational curve with the vector in R(n2) whose entries are
pairwise distances between its leaves. In the first curve depicted above we have for example
that the distance dist(3, 4) from leaf 3 to leaf 4 is 0, whereas dist(3, 6) = dist(4, 6) = l1
and dist(1, 3) = l1 + l2 + l3. The function distn is defined to map each n-marked abstract
rational curve to its distance vector, i.e.

Γ 7→ (distΓ(i, j))i<j .

If φn : Rn → R(n2) is the function which maps x ∈ Rn to (xi + xj)i<j and qn : R(n2) →
Qn := R(n2)/Im(φn) is the quotient map, then the composition qn ◦ distn is an embedding
whose image is the (support of the) tropical fanMn described above. One can easily see
that every cone ofMn is generated by the vectors vI it contains. For example, the above
curve is equal to l1 · v{3,4} + l2 · v{3,4,6} + l3 · v{1,2}. Note that the underlying lattice Λn
of the ambient space Qn is the lattice generated by the vI . We refer to [GKM09, section
3], [SS04, section 4] or [Mik07, section 2] for more details about the construction ofMn.

Example 4.1.1. The moduli space M3 is just the origin, whereas M4 is isomorphic to
the tropical standard line L2

1. Its rays are generated by the vectors v{1,2}, v{1,3} and v{1,4}
respectively.

The forgetful map ft0 := ft : Mn+1 → Mn forgetting the leaf with mark 0 (and then
straightening two-valent vertices) is the morphism of tropical fan cycles induced by the
projection π : R(n+1

2 ) → R(n2) [GKM09, proposition 3.12]. Note that, in order to ease the
notations, we equipMn+1 with the markings 0, 1, . . . , n, when we consider the forgetful
map.

l1 l2

0

ft07−→ l1 + l2
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We need to introduce some more notation in order to state the main result of this section.

Definition 4.1.2. Let G be an undirected graph (without loops and multiple edges) with
edge set E. A forest is a subgraph of G which does not contain any cycle. The graph G
gives rise to a (graphic) matroid M(G) on the ground set E whose independent sets are
exactly the sets of edges of the forests of the graph G. We denote the matroid fan (resp.
variety) associated to the matroid M(G) by B(G) (resp. B(G)).

Example 4.1.3. Let Kn be the complete undirected graph with n vertices. It is easy to see
that a subset F of the edge set E =

{
1, . . . ,

(
n
2

)}
of Kn is a flat in M(Kn) if and only

if F is the edge set of a vertex-disjoint union of complete subgraphs of Kn. The rank of
M(Kn) is n− 1.

Remark 4.1.4. It was proved in [Oxl92, proposition 5.1.2] that graphic matroidsM(G) are
realisable over every field. This can be done by using the columns of the incidence matrix
of any directed graph whose underlying undirected graph is G. In particular, B(G)/L,
with L = R · (1, . . . , 1), is the tropicalisation of a linear space.

It was shown in [AK06, section 4] that B(Kn−1) parametrises so-called equidistant (n−1)-
trees (i.e. rooted trees with n − 1 labelled leaves and lengths on each edge such that the
distance from the root to any leaf is the same). We show in the next theorem that the
moduli spaceMn is actually isomorphic (as a tropical cycle) to B(Kn−1)/L, with L =
R · (1, . . . , 1).

Theorem 4.1.5. The tropical cyclesMn and B(Kn−1)/L, with L = R · (1, . . . , 1), are
isomorphic. In particular, there is an intersection product of cycles onMn which has the
properties listed in corollary 3.4.8.

PROOF. We define the linear map f by

f : R(n−1
2 )/L → R(n2)/ Im(φn)

(ai,j)i<j 7→ (bi,j)i<j , with bi,j =

{
0, if n ∈ {i, j}
2 · ai,j , else

.

The map f is well-defined (as f(1, . . . , 1) = φn(1, . . . , 1,−1)) and injective. Since its
domain and target space have the same dimension, it follows that f is a linear isomorphism.
Let F be a flat of M(Kn−1). Then F is a vertex-disjoint union of complete subgraphs
S1, . . . , Sp of Kn−1, and

f(VF ) = (bi,j)i<j , with bi,j =

{
−2, if {i, j} ⊆ V (St) for some t
0, else

,

where V (St) denotes the set of vertices of the complete subgraph St. We define a vector
a ∈ Rn by setting ai = 1 if i ∈ V (St) for some t, and ai = 0 otherwise. Then

(f(VF ) + φn(a))i,j =


0, if {i, j} ⊆ V (St) for some t, or i, j 6∈ V (St) for all t
1, if i ∈ V (St) for some t, and j 6∈ V (Ss) for all s
2, if there are s 6= t with i ∈ V (Ss), j ∈ V (St)

.

The metric graph with n leaves associated to this vector, denoted by MF , is depicted in the
following picture.
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{1, . . . , n} \ ∪iV (Si)V (S1) V (Sp)...

1 1 1

We see from this description that f also restricts to an isomorphism Z(n−1
2 )/L → Λn of

the underlying lattices: Z(n−1
2 )/L is mapped to Λn as Z(n−1

2 )/L is spanned by the VF and
MF =

∑p
i=1 vV (Si) is contained in Λn. Moreover, if I ( {1, . . . , n− 1} and F is the flat

associated to the complete subgraph with vertex set I , then we have vI = MF . Hence all
vI lie in the image of the restriction of f to Z(n−1

2 )/L.

It remains to check that f can be restricted to a bijection B(Kn−1)/L→Mn: If F,G are
flats corresponding to unions of the vertex-disjoint subgraphs SF1 , . . . , S

F
p and SG1 , . . . , S

G
q

respectively, then F is a subset of G if and only if for each i ∈ {1, . . . , p} there is a
j ∈ {1, . . . , q} such that V (SFi ) ⊆ V (SGj ). As MF =

∑p
i=1 vV (SFi ), this implies that

for each chain of flats F in M(Kn−1) and each point p ∈ 〈F〉 we have f(p) ∈ Mn.
Therefore, the image of B(Kn−1)/L under f is contained inMn. SinceMn is irreducible
(cf. [Rau09, page 88] or [GS, proposition 2.23]) and the dimensions agree, we actually have
equality; i.e. f(|B(Kn−1)/L|) = |Mn|. Note that the last argument used the fact that f is
bijective and thus f(|B(Kn−1)/L|) = |f∗(B(Kn−1/L)| is the support of a tropical cycle.

Hence, f induces a tropical isomorphism between B(Kn−1)/L and Mn and thus Mn

inherits the intersection product of cycles from B(Kn−1)/L. Note that this intersection
product onMn is independent of the chosen isomorphism by remark 3.4.13. �

Remark 4.1.6. Using the above representation ofMn as B(Kn−1)/L, the forgetful map
ft :Mn+1 →Mn is given by the projection π : B(Kn)/L→ B(Kn−1)/L′ which forgets
the coordinates belonging to edges of Kn that are incident to the forgotten vertex.

To actually count curves one often needs parametrised curves, that means abstract curves
together with a morphism that maps the abstract curve into some Rr. In the following we
recall the construction of the moduli spacesMlab

n (Rr,∆) and use theorem 4.1.5 to equip
them with an intersection product of cycles.

Construction 4.1.7. Let N,n ∈ N with N > n and let ∆ = (vn+1, . . . , vN ) ∈ (Zr \
{0})N−n such that the vi sum up to 0. An n-marked labelled parametrised rational curve
of degree ∆ in Rr is a tuple (C, f) consisting of an abstract N -marked rational curve C
and a morphism f : C → Rr that contracts (i.e. maps to a point) the ends in {1, . . . , n}
and for i ∈ {n + 1, n + 2 . . . , N} maps the i-th end to an edge of direction vi. One
can give the setMlab

n (Rr,∆) of n-marked labelled parametrised rational curves of degree
∆ in Rr the structure of a tropical fan cycle by choosing one of the contracted ends as
the anchor leaf in order to identify it with MN × Rr. The Rr factor corresponds to the
position of the anchor leaf, that means to the image of the anchor leaf under f . If n = 2 and
∆ consists of d copies of each standard direction (−1, 0), (0,−1), (1, 1), then one often
writes Mlab

n (R2, d) for Mlab
n (R2,∆). We refer to [GKM09, proposition 4.7] for more

details about this construction. Now theorem 4.1.5 gives us an isomorphism

Mlab
n (Rr,∆) ∼= B(KN−1 ⊕ Ur+1,r+1)/L× L′,

where L and L′ denote the natural one-dimensional lineality spaces. This implies that
there is an intersection product of cycles onMlab

n (Rr,∆) that has the properties listed in
theorem 3.5.6.
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Next we recall the definition of the evaluation maps and briefly discuss the use of intersec-
tion theory in enumerative geometry.

Definition 4.1.8. For i ∈ {1, . . . , n} the evaluation morphism evi is defined as

evi :Mlab
n (Rr,∆)→ Rr, (C, f) 7→ f(xi),

where xi denotes the i-th marked end. It follows easily from [GKM09, proposition 4.8]
that after choosing the first marked end as our anchor leaf, the i-th evaluation map is

evi : B(KN−1)/L× Rr → Rr,

((ai,j)i<j , b) 7→ b+

N−1∑
k=n+1

(a1,k − ai,k)vk.

Remark 4.1.9. One uses the evaluation maps to define Gromov-Witten invariants: Let
C1, . . . , Cn be cycles in Rr whose codimensions sum up to N + r − 3. The correspond-
ing Gromov-Witten invariant is the degree of the zero-dimensional intersection product
(ev∗1 C1) · · · (ev∗n Cn). It follows from theorem 3.7.6 and remark 3.7.2 that the Gromov-
Witten invariants only depend on the rational equivalence classes of the Ci. In particu-
lar, if all Ci are points, then the Gromov-Witten invariants do not depend on the chosen
points. (The independence of the chosen points is of course not a new result; it follows
from Mikhalkin’s correspondence theorem and has been proved by purely tropical means
in [GM07a, theorem 4.8] and [GKM09, theorem 5.1].) We should point out that this
intersection-theoretic definition does not require the points to be in general position. If they
are in general position, then each point in (ev∗1 C1) · · · (ev∗n Cn) lies in the relative interior
of a maximal cone and therefore its weight can be computed locally on RN+r−3. Using
[Rau09, lemma 1.2.9], we notice that these local multiplicities agree with the multiplicities
of [GKM09, corollary 2.26] and therefore for r = 2 also with Mikhalkin’s well-known
multiplicities (cf. [GKM09, remark 5.2], [Mik05, definitions 4.15 and 4.16]).

Example 4.1.10. Let r = 2, d = 1, n = 2, (v3, v4, v5) = (−e1,−e2, e1 + e2) and let
P1, P2 be two points in R2. We want to compute the degree of (ev∗1 P1)·Mlab

2 (R2,1)(ev∗2 P2).
As moving the points does not change the Gromov-Witten invariant we move both to the
origin. We notice that ev1 is just the projection to the second factor; hence we have

ev∗1{0} =M5 × {0}.
Since {0} = max{y, 0} ·max{x, 0} · R2 we have

(ev∗2{0}) · (ev∗1{0}) = ((max{a2,4 − a1,4, 0} ·max{a2,3 − a1,3, 0} · B(K4))/L)× {0},
where L = R · (1, . . . , 1). An easy calculation shows that max{a2,3 − a1,3, 0} · B(K4) is
equal to B(M), where M is the rank two matroid that has rank one flats {(1, 4)}, {(2, 4)},
{(3, 4)} and {(1, 2), (1, 3), (2, 3)}. Now (max{a2,4 − a1,4, 0} · B(M))/L is the origin
with weight 1. This makes sense as there is exactly one tropical line through two given
points (if they are in general position).

4.2. Tropical fibre products I

The aim of this section is to construct a tropical fibre product in the case that all involved
cycles are smooth and one of the morphisms is locally surjective.

Definition 4.2.1. A morphism f : X → Y of tropical cycles is called locally surjective if
for every point p in X and for some (and thus all) i, j with p ∈ UXi and f(p) ∈ UYj , the
induced linear morphism of fan cycles

fpi,j : StarXi(φ
X
i (p))→ StarYj (φ

Y
j (f(p)))

is surjective. Here, as usually, fi,j = φYj ◦ f ◦ (φXi )−1 and Xi, Yj are the local blocks of
the morphism f and the abstract cycles X,Y .
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Remark 4.2.2. A morphism f of cycles in vector spaces is locally surjective if and only if
the local morphism fp : StarX(p)→ StarY (f(p)) is surjective for all points p in X .

Lemma 4.2.3. Let f : X → Y be a locally surjective morphism of tropical cycles in
vector spaces. Then the following holds:

• Let X ,Y be compatible polyhedral structures of X and Y . For τ ∈ X we have

f(U(τ)) = U(f(τ)), where U(τ) :=
⋃

σ∈X :σ≥τ

Int(σ).

In particular, f is an open map, i.e. maps open sets to open sets.
• Let ϕ be a rational function on Y . Then the domain of non-linearity of ϕ ◦ f is

equal to the preimage of the domain of non-linearity of ϕ, i.e.

|ϕ ◦ f | = f−1(|ϕ|).

PROOF. The first part obviously follows from the local surjectivity of f . Note that
the set of all possible U(τ) for all possible polyhedral structures of X forms a topological
basis of the standard euclidean topology on |X|. For the second part it suffices to prove
that ϕ is linear in some neighbourhood of p ∈ Y if and only if ϕ ◦ f is linear in some
neighbourhood of some point q ∈ f−1(p). But this is already clear from the first part. �

Lemma 4.2.4. Let f : X → Y be a locally surjective morphism from a tropical variety X
to a smooth variety Y . Then the intersection-theoretic fibre f∗(y) over each point y in Y
has only positive weights and its support agrees with the set-theoretic fibre, which means

|f∗(y)| = f−1{y}.

PROOF. Let y be a point in Y and let x be a point in X with f(x) = y. As the
intersection-theoretic computations are local, it suffices to show the claim for the induced
morphism fxi,j on the respective stars; that means we can assume that f is linear, X is a
fan cycle, Y is a matroid variety modulo lineality space and y = 0. Let r be the dimension
of Y . We choose convex rational functions ϕi such that y = ϕ1 · · ·ϕr · Y . This can be
done by decomposing Y into a cross product of matroid varieties modulo 1-dimensional
lineality spaces (cf. lemma 3.1.28) and then using lemma 3.1.24. We show by induction
that f∗ϕi · · · f∗ϕr ·X is a cycle having only positive weights and satisfying

|f∗ϕi · · · f∗ϕr ·X| = f−1(|ϕi · · ·ϕr · Y |),
which implies the claim because f∗(y) = f∗ϕ1 · · · f∗ϕr · X: Since f∗ϕi−1 is convex
and f∗ϕi · · · f∗ϕr · X has only positive weights, it follows from proposition 1.2.11 that
f∗ϕi−1 · f∗ϕi · · · f∗ϕr ·X has only positive weights and

|f∗ϕi−1 · f∗ϕi · · · f∗ϕr ·X| = |(f∗ϕi−1)||f∗ϕi···f∗ϕr·X||,
where the right-hand side is the domain of non-linearity of the restriction of the rational
function f∗ϕi−1 to (the support of) f∗ϕi · · · f∗ϕr · X . Lemma 4.2.3 for the induced
morphism

f̃ : f∗ϕi · · · f∗ϕr ·X → ϕi · · ·ϕr · Y, x 7→ f(x)

and the induction hypothesis imply that the above coincides with

f̃−1(|ϕi−1||ϕi···ϕr·Y ||) = f̃−1(|ϕi−1 · ϕi · · ·ϕr · Y |) = f−1(|ϕi−1 · ϕi · · ·ϕr · Y |).
Note that our induction hypothesis (for stars around different points) and the locality of
intersecting with rational functions (cf. proposition 1.2.9) ensure that f̃ is locally surjective.

�

Remark 4.2.5. Lemma 4.2.4 ensures that all set-theoretic fibres of a locally surjective mor-
phism are pure-dimensional and have the expected dimension. Therefore, local surjectivity
might be seen as a tropical analogue of flatness.
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Definition 4.2.6. Let f : X → Y and f ′ : X ′ → Y be morphisms of smooth varieties.
Assume that f ′ is locally surjective. Recall that the diagonal ∆Y ∈ ZdimY (Y × Y ) is just
the push-forward of Y along the morphism y 7→ (y, y). Then we define the tropical fibre
product of X and X ′ over Y along the morphisms f, f ′ to be

X ×Y X ′ := (f × f ′)∗(∆Y ) ∈ ZdimX+dimX′−dimY (X ×X ′).
Note that f × f ′ : X ×X ′ → Y × Y is a morphism of smooth varieties. Let πX , πX′ be
the projections from X × X ′ to X and X ′ respectively. As the support of the pull-back
satisfies

|(f × f ′)∗(∆Y )| ⊆ (f × f ′)−1(|∆Y |) = {(x, x′) ∈ X ×X ′ : f(x) = f ′(x′)},
we obtain the following commutative diagram of tropical morphisms:

X ×Y X ′
π′X−−−−→ X ′yπX yf ′

X
f−−−−→ Y

Example 4.2.7. The following is an example of a fibre product that is not smooth and has
non-trivial weights.

(
x1
x2

)
7→3x1

−−−−−−−→

(
x1
x2
x3

)
7→x3

−−−−−−−→

yx3 7→2x3

(
x1
x2
x3

)
7→
(
x1
x2

)y

2
2
3



−2
0
−3


 0

−1
0


2

L2
1 ×R R = max{3x1, 2x3} · L2

1 × R

Example 4.2.8. Let f : L2
1 → R be the projection to the first coordinate and f ′ : {0} ↪→

R the inclusion morphism. Note that both morphisms are not locally surjective. Then
(f × f ′)∗∆R = {0}. Let P be a point. For λ ∈ {0, 1}, we consider the morphisms

gλ : P → L2
1, P 7→

(
0
−λ

)
, and g′ : P → {0},

that satisfy f ◦gλ = f ′◦g′. As (f×f ′)∗∆R = {0} there is obviously no pair of morphisms
a : P → (f × f ′)∗∆R and π : (f × f ′)∗∆R → L2

1 such that gλ = π ◦ a for both λ = 0
and λ = 1. Therefore, (f × f ′)∗∆R does not satisfy the universal property. In fact, in this
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example, there is no tropical cycle that fulfils the universal property as the support of this
cycle would need to be a half-bounded real interval which is of course impossible.

Remark 4.2.9. We will see later in theorem 4.2.11 that the assumption that f ′ is locally
surjective is what we need to ensure that X ×Y X ′ is indeed a fibre product. Therefore,
we only define it for this case.

Proposition 4.2.10. Using the notations and assumptions of definition 4.2.6 we have

π∗X(p) = {p} × f ′∗(f(p)),

for each point p in X .

PROOF. In this proof, by abuse of notation, πX , πX′ , πX×X′ denote projections from
a product ofX,Y,X ′ to the respective cycle. Let h ∈ CdimX(X) be the (uniquely defined)
cocycle such that h ·X = p (corollary 3.8.8). By the projection formula and commutativity
of intersection products (cf. proposition 2.3.9) we have

π∗X(p) = π∗Xh · (X ×Y X ′) = (πX×X′)∗Γf×f ′ · ({p} ×X ′ ×∆Y ).

Since we know by theorem 3.5.6(8) and lemma 3.6.5(1) that

{p} ×X ′ ×∆Y = ({p} ×X ′ × Y × Y ) · (X ×X ′ ×∆Y )

and Γf · ({p} × Y ) = {(p, f(p))}, the above is equal to

{p} × (πX′)∗((Γf ′ × {f(p)}) · (X ′ ×∆Y )).

Now it follows in an analogous way from theorem 3.5.6(8) and lemma 3.6.5(2) that the
latter equals

{p} × (πX′)∗(Γ(f ′,f ′) · (X ′ × Y × {f(p)}))
= {p} × (πX′)∗(Γf ′ · (X ′ × {f(p)}))
= {p} × f ′∗(f(p)).

�

We are now ready to state the main theorem of this section.

Theorem 4.2.11. If f : X → Y , f ′ : X ′ → Y are morphisms of smooth tropical varieties
and f ′ is locally surjective, then the support of X ×Y X ′ is

|X ×Y X ′| = {(x, x′) ∈ X ×X ′ : f(x) = f ′(x′)}.
In particular, X ×Y X ′ satisfies the universal property of fibre products.

PROOF. Combining lemma 4.2.4 and proposition 4.2.10 we immediately obtain that
the support of X ×Y X ′ is {(x, x′) ∈ X × X ′ : f(x) = f ′(x′)}. For the second part,
let Z be the domain of two tropical morphisms g : Z → X , g′ : Z → X ′ such that
f ◦ g = f ′ ◦ g′. Then it is clear that z 7→ G(z) := (g(z), g′(z)) is the only morphism from
Z to X ×Y X ′ such that πX ◦G = g and πX′ ◦G = g′. �

Remark 4.2.12. Unfortunately, the tropical fibre product is not uniquely defined by the
“tropical universal property”: Changing the weights of X ×Y X ′ in such a way that it
still satisfies the balancing condition produces a non-isomorphic cycle that still fulfils the
“tropical universal property”. This happens because a tropical morphism whose inverse
is again a morphism is not necessarily an isomorphism. Therefore, one might try to give
a slightly stronger definition of a tropical morphism, somehow respecting the weights, in
order to fix this flaw.

We prove in the next propositions that fibre products are tropical varieties (i.e. all weights
are positive) and the projections πX : X ×Y X ′ → X are locally surjective.
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Proposition 4.2.13. The fibre product X ×Y X ′ is a tropical variety.

PROOF. Let p be a point in X ×Y X ′ whose weight is defined and whose image
under (φXi , φ

X′

i′ ) lies in the relative interior of a maximal cell for some i, i′. Note that
it is sufficient to consider such points because weights are locally constant. We know by
proposition 4.2.10 and lemma 4.2.4 that the pull-back π∗X(πX(p)) of the point πX(p) along
the morphism πX : X ×Y X ′ → X has only positive weights. Let πXi : Xi ×X ′i′ → Xi

be the respective projection of the local blocks and set n := dimX + dimX ′ − dimY .
The locality of the pull-back operation implies that the pull-back of the origin along the
projection morphism

πp := π
(φXi ,φ

X′
i′ )(p)

Xi
: (ωX×YX′(p) · Rn)→ StarXi(φ

X
i (πX(p)))

has only positive weights. As there are convex rational functions ϕ1, . . . , ϕdimX on the
smooth variety StarXi(φ

X
i (πX(p))) that cut out the origin and

(πp)∗(0) = ωX×YX′(p) · (πp)∗ϕ1 · · · (πp)∗ϕdimX · Rn,
it follows from proposition 1.2.11 that the weight ωX×YX′(p) is positive. �

Remark 4.2.14. If all fibres f ′∗(p) of f ′ have only trivial weights 1, then the previous
proof even implies that all weights of X ×Y X ′ are 1.

Proposition 4.2.15. The projection morphism πX : X ×Y X ′ → X is locally surjective.

PROOF. As both, the definition of local surjectivity and the construction of the fibre
product, are local we can assume that f and f ′ are linear morphisms of fan cycles in vector
spaces. Let (p, p′) be a point in X ×Y X ′. If v is a point in StarX(p), then f(v) is a
point in StarY (f(p)) = StarY (f ′(p′)). Therefore, the local surjectivity of f ′ implies that
there is a point v′ ∈ StarX′(p

′) with f ′(v′) = f(v). This in turn implies that (v, v′) is a
point in StarX×YX′(p, p

′) which is obviously projected to v by πX . Hence, πX is locally
surjective. �

4.3. Families of curves and the forgetful map

The aims of this section are to introduce the notion of families of curves over smooth
varieties in vector spaces and to prove that the forgetful map is a family of curves.

Definition 4.3.1. Let n ≥ 3 and let B be a smooth tropical variety in a vector space. A
locally surjective morphism g : T → B of tropical varieties in vector spaces is a prefamily
of n-marked tropical curves if it satisfies the following conditions:

(1) For each point b in B the cycle g∗(b) is a smooth rational tropical curve with
exactly n unbounded edges called the leaves of g∗(b) (cf. remark 3.8.12 and
corollary 3.8.8).

(2) The linear part of g at any cell τ in (some and thus any polyhedral structure of)
T induces a surjective map gτ : Λτ → Λg(τ) on the corresponding lattices.

A tropical marking on a prefamily g : T → B is an open cover {Uθ, θ ∈ Θ} of B together
with a set of integer affine linear maps sθi : Uθ → T (with i ∈ {1, . . . , n}) such that the
following holds:

(1) For all θ ∈ Θ and i ∈ {1, . . . , n} we have g ◦ sθi = idUθ . In other words, sθi
maps each point b ∈ Uθ into the fibre g∗(b).

(2) For each θ ∈ Θ, each b ∈ Uθ and each leaf l of g∗(b) there is exactly one
i ∈ {1, . . . , n} such that sθi (b) is in the relative interior of l.

(3) For any θ 6= ζ ∈ Θ and b ∈ Uθ ∩ Uζ , the points sθi (b) and sζi (b) mark the same
leaf of g∗(b). Note that they do not have to coincide.
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A family of n-marked tropical curves is a prefamily with a marking.

We call two families g : T → B and g′ : T ′ → B equivalent if for any b in B the fibres
g∗(b), g′∗(b) are isomorphic as n-marked tropical curves.

Example 4.3.2.

• The morphism

π : Ln1 × R→ R, (x1, . . . , xn, y) 7→ y,

together with the trivial marking y 7→ (−ei, y), i = 0, 1, . . . , n, is a family of
(n + 1)-marked curves. Here e1, . . . , en forms the standard basis of Rn and
e0 := −(e1 + . . .+ en).

• Let the tropical curve X1 be the sum of tropical cycles (R× {0}) + ({0} × R).
We consider the morphism

π1 : Ln1 ×X1 → R, (x1, . . . , xn, y1, y2) 7→ y2.

Although π∗1(p) = Ln1 × {(0, p)} for all points p in R, π1 is not a family of
curves: for q = ((0, . . . , 0), (−1, 0)) ∈ Ln1 ×X1 the map

πq1 : StarLn1×X1(q) ∼= Ln1 × R→ StarR(0) ∼= R
is just the constant zero map. Geometrically, we see that the set-theoretic fibre
π−1

1 {0} is 2-dimensional. This illustrates the necessity of the local surjectiv-
ity without which π, π1 would be equivalent families with completely different
domains Ln1 × R, Ln1 ×X1 (compare to remark 4.4.4).

Remark 4.3.3. One can show that for all cells τ in (a polyhedral structure of) T on
which g is not injective, condition (2) on a prefamily follows from the other conditions
(cf. [FH, lemma 5.17]). One needs condition (2) on all cells τ (including those on which
g is injective) to show that the locally affine linear map B → Mn induced by the family
T → B is an integer map and thus a tropical morphism (cf. remark 4.4.4).

We proceed to show that the forgetful map ft : Mn+1 → Mn is a family of n-marked
curves. Therefore, we prove that it is locally surjective:

Lemma 4.3.4. The morphism ftp : StarMn+1(p) → StarMn(ft(p)) is surjective for all
points p in the moduli spaceMn+1. Hence the forgetful map is locally surjective.

PROOF. Let C be the tropical curve corresponding to the point p inMn+1. Let p′ be
an arbitrary element of StarMn

(ft(p)). Then p′ corresponds to a curve which is obtained
from the curve corresponding to ft(p) by changing the lengths of some edges (without con-
tracting them) and resolving some higher-valent vertices. If we resolve the same vertices
in C and change the edge lengths in the same way, we get a curve D corresponding to a
point q ∈ StarMn(ft(p)) such that ftp(q) = p′. �

We compute the fibres of the forgetful map in the following proposition.

Proposition 4.3.5. Let ft :Mn+1 →Mn be the forgetful map. Then for each point p in
Mn, the fibre ft∗(p) is a smooth rational curve having n unbounded edges.

Our proof makes use of the following lemma.

Lemma 4.3.6. The edge R≥0 · v{0,n} has trivial weight 1 in the fibre ft∗(0).

PROOF. Using the isomorphism f : B(Kn)/L → Mn+1 introduced in theorem
4.1.5 we have to compute the fibre over the origin of the projection π : B(Kn)/L →
B(Kn−1)/L which forgets the coordinates x0,i. Note that we gave Kn and Kn−1 the re-
spective vertex sets {0, 1, . . . , n− 1} and {1, . . . , n− 1} and that by abuse of notation we
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denoted both lineality spaces by L. If π̃ : B(Kn)→ B(Kn−1) is the “naturally lifted” pro-
jection, then proposition 3.6.7 states that π∗(0) = (π̃∗L)/L. This enables us to use lemma
3.1.24 to conclude that π̃∗L = ϕn−3 ·B(Kn), where ϕ := max{xi,j : 0 < i < j ≤ n−1}.
Let G be the flat of M(Kn) corresponding to the complete subgraph with vertex set
{1, . . . , n−1}. It is easy to see that ϕ is linear on the cones of B(Kn) and that ϕ(VF ) = −1
if F ∈ {G,E(Kn)}, and ϕ(VF ) = 0 otherwise. A straightforward induction shows that
the cone associated to F := (∅ ( F1 ( . . . ( Fn−3−k ( G ( E(Kn)), where r(Fi) = i,
has weight 1 in ϕk · B(Kn). It follows that the edge R≥0 · v{0,n}, which is the image
of (the class of) the cone 〈∅ ( G ( E(Kn)〉 under the isomorphism f , has weight 1 in
ft∗(0). �

PROOF OF PROPOSITION 4.3.5. We know from [Rau09, proposition 2.1.21] that for
each p inMn there is a smooth rational irreducible curve Cp which has n unbounded ends
and whose support |Cp| is equal to the set-theoretic fibre ft−1{p}. The edges of C0 are
simply R≥0 · v{0,i}, with i ∈ [n]. Since

|ft∗(p)| ⊆ ft−1{p} = |Cp|,
the irreducibility of Cp allows us to conclude that ft∗(p) = λp · Cp for some integer λp.
Since any two points inMn are rationally equivalent by theorem 3.7.6 and the forgetful
map is compatible with rational equivalence (remark 3.7.2), we conclude that ft∗(p) and
ft∗(0) are rationally equivalent and thus λp = λ0. This finishes the proof as λ0 = 1 by the
previous lemma. �

As the forgetful map clearly fulfils the second axiom on a prefamily, the following corollary
is a direct consequence of proposition 4.3.5 and lemma 4.3.4.

Corollary 4.3.7. The forgetful map ft :Mn+1 →Mn is a prefamily of n-marked tropical
curves.

In order to construct a marking onMn one considers the following basesWi of the ambient
space Qn ofMn: For i ∈ {1, . . . , n} one sets

Vi := {vI : I ( {1, . . . , n} \ {i}, |I| = 2},
chooses an arbitrary element vI0 ∈ Vi and defines

Wi := Vi \ {vI0}.
It was shown in [KM09, lemma 2.3] and [FH, section 4] that Wi is indeed a basis of Qn
for all i.

Proposition 4.3.8. For all α > 0 let

Uα :=

{ ∑
vI∈Mn

λIvI : λI ≥ 0,
∑

λI < α

}
∩ |Mn| .

For α > 0 and i ∈ {1, . . . , n} one sets

sαi : Uα →Mn+1, v 7→ α · v{0,i}|n+1 +Ai(v),

whereAi : Qn → Qn+1 is the linear map defined byAi(vI|n) = vI|n+1 for all vI|n ∈Wi.
Then {(Uα, sα1 , . . . , sαn) : α > 0} is a tropical marking of the forgetful map ft :Mn+1 →
Mn making it a family of n-marked rational tropical curves. Furthermore, the fibre over
each point p inMn under the forgetful map is exactly the n-marked curve represented by
that point.

PROOF. The first part was proved in [FH, proposition 4.9] and the second part in
[Rau09, proposition 2.1.21(b)]. �
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Remark 4.3.9. One can show that the above marking is unique in the sense that for any
two markings on the forgetful map there is a permutation on {1, . . . , n} that identifies
equally marked leaves. This was proved in [FH, proposition 4.10].

4.4. Morphisms intoMn induce families of curves

We now apply our theory to assign a family of n-marked curves to each morphism from
a smooth variety in a vector space to Mn. We use this to give an alternative, inductive
construction ofMn. Let us first introduce some notation.

Notation 4.4.1. Let X be a smooth variety and f : X → Mn a morphism. Then we
denote by Xf the fibre product

Xf := X ×Mn
Mn+1 ∈ ZdimX+1(X ×Mn+1)

along the morphisms f and ft :Mn+1 →Mn.

Remark 4.4.2. It follows from remark 4.2.14 and proposition 4.3.5 thatXf has only trivial
weights 1.

We conclude in the following corollary that the projection πX : Xf → X is a family of
n-marked curves.

Corollary 4.4.3. Let X be a smooth variety in a vector space. Each morphism f : X →
Mn induces a family of n-marked rational curves

(πX : Xf → X, tαi ),

where tαi : f−1(Uα) → Xf , x 7→ (x, sαi ◦ f(x)) and sαi is the marking on the universal
family from proposition 4.3.8.

PROOF. The cycle Xf is a tropical variety by proposition 4.2.13 and πX is locally
surjective by proposition 4.2.15. Each fibre π∗X(p) = {p} × ft∗(f(p)) is a smooth rational
curve with n leaves by propositions 4.2.10 and 4.3.5. It is obvious that πX satisfies the
second prefamily axiom and that tαi is indeed a marking. �

Remark 4.4.4. The converse of corollary 4.4.3 is also true; namely every family of n-
marked rational tropical curves over a smooth variety B in a vector space induces a mor-
phism B → Mn. In fact these operations are inverse to each other; that means there is a
one-to-one correspondence between families of n-marked curves over the smooth variety
B (modulo equivalence) and morphisms from B toMn [FH, theorem 5.6].
For a family g : T → B one defines the map

dg : B → R(n2), b 7→ (distg∗(b)(k, l))k<l,

where the length of the path from leaf k to leaf l on the fibre is determined in the following
way: The length of a bounded edge E = conv{p, q} is defined to be the positive real
number α such that q = p + α · v, where v is the primitive lattice vector generating that
edge.
It was proved in [FH, propositions 5.4 and 5.5] that the map qn ◦ dg : B → Mn is
a morphism. (Lemma 4.2.4 is one of the ingredients of the proof.) Simon Hampe also
showed that the domains T, T ′ of two equivalent families g : T → B, g′ : T ′ → B of
n-marked rational curves are isomorphic if T or T ′ is smooth [FH, theorem 6.2].

Next, we compute the families induced by the identity and the forgetful morphism.
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Example 4.4.5. Let id : Mn → Mn be the identity morphism. We know by theorem
4.2.11 that the support ofMid

n is

|Mid
n | = {(x, y) ∈Mn ×Mn+1 : x = ft(y)}.

As all occurring weights are 1 (remark 4.4.2) this implies that

Mn+1 →Mid
n , y 7→ (ft(y), y)

is an isomorphism which identifies the family πMn
:Mid

n →Mn induced by the identity
with the the forgetful map ft :Mn+1 →Mn.

We prove in the following proposition thatMn+2 is the modification of the fibre product
Mn+1×MnMn+1 along its codimension 1 subcycle ∆Mn+1 . This leads to an alternative,
inductive procedure of constructingMn: Knowing thatM3 is the origin andM4 is L2

1,
one can constructM5 using the following proposition and then obtain the forgetful map
ft :M5 →M4 using the previous example. Continuing this way, one can constructMn

for all n. This approach is of course very similar to the construction of the classical moduli
spaces M0,n in [KV07, section 1.4].

Proposition 4.4.6. Let πMn+1
: Mft

n+1 → Mn+1 be the family of n-marked curves
induced by the forgetful map ft :Mn+1 →Mn. Then the modification ofMft

n+1 along its
codimension 1 subcycle ∆Mn+1

is the moduli space of (n + 2)-marked abstract rational
curvesMn+2.

PROOF. Let Kn+1 be the complete graph on the vertex set {0, 1, . . . , n}. By propo-
sition 3.2.12 it suffices to prove thatMft

n+1 is isomorphic to B(M(Kn+1) \ (0, n))/L and
that ∆Mn+1 is isomorphic to B(M(Kn+1)/(0, n))/L, where L = R ·(1, . . . , 1) and (0, n)
denotes the edge between 0 and n. We consider the injective linear map

f : R(n+1
2 )−1 → R(n2) × R(n2)

(xi,j)0≤i<j≤n:(i,j) 6=(0,n) 7→ ((xi,j)0≤i<j≤n−1, (xi,j)1≤i<j≤n).

Let π0, πn : R(n+1
2 ) → R(n2) and π̃0, π̃n : R(n2) → R(n−1

2 ) be the projections that forget
all coordinates x0,i and xi,n respectively; in other words, they describe the forgetful maps
ft0, ftn. Let π(0,n) : R(n+1

2 ) → R(n+1
2 )−1 be the projection which forgets the coordinate

x0,n. With these notations we obviously have f ◦ π(0,n) = (πn, π0). Thus we obtain

f∗ B(M(Kn+1) \ (0, n)) = f∗π(0,n)∗ B(Kn+1) = (πn, π0)∗ B(Kn+1).

Therefore, we can conclude that

|f∗ B(M(Kn+1) \ (0, n))| = {(x, y) ∈ B(Kn)× B(Kn) : π̃0(x) = π̃n(y)}.

Here the first complete graph Kn has vertex set {0, 1, . . . , n− 1}, whereas the second has
vertex set {1, . . . , n}. As all occurring weights are 1, it follows by theorem 4.2.11 that
f∗ B(M(Kn+1) \ (0, n))/L is isomorphic toMft

n+1.
In order to prove the second part we notice that B(M(Kn+1)/(0, n))/L and ∆Mn+1

are
both matroid varieties modulo lineality spaces and have the same dimension. Therefore,
it suffices to show that for every flat of M(Kn+1)/(0, n), f(VF ) is in the diagonal of
B(Kn)×B(Kn) after identifying the coordinates x0,i of the first R(n2) with the coordinates
xi,n of the second to obtain the same set of coordinates in both factors. If F is a flat of
M(Kn+1)/(0, n), then F ∪ (0, n) is a flat in Kn+1; but this implies that (0, i) ∈ F if and
only if (i, n) ∈ F . Hence f(VF ) lies in the diagonal. �

Remark 4.4.7. The idea of the previous proposition is that two points in Mn+1 which
have the same image under the forgetful map induce a point in Mn+2. This (n + 2)-
marked curve is obtained by adding both forgotten ends to the point inMn.
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Two 5-marked curves mapped to the same 4-marked curve by ft0 and ft5 respectively, and
the corresponding 6-marked curve

Except the curves that have a 3-valent vertex which is incident to both, 0 and (n+ 1), each
(n + 2)-marked rational curve can be obtained that way. An example of such a curve is
depicted in the following picture.
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By shrinking the length of the bounded edge adjacent to 0 and n+ 1 to zero, one obtains a
curve C which corresponds to a point in the diagonal ∆Mn+1

(Mft
n+1. The modification

of Mft
n+1 along the diagonal ∆Mn+1 replaces each point of the diagonal by a set corre-

sponding to the set of curves that are resolutions of the curve C. Thus one can see that this
modification makes the above assignment bijective.

4.5. Tropical fibre products II

In this section we extend our fibre product to some morphisms with non-smooth domains.
Our main application is to pull back families of curves along arbitrary morphisms.

Definition 4.5.1. Let Y = B(M)/L be a matroid variety modulo lineality space. Let h∆

be a piecewise polynomial on Y × Y that cuts out the diagonal ∆Y (cf. remark 3.8.2). Let
f : X → Y and f ′ : X ′ → Y be morphisms of tropical varieties in vector spaces. Assume
that f ′ is locally surjective and that X is locally irreducible and connected in codimension
one. Then we define the tropical fibre product

X ×Y X ′ := (f × f ′)∗h∆ · (X ×X ′) ∈ ZdimX+dimX′−dimY (X ×X ′).
We also define πX : X ×Y X ′ → X and πX′ : X ×Y X ′ → X ′ to be the projections to
the respective factor.

Remark 4.5.2. A priori we do not know that X ×Y X is independent of the choice of
h∆ and that its support is contained in the set-theoretic fibre product. We will prove these
statements in remark 4.5.5 and theorem 4.5.6.

Remark 4.5.3. If all occurring varieties are smooth, then the fibre product of definition
4.5.1 agrees with the fibre product of definition 4.2.6.

Proposition 4.5.4. With the notations and assumptions of definition 4.5.1, we have

π∗X(p) = {p} × f ′∗(f(p)),

for each point p in X .
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PROOF. Let λ ∈ Z>0 such that there is a (uniquely defined) cocycle h ∈ CdimX(X)
such that h ·X = λ · p (cf. remark 3.8.11). By remark 3.8.14 we have

π∗X(p) = 1
λπ
∗
Xh · (f × f ′)∗h∆ ·X ×X ′ = (f × f ′)∗h∆ · {p} ×X ′.

Defining the isomorphisms

a : X ′ → {p} ×X ′, x′ 7→ (p, x′), b : Y → {f(p)} × Y, y 7→ (f(p), y),

we see that this agrees with

(f × f ′)∗h∆ · a∗X ′ = a∗(a
∗(f × f ′)∗h∆ ·X ′)

= a∗((b ◦ f ′)∗h∆ ·X ′)
= {p} × ((b ◦ f ′)∗h∆ ·X ′).

As {f(p)} × Y is a smooth variety and h∆ · ({f(p)} × Y ) = {(f(p), f(p))} by corollary
3.4.8(4) and remark 3.4.12, we can conclude from construction 3.8.12 that

(b ◦ f ′)∗h∆ ·X ′ = (b ◦ f ′)∗{(f(p), f(p))}
= f ′∗b∗{(f(p), f(p))}
= f ′∗(f(p)),

which proves the claim. �

Remark 4.5.5. We have seen in the previous proposition that fibres along πX do not
depend on the choice of piecewise polynomial h∆ in definition 4.5.1. We use this to prove
that X ×Y X ′ is also independent of the choice of h∆: Let p be a point in the relative
interior of a maximal cell σ of a polyhedral structure of X ×Y X ′. As in the proof of
proposition 4.2.13 we see that

(πpX)∗(0) = 1
λωX×YX′(σ) · (πpX)∗ϕ1 · · · (πpX)∗ϕdimX · Rn,

where the ϕi are rational functions on StarX(πX(p)) that cut out λ ·{0} (for some positive
integer λ) and n = dimX ×Y X ′. Since (πpX)∗(0) is not the zero cycle the above equality
determines the weight of σ in X ×Y X ′. Hence X ×Y X ′ is independent of the choice of
h∆.

Theorem 4.5.6. Let Y be a smooth tropical variety in a vector space. If f : X → Y and
f ′ : X ′ → Y are morphisms of tropical varieties in vector spaces, f ′ is locally surjective
and X is locally irreducible and connected in codimension one, then there is a tropical
variety X ×Y X ′ such that

|X ×Y X ′| = {(x, x′) ∈ X ×X ′ : f(x) = f ′(x′)}.

In particular, X ×Y X ′ satisfies the universal property of fibre products. Furthermore,
the projection morphism πX : X ×Y X ′ → X is locally surjective and its fibres are
π∗X(p) = {p} × f ′∗(f(p)).

PROOF. Let us first assume that Y = B(M)/L is a matroid variety modulo lineality
space. Then the cycle X ×Y X ′ of definition 4.5.1 satisfies the equation on the support by
proposition 4.5.4 and lemma 4.2.4. The positivity of the weights and the local surjectivity
of πX can be deduced in an analogous way as propositions 4.2.13 and 4.2.15.
Now let Y be an arbitrary smooth variety. We glue together the local fibre products to a
cycle X ×Y X ′ whose support is {(x, x′) ∈ X ×X ′ : f(x) = f ′(x′)}. That means that
the cycle X ×Y X ′ is given around a point (p, p′) with f(p) = f ′(p′) by

StarX×YX′(p, p
′) := StarX(p)×StarY (f(p)) StarX′(p

′),
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where the morphisms used for the fibre products are just the local morphisms fp and (f ′)p
′

between the respective stars. Thereby it is crucial that the local fibre products are indepen-
dent of the choice of piecewise polynomials representing the diagonal because this inde-
pendence ensures that the weights of the local pieces agree on their overlaps. It is clear
that X ×Y X ′ inherits the properties listed in the theorem from its local blocks. �

Remark 4.5.7. Let us stress again that X ×Y X ′ is not uniquely characterised by the
“tropical universal property”.

We apply the theorem to pull back arbitrary families of curves in the same way as we did
for the special case of the forgetful map in the previous section. Note that we need the
more general fibre product as the domain of a family might not be smooth.

Corollary 4.5.8. Let g : T → B be a family of n-marked curves and let f : B′ → B be
a morphism of smooth varieties. Then πB′ : B′ ×B T → B′ together with the inherited
marking x 7→ (x, sθi (f(x))) is a family of n-marked curves over B′.



Bibliography

[All12] Lars Allermann, Tropical intersection products on smooth varieties, J. Eur. Math. Soc. 14 (2012),
no. 1, 107–126, available at arxiv:0904.2693v2.

[All] Lars Allermann, Chern classes of tropical vector bundles, to appear in Ark. Mat., available at
arxiv:0911.2909v1.

[All10] Lars Allermann, Tropical intersection theory, PhD thesis, Technische Universität Kaiserslautern,
2010, http://kluedo.ub.uni-kl.de/volltexte/2010/2469.

[All2] Lars Allermann, TropcialSurfaces: Draw tropical surfaces in 3-space, available at
http://www.mathematik.uni-kl.de/ allermann/software.html.

[AK06] Federico Ardila and Caroline J. Klivans, The Bergman complex of a matroid and phylogenetic trees,
J. Combin. Theory Ser. B 96 (2006), no. 1, 38–49, available at arxiv:math/0311370v2.

[AR10] Lars Allermann and Johannes Rau, First steps in tropical intersection theory, Math. Z. 264 (2010),
no. 3, 633–670, available at arxiv:0709.3705v3.

[AR] Lars Allermann and Johannes Rau, Tropical rational equivalence on Rr , available at
arxiv:0811.2860v2.

[Bri96] Michel Brion, Piecewise polynomial functions, convex polytopes and enumerative geometry, Param-
eter Spaces, Banach Center Publ. 36 (1996), 25–44.
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