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UNIVERSAL FAMILIES OF RATIONAL TROPICAL CURVES

GEORGES FRANCOIS AND SIMON HAMPE

ABSTRACT. We introduce the notion of families ofn-marked smooth rational tropical
curves over smooth tropical varieties and establish a one-to-one correspondence between
(equivalence classes of) these families and morphisms fromsmooth tropical varieties into
the moduli space ofn-marked abstract rational tropical curvesMn.

1. INTRODUCTION

The moduli spacesMn of n-marked abstract rational tropical curves have been well known
for several years. An explicit description of the combinatorial structure ofMn and its
embedding as a tropical fan can be found in [GKM]. However, sofar the moduli spaces
Mn have only been a parameter spaces, i.e. in bijection to the set of tropical curves. To
further justify the nomenclature, we would like to equip them with a universal family. In
classical geometry or category theory, such a universal family induces all possible families
via pull-back along a unique morphism intoMn. This paper gives a suitable definition of
a family of tropical curves and proves that the forgetful mapft :Mn+1 →Mn is indeed
a universal family.

After briefly recalling some known facts in section 2, we givea definition of families of
smooth rationaln-marked curves over smooth varieties in section 3. We show that the
forgetful morphism is a family of curves and that we can assign a family of curves to each
morphism of a smooth variety intoMn.

In section 4 we establish an inverse operation, namely we prove that each family ofn-
marked curves also gives rise to a morphism intoMn. This leads to our main theorem 4.5
which gives a bijection between equivalence classes of families ofn-marked curves over a
smooth varietyB and morphismsB →Mn.

In the last section we prove that there is a bijective pseudo-morphism, a piecewise lin-
ear map respecting the balancing condition, between two equivalent families. In case the
domain of one of the families is a smooth variety, this map is even an isomorphism.
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2. PRELIMINARIES AND NOTATIONS

In this section we quickly review some results on tropical intersection theory and the mod-
uli spaceMn of n-marked abstract rational tropical curves.

A tropical cycleX (in a vector spaceV containing a latticeΛ) is the equivalence class
modulo refinement of a pure-dimensional rational polyhedral complexX in V which is
weighted (i.e. each maximal polyhedron has an integer weight) and satisfies the balancing
condition (defined in [AR, definition 2.6]). A tropical variety is a tropical cycle which
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2 GEORGES FRANCOIS AND SIMON HAMPE

has only positive weights. A representativeX of a tropical cycleX is called a polyhedral
structure ofX . If X has a polyhedral structureX which is a fan, then we callX a fan
cycle andX a fan structure ofX . The support|X | of a cycleX is the union of all maximal
cells of non-zero weight in a polyhedral structure ofX . More details can be found in
[AR, section 2] which covers fan cycles, [AR, section 5] which introduces abstract cycles
(which are more general than cycles in vector spaces), and [R, section 1.1] whose notation
we follow in this article.

Matroid varietiesB(M) constitute an important class of tropical varieties. They have a
canonical fan structureB(M) which consists of cones

〈F〉 :=

{
p
∑

i=1

λiVFi
: λ1, . . . , λp−1 ≥ 0, λp ∈ R

}

corresponding to chainsF = (∅ ( F1 ( . . . ( Fp−1 ( Fp = E(M)) of flats of a
matroidM having ground setE(M) := [n]. HereVF = −

∑

i∈F ei, wheree1, . . . , en
form the standard basis ofRn and all maximal cones ofB(M) have trivial weight1. Note
that matroid varieties naturally come with the lineality spaceR · (1, . . . , 1). We refer to
[FR, section 2] for more details about matroid varieties.

A tropical varietyX is smooth if it is locally a matroid variety modulo linealityspace
B(M)/L (cf. [FR, section 6]). This means that for each pointp inX , the star StarX(p) (cf.
[R, section 1.2.3]) is isomorphic to a matroid variety modulo lineality space. We should
note that StarX(p) is a tropical cycle whose support consists of vectorsv such thatp+ǫv is
in X for small (positive)ǫ. Recall thatLn

1 denotes the curve inRn which consists of edges
R≤0 · ei, i = 0, 1, . . . , n (all having trivial weight1), wheree1, . . . , en form the standard
basis ofRn ande0 = −(e1 + . . .+ en). Then smooth curves are exactly the curves which
are locally isomorphic to someLn

1 .

A main property of smooth varieties which will be crucial in the next section is that they
admit an intersection product of cycles having the expectedproperties [FR, theorem 6.4].
Furthermore, iff : X → Y is a morphism of smooth varieties (that is a locally affine linear
map), then we can pull back any cycleC in Y to obtain a cyclef∗(C) inX [FR, definition
8.1]. In the case whenY is smooth, we can still pull back points ofY alongf [F, remark
3.10]; this will be an essential ingredient to define families of curves in definition 3.1.

In [GKM, section 3] the authors map ann-marked rational curve to the vector whose
entries are pairwise distances of its leaves and use this to give the moduli spaceMn of n-
marked abstract rational tropical curves the structure of atropical fan of dimensionn − 3

in Qn := R(
n
2)/Im(φ), whereφ mapsx ∈ Rn to (xi + xj)i<j . The edges ofMn are

generated by vectorsvI|n := vI (with I ( [n], 1 < |I| < n− 1) corresponding to abstract
curves with exactly one bounded edge of length1 separating the leaves with labels inI
from the leaves with labels in the complement ofI. Furthermore, the relative interior of
eachk-dimensional cone ofMn corresponds to curves with exactlyk bounded edges,
whose combinatorial type (i.e. the graph without the metric) is the same. The forgetful
mapft0 := ft :Mn+1 →Mn forgetting the0-th marked end is the morphism of tropical

fan cycles induced by the projectionπ : R(
n+1
2 ) → R(

n

2) [GKM, proposition 3.9]. Note
that, in order to ease the notations, we equipMn+1 with the markings0, 1, . . . , n, when
we consider the forgetful map.

It was shown in [FR, example 7.2] thatMn is even isomorphic to a matroid variety modulo
lineality space and thus admits an intersection product of cycles: ifB(Kn−1) denotes the
matroid variety corresponding to the matroid associated tothe complete graphKn−1 on
n− 1 vertices, thenMn is isomorphic toB(Kn−1)/L, with L = R · (1, . . . , 1). Note that
the ground set of the matroid associated toKn−1 is the set of edges ofKn−1, whereas its
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flats are exactly the edges of vertex disjoint unions of complete subgraphs ofKn−1. In this

setting the forgetful map is induced by the projectionπ : R(
n
2) → R(

n−1
2 ).

3. FAMILIES OF CURVES

The aim of this section is to prove that every morphism from a smooth varietyX toMn

gives rise to a family of curves. We start by defining familiesof curves over smooth
varieties.

Definition 3.1 (Family of curves). Let n ≥ 3 and letB be a smooth tropical variety. A
morphismT

g
→ B of tropical varieties is aprefamily of n-marked tropical curves if it

satisfies the following conditions:

(1) For each pointb in B the cycleg∗(b) is a smooth rational tropical curve with
exactlyn unbounded edges (called the leaves ofg∗(b)).

(2) For any pointp in T , the induced linear map

λg,p : StarT (p)→ StarB(g(p))

is surjective.
(3) The linear part ofg at any cellτ in (some and thus any polyhedral structure of)T

induces a surjective mapλg|τ : Λτ → Λg(τ) on the corresponding lattices.

A tropical markingon a prefamilyT
g
→ B is an open cover{Uθ, θ ∈ Θ} of B together

with a set of affine linear integral mapssθi : Uθ → T, i = 1, . . . , n, such that the following
holds:

(1) For allθ ∈ Θ, i = 1, . . . , n, we haveg ◦ sθi = idUθ
.

(2) For anyb ∈ Uθ if l1, . . . , ln denote the leaves of the fiberg∗(b), then for each
i ∈ [n] there exists exactly onej ∈ [n], such thatsθj (b) ∈ l

◦
i (wherel◦i denotes the

leaf without its vertex).
(3) For anyθ 6= ζ ∈ Θ andb ∈ Uθ ∩ Uζ , the pointssθi (b) andsζi (b) mark the same

leaf ofg∗(b) (though they do not have to coincide).

A familyof n-marked tropical curves is then a prefamily with a marking.

We call two familiesT
g
→ B, T ′ g′

→ B equivalentif for any b in B the fibersg∗(b), g′∗(b)
are isomorphic asn-marked tropical curves.

Example 3.2. • The morphism

π : Ln
1 × R→ R, (x1, . . . , xn, y) 7→ y,

together with the trivial markingy 7→ (ei, y), i = 0, 1, . . . , n, is a family of
(n+ 1)-marked curves.
• Let e1, e2 be the standard basis ofR2. We consider the tropical curvesX1 := L2

1

andX2 := R · e1 + R · e2. Let us consider the morphisms

πi : L
n
1 ×Xi → R, (x1, . . . , xn, y1, y2) 7→ y2.

Althoughπ∗
i (p) = Ln

1 ×{p} for all pointsp in R, πi is not a family of curves: e.g.
for i ∈ {1, 2} andp = ((0, . . . , 0), (−1, 0)) ∈ Ln

1 ×Xi the map

λπi,p : StarLn
1×Xi

(p) ∼= Ln
1 × R→ StarR(0) ∼= R

is just the constant zero map. Geometrically, we see that theset-theoretic fiber
π−1
i (0) is 2-dimensional. This illustrates the necessity of the secondaxiom on

a prefamily which could be seen as a tropical flatness condition without which
π, π1, π2 would be equivalent families with completely different domainsLn

1 ×
R, Ln

1 ×X1, L
n
1 ×X2 (compare to section 5).
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Remark3.3. We will see later that for all cellsτ in (a polyhedral structure of)T on whichg
is not injective, condition (3) on a prefamily follows from the other conditions (cf. lemma
4.8). We will need condition (3) on all cellsτ (including those on whichg is injective)
to show that the locally affine linear mapB → Mn induced by the familyT → B is an
integer map and thus a tropical morphism (cf. definition 4.1,proposition 4.6).

It is clear from the definition that the support of the intersection-theoretic fiber of a point
is contained in the set-theoretic fiber. We need the following two lemmas to prove that we
actually have an equality ifg : T → B is a prefamily of curves. That property will be
crucial in sections 4 and 5.

Lemma 3.4. Let g : C → C′ be an affine linear surjective map of tropical cycles such
thatλg,p : StarC(p)→ StarC′(g(p)) is surjective for all pointsp in C. Then the following
holds:

• Let C, C′ be polyhedral structures ofC andC′ such thatg(τ) ∈ C′ for all τ ∈ C
(cf. [R, lemma 1.3.4]). For τ ∈ C we have

g(U(τ)) = U(g(τ)), whereU(τ) :=
⋃

σ∈C:σ>τ

rel int(σ).

In particular, g is an open map, i.e. maps open sets to open sets.
• Let ϕ be a rational function onC′. Then the domain of non-linearity (cf.[R,

definition 1.2.1]) ofϕ ◦ g is equal to the preimage of the domain of linearity ofϕ,
i.e.

|ϕ ◦ g| = g−1(|ϕ|).

Proof. The first part is obviously equivalent to the surjectivitiy condition onλg,p. Note that
the set of all possibleU(τ) for all possible polyhedral structures ofC forms a topological
basis of the standard euclidean topology on|C|. For the second part it suffices to prove that
ϕ is locally linear atp ∈ C′ if and only ifϕ ◦ g is locally linear at some pointq ∈ g−1(p).
But this is already clear from the first part. �

Lemma 3.5. LetM be a matroid of rankr on the set[m]. LetL := R · (1, . . . , 1). Then
max{x1, . . . , xm}

r−1 · B(M) = L.

Proof. We setϕ := max{x1, . . . , xm}. It suffices to show by induction thatϕk · B(M)
consists exactly of the cones corresponding to chains of flats F := (∅ ( F1 . . . (
Fr−k−1 ( E(M)) with r(Fi) = i (all of them having trivial weight1): Let G := (∅ (
G1 . . . ( Gr−k−2 ( Gr−k−1 := E(M)) be a chain of flats withr(Gi) = i for i ≤ j and
r(Gi) = i+ 1 for j + 1 ≤ i ≤ r − k − 2. Note thatϕ is linear on the cones ofB(M) and
satisfiesϕ(VF ) = −1 if F = E(M), and0 otherwise. As

∑

F flat with Gj(F(Gj+1

VF = VGj+1 + (|F flat withGj ( F ( Gj+1| − 1) · VGj
,

the claim follows directly from the definition of intersecting with rational functions [AR,
definition 3.4]. �

Lemma 3.6. Letg : T → B be a morphism from a varietyT to a smooth varietyB which
fulfils axiom (1) and (2) of a prefamily of curves. Then the support of the intersection-
theoretic fiber over each pointb in B agrees with the set-theoretic fiber, that means

|g∗(b)| = g−1(b).

Proof. Let b be a point inB and letp be a point inT with g(p) = b. As the intersection-
theoretic computations are local, it suffices to show the claim for the induced morphism
λg,p on the respective stars; that means we can assume thatg is linear,T is a fan cycle,B is
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a matroid variety modulo lineality space andb = 0. We choose convex rational functions
ϕi such thatb = ϕ1 · · ·ϕdim(B) · B. This can be done by decomposingB into a cross
product of matroid varieties modulo1-dimensional lineality spaces (cf. [FR, section 2])
and then using lemma 3.5. We show by induction thatg∗ϕi · · · g

∗ϕdim(B) · T is a cycle
having only positive weights and satisfying

|g∗ϕi · · · g
∗ϕdim(B) · T | = g−1(|ϕi · · ·ϕdim(B) ·B|),

which implies the claim becauseg∗(b) = g∗ϕ1 · · · g∗ϕdim(B) · T : Sinceg∗ϕi−1 is convex
andg∗ϕi · · · g∗ϕdim(B) · T has only positive weights, it follows from [R, lemma 1.2.25]
that

|g∗ϕi−1 · g
∗ϕi · · · g

∗ϕdim(B) · T | = |(g
∗ϕi−1)||g∗ϕi···g∗ϕdim(B)·T ||,

where the right hand side is the domain of non-linearity of the restriction of the rational
functiong∗ϕi−1 to (the support of)g∗ϕi · · · g∗ϕdim(B) · T . By induction hypothesis, this
is equal to the domain of non-linearity

|(ϕi−1 ◦ g)|g−1(|ϕi···ϕdim(B)·B|)|,

which by the second axiom of a prefamily and lemma 3.4 coincides with

g−1(|ϕi−1||ϕi···ϕdim(B)·B||) = g−1(|ϕi−1 · ϕi · · ·ϕdim(B) · B|).

Note that our induction hypothesis (for stars around different points) and the locality of
intersecting with rational functions (cf. [R, proposition1.2.12]) ensure that the restriction
of g to g∗ϕi · · · g∗ϕdim(B) · T satisfies the assumptions of lemma 3.4. �

Our next aim is to show that the forgetful map is a prefamily ofn-marked curves. There-
fore, we compute its fibers in the following proposition.

Proposition 3.7. Let ft : Mn+1 → Mn be the forgetful map. Then for each pointp in
Mn the (intersection-theoretic) fiberft∗(p) is a smooth rational curve havingn unbounded
edges. Furthermore, the support satisfies|ft∗(p)| = ft−1(p).

Proof. We know from [R, proposition 2.1.21] that for eachp in Mn there is a smooth
rational irreducible curveCp which hasn unbounded ends and whose support|Cp| is equal
to the set-theoretic fiberft−1(p). (The edges ofC0 areR≥0 ·v0,i with i ∈ [n]). As it is clear
from the definition of the pull-back [FR, definition 8.1] thatft∗(p) is a curve satisfying
|ft∗(p)| ⊆ ft−1(p), the irreducibility ofCp allows us to conclude thatft∗(p) = λp · Cp

for some integerλp. Since morphisms of matroid varieties (modulo lineality spaces) are
compatible with rational equivalence [FR, remark 9.2], it follows from [FR, theorem 9.5]
that ft∗(p) andft∗(0) are rationally equivalent; thusλp = λ0. So it suffices to show that
λ0 = 1. Using the isomorphism of [FR] mentioned in section 2 we haveto compute
the fiber over the origin of the projectionπ : B(Kn)/L → B(Kn−1)/L which forgets
the coordinatesx0,i. Note that we gaveKn andKn−1 the vertex sets{0, 1, . . . , n − 1}
and{1, . . . , n − 1} respectively and that by abuse of notation we denoted both lineality
spaces byL. By [FR, proposition 8.5] we haveπ∗(0) = (π̃∗(L))/L, whereπ̃ : B(Kn)→
B(Kn−1) is the “naturally lifted” projection. It follows from lemma3.5 thatπ̃∗(L) =
ϕn−3 · B(Kn), whereϕ := max{xi,j : 0 < i < j ≤ n − 1}. It is easy to see thatϕ is
linear on the cones ofB(Kn) and thatϕ(VF ) = −1 if F corresponds toKn or its complete
subgraph on the vertex set{1, . . . , n − 1}, andϕ(VF ) = 0 otherwise. A straightforward
induction shows that the cone associated toF := (∅ ( F1 ( . . . ( Fn−3−k ( F (
E(Kn)), wherer(Fi) = i andF is the flat corresponding to{1, . . . , n− 1}, has weight1
in ϕk · B(Kn). ThusR≥0 · v{0,n} has weight1 in ft∗(0) and it follows thatλ0 = 1 (asC0

is irreducible and all its edges have weight1).
�
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Lemma 3.8. For n ≥ 3 andv ∈ Mn+1, the mapλft,v is surjective, i.e. the forgetful map
fulfils the second axiom of a family of tropical curves.

Proof. Let τ be the minimal cell ofMn+1 containingv and letC be the curve correspond-
ing to the pointv. Letw′ be an element of StarMn

(ft(v)). Thenw′ comes from a curve
which is obtained from the curve corresponding toft(v) by resolving some higher-valent
vertices. If we resolve the same vertices inC, we get a curveC′ corresponding to a point
v′ ∈ Mn+1 such thatft(v′) = w′. In particular, the combinatorial type ofC′ corresponds
to a cellτ ′ ≥ τ , sov′ ∈ StarMn+1(v). �

The following corollary is a direct consequence of proposition 3.7 and lemma 3.8.

Corollary 3.9. The forgetful map is a prefamily ofn-marked tropical curves.

We now want to define a marking on the forgetful map. To do that,we need a basis of the
ambient spaceQn ofMn. In [KM, section 2] the authors construct a generating set inthe
way that we will shortly describe and it is easy to see (e.g. byinduction onn, using the
forgetful map) that it becomes a basis if we remove an arbitrary element.

For anyk ∈ {1, . . . , n}, we set

Vk,n := Vk := {vI ; k /∈ I, |I| = 2}.

For anyI0 ⊆ {1, . . . , n} with vI0 ∈ Vk we define

V I0
k,n := V I0

k := Vk \ {vI0}.

Lemma 3.10. LetvI ∈Mn, I ⊆ [n] and assume thatk /∈ I. Then we have

vI =

{ ∑

J⊆I,vJ∈V
I0
k

vJ , if I0 * I

−
∑

J*I,vJ∈V
I0
k

vJ , otherwise
.

Proof. It was shown in [KM, lemma 2.4, lemma 2.7] that
∑

w∈Vk
w = 0 and thatvI =

∑

vS∈Vk,S⊆I vS . This implies the above equation. �

For the following proposition, for eachi = 1, . . . , n we fix an arbitraryI0(i) with vI0(i) ∈

Vi,n and writeWi,n := V
I0(i)
i,n for simplicity.

Proposition 3.11. There exists a tropical markingsθi on the forgetful map, such that, as a
marked curve, the fiber over each pointp inMn is exactly the curve represented by that

point. In particular,(Mn+1
ft
→Mn, s

θ
i ) is a family ofn-marked rational tropical curves.

Proof. Again, [R, proposition 2.1.21] tells us that the fiber over each point is exactly the
curve represented by that point (without markings).

Forα > 0 we define

Uα :=

{
∑

vI∈Mn

λIvI ;λI ≥ 0;
∑

λI < α

}

∩ |Mn| .

Clearly {Uα, α ∈ N>0} is a cover ofMn. Now pick anyα ∈ N>0, i ∈ 1, . . . , n. We
define

sαi : Uα →Mn+1, v 7→ α · v{0,i} +Ai(v),

whereAi : Qn → Qn+1 is the linear map defined byAi(vI) = vI|n+1 for all vI ∈ Wi,n.
(Note that in this proof thevI represent curves with markings in{1, . . . , n} and thus live
in Qn, whereas thevI|n+1 correspond to curves with markings in{0, 1, . . . , n} and thus
live in Qn+1.) We have to show that this defines indeed a map intoMn+1 and that it is a
tropical marking.
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For this, choose anyvI ∈ Mn (we assume without restriction thati /∈ I, sincevI = vIc).
By lemma 3.10 we have

vI =

{ ∑

J⊆I,vJ∈Wi,n
vJ , if I0 * I

−
∑

J*I,vJ∈Wi,n
vJ , otherwise

,

and similarly inMn+1:

vI|n+1 =







∑

J⊆I,vJ∈Wi,n+1

vJ =
∑

J⊆I,vJ∈Wi,n

vJ|n+1, if I0 * I

−
∑

J*I,vJ∈Wi,n+1

vJ = −
∑

J*I,vJ∈Wi,n

vJ|n+1 −
∑

j 6=0,i

v{0,j}, otherwise

=







Ai(vI), if I0 * I

Ai(vI) + v{0,i}, otherwise (since
n∑

j=1

v{0,j} = 0)
.

Summarising we obtain forλ ∈ [0, α):

sαi (λvI) =

{

αv{0,i} + λvI|n+1, if I0 * I

(α− λ)v{0,i} + λvI|n+1, otherwise
.

Now for an arbitraryv =
∑
λIvI ∈ Uα (where we can assume that all thevI with λI 6= 0

lie in the same maximal cone inMn) we have

sαi (v) =
∑

λIvI|n+1 + (α−
∑

I0⊆I

λI)

︸ ︷︷ ︸

>0

v{0,i}.

In particular this is a vector in a leaf of the fiber ofv (which as a set can be described as
{
∑
λIvI|n+1 + γv{0,i}, γ ≥ 0}) and for differenti this marks a different leaf. Also it is

clear that for differentα, α′ andv ∈ Uα ∩ Uα′ , sαi andsα
′

i mark the same leaf. Hence the
sαi define a tropical marking. �

We will now prove that any two markings on the forgetful map only differ by a permutation
on{1, . . . , n}.

Proposition 3.12. For any two families of tropical curves of the form

(Mn+1
ft0
→ Mn, (s

θ
i )), (Mn+1

ft0
→ Mn, (r

ζ
i )),

there exist isomorphismsφ : Mn → Mn andψ : Mn+1 → Mn+1, such thatft0 ◦
ψ = φ ◦ ft0 and such that for anyb inMn, ψ identifies equally marked leaves offt∗0(b)
and ft∗0(φ(b)) in the two families. Furthermore,φ, ψ are induced by permutations on the

coordinates ofR(
n
2) andR(

n+1
2 ) respectively.

Proof. We can assume without restriction that both markings(sθi ), (r
θ
i ) are defined on the

same open subsetsUθ. Since they are tropical markings, if we chooseθ such that0 ∈ Uθ,
we must have for alli that

sθi (0) = λθi v{0,σ1(i)}; r
θ
i (0) = ρθi v{0,σ2(i)}

for some permutationsσ1, σ2 ∈ Sn, λ
θ
i , ρ

θ
i > 0. Note that by definition of a marking,

σ1, σ2 are independent of the choice ofθ.

We can extendσ1, σ2 to bijectionsσ̄1, σ̄2 on{0, 1, . . . , n} by settingσ̄1(0) = σ̄2(0) = 0.

These bijections induce automorphisms ofR(
n+1
2 ) andR(

n
2) given by

e{i,j} 7→ e{(σ̄2◦σ̄
−1
1 )(i),σ̄2◦σ̄

−1
1 )(j)},
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which map Im(φ) to Im(φ) and thus give rise to automorphisms

ψ :Mn+1 →Mn+1, φ :Mn →Mn.

Obviouslyft0 ◦ φ = ψ ◦ ft0 (since the0-mark which is discarded byft0 is not affected
by σ1, σ2). We will now prove compatibility with markings for ray vectorsvI :

Let vI ∈ Uζ ⊆ |Mn| with i /∈ I and assumeφ−1(vI) = v(σ1◦σ
−1
2 )(I) ∈ Uθ ⊆ |Mn|.

Then we have
rζi (vI) = vI|n+1 + λ · v{0,σ2(i)}

for someλ and

(ψ ◦ sθi ◦ φ
−1)(vI) = (ψ ◦ sθi )(v(σ1◦σ

−1
2 )(I))

= φ(v(σ1◦σ
−1
2 )(I)|n+1 + ρ · v{0,σ1(i)}) for someρ

= v(σ2◦σ
−1
1 ◦σ1◦σ

−1
2 )(I)|n+1 + ρ · v{0,(σ2◦σ

−1
1 ◦σ1)(i)}

= vI|n+1 + ρ · v{0,σ2(i)}

which lies on the same leaf asrζi (vI). For an arbitrary vectorv =
∑
αIvI the same

argument can be applied by linearity ofφ. �

As mentioned earlier we want to assign a family ofn-marked curves to each morphism
from a smooth cycle toMn. Therefore, we need the following definition.

Definition 3.13. Let X be a smooth variety andf : X → Mn a morphism. We define
Xf to be the pull-back of the diagonal∆Mn

along the morphism(f × ft), i.e.

Xf := (f × ft)∗(∆Mn
) ∈ ZdimX+1(X ×Mn+1).

Note thatXf is well-defined by [FR, definition 8.1] becauseX ×Mn+1 andMn ×Mn

are smooth tropical varieties (which follows from the fact that cross products of matroid
varieties (modulo lineality spaces) are again matroid varieties (modulo lineality spaces)
[FR, lemma 2.1, remark 5.3]).

In order to show that the projection fromXf toX is a prefamily ofn-marked curves we
compute its fibers in the following proposition.

Proposition 3.14. Let πX : Xf → X be the projection toX . Thenπ∗
X(p) = {p} ×

ft∗(f(p)) for eachp in X . In particular, the fiber over each point is a smooth rational
curve withn leaves.

Proof. In this proof by abuse of notationπX , πMn+1 , πX×Mn+1 denote projections from
a product ofX,Mn,Mn+1 to the respective cycle. Letϕ ∈ CdimX(X) be the (uniquely
defined) cocycle such thatϕ · X = {p} [F, definitions 2.17, 2.20, corollary 3.8]. By the
projection formula and commutativity of intersection products [F, proposition 2.24] we
have

π∗
X(p) = π∗

Xϕ ·X
f = (πX×Mn+1)∗Γf×ft · ({p} ×Mn+1 ×∆Mn

).

Since we know by [FR, theorem 6.4(9) and lemma 8.4(1)] that

{p} ×Mn+1 ×∆Mn
= ({p} ×Mn+1 ×Mn ×Mn) · (X ×Mn+1 ×∆Mn

)

andΓf · ({p} ×Mn) = {(p, f(p)}, the above is equal to

{p} × (πMn+1)∗((Γft × {f(p)}) · (Mn+1 ×∆Mn
)).

Now it follows in an analogous way from [FR, theorem 6.4(9) and lemma 8.4(2)] that the
latter equals

{p} × (πMn+1)∗(Γ(ft,ft) · (Mn+1 ×Mn × {f(p)}))

= {p} × (πMn+1)∗(Γft · (Mn+1 × {f(p)}))

= {p} × ft∗(f(p)).
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�

Remark3.15. The support ofXf satisfies
∣
∣Xf

∣
∣ = (f × ft)−1(|∆Mn

|) = {(x, y) ∈ X ×Mn+1 : f(x) = ft(y)}.

Here, one implication follows from definition of the pull-back, whereas the other is a direct
consequence of proposition 3.14 together with the equalityof intersection-theoretic and
set-theoretic fibers of the forgetful map (proposition 3.7).

In order to conclude thatπX : Xf → X is a prefamily we need to prove that it satisfies
the second axiom of a prefamily and that the cycleXf is a tropical variety (i.e. has only
positive weights). It is obvious that it fulfils the last condition.

Lemma 3.16. The projection morphismπX : Xf → X fulfils the second prefamily axiom.

Proof. By remark 3.15, we can considerXf to be equipped with the polyhedral structure

X f := {τ ×f σ; τ ∈ X , σ ∈M},

whereX is a polyhedral structure onX ,M is the standard polyhedral structure onMn+1

and

τ ×f σ := {(x, y) ∈ τ × σ : f(x) = ft(y)}

is the set-theoretic fiber-product ofτ andσ. Now let p be in some cellτ ×f σ, q′ ∈ τ ′

for someτ ′ ≥ τ . Considerf(q′) as an element of StarMn
(f(p)). By lemma 3.8, it has a

preimagev′ under the forgetful map in someσ′ ≥ σ; so the point(q′, v′) is in StarXf (p)
(and is obviously mapped toq′ by πX ). �

Lemma 3.17.All maximal cells ofXf have trivial weight1. In particular,Xf is a tropical
variety.

Proof. LetX f ,X be polyhedral structures ofXf , X considered in the proof of the previ-
ous lemma. Ifdim(τ) = dim(πX(τ)) + 1, then we observe that

{σ ∈ X f : σ > τ} → {α ∈ X : α > πX(τ)}, σ 7→ πX(σ)

is a bijection. SinceπX maps normal vectors relative toτ to normal vectors relative to
πX(τ), the local irreducibility and the connectedness in codimension one ofX (cf. [FR,
lemma 2.4]) allow us to conclude that there is aλ ∈ Z such that the weight functions of
Xf , X satisfy

ωXf (σ) = λ · ωX(πX(σ)) for all maximalσ ∈ X f .

Now let τ be an edge inX f mapped to a pointp ∈ X by πX . After finding rational func-
tions whose product (locally) cuts out the pointp fromX , it follows from the definitions
of pulling-back and intersecting with rational functions that 1 = ωg∗(p)(τ) = λ, which
finishes the proof. �

The following corollary is an immediate consequence of proposition 3.14 and lemmas 3.17
and 3.16.

Corollary 3.18. For each morphism of smooth varietiesX
f
→Mn, we obtain a family of

n-marked rational curves as

(Xf πX→ X, tαi ),

wheretαi : f−1(Uα) → Xf , x 7→ (x, sαi ◦ f(x)) (andsαi is the marking on the universal
family we defined above).
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4. THE FIBER MORPHISM

We now want to construct a morphism intoMn for a given familyT
g
→ B (we will omit

the marking to make the notation more concise). It is actually already clear what this map
should look like: It should map eachb inB to the point inMn that represents the fiber over
b. For the pull-back familyXf defined above this gives us back the mapf . For an arbitrary
family however, it is not even clear that it is a morphism. In fact, we will only show that it
is a so-calledpseudo-morphismand then use the fact thatB is smooth to deduce that it is
a morphism.

Definition 4.1 (The fiber morphism). For a familyT
g
→ B we define a map

dg : B → R(
n

2) : b 7→ (distk,l(g
∗(b)))k<l,

where the length of the path from leafk to leafl on the fiber is determined in the following
way: The length of a bounded edgeE = conv{p, q} is defined to be the positive real
numberα, such thatq = p + α · v, wherev is the primitive lattice vector generating that
edge.

We defineϕg := qn ◦ dg : B →Mn, whereqn : R(
n
2) → R(

n
2)/Im(φ) is the quotient map

andφ mapsx ∈ Rn to (xi + xj)i<j .

As mentioned above, we will not be able to prove directly thatϕg is a morphism. But we
can show that, in addition to being piecewise linear, it respects the balancing equations of
B. Let us make this precise:

Definition 4.2 (Pseudo-morphism). A map f : X → Y of tropical varieties is called a
pseudo-morphismif there is a polyhedral structureX of X such that:

(1) f|τ is integral affine linear for eachτ ∈ X
(2) f respects the balancing equations ofX , i.e. for eachτ ∈ X (codim1) if f̄ denotes

the induced piecewise affine linear map on StarX(τ) (cf. [R, section 1.2.3]), we
have ∑

σ>τ

ωX(σ)f̄(uσ/τ ) = 0 ∈ V/Vf(τ).

More precisely, if we choose avσ ∈ σ for eachσ > τ andp0, ..., pd ∈ τ a basis of
Vτ , such thatvσ − p0 = uσ/τ and

∑

σ>τ ωX(σ)(vσ − p0) =
∑d

i=1 αi(pi − p0)
with α1, ...αd ∈ R, then

∑

σ>τ

ωX(σ)(f(vσ)− f(p0)) =
d∑

i=1

αi(f(pi)− f(p0)).

Note that it suffices to check this condition for a single choice of vσ, p0, ...pd,
since any other choice would only differ by elements fromVτ , on whichf is
affine linear. It is also clear thatf satisfies the above properties on any refinement
of X if it does so forX .

As for a morphism, we denote byλf |τ the linear part off on τ .

Proposition 4.3. LetX be a smooth tropical variety,Y any tropical variety andf : X →
Y a pseudo-morphism. Thenf is already a morphism.

Proof. It suffices to prove the claim for piecewise linear pseudo-morphismsf : B(M)→
Y from matroid varieties to fan cycles because being a morphism is a local property and
we can lift any pseudo-morphismB(M)/L → Y to a pseudo-morphismB(M) → Y .
By deleting parallel elements we can assume that one elementsubsets of the ground set
E(M) are flats ofM . It is easy to see thatf must be a pseudo-morphism with respect to
the fan structureB(M). Now we show by induction on the rank of the flats that for all
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flatsF we havef(VF ) =
∑

i∈F f(V{i}). As the vectorsV{i} are linearly independent
this implies the claim. LetF be a flat of rankr. We choose a chain of flats of the form
F = (∅ ( F1 ( . . . ( Fr−2 ( F ( Fr+1 ( . . . ( Fr(M) = E(M)), with r(Fi) = i.
The fact thatf is a pseudo-morphism translates the balancing condition around the facet
F in B(M) into

∑

Fr−2(G(F flat

f(VG) = f(VF ) + (|{G : Fr−2 ( G ( F flat }| − 1) · f(VFr−2).

Now the induction hypothesis implies the claim. �

Proposition 4.4. For any familyT
g
→ B, the mapϕg : B →Mn is a pseudo-morphism.

Before we give a proof of this proposition we use it to prove our main theorem.

Theorem 4.5. For any smooth varietyB, we have a bijection
{

Families(T
g
→B,rθi )

of n-marked tropical curves
modulo equiv.

}

1:1
←→

{
Morphisms

f :B→Mn

}

(T
g
→ B, rθi ) 7→ ϕg

(Bf πB→ B, (id × (sαi ◦ f)))←[ f,

whereϕg : B → Mn is the morphism constructed in definition 4.1,Bf is the tropical
subvariety ofB×Mn+1 introduced in definition 3.13,πB : Bf → B is the projection toB,
andsαi , i = 1, . . . , n is the tropical marking of the forgetful map described in proposition
3.11.

Proof. We have already shown in corollary 3.18 and proposition 4.4 that these maps are
well-defined. It is obvious that they are inverse to each other. �

The rest of this section is dedicated to proving proposition4.4. For all the following
proofs, we will assume thatT andB are polyhedral structures ofT andB satisfying
B = {g(σ), σ ∈ T }. This is possible by [R, lemma 1.3.4].

Proposition 4.6. The mapdg of definition 4.1 is integral affine linear on eachτ ∈ B.

Proof. We first show thatdg is affine linear on each cell: Sinceτ ∈ B is closed and convex,
it suffices to show thatdg is affine linear on any line segment conv{b, b′} ⊆ τ , whereb ∈ τ
andb′ ∈ rel int(τ).

Denote byGτ := {σ ∈ T : g(σ) = τ} and choose anyσ ∈ Gτ . If dimσ = dim τ , then
g|σ is injective and the preimage ofb andb′, respectively, is a point. Ifdimσ = dim τ +1,
then, since we have chosenb′ from the interior ofτ , there must be ac′ ∈ rel int(σ),
such thatg(c′) = b′. As dimker g|Vσ

= 1, the preimageCb′ := g−1
|σ (b′) is a (possibly

unbounded) line segment. The fiberCb := g−1
|σ (b) is either a parallel line segment or a

point.

For now we assume both fibers to be bounded. We claim that for each suchσ the mapdσ :
conv({b, b′})→ R which assigns to eachbλ := b + λ(b′ − b), λ ∈ [0, 1] the length of the
fiberg−1

|σ (bλ) is affine linear. The mapdg will then be a sum of these maps. First we argue
that the endpoints of the fibersCb, Cb′ must lie in the same faces ofσ: Denote byq1, q2 the
endpoints ofCb′ , lying in facesσ1, σ2 < σ, soCb′ = conv({q1, q2}); q1 ∈ σ1, q2 ∈ σ2.
Theng(σi) ⊆ g(σ) = τ andb′ ∈ g(σi) ∩ rel int(τ). Henceg(σi) = τ and there must be
p1 ∈ σ1, p2 ∈ σ2 which map tob. Hence, since they lie in proper faces, they must be the
endpoints ofCb and we conclude:

Cb = conv({p1, p2}); p1 ∈ σ1, p2 ∈ σ2.
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It immediately follows that

Cbλ = conv({p1 + λ(q1 − p1)
︸ ︷︷ ︸

∈σ1

, p2 + λ(q2 − p2)
︸ ︷︷ ︸

∈σ2

}) for all λ ∈ [0, 1].

σ

p1

Cb

p2

q1

Cb′

q2

Cbλ

FIGURE 4.1. An illustration of the fibersCb, Cb′ andCbλ

Denote byv the primitive vector generating the kernel ofg|Vσ
. Then

(q2 − q1) = α · v, (p2 − p1) = β · v

for someα, β ∈ R. Now the length of a fiberCbλ is determined by the difference of its
endpoints

(p2 + λ(q2 − p2))− (p1 + λ(q1 − p1)) = (p2 − p1) + λ((q2 − q1)− (p2 − p1))

= v · (β + λ · (α− β)).

Hence we have
dσ(bλ) = β + λ · (α− β),

which is an affine linear map.

We also have to consider the case that one fiber is unbounded (i.e. a subset of a leaf). In
this case there is no length to consider; we only have to show thatCb is unbounded if and
only if Cb′ is. We have already proven that every endpoint ofCb′ induces an endpoint of
Cb in the same face. Hence, ifCb is unbounded, i.e. has only one or no endpoint, so does
Cb′ . For the other direction, assumeCb′ has only one endpointq and letp be any point in
Cb. We can rewrite this as

Cb′ = {q + α · v;α ≥ 0} ⊆ σ.

Sinceσ is convex, we have

σ ∋ (1− λ) · p+ λ(q + α · v)

= ((1− λ) · p+ λq) + α · λ · v ∈ Cbλ

for all λ ∈ [0, 1], α ≥ 0.

In particular,Cbλ is unbounded for allλ > 0.

Sinceg is continuous,g−1
|σ (conv({b, b′})) must be a closed set. HenceCb must be un-

bounded as well.

For both the bounded and unbounded case, this description ofthe fibers also gives us an
affine linear mapCbρ → Cbλ for all λ ≤ ρ ∈ [0, 1]. If ρ, λ > 0, this map is even bijective
(since both fibers are line segments). We can glue together all these maps for eachσ ∈ Gτ

to obtain a homeomorphismtρ,λ : g−1(bρ) → g−1(bλ) which is an affine linear map on
each edge. Ifλ = 0, ρ > 0, we still obtain a maptρ,λ which might contract certain edges
to a point.



UNIVERSAL FAMILIES OF RATIONAL TROPICAL CURVES 13

We can furthermore assume that there exists aθ ∈ Θ, such thatbλ, bρ ∈ Uθ (otherwise
cover conv({bλ, bρ}) with finitely manyUθ and use induction). Now affine linearity ofsθi
implies that the leaves which are identified undertλ,ρ are also marked by the samesi. In
other words,g−1(bλ), g

−1(bρ) have the same combinatorial type ifλ, ρ > 0. If λ = 0,
thenCbλ = Cb either has the same combinatorial type asCbρ or is obtained by contracting
some edges of the latter curve.

Denote byGbλ(k, l) the set of all cones inGσ of dimension(dim τ+1), such thatg−1
|σ (bλ)

is contained in the path fromk to l in the curveg−1(bλ). Then we have

distk,l(g
−1(bλ)) =

∑

σ∈Gbλ
(k,l)

dσ(bλ).

Since we know thatdσ is affine linear, it suffices to show thatGbλ(k, l) = Gbρ(k, l) for all
λ, ρ ∈ [0, 1], which immediately follows from the fact that the maptλ,ρ identifies equally
marked leaves and hence edges lying on the same path.

It remains to show thatdg is an integral map: We want to show that forb, b′ ∈ τ (of

dimensionk), such thatb − b′ ∈ Λτ , we havedg(b′)− dg(b) ∈ Z(
n
2). Note that the lattice

elements inMn are exactly the points representing curves with integer edge lengths, so
ϕg will be an integer map as well. Chooseσ, such that the fiber ofb′ in σ is a bounded line
segment. We have already shown that we have two endpointsp, q of both fibers lying in
the same faceσ′ < σ, hence in the same hypersurface ofVσ which is defined by an integral
equation

h(x) = α; h ∈ Λ∨
σ , α ∈ R.

By surjectivity ofλ̄g|τ : Λσ → Λτ , we have

Λσ
∼= Λτ × 〈v〉Z

for some primitive integral vectorv (which generateskerλgτ ).

Under this isomorphism we write the coordinates ofp, q andh as

p = (p1, . . . , pk, pv)

q = (q1, . . . , qk, qv)

h(x1, . . . , xk, xv) = h1x1 + · · ·+ hkxk + hvxv,

wherepi − qi ∈ Z for i = 1, . . . , k, hj ∈ Z for all j andhv 6= 0 (since otherwiseλg
would not be injective on the corresponding hypersurface).Now the identityh(p− q) = 0
transforms into

0 =

k∑

i=1

(qi − pi)hi + (qv − pv)hv

=

k∑

i=1

(b′ − b)ihi

︸ ︷︷ ︸

∈Z

+(qv − pv) hv
︸︷︷︸

∈Z

.

Henceqv − pv ∈ Q andq − p ∈ Λσ ⊗Z Q.

So there exists a minimalk ∈ N, such thatk · (q − p) ∈ Λσ. In particular,k · (q − p) is
primitive. Assumek > 1. Thenλ̄g(k · (q − p)) = k · (b′ − b). By surjectivity ofλ̄g, there
exists ana ∈ Λσ′ , such that̄λg(a) = b′− b. This impliesλ̄g(k ·a) = λ̄g(k · (q−p)). Since
λ̄g is injective onΛσ′ , we must havek · a = k · (q− p), which is a contradiction, since the
latter is primitive. Hencek = 1 andq − p ∈ Λσ.

Finally we obtain

Λσ ∋ (q′ − p′)− (q − p) = (dσ(b
′)− dσ(b)) · v.
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Hence, sincev is primitive,dσ(b′)−dσ(b) ∈ Z and the same follows fordg(b′)−dg(b). �

The first part of the preceding proof also gives us the following result as a byproduct, which
boils down to saying that fibers over the interior of a cell have the same combinatorial type:

Corollary 4.7. For eachτ ∈ B, b ∈ τ, b′ ∈ rel int(τ), there exists a piecewise linear,
continuous and surjective maptb′,b : g∗(b′)→ g∗(b) for which the following holds:

(1) If b, b′ ∈ rel int(τ), thentb′,b is a homeomorphism.
(2) If li(b), li(b′) denote thei-th leafs of the respective fiber, then

tb′,b(li(b
′)) = li(b).

(3) On each edgee of g∗(b′), tb′,b is affine linear ande is either mapped bijectively
onto its image or to a single vertex. In particular, verticesare mapped to vertices.

(4) If e1, e2 are two different edges ofg∗(b′), then

|tb′,b(e1) ∩ tb′,b(e2)| ≤ 1.

(5) For eachσ ∈ Gτ we have

tb′,b(|g
∗(b)| ∩ σ) ⊆ σ.

In fact the part of the proof of proposition 4.6 which impliescorollary 4.7 does not use the
last condition on a prefamily; therefore we can use it to prove the following lemma.

Lemma 4.8. Let g : T → B (with B smooth) be a morphism of tropical varieties which
satisfies conditions (1) and (2) on a prefamily. Then

Π : {σ ∈ T : σ > τ} → {α ∈ B : α > g(τ)}, σ 7→ g(σ)

is a bijection ifτ ∈ T is a cell on whichg is not injective. In this case we have furthermore
thatλg|τ : Λτ → Λg(τ) is surjective. Moreover, all maximal cells inT have trivial weight
1.

Proof. As in the proof of lemma 3.6 we can assume thatg is a linear function and that
T ,B are fan structures of the fan cycleT and the matroid variety modulo lineality space
B such thatg(τ) ∈ B for all conesτ ∈ T .

For surjectivitiy ofΠ, letα > g(τ). Choose elementsp ∈ rel int(g(τ)), q ∈ rel int(α). By
corollary 4.7,t−1

q,p(g
∗(p) ∩ τ) is a line segment. Letσ be any cone containing an infinite

subset of this. In particular,g(σ) = α. Then we can use the last statement of 4.7 to see
that we must haveσ > τ .

For injectivity, assume thatg(σ1) = g(σ2) = α > g(τ) for two distinctσi > τ . Then
tq,p(|g∗(q)|∩σi) = |g∗(p)|∩τ for i = 1, 2, which is a contradiction to the fourth statement
of 4.7.

As B is locally irreducible and connected in codimension1 (cf. [FR, lemma 2.4]) the
above bijection implies that there is an integerλ such thatωT (σ) = λ · ωB(g(σ)) for
all maximal cells inσ ∈ T . For the last part, we thus need to show thatλ = 1 and
thatg(vσ/τ ) = vg(σ)/g(τ) if g is not injective onτ , i.e. g maps normal vectors to normal
vectors. It is clear thatg(vσ/τ ) is a multiple ofvg(σ)/g(τ); asB is a matroid fan, it follows
that g(vσ/τ ) = λτ · vg(σ)/g(τ) for someλτ ∈ Z>0 which does not depend onσ. Let
ϕ1 . . . , ϕdim(B) be rational functions withϕ1 · · ·ϕdim(B) · B = {0} (cf. proof of lemma
3.6). Comparing the weight formulas for intersection products ofωϕ1···ϕdim(B)·B({0}) and
ωg∗ϕ1···g∗ϕdim(B)·T (τ) for an edgeτ ∈ T , we see thatλ = 1 andλβ = 1 for all cones
β ≥ τ . �

Before we can prove thatϕg is a pseudo-morphism, we need to fix a few notations:
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Notation 4.9.

• Let τ ∈ B(codim1). Choosep0, p1, . . . , pd ∈ rel int(τ), such that{pi − p0; i =
1, . . . , d} is a basis ofVτ . Furthermore, for eachσ > τ , choose a pointvσ ∈
rel int(σ), such thatvσ−p0 is a representative ofuσ/τ . We can assume that this is
possible, since there always exists avσ ∈ rel int(σ), qσ ∈ Q, such thatvσ − p0 =
qσ · uσ/τ moduloVτ . We can then make our choice such thatqσ = qσ′ =: q for
all σ, σ′ > τ , so

∑

σ>τ

ωB(σ) · uσ/τ =
1

q

∑

σ>τ

ωB(σ)(vσ − p0).

Hence the left hand side is inVτ if and only if the right hand side is.
So we obtain that

∑

σ>τ

ωB(σ)(vσ − p0) =
d∑

j=1

αj(pj − p0)

for someαi ∈ R.
• Corollary 4.7 justifies the following definitions:

– For k, l ∈ [n], denote byq1(k, l), . . . , qr(k, l) ∈ T the vertices of the fiber
g∗(p0) which lie on the path fromk to l (Actually, r also depends on the
choice ofk andl, but we will omit that to make notations simpler). Wherek
andl are clear from the context, we will also writeq1, . . . , qr.

– The fiber ofpj has the same combinatorial type asg∗(p0), so forj = 1, . . . , d,

denote byq(j)i , i = 1, . . . , r the i-th vertex in the fiber ofpj (Again, this
actually depends onk, l).

– Let σ > τ . The preimage ofqi(k, l) undertvσ ,p0 contains a certain number
of vertices lying on the path fromk to l, the first and last of which we denote
by qσi,k andqσi,l respectively.

– Letwi, i = 1, . . . , r−1 be the primitive direction vector of the bounded edge
from qi to qi+1. We define the lengthsei, e

(j)
i , eσi > 0 of the corresponding

edges via:

qi+1 = qi + ei · wi,

q
(j)
i+1 = q

(j)
i + e

(j)
i · wi,

qσi+1,k = qσi,l + eσi · wi.

– In addition we fixw0 := −vk, wr := vl, wherevk andvl are the primitive
direction vectors of the leaves markedk andl.

– For i = 1, . . . , r, denote byeσi,t(k, l), t = 1, . . . , r(i, k, l, σ) the length of the
edges on the path fromqσi,k to qσi,l.

• We define

∆i
k,l :=

∑

σ>τ

ω(σ)(eσi − ei)−
d∑

j=1

αj(e
(j)
i − ei); i = 1, . . . , r − 1,

dik,l :=
∑

σ>τ

ω(σ)





r(i,k,l,σ)
∑

t=1

eσi,t(k, l)



 ; i = 1, . . . , r.
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g∗(vσ)

g∗(p0)

g∗(pj), j > 0

k

q1

w
0−→

w1−→

e1
w
2−→

e2

l

w3

−→

q2

q3

qσ1,k = qσ1,l qσ2,k

eσ1

qσ2,l

e
σ
2,1 qσ3,k = qσ3,l

e σ
2

q
(j)
1 q

(j)
2

e
(j)
1 q

(j)
3e (j)

2

FIGURE 4.2. An illustration of the chosen notation

Summing up over all length differences at each vertex and edge and exchanging
sums gives us the following equation:

δk,l(τ) :=
∑

σ>τ

ω(σ)(distk,l(vσ)− distk,l(p0))−
d∑

j=1

αj(distk,l(pj)− distk,l(p0))

=
r−1∑

i=1

(dik,l +∆i
k,l) + drk,l. (4.1)

Remark4.10. To prove thatϕg is a pseudo-morphism, we need to show that(δk,l)k<l ∈
Im(Φn), i.e. it is0 inMn. The idea for the proof is the following: A cellρ′ that maps non-
injectively onto someτ ∈ B (and thus carries edges of the fibers of thepi) is a codimension
one cell inT . We will show that the vertices of the fibers in the surrounding maximal cones
can be used to express the balancing condition ofρ′, such that the coefficients coincide with
the balancing equation ofτ (lemma 4.11). However,dim ρ′ = dim τ + 1, so we have an
additional generatorwi of Vρ′ (that generates the kernel ofg|ρ′ ). We will then show that
the quantities∆i

k,l anddik,l we defined above can be expressed in terms of the coordinates
of the balancing equation in this elementwi (lemma 4.13). These expressions will then
yield δk,l as an alternating sum where everything except thewi-coefficients of the vertices
at the leavesk andl cancels out.

Lemma 4.11. For eachk 6= l ∈ [n], eachi = 1, . . . , r, there existξi(k, l), χi(k, l) ∈ R,
such that

d∑

j=1

αj(q
(j)
i − qi) =

∑

σ>τ

ω(σ)(qσi,l − qi) + ξi(k, l) · wi, (4.2)

d∑

j=1

αj(q
(j)
i − qi) =

∑

σ>τ

ω(σ)(qσi,k − qi) + χi(k, l) · wi−1. (4.3)
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Proof. By corollary 4.7,qi, q
(1)
i , . . . , q

(d)
i are all contained in the relative interior of the

same minimal coneρ ∈ Gτ . Since theqi are vertices,dim ρ = dim τ , since otherwise, the
kernel ofg|Vρ

would be spanned by all edges emanating fromqi and thus have a dimension
higher than1.

Now letGτ ∋ ρ′ > ρ be the adjacent cone, such that the kernel ofg|Vρ′
is spanned bywi

(i.e.ρ′ contains (part of) thei-th edge). By lemma 4.8, there is a bijection

Π : {σ′ > ρ′} → {σ > τ};σ′ 7→ g(σ′).

Sinceλ̄g is surjective, we have the following isomorphisms:

Λσ′
∼= Λg(σ′) × 〈wi〉 for all σ′ > ρ′,

Λρ′
∼= Λτ × 〈wi〉

=⇒ Λσ′�Λρ′

∼= Λg(σ′)�Λτ
.

Sincetvσ,pj
(qσi,l) = q

(j)
i , tvσ ,p0(q

σ
i,l) = qi and both maps preserve polyhedra, all these

vertices are contained in a common polyhedron which must be aface ofσ′ := Π−1(σ).
Henceqσi,l − qi is a representative ofuσ′/ρ′ = (uσ/τ , 0). This implies

∑

σ>τ

ω(σ)(qσi,l − qi) ∈ Vρ′ .

We also have
d∑

j=1

αj(q
(j)
i − qi) ∈ Vρ ⊆ Vρ′ .

and since both are mapped to the same element
∑

σ>τ ω(σ)(vσ−p0) =
∑d

j=1 αj(pj−p0)

underg, they can only differ by an element fromker g|Vρ′
= 〈wi〉, which implies the first

equation. Exchangingk andl gives the second equation. �

Remark4.12. It is obvious from the equations themselves, thatχ1(k, l) = χ1(k) actually
only depends onk (sincew0 = vk is the same for alll). Similarly, ξr only depends onl
and if we reverse the path direction, we find that

χ1(k) = χ1(k, l) = −ξr(l, k).

Lemma 4.13. For eachk 6= l ∈ [n] we have

∆i
k,l = ξi − χi+1 for all i = 1, . . . , r − 1,

dik,l = χi − ξi for all i = 1, . . . , r.

Proof. If we subtract equation (4.2) from (4.3) fori+ 1, we obtain
d∑

j=1

αj((q
(j)
i+1 − q

(j)
i )− (qi+1 − qi)

︸ ︷︷ ︸

=(e
(j)
i −ei)·wi

)

=
∑

σ>τ

ω(σ)((qσi+1,k − q
σ
i,l)− (qi+1 − qi)

︸ ︷︷ ︸

=(eσi −ei)·wi

) + (χi+1 − ξi) · wi.

Factoring outwi we obtain
0 = ∆i

k,l − ξi + χi+1.

For the second equation leti ∈ {1, . . . , r} be arbitrary. Sinceg∗(p0) is a smooth curve,

it is locally atqi isomorphic toLval(qi)
1 . Denote byz1, . . . , zs the direction vectors of the

outgoing edges, w.l.o.g.z1 = −wi−1, zs = wi. Now each edgeE in the preimage ofqi
undertvσ,p0 induces a partition of the set{1, . . . , s} = IE ·∪IcE such thatx, y ∈ {1, . . . , s}
are contained in the same set if and only if the path fromzx to zy does not pass throughE
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(i.e. we separate thezi “on one side ofE” from the others). It is easy to see that, due to the
balancing condition of the curve, the direction vector ofE must be

wE = ±
∑

x∈IE

zx = ∓
∑

y∈Ic
E

zy,

depending on the choice of orientation (one can, for example, see this by induction on the
number of edges). Now assumeE lies on the path fromk to l (i.e. in t−1

vσ ,p0
(qi) it lies on

the path fromqσi,k to qσi,l). ChooseIE , such that1 /∈ IE ∋ s, i.e.wE points towardsl.
Denote byEσ

1 , . . . , E
σ
r(i,k,l,σ) the sequence of edges fromqσi,k to qσi,l. Subtracting equation

qσi,k
wE1

= z3 +

z4 + z5
qσi,l

wE2
=

z4 + z5

z1
k

z2

z3

z4

z5
l

qi
∼= Lval qi

1
g∗(p0) “locally at qi”

g∗(vσ) “locally at t−1
vσ ,p0

(qi)”

z1
k

z2

z3

z4

z5
l

FIGURE 4.3. The direction vector of an edge is determined by thezi
lying “behind” it.

(4.2) from (4.3) for the samei, we obtain

0 =
∑

σ>τ

ω(σ)(qσi,l − q
σ
i,k) + ξi · wi − χi · wi−1

=
∑

σ>τ

ω(σ)





r(i,k,l,σ)
∑

t=1

eσi,t · wEt



+ ξi · zs + χi · z1

=zs ·

(
∑

σ>τ

ω(σ)

(
r∑

t=1

eσi,t

))

+
∑

σ>τ

ω(σ)





r∑

t=1

eσi,t




∑

x∈IEt\{s}

zx









︸ ︷︷ ︸

:=R, contains neitherz1 norzs

+ ξi · zs + χi · z1

=zs · (d
i
k,l + ξi)− χi




∑

x 6=1

zx



+R.

Sincez1 does no longer appear in this equation and{zx, x 6= 1} is linearly independent by
smoothness, the coefficient ofzs must be 0:

0 = dik,l + ξi − χi.

�
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Proof of theorem 4.4.By equation (4.1) and lemma 4.13 we have

δk,l(τ) =

r−1∑

i=1

(dik,l +∆i
k,l) + drk,l

= χ1(k, l)− ξr(k, l)

4.12
= χ1(k, l) + χ1(l, k)

4.12
= χ1(k) + χ1(l).

Hence
(δk,l(τ))k<l = Φn((χ1(r))r=1,...,n).

�

5. EQUIVALENCE OF FAMILIES

In the classical case, two familiesT
g
→ B, T ′ g′

→ B are equivalent if there is an isomor-
phismψ : T → T ′ that commutes with the morphisms and markings. Such an isomor-
phism hence automatically induces isomorphisms between the fibersg∗(p) andg′∗(p) of a
pointp in B.

In fact, the last statement already uniquely fixes the mapψ, so for any two equivalent
families ofn-marked tropical curves we obtain a bijective mapT → T ′ that commutes with
g, g′ and the markings by identifying the fibers over each pointp (which are isomorphic by
definition). We would like to see if this map is in fact a morphism. Again, we will only be
able to show that it is a pseudo-morphism and since in generalwe can not assumeT to be
smooth, we cannot give a stronger statement.

Definition 5.1. Let T
g
→ B, T ′ g′

→ B be two equivalent families ofn-marked tropical
curves. Now for each pointp in B there is a unique isomorphism (of tropical curves)

ψp : g∗(p)→ g′∗(p)

(i.e. it identifies equally marked leaves and is linear of slope 1 on each edge). We define a
map

ψ : T → T ′

t 7→ ψg(t)(t).

Theorem 5.2. The mapψ is a bijective pseudo-morphism whose inverse is also a pseudo-
morphism. In particular, ifT or T ′ is smooth,ψ is an isomorphism.

Proof. Since the construction ofψ is symmetric, it is clear that the inverse ofψ is a pseudo-
morphism ifψ itself is one. Also, by proposition 4.3, it is an isomorphismif any of T or
T ′ is smooth.

First, we prove thatψ is piecewise integral affine linear: Letτ ∈ T and chooset ∈ τ, t′ ∈
rel int(τ). Again, it suffices to show thatψ is affine linear on the line segment conv{t, t′}.

By corollary 4.7,t andt′ lie on edges of the corresponding fibers which have the same
direction vectorw. Select verticesp, p′ of these edges, such thatt = p+α·w, t′ = p′+α′·w
for α, α′ ≥ 0.

Denote byq := ψ(p), q′ := ψ(p′) and letξ be the direction vector of the corresponding
edge inT ′. Hence

ψ(t) = ψ(p+ α · w) = q + α · ξ

ψ(t′) = ψ(p′ + α′ · w) = q′ + α′ · ξ
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and using the fact that any convex combination ofp andp′ must by 4.7 again be a vertex,
it follows that

ψ(t+ γ(t′ − t)) = ψ((p+ γ(p′ − p)) + w · (α+ γ(α′ − α)))

= (q + γ(q′ − q)) + ξ · (α+ γ(α′ − α))

= ψ(t) + γ(ψ(t′)− ψ(t))

for anyγ ∈ [0, 1]. Henceψ is affine linear. Using the fact that it has slope 1 on each edge
of a fiber and thatg′ ◦ ψ = g, it is easy to see that it respects the lattice.

It remains to see thatψ is a pseudo-morphism, so letτ be a codimension one cell ofT . We
distinguish two cases:

• g|τ is injective: Theng(τ) is a maximal cell ofB, so the adjacent maximal cells
σ > τ are also mapped tog(τ). So if we take a pointp ∈ rel int(τ), the normal
vectorsvσ/τ − p correspond to normal vectors of the edges of the fiberg∗(g(p))
adjacent top (after proper refinement). Since the fiber is smooth, these add up to
0 and by definition ofψ, so do their imagesψ(vσ/τ )− ψ(p).
• g|τ is not injective: Hence the fiber inτ over a generic pointp0 ∈ g(τ) is contained

in them-th edge on the path from some leafk to some leafl (it doesn’t really
matter, which one). Choosep0, . . . , pd, vσ in g(τ) and its adjacent cellsg(σ), σ >
τ as defined in 4.9. We now use the shorthand notationq0, qj , qσ for them-th
vertex point of the fibers ofp0, pj andvσ. Now lemma 4.11 tells us thatqσ − q0
is actually a normal vector ofσ with respect toτ and that its balancing equation
reads

∑

σ>τ

ω(σ)(qσ − q0) =
d∑

j=1

αj(qj − q0)− ξ
T
m(k, l) · wm.

Now the image ofq0 underψ is by definition them-th nodal point of the fiber
g′∗(p0), so we also get

∑

σ>τ

ω(σ)(ψ(qσ)− ψ(q0)) =
d∑

j=1

αj(ψ(qj)− ψ(q0))− ξ
T ′

m (k, l) · ψ(wm).

Hence, to prove thatψ is a pseudo-morphism, it remains to show thatξT
′

m (k, l) =
ξTm(k, l).

By the proof of proposition 4.4, we know that

δk,l(τ) = Φn((χ
T
1 (k))k=1,...,n) = Φn((χ

T ′

1 (k))k=1,...,n).

Since the left side is independent on the choice of family by definition (it is defined
only in terms of lengths of fibers) andΦn is injective, we must haveχT

1 (k) =

χT ′

1 (k) for anyk. Using the fact thatdik,l and∆i
k,l are also independent of the

choice of family and applying lemma 4.13 inductively, we finally see that

χT
i (k, l) = χT ′

i (k, l) andξTi (k, l) = ξT
′

i (k, l)

for any possiblei, k, l.

�
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