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CHERN CLASSES OF TROPICAL VECTOR BUNDLES

LARS ALLERMANN

ABSTRACT. We introduce tropical vector bundles, morphisms and matisections of these bundles and
define the pull-back of a tropical vector bundle and of a reticsection along a morphism. Most of the

definitions presented here for tropical vector bundleslvéltontained i [T09] for the case of line bundles.
Afterwards we use the bounded rational sections of a trop&ztor bundle to define the Chern classes of
this bundle and prove some basic properties of Chern clabgealy we give a complete classification of

all vector bundles on an elliptic curve up to isomorphisms.

1. TROPICAL VECTOR BUNDLES

In this section we will introduce our basic objects such apitral vector bundles, morphisms of tropical
vector bundles and rational sections.

Definition 1.1 (Tropical matrices) A tropical matrix is an ordinary matrix with entries in thepical
semi-ring
(T =RU {—OO}, 695 ®)a

wherea @ b = max{a, b} anda ® b = a + b. We denote bMat(m x n, T) the set of tropicain x n
matrices. Letd € Mat(m x n,T) andB € Mat(n x p,T). We can form a tropical matrix product
A®B := (¢;j) € Mat(mxp, T) wherec;; = @, a;r, ©b;. Moreover, letG(r x s) € Mat(r x s, T)
be the subset of tropical matrices with at most one finiteyentevery row. LetG(r) be the subset of
G(r x r) containing all tropical matrices with exactly one finite grin every row and every column.

Remarkl.2. Note that a matrixA € G(r x s) does, in general, not induce a m@p : R* — R" :
x — A®z as the vectod ® x may contain entries that areco. To obtain a mapfs : R* — R”
anyway we use the following definition: Lete R* andA ® « = (y1,...,y,) € T" with y; = —oc0
fori € I andy; € Rfori ¢ I. Then we defings(z) := (1,...,9-) € R” with g; := 0for: € T and
yi =y fori & 1.

Notation 1.3. For an element of the symmetric group,. we denote by4, the tropical matrix4, =
(ai;) € Mat(r x r, T) given by

—o0, else.

3

» ::{ 0, ifj=o(i)

Moreover, foray, . .. ,a, € Rwedenote byD(aq, ..., a,) the tropical diagonal matriR (a1, . .., a,) =
(dij) € Mat(r x r, T) given by

oo, else.
Note that every elemernit/ € G(r) can be written a8/ = A, ® D(a4,...,a,) for somes € S, and
some numbers;, ..., a, € R. Moreover,G(r) together with tropical matrix multiplication is a group

with neutral elemenk := D(0,...,0).

Lemma 1.4. G(r) is precisely the set of invertible tropical matrices, i.e.

G(r) ={A eMat(r x r,T)|3A" € Mat(r x r,T) : A® A'=A"® A= E}.
1
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Proof. The inclusion
G(r) C{A e Mat(r x r,T)|[3A' e Mat(r x r, T): A0 A =A ©A=FE}

is obvious. Thus, letl, A’ € Mat(r x r,T) be given suchthatt ©® A’ = A’ ® A = E. Assume that
A = (a;;) contains more than one finite entry in a row or column. For $§ititp of notation we assume
thatai1,a12 # —0o. As A ® A’ = E we can conclude that the first two rows 4flook as follows:

« —00 e —00
g - ... —o0
A = for somea, 8 € R.
*

As moreoverd’ ® A = E holds, we can conclude from the second lined6fand the first column oft
that
ay + B = —o0,

which is a contradiction ta1, 3 € R. O

We have all requirements now to state our main definition:

Definition 1.5 (Tropical vector bundles)Let X be a tropical cycle (cf.[JARQ7, definition 5.12]). A
tropical vector bundleover X of rankr is a tropical cycleF' together with a morphism : FF — X
(cf. [ARQY, definition 7.1]) and a finite open coverify, ..., Us} of X as well as a homeomorphism

;- 7 H(U;) = U; x R" for everyi € {1,..., s} such that

(a) for all: we obtain a commutative diagram

W_I(Ui) L U; xR"

U,

wherep; : U; x R" — U is the projection to the first factor,

(b) foralli,j the compositiprpgl) o ®; : 7 1(U;) — Ris aregular invertible function (cf_[AR07,
definition 6.1]), where" : U; x R” — R : (z, (a1, ..., ar)) = aj,

(c) foreveryi,j € {1,...,s} there exists &ransition mapM;; : U; N U; — G(r) such that

D00, (U;NU;) xR” — (U;NU;) x R"

is given by(z,a) — (z, M;;(x) ® a) and the entries al/;; are regular invertible functions on
U; N U; or constantly—oo,

(d) there exist representativéy of F' and X, of X such thatFy, = {r~!(7)|r € X,} and
wr, (m71(7)) = wx, () for all maximal polyhedra € X,.

An open setU; together with the ma@; : 7~ 1(U;) = U; x R" is called alocal trivialization of F.
Tropical vector bundles of rank one are calteapical line bundles

Remarkl.6. LetV;,...,V; be any open covering aX. Then the coverindU; N V;} together with
the restricted homeomorphisn#g| . -1, nv,) and transition map3/;; |, v, )nw,nv; fuffills all re-
quirements of definitioh 115, too, and hence defines agaircwvbundle. As the open covering, the
homeomorphisms and the transition maps are part of the dakfiaition[I.5 this new bundle is (ac-
cording to our definition) different from our initial one avéhough they are “the same” in some sense.
Hence, in the following we will identify vector bundles thatise by such a construction one from the
other:
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Definition 1.7. Let 7 : ' — X together with open coveringy,...,Us, homeomorphism®,; and
transition maps\/;; andr : F' — X together with open coveringj, ..., Vz, homeomorphism#;
and transition map#V;; be two tropical vector bundles according to definifiod 1.5e Will identify
these vector bundles if the vector bundtes F — X with open coverindU; N V;} and restricted
homeomorphisme;| -1, nv,) respectively¥;| .-y, ~v,) and transition maps/;;| v, nv,)nw,nv)
respectivelyNy: |, v, )nw;nv;) are equal.

Remarkl.8 Letw; : F; — X andms : F» — X be two vector bundles o . By definition[I.Y we can
always assume thdt; and F, satisfy definitiod 1.6 with the same open covering.

Remarkl.9. Letw : FF — X be a vector bundle with open coveribg, ..., Us and transition maps
M;; as in definitio_1b. On the common intersectionn U; N U, we obviously havell;;(z) =
My;(z) © M;,(x). This last equation is callecbcycle conditionConversely, given an open covering
Ui,...,Usof X and maps\f;; : U; NU; — G(r) such that the entries dif;;(x) are regular invertible
functions onJ; NU; or constantly-oco and the cocycle conditiohl;; (xz) = My, (x) ® M;x(z) holds on
U;nU; NUy, we can construct a vector bundie F' — X with this given open covering and transition
functions)M;;: Take the disjoint uniod [;_, (U; x R") and identify point(z,y) ~ (z, M;;(z) ® a)

to obtain the topological spa¢é€’|. We have to equip this space with the structure of a tropigelec
As this construction is exactly the same as for tropical boadles, we only sketch it here and refer
to [T09] for more details. Let((Xo, |Xol,{vs}),wx,), {Ps}) be a representative of. We define
Fy := {r (0)|o € X0} andwp, (7 1(0)) := wx, (o) for all maximal polyhedra € X,. Our next
step is to construct the polyhedral chapts- () for Fy: Leto € X, be given and lev;,, ..., U;, be
all open sets with non-empty intersection with Moreover, let{V;]i € I'} be the set of all connected
components of a- N U;, . Every such sel; comes from a sdt;(;) of the given open covering. Hence,
for every pairk,l € I we have a restricted transition mafy; := M;) ;) lvi.nv;- This implies that
for all k,1 € I the entries ofVy; o ®_ 1 are (globally) integer affine linear functions &h N V;. As o

is simply connected, for every such enfrye O*(V,, N V;) of Ny, there exists a unique continuation
h € O*(c). Hence we can extend all transition mayg : Vi, N'V; — G(r) to mapsN;, : 0 — G(r).
Now we choose for everye I a pointP; € V; and for all pairs:, ! € T a pathyy; : [0,1] — o from Py

to F;. Letk,l € I be given. As the image ofy; is compact there exists a finite covering, ,..., V..
of v ([0, 1]). Forz € V; we set
Styw)(@) = (V) (@) O O (N, L, ()71 € G(r).

Now fix someky € I. For alll € I we define maps
B gy Vi X R 211 (1) = R (2,0) = (0 (2), S (ko) (2) © a).
These maps agree on overlaps and hence glue together to adainp
Pr-1(o) i T (o) = R

In the same way we can construct the fan ch@;‘tsl(g). Then we defind’ to be the equivalence class

F = [(Fo, IFol {Zr1(0) D) wr)s {81 D) -

Example 1.10. Throughout the chapter, the curie:= X, from [ARO7, example 5.5] will serve us as
a central example. Recall that arises by gluing open fans as drawn in the figure:

—_—

’

[~
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Moreover, recall from[ARQY7, definition 5.4] that the traisn functions between these open fans com-
posingX are integer affine linear. This implies that the cuXrdnas a well-defined lattice lengih We
can coverX by open seté/,, Us, Us as drawn in the following figure:

\

3
X

The easiest way to construct a (non-trivial) vector bundli@ok » on X is fixing a (non-trivial) transi-
tion mapM12 Ui NU; — G(T) and definingM23 :UsNU3 — G(’I’), Mz, : UsNU; — G(’I’) to be
the trivial mapse — E for all x. We will see later that in fact every vector bundle of randn X arises
in this way.

Us

Knowing what tropical vector bundles are, there are a fevionstrelated to this definition we want to
introduce now:

Definition 1.11 (Direct sums of vector bundles) et : F; — X andwy : F» — X be two vector
bundles of rank- and’, respectively, with a common open coveriflg, . .., U and transition maps
Mi(jl) andMi(f), respectively, satisfying definitidn 1.5 (see renfark 1V8e. define thelirect sum bundle
m: F1 & Fy — X to be the vector bundle of rank+ ' we obtain from the gluing data
e Uy,...,Us
M 2@ Px) -
o M x M :U;NU; — G(r+71') 12— K @) .
J J —oo  M;"(x)

Definition 1.12 (Subbundles)Let 7 : FF — X be a vector bundle with open coveribg, ..., U, and
homeomorphism®; according to definitioh 1]5. A subcycle € Z;(F) is called a subbundle of rank
r" of Fif n|g : E — X is a vector bundle of rank such that we have forall=1,...,s:

Di|(n|p)-1 () (wlE) TN (Us) = Ui x (ejy, .. €5, )
for somel < j; < ... < j» <r, where the:; are the standard basis vectorstin

Remarkl.13 If 7 : FF — X is a vector bundle of rank with subbundle® of rank+’ like in definition
[1.12 this implies that there exists another subburdlef rankr — r’ with

Dil(r) -1y () T (Us) = Ui % e5li & {1, P
and hence that' = F @ E’ holds.

Definition 1.14 (Decomposable bundleshet 7 : ' — X be a vector bundle of rank We say that’
is decomposabl# there exists a subbundigy : E — X of F of rank1 <+’ < r. Otherwise we calll
F anindecomposable vector bundle

As announced in the very beginning of this section we alsotwaralk about morphisms and, in
particular, isomorphisms of tropical vector bundles:

Definition 1.15(Morphisms of vector bundles)A morphism of vector bundles, : F; — X of rankr
andr, : Fy — X of ranks’ is a morphismV : F; — F} of tropical cycles such that

(@) m =m0 ¥and
(b) there exist an open coverirg, ..., U, according to definitiof 115 for bott; and I, (see
remarI8) and mapd; : U; — G(r’ x r) for all i such that
2 o Wo ()1 U; x R" — Uy x R”

is given by(z, a) — (z, fa,(x)(a)) (cf.[L2) and the entries of; are regular invertible functions
on U; or constantly—oc.
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An isomorphism of tropical vector bundles is a morphism aftee bundlesV : F; — F5 such that
there exists a morphism of vector bundigs: F, — F} with ¥/ o & = id = ¥ o ¥,

Lemma 1.16. Letm : F;, — X andmy : F» — X be two vector bundles of rankover X. Then the
following are equivalent:

(a) There exists an isomorphism of vector bundlesf; — Fs.

(b) There exist a common open coveritlg, . .., Us of X and transition mapgwi(jl) for F; and
Ml(f; fﬁr F, satisfying definitiof 115 (cf. remalk1.8) and mdps: U; — G(r)fori=1,...,s
such that

e the entries off; are regular invertible functions o#y; or constantly—oco and
e forall 7, holdsE;(z) ® Mi(jl)(:c) = Mi(f)(:v) © E;(z)forallz € U;NU,.

Proof. (a) = (b): We claim that the mapd; : U; — G(r x r) of definition[I.I5 are the wanted maps
E;. As ¥ is an isomorphism we can conclude th{x) is an invertible matrix for alk: € U;, i.e. that

A; : U; — G(r). Hence it remains to check that;j(z) ® Mi(jl)(:c) = Mi(f) (x) ® A;(x) holds for all
x € U;NUj: Leti, j be given. AsU : F, — F; is an isomorphism, the diagram

D 2owo(e) 1)t
UinUj) x RN ———— = (U; N U;) xR"

F Fp\— F Fo\
(I)jlo(q)il) ll l@j2o(q>i2) 1

(UiﬂUj) XRTW(UiﬂUj) x R"

commutes. Hencd; (z) ® Mi(jl)(a:) = Mi(j?)(:c) ©® A;(z) holds.
(b) = (a): Conversely, let the maps; : U; — G(r) be given. The equation
Ej(x) © My (z) = M (z) © Ei(x)

for all 2 € U; N U; ensures that the maps

Ui xR" = U; xR": (z,a) — (z, Ei(z) ®a)
on the local trivializations can be glued to a globally dedineap¥ : |F}| — |Fz|. Moreover, this map
is a morphism ag, 7o are morphisms and the ma;p%) o <I>f1 , py) o <I>f2 and the finite entries af;
are regular invertible functions (cf. definitibn1L.5). TheuationE; (x) © M) (z) = M (z) © E;(x)
implies that

B (@) © M (2) = My (2) © B} ()

holds for allz € U; N U;, whereE, ' (z) := (Ey(x))~! for all z € Uy. As the finite entries of
Ek_1 : U, — G(r) are again regular invertible functions we can also glue tapsn

Ui xR" = U; xR": (z,a) = (v, E; ' (z) ©® a)

on the local trivializations to obtain the inverse morphi$im: | F| — |F1|, which proves tha® is an
isomorphism. O

The morphisms we have just introduced admit another impbdperation, namely the pull-back of a
vector bundle:

Definition 1.17 (Pull-back of vector bundles)Let = : ' — X be a vector bundle of rankwith open
coveringUy, .. ., U, and transition mapa/;; as in definitio LB, and lef : Y — X be a morphism
of tropical cycles. Then thpull-back bundler’ : f*F — Y is the vector bundle we obtain by gluing
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the patcheg —(U;) x R, ..., f~1(Us) x R" along the transition map¥;; o f. Hence we obtain the
commutative diagram

’

PE- -

I
| lﬂ'
A

V=X

where f/ and 7’ are locally given byf’ : f=*(U;) x R" — U; x R" : (y,a) — (f(y),a) and
' fTHU) X RT = f7HU) : (y,a) = .

To be able to define Chern classes in the second section wetlmeedtion of a rational section of a
vector bundle:

Definition 1.18 (Rational sections of vector bundled)et 7 : /' — X be a vector bundle of rank A
rational sections : X — F of F'is a continuous map: | X| — | F| such that

(@) m(s(z)) ==xforallz € | X|and
(b) there exist an open coveritg, . .., Us and homeomorphisms; satisfying definitiod 15 (cf.
definition[1.T) such that the map$) o ®; 0s: U; — R are rational functions o#i; for all 4, 7,

Wherepji) :U; x R" — Ris given by(z, (a1, ...,a,)) — a;. Arational sectiors : X — F'is called
boundedf the above mappy) o ®; o s are bounded for all, 5.

Remarkl.19 Letw : L — X be aline bundle andl: X — L a rational section. By definition, the map
pWod,0sis arational function od; for all i. Moreover, orl/;NU; the map® ¥ o®;0s andp) o ®;0s
differ by a regular invertible function only. Henealefines a Cartier divisdP(s) € Div(X).

There is a useful statement on these Cartier divigdrs in [T09] that we want to cite here including
its proof:

Lemma 1.20. Let7 : L — X be a line bundle and let,, s, : X — L be two bounded rational
sections. The(s;) — D(s2) = h for some bounded rational functidne K£*(X), i.e. D(s1) and
D(s2) are rationally equivalent.

Proof. Let Uy, ..., Uy be an open covering of with transition maps\/;; and homeomorphisms;
according to definitiofi 115 such that for alboth sgi) = p® o ®; 0 s; and séi) = p® o ;0 sy
are rational functions ofY; (cf. definition[II8). We defing, := s\ — s\ € K*(U;). As we have
s\ s = 50— ) = My e 07 (U; N U;) for all i, j these mapé; glue together td, € K*(X).
Hence we have

D(s1) = D(s2) = [{(Us i)} = {(U:s5)})
[{(U:, 58 = s$)})
H{(Ui, hi)}]
{UXT], R)}H.

O

Remark1.21 Lemmal1.2D implies that we can associate to any line buhdd&mitting a bounded
rational sectiors a Cartier divisor clas®(F') := [D(s)] that only depends on the bundleand not on
the choice of the rational sectien

Combining both the notion of a morphism of vector bundlesthiedhotion of a rational section we can
define the following:
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Definition 1.22 (Pull-back of rational sections).et 7 : ' — X be a vector bundle of rank and
f:Y — X amorphism of tropical varieties. Moreover, ket X — F be a rational section af with
open coverind/y, ..., U, and homeomorphismB,, ..., &, as in definitio 1.18. Then we can define
a rational sectionf*s : 'Y — f*F of f*F, thepull- back sectiorof s, as follows: Onf~1(U;) we
define

Frs o f7HUD) — F7HUD) < Rty = (y, (o @50 s 0 f)(y),
wherep; : U; x R” — R" is the projection on the second factor. Note thatfar f—*(U;) N f~1(U;)
the points(y, (p; o ®; o so f)(y)) and(y, (p; o ®; o s o f)(y)) are identified inf*F if and only if
(f(y), (pio®;os0 f)(y)) and(f(y), (p; o @, o so f)(y)) are identified inF. But this is the case as
(f(y), (pi o @ios0 f)(y)) = (®i08)(f(y)) ~ (B 05)(f(y) = (f(y), (pj © ®;j o s0 f)(y)). Hence

we can glue our locally defined maps to obtaina mag*s : Y — f*F.

We finish this section with the following statement on vediandles on simply connected tropical
cycles which will be of use for us later on:

Theorem 1.23.Letn : ' — X be a vector bundle of rank on the simply connected tropical cycle
X. ThenF' is a direct sum of line bundles, i.e. there exist line bundlegs.. ., L, on X such that
F=0Lh&...®L,.

Proof. We show that every vector bundle of rank> 2 on X is decomposable. Léfy,..., U, be an
open covering ofX and let

Mij(x) = D(p),..., o)) (2) © Ay, () =: Dij(z) ® Aoy, (2), € U;NU;

with 905}]?, e goifj) € O*(U; nU;) ando,;(z) € S, be transition functions according to definition
[I.5. We only have to show that it is possible to track the ficgirdinate of theR”-factor inU; x R”
consistently along the transition maps: ket [0,1] — |X| be a closed path starting and ending in
P € U,. Decomposing into several paths if necessary, we may assumeythas no self-intersections,
i.e. thatylp,) is injective. As~([0,1]) is compact we can choose an open covefifig .., V; of
~([0,1]) such that for allj we haveV; C U; for some index = i(j), P € Vi = V; C Uy, all setsV;
and all intersectiong;NV; ., are connected and all intersectidiis\V;» for non-consecutive indices are
empty. For set¥; andV;» with non-empty intersection we have restricted transilimpSMvj,v,( ) =
DV vy (@ )@Aav vy induced by the transition maps betwedép;, 2 V; andU;(;y 2 Vj.. Note that
the permutation partA,,V v of the transition maps do not depend:oas all intersection¥; NV}, are

connected and the permutations have to be locally conddmtlefinel, := oy, , v, 0...00v, 1,(1).

We have to check that, = 1 holds. First we show thal, does not depend on the choice of the
coveringVi,...,Vi. Hence, letV], ..., V}, be another covering as above. We may assume that all
intersectionsl; N Vj’, are connected, too. Between any two sétB € {Vi,...,V;,V{,..., ,}

with non-empty intersection we have restricted transitimps]\AiAyB(:c) = EA,B( ) © Ag,p &

above. Moreover, leb = oy < a1 < ... < a, = 1 be a decomposition db, 1] such that for

all i we havey([a;, a;+1]) C V; N Vj’, for some indiceg, j'. Let iy be the maximal index such that
’Y([O‘im aioJrl]) CVan Vb/ and

OV, 1,V ©.-..00Vv )V, = O.Vb/7va 9] UVvaVb/ ©...0 O'V1/7V2)/

is still fulfilled. Assume thaty < p — 1. Lety([aiy+1,@ig+2]) € Vo N VY. Hencey(a,+1) €
V. NV NV, NV, and we can conclude using the cocycle condition:

OVa,Vy OO0V, 1,Vy ©--- 00V Vo, = 0V, V, © UVb’,Va © UVvaVb, 0...0 UVl’.,VZ,’
= UVa-,Va/ OO'V/ Va OO'V/ V’, OUVszVb/O"'oUVl/'er/
= le:/ava’ [e) O'V/ V’ o) O'Vb/ 17Vb/ O,..0 0'V1/7V2/,

a contradiction to our assumption. Herige= p — 1 and we can conclude tha{ is independent of the
chosen covering.
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If v andy’ are paths that pass through exactly the same operUsetsthe same order, then we can
conclude thaf, = I, holds as exactly the same transition functions are involifshce, a continuous
deformation ofy does not changé,. As X is simply connected we can contracto a point. This
implies I, = I,,, wherev, is the constant pathy(t) = P for all t. Thusl, = I,, = 1. This proves
the claim. O

There is a related theorem in [T109] which we want to state.h&sewe will not need the result in this
work, we will omit the proof and refer to [T09] instead.

Theorem 1.24.Letn : L. — X be a line bundle on the simply connected tropical cy€leThenL is
trivial, i.e. L 2 X x R as a vector bundle.

Combing both theorem 1.P3 and theolflem1..24 we can concledeltbwing:

Corollary 1.25. Letr : FF — X be a vector bundle of rankon the simply connected tropical cycle
ThenF is trivial, i.e. F = X x R" as a vector bundle.

2. CHERN CLASSES

In this section we will introduce Chern classes of tropicatter bundles and prove basic properties. To
be able to do this we need some preparation:

Definition 2.1. Let7 : F — X be a vector bundle of rankand lets : X — F' be a rational section
with open coverind/y, . .., U, as in definitiod 1.T8. We fix a natural numbex & < r and a subcycle
Y € Z,(X). By definition,s;; := p§i) o®; 0s:U; — Ris arational function o/; for all 4, 5. Hence,
for all i we can take local intersection products
P Y)nU= Y s sy (Y OU).

1<j1<...<jp<r
Sincesirj = s,4(;) +¢; onU;NU; forsomer € S, and some regular invertible map € O*(U;NUy ),
the intersection products®) - Y') N U; and(s*) . Y') N Uy coincide onlJ; N U; and we can glue them
to obtain a global intersection cyc€®) - Y € Z;_(X).

Lemma 2.2. Letw : ' — X be a vector bundle of rank, fixk € {1,...,r} andlets : X — F
be a rational section. Moreover, |1&f € Z;(X) be a cycle and lep € £*(Y') be a bounded rational
function onY". Then the following equation holds:

sF (- Y)=¢- (s¥).Y).

Proof. The claim follows immediately from the definition of the prads(®) . Y. O

Lemma 2.3. Let7 : FF — X andn’ : F/ — X be two isomorphic vector bundles of rankwith
isomorphismf : F' — F’. Moreover, fixc € {1,...,r}, lets : X — F be a rational section and let
Y € Z;(X) be a cycle. Then the following equation holds:

sy = (fos)® .Y € Z_(X).

Proof. Let Uy, ...,U, be an open covering oX satisfying definitiori L5 for botl” and F’ and let
Sij = plg-i) o®;0s:U; — Rand(fos); := plg-i) o®;0 fos: U; — R as in definitio Z1L. By
lemma1.Tb the isomorphisyhcan be described dif; x R” by (z,a) — (z, E;(z) ® a) with E;(z) =
D(p1,...,0r) ® A, for some regular invertible functionsy, ..., ¢, € O*(U;) and a permutation
o € S,.. Hence(f o s)i; = si0(;) + ¢; ONU; and thus
S sigsy, (YUY = > (fos)y - (fos)y, - (Y NU),
1<ji<...<je<r 1<j1<...<jr<r
which proves the claim. O
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To be able to prove the next theorem, which will be esseriatiéfining Chern classes, we first need
some generalizations of our previous definitions:

Definition 2.4 (Infinite tropical cycle) We define annfinite tropical polyhedral complebo be a tropical
polyhedral complex according to definition [AR07, definiti6.4] but we do not require the set of
polyhedraX to be finite. In particular, all open farfg, have still to be open tropical fans according to
[ARQ7, definition 5.3]. Then aimnfinite tropical cycles an infinite tropical polyhedral complex modulo
refinements analogous fo [AR07, definition 5.12].

Definition 2.5 (Infinite rational functions and infinite Cartier divisorspet C' be an infinite
tropical cycle and let/ be an open set inC|. As in [ARO4, definition 6.1] aninfinite rational
function on U is a continuous functionp : U — R such that there exists a representative
(X, X, {mo }oex),wx), {Ms}secx) Of C, which may now be an infinite tropical polyhedral com-
plex, such that for each face € X the mapy o m ! is locally integer affine linear (where defined).
Analogously it is possible to defirigfinite regular invertible functionsnU.

A representative of an infinite Cartier divisan C' is then a se{(U;, ¢;)| @ € I}, where{U,} is an
open covering ofC| and¢; is an infinite rational function o/;. An infinite Cartier divisoron C

is then a representative of an infinite Cartier divisor modhke equivalence relation given in [ARO7,
definition 6.1].

Remark2.6. Using these basic definitions it is possible to generalizeynogher concepts to the infinite
case. In particular, as our infinite objects are locally €init is possible to perform intersection theory
as before.

Definition 2.7 (Tropical vector bundles on infinite cycled)et X be an infinite tropical cycle. &opical
vector bundleover X of rankr is an infinite tropical cycleg' together with a morphism : ' — X
such that properties (a)—(d) given in definition 1.5 are falfiwith the difference that the open covering
{U;} of X may now be infinite.

Now we are ready to prove the announced theorem:

Theorem 2.8. Letw : F — X be a vector bundle of rankand sy, s : X — F two bounded rational
sections. Thegk) Y andsék) -Y are rationally equivalent, i.e.

[0 V] = 5§ - V] € Au(X)
holds for all subcycle¥ € Z;(X).

Proof. Letp : |[X| — |X| be the universal covering space |of|. We can locally equigX| with
the tropical structure inherited fordd and obtain an infinite tropical cyclﬁ’ according to definition
2.4. Moreover, pulling bac” alongp, we obtain a tropical vector bundj& F' on X according to
definition[Z.T. AsX is simply connected we can conclude by lenimall.23gh&t = L, & ... @ L,
for some infinite tropical line bundles,, . .., L,. on X. Hence, the bounded rational sectigris; and
p* s, correspond te infinite tropical Cartier divisors as in definition 2.5 eawthich we will denote by
©1,...,0 andy, ..., 1., respectively. By lemma_I.20 we can conclude that for dfiese Cartier
divisors differ by bounded infinite rational functions onilg. p; — v; = h; for some bounded infinite
rational functioni; on X.In particular,

Z Pir P — Z (TR X:ﬁééi

1<ji<...<jp<r 1<ji<...<jp<r

with a bounded infinite rational functionand infinite Cartier divisorgi. Then we can define a rational
function i, which is then also bounded, and Cartier divis¢r®n X as follows: LetU C |X| and

U C | X| be open subsets such that U — U is bijective with inverse map’ : U — U. Then we
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locally defineh|y := (p’)*mf] and¢; |y = (p')*§i|[~,. Note thath and¢; are well-defined as the Cartier
divisorsy, andy;, respectively, are the same on every possibl@se%t U. As we locally have

" Y)nU =p. ( S i ()Y N U>)

1<ji<...<jp<r

and

(sé’“’-YmU:p*( Yoo ey (p’>*<YmU>>
1<ji<...<jp<r
we can conclude that
k) BNy g6
(51 So ) Y=h-& &Y,
which proves the claim. O

Now we are ready to give a definition of Chern classes:

Definition 2.9 (Chern classes)Let 7 : F' — X be a vector bundle of rankadmitting bounded rational
sections. Fok € {1,...,r} we define theé-th Chern class of’ to be the endomorphism

er(F) : Ay(X) — Ay (X) : [Y] = [s%) . V],

whereA, (X) = @, A;(X) ands : X — F'is any bounded rational section. Note that the mg(F")
is well-defined by lemmB 2.2 and independent of the choich@frational sectios by theoreni 2)8.
Moreover, we definey(F) : A.(X) — A.(X) to be the identity map and, (F) : A.(X) — A.(X)
to be the zero map for all € {0, ..., r}. To stress the character of an intersection product 0F') we
usually writecy, (F') - Y instead ok, (F)(Y) forY € A.(X).

Remark2.10. Note that lemmB2]3 implies that isomorphic vector bundistihe same Chern classes.

As announced in the beginning we finish this section with prgwsome basic properties of Chern
classes:

Theorem 2.11(Properties of Chern classed)etw : FF — X andn’ : ¥ — X be vector bundles
of rankr and’, respectively, admitting bounded rational sections. Mg, letf : X — X be a
morphism of tropical cycles. Then the following holds:

(@) ¢;(F)=0foralli¢&{0,...,rank(F)},

(b) ci(F) - (¢;(F") - Y) = ¢;(F') - (ei(F) - V) forall Y € A, (X),

©) feilai(f*F)-Y)=c(F)- f(Y)forallY € A.(X),

(d) c;(f*F)- f*(Y) = f*(c;(F) - Y) forall Y € A.(X) if X and X are smooth varieties,

(€ cw(FeF) =3 clF) c(F)

) ao(F) Y =D(F) -Yforall Y € A.(X) if r = rank(F) = 1, whereD(F) is the Cartier
divisor class associated tb.

Proof. Properties (a) and (e) follow immediately from definitioB 2oroperty (b) follows from the fact
that the intersection product is commutative and propéytipllows from remark . 211.
(c): The projection formula implies
Foles ) -Y) = L((f79) D Y]) = [s9 - fY] = ai(F) - £,
wheres is any bounded rational section bt
(d): Applying [AQY, theorem 3.2 (c) and (f)] we obtain
G(f F)- Y =[(fs)0 - Y] = [f (9 V)] = £[s9 Y] = f(a(F) V),

wheres is again any bounded rational section/of O
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Remark2.12 In “classical” algebraic geometry even the following, gextieed version of property
(e) is true: Leto — F/ — F — F” — 0 be an exact sequence of vector bundles, thei') =

> itjer Gi(F") - c;(F"). Inthe tropical world it is not entirely clear what an exaetjsence of tropical
vector bundles should be. Nevertheless, in some sense l&sital” statement is true in tropical
geometry as well: Let; : F; — X andnms : Fy, — X be tropical vector bundles of rank and
ro, respectively, and let/y, ..., Us be an open covering oX such that all requirements of definition
[L.3 are fulfilled forF; and F;, simultaneously. Moreover, lgt : F; — F, be an injective morphism of
tropical vector bundles such th@!™> o f o (&) ~1)(U; x R™) = U; x (e;, . . -,ei, r foralli, ie.
such that the image df; underf is a subbundleé” of I, (cf. definition[I.12). Then we can conclude
by remarKT.IB that} is decomposable intd, = F' @ F” = 'y, @ F"” for some other subbundié”

of F,. Hence we can conclude by theorem 2.11 that?) = >, ci(F1) - ¢; (F").

3. VECTOR BUNDLES ON AN ELLIPTIC CURVE

In this section we will give a complete classification of adictor bundles on an elliptic curve up to
isomorphism. One characteristic to distinguish diffetamdles will be the following:

Definition 3.1 (Degree of a vector bundlel et X := X5 be the curve fromi [ARO7, example 5.5] and
letw: FF — X be avector bundle of rank We define thelegreeof F' to be the number

deg(F) := deg(c1(F) - X).

As already advertised in examile_1.10 vector bundles on ltipti@curve X can be described by a
single transition function. We will prove this fact in thdlfiwing lemma:

Lemma 3.2. Again, letX := X, be the curve fronfAR07, example 5.5hnd letr : ' — X be a
vector bundle of rank. ThenF is isomorphic to a vector bundle : I/ — X that admits an open
coveringUy, ..., U; and transition map$/;; such that at most one transition map is non-trivial.

Proof. Let Uy, ..., U, be the open covering with transition maks; for F' according to definition1]5.
We may assume that all séfs are connected and that for allj the intersection&’; N U; are connected
as well. Moreover, we may assume that the g&tare numbered consecutively as shown in the figure.
For simplicity of notation we will consider our indices mddu.

i Uy

We can write every map/; ;11,7 =1,...,s,as

Mi,i-l-l(x) = D((pglz)JrD SRR (pgrz)Jrl)(‘r) © Aa'i,H»l = Dl(x) © Pl

for some regular invertible functionsgilrl € O*(U; N U;4+1) and permutations; ;11 € S,. We

will show that we can replace successively all the transitiaps)/; ;11 but one by the constant map
Mi/,i-i—l :U;NU;41 — G(r) : x — E and the resulting vector bundl¢ is isomorphic toF': Choose
Jo € {2,...,s}. Note that if we are given a regular invertible functipne O*(U; N U;) there is a
unique regular invertible functiop € O*(U;) such thatp|y,nu, = ¢. As they are regular invertible
functions, too, we can extend in exactly the same way thefamitries of the matri¥);, along the chain
Ujo—1,Ujo—2,...,Uiy1 to any set; 4 fori € {2,..., jo — 1}. By abuse of notation we will denote
this continuation oD;, as well byD;,. Now, we takel; := U; foralli =1,...,sand

M. (I) — Pjo GDJ'O(‘T)GJ\/fi,i+1(x)®Djo(x)_l®Pj;1’ if i e {25'--aj0_1}
7,5+1 . Mi,i+l(x)7 |f2 S {]0"’1,,8}
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Moreover, we seb,(x) := Pj, ® Dj,(z) © Di(x) © Py andM; ; .,(z) := E. To check that the

vector bundlel” we obtain from this gluing data is isomorphicfowe apply lemm&a1.16: We set

) — Djo(x)Qij |f26{217]0}
i) = { B, else,
and get
(Dj, © Pj) © (D10 P1) = (Dj, 0P, 0D10P)0E
(Dj, ® Pjy) ® (D2 © Py) = (Dj, ®P;, D, ® P,®D;,' © P;') @ (Dj, © Pj,)
EQ(DjOGPjo) = EQ(DjOG‘PjO)'
This finishes our proof. O

To classify all vector bundles on our elliptic cur&we give now a non-redundant parametrization of
all indecomposable vector bundles &n Arbitrary vector bundles are then just direct sums of these
building blocks.

Theorem 3.3(Vector bundles on elliptic curves) et X := X5 be the curve fronfARQ7, example
5.5]. Then the set of indecomposable vector bundles of raarid degreel is in natural bijection with
ged(r,d) - X, i.e. with points of the curv& stretched tqsed(r, d) times the original length.

Proof. Let 7w : FF — X be an indecomposable vector bundle of rankith open coverind/y, ..., U,
and transition map8/;; according to definitioh 1]5. Again, we may assume that a#l Eetare con-
nected, that for all, j the intersection#/; N U; are connected as well and that the €étsire numbered
consecutively. Moreover, by lemnla B.2 we may assume Rligt is the only non-trivial transition
map. LetMis(x) = D(¢1,...,¢0r)(2) ® A, =: D(z) ® A, for some regular invertible functions
01,0 € OF(U; NUsy) and a permutation € S,.. As F' is indecomposable must by a single
cycle. Hence there existsc S, such thabop~! = (12...7). We will apply lemmdL.16 to show that
we can replacé/,z(z) by Mi,(z) := A,© D(x) © A,-1 © A1,y Without changing the isomorphism
class ofF: We setE;(x) := A, for all z and alli and obtain

A, © (D(z) ® Ay) = (A, ® D(z)® Ag—l ©) A(lgmr)) © A,
A, OFE = E0A,
A, OFE = EGA,.

Hence we may assume that= (12...r7). Our next step is to apply lemria 1116 to show that we may
replaceD(z) = D(¢1,...,¢r) by D'(z) = D(¢,0,...,0) for somey’ € O*(U; N Uz) without
changing the isomorphism class Bf Fori = 1,...,r let «; be the slope ofp; and letL be the
(lattice) length of our curv&X. Fori = 2,...,r we sety; := Z;Zi(j —1i+1) -« . Moreover, we define

¢ := p1+...+¢,—0,L. Note that if we are given a regular invertible functiore O* (U;NU;) there
is a unique regular invertible functiqﬁ € O*(U;) such thatp|y,~u, = ¢. Hence we can extend our
regular invertible functiong,, . . . , ¢,- along the chaid/y, Us, . .., U, U; to any of the set&/y, . .., Us.
Note that or/; N U, the extension op; to Us and the extension af; to U; differ exactly by«; L. We
use these continuations to define the maps

E(x):=D(pa+ ...+ ¢, —02L, o3+ ...+ ¢, —03L, ..., 0, — 6,.L,0),
where for entries oF; the mapy; denotes the continuation gf; to U;. Hence we obtain ofy; N Us:
Ey © M2
D(ga+...+¢r —02L,..., 00 —6.L,0) ® (D(p1,...,0r) ® As)

D(p2+...+¢or—82L,...,0r — 6-L,0) ® (D(p1,...,0r) ® As)
D(o14...4+@r —02L, 024 ...+ @r —03L,...,0r—1+ @r — 0rL,0r) © Ay
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and
Mi, ® Er
= (D(pr1+...+pr—062L,0,...,0)© As) ©D(p2+ ...+ @r — 02L,..., 0, — 6,L,0)
= (D(pr+...+pr—062L,0,...,00© As) ©D(p2+ ... +¢r —03L,...,pr — 6,_1L,0)
= D(pr+...+¢pr—062L, o2+ ... +¢r —03L,...,0r_1+¢r —0rL,pr) © Ao.
The other conditions are trivially fulfilled a&’|v,nv,,, = Fiti|v.nv,,, foralli # 1. Hence we

may assume that/y2(z) = D(x) © A, = D(¢',0,...,0)(x) © Aqz..r). As F is a vector bundle
of degreed the affine linear map’ must have slope-d. Thus, the transition map/;, is determined
by the isomorphism class @ up to translations of’. To prove the claim it remains to show that two
vector bundleg” and I as above with transition mageli>(z) = D(g,0,...,0)(z) ® Aq,..» and
Miy(x) = D(¢ + cL,0,...,0)(x) ® Aqs..,) are isomorphic if and only if is an integer multiple of
ged(r, d): By lemmdIIBF and F’ are isomorphic if and only if for all = 1, .. ., s there exists a map
E; : Ui — G(r) such that for ali the equationt; 1 (z) © M; ;41(z) = M|, () © E;(z) holds for
allz € Uy NUjy1. As M, ;41 is trivial for all 7 # 1 these equations impl¥;|v,~v.,, = Eit1|v,nv.s,
forall i # 1. HenceF’ andF” are isomorphic if and only if there exist a permutatioa S,. and regular
invertible functionsyy, ..., 1, € O*(U; N Usz) with Continuationsﬁ, e ,1’/; to all setsUy, ..., Us
along the chait)y, Us, . .., Uy, Uy such that

(D, ..., %) ® As) © (D(,0,...,0) ® As) = (D(¢ + cL,0,...,0) ® Ay) ® (D(¥1, ..., 1) @ Ar)

holds onU; N Us. In particular, the last equation implies. ® A, = A, ® A, and hence = o* for
somek € Z. ThusF andF’ are isomorphic if and only if there exiéte Z and, ..., ¥, as above
such that

D(E7"'7%7Qm+¢71ZI:27"'7E)®A0"€+1 :D(@+CL+E7E7"'7QZ7:)®A0'k+1'

Let o; be the slope of);. Then onlU; N U, the continuation of); to Us and the continuation af; to
U, differ exactly bya; L. Hence we obtain the system of equations

1/]1 = QP+CL+'¢T+CVTL
(D) = Y1+l
P = Yp_1+ar_1L
Y1 +¢ = Yrt+apl
Yrt2 = Ypt1+ aps1L
77[}7" - wrfl + OérflL.
In particular, we can conclude tha = ... = ap andagy1 = ... = «,. HenceF andF’ are

isomorphic if and only if there exist;, «,-, k € Z such that
—c=(r—k) a+k-a;anday = —d + o,
or equivalently if and only if there exist,., k € Z with
—c=ro, —k-d.

This finishes the proof. O

Remark3.4. Note that the claim of theoreln 3.3 coincides with the eqgeivaiesult in “classical” alge-
braic geometry (se€ [A57, theorem 7]).

| would like to thank my advisor Andreas Gathmann for numsroelpful discussions.
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