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TROPICAL INTERSECTION PRODUCTS ON SMOOTH VARIETIES

LARS ALLERMANN

ABSTRACT. In analogy to [AR07, chapter 9] we define an intersection product of tropical cycles on trop-
ical linear spacesLn

k
, i.e. on tropical fans of the typemax{0, x1, . . . , xn}n−k · Rn. Afterwards we use

this result to obtain an intersection product of cycles on every smooth tropical variety, i.e. on every tropical
variety that arises from gluing such tropical linear spaces. In contrast to classical algebraic geometry these
products always yield well-defined cycles, not cycle classes only. Using these intersection products we are
able to define the pull-back of a tropical cycle along a morphism between smooth tropical varieties. In the
present article we stick to the definitions, notions and concepts introduced in [AR07].

1. INTERSECTION PRODUCTS ON TROPICAL LINEAR SPACES

In this section we will give a proof that tropical linear spacesLn
k admit an intersection product. Therefore

we show at first that the diagonal in the Cartesian productLn
k ×Ln

k of such a linear space with itself is a
sum of products of Cartier divisors. Given two cyclesC andD we can then intersect the diagonal with
C ×D and define the productC ·D to be the projection thereof.

Throughout the sectione1, . . . , en will always be the standard basis vectors inRn ande0 := −e1 −
. . .− en.

We begin the section with our basic definitions:

Definition 1.1 (Tropical linear spaces). For I ( {0, 1, . . . , n} let σI be the cone generated by the
vectorsei, i ∈ I. We denote byLn

k the tropical fan consisting of all conesσI with I ( {0, 1, . . . , n}
and|I| ≤ k, whose maximal cones all have weight one (cf. [AR07, example3.9]). This fanLn

k is a
representative of the tropical linear spacemax{0, x1, . . . , xn}

n−k · Rn.

Definition 1.2. Let C ∈ Zk(Rn) be a tropical cycle and let the mapi : Rn → Rn × Rn be given by
x 7→ (x, x). Then the push-forward cycle

△C := i∗(C) ∈ Zk(Rn × Rn)

is called thediagonalof C × C.

In order to express the diagonal inLn
k ×L

n
k by means of Cartier divisors we first have to refineLn

k ×L
n
k

in such a way that the diagonal is a subfan of this refinement:

Definition 1.3. LetFn
k be the refinement ofLn

k × Ln
k that arises recursively fromLn

k × Ln
k as follows:

LetM := (Ln
k × Ln

k )
(2k) be the set of maximal cones inLn

k × Ln
k . If a coneσ ∈M is generated by

(
−ei
0

)
,

(
0

−ei

)
, v3, . . . , v2k

for somei and vectors

vj ∈

{(
−eµ
−eµ

)
,

(
−eµ
0

)
,

(
0

−eµ

)∣∣∣∣µ = 0, . . . , n

}

then replace the coneσ by the two cones spanned by
(

−ei
−ei

)
,

(
−ei
0

)
, v3, . . . , v2k

1
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and (
−ei
−ei

)
,

(
0

−ei

)
, v3, . . . , v2k,

respectively. Repeat this process until there are no more cones inM that can be replaced. The fanFn
k

is then the set of all faces of all cones inM .

The next lemma provides a technical tool needed in the proofsof the subsequent theorems:

Lemma 1.4. Let F be a complete and smooth fan inRn (in the sense of toric geometry) and let the
weight of every maximal cone inF be one. Moreover, leth1, . . . , hr, r ≤ n, be rational functions on
Rn that are linear on every cone ofF . Then the intersection producth1 · · ·hr · F is given by

h1 · · ·hr · F =

(
n−r⋃

i=0

F (i), ωh1···hr

)

with some weight functionωh1···hr
on the cones of dimensionn− r.

Let τ ∈ F (n−r) be a cone inF such that for all maximal conesσ ∈ F (n) with τ ⊆ σ there exists some
indexi ∈ {1, . . . , r} such thathi is identically zero onσ. Then holds:

ωh1···hr
(τ) = 0.

Proof. We proof the claim by induction onr: For r = 1 we are in the situation thath1 is identically
zero on every maximal cone adjacent toτ . Henceωh1

(τ) = 0. Now let r > 1. Using the induction
hypothesis we can conclude that|h1 · · ·hr−1 · F | ⊆

⋃
σ∈S σ, where

S := {σ ∈ F (n)|none ofh1, . . . , hr−1 is identically zero onσ}.

Our above assumption then implies thathr must be identically zero on every cone in

{σ ∈ F (n)|τ ⊆ σ and none ofh1, . . . , hr−1 is identically zero onσ}

and thus thatωh1···hr
(τ) = 0. �

Notation 1.5. Let F be a simplicial fan inRn and letu be a generator of a rayru in F . By abuse of
notation we also denote byu the unique rational function on|F | that is linear on every cone inF , that
has the value one onu and that is identically zero on all rays ofF other thanru.

If not stated otherwise, vectors considered as Cartier divisors will from now on always denote rational
functions on the complete fanFn

n .

Notation 1.6. LetC be a tropical cycle and leth1, . . . , hr ∈ Div(C) be Cartier divisors onC. If

P (x1, . . . , xr) =
∑

i1+...+ir≤d

αi1,...,irx
i1
1 · · ·xirr

is a polynomial in variablesx1, . . . , xr we denote byP (h1, . . . , hr) · C the intersection product

P (h1, . . . , hr) · C :=
∑

i1+...+ir≤d

(
αi1,...,irh

i1
1 · · ·hirr · C

)
.

In the following theorem we give a description of the diagonal △Ln
n−k

by means of Cartier divisors on
our fanFn

n :

Theorem 1.7. The fan
((

−e1
0

)
+

(
0

−e0

))
. . .

((
−en
0

)
+

(
0

−e0

))
·

((
−e0
0

)
+

(
−e0
−e0

))k

· Fn
n

is a representative of the diagonal△Ln
n−k

.
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Proof. First of all, note that (
−e0
0

)
+

(
−e0
−e0

)

is a representation of the tropical polynomialmax{0, x1, . . . , xn}, wherex1, . . . , xn are the coordinates
of the first factor ofRn × Rn. Applying [AR07, lemma 9.6] we obtain

[((
−e0
0

)
+

(
−e0
−e0

))k

· Fn
n

]
= [Ln

n−k × Rn].

By lemma [AR07, lemma 9.4] we can conclude that△Rn · [Ln
n−k × Rn] = i∗([L

n
n−k]) = △Ln

n−k
and

hence it suffices to show that[X ] = △Rn for

X :=

((
−e1
0

)
+

(
0

−e0

))
. . .

((
−en
0

)
+

(
0

−e0

))
· Fn

n

to prove the claim. Therefore, letσ = 〈r1, . . . , rn〉R≥0
∈ X(n) be a cone not contained in|△Rn |. We

will show that the weight ofσ in X has to be zero. W.l.o.g. we assume that

r1 6∈ D :=

{(
−e0
−e0

)
, . . . ,

(
−en
−en

)}
.

Moreover, let

T :=

{(
−e1
0

)
, . . . ,

(
−en
0

)}
andB :=

{(
0

−e1

)
, . . . ,

(
0

−en

)}
.

We distinguish between two cases:

1. First, we assume that

ri 6∈

{(
−e0
0

)
,

(
0

−e0

)}
, i = 1, . . . , n.

Changing the given rational functions by globally linear functions we can rewrite the above
intersection product asX = ϕ1 · · ·ϕn · Fn

n , where

ϕi =





(
−ei
0

)
+

(
0

−e0

)
, if

(
−ei
0

)
6∈ {r1, . . . , rn}

(
0

−ei

)
+

(
−e0
0

)
, else.

Now we apply lemma 1.4: If the weight ofσ in X is non-zero there must be at least one cone

σ̃ = 〈r1, . . . , rn, v1, . . . , vn〉R≥0 ∈ Fn
n

such that all rational functionsϕ1, . . . , ϕn are non-zero oñσ. We study three subcases:

(a) There are vectorsri ∈ T andrj ∈ B: Then we need both vectors

(
−e0
0

)
and

(
0

−e0

)

among thevµ such that all functionsϕi are non-zero oñσ. But there is no cone inFn
n

containing these two vectors.
(b) r1 ∈ T (orr1 ∈ B) andrj ∈ D for somej andri ∈ T∪D (orri ∈ B∪D) for all i: As there

is no cone inF containing

(
−ei
0

)
and

(
0

−ei

)
for anyi, we need

(
−e0
0

)
among

thevµ such that all functionsϕi are non-zero oñσ. Moreover, if

(
−ei
0

)
6∈ {r1, . . . , rn}

then we must have

(
−ei
0

)
∈ {v1, . . . , vn}. But there is no cone inFn

n containing
(

−e1
0

)
, . . . ,

(
−en
0

)
and

(
−e0
0

)
. (Analogously forB, but withϕi defined the

other way around.)
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(c) All vectorsri are contained inT (or in B): In this case we need

(
0

−e1

)
or

(
−e0
0

)

among thevµ such that all functionsϕi are non-zero, but again there is no such cone.
(Analogously forB, but withϕi defined the other way around.)

2. Now we assume that

r1 =

(
−e0
0

) (
or r1 =

(
0

−e0

))
.

Like before we rewrite the intersection product asX = ϕ1 · · ·ϕn · Fn
n with ϕi defined as

above and apply lemma 1.4: If

(
−ei
0

)
6∈ {r1, . . . , rn} thenϕi =

(
−ei
0

)
+

(
0

−e0

)

and we need

(
−ei
0

)
or

(
0

−e0

)
among thevµ such that all functionsϕi are non-zero

on σ̃. But as there is no cone inFn
n containing

(
0

−e0

)
and

(
−e0
0

)
we must have

(
−ei
0

)
∈ {v1, . . . , vn}. Hence all the vectors

(
−e1
0

)
, . . . ,

(
−en
0

)
and

(
−e0
0

)

must be contained in{r1, . . . , rn, v1, . . . , vn}, but there is no such cone inFn
n . (Analogously

for r1 =

(
0

−e0

)
, but withϕi defined the other way around.)

So far we have proven that our intersection cycleX is contained in the diagonal△Rn . As the diagonal
is irreducible we can then conclude by [GKM07, lemma 2.21] that [X ] = λ · △Rn for some integerλ.
Thus our last step in this proof is to show thatλ = 1: Let ϕ1, . . . , ϕn be the rational functions given
above. We obtain the following equation of cycles inRn × Rn:

ϕ1 · · ·ϕn · [{0} × Rn]

=

((
−e1
0

)
+

(
0

−e0

))
. . .

((
−en
0

)
+

(
0

−e0

))
· [{0} × Rn]

=

(
0

−e0

)n

· [{0} × Rn]

= {0} × {0}.

As ϕ1 · · ·ϕn · [Rn × Rn] = λ · △Rn , by [AR07, definition 9.3] and [AR07, remark 9.9] we obtain the
equation

λ · {0} = λ · ({0} · Rn)
= π∗(ϕ1 · · ·ϕn · ({0} × Rn))
= π∗({0} × {0}))
= 1 · {0}

of cycles inRn. This finishes the proof. �

Our next step is to derive a description of the diagonal△Ln
n−k

onLn
n−k × Ln

n−k from our description
onFn

n :

Theorem 1.8. The intersection product in theorem 1.7 can be rewritten as
(

r∑

i=1

hi,1 . . . hi,n−k

)
·

((
0

−e0

)
+

(
−e0
−e0

))k

·

((
−e0
0

)
+

(
−e0
−e0

))k

· Fn
n

for some Cartier divisorshi,j onFn
n .

We have to prepare the proof of the theorem by the following lemma:
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Lemma 1.9. LetC ∈ Zl(L
n
n−k) be a subcycle ofLn

n−k. Then the following intersection products are
zero:

(a)

(
−e0
0

)
·

(
0

−e0

)
· (C × Rn) ,

(b) vi1 · · · vin−k+r
· (C × Rn) ,

(c)

(
0

−e0

)
·

(
−e0
−e0

)s

· vi1 · · · vin−k−s+r
· (C × Rn),

wherer, s > 0 and the vectors

vij ∈

{(
−e1
0

)
, . . . ,

(
−en
0

)
,

(
−e0
−e0

)}

are pairwise distinct.

Proof. (a) and (b): In both cases, a cone that can occur in the intersection product with non-zero weight
has to be contained in a cone ofFn

n that is contained in|Ln
n−k × Rn| and that contains the vectors(

−e0
0

)
,

(
0

−e0

)
or vi1 , . . . , vin−k+r

, respectively. But there are no such cones.

(c): By (a) and [AR07, lemma 9.7] we can rewrite the intersection product as
(

0
−e0

)
·

(
−e0
−e0

)s

· vi1 · · · vin−k−s+r
· (C × Rn)

=

(
0

−e0

)
·

((
−e0
0

)
+

(
−e0
−e0

))s

· vi1 · · · vin−k−s+r
· (C × Rn)

=

(
0

−e0

)
· vi1 · · · vin−k−s+r

·

[((
−e0
0

)
+

(
−e0
−e0

))s

· C

]
× Rn

=

(
0

−e0

)
· vi1 · · · vin−k−s+r

· [max{0, x1, . . . , xn}
s · C]× Rn,

which is zero by (b) asmax{0, x1, . . . , xn}
s · C is contained inLn

n−k−s. �

Proof of theorem 1.8.By theorem 1.7 we have the representation

△Ln
n−k

=
((

−e1

0

)
+
(

0

−e0

))
. . .
((

−en

0

)
+
(

0

−e0

))
·
((

−e0

0

)
+
(

−e0

−e0

))k
· [Fn

n ]
︸ ︷︷ ︸

=[Ln
n−k

×Rn]

=
((

−e1

0

)
· · ·
(

−en

0

)
+ . . .+

(
0

−e0

)n)
· [Ln

n−k × Rn].

By lemma 1.9 (b) all the summands containing

(
0

−e0

)s

with a powers < k are zero. Hence we can

rewrite the intersection product as

△Ln
n−k

=

[

(

−e1

0

)

· · ·

(

−en−k

0

)

+ . . .+

(

0

−e0

)n−k

·

((

0

−e0

)

+

(

−e0

−e0

))k

− A

]

·[Ln

n−k × Rn],

whereA contains all the summands we added too much. Thus all the summands ofA are of the form

α · v1 · · · vn−s−t ·

(
0

−e0

)s

·

(
−e0
−e0

)t

for some integerα, vectorsvi ∈

{(
−e1
0

)
, . . . ,

(
−en
0

)}
and powers1 ≤ t ≤ k, 0 ≤ s ≤ n.

By lemma 1.9 (b) and (c) such a summand applied to[Ln
n−k × Rn] is zero if s < k and only those
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summands remain inA that havet ≥ 1, s ≥ k. Let

S := α · v1 · · · vn−s−t ·

(
0

−e0

)s

·

(
−e0
−e0

)t

be one of the remaining summands. By lemma 1.9 (a) we obtain the equation

α · v1 · · · vn−s−t ·
(

0

−e0

)s
·
(

−e0

−e0

)t
· [Ln

n−k × Rn]

=

(
t∑

j=0

(
t
j

)
· α · v1 · · · vn−s−t ·

(
0

−e0

)s
·
(

−e0

−e0

)j
·
(

−e0

0

)t−j

)
· [Ln

n−k × Rn]

=

(
α · v1 · · · vn−s−t ·

(
0

−e0

)s
·
((

−e0

0

)
+
(

−e0

−e0

))t)
· [Ln

n−k × Rn]

=

[((
0

−e0

)
+
(

−e0

−e0

))k

·

(
α · v1 · · · vn−s−t ·

(
0

−e0

)s−k

·
((

−e0

0

)
+
(

−e0

−e0

))t)
−BS

]
· [Ln

n−k × Rn],

whereBS contains again all the summands we added too much. Thus all the summands ofBS are of
the form

S′ := β ·

(
t

t′

)
· v1 · · · vn−s−t ·

(
0

−e0

)s−s′

·

(
−e0
−e0

)s′

·

(
−e0
0

)t′

·

(
−e0
−e0

)t−t′

for some integerβ and powers1 ≤ s′ ≤ k, 0 ≤ t′ ≤ t. If s − s′ < k we group all corresponding
summands together as

β · v1 · · · vn−s−t ·

(
0

−e0

)s−s′

·

(
−e0
−e0

)s′

·

((
−e0
0

)
+

(
−e0
−e0

))t

.

This product applied to[Ln
n−k ×Rn] is zero by lemma 1.9 (b) and (c). Moreover, all summandsS′ with

s− s′ ≥ k andt′ > 0 yield zero on[Ln
n−k × Rn] by lemma 1.9 (a). Thus only those summandsS′ are

left in BS that are of the form

S′ = β′ · v1 · · · vn−s−t ·

(
0

−e0

)s−s′

·

(
−e0
−e0

)t+s′

with s−s′ ≥ k ands′ ≥ 1. Applying this process inductively to all summands witht = 1, . . . , n−k−1

in which we could not factor out

((
0

−e0

)
+

(
−e0
−e0

))k

, yet, we can by and by increase the power

of

(
−e0
−e0

)
in all remaining summands until finally only one summand

γ ·

(
0

−e0

)k

·

(
−e0
−e0

)n−k

is left. But

γ ·

(
0

−e0

)k

·

(
−e0
−e0

)n−k

· [Ln
n−k × Rn]

= γ ·

((
0

−e0

)
+

(
−e0
−e0

))k

·

((
−e0
0

)
+

(
−e0
−e0

))n−k

· [Ln
n−k × Rn]

as (
0

−e0

)i

·

(
−e0
−e0

)k−i

·

((
−e0
0

)
+

(
−e0
−e0

))n−k

· [Ln
n−k × Rn]

=

(
0

−e0

)i

·

(
−e0
−e0

)k−i

· [Ln
0 × Rn]

= 0
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for all i < k by lemma 1.9 (b) and

(
0

−e0

)k

·

(
−e0
0

)j

·

(
−e0
−e0

)n−k−j

· [Ln
n−k × Rn] = 0

for all j > 0 by lemma 1.9 (a). This proves the claim. �

Example 1.10. We perform the steps described in the proof of theorem 1.8 forthe casen = 3, k = 2:
By theorem 1.7 we have the representation:

△L3
1

=
((

−e1

0

)
+
(

0

−e0

))
·
((

−e2

0

)
+
(

0

−e0

))
·
((

−e3

0

)
+
(

0

−e0

))

·
((

−e0

0

)
+
(

−e0

−e0

))2
· [F 3

3 ]
︸ ︷︷ ︸

=[L3
1
×R3]

=
((

−e1

0

)
·

(
−e2

0

)
·

(
−e3

0

)

︸ ︷︷ ︸
=0 by lemma 1.9 (b)

+
(

−e1

0

)
·

(
−e2

0

)
·

(
0

−e0

)

︸ ︷︷ ︸
=0 by lemma 1.9 (b)

+
(

−e1

0

)
·

(
−e3

0

)
·

(
0

−e0

)

︸ ︷︷ ︸
=0 by lemma 1.9 (b)

+
(

−e2

0

)
·

(
−e3

0

)
·

(
0

−e0

)

︸ ︷︷ ︸
=0 by lemma 1.9 (b)

+
(

−e1

0

)
·
(

0

−e0

)2
+
(

−e2

0

)
·
(

0

−e0

)2
+
(

−e3

0

)
·
(

0

−e0

)2
+
(

0

−e0

)3)

·[L3
1 × R3].

Now we factor out
((

0

−e0

)
+
(

−e0

−e0

))2
and subtract all summands we do not need:

△L3
1

=
((

−e1

0

)
+
(

−e2

0

)
+
(

−e3

0

)
+
(

0

−e0

))
·

((
0

−e0

)
+
(

−e0

−e0

))2
· [L3

1 × R3]

−
((

−e1

0

)(
−e0

−e0

)
2

︸ ︷︷ ︸
=0 by 1.9 (b)

+
(

−e2

0

)(
−e0

−e0

)
2

︸ ︷︷ ︸
=0 by 1.9 (b)

+
(

−e3

0

)(
−e0

−e0

)
2

︸ ︷︷ ︸
=0 by 1.9 (b)

+
(

0

−e0

)(
−e0

−e0

)
2

︸ ︷︷ ︸
=0 by 1.9 (c)

+ 2

(
−e1

0

)(
0

−e0

)(
−e0

−e0

)

︸ ︷︷ ︸
=0 by 1.9 (b)

+ 2

(
−e2

0

)(
0

−e0

)(
−e0

−e0

)

︸ ︷︷ ︸
=0 by 1.9 (b)

+ 2

(
−e3

0

)(
0

−e0

)(
−e0

−e0

)

︸ ︷︷ ︸
=0 by 1.9 (b)

+2
(

0

−e0

)2 (
−e0

−e0

))
· [L3

1 × R3].

But by lemma 1.9 (a) and (b) we have the following equation forthis last summand:

−2
(

0

−e0

)2 (
−e0

−e0

)
· [L3

1 × R3]

= −2

((
0

−e0

)2
+ 2

(
0

−e0

)(
−e0

−e0

)
+
(

−e0

−e0

)2)
·
((

−e0

0

)
+
(

−e0

−e0

))
· [L3

1 × R3].

Hence we obtain altogether:

△L3
1

=
((

−e1

0

)
+
(

−e2

0

)
+
(

−e3

0

)
+
(

0

−e0

)
− 2

(
−e0

0

)
− 2

(
−e0

−e0

))

·

((
0

−e0

)
+
(

−e0

−e0

))2
·

((
−e0

0

)
+
(

−e0

−e0

))2
· [R3 × R3].
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Corollary 1.11. The Cartier divisorshi,j from theorem 1.8 provide the following description of the
diagonal△Ln

n−k
:

△Ln
n−k

=

r∑

i=1

hi,1 . . . hi,n−k · [L
n
n−k × Ln

n−k].

Proof. Let x1, . . . , xn be the coordinates of the first andy1, . . . , yn be coordinates of the second factor
of Rn × Rn. Applying [AR07, lemma 9.6] we can conclude that

[((
0

−e0

)
+

(
−e0
−e0

))k

·

((
−e0
0

)
+

(
−e0
−e0

))k

· Fn
n

]

=
[
max{0, x1, . . . , xn}

k ·max{0, y1, . . . , yn}
k · Fn

n

]

= [Ln
n−k × Ln

n−k]

and hence by theorem 1.7 and theorem 1.8 that

r∑

i=1

hi,1 . . . hi,n−k · [L
n
n−k × Ln

n−k] = △Ln
n−k

.

�

Remark1.12. As lemma 1.9 does not only hold onLn
n−k×Rn but also on anyC×Rn withC a subcycle

of Ln
n−k, the proof of theorem 1.8 indeed shows that

(
r∑

i=1

hi,1 . . . hi,n−k

)
·

((
0

−e0

)
+

(
−e0
−e0

))k

· (C × Rn)

=

((
−e1
0

)
+

(
0

−e0

))
. . .

((
−en
0

)
+

(
0

−e0

))
· (C × Rn)

for all cyclesC ∈ Zl(L
n
n−k). Using [AR07, corollary 9.8] we can conclude that

(
r∑

i=1

hi,1 . . . hi,n−k

)
·

((
0

−e0

)
+

(
−e0
−e0

))k

· (C × Rn)

= △Rn · (C × Rn)

= △C

for all such cyclesC.

Corollary 1.13. Letσ ∈ Ln
n−k, let x ∈ σ and letU ⊆ Sσ =

⋃
σ′∈Ln

n−k
:σ′⊇σ(σ

′)ri be an open subset

of |Ln
n−k| containingx. Moreover, letF be the open fanF := {−x + σ ∩ U |σ ∈ Ln

n−k} and F̃ the

associated tropical fan. Then there are Cartier divisorsh′i,j on F̃ × F̃ such that

△[F̃ ] =

r∑

i=1

h′i,1 . . . h
′
i,n−k · [F̃ × F̃ ].

Proof. To obtain the Cartier divisorsh′i,j we just have to restrict the Cartier divisorshi,j from corollary
1.11 to the open setU × U , translate them suitably and extend them fromF × F to the associated
tropical fanF̃ × F̃ . �
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Example 1.14. The following figure shows two fans associated to open subsets ofL3
2 as in corollary

1.13:

Lemma 1.15.LetC ∈ Zk(Rn) andD ∈ Zl(Rn) be tropical cycles such that there exist representations
of the diagonals△C and△D as sums of products of Cartier divisors onC×C andD×D, respectively.
Then there also exists a representation of△C×D as a sum of products of Cartier divisors on(C ×D)2.

Proof. Let △C =
∑r

i=1 ϕi,1 . . . ϕi,k · (C × C) and △D =
∑s

i=1 ψi,1 . . . ψi,l · (D × D).
Moreover, let πx, πy : (Rn)4 → (Rn)2 be given by (x1, y1, x2, y2) 7→ (x1, x2) and
(x1, y1, x2, y2) 7→ (y1, y2), respectively. Then we have the equation

△C×D =

(
r∑

i=1

π∗
xϕi,1 . . . π

∗
xϕi,k

)
·

(
s∑

i=1

π∗
yψi,1 . . . π

∗
yψi,l

)
· (C ×D)2.

�

Now we are ready to define intersection products on all spaceson which we can express the diagonal by
means of Cartier divisors:

Definition 1.16 (Intersection products). LetC ∈ Zk(Rn) be a tropical cycle and assume that there are
Cartier divisorsϕi,j onC × C such that

△C =

r∑

i=1

ϕi,1 . . . ϕi,k · (C × C).

Moreover, letπ : C × C → C be the morphism given by(x, y) 7→ x. Then we define the intersection
product of subcycles ofC by

Zk−l(C) × Zk−l′(C) −→ Zk−l−l′ (C)
(D1, D2) 7−→ D1 ·D2 := π∗ (

∑r

i=1 ϕi,1 . . . ϕi,k · (D1 ×D2)) .

We use the rest of this section to prove that this intersection product is independent of the used repre-
sentation of the diagonal and that it has all the properties we expect — at least for those spaces we are
interested in:

Lemma 1.17. LetC ∈ Zk(Rn) be a tropical cycle,D ∈ Zk−l(C), E ∈ Zk−l′(C) be subcycles, let
ϕ ∈ Div(C) be a Cartier divisor andπ : C × C → C the morphism given by(x, y) 7→ x. Then the
following equation holds:

(ϕ ·D)× E = π∗ϕ · (D × E).

Proof. The proof is exactly the same as for [AR07, lemma 9.6]. �
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Corollary 1.18. LetC ∈ Zk(Rn) be a tropical cycle that admits an intersection product as indefinition
1.16, letD ∈ Zk−l(C), E ∈ Zk−l′(C) be subcycles and letϕ ∈ Div(C) be a Cartier divisor. Then the
following equation holds:

(ϕ ·D) · E = ϕ · (D · E).

Proof. The proof is exactly the same as for [AR07, lemma 9.7]. �

Proposition 1.19. LetD ∈ Zl(L
n
n−k) be a subcycle. Then the equation

D · [Ln
n−k] = [Ln

n−k] ·D = D

holds onLn
n−k.

Proof. Let πi : Ln
n−k × Ln

n−k → Ln
n−k be the morphism given by(x1, x2) 7→ xi. By remark 1.12 we

get the equation

D · [Ln
n−k] = (π1)∗

(
r∑

i=1

hi,1 . . . hi,n−k ·
(
D × [Ln

n−k]
))

= (π1)∗

((
r∑

i=1

hi,1 . . . hi,n−k

)
·

((
0

−e0

)
+

(
−e0
−e0

))k

· (D × Rn)

)

= (π1)∗ (△Rn · (D × Rn))
= (π1)∗ (△D)
= D.

Furthermore, letφ : Ln
k × Ln

k → Ln
k × Ln

k be the morphism induced by(x, y) 7→ (y, x). Obviously we
have the equality

(
r∑

i=1

hi,1 . . . hi,n−k

)
· [Ln

n−k × Ln
n−k] =

(
r∑

i=1

φ∗hi,1 . . . φ
∗hi,n−k

)
· [Ln

n−k × Ln
n−k].

If πij : (Ln
n−k)

4 → (Ln
n−k)

2 is the morphism given by(x1, x2, x3, x4) 7→ (xi, xj) and

△ :=

(
r∑

i=1

π∗
13hi,1 . . . π

∗
13hi,n−k

)
·

(
r∑

i=1

π∗
24hi,1 . . . π

∗
24hi,n−k

)

we can conclude by [AR07, proposition 7.7] and [AR07, lemma 9.6] that
(

r∑
i=1

φ∗hi,1 . . . φ
∗hi,n−k

)
· (D × [Ln

n−k])

=

(
r∑

i=1

φ∗hi,1 . . . φ
∗hi,n−k

)
·
(
(D × [Ln

n−k]) · ([L
n
n−k × Ln

n−k])
)

=

(
r∑

i=1

φ∗hi,1 . . . φ
∗hi,n−k

)
· (π12)∗

(
△ ·

(
(D × [Ln

n−k])× ([Ln
n−k × Ln

n−k])
) )

=

(
r∑

i=1

φ∗hi,1 . . . φ
∗hi,n−k

)
· (π12)∗

(
△D×[Ln

n−k
]

)

=

(
r∑

i=1

φ∗hi,1 . . . φ
∗hi,n−k

)
· (π34)∗

(
△D×[Ln

n−k
]

)

= (π34)∗

((
r∑

i=1

π∗
34φ

∗hi,1 . . . π
∗
34φ

∗hi,n−k

)
· △ ·

(
(D × [Ln

n−k])× ([Ln
n−k × Ln

n−k])
))

= (π34)∗

(
△ · (D × [Ln

n−k])×

((
r∑

i=1

φ∗hi,1 . . . φ
∗hi,n−k

)
· [Ln

n−k × Ln
n−k]

))

= (π34)∗

(
△ · (D × [Ln

n−k])×

((
r∑

i=1

hi,1 . . . hi,n−k

)
· [Ln

n−k × Ln
n−k]

))

=

(
r∑

i=1

hi,1 . . . hi,n−k

)
· (D × [Ln

n−k]).
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Hence we can deduce that

D · [Ln
n−k] = (π1)∗ (△D)

= (π2)∗ (△D)

= (π2)∗

((
r∑

i=1

hi,1 . . . hi,n−k

)
· (D × [Ln

n−k])

)

= (π2)∗

((
r∑

i=1

φ∗hi,1 . . . φ
∗hi,n−k

)
· (D × [Ln

n−k])

)

= (π1)∗

((
r∑

i=1

hi,1 . . . hi,n−k

)
· ([Ln

n−k]×D)

)

= [Ln
n−k] ·D.

This proves the claim. �

Remark1.20. We can prove in the same way that[Ln
n−k × Lm

m−l] · D = D holds for all subcyclesD
of Ln

n−k × Lm
m−l and even that[Ln1

n1−k1
× . . .×Lnr

nr−kr
] ·D = D holds for allr ≥ 1 and all subcycles

D of Ln1

n1−k1
× . . .×Lnr

nr−kr
. Moreover, restricting the intersection products to open subsets of|Ln

k | or
|Ln1

n1−k1
× . . .×Lnr

nr−kr
|, respectively, implies thatX ·D = D also holds for all subcyclesD ∈ Zl(X)

if X ∈ {[F̃ ], [F̃1 × . . .× F̃r]} whereF̃ , F̃i are tropical fans associated to an open subsets of some|Ln
k |

like in corollary 1.13.

Proposition 1.21. LetC ∈ Zk(Rn) be a tropical cycle that admits an intersection product as indefini-
tion 1.16 and letD,D′ ∈ Zl(C), E ∈ Zl′(C) be subcycles. Then the following equation holds:

(D +D′) · E = D · E +D′ ·E.

Proof. The proof is exactly the same as for [AR07, theorem 9.10 (b)]. �

Proposition 1.22. LetC ∈ Zk(Rn) be a tropical cycle that admits an intersection product as indefi-
nition 1.16 and letD ∈ Zl(C) be a subcycle ofC. Moreover, letE ∈ Zl′(C) be a subcycle such that
there are Cartier divisorsψi,j ∈ Div(C) with

r∑

i=1

ψi,1 . . . ψi,k−l′ · C = E.

If additionallyC ·D = D holds then
r∑

i=1

ψi,1 . . . ψi,k−l′ ·D = E ·D.

Proof. The proof is the same as for [AR07, corollary 9.8]. �

Remark1.23. The meaning of proposition 1.22 is the following: IfX ∈ Zk(Rn) is a tropical cycle such
that the diagonal△X can be written as a sum of products of Cartier divisors as in definition 1.16 and
additionally(X ×X) · Y = Y is fulfilled for all subcyclesY ofX ×X then we can apply proposition
1.22 withC := X × X andE := △X to deduce that the definition of the intersection product is
independent of the choice of the Cartier divisors describing the diagonal. In particular we have well-
defined intersection products onLn

k , Ln1

k1
× . . .× Lnr

kr
, F̃ andF̃1 × . . .× F̃r for all tropical fansF̃ , F̃i

associated to an open subset of some|Ln
k | like in corollary 1.13.

Theorem 1.24.LetC ∈ Zk(Rn) be a tropical cycle that admits an intersection product as indefinition
1.16 such that additionally(C × C) · D = D is fulfilled for all subcyclesD of C × C. Moreover, let
E,E′ ∈ Zl(C), F ∈ Zl′(C) andG ∈ Zl′′(C) be subcycles. Then the following equations hold:

(a) E · F = F · E,
(b) (E · F ) ·G = E · (F ·G).

Proof. The proof is exactly the same as for [AR07, theorem 9.10 (a) and (c)]. �
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We finish this section with an example showing that even curves intersecting in the expected dimension
can have negative intersections:

Example 1.25. Let C,D ∈ Z1(L
3
2) be the curves shown in the figure. We want to compute the inter-

sectionC ·D. By proposition 1.22 the easiest way to achieve this is to write one of the curves asψ · [L3
2]

for some Cartier divisorψ onL3
2.

C



−1

−1

0







1

1

0




D




−2

−3

0







2

2

−1







0

1

1




Let F be the refinement ofL3
2 arising by dividing the cones〈−e1,−e2〉R≥0

and〈−e0,−e3〉R≥0
into

cones〈−e1,−e1− e2〉R≥0
, 〈−e2,−e1− e2〉R≥0

and〈−e0,−e0− e3〉R≥0
, 〈−e3,−e0 − e3〉R≥0

, respec-
tively. Then

ψ :=




1
1
1


−




−1
−1
0




defines a rational function onF . As shown in [AR07, example 3.10] we haveψ · [L3
2] = C. Hence we

can calculate

C ·D = ψ ·D =


ψ




−2
−3
0


+ ψ




2
2
1


+ ψ




0
1
1


− ψ




0
0
0




 · {0}

= (−2 + 0 + 1− 0) · {0}
= −1 · {0}.

Remark1.26. This result is remarkable for the following reason: Our ambient spaceL3
2 arises as a

so-calledmodificationof R2 (cf. [M06], [M07]). Varieties that are connected by a seriesof modifica-
tions are calledequivalentby G. Mikhalkin and are expected to have similar properties.But the above
example shows that there is a big difference betweenR2 andL3

2 even though they are equivalent: On
R2 there is no negative intersection product of curves, onL3

2 there is.

2. INTERSECTION PRODUCTS ON SMOOTH TROPICAL VARIETIES

In this section we use our results from section 1 to define an intersection product on smooth tropical
varieties, i.e. on varieties with tropical linear spaces aslocal building blocks:

Definition 2.1 (Smooth tropical varieties). An abstract tropical varietyC is called asmooth varietyif it
has a representative(((X, |X |), ωX), {Φσ}) such that all the maps

Φσ : Sσ =
⋃

σ′∈X∗,σ′⊃σ

(σ′)ri
∼
−→ |Fσ| ⊆ |F̃σ|
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(cf. [AR07, definition 5.4]) map into tropical fans̃Fσ = F̃ σ
1 × . . .× F̃ σ

rσ
where theF̃ σ

i are tropical fans
associated to open subsets of some|L

nσ,i

kσ,i
| as in corollary 1.13.

Remark2.2. Note that the existence of such a representative(((X, |X |), ωX), {Φσ}) for C implies that
all representatives ofC have the requested property.

Example 2.3. The following figures show two examples of smooth tropical varieties:

Definition 2.4. Let C be an abstract tropical cycle,D a subcycle ofC with representativeX and
U ⊆ |C| an open subset. We denote byX ∩ U theopen tropical polyhedral complex

X ∩ U := ({σ ∩ U |σ ∈ X}, |X | ∩ U)

and by[X ∩ U ] its equivalence class modulo refinements. As this class onlydepends on the class ofX
we can defineD ∩ U := [X ∩ U ].

Remark2.5. If we are given an open covering{U1, . . . , Ur} of C and open tropical polyhedral com-
plexesD1∩U1, . . . , Dr∩Ur such thatDi∩Ui∩Uj = Dj ∩Ui∩Uj we can glueD1∩U1, . . . , Dr∩Ur

to obtain a cycleD ∈ Z∗(C).

Definition 2.6 (Intersection products). LetC be a smooth tropical variety and let(((X, |X |), ωX), {Φσ})
be a representative ofC like in definition 2.1. Moreover, letD,E be subcycles ofC. We construct local
intersection products as follows: For everyσ ∈ X we can regard(D∩Sσ) and(E∩Sσ) as open tropical

cycles inF̃σ via the mapΦσ. Let D̃ ∩ Sσ andẼ ∩ Sσ be any tropical cycles iñFσ restricting toD∩Sσ

andE ∩ Sσ. As we have an intersection product oñFσ by remark 1.23 we can define the intersection

(D ·σ E) ∩ Sσ :=
(
(D̃ ∩ Sσ) · (Ẽ ∩ Sσ)

)
∩ Sσ.

Note that(D ·σ E) ∩ Sσ does not depend on the choice of the cycles̃D ∩ Sσ and Ẽ ∩ Sσ. Since
{Sσ|σ ∈ X} is an open covering of|C| and the local intersection products(D ·σ E) ∩ Sσ, σ ∈ X

are compatible by the following lemma we can glue them to obtain a global intersection cycleD · E ∈
Z∗(C).

Lemma 2.7. For the local intersection products in definition 2.6 holds:

(D ·σ E) ∩ Sσ ∩ Sσ′ = (D ·σ′ E) ∩ Sσ ∩ Sσ′ .

Proof. By definition we have an integer linear map

|F̃1| ⊇ Φσ(Sσ ∩ Sσ′)
f

−→ Φσ′(Sσ ∩ Sσ′) ⊆ |F̃2|

with integer linear inverse f−1, where F̃1, F̃2 are the tropical fans generated by
Φσ(Sσ ∩ Sσ′) andΦσ′(Sσ ∩ Sσ′), respectively. LetC1, C2 be subcycles of̃F1. We have to show
that

C1 · C2 = (f−1)∗(f∗(C1) · f∗(C2)).
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If π is the respective projection on the first factor we obtain by proposition 1.22 and remark 1.23 the
equation

(f−1)∗(f∗(C1) · f∗(C2)) = (f−1)∗

(
π∗

(
△

F̃2
· (f∗(C1)× f∗(C2))

))

= π∗

(
(f−1 × f−1)∗

(
△

F̃2
· (f∗(C1)× f∗(C2))

))

= π∗

(
(f−1 × f−1)∗

(
(f × f)∗(△F̃1

) · (f × f)∗(C1 × C2)
))

= π∗

(
△

F̃1
· C1 × C2

)

= C1 · C2.

�

Remark 2.8. Lemma 2.7 also implies that further refinements of the representative
(((X, |X |), ωX), {Φσ}) of C do not change the resultD · E. Hence the intersection product is well-
defined.

Our last step consists in proving basic properties of our intersection product:

Theorem 2.9. LetC be a smooth tropical variety, letD,D′ ∈ Zl(C),E ∈ Zl′(C) andF ∈ Zl′′(C) be
subcycles and letϕ ∈ Div(C) be a Cartier divisor onC. Then the following equations hold inZ∗(C):

(a) C ·D = D,
(b) D · E = E ·D,
(c) (D +D′) ·E = D ·E +D′ · E,
(d) (D ·E) · F = D · (E · F ),
(e) ϕ · (D · E) = (ϕ ·D) ·E.

If moreoverD = (
∑r

i=1 ϕi,1 · · ·ϕi,l) · C for some Cartier divisorsϕi,j ∈ Div(C) then

D · E =

r∑

i=1

ϕi,1 · · ·ϕi,l ·E

holds.

Proof. The statements follow immediately from the definition of theintersection product and the corre-
sponding statements in section 1. �

3. PULL -BACKS OF CYCLES ON SMOOTH VARIETIES

We will now use the intersection product defined in section 2 to introduce pull-backs of tropical cycles
along morphisms between smooth tropical varieties.

Definition 3.1 (Pull-back). Let X andY be smooth tropical varieties of dimensionm andn, respec-
tively, and letf : X → Y be a morphism of tropical cycles. Moreover, letπ : X × Y → X be the
projection onto the first factor and letγf : X → X × Y be the morphism given byx 7→ (x, f(x)).
We denote byΓf := (γf )∗X the graph off . For a cycleC ∈ Zn−k(Y ) we define itspull-back
f∗C ∈ Zm−k(X) to be

f∗C := π∗ (Γf · (X × C)) .

The easiest non-trivial, but nevertheless important example of a pull-back is the following:

Example 3.2. Let C andD be smooth tropical cycles and letp : C × D → D be the projection
on the second factor. We want to calculate the pull-backp∗E for a cycleE ∈ Zk(D): The mapγp
from definition 3.1 is then just given byγp : C × D → C × D × D : (x, y) 7→ (x, y, y) and the
mapπ : C ×D ×D → C ×D is the projection to the first two factors. Hence we can conclude that
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Γp = C×△D. Moreover, letπ1 : C×D×D → C be the projection to the first andπ2 : C×D×D → D

be the projection to the second factor. We obtain by definition 3.1:

p∗E = π∗(Γp · (C ×D × E))
= π∗((C ×△D) · (C ×D × E))
= π1

∗(C · C)× π2
∗(△D · (D × E))

= C × E.

The pull-back has the following basic properties:

Theorem 3.3. LetX,Y andZ be smooth tropical varieties and letf : X → Y andg : Y → Z be
morphisms of tropical cycles. Moreover, letC,C′ ∈ Z∗(Y ) andD ∈ Z∗(X) be subcycles. Then the
following holds:

(a) f∗Y = X ,
(b) id∗Y C = C,
(c) if C = ϕ1 · · ·ϕr · Y thenf∗C = f∗ϕ1 · · · f

∗ϕr ·X ,
(d) C · f∗D = f∗(f

∗C ·D),
(e) (g ◦ f)∗C = f∗g∗C,
(f) f∗(C · C′) = f∗C · f∗C′.

Proof. Throughout the proof, letπX , πX , π
1, π1, π

Y , πY , π
2, π2, π

X,Y , πX,Y , π
1,2, π1,2 and so forth be

the projections to the respective factors.
(a) and (b): By definition of the pull-back follows

f∗Y = πX
∗ (Γf · (X × Y )) = πX

∗ (Γf ) = X

and

id∗Y C = π1
∗(ΓidY

· (Y × C)) = π1
∗(△Y · (Y × C)) = Y · C = C.

(c): We have
f∗C = πX

∗ (Γf · (X × (ϕ1 · · ·ϕr · Y )))
= πX

∗ (π∗
2ϕ1 · · ·π

∗
2ϕr · Γf · (X × Y ))

= πX
∗ (π∗

2ϕ1 · · ·π
∗
2ϕr · Γf ) .

By definition of the intersection product (see [AR07, definitions 3.4 and 6.5]) this last line is equal to

f∗ϕ1 · · · f
∗ϕr ·X.

(d): LetπX : X × Y → X be the projection onX . By example 3.2 we know thatπ∗
XD = D × Y . As

the diagonal△X can locally be expressed by Cartier divisors we can apply [AR07, proposition 7.7] and
statement (c) locally to deduce that for all subcyclesE ofX × Y holds

D · πX
∗ E = π1

∗(△X · (D × πX
∗ E))

= π1
∗(△X · (id×πX)∗(D × E))

= π1
∗((id×π

X)∗((id×π
X)∗△X · (D × E)))

= π1
∗((id×π

X)∗((△X × Y ) · (D × E)))

= π1
∗(π

1,2
∗ ((△X × Y ) · (D × E)))

= π1
∗(π

1,2
∗ (△X×Y · (D × Y × E)))

= π1
∗((D × Y ) · E)

= πX
∗ (π∗

XD ·E).

This implies that
f∗C ·D = D · πX

∗ (Γf · (X × C))
= πX

∗ (π∗
XD · Γf · (X × C))

= πX
∗ ((D × Y ) · Γf · (X × C))

= πX
∗ (Γf · (D × C)).
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Moreover, it is easy to check that(f × id)∗△Y = Γf . As above we can conclude that

C · f∗D = π1
∗(△Y · (C × f∗D))

= π1
∗((id×f)∗((id×f)

∗△Y · (C ×D)))
= f∗(π

X
∗ ((id×f)∗△Y · (C ×D)))

= f∗(π
X
∗ ((f × id)∗△Y · (D × C)))

= f∗(π
X
∗ (Γf · (D × C)))

= f∗(f
∗C ·D).

(e): LetΦ : X → X × Y × Z be given byx 7→ (x, f(x), g(f(x))). An easy calculation shows that
(Γf × Z) · (X × Γg) = Φ∗X . Hence we can conclude by statement (d) that

f∗g∗C = πX
∗

(
Γf ·

(
X × πY

∗ (Γg · (Y × C))
))

= πX
∗

(
π
X,Y
∗ ((Γf × Z) · (X × Γg) · (X × Y × C))

)

= πX
∗ ((Γf × Z) · (X × Γg) · (X × Y × C))

= πX
∗ (Φ∗X · (X × Y × C))

= πX
∗ (Γg◦f · (X × C))

= (g ◦ f)∗C.

(f): Let Φ : X → X×Y ×Y be given byx 7→ (x, f(x), f(x)) and letπ1,2, π1,3 : X×Y ×Y → X×Y
be the projections to the respective factors. An easy calculation shows that

(Γf × Y ) · (X × ΓidY
) = Φ∗X = π∗

1,2Γf · π∗
1,3Γf .

Hence we can deduce that
f∗(C · C′) = πX

∗ (Γf · (X × (C · C′)))
= πX

∗

(
Γf · (X × π1

∗(ΓidY
· C × C′))

)

= πX
∗

(
Γf · π1,2

∗ ((X × ΓidY
) · (X × C × C′))

)

= πX
∗

(
π
1,2
∗ ((Γf × Y ) · (X × ΓidY

) · (X × C × C′))
)

= πX
∗

(
π
1,3
∗ ((Γf × Y ) · (X × ΓidY

) · (X × C × C′))
)

= πX
∗

(
π
1,3
∗ (π∗

1,2Γf · π∗
1,3Γf · (X × C × C′))

)

= πX
∗

(
Γf · π1,3

∗ ((Γf × Y ) · (X × C × C′))
)

= πX
∗

(
Γf · (πX

∗ (Γf · (X × C))× C′)
)

= πX
∗ (Γf · (f∗C × C′))

= f∗C · f∗C′.

�

We finish the section with another important example:

Example 3.4. LetD be a smooth tropical variety and letC ∈ Zk(D) be a smooth tropical subvariety.
Moreover, letι : C → D be the inclusion map. We want to calculate the pull-backι∗E for a cycle
E ∈ Zl(D): Let πC : C ×D → C andπD : C ×D → D be the projections to the first and second
factor and letγι : C → C ×D be given byx 7→ (x, x). Hence we can deduce thatΓι = (γι)∗C = △C

and by example 3.2 that(πD)∗E = C × E. Thus we can conclude by theorem 3.3 (d):

ι∗E = πC
∗ (Γι · (C × E))

= πC
∗ (△C · (C × E))

= πD
∗ (△C · (C × E))

= πD
∗ (△C · (πD)∗E)

= πD
∗ (△C) ·E

= C · E,

whereC · E is the intersection product onD.

I would like to thank my advisor Andreas Gathmann for numerous helpful discussions.
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