
ABSOLUTE AND RELATIVE GROMOV-WITTEN INVARIANTSOF VERY AMPLE HYPERSURFACESANDREAS GATHMANNAbstrat. For any smooth omplex projetive variety X and smooth veryample hypersurfae Y � X, we develop the tehnique of genus zero relativeGromov-Witten invariants of Y in X in algebro-geometri terms. We prove anequality of yles in the Chow groups of the moduli spaes of relative stablemaps that relates these relative invariants to the Gromov-Witten invariantsof X and Y . Given the Gromov-Witten invariants of X, we show that theserelations are suÆient to ompute all relative invariants, as well as all genuszero Gromov-Witten invariants of Y whose homology and ohomology lassesare indued by X.Muh work has been done reently on Gromov-Witten invariants related to hy-persurfaes. There are essentially two di�erent problems that have been studied.The �rst one is the question: how an one ompute the Gromov-Witten invariantsof a hypersurfae from those of the ambient variety [Be℄,[G℄,[K℄,[LLY℄? The seondproblem, mainly studied from the point of view of sympleti geometry, is the the-ory of relative Gromov-Witten invariants of a hypersurfae [IP1℄,[IP2℄,[LR℄,[R℄,[V℄.The goal of this paper is to show that these two problems that have been studiedompletely independently so far are in fat very losely related.Let X be a smooth omplex projetive variety and Y � X a smooth very amplehypersurfae. We start by giving a very short desription of our method to omputethe genus zero Gromov-Witten invariants of Y in terms of those of X , skipping alltehnial details.Fix n � 1 and � 2 H2(X). For m � 0, we let �M(m) (the oÆial notationwill be �M(m;0;:::;0)(X; �)) be a suitable ompati�ation of the moduli spae ofall irreduible stable maps (P1; x1; : : : ; xn; f) to X suh that f has multipliity atleast m to Y at the point x1. Obviously, �M(0) should be just the ordinary modulispae of stable maps to X . On the other hand, �M(Y ��+1) should orrespond to themoduli spae of stable maps to Y , as all irreduible urves in X having multipliityY � �+1 to Y must atually lie inside Y . Moreover, �M(m+1) is a subspae of �M(m)of (expeted) odimension one.The strategy is now obvious: if we an desribe the (virtual) divisor �M(m+1) in�M(m) intersetion-theoretially in terms of known lasses (and our main theorem2.6 does preisely that), then we an ompute intersetion produts on �M(m+1) ifwe an ompute them on �M(m). Iterating this proedure for m from 0 to Y ��, thismeans that we an ompute the Gromov-Witten invariants of Y if we an omputethe Gromov-Witten invariants of X . In fat, we will show in a forthoming paperthat this method reproves and generalizes the well-known \mirror symmetry" typeformulas for Gromov-Witten invariants of ertain hypersurfaes [Be℄,[G℄,[LLY℄.1991 Mathematis Subjet Classi�ation. 14H10,14N10,14J70.Funded by the DFG sholarship Ga 636/1{1.1



2 ANDREAS GATHMANNLet us make the step from multipliity m to m + 1 a bit more preise. It iseasily seen that there is a setion of a line bundle L(m) on �M(m) whose zero lousdesribes exatly the ondition that f vanishes to order at least m+ 1 along Y atx1. Hene one would na��vely expet that �M(m+1) is just the �rst Chern lass ofL(m), whih turns out to be m + ev�Y (where  is the otangent line lass and evthe evaluation map at the �rst marked point). However, this intuition breaks downfor those stable maps where x1 lies on a omponent that is ompletely mapped toY by f (see the piture in onstrution 2.1), as f atually has in�nite multipliityto Y at x1 in this ase. Thus we get orretion terms from reduible urves of thatkind in our �nal equation. These orretion terms are quite ompliated, but theyan be reursively omputed as they are made up of invariants of smaller degree.In this paper we will de�ne more general spaes than the �M(m) mentioned above.Namely, we allow the spei�ation of multipliities to Y not only at the point x1but at all marked points. We all those moduli spaes the spaes of relative stablemaps, and equip them with virtual fundamental lasses. Intersetion produts onthem are then alled relative Gromov-Witten invariants. Of ourse, they have theobvious (possibly virtual) geometri interpretation as numbers of urves havinggiven multipliities to Y and satisfying some additional inidene onditions.It should be said learly that the spei�ation of more than one multipliity isnot neessary if one only wants to ompute the Gromov-Witten invariants of Y fromthose of X . However, the general ase �ts niely into the piture and establishesthe onnetion to the existing literature on relative Gromov-Witten invariants, asthese invariants have only been onsidered so far in the ase where the sum ofthe multipliities is equal to Y � � (i.e. where \all intersetion points with Y aremarked").The outline of the paper is as follows. In setion 1 we de�ne the moduli spaes ofrelative stable maps and de�ne their virtual fundamental lasses. The onstrutionof the line bundles L(m) and the moduli spaes for the orretion terms mentionedabove is given in setion 2. At the end of this setion we state our main theorem2.6 that desribes how the moduli spaes of relative invariants hange if one ofthe multipliities is inreased by one. The proof of this theorem is done in twosteps. In the �rst step in setion 3 we look at the speial ase where Y � X isa hyperplane in projetive spae. In this ase no virtual fundamental lasses areneeded, and the main theorem is established by purely geometri analysis. Theideas for the main proofs of this setion are taken from [V℄. In the seond step insetion 4, we prove the general ase by \pulling bak" the result for hyperplanesin PN along the morphism �Mn(X; �)! �Mn(PN ; d) indued by the omplete linearsystem jY j. Finally, in setion 5 we prove that the main theorem an be usedto ompute the absolute and relative Gromov-Witten invariants of Y in terms ofthe Gromov-Witten invariants of X . In a forthoming paper, we will study thestruture of these omputations and give some expliit examples.A few remarks seem in order how this work is related to the existing literature.The original ideas and motivation for our paper ome from the work of R. Vakil[V℄, who proved the main theorem under the following restritions: Y � X is ahyperplane in PN , the sum of the presribed multipliities is equal to the degree ofthe urves, and one of the multipliities is raised from zero to one. It is interestingto note that he used the main theorem in the opposite diretion, namely to omputethe invariants of X from those of Y . But the algorithm used there is very spei�to the ase of a hyperplane in PN ; it does not work for general Y � X .



GROMOV-WITTEN INVARIANTS OF VERY AMPLE HYPERSURFACES 3All methods that have been known so far to ompute Gromov-Witten invariantsof hypersurfaes Y � X need the existene of a torus ation on X and use thetehniques of equivariant ohomology and �xed point loalization. In the asewhere Y is Calabi-Yau or Fano, the \mirror symmetry" results of A. Givental [G℄and B. Lian et al. [LLY℄ relate the Gromov-Witten invariants of Y to those of Xand express them in terms of ertain hypergeometri funtions. Our methods areompletely di�erent; they do not plae any restritions on the variety X and do notrequire Y to be Calabi-Yau or Fano. In a forthoming paper we will show that ourequations atually lead to the same hypergeometri funtions as mentioned above.Reently A. Bertram [Be℄ has found another way to ompute ertain Gromov-Witten invariants of Calabi-Yau and Fano hypersurfaes in projetive spae. Healso uses the torus ation method, but does the atual omputations in a di�erentway. It seems that his omputations are losely related to ours, but the exatrelation to our methods is still unlear.Relative Gromov-Witten invariants of any genus have been introdued in sym-pleti geometry by A. Li and Y. Ruan [LR℄ as well as E. Ionel and T. Parker[IP1℄,[IP2℄. They have been de�ned for any odimension two sympleti submani-fold Y of a sympleti manifold X . The main appliation in sympleti geometry isthe splitting formula that expresses the Gromov-Witten invariants of a sympletisum X1#YX2 in terms of the relative Gromov-Witten invariants of Y in X1 andX2. E. Ionel has informed me that [IP2℄ together with the results announed in[IP1℄ an be used to prove a statement in the sympleti ategory that is analogousto our main theorem.The author would like to thank T. Graber, J. Harris, and R. Vakil for numerousdisussions. This work has been done at the Harvard University, to whih theauthor is grateful for hospitality.1. Moduli spaes of relative stable mapsWe begin with the desription of the set-up and the de�nition of the modulispaes of relative stable maps. Let X be a smooth omplex projetive variety andY � X a smooth very ample hypersurfae. For notational onveniene, we denoteby A�(X) the ring of algebrai ohomology lasses of X modulo torsion, and byH+2 (X) the group of e�etive algebrai homology lasses of dimension two, modulotorsion.Let � = (�1; : : : ; �n) be an n-tuple of non-negative integers. As usual, for suhan n-tuple we de�ne j�j := n and P� := Pni=1 �i. If � = (�1; : : : ; �n) and�0 = (�01; : : : ; �0m), we write � [ �0 for (�1; : : : ; �n; �01; : : : ; �0m). For 1 � k � n, wewrite �� ek for (�1; : : : ; �k � 1; : : : ; �n).Let n � 0 and let � 2 H+2 (X) be a non-zero homology lass. We denote by�Mn(X; �) := �M0;n(X; �) the Deligne-Mumford stak of n-pointed genus zero stablemaps to X of lass � as de�ned in [BM℄.The moduli spae �MY� (X; �) that we want to onstrut should be thought of asa ompati�ation of the spae of all irreduible stable maps (P1; x1; : : : ; xn; f) toX of lass � that meet Y in the points xi with multipliity �i for all i. We de�neit �rst as a subset of the set of geometri points of �Mn(X; �), but we will see soonthat it has the struture of a losed substak of �Mn(X; �).De�nition 1.1. With notations as above, we de�ne �MY� (X; �) to be the lous in�Mn(X; �) of all stable maps (C; x1; : : : ; xn; f) suh that



4 ANDREAS GATHMANN(i) f(xi) 2 Y for all i with �i > 0,(ii) f�Y �Pi �ixi 2 A0(f�1(Y )) is e�etive.If there is no risk of onfusion we will write �M�(X; �) instead of �MY� (X; �).Remark 1.2. Condition (i) is obviously neessary for (ii) to make sense. The ylelass f�Y 2 A0(f�1(Y )) is well-de�ned by [F℄ hapter 6 as the intersetion produtY � C in Y �X C = f�1(Y ). Note that the Chow groups of a sheme are equalto the Chow groups of its underlying redued sheme (see [F℄ example 1.3.1 (a)),so we may replae f�1(Y ) by its underlying redued sheme above. So, by abuseof notation, if we talk about onneted (resp. irreduible) omponents of f�1(Y )in the sequel we will always mean onneted (resp. irreduible) omponents of theunderlying redued sheme of f�1(Y ).Remark 1.3. For degree reasons, the spae �M�(X; �) is obviously empty if P� >Y � �, so we will taitly assume from now on that P� � Y � �.Remark 1.4. The Chow group A0 of a point as well as of (onneted but not ne-essarily irreduible) genus zero urves is just Z, so ondition (ii) in de�nition 1.1an be reformulated as follows: for any onneted omponent Z of f�1(Y ) we musthave(i) if Z is a point, it is either unmarked or a marked point xi suh that themultipliity of f at xi along Y is at least �i,(ii) if Z is one-dimensional, let C(i) for 1 � i � r be the irreduible omponentsof C not in Z but interseting Z, and let m(i) be the multipliity of f jC(i) atZ \ C(i) along Y . Then we must haveY � f�Z + rXi=1m(i) � Xxi2Z �i:Example 1.5. Let X = P3, Y = H a plane, � = 5 � [line℄, and � = (1; 2). Inthe following piture, the urve on the left is in �M(1;2)(X; �), whereas the one onthe right is not (ondition (ii) of remark 1.4 is violated for the line marked Z, as1 + 1 6� 2 + 1).
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ZThe �rst thing we will do is to study the spae �M�(X; �) in the speial asewhere X = PN and Y = H is a hyperplane. In this ase, we will write �M�(X; �)as �M�(PN ; d), where d = H � �. The main result of this setion is that the generalelement of �M�(PN ; d) orresponds to an irreduible stable map whose image is notontained in H , i.e. that the urves in �M�(PN ; d) are exatly those that an bedeformed to an irreduible urve that still satis�es the given multipliity onditionsand that is not ontained in H . (Here and in the following, by \the urve C anbe deformed to a urve satisfying a property P" we mean that there is a family ofstable maps suh that the entral �ber is C and the general �ber has P .)



GROMOV-WITTEN INVARIANTS OF VERY AMPLE HYPERSURFACES 5De�nition 1.6. We de�ne M�(PN ; d) to be the subset of �M�(PN ; d) of all stablemaps (C; x1; : : : ; xn; f) with C �= P1 and f(C) 6� H .Remark 1.7. We will often onsider �rst the easier ase of the spaes �M�(PN ; d)with the additional ondition that P� = d. (This is the situation that has beenstudied in [V℄.) In this ase, ondition (ii) in de�nition 1.1 atually means thatf�H �Pi �ixi = 0 2 A0(f�1(H)). Correspondingly, the onditions in remark 1.4read as follows: for any onneted omponent Z of f�1(H) we must have(i) if Z is a point, it is a marked point xi with �i being equal to the multipliityof f at xi along H ,(ii) if Z is one-dimensional, let C(i) for 1 � i � r be the irreduible omponentsof C not in Z but interseting Z, and let m(i) be the multipliity of f jC(i) atZ \ C(i) along H . Then we must havedeg f jZ + rXi=1m(i) = Xxi2Z �i:Lemma 1.8. The spae M�(PN ; d) has the struture of an irreduible and loallylosed substak of �Mn(PN ; d).Proof. The lous of irreduible stable maps (P1; x1; : : : ; xn; f) 2 �Mn(PN ; d) suhthat f(P1) 6� H an be written asMn(PN ; d)n �Mn(H; d), so it is open in �Mn(PN ; d).On the other hand, the ondition that f vanishes to order at least �i along H at xiis losed, so M�(PN ; d) is the intersetion of a losed subset with an open subsetin �Mn(PN ; d). It is irreduible as there is a surjetive rational mapC 2n �H0(P1;O(d�P�)) �H0(P1;O(d))N 9 9 K M�(Pn; d)(a1; b1; : : : ; an; bn; f0; f1; : : : ; fN) 7! (P1; (a1 :b1); : : : ; (an :bn); f)where f(z) = f(z0 : z1) = (f0(z) � nYi=1(z1ai � z0bi)�i : f1(z) : � � � : fN (z))whose domain spae is irreduible.Lemma 1.9. The losure of M�(PN ; d) in �Mn(PN ; d) is ontained in �M�(PN ; d).Proof. This follows from the ontinuity of intersetion produts. To be more preise,let C be a point in the losure of M�(PN ; d). By lemma 1.8 there is a family� : T ! �Mn(PN ; d) of stable maps over a smooth urve T with a distinguishedpoint 0 2 T suh that �(0) = C and �(t) 2 M�(PN ; d) for t 6= 0. We have toprove that �(0) 2 �M�(PN ; d). As it is obvious that �(0) satis�es ondition (i) ofde�nition 1.1, it remains to show (ii).The family � is given by the data (C; x1; : : : ; xn; f) where � : C ! T is a urveover T , the xi : T ! C are setions of �, and f : C ! PN is a morphism. SetCH = f�1(H) and onsider the 1-yles f�H and Pi �ixi(T ) in A1(CH ). Byassumption, the yle  := f�H �Pi �ixi(T ) is e�etive (it might however haveomponents over 0 2 T oming from f�H). Applying [F℄ proposition 11.1 (b) tothe yles f�H and  +Pi �ixi(T ) we see that the speialization of f�H at t = 0is equal to the limit yle of  +Pi �ixi(T ) as t ! 0. As the limit yle of  fort! 0 is e�etive, we have shown that �(0) satis�es (ii). This shows the lemma.



6 ANDREAS GATHMANNDe�nition 1.10. Let C = (C; x1; : : : ; xn; f) 2 �M�(PN ; d) be a stable map. Anirreduible omponent Z of C is alled an internal omponent of C if f(C) �H , and an external omponent otherwise. A suburve of C is a stable map C0 =(C 0; x01; : : : ; x0m; f 0) 2 �M�0(PN ; d0) onstruted from C as follows. Let C 0 be anyproper onneted suburve of C, and let f 0 = f jC0 . The marked points x01; : : : ; x0mare the marked points xi ontained in C 0, together with all the intersetion pointsof C 0 with the other irreduible omponents of C. We assign multipliities �0 =(�01; : : : ; �0m) to the points x01; : : : ; x0m as follows: The points xi on C 0 will have theirgiven multipliity �i. The intersetion points with other irreduible omponents ofC will be assigned the multipliity of f 0 along H at that point if the point lies on anexternal omponent of C 0, and 0 otherwise. Let d0 be the degree of f 0 on C 0. Thefollowing piture shows an example of this onstrution, where the marked pointsare labeled with their multipliities.
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0C C’Lemma 1.11. Let C 2 �M�(PN ; d) be a stable map and assume that P� = d. LetC0 = (C 0; x01; : : : ; x0n; f 0) be a suburve of C with the following property: if Z is aninternal irreduible omponent of C ontained in C 0, then any adjaent irreduibleomponent of Z in C is also ontained in C 0. (For example, the suburve in thepiture above satis�es this property.) Then P�0 = d0.Proof. The ondition P� = d means that f�H �P�ixi = 0 2 A0(f�1(H)).We laim that also f 0�H �P�0ix0i = 0 2 A0(f 0�1(H)), whih then implies thatP�0 = d0. In fat, this an be heked on the onneted omponents of f 0�1(H).Let Z be a onneted omponent of f 0�1(H). By assumption, there are only twopossibilities:� C and C 0 are loally isomorphi in a neighborhood of Z, i.e. Z is also aonneted omponent of f�1(H). Therefore, (f 0�H�P�0ix0i)jZ = 0 2 A0(Z).� Z is an intersetion point of C 0 with CnC 0 that lies on an external omponentof C 0. Then, by de�nition of a suburve, Z is a marked point of C0 withmultipliity equal to the multipliity of f 0 along H at Z. In partiular, wehave again that (f 0�H �P�0ix0i)jZ = 0 2 A0(Z).This proves the lemma.Lemma 1.12. A stable map C = (C; x1; : : : ; xn; f) 2 �M�(PN ; d) an be deformedto an irreduible urve in �M�(PN ; d) if one of the following onditions is satis�ed:(i) C has only internal omponents.(ii) P� = d, and C onsists exatly of one internal omponent C(0) and r ex-ternal omponents C(1); : : : ; C(r) interseting C(0) for some r � 0 (i.e. C isa \omb", with the entral omponent being internal and the teeth external,see the piture in onstrution 2.1). Moreover, in this ase C an even bedeformed to an irreduible urve that is not ontained in H (whih is thenobvious unless r = 0).



GROMOV-WITTEN INVARIANTS OF VERY AMPLE HYPERSURFACES 7(iii) P� = d, and C has exatly two irreduible omponents C(1) and C(2), bothbeing external.Proof. To show (i), note that by de�nition every urve with f(C) � H lies in�M�(PN ; d), so �Mn(H; d) � �M�(PN ; d). But it is well-known that the spae ofirreduible urves inside �Mn(H; d) is dense, so C an be deformed to an irreduibleurve in �M�(PN ; d).(ii) has been shown in [V℄ theorem 6.1. (In fat, in the notations used in [V℄,our urve C is an element of a spae Y with suitable deorations as introdued in[V℄ de�nition 3.7.)Finally, in the ase (iii) it is easy to onstrut an expliit deformation. Choosehomogeneous oordinates z0; : : : ; zN on PN suh that H is given by the equationz0 = 0. The map f : C ! PN is then given by setions s0; : : : ; sN of a suitable linebundle L on C. We may assume that the oordinates are hosen suh that the sido not vanish at C(1) \ C(2) (as for s0 note that s0(C(1) \ C(2)) = 0 would meanthat the intersetion point lies on H , so it must be a marked point by remark 1.7(i), hene it must be non-singular, whih is a ontradition). Let Di = (si) be theassoiated divisors, in partiular D0 =P�ixi.Now let W be the blow-up of C � P1 at the point (0; 0), onsidered as a one-dimensional family of urves by the projetion map � :W ! C . We an identify the�ber ��1(0) with C(1) [ C(2). The points xi 2 ��1(0) an be extended to setions~xi of �, giving rise to an extended divisor ~D0 = P�i~xi. In the same way onean �nd divisors ~Di on W suh that ~Dij��1(0) = Di for all i. As Pi W = Pi C,these divisors will be linearly equivalent and de�ne a line bundle ~L on W suhthat ~Lj��1(0) = L. Moreover, after possibly restriting the base C to a smalleropen neighborhood of 0 we an assume that the ~Di are base-point free. Finally,we an hoose setions ~si of ~L suh that (~si) = ~Di and ~sij��1(0) = si. Then(W; ~x0; : : : ; ~xn; (~s0 : � � � : ~sN )) is a family of stable maps whose entral �ber is Cand whose general element is in M�(PN ; d).Lemma 1.13. Let C = (C; x1; : : : ; xn; f) 2 �M�(PN ; d) be a reduible stable mapand assume that P� = d. Then C an be deformed to a stable map in �M�(PN ; d)with fewer nodes.Proof. This is essentially obtained from lemma 1.12 by gluing. Pik a node P 2 Cand a suburve C(0) = (C(0); x(0)1 ; : : : ; x(0)n(0) ; f (0)) 2 �M�(0)(PN ; d(0)) of C as follows:(i) If C has a node onneting two internal omponents of C, let P be this nodeand let C(0) be the onneted omponent of f�1(H) ontaining P .(ii) Otherwise, if C has a node onneting an internal omponent Z to an externalomponent of C, let P be this node and let C(0) be Z together with all adjaent(neessarily external) omponents of C.(iii) Otherwise, let P be any node of C (neessarily onneting two external om-ponents of C) and let C(0) be the two irreduible omponents of C meetingat P .Let C(1); : : : ; C(r) with r � 0 be the onneted omponents of CnC(0).In any ase, we an deform C(0) to an irreduible map in �M�(0)(PN ; d(0)) bylemma 1.12 (in the ases (ii) and (iii) it follows from lemma 1.11 thatP�(0) = d(0)).So let � : T ! �M�(0)(PN ; d(0)) be a deformation of C(0) for some smooth pointedurve (T; 0), i.e. �(0) = C(0) and for all 0 6= t 2 T the urve �(t) is irreduible.



8 ANDREAS GATHMANNThis deformation is given by a family � : ~C ! T of urves, setions ~x1; : : : ; ~xn of� and a map ~f : ~C ! PN . For all 1 � i � r, the intersetion point of C(0) andC(i) is one of the marked points of C(0), hene orresponds to a marked point of �,say ~xi. Note that in all ases (i) to (iii) above, the deformation � has the propertythat ~f(~xi(t)) 2 H for all t 2 T if this is true for t = 0. In partiular, there areT -valued projetive automorphisms  i : T ! PGL(N) keeping H �xed suh that i(t)( ~f (~xi(0))) = ~f(~xi(t)). The indued ation of PGL (N) on the moduli spaes�M�(i)(PN ; d(i)) makes  i into a deformation of C(i) over T suh that for all t 2 Tthe marked point orresponding to C(0) \ C(i) is mapped to the same point in PNby the families � and  i. This means that the families � and  i an atually beglued to give a deformation of the original urve C. This deformation smoothes thenode P .Proposition 1.14. The losure of M�(PN ; d) in �Mn(PN ; d) is equal to �M�(PN ; d).In partiular, �M�(PN ; d) has the struture of an irreduible, proper, redued sub-stak of �Mn(PN ; d).Proof. \�" has been shown in lemma 1.9, so it remains to show \�". Let C 2�M�(PN ; d) be a stable map. Assume �rst that P� = d. Using lemma 1.13 indu-tively, we an deform C to an irreduible urve in �M�(PN ; d). If this irreduibleurve does not lie inside H then we are done, otherwise use the r = 0 ase of lemma1.12 (ii).If k = d�P� > 0, let �0 = �[(1; : : : ; 1) suh thatP�0 = d. By adding markedpoints (and possibly introduing new ontrated omponents) it is easy to �nd astable map C0 2 �M�0 that maps to C under the forgetful morphism �Mn+k(PN ; d)!�Mn(PN ; d). By the above, C0 an be deformed to an irreduible urve inM�0(PN ; d),whih indues a deformation of C to an irreduible urve in M�(PN ; d).Hene we �nally have shown that �M�(PN ; d) is losed. So by giving it theredued substak struture, we get a proper, redued substak of �Mn(PN ; d) whihis irreduible by lemma 1.8.Lemma 1.15. The moduli spae �M�(PN ; d) has the following properties:(i) If k = d �P� > 0 and we let �0 = � [ (1; : : : ; 1) suh that P�0 = d, thenthere is a degree-k! generially �nite over �M�0(PN ; d) ! �M�(PN ; d), givenby forgetting the last k marked points and stabilizing.(ii) �M�[(0)(PN ; d) is the universal urve over �M�(PN ; d). In partiular, if � =(0; : : : ; 0) then �M�(PN ; d) = �Mj�j(PN ; d).(iii) The moduli spae �M�(PN ; d) is purely of the expeted dimension, whih isdim �Mj�j(PN ; d)�P� = d(N + 1) +N � 3 + j�j �P�.Proof. To show (i), note that from the parametrization of M�(PN ; d) given in theproof of lemma 1.8 one an see that the general element of M�(PN ; d) orrespondsto a stable map (P1; x1; : : : ; xn; f) suh that f�H is equal to Pi �ixi plus a unionof k = d �P�i distint unmarked points with multipliity one. Obviously, themap �M�0(PN ; d) ! �M�(Pn; d) is �nite over these elements, and it has degree k!,orresponding to the hoie of order of the k added marked points.As in the proof of (i), the statement of (ii) is obvious on the dense open subset of�M�(PN ; d) desribed above, and it extends to the losures beause of the atnessof the map �Mn+1(PN ; d)! �Mn(PN ; d).



GROMOV-WITTEN INVARIANTS OF VERY AMPLE HYPERSURFACES 9Finally, (iii) has been shown in [V℄ proposition 5.7 if P� = d. Otherwise use(i) �rst. Alternatively, (iii) an be read o� from the parametrization given in theproof of lemma 1.8.Remark 1.16. The stak �M�(PN ; d) is in general singular, even in odimension one(see [V℄ orollary 4.16). However, it is smooth at all points (P1; x1; : : : ; xn; f) 2M�(PN ; d). In fat, for these urves the obstrution spae for deformations inside�M�(PN ; d) is H1(P1; f�T 0PN), where f�T 0PN is the kernel of the omposite mapf�TPN ! f�NH=PN ! (f�NH=PN)jZwith Z being the zero-dimensional subsheme of P1 having length �i at the pointxi for all i. But as both these maps are surjetive on global setions (for the seondone note that f�NH=PN = O(d) and P� � d), it follows that H1(P1; f�T 0PN) = 0.However, we will not need any smoothness results in our paper.Now we return to the general ase of the moduli spae �MYn (X; �) where X is anysmooth projetive variety and Y � X a smooth very ample hypersurfae. One of themain problems is that these spaes will in general not have the expeted dimension.This means in partiular that we need virtual fundamental lasses, whih annotbe obtained using the tehniques above. To overome this problem, we use thelinear system jY j to get a map X ! PN , and onsider the spae �MY� (X; �) as the\intersetion" of two problems we already know: (a) stable maps in X and (b)stable maps in PN with given multipliities to the hyperplane H � PN indued byY .We �x the following notation: let ' : X ! PN be the morphism determined byjY j, and let H � PN the hyperplane suh that Y = '�1(H). As d := Y � � > 0,the map ' indues a morphism � : �Mn(X; �)! �Mn(PN ; d) (see [BM℄).Remark 1.17. Let C 2 �Mn(X; �). As the onditions (i) and (ii) of de�nition 1.1pull bak niely, it is obvious that C 2 �MY� (X; �) if and only if �(C) 2 �MH� (PN ; d).De�nition 1.18. By the previous remark, the spae �MY� (X; �) has the strutureof a proper losed substak of �Mn(X; �) by requiring the diagram of inlusions�MY� (X; �) //

��

�MH� (PN ; d)
���Mn(X; �) � // �Mn(PN ; d)to be artesian. We de�ne the virtual fundamental lass [ �MY� (X; �)℄virt to be theone indued by the virtual fundamental lass of �Mn(X; �) (see e.g. [B℄,[BF℄) andthe usual fundamental lass of �MH� (PN ; d), in the sense of the following remark.Remark 1.19. Let M1 and M2 be Deligne-Mumford staks over a smooth Deligne-Mumford stak S. Let M =M1 �S M2, so that we have a artesian diagramM //

��

M1 �M2
��S � // S � S:



10 ANDREAS GATHMANNAssume that we are given lasses 1 2 A�(M1) and 2 2 A�(M2) (usually thoughtof as virtual fundamental lasses in this paper). Then the lass �!(1 
 2) inM will be alled indued by 1 and 2. If the maps M1 ! S and M2 ! S areinlusions, this is atually the usual re�ned intersetion produt of 1 and 2. Thisis the ase in the above de�nition, but we mentioned the general ase here as wewill need it later on.By lemma 1.15 (iii), the virtual fundamental lass of �MY� (X; �) de�ned abovehas dimension dim �Mn(X; �)�P�, whih is the expeted dimension of �MY� (X; �).If X is a projetive spae and Y � X a hyperplane, it is obvious by de�nition thatthe virtual fundamental lass of �MY� (X; �) is equal to the usual one.2. Inreasing the multipliitiesBy onstrution, �M�+ek (X; �) is a losed substak of �M�(X; �) of expetedodimension one. The main goal of this paper is to ompute [ �M�+ek (X; �)℄virt as ayle in the Chow group of �M�(X; �). We start with the following na��ve approahdesribing the transition from multipliity �k to �k + 1 at the point xk.Constrution 2.1. Consider a moduli spae M = �Mn(X; �) and let C !M be theuniversal urve, with evaluation map ev : C ! X . Fix k with 1 � k � n andlet sk : M ! C denote the setion orresponding to the marked point xk. Lety 2 H0(OX (Y )) be the equation of Y . Choose an integer m � 0. We pull y bakto C by ev, take the m-jet relative to M of it and pull this bak to M by sk to geta setion �mk := s�kdmC=Mev�y 2 H0(M; s�kPmC=M (ev�OX(Y )));where PmC=M (ev�OX(Y )) denotes relative prinipal parts of order m (or m-jets) ofthe line bundle ev�OX(Y ), and dmC=M is the derivative up to order m (see [EGA4℄16.3, 16.7.2.1 for preise de�nitions). Geometrially, �mk vanishes preisely on thestable maps that have multipliity at least m+1 to Y at the point xk. By [EGA4℄16.10.1, 16.7.3 there is an exat sequene0! L
mk 
 ev�kOX(Y )! s�kPmC=M (ev�OX(Y ))! s�kPm�1C=M (ev�OX(Y ))! 0where we set P�1C=M (ev�OX(Y )) = 0, and where Lk = s�k!C=M is the k-th otangentline, i.e. the line bundle on M whose �ber at a point (C; x1; : : : ; xn; f) is T_C;xk .Note that the last map in this sequene sends �mk to �m�1k for m > 0. Now restritthese bundles and setions to �M�(X; �). As all stable maps in �M�(X; �) havemultipliity (at least) �k at xk, the restrition of ��kk to �M�(X; �) de�nes a setion�k := ��kk j �M�(X;�) 2 H0(L
�kk 
 ev�kOX(Y )) = H0(O(�k k + ev�kY ))on �M�(X; �), where  k = 1(Lk).The vanishing of this setion desribes exatly the ondition that a stable mapin �M�(X; �) vanishes up to order �k + 1 at xk . Hene na��vely one would expetthat �M�+ek(X; �) is desribed inside �M�(X; �) by the vanishing of this setion,and that [ �M�+ek (X; �)℄virt is given by(�k  k + ev�kY ) � [ �M�(X; �)℄virt: (1)



GROMOV-WITTEN INVARIANTS OF VERY AMPLE HYPERSURFACES 11This is not true, however, beause of the presene of stable maps with the propertythat the omponent on whih xk lies is mapped entirely into Y . Of ourse, the se-tion �k vanishes on those stable maps, but they are in general not in �M�+ek (X; �).Hene, these stable maps will also ontribute to the expression (1). We will nowintrodue the moduli spaes of the stable maps ourring in these orretion terms.Informally speaking, generi stable maps in these orretion terms have r + 1 irre-duible omponents C(0); : : : ; C(r) for some r � 0, where C(0) (alled the internalomponent) is mapped into Y , and all C(i) for i > 0 (alled the external ompo-nents) interset C(0) and have a presribed multipliitym(i) to Y at this intersetionpoint (see the piture below, where m(1) = 1 and m(2) = 2). The point xk has tolie on C(0). The initial multipliity onditions � as well as the homology lass �get distributed in all possible ways to the omponents C(i).
C

C(0)

(1)

(2) X

Y

C

xkWe now desribe this more formally.De�nition 2.2. Consider a moduli spae �M�(X; �) and 1 � k � n as above. Letr be a non-negative integer. Choose a partition A = (�(0); : : : ; �(r)) of � suhthat �k 2 �(0). Let B = (�(0); : : : ; �(r)) be an (r + 1)-tuple of homology lasseswith �(0) 2 H+2 (Y ) and �(i) 2 H+2 (X)nf0g for i > 0 suh that i��(0) + �(1) +� � � + �(r) = �, where i : Y ! X is the inlusion. Finally, hoose an r-tupleM = (m(1); : : : ;m(r)) of positive integers. With these notations, we de�ne themoduli spae Dk(X;A;B;M) to be the �ber produtDk(X;A;B;M) := �Mj�(0)j+r(Y; �(0))�Y r rYi=1 �M�(i)[(m(i))(X; �(i))where the map from the �rst fator to Y r is the evaluation at the last r markedpoints, and the map from the seond fator to Y r is the evaluation at the lastmarked point of eah of its fators. We de�ne the virtual fundamental lass ofDk(X;A;B;M) to be m(1)���m(r)r! times the lass indued by the virtual fundamentallasses of its fators, in the sense of remark 1.19. The reason for the unusualmultipliity will beome lear in the proof of proposition 3.3.De�nition 2.3. With notations as in the previous de�nition, let D�;k(X; �) bethe disjoint union of the Dk(X;A;B;M) for all possible A, B, and M satisfyingY � i��(0) +Xi m(i) =X�(0) (2)(the reason for this ondition will beome lear in the following lemma). The virtualfundamental lass of D�;k(X; �) is de�ned to be the sum of the virtual fundamentallasses of its omponents Dk(X;A;B;M).



12 ANDREAS GATHMANNLemma 2.4. In the ase where X = PN and Y = H is a hyperplane, the modulispaes Dk(PN ; A;B;M) satisfying equation (2) of de�nition 2.3 are proper irre-duible substaks of �M�(PN ; d) of odimension one.Proof. Considering the de�nition of the spae Dk(X;A;B;M), the fat that it isirreduible follows from the following three observations:(i) �Mj�(0)j+r(H; d(0)) is irreduible,(ii) the evaluation maps �M�(i)[(m(i))(PN ; d(i))! H at the last marked point areat and surjetive (this follows from the ation of the group of automorphismsof PN keeping H �xed on the spae �M�(i)[(m(i))(PN ; d(i))),(iii) the �bers of the maps in (ii) are irreduible (by the Bertini theorem, as thespaes �M�(i)[(m(i))(PN ; d(i)) itself are irreduible by proposition 1.14).Moreover, these arguments show that the dimension of Dk(PN ; A;B;M) is equalto dim �Mj�(0)j+r(H; d(0)) + rXi=1 dim �M�(i)[(m(i))(PN ; d(i))� r � (N � 1):By a quik omputation using lemma 1.15 (iii) this is equal todim �M�(PN ; d) +X�(0) � d(0) �Xi m(i) � 1;so the dimension statement follows from equation (2) of de�nition 2.3.The stak Dk(PN ; A;B;M) is visibly a losed substak of�Mj�(0)j+r(PN ; d(0))�(PN)r rYi=1 �Mj�(i)j+1(PN ; d(i));whih in turn is a losed substak of �Mn(PN ; d) by [BM℄ hapter 7 property III. Toprove that it is ontained in �M�(PN ; d) it suÆes to show that a general elementC = (C; x1; : : : ; xn; f) 2 Dk(PN ; A;B;M) satis�es the onditions of remark 1.4.As C is general, we have C = C(0) [ � � � [ C(r) where C(0) 2 Mr+j�(0)j(H; d(0))and C(i) 2 M�(i)[(m(i))(PN ; d(i)). The ondition of remark 1.4 is obvious for allonneted omponents of f�1(H) besides C(0). As for C(0), the ondition is exatlythe \�" part of equation (2) of de�nition 2.3.Remark 2.5. We will see in proposition 4.4 that even for general X , the modulispaes Dk(X;A;B;M) satisfying equation (2) of de�nition 2.3 are proper sub-staks of �M�(X; �) of expeted odimension one. Thus we an view the virtualfundamental lass of the Dk(X;A;B;M) as well as of D�;k(X; �) as yles in theChow group of �M�(X; �) whose dimension is equal to the expeted dimension of�M�(X; �) minus one.We an now state the main theorem of this paper.Theorem 2.6. With notations as above, we have(�k  k + ev�kY ) � [ �M�(X; �)℄virt = [ �M�+ek(X; �)℄virt + [D�;k(X; �)℄virtin the Chow group of �M�(X; �), for all 1 � k � n.The proof will be given at the end of setion 4.



GROMOV-WITTEN INVARIANTS OF VERY AMPLE HYPERSURFACES 133. Proof of the main theorem for hyperplanes in PNIn this setion we will prove the main theorem 2.6 in the ase where X = PNand Y = H is a hyperplane. Most of the proofs are generalized versions fromthose in [V℄, where the generalizations are quite straightforward. Reall that inonstrution 2.1 we de�ned a setion �k of a suitable line bundle on �M�(PN ; d)suh that the zero lous of �k has lass �k  k + ev�kH and desribes exatly thosestable maps (C; x1; : : : ; xn; f) where f vanishes to order at least �k +1 along H atxk. For simpliity, we will restrit ourselves �rst to the ase P� = d (note thatthe term [ �M�+ek (PN ; d)℄virt in the main theorem is then absent for degree reasons).We begin by proving a set-theoreti version of the main theorem.Lemma 3.1. Assume that P� = d. Then the zero lous of the setion �k on�M�(PN ; d) is equal to D�;k(PN ; d).Proof. By onstrution, it is obvious that �k vanishes on D�;k(PN ; d), so let usprove the onverse. Let C = (C; x1; : : : ; xn; f) 2 �M�(PN ; d) be a stable map with�k(C) = 0.Assume �rst that xn is an isolated point of f�1(H). As f vanishes to order atleast �k + 1 along H at xk, this is a ontradition to remark 1.7 (i).So xn is not an isolated point of f�1(H). Let C(0) be the onneted omponentof f�1(H) ontaining xk, and let C(1); : : : ; C(r) be the onneted omponents ofCnC(0). Let m(i) be the multipliity of f jC(i) at C(0) \ C(i) along H , let d(i) bethe degree of f on C(i), and let �(i) be the olletion of the multipliities �j suhthat xj 2 C(i). Then it is obvious that C 2 Dk(PN ; A;B;M) with A, B, M as inde�nition 2.2. Moreover, equation (2) of de�nition 2.3 is satis�ed by remark 1.7 (ii)applied to C(0), hene it follows that C 2 D�;k(PN ; d).Remark 3.2. As the spaes Dk(PN ; A;B;M) are irreduible and of odimensionone by lemma 2.4, lemma 3.1 tells us that in the aseP� = d we must have(�k  k + ev�kH) � [ �M�(PN ; d)℄ =X�A;B;M [Dk(PN ; A;B;M)℄virtfor some �A;B;M , where the sum is taken over allA;B;M for whihDk(PN ; A;B;M)ours in D�;k(PN ; d). Note that the virtual fundamental lass of Dk(PN ; A;B;M)was de�ned to be m(1)���m(r)r! times the usual one (where r = jM j), but that on theother hand every irreduible omponent of the zero lous of �k (whih is of the formDk(PN ; A;B;M) for some A, B, M) gets ounted r! times in the above sum, orre-sponding to the hoie of order of the external omponents C(1); : : : ; C(r). Hene,to prove the main theorem for hyperplanes in PN in the ase P� = d, we have toshow that �k vanishes along Dk(PN ; A;B;M) with multipliity m(1) � � �m(r).We will now prove the main theorem for X = P1 and Y = H a point, in thease where P� = d. The proof is very similar to the proof of [V℄ proposition 4.8,in fat (modulo notations) idential up to the end where the setion �k omes intoplay, so we will only sketh these idential parts and refer to [V℄ for details.Proposition 3.3 (Main Theorem for H � P1;P� = d). If P� = d, then(�k  k + ev�kH) � [ �M�(P1; d)℄ = [D�;k(P1; d)℄virtin the Chow group of �M�(P1; d), for all 1 � k � n.



14 ANDREAS GATHMANNProof. Let Dk(P1; A;B;M) be a omponent of D�;k(P1; d). By equation (2) ofde�nition 2.3 we know that P�(0) = Pim(i), all this number d0. Moreover, wemust obviously have r > 0.We start by de�ning two easier moduli spaes that model loally the situationat hand (in a sense that is made preise later). Fix a point P 2 P1 distint fromH . LetM � �Mj�(0)j+r(P1; d0) be the losure of all degree-d0 irreduible stable maps(P1; (xi)1�i�j�(0) j; (yi)1�i�r ; f) suh thatf�H =Xi �(0)i xi and f�P =Xi m(i)yi:Let D � �Mj�(0)j+r(P1; d0) be the losure of all degree-d0 reduible stable maps(C(0) [ � � � [ C(r); (xi)1�i�j�(0) j; (yi)1�i�r ; f) with r + 1 omponents suh that� f ontrats C(0) to H , and C(i) \ C(0) 6= ; for all 1 � i � r,� xi 2 C(0) for all 1 � i � j�(0)j,� (f jC(i))�H = m(i)(C(i) \ C(0)) and (f jC(i))�P = m(i)yi for all 1 � i � r.General elements of these moduli spaes look as follows (the piture represents thease � = (0; 4; 1) and M = (2; 3)):
H P

PI 1

A general element in A general element in

PI 1

M D

H P

y1

y2

3x
1x
2x

Cy2

y1
2x

x3

x1

C

f fC

C

(0)

(1)

C (2)

In short, in addition to our usual multipliity requirements for f�H we requiremultipliities m(i) over the point P (so that the urves C(i) in D are rami�edompletely over H and P for i > 0).We are now ready to ompute the multipliity of �k to Dk(P1; A;B;M) at ageneral element C0 = (C 0; x01; : : : ; x0n; f 0). Let C = (C; (xi); (yi); f) be the uniquestable map in D whose internal omponent C(0) is equal to the internal omponentof C0, viewed as a marked urve whose marked points are the xi and the pointsC(0) \ C(i).By onstrution, the stable maps C and C0 are �etale loally isomorphi aroundC(0), so let (U; (xi); f jU ) be a suÆiently small ommon �etale neighborhood of C(0).By [V℄ proposition 4.3 the deformation spaes of C in M and C0 in �M�(P1; d) areproduts one of whose fators is the deformation spae of (U; (xi); f jU ), viewed as amap from U to P1 satisfying the given multipliity onditions at the points xi. Asthe setion �k is de�ned on this ommon fator, the order of vanishing of �k alongDk(P1; A;B;M) in �M�(P1; d) at the point C0 is equal to its order of vanishing alongD in M at the point C.To simplify the alulations even further, we will now �x the marked urve(C; (xi); (yi)). Consider the morphism � : M ! �Mj�(0)j+r given by forgetting themap f and stabilizing if neessary. Note that � will ontrat all external omponentsof C as they only have two speial points, so � maps C to a general point of �Mj�(0)j+r.



GROMOV-WITTEN INVARIANTS OF VERY AMPLE HYPERSURFACES 15Denote by M 0 � M and D0 � D the �bers of this morphism over �(C). Then themultipliity we seek is equal to the multipliity of �k along D0 in M 0 in the pointC. But general elements in M 0 are atually easy to desribe expliitly: hooseg1; g2 2 OP1(d0) with assoiated divisors(g1) =Xi �(0)i xi and (g2) =Xi m(i)yiwhere xi and yi are now �xed points in P1, determined by the element �(C) 2�Mj�(0)j+r. Then a general stable map in M 0 is of the formC� = (P1; (xi); (yi); f) where f : P1 ! P1; x 7! (�g1(x) : g2(x))for � 2 C � . (Here we have hosen oordinates on the target P1 suh that H = (0 : 1)and P = (1 : 0).) The lous D0 � M 0, whih is set-theoretially the zero lous of�k, orresponds to the degeneration �! 0.After a �nite base hange we an extend the family fC�g to � = 0. The entral�ber C0 of this extended family is equal to C.Let z be a loal oordinate around xk 2 P1. This means that z is a loaloordinate around xk on all C� with � 6= 0, and in fat it extends to a loaloordinate around xk for � = 0. Consider the loal trivialization of the line bundleL
�kk 
 ev�kO(H) given by dz(xk)
�k 
h(xk) 7! 1 (where h 2 H0(P1;O(H)) is thesetion vanishing at H that is used to de�ne �k). Then by onstrution, the setion�k on the family C� is given by � 7! ��k�z�k �g1(z)jz=xk in this loal trivialization. Inpartiular, this has a zero of �rst order in � at � = 0. This means that the lass ofthe zero lous of �k on M 0 is(�k  k + ev�kH) � [M 0℄ = 1 � [C�℄for general �.Finally, as the automorphism group of a general C� is trivial, whereas the auto-morphism group of C is Zm(1) � � � � �Zm(r), we onlude that(�k  k + ev�kH) � [M 0℄ = m(1) � � �m(r) � [C℄:Hene the statement of the proposition follows from remark 3.2.Corollary 3.4 (Main Theorem for H � PN ;P� = d). If P� = d, then(�k  k + ev�kH) � [ �M�(PN ; d)℄ = [D�;k(PN ; d)℄virtin the Chow group of �M�(PN ; d), for all 1 � k � n.Proof. (Compare to [V℄ theorem 6.1.) By the previous proposition we an assumethat N � 2. Consider a general element C = (C; x1; : : : ; xn; f) of a omponentDk(PN ; A;B;M) of D�;k(PN ; d). Let A � H be a general (N � 2)-plane. Theprojetion from A in PN indues a rational map �A : �Mn(PN ; d) 9 9 K �Mn(P1; d). By[V℄ proposition 5.5 the map �A is de�ned and smooth at C. Moreover, �A mapsDk(PN ; A;B;M) to Dk(P1; A;B;M) at the points of Dk(PN ; A;B;M) where it isde�ned, and the setion �k on �M�(P1; d) pulls bak along �A to the setion �kon �M�(PN ; d). Hene the multipliity of �k on �M�(PN ; d) along Dk(PN ; A;B;M)is the same as the multipliity of �k on �M�(P1; d) along Dk(P1; A;B;M). Theorollary then follows from proposition 3.3 and remark 3.2.



16 ANDREAS GATHMANNCorollary 3.5 (Main Theorem for H � PN). We have(�k  k + ev�kH) � [ �M�(PN ; d)℄ = [ �M�+ek(PN ; d)℄ + [D�;k(PN ; d)℄virtin the Chow group of �M�(PN ; d), for all 1 � k � n.Proof. Let s = d�P�, and let �0 = �[(1; : : : ; 1) suh thatP�0 = d. By orollary3.4 we know that(�0k  0k + ev0k�H) � [ �M�0(PN ; d)℄ = [D�0;k(PN ; d)℄virt (3)for 1 � k � n, where  0k is the k-th otangent line lass on �Mn+s(PN ; d), and ev0k theevaluation map �Mn+s(PN ; d) ! PN at the k-th marked point. We will show thatthe push-forward of this equation along the morphism � : �M�0(PN ; d)! �M�(PN ; d)that forgets the additional s marked points is exatly the statement of the orollary.First note that �0k = �k and ev0k = evk Æ �. For the omputation of the push-forward of  0k we may assume that �k > 0, as otherwise there is no  0k-term in(3). It is well-known that  0k = �� k + , where the orretion term  is thelass of the lous of those stable maps C = (C; x1; : : : ; xn+s; f) where � ontratsthe irreduible omponent Z of C on whih xk lies, i.e. where Z is an unstableomponent of the prestable map (C; x1; : : : ; xn; f). This an only happen if Zis ontrated by f , in partiular �k(C) = 0, so by lemma 3.1 the yle  mustbe a union of some of the omponents of Dk(PN ; A;B;M) of D�0;k(PN ; d). Todetermine whih of them our in , we an assume that C is a generi element ofsome Dk(PN ; A;B;M). It is easy to see that � ontrats Z = C(0) if and only ifr = jM j = 1, d(0) = 0, and the marked points on Z are xk and at least one of thepoints xn+1; : : : ; xn+s. If there is more than one of these points on Z, the map � haspositive-dimensional �bers on Dk(PN ; A;B;M), and hene ��[Dk(PN ; A;B;M)℄vanishes, hene we an assume that the marked points on Z are exatly xk andone of the forgotten points. Then �(C) ontrats Z, so by remark 1.7 the stablemap �(C) will be irreduible with multipliity �k + 1 at xk to H . This means that�(Dk(PN ; A;B;M)) = �M�+ek(PN ; d). As there is an s!-fold hoie of order of theforgotten marked points, we have shown that�� � [M�0(PN ; d)℄ = s! � [ �M�+ek(PN ; d)℄and that therefore the left hand side of the push-forward of (3) by � is equal tos! � (�k  k + ev�kH) � [ �M�(PN ; d)℄ + �ks! � [ �M�+ek (PN ; d)℄: (4)Now we look at the right hand side of the push-forward of (3) by �. Consider aomponent Dk(PN ; A;B;M) of D�0;k(PN ; d) and let C = (C; x1; : : : ; xn+s; f) be ageneri element of this omponent. For the push-forward of this omponent by �to be non-zero, the �bers of � have to be zero-dimensional, i.e. there must not be adeformation of C inside Dk(PN ; A;B;M) that hanges nothing but the position ofthe points xn+1; : : : ; xn+s. In partiular this means that we must have one of thefollowing two ases:� C(0) ontains none of the points xn+1; : : : ; xn+s, i.e. the points xn+1; : : : ; xn+sare just the s unmarked transverse points of intersetion of �(C) with H . Inthis ase, the map � does not ontrat any omponents of C, and it hangesno multipliities to H . Hene, the push-forward by � of all these omponentstogether is just s! � [D�;k(PN ; d)℄virt.



GROMOV-WITTEN INVARIANTS OF VERY AMPLE HYPERSURFACES 17� C(0) is a ontrated omponent, i.e. d(0) = 0, r = jM j = 1, and the markedpoints on C(0) are exatly xk and one of the points xn+1; : : : ; xn+s. As above,the push-forward of suh a omponent yields �M�+ek (PN ; d), and it ours withmultipliity (�k + 1) s!, where the fator �k + 1 omes from the de�nition ofthe virtual fundamental lass of Dk(PN ; A;B;M).Put together, we have shown that the push-forward of the right hand side of (3) by� is equal to s! � [D�;k(PN ; d)℄virt + (�k + 1) s! � [ �M�+ek(PN ; d)℄:Combining this with (4), we get the desired result.4. Proof of the main theorem for very ample hypersurfaesLet X be a smooth omplex projetive variety and Y a smooth very amplehypersurfae. We �x the following notation. Let i : Y ! X be the inlusion map.For � 2 H+2 (X) we denote by �Mn(Y; �) the disjoint union of all moduli spaes�Mn(Y; �0) for �0 2 H+2 (Y ) suh that i��0 = �. Consider the embedding ' : X ! PNgiven by the omplete linear system jY j and let H � PN be the hyperplane suhthat '�1(H) = Y . There is an indued morphism � : �Mn(X; �) ! �Mn(PN ; d),where d = Y � �. In this setion we will show that the \pull-bak" of the maintheorem for H � PN by � yields the main theorem for Y � X . The most diÆultpart of the proof is to show that the spaes D�;k(PN ; d) pull bak to D�;k(X; �)(proposition 4.4). Reall that urves in D�;k(X; �) are reduible urves with oneomponent in Y (and some multipliity onditions). Hene we will show �rst thatthe moduli spaes of urves in Y (lemma 4.2) and those of reduible urves in X(lemma 4.3) pull bak niely under �.Convention 4.1. In this setion, all ourring spaes are equipped with virtual fun-damental lasses as follows.� The moduli spaes of stable maps �Mn(�; �) have virtual fundamental lassesonstruted e.g. in [B℄, [BF℄.� The moduli spaes �M�(�; �), Dk(: : : ), and D�;k(: : : ) have virtual fundamentallasses onstruted in de�nitions 1.18, 2.2, and 2.3, respetively.� The varieties Y , X , H , and PN are equipped with their usual fundamentallass.� The virtual fundamental lass of a disjoint union of spaes is the sum of thevirtual fundamental lasses of its omponents.� In any �ber produt V1 �V V2 ourring in this setion, V will always besmooth and equipped with the usual fundamental lass. The virtual funda-mental lass of the �ber produt is then taken to be the one indued by thevirtual fundamental lasses of V1 and V2 in the sense of remark 1.19.When we say that two spaes V1 and V2 are equal we will always mean that V1and V2 are isomorphi and that [V1℄virt = [V2℄virt under this isomorphism. We willwrite this as V1 � V2.Lemma 4.2. For any n � 0 and � 2 H+2 (X) we have�Mn(Y; �) � �Mn(H; d)� �Mn(PN;d) �Mn(X; �):



18 ANDREAS GATHMANNProof. As Y = H \ X � PN , it follows from the de�nitions that the diagram ofinlusions �Mn(Y; �) //

��

�Mn(X; �)
���Mn(H; d)  // �Mn(PN ; d) (5)is artesian. We denote by �X : �Mn+1(X; �) ! �Mn(X; �) the universal urve andby fX : �Mn+1(X; �)! X its evaluation map, and similarly for the moduli spaes ofmaps to Y , H , and PN . Applying the funtor R�Y �f�Y to the distinguished triangleLX jY ! LY ! LY=X ! LX jY [1℄ (6)on Y , we get the distinguished triangleR�Y �(f�XLX)j �Mn+1(Y;�) ! R�Y �f�Y LY ! R�Y �(f�HLH=PN)j �Mn+1(Y;�)! R�Y �(f�XLX)j �Mn+1(Y;�)[1℄on �Mn(Y; �). By [B℄ proposition 5, the vetor bundle f�XLX is quasi-isomorphi to aomplex K of vetor bundles on �Mn+1(X; �) suh that R�X�K is also a omplex ofvetor bundles. As �X is at, it follows from the theorem on ohomology and basehange that (R�X�K) �Mn(Y;�) = R�Y �(Kj �Mn+1(Y;�)). The same argument appliesto f�HLH=PN instead of f�XLX , so we arrive at the distinguished triangle(R�X�f�XLX)j �Mn(Y;�) ! R�Y �f�Y LY ! (R�H�f�HLH=PN)j �Mn(Y;�)! (R�X�f�XLX)j �Mn(Y;�)[1℄: (7)Starting with the distinguished triangle of LH=PN instead of LY=X in (6), the samealulation as above shows that we also have a distinguished triangle on �Mn(H; d)(R�PN�f�PNLPN)j �Mn(H;d) ! R�H�f�HLH ! R�H�f�HLH=PN! (R�PN�f�PNLPN)j �Mn(H;d)[1℄:But the �rst and seond term in this sequene are just L �Mn(PN;d)=Mn j �Mn(H;d) andL �Mn(H;d)=Mn , where Mn denotes the stak of prestable n-pointed rational urves.Hene we see that R�H�f�HLH=PN = L �Mn(H;d)= �Mn(PN;d). So (7) beomes(R�X�f�XLX)j �Mn(Y;�) ! R�Y �f�Y LY ! L �Mn(H;d)= �Mn(PN;d)j �Mn(Y;�)! (R�X�f�XLX)j �Mn(Y;�)[1℄:As the �rst two terms in this sequene are the relative obstrution theories of�Mn(X; �) and �Mn(Y; �) over Mn, respetively, we get a homomorphism of thisdistinguished triangle toL �Mn(X;�)=Mn j �Mn(Y;�) ! L �Mn(Y;�)=Mn ! L �Mn(Y;�)= �Mn(X;�)! L �Mn(X;�)=Mn j �Mn(Y;�)[1℄:Hene, by [BF℄ proposition 7.5 it follows that  ![ �Mn(X; �)℄virt = [ �Mn(Y; �)℄virt in(5). This proves the lemma.



GROMOV-WITTEN INVARIANTS OF VERY AMPLE HYPERSURFACES 19Lemma 4.3. Let n(i) � 0 and d(i) � 0 suh that Pi n(i) = n and Pi d(i) = d.Thena(�(i)) �Mn(0)+r(X; �(0))�Xr rYi=1 �Mn(i)+1(X; �(i))! � �Mn(0)+r(PN ; d(0))�(PN)r rYi=1 �Mn(i)+1(PN ; d(i))!� �Mn(PN;d) �Mn(X; �);where the union is taken over all (�(i)) with Y � �(i) = d(i) for all i, and where themaps to Xr and (PN)r are given in the same way as in de�nition 2.2.Proof. In the language of [BM℄, let � be the graph orresponding to rational urveswith omponents C(0); : : : ; C(r) suh that C(0) \C(i) 6= ; for all i > 0 and C(i) hasn(i) marked points for i � 0. Let Mn be the stak of prestable n-pointed rationalurves, and letM� �Mn be the substak of � -marked prestable urves, as de�nedin [BM℄ de�nition 2.6. Moreover, we will abbreviate the moduli spaes in thelarge brakets in the statement of the lemma as �M� (X; (�(i))) and �M� (PN ; (d(i))),respetively.Consider the ommutative diagram�M� (X; (�(i))) //

��

�M� (PN ; (d(i))) //

��

M� 
���Mn(X; �) // �Mn(PN ; d) // Mnwhere none of the maps involves stabilization of the underlying prestable urves. By[B℄ lemma 10, the right square and the big square are artesian, so the left one is alsoartesian. Moreover, by the same lemma,  ![ �Mn(X; �)℄virt = [ �M� (X; (�(i)))℄virt.Proposition 4.4. For any 1 � k � n we haveD�;k(X; �) � D�;k(PN ; d)� �Mn(PN;d) �Mn(X; �):In partiular, the moduli spaes Dk(X;A;B;M) satisfying equation (2) of de�nition2.3 are proper substaks of �M�(X; �) of expeted odimension one.Proof. We onsider a omponentDk(PN ; A; (d(i));M) ofD�;k(PN ; d) and show thatthe �ber produt of this omponent with �Mn(X; �) over �Mn(PN ; d) is the union ofall Dk(X;A; (�(i));M) suh that Y � �(i) = d(i).We start with the pull-bak ompatibility statement for general urves of theform C(0) [ � � � [C(r) with C(0) \C(i) 6= ;, as given in lemma 4.3. Taking the �berprodut of this equation with �Mn(0)+r(H; d(0)) over �Mn(0)+r(PN ; d(0)) (i.e. requiringthe entral omponent C(0) to lie in H) and using lemma 4.2 on the left hand sideyieldsa(�(i)) �Mn(0)+r(Y; �(0))�Xr rYi=1 �Mn(i)+1(X; �(i))! � �Mn(0)+r(H; d(0))�(PN)r rYi=1 �Mn(i)+1(PN ; d(i))!� �Mn(PN;d) �Mn(X; �):



20 ANDREAS GATHMANNThis an obviously be written in a more ompliated way asa(�(i)) �Mn(0)+r(Y; �(0))�Y r  Hr �(PN)r rYi=1 �Mn(i)+1(X; �(i))!! � �Mn(0)+r(H; d(0))�Hr  Hr �(PN)r rYi=1 �Mn(i)+1(PN; d(i))!!� �Mn(PN;d) �Mn(X; �):Note that H �PN �Mn(i)+1(PN ; d(i)) � �M~�(i)(PN ; d(i)) for all i > 0, where ~�(i) =(0; : : : ; 0; 1). So we geta(�(i)) �Mn(0)+r(Y; �(0))�Y r rYi=1 �M~�(i) (PN; d(i))� �Mn(i)+1(PN;d(i)) �Mn(i)+1(X; �(i))! � �Mn(0)+r(H;d(0))�Hr rYi=1 �M~�(i) (PN ; d(i))!� �Mn(PN;d) �Mn(X; �):Finally, we take the �ber produt of this equation with �M�(i)[(m(i))(PN ; d) over�M~�(i)(PN ; d) for all i > 0, yielding the same equation with the ~�(i) replaed by �(i)[(m(i)). By de�nition, this is then exatly the equation stated in the proposition.We are now ready to give the proof of our main theorem.Proof (of theorem 2.6). Consider the artesian diagram�M�(X; �) //

��

�M�(PN ; d)
���Mn(X; �) � // �Mn(PN ; d):The main theorem for H � PN (see orollary 3.5) gives an equation in the Chowgroup of �M�(PN ; d). We pull this equation bak by � to get an equation in theChow group of �M�(X; �). As the morphism � does not involve any ontrationsof the underlying prestable urves, the otangent line lass  k on �Mn(PN ; d) pullsbak to the otangent line lass  k on �Mn(X; �). So by de�nition the left handside of orollary 3.5 pulls bak to (�k k + ev�Y ) � [ �M�(X; �)℄virt. In the same way,[ �M�+ek(PN ; d)℄ pulls bak to [ �M�+ek (X; �)℄virt. Finally, proposition 4.4 shows that[D�;k(PN ; d)℄virt pulls bak to [D�;k(X; �)℄virt.Remark 4.5. We expet that the statement of the main theorem 2.6 is true evenunder weaker assumptions on the hypersurfae Y . For example, if Y is not veryample but the omplete linear system jY j on X is base-point free, we still geta morphism X ! PN de�ned by jY j. The de�nition of the moduli spaes ofrelative invariants essentially arries over without hange to this ase. The main(but probably little) problem is that the morphism � in the artesian diagram ofde�nition 1.18 now may involve stabilization of the underlying prestable urves.This makes many points in the arguments of this paper more subtle, but we expetthat a version of the main theorem an be proven also in this ase.



GROMOV-WITTEN INVARIANTS OF VERY AMPLE HYPERSURFACES 215. Enumerative appliationsAs usual, the �rst thing to do to get enumerative results from moduli spaesof maps is to de�ne invariants by interseting the virtual fundamental lass ofthe moduli spae with various otangent line lasses and pull-baks of lasses viaevaluation maps. Note that from the spaes �M�(X; �) we always have evaluationmaps evk to X for 1 � k � j�j, and in addition evaluation maps ~evk to Y for all kwith �k > 0.De�nition 5.1. Let � 2 H+2 (X), n � 0, k1; : : : ; kn � 0, and 1; : : : ; n 2 A�(X).Then the restrited Gromov-Witten invariants of Y are de�ned asIYn;�(1 k1 ; : : : ; n kn) = ev�11 �  k11 � � � ev�nn �  knn � [ �Mn(Y; �)℄virt 2 Qif Pi(odim i + ki) = vdim �Mn(Y; �). Similarly, for any � = (�1; : : : ; �n) therestrited relative Gromov-Witten invariants of Y � X are de�ned asI�;�(1 k1 ; : : : ; n kn) = ev�11 �  k11 � � � ev�nn �  knn � [ �M�(X; �)℄virt 2 QifPi(odim i+ki) = vdim �M�(X; �). This de�nition an obviously be generalizedin the following two ways:(i) We an take ohomology lasses ~k 2 A�(Y ) and the evaluation maps ~evk toY , instead of k 2 A�(X) and evk (provided that �k > 0 in the ase of therelative invariants). We will apply the same notation in this ase and justmark the ohomology lasses that are pulled bak from Y by a tilde.(ii) For the absolute invariants, we ould use a homology lass on Y instead ofsumming over all homology lasses on Y that push forward to a given lasson X . (We will never do this in this paper, however.)The invariants obtained in this way are alled the (unrestrited) Gromov-Witteninvariants of Y , or relative Gromov-Witten invariants of Y � X , respetively.Remark 5.2. Often the restrited invariants are really not restrited at all. As forgeneralization (i) in the above de�nition, in many ases every algebrai ohomologylass in Y omes from a (rational) algebrai ohomology lass in X , notably if thedimension of Y is odd (by the Lefshetz theorem) or if X = PN and Y is a generihypersurfae that is not a quadri or the ubi surfae (by [S℄ proposition 2.1).Again by the Lefshetz theorem, (ii) is no generalization if the dimension of Y isat least 3.Remark 5.3. If we interset the main theorem 2.6(�k  k + ev�kY ) � [ �M�(X; �)℄virt = [ �M�+ek(X; �)℄virt + [D�;k(X; �)℄virtwith suitably many otangent line lasses or pull-baks from lasses on X orY by the evaluation maps, we obviously get many relations among the relativeGromov-Witten invariants of Y � X , the Gromov-Witten invariants of X (for� = (0; : : : ; 0)), and the Gromov-Witten invariants of Y (as the moduli spaesof stable maps to Y are inluded as fators in the spaes D�;k(X; �)). As forD�;k(X; �) one uses the usual \diagonal trik" to express a omponentDk(X;A;B;M) = �Mj�(0)j+r(Y; �(0))�Y r rYi=1 �M�(i)[(m(i))(X; �(i))



22 ANDREAS GATHMANN(and its virtual fundamental lass) by the artesian diagramDk(X;A;B;M) //

��

�Mj�(0)j+r(Y; �(0))�Qri=1 �M�(i)[(m(i))(X; �(i))ev
��Y r �r

// Y r � Y r;i.e. intersetion produts on Dk(X;A;B;M) beome intersetion produts of thesame lasses on produts of moduli spaes of (absolute and relative) stable maps,with additional lasses oming from the diagonal. So the term [D�;k(X; �)℄virt inthe main theorem will turn into a sum of produts of Gromov-Witten invariants ofY and relative Gromov-Witten invariants of Y � X .Remark 5.4. In what follows we only want to look at the restrited (relative)Gromov-Witten invariants. It is not obvious that this is possible, as even if weonly use pull-baks of lasses from X at the marked points x1; : : : ; xn, the lassesfrom the diagonal trik in the terms D�;k(X; �) (see above) will throw in lassesfrom Y . To see that these do not do any harm we will �rst show in the next twolemmas that absolute as well as relative invariants vanish if they ontain exatly onelass from Y and this lass lies in the orthogonal omplement A�(X)? of i�A�(X)in A�(Y ). (These lemmas an obviously be skipped if A�(X)? = ;, whih is oftenthe ase by remark 5.2).Lemma 5.5. Let ~1 2 A�(X)? and 2; : : : ; n 2 A�(X). Then for any � 2 H+2 (X)we have IYn;�(~1 k1 ; 2 k2 ; : : : ; n kn) = 0.Proof. (This is a variant of proposition 4 in [P℄.) Consider the artesian diagram(see lemma 4.2) Y i // X�Mn(Y; �) //

��

�M~�(X; �) //

��

~ev1 OO �Mn(X; �)�
��

ev1 OO

�Mn(H; d) // �M~�(H; d) j // �Mn(PN ; d)where ~� = (1; 0; : : : ; 0). Let � : �Mn+1(PN ; d) ! �Mn(PN ; d) be the universal mapand f : �Mn+1(PN ; d)! PN its evaluation map. Let E be the kernel of the surjetivebundle morphism ��f�O(H)! ev�1O(H) given by evaluation. By [P℄ onstrution2.1 and proposition 4 we have that [ �Mn(H; d)℄ = j�(top(E) � [ �Mn(PN ; d)℄). Inter-seting with [ �Mn(X; �)℄virt yields by lemma 4.2[ �Mn(Y; �)℄virt = i!(��top(E) � [ �Mn(X; �)℄virt)



GROMOV-WITTEN INVARIANTS OF VERY AMPLE HYPERSURFACES 23on �M~�(X; �). Moreover, the lass  =  k1 � ev�22 �  k2 � � � ev�nn �  kn is atuallyde�ned on �Mn(X; �). Therefore we getIYn;�(~1 k1 ; 2 k2 ; : : : ; n kn) = ~1 � ~ev1�i!( � ��top(E) � [ �Mn(X; �)℄virt)= ~1 � i�ev1�( � ��top(E) � [ �Mn(X; �)℄virt)= 0as ~1 2 A�(X)?.Lemma 5.6. Assume that �1 > 0. Let ~1 2 A�(X)? and 2; : : : ; n 2 A�(X).Then I�;�(~1 k1 ; 2 k2 ; : : : ; n kn) = 0.Proof. We prove the statement by indution on d = Y � �, n, and P�, in thatorder. This means: if we want to prove the statement for an invariant with ertainvalues of d, n, and P�, we assume that it is true for all invariants having(i) smaller d, or(ii) the same d and smaller n, or(iii) the same d, the same n, and smaller P�.For P� = 1, i.e. � = (1; 0; : : : ; 0), the statement follows by exatly the samealulation as in the proof of lemma 5.5, just leaving out the fator top(E). So wean assume that P� > 1. If �1 > 1 set k = 1, otherwise hoose any k > 1 with�k > 0. By the main theorem 2.6 we have((�k � 1) k + ev�kY ) � [ �M��ek(X; �)℄virt = [ �M�(X; �)℄virt + [D��ek;k(X; �)℄virt:Interset this equation with ~ev�1~1 �  k1 � ev�22 �  k2 � � � ev�nn �  kn . The �rst termon the right hand side is then exatly the desired invariant. We will show that allother terms vanish.The term on the left hand side has the same d and n, and smaller P�. Theinvariant oming from the  k-summand has exatly one lass in A�(X)? and henevanishes by the indution hypothesis. The same is true for the invariant omingfrom the ev�kY -term if k > 1. If k = 1, all lasses in the invariant ome from X ,but the invariant ontains the lass ev�1Y � ~ev�1~1 = ~ev�1(~1 � i�Y ), whih is zero as~1 2 A�(X)?. Hene the left hand side of the equation vanishes.Now we look at the terms Dk(X;A;B;M) on the right hand side that giveproduts of (relative) invariants by the diagonal trik as desribed in remark 5.3.Note that the lass of the diagonal in Y �Y isPi Ti
T_i , where fTig is a basis ofA�(Y ). If we hoose this basis suh that it respets the orthogonal deompositionA�(Y ) = i�A�(X) � A�(X)?, then Ti 2 A�(X)? if and only if T_i 2 A�(X)?.Hene the i-th diagonal (where 1 � i � r) will ontribute one lass eah to theinvariants for C(0) and C(i), and either both of them are in A�(X)? or none ofthem.For a given term Dk(X;A;B;M), the omponents C(i) for i > 0 all have eithersmaller d, or the same d and smaller n (the latter happens only if r = 1 and�(0) = 0). Hene by indution hypothesis (i > 0) or lemma 5.5 (i = 0), we know forany i � 0 that the invariant for C(i) vanishes if it ontains exatly one lass fromA�(X)?. We show that this has always to be the ase for at least one i. Assumethat this is not true. We distinguish two ases:(i) x1 2 C(0). Then the external omponents C(i) an have at most one lassfrom A�(X)?, namely the lass from the diagonal. Hene by our assumption,they have no suh lass, i.e. the diagonal ontributes a lass from i�A�(X) to



24 ANDREAS GATHMANNC(i) and hene also to C(0). But then the invariant for C(0) has exatly onelass from A�(X)?, namely ~1, whih is a ontradition.(ii) x1 2 C(i) for some i > 0. Then by our assumption, the diagonals mustontribute a lass from A�(X)? to C(i), and a lass from i�A�(X) to all otherC(j) with j > 0. But then we have again exatly one lass from A�(X)? inC(0), namely the one from the i-th diagonal. This is again a ontradition.This shows the lemma.Corollary 5.7. Let X be a smooth projetive variety and Y � X a smooth veryample hypersurfae. Assume that the Gromov-Witten invariants of X are known.Then there is an expliit algorithm to ompute the restrited Gromov-Witten invari-ants of Y as well as the restrited relative Gromov-Witten invariants of Y � X.Proof. This is now straightforward. We will ompute the absolute and relativeinvariants at the same time, and we will use reursion on the same variables as inthe previous lemma.Assume that we want to ompute a relative invariant I�;�(1 k1 ; : : : ; n kn). IfP� = 0 then this is a Gromov-Witten invariant on X and therefore assumed to beknown. So we an assume that P� > 0. On the other hand, we an also assumethat P� � Y � � = d, as otherwise the invariant is zero anyway by de�nition.Choose k suh that �k > 0 and interset the main theorem 2.6((�k � 1) k + ev�kY ) � [ �M��ek (X; �)℄virt = [ �M�(X; �)℄virt + [D��ek ;k(X; �)℄virt(8)with ev�11 �  k1 � � � ev�nn �  kn . Then the �rst term on the right hand side isthe invariant that we want to ompute. We will show that all other terms in theequation are reursively known.This is obvious for the invariants on the left hand side, sine they have the samed, same n, and smaller P�. Now look at a term oming from Dk(X;A;B;M)on the right hand side, it is a produt of invariants for the omponents C(i) fori = 0; : : : ; r. First we will show that we only get produts of restrited invariants.The invariant for the omponents C(i) for i > 0 an have at most one lass fromA�(X)?, namely from the diagonal. But if it has exatly one it vanishes by lemma5.6, so it has none. This means that it is a restrited invariant, and moreover thatthe diagonal ontributes only lasses from A�(X) to the invariant for C(0). Thismeans that the invariant for C(0) is also a restrited one.Now, as in the previous lemma, the invariants for the omponents C(i) for i > 0all have either smaller d, or the same d and smaller n, and are therefore reursivelyknown. The Gromov-Witten invariant for the omponent C(0) an ertainly haveno bigger d. We will show now that it annot have the same d either. Assume theontrary, then we must have r = 0. But then the dimension ondition saysvdim �M�(X; �) = vdim �Mn(Y; �)() vdim �Mn(X; �)�X� = vdim �Mn(X; �)� d� 1; (9)i.e. P� = d + 1 > d, whih is a ontradition. Hene also the invariant for C(0)has smaller d. In summary, we have seen that we an ompute the desired relativeGromov-Witten invariant.Now we ompute the absolute Gromov-Witten invariants for the same valuesof d and n. Assume that there is suh an invariant IYn;�(1 k1 ; 2 k2 ; : : : ; n kn).



GROMOV-WITTEN INVARIANTS OF VERY AMPLE HYPERSURFACES 25Without loss of generality we may assume that n > 0 (if n = 0 we an just add onemarked point and require it to be on Y , whih hanges the invariant only by a fatorof d aording to the divisor axiom). Set � = (d+1; 0; : : : ; 0). Now onsider exatlythe same equation (8) as above and interset it again with ev�11 � k1 � � � ev�nn � kn .The dimension alulation (9) above then shows that the term [ �Mn(Y; �)℄virt andhene the desired Gromov-Witten invariant will appear on the right hand side of ourequation as one term among the Dk(X;A;B;M). The term oming from �M�(X; �)will vanish as P� > d, and all other terms are known reursively by exatly thesame arguments as above for the relative invariants.Remark 5.8. Although we have just shown that all restrited Gromov-Witten in-variants of Y � X an be omputed from the Gromov-Witten invariants of X ,only a very small subset of them is needed if one is only interested in the Gromov-Witten invariants of Y . First of all, analyzing the algorithm given in the proofabove, one sees that it is suÆient to onsider relative invariants of the formI(�1;0;:::;0);�(1 k11 ; 2; : : : ; n), i.e. we need multipliities and otangent line lassesat only one of the marked points. In fat, in many ases it will be suÆient to lookat invariants with only one marked point | the WDVV equations of Y an thenbe used to ompute all Gromov-Witten invariants of Y . In a forthoming paperwe will give some expliit examples along these lines and show how orollary 5.7an be used to reprove and generalize the \mirror symmetry" type formulas forGromov-Witten invariants of ertain hypersurfaes [Be℄,[G℄,[LLY℄.Referenes[B℄ K. Behrend, Gromov-Witten invariants in algebrai geometry, Inv. Math. 127 (1997),no. 3, 601{617.[Be℄ A. Bertram, Another way to enumerate rational urves with torus ations, preprintmath.AG/9905159.[BF℄ K. Behrend, B. Fantehi, The intrinsi normal one, Inv. Math. 128 (1997), no. 1, 45{88.[BM℄ K. Behrend, Y. Manin, Staks of stable maps and Gromov-Witten invariants, DukeMath. J. 85 (1996), no. 1, 1{60.[EGA4℄ A. Grothendiek, �El�ements de g�eometrie alg�ebrique IV, IHES 32 (1967).[F℄ W. Fulton, Intersetion theory, Springer 1984.[G℄ A. Givental, Equivariant Gromov-Witten invariants, Internat. Math. Res. Noties 13(1996), 613{663.[IP1℄ E. Ionel, T. Parker, Gromov-Witten invariants of sympleti sums, Math. Res. Lett. 5(1998), no. 5, 563{576.[IP2℄ E. Ionel, T. Parker, Relative Gromov-Witten invariants, preprint math.SG/9907155.[K℄ M. Kontsevih, Enumeration of rational urves via torus ations, The moduli spae ofurves (Texel Island 1994), Birkh�auser Progr. in Math. 129 (1995), 335{368.[LLY℄ B. Lian, K. Liu, S. Yau, Mirror priniple I, Asian J. of Math. 1 (1997), no. 4, 729{763.[LR℄ A. Li, Y. Ruan, Sympleti surgery and Gromov-Witten invariants of Calabi-Yau 3-foldsI, preprint math.AG/9803036.[P℄ R. Pandharipande, Rational urves on hypersurfaes (after A. Givental), preprintmath.AG/9806133.[R℄ Y. Ruan, Surgery, quantum ohomology and birational geometry, preprint math.AG/9810039.[S℄ T. Shioda, Algebrai yles on hypersurfaes in PN, Algebrai geometry, Sendai 1985,Adv. Stud. Pure Math. 10 (1987), 717{732.[V℄ R. Vakil, The enumerative geometry of rational and ellipti urves in projetive spae,preprint available at http://www-math.mit.edu/~vakil/preprints.html.
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