
RELATIVE GROMOV-WITTEN INVARIANTS AND THEMIRROR FORMULAANDREAS GATHMANNAbstrat. Let X be a smooth omplex projetive variety, and let Y � X be asmooth very ample hypersurfae suh that �KY is nef. Using the tehnique ofrelative Gromov-Witten invariants, we give a new short and geometri proof of(a version of) the \mirror formula", i.e. we show that the generating funtionof the genus zero 1-point Gromov-Witten invariants of Y an be obtained fromthat of X by a ertain hange of variables (the so-alled \mirror transforma-tion"). Moreover, we use the same tehniques to give a similar expression forthe (virtual) numbers of degree-d plane rational urves meeting a smooth ubiat one point with multipliity 3d, whih play a role in loal mirror symmetry.For a smooth very ample hypersurfae Y of a smooth omplex projetive varietyX , the theory of relative Gromov-Witten invariants gives rise to an algorithm thatallows one to ompute the genus zero Gromov-Witten invariants of Y from thoseof X [Ga℄. The goal of this paper is to show that in the ase when �KY is nef,this algorithm an be \solved" expliitly to obtain a formula that expresses thegenerating funtion of the 1-point Gromov-Witten invariants of Y in terms of thatofX . This so-alled \mirror formula" (also denoted \quantum Lefshetz hyperplanetheorem" by some authors) has already been known for some time ([Gi℄, [LLY℄, [K℄,[B℄, [L℄). Our approah however is entirely di�erent and essentially \elementary" inthe sense that it does not use any of the speial tehniques that have been used inthe previous proofs, like e.g. torus ations, equivariant ohomology, or moduli spaesother than the usual spaes of stable maps to X and their subspaes. This doesnot only make our proof muh simpler than the previous ones, but also hopefullyeasier to generalize, e.g. to more general hypersurfaes, or to higher genus of theurves.Let us briey reall the ideas and results from [Ga℄. For n � 0 and a homologylass � 2 H2(X)=torsion we denote by �Mn(X; �) the moduli spae of n-pointedgenus zero stable maps to X of lass �. For any m � 0 there are losed sub-spaes �M(m)(X; �) of �M1(X; �) that an be thought of as parametrizing 1-pointedrational urves in X having multipliity (at least) m to Y at the marked point.(For simpliity, we suppress in the notation the dependene of these spaes on Y .)These moduli spaes have expeted odimension m in �M1(X; �). In fat, they omeequipped with natural virtual fundamental lasses [ �M(m)(X; �)℄virt of this expeteddimension. If X is a projetive spae and Y a hyperplane, then these moduli spaesdo have the expeted dimension, and their virtual fundamental lasses are equal tothe usual ones.The idea is now to raise the multipliity m of the urves from 0 up to Y � � + 1by one at a time. Curves with multipliity (at least) 0 are just unrestrited urves1991 Mathematis Subjet Classi�ation. 14N35,14N10,14J70.Funded by the DFG sholarships Ga 636/1{1 and Ga 636/1{2.1



2 ANDREAS GATHMANNin X , whereas a multipliity of Y � � +1 fores at least the irreduible urves to lieinside Y . In other words, we onsider the hain of inlusions�M1(Y; �) � �M(Y ��)(X; �) � �M(Y ���1)(X; �) � � � � � �M(0)(X; �) = �M1(X; �)of \virtual odimension one". The main theorem of [Ga℄ desribes eah of theseinlusions expliitly in terms of intersetion theory. This gives us a way to desribe�M1(Y; �) inside �M1(X; �), and hene to ompute Gromov-Witten invariants of Yin terms of those of X .It is easy to write down a na��ve guess what these inlusions should look like. Astable map in X has multipliity at least m to Y if and only if the (m � 1)-jet ofev�Y vanishes, where ev : �M1(X; �) ! X denotes the evaluation map. Hene theyle �M(m+1)(X; �) inside �M(m)(X; �) should just be the �rst Chern lass of theline bundle of m-jets modulo (m � 1)-jets of ev�O(Y ). This Chern lass is easilyomputed to be ev�Y + m , where  is the \otangent line lass", i.e. the �rstChern lass of the line bundle whose �ber at a stable map (C; x; f) is the otangentspae of C at the point x.However, our above informal desription of �M(m)(X; �) as the spae of urveswith multipliity at least m to Y at the marked point breaks down at the \bound-ary", i.e. at those urves where the marked point lies on a omponent of the urvethat lies ompletely inside Y , so that the multipliity beomes \in�nite". Henethe above alulation reeives orretion terms from these urves. Their expliitform is given by the following theorem (see [Ga℄ theorem 2.6).Theorem 0.1. For all m � 0 we have(ev�Y +m ) � [ �M(m)(X; �)℄virt = [ �M(m+1)(X; �)℄virt + [D(m)(X; �)℄virt:Here, the orretion term D(m)(X; �) = `r`B;M D(X;B;M) is a disjoint unionof individual termsD(X;B;M) := �M1+r(Y; �(0))�Y r rYi=1 �M(m(i))(X; �(i))where r � 0, B = (�(0); : : : ; �(r)) with �(i) 2 H2(X)=torsion and �(i) 6= 0 fori > 0, and M = (m(1); : : : ;m(r)) with m(i) > 0. The maps to Y r are the evaluationmaps for the last r marked points of �M1+r(Y; �(0)) and eah of the marked pointsof �M(m(i))(X; �(i)), respetively. The union in D(m)(X; �) is taken over all r, B,and M subjet to the following three onditions:rXi=0 �(i) = � (degree ondition),Y � �(0) + rXi=1m(i) = m (multipliity ondition),if �(0) = 0 then r � 2 (stability ondition).In the equation of the theorem, the virtual fundamental lass of the summandsD(X;B;M) is de�ned to be m(1) ���m(r)r! times the lass indued by the virtual fun-damental lasses of the fators �M1+r(Y; �(0)) and �M(m(i))(X; �(i)). The spaesD(X;B;M) an be onsidered to be subspaes of �M1(X; �) (see below), so the equa-tion of the theorem makes sense in the Chow group of �M1(X; �).



RELATIVE GROMOV-WITTEN INVARIANTS AND THE MIRROR FORMULA 3Geometrially speaking, the moduli spaes D(X;B;M) in the orretion termsdesribe urves with r + 1 irreduible omponents C(0); : : : ; C(r) with homologylasses �(0); : : : ; �(r), suh that C(0) lies inside Y , and the C(i) for i > 0 intersetC(0) in a point where they have multipliity m(i) to Y . The marked point is al-ways on the omponent C(0). Using this desription, the spaes D(X;B;M) an beonsidered as subspaes of �M1(X; �). The multipliity ondition ensures that theyare atually subspaes of �M(m)(X; �) and have the orret expeted dimension.The fator 1r! in the de�nition of the virtual fundamental lass of the orretionterms is just ombinatorial and orresponds to the hoie of order of the ompo-nents C(1); : : : ; C(r). In ontrast, the fator m(1) � � �m(r) is of geometri nature andsomewhat triky to derive.As an example of the theorem, onsider the ase where X = P3, Y = H isa hyperplane, and � is the lass of ubi urves in X . Then the equations ofthe theorem for m = 0; : : : ; 3 an be pitured as follows (where we set �M(m) :=�M(m)(P3; 3)):
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(Of ourse, in the pitures where we have drawn the marked point on a nodeof the urve, the orresponding stable maps have a ontrated omponent, i.e. wehave �(0) = 0.)So we see that �M1(H; 3) is equal to Q3i=0(ev�H + i ) � �M1(P3; 3) plus a bunhof orretion terms oming from reduible urves as shown in the piture. This isan equation of 9-dimensional yles in �M1(P3; 3). To make this into equations forthe Gromov-Witten invariants of H , we have to interset it with some ohomologylass  of odimension 9 that is a polynomial in ev�H and  . Note that in theorretion terms this will impose 9 onditions on the omponent C(0) ontained inH . However, in all the terms where the degree of C(0) is at most 2, the moduli spaefor this omponent has dimension smaller than 9. Hene all these terms vanish,



4 ANDREAS GATHMANNand it follows that the 1-point Gromov-Witten invariants of H (of degree 3 in thisexample) are expressible in terms of those of P3 asIH3 () = IP33   � 3Yi=0(H + i )! :The same argument works for higher degree of the urves.Now let us ome bak to the ase of general X and Y . Can we still hope that theorretion terms vanish when we ompute the Gromov-Witten invariants? Reallthat the reason for the vanishing above was that the dimension of the moduli spaeof urves in Y quikly gets bigger when the degree of the urves goes up (in theexample, the 9 onditions that were needed for Gromov-Witten invariants for ubisin Y were \too many" for lines and onis in Y ). Hene, as the (virtual) dimensionof the moduli spae of stable maps to Y is vdim �M1(Y; �) = �KY � � +dimY � 2,we see that we need that �KY is suÆiently positive.If �KY is negative, basially all orretion terms that ould appear in the om-putation of the Gromov-Witten invariants will do so. The main nuisane aboutthis is that the orretion terms ontain the full n-point Gromov-Witten invariantsof Y (namely, n = 1 + r in eah of the orretion terms), and not just the 1-pointinvariants that we originally wanted to ompute. There would be two ways toproeed:� Use the version of theorem 0.1 for n-point invariants as proven in [Ga℄.� Use the WDVV equations to ompute the n-point invariants of Y in terms of1-point invariants whenever they our.Both methods an be used without problems to write down an algorithm to omputethe Gromov-Witten invariants of Y in terms of those of X . However, we do notknow at the moment how to express the result in a nie losed form.Most interesting are the ases where �KY is nef, but yet not \positive enough"to ensure the vanishing of all orretion terms. We will show that, whenever �KYis nef, the only n-point invariants of Y that might our in the algorithm arethose with fundamental or divisor lasses at all but the �rst marked point. Theseinvariants an of ourse be redued immediately to 1-point invariants using thefundamental lass and divisor axioms for Gromov-Witten invariants. Thus we arriveat reursion formulas that involve only 1-point invariants. Solving them diretly,we obtain a nie expression for the invariants of Y : the \mirror formula".The neessary omputations to ahieve this are done in setion 1. In setion 2we apply the results to two examples. First of all we rederive the expression for thegenus zero Gromov-Witten invariants of the quinti threefold. Seondly, we provea similar expression for the (virtual) numbers of plane rational urves of degree dhaving ontat of order 3d to a smooth ubi. These numbers play a role in loalmirror symmetry (see [CKYZ℄ and [T℄). They are a by-produt of our work, asthey are just simple examples of relative Gromov-Witten invariants. The two mainomputational lemmas (that have nothing to do with algebrai geometry, but ratherare formal statements about ertain power series ourring in the alulation) areproved in the appendix.The author would like to thank T. Graber, J. Harris, and R. Vakil for numerousdisussions. The work has been done at the Harvard University, to whih the authoris grateful for hospitality.



RELATIVE GROMOV-WITTEN INVARIANTS AND THE MIRROR FORMULA 51. The mirror transformationAs in the introdution let X be a smooth omplex projetive variety, and let Ybe a smooth very ample hypersurfae suh that �KY is nef. By abuse of notation,we denote by H�(X) and H�(X) the groups of algebrai (o-)homology lassesmodulo torsion. For a lass � 2 H2(X) we write � � 0 if � is e�etive, and � > 0 if� � 0 and � 6= 0. To keep the notation as simple as possible, we will assume in thefollowing omputations that the lass of Y generates H2(X) over Q (see remark1.14 for the hanges needed in the general ase).For any � > 0 we denote by �Mn(X; �) the spae of n-pointed rational stablemaps of lass � to X . Let evi : �Mn(X; �)! X be the evaluation maps, and let  ibe the otangent line lasses. For ohomology lasses i 2 H�(X) the orrespondingGromov-Witten invariant is de�ned to beIX� (1 k1 
 � � � 
 n kn) := ev�11 �  k11 � � � ev�nn �  knn � [ �Mn(X; �)℄virt 2 Qif the dimension ondition Pi(odim i + ki) = vdim �Mn(X; �) is satis�ed, andzero otherwise. It is usual and onvenient to enode all the 1-point invariants oflass � in a single ohomology lassIX� := ev�� 11�  � [ �M1(X; �)℄virt�=Xi;j IX� (T i j) � Ti 2 H�(X);where ev = ev1, fT ig is a basis of H�(X) 
 Q, and fTig is the dual basis. Notethat the dimension ondition ensures that for eah i at most one j ontributes anon-zero term to the sum above, so all 1-point invariants of X of lass � an bereonstruted from the ohomology lass IX� .We de�ne the Gromov-Witten invariants IY� of Y in the same way, replaing�Mn(X; �) by �Mn(Y; �), but keeping the evi to denote the evaluation maps to X .Note that � is still a homology lass in X ; so stritly speaking �Mn(Y; �) is thespae of stable maps to Y of all homology lasses whose push-forward to X is �.For � = 0, we set IX0 := 1 and IY0 := Y .Now onsider the moduli spaes �M(m)(X; �) of 1-pointed relative stable mapsto X with multipliity m to Y at the marked point ([Ga℄ de�nition 1.1). In thesame manner as above, these spaes together with their virtual fundamental lasses([Ga℄ de�nition 1.18) give rise to invariants I�;(m)( k) that an be assembled intoa ohomology lassI�;(m) = ev�� 11�  � [ �M(m)(X; �)℄virt� 2 H�(X):Remark 1.1. For future referene, let us note that (as expeted from geometry)I�;(0) = IX� and I�;(m) = 0 for m > Y � � (see [Ga℄ remark 1.3).Finally, let D(m)(X; �) be the orretion terms de�ned in theorem 0.1, and setJ�;(m) = ev�� 11�  � [D(m)(X; �)℄virt�+m � ev�[ �M(m)(X; �)℄virt 2 H�(X):(1)The surprising additional term will appear in the proof of the following lemma. Ge-ometrially, it orresponds to unstable maps that have two irreduible omponents



6 ANDREAS GATHMANNC(0) and C(1), where C(0) is ontrated to a point in Y and ontains the markedpoint, and C(1) is a urve with multipliity m to Y at this point (see the end of theproof of lemma 1.8).The �rst thing to do is to rewrite theorem 0.1 in the new simpli�ed notation.Lemma 1.2. For all � > 0 and m � 0 we have(Y +m) � I�;(m) = I�;(m+1) + J�;(m) 2 H�(X):Proof. Interset the equation of theorem 0.1 with 11� and push it forward by theevaluation map to getev��(ev�Y +m ) � 11�  � [ �M(m)(X; �)℄virt�= ev�� 11�  � [ �M(m+1)(X; �)℄virt�+ ev�� 11�  � [D(m)(X; �)℄virt� :As  1� = 11� � 1, the left hand side of this equation an be rewritten as(Y +m) � ev�� 11�  � [ �M(m)(X; �)℄virt��m � ev�[ �M(m)(X; �)℄virt:Taking into aount the de�nitions of I�;(m) and J�;(m), we arrive at the equationstated in the lemma.Remark 1.3. In partiular,Y ��Yi=0(Y + i) � IX� = Y ��Xm=0 Y ��Yi=m+1(Y + i) � J�;(m):This follows from a reursive appliation of lemma 1.2, with the start and the endof the reursion given by remark 1.1.The next thing to do is to evaluate the J�;(m) expliitly.Remark 1.4. Let us �rst onsider the �rst summand ev� � 11� � [D(m)(X; �)℄virt�in the de�nition (1) of J�;(m). Using the de�nition of D(m)(X; �) and its virtualfundamental lass given in theorem 0.1, we see that this �rst summand is a sum ofindividual terms, eah of whih has the formIY�(0) (T i j 
 1 
 � � � 
 r) � 1r! rYk=1 �m(k) � I�(k);(m(k))(_k )� � Ti; (2)where _ denotes the dual of a lass  in Y . These terms are summed over all i,j � 0, r � 0, �(k) (with �(0) � 0 and �(k) > 0 if k > 0), and m(k) > 0, subjet tothe onditions(i) �(0) + � � �+ �(r) = � (degree ondition),(ii) Y � �(0) +m(1) + � � �+m(r) = m (multipliity ondition),(iii) if �(0) = 0 then r � 2 (stability ondition).Moreover, the k have to run over a basis of H�(Y )
Q (atually it is suÆient tolet them run over a basis of the part of H�(Y )
 Q indued by X , see [Ga℄ remark5.4).



RELATIVE GROMOV-WITTEN INVARIANTS AND THE MIRROR FORMULA 7The main simpli�ation of this huge sum is due to the following lemma, whihfollows from a simple dimension ount. It is the only point in our omputationswhere we need that �KY is nef.Lemma 1.5. The above expression (2) an only be non-zero if all k are funda-mental or divisor lasses. Moreover, for all k we must havem(k) = Y � �(k) �KY � �(k) � 1 if k is the fundamental lass;m(k) = Y � �(k) �KY � �(k) if k is a divisor lass:Proof. As the invariants I�(k);(m(k))(_k ) must have dimension zero for all k, it fol-lows thatodim k = dimY � odim _k= dimY � dim �M(m(k))(X; �(k))= dimY � (�KX � �(k) + dimX � 2�m(k))= �Y � �(k) +KY � �(k) + 1 +m(k) (by adjuntion):This shows the equation for the m(k). Moreover, as �KY is nef and we must havem(k) � Y � �(k) for the relative invariant to be non-zero (see remark 1.1), it followsthat odim k � 1, as desired.Remark 1.6. Obviously, in the same way one an show that:� If �KY �� � 1 for all � > 0 then all the k have to be fundamental lasses. (Inthe following omputations this would mean that all r� = 0, whih greatlysimpli�es the alulation.) This is e.g. the ase if Y is a hypersurfae inX = Pn of degree at most n.� If �KY � � � 2 for all � > 0 then no k an exist, i.e. we must always haver = 0. Hene in this ase we onlude that there are no orretion termsin the omputation of the Gromov-Witten invariants. The only term on theright hand side of remark 1.3 is IY� (for r = 0 and m = Y � �), so it followsthat the \na��ve" formula IY� = Y ��Yi=0(Y + i) � IX�is true (as in the ase onsidered in the introdution where Y � X is a planein P3). This is e.g. the ase if Y is a hypersurfae in X = Pn of degree atmost n� 1.Remark 1.7. As we have assumed that the lass of Y generates H2(X) over Q,lemma 1.5 states that the only fators that an our in the k-produt in (2) arethe numbers s� := (Y � � �KY � � � 1) � I�;(Y ���KY ���1)(1_)and r� := (Y � � �KY � �) � I�;(Y ���KY ��)(Y _)for some � > 0. Thus we an then rewrite (2) using multi-index notation asfollows. For a multi-index � = (��) of non-negative integers indexed by the positivehomology lasses � of H2(X), we apply the usual notationsP� :=P� �� ; s� :=Q� s��� ;�! :=Q� �� !; j�j :=P� �� � �:



8 ANDREAS GATHMANNThen we an rewrite (2) asIY�(0)(T i j 
 1
P� 
 Y 
P �) � 1r! � s�r� � Ti; (3)where � and � are the multi-indies suh that the fators s� and r� appear in (2)�� and �� times, respetively. In partiular, r =P�+P � is the number of nodesof the urves under onsideration.We are now ready to evaluate the J�;(m) expliitly in terms of the 1-pointGromov-Witten invariants IY� of Y and the relative 1-point invariants s� and r� .Lemma 1.8. With the notation of remark 1.7,J�;(m) =X�;� �Y + Y � �(0)�P � � s��! r��! � IY�(0)for all � > 0 and m � 0, where the sum is taken over all multi-indies � and � suhthat �(0) := ��j�j�j�j � 0 (degree ondition) and m = Y ���KY �(j�j+ j�j)�P�(multipliity ondition).Proof. Inserting expression (3) for (2) in remark 1.4, we see that the �rst summandin the de�nition (1) of J�;(m) isev�� 11�  � [D(m)(X; �)℄virt�=Xi;j X�;� IY�(0) (T i j 
 1
P� 
 Y 
P �) � s��! r��! � Ti;where the sum is taken over all i; j; �; � suh that(i) �(0) := � � j�j � j�j � 0 (degree ondition),(ii) Y � ��KY � (j�j+ j�j)�P� = m (multipliity ondition | here we insertedthe expression of lemma 1.5 for the m(i)),(iii) if �(0) = 0 then P�+P � � 2 (stability ondition).Now we ompute the Gromov-Witten invariant IY�(0) (� � � ) in terms of 1-point in-variants of Y . We laim that for �(0) > 0Xi;j IY�(0) (T i j 
 1
P� 
 Y 
P �) � Ti = (Y + Y � �(0))P � � IY�(0) : (4)In fat, this follows from the fundamental lass axiomXi;j IY�(0) (T i j 
 1
 � � � ) � Ti = Xi;j 6=0 IY�(0) (T i j�1 
 � � � ) � Ti=Xi;j IY�(0) (T i j 
 � � � ) � Ti



RELATIVE GROMOV-WITTEN INVARIANTS AND THE MIRROR FORMULA 9and the divisor axiomXi;j IY�(0) (T i j 
 Y 
 � � � ) � Ti =Xi;j (Y � �(0)) � IY�(0) (T i j 
 � � � ) � Ti+ Xi;j 6=0 IY�(0) (T i � Y  j�1 
 � � � ) � Ti=Xi;j (Y � �(0)) � IY�(0) (T i j 
 � � � ) � Ti+ Xi;j 6=0 IY�(0) (T i j�1 
 � � � ) � (Ti � Y )= (Y � �(0) + Y ) �Xi;j IY�(0) (T i j 
 � � � ) � Ti(see e.g. [Ge℄ proposition 12), where \� � � " denotes any tensor produt of ohomol-ogy lasses (i.e. not inluding otangent line lasses). In fat, the same formula (4)is also true for �(0) = 0, as in this aseXi;j IY0 (T i j 
 1
P� 
 Y 
P �) � Ti = (YP �) � Y= YP � � IY0by the \mapping to point axiom". Hene the �rst summand in the de�nition (1)of J�;(m) isev�� 11�  � [D(m)(X; �)℄virt� =X�;� �Y + Y � �(0)�P � � s��! r��! � IY�(0) (5)with the sum taken over all �; � satisfying the degree, multipliity and stabilityonditions. The seond summand ism � ev�[ �M(m)(X; �)℄virt = m �Xi I�;(m)(T i) � Ti= s� � Y � Æm;Y ���KY ���1+ r� � Y 2 � Æm;Y ���KY ��by lemma 1.5. As we have de�ned IY0 = Y , this adds exatly the terms with�(0) = 0 and P� +P � = 1 to the sum in (5) that were exluded beause of thestability ondition. It follows thatJ�;(m) =X�;� �Y + Y � �(0)�P � � s��! r��! � IY�(0) ;with the sum taken over all �; � satisfying the degree and multipliity onditions.Remark 1.9. The multipliity ondition in lemma 1.8 an be replaed bym = Y � � � �X�;where � 2 f0; 1g depends only on Y . To see this, reall that the multipliityondition was obtained from the original onem = Y � �(0) +Xm(k) (6)



10 ANDREAS GATHMANNby inserting the expressions m(k) = Y � �(k) �KY � �(k) (for every r�(k)) or m(k) =Y � �(k) �KY � �(k) � 1 (for every s�(k)), respetively. But by remark 1.1 we haver�(k) = 0 if m(k) = Y � �(k) �KY � �(k) > Y � �(k). So (as KY is nef) r�(k) an onlybe non-zero if m(k) = Y � �(k). Hene we an insert this simpli�ed expression form(k) in (6).In the same way, s�(k) an only be non-zero if m(k) = Y � �(k) � 1 (in the aseKY = 0) or m(k) = Y ��(k) (in the ase KY > 0). In other words, m(k) = Y ��(k)��with � 2 f0; 1g depending only on Y .If we now take the original multipliity ondition (6) and insert the new simpli�edexpressionsm(k) = Y ��(k) (for every r�(k) ) and m(k) = Y ��(k)�� (for every s�(k)),respetively, we arrive at the desired multipliity ondition m = Y � � � �P�.Remark 1.10. Now we an insert the expression of lemma 1.8 (with the multipliityondition from remark 1.9) into the formula of remark 1.3. Thus we obtainY ��Yi=0(Y + i) � IX� =X�;� Y ��Yi=Y ����P�+1(Y + i) � �Y + Y � �(0)�P � � s��! r��! � IY�(0)=X�;� �P��1Yi=0 (Y + Y � � � i) � �Y + Y � �(0)�P � � s��! r��! � IY�(0) ;where the sum is now taken over all �; � satisfying the degree ondition �(0) :=� � j�j � j�j � 0. Note that this equation is trivially true in the ase � = 0 as well(both sides are equal to Y in this ase).To get rid of the degree ondition, we multiply these equations with qY �� (whereq is a formal variable) and add them up; so we getX� Y ��Yi=0(Y + i) � IX� � qY ��=X�(0)X�;� �P��1Yi=0 (Y + Y � � � i) � �Y + Y � �(0)�P � � s��! r��! � IY�(0) � qY ��; (7)where the sum now runs over all multi-indies �; � (and � = �(0) + j�j+ j�j).Although this equation looks quite ompliated, note that all geometri ideas inits derivation are still visible: the left hand side is the \na��ve" expression for theGromov-Witten invariants of Y that we already enountered in the introdutionand remark 1.6. The produt QY ��i=0 (Y + i) here orresponds to the proess ofraising the multipliity of the urves from 0 to Y ��+1. The right hand side of theequation desribes the orretion terms. They orrespond to reduible urves withone omponent in the hypersurfae (IY�(0) ) and various others in the ambient spaewith spei�ed multipliities to the hypersurfae (s�r�). The fator (Y +Y ��(0))P �omes from the (P �)-fold appliation of the divisor axiom that we used to desribethe omponent in the hypersurfae by a 1-point invariant instead of by a (1 + r)-point invariant.All that remains to be done to arrive at the \mirror formula" is to simplify theright hand side of equation (7). To do so, de�ne P (t) to be \the right hand sidewith Y � �(0) replaed by a formal variable t":



RELATIVE GROMOV-WITTEN INVARIANTS AND THE MIRROR FORMULA 11De�nition 1.11. LetP (t) :=X�;� �P��1Yi=0 (Y + Y � (j�j+ j�j) + t� i) � (Y + t)P � � s��! r��! � qY �(j�j+j�j);so that (7) an be written asX� Y ��Yi=0(Y + i) � IX� � qY �� =X� P (Y � �) � IY� � qY �� : (8)Lemma 1.12. The power series P (t) of de�nition 1.11 satis�es the di�erentialequation d2dt2 lnP = 0. In partiular, if P (t) = P0 + P1 � t + � � � is the Taylorexpansion of P then P (t) = P0 exp(P1P0 t).Proof. This an be heked diretly from the de�nition of P (t). The statement doesnot depend on the speial values of r� and s� ; it is equally true if the r� and s� areonsidered to be formal variables. We give a proof of the statement in appendix A(apply lemma A.1 with the olletion of variables xi being the union of the r� ands�, z = 0, and t replaed by t+ Y ).Corollary 1.13 (Mirror formula). If we formally set ~q = q � exp P1P0 with P0 andP1 as in lemma 1.12, thenX� Y ��Yi=0(Y + i) � IX� � qY �� = P0 �X� IY� � ~qY ��;i.e. the generating funtion P� IY� � qY �� of the 1-point Gromov-Witten invariantsof Y an be obtained from the \na��ve" expression P�QY ��i=0 (Y + i) � IX� � qY �� by aformal hange of variables (q ! ~q) and a saling fator (�P0).Proof. Immediately from (8) and lemma 1.12.Remark 1.14. In the above omputations we assumed that the lass of Y generatesH2(X) over Q. In fat, this is not essential. All that happens for higher dimensionof H2(X) is that the notation beomes more ompliated at some steps of thealulation. Most importantly, in remark 1.7 there are now more fators that anour in the k-produt of (2). Namely, instead of the r� we now haveri;� = (Y � � �KY � �) � I�;(Y ���KY ��)(_i );for i = 1; : : : ; dimH2(X)
Q, where the i form a basis of H2(X)
Q, hosen suhthat 1 = Y . Correspondingly, lemma 1.8 beomesJ�;(m) =X�;�iYi �i + i � �(0)�P �i � s��! �Yi ri�i�i! � IY�(0)where the �i are multi-indies. In the alternative multipliity ondition of remark1.9, the number � will now depend on � (it is 1 if KY � � = 0 and 0 if KY � � > 0).Hene the multipliity ondition is now m = Y � � � ��, where � is a multi-indexwith entries 0 and 1. Finally, we need a formal variable qi for eah i to replae



12 ANDREAS GATHMANNthe expression qY �� by q� :=Qi qi��i . De�nition 1.11 then beomesP (ftig) :=X�;�i ���1Yj=0 (Y + Y � (j�j+Xi j�ij) + t1 � j) �Yi (i + ti)P �i� s��! �Yi ri�i�i! � qj�j+Pi j�ij;with whih we obtain the equation (ompare to (8))X� Y ��Yi=0(Y + i) � IX� � q� =X� P (fi � �g) � IY� � q� : (9)The same proof as for lemma 1.12 works to show that �ti�tj lnP = 0 for all i; j,so it follows that P (t) = P0 exp(PPitiP0 ), where P (ftig) = P0 +Pi Pi � ti + � � � isthe linear expansion of P . Hene the mirror formula of orollary 1.13 holds in thesame way X� Y ��Yi=0(Y + i) � IX� � q� = P0 �X� IY� � ~q�;where ~qi = qi � exp PiP0 . 2. ExamplesExample 2.1 (Appliation to the quinti threefold). Let X = P4, and let Y � Xbe a smooth quinti hypersurfae, so that Y = 5H 2 H�(X), where H is the lassof a hyperplane. We are interested in the genus zero Gromov-Witten invariants ofY , i.e. in the numbers nd = 1dIYd (H) (note that H has d points of intersetion witha degree-d urve). As this is the H3-oeÆient of IYd (up to a saling fator), weonsider the equation (8) modulo H4. (This disards the invariants IYd ( ).)Sine the only Gromov-Witten invariants of Y are IYd (H) (and IYd ( )), thepolynomials IYd have no H0, H1, and H2 terms for d > 0. Hene as it is well-known that IXd = dYi=1 1(H + i)5 ;(see e.g. [P℄ setion 1.4) it follows from (8) thatXd�0 5H � Q5di=1(5H + i)Qdi=1(H + i)5 q5d = 5H P0 (mod H3):This is suÆient to reonstrut P : if we expandXd�0 Q5di=1(5H + i)Qdi=1(H + i)5 q5d =: F0 + F1H + F2H2 + � � � (10)then P jt=H=0 = F0 and �HP jt=H=0 = F1. So as P is a funtion of t + 5H andsatis�es �2t lnP = 0, it follows that �tP jt=H=0 = 15 F1, and heneP = F0 � exp�� t5 +H� � F1F0� :



RELATIVE GROMOV-WITTEN INVARIANTS AND THE MIRROR FORMULA 13In partiular, P0 = F0 � exp�H F1F0�= F0 +H F1 + H22 F 21F0 + � � � :So by omparing the H3-oeÆient of (8) we getF2 = 12 F 21F0 + 15Xd>0 dndq5dF0 exp�d F1F0� :Together with (10), this equation determines the nd reursively and gives the well-known numbers n1 = 2875, n2 = 609250+ 28758 , : : : .Example 2.2 (Appliation to plane ellipti urves). Wewant to ompute the (vir-tual) numbers of rational plane urves of degree d having multipliity 3d to a smoothellipti plane ubi, i.e. the relative Gromov-Witten invariants Id;(3d)(1) = 3d rd inthe ase where X = P2 and Y is a smooth ellipti ubi. Aording to [T℄ remark1.11 these numbers are related to the loal mirror symmetry of [CKYZ℄.The omputation of the numbers rd is very similar (yet not idential) to that ofthe Gromov-Witten invariants of Y in setion 1. This time we apply lemma 1.2reursively only up to multipliity 3d instead of 3d+ 1, so we get3d�1Yi=0 (3H + i) IXd = Id;(3d) + 3d�1Xm=0 3d�1Yi=m+1(3H + i) Jd;(m):Note that IYd = 0 for d > 0, as there are no rational urves in Y . So if we insertthe expression for Jd;(m) of lemma 1.8, we get in the same way as in remark 1.10Xd>0 3d�1Yi=0 (3H + i) IXd q3d =Xd>0 3H2d rdq3d+X�;� 3d�1Yi=3d�P�+1(3H + i) (3H)P � � s��! r��! � 3H q3d(11)where we already inserted the expression m = 3d �P� for Calabi-Yau hyper-surfaes (see remark 1.9). Here, in the seond line we set d = j�j + j�j, and weobviously only sum over those � with P� � 1.Similar to de�nition 1.11 let us setQ(t) :=X� P��1Yi=1 (3H � j�j+ t� i) s��! q3H�j�j t;where the sum is now taken over all � | not only those with P� � 1. The � = 0term ontributes a 1 (together with the fator t). The de�nition of Q(t) is so thatQ(3H)� 1 yields exatly the � = 0 terms in the seond line of (11).Similarly to lemma 1.12 the power series Q(t) satis�es a di�erential equation:by lemma A.2 lnQ(t) is linear in t, i.e. Q(t) = exp( � t). To ompute , we expand



14 ANDREAS GATHMANNas in example 2.1 the left hand side of (11)Xd>0 3H � Q3d�1i=1 (3H + i)Qdi=1(H + i)3 q3d =: F1H + F2H2 + � � �(in [T℄ F1(q3) is alled I(0)2 (z), and F2(q3) is alled I(0)3 (z)). As the t-expansion ofQ(t) is Q(t) = 1 + t+ 122t2 + � � � ;omparison of the H1 terms in (11) gives F1 = (the H1 term of Q(3H)) = 3; soQ(t) = exp(F1�t3 ).Now ompare the H2 term in (11). Note that we must haveP � � 1 beause ofthe fator (3H)P �+1. The � = 0 term is exatly the seond oeÆient of Q(3H)as remarked above, i.e. 12 F 21 . The terms with P � = 1 an be written as a sumover d, where d is the index of the one non-zero entry of �. The ontribution fora given d is exatly 9rdq3d Q(3d)3d = 3drdq3d exp(dF1), with the � = 0 term in Q(3d)oming from the right hand side of the �rst line of (11). Thus we get the equationF2 = 12 F 21 +Xd>0 3d rd q3d exp(dF1);whih determines the numbers 3drd = Id;(3d)(1). The �rst few numbers are given inthe following table.d 1 2 3 4 5 6 7 8Id;(3d)(1) 9 1354 244 3699916 63563425 307095 19391917549 342249075964This equation is equivalent to the onjeture of remark 1.11 in [T℄. Together with[T℄ theorem 2.1 it proves that Id;(3d) = (�1)d3dKd, where Kd is the top Chernlass of the rank-(3d�1) bundle on �M0(P2; d) with �ber H1(C; f�KP2) at the point(C; f) 2 �M0(P2; d). At the moment we do not know of a geometri proof of thisstatement. Appendix A. Proof of the main tehnial lemmasIn this appendix we show that the power series P (t) and Q(t) of de�nition 1.11and example 2.2 satisfy ertain di�erential equations.Lemma A.1. Let xi be a olletion of variables (possibly in�nite), and let ai; bi 2N, i 2 C . De�ne P (t; z) =Xk xkk! tak bk�1Yi=0 (k + z + t� i);where k is a multi-index, and where we used the usual multi-index notations ak =Pi aiki, xk = Qi xkii , k! = Qi ki!. Assume that, for every i, the pair (ai; bi) is(0; 0), (1; 0), or (0; 1). Then�2t lnP = �2z lnP = �t�z lnP = 0:Proof. Step 1. We onsider the i to be formal variables and show by indution onn that for every i and every n � 0if �2t lnP ji=0 = �2z lnP ji=0 = �t�z lnP ji=0 = 0then �ni�2t lnP ji=0 = �ni�2z lnP ji=0 = �ni�t�z lnP ji=0 = 0:



RELATIVE GROMOV-WITTEN INVARIANTS AND THE MIRROR FORMULA 15So assume that�ji�2t lnP ji=0 = �ji�2z lnP ji=0 = �ji�t�z lnP ji=0 = 0for j � n. Note that by de�nition of P we have �iP = xi�xi�zP . Let �1 and �2denote either �t or �z. Then it follows that (everything in the following alulationis evaluated at i = 0):�n+1i �1�2 lnP = �ni�1�2 �iPP= xi�ni�1�2 �xi�zPP= xi�ni�1�2��xi �zPP � �zP � �xi 1P �= xi�ni�1�2��xi �zPP + �zPP � �xiPP �= xi�xi�z �ni�1�2 lnP| {z }=0 +xi�ni�1�2(�z lnP � �xi lnP )= xi�ni(�1�2�z lnP � �xi lnP + �1�z lnP � �2�xi lnP+ �2�z lnP � �1�xi lnP + �z lnP � �1�2�xi lnP )= 0(for the last step note that every summand has a fator that ontains a �2t lnP ,�2z lnP , or �t�z lnP that gets at most n �i 's, so it vanishes by the indutionassumption).Step 2. By step 1 it suÆes to prove the lemma in the ase  = 0. Note thatthen P beomes a produt of two terms of the formR =Xk xkk! tak and S =Xk xkk! bk�1Yi=0 (z + t� i)where the �rst term ontains all the xi with (ai; bi) = (0; 0) or (ai; bi) = (1; 0), andthe seond term all the xi with (ai; bi) = (0; 1). Obviously, it suÆes to prove thelemma for R and S separately. ButR =Xk Yi (xitai )kiki! = exp�Xi xitai�and S =Xk xkk! �z + tP k� (X k)! = �1 +Xi xi�z+t;and in both ases it is obvious that the lemma holds.Lemma A.2. Let xi be a olletion of variables (possibly in�nite), and let i 2 C .De�ne Q(t) =Xk xkk! t P k�1Yi=1 (k + t� i)in multi-index notation, where k is a multi-index. Then lnQ(t) is linear in t, i.e.(t�t � 1) lnQ = 0:
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