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INTERSECTIONS ON TROPICAL MODULI SPACES

JOHANNES RAU

ABSTRACT. This article tries to answer the question: How far can the algebro-geometric theory of rational
descendant Gromov-Witten invariants be carried over to thetropical world? Given the fact that our moduli
spaces are non-compact, the answer is surprisingly positive: We discuss universal families and the string,
divisor and dilaton equations, we prove a splitting lemma describing the intersection with a “boundary” di-
visor and we give two criteria that suffice to prove the tropical version of a particular WDVV or topological
recursion equation. Discussing these criteria in the case of curves inR

1 or R
2, we prove, for example, that

for the toric varietiesP1, P
2, P

1 × P
1, F1, Bl2(P2), Bl3(P2) and with Psi-conditions only in combina-

tion with point conditions, the tropical and conventional descendant Gromov-Witten invariants coincide. In
particular, we can unify and simplify the proofs of the previous tropical enumerative results.

INTRODUCTION

Over the last few years, the list of results in tropical enumerative geometry became quite long. However,
lacking an appropriate tropical intersection theory, mostexisting results are obtained by

• relating the tropical numbers directly to the conventionalones (cf. [Mi03]) and then using the
algebro-geometric theory,

• or by involved ad hoc computations (eg. [GM05], [KM06], [FM], [MR08], [CJM08]), which
moreover have to be repeated for each new class of enumerative problem.

On the other hand, based on [Mi06], the basic constructions of tropical intersection theory are now
developed in [AR07]. Furthermore, in [GKM07] the authors show that the moduli spaces of rational
tropical curves are tropical cycles in the sense of [AR07], hence we can apply intersection theory to
them. Moreover, in [Mi07] G. Mikhalkin proposes the definition of tropical Psi-divisors, which, as it
is shown in [KM07], can also be integrated into the approach of [AR07]. Under these circumstances
the obvious program is: Along the lines of the algebro-geometric theory of descendant Gromov-Witten
invariants, construct a tropical copy of this theory — as faras possible. First attempts in this spirit are
contained in [GKM07], [KM06] and [MR08]. This article triesto carry out this program consequently
and in detail.
The “ready for use” main theorems 5.18 and 5.20 state that forP1 as well as for any complete smooth
toric surface and certain degrees, and with Psi-conditionsonly in combination with point conditions, the
tropical and conventional descendant Gromov-Witten invariants coincide. In particular, this unifies and
simplifies the proofs of the previous tropical enumerative results for rational curves.
Tropical geometry, as far as it is explored now, can be regarded as an image of the geometry inside
the big open torus of a toric variety. This has the advantage that, in a sense, tropical geometry merges
the geometry of all toric varieties simultaneously. The other side of the coin is that there is no tropical
counterpart of curves with components in the boundary of thetoric variety in question, and therefore
the moduli spaces of tropical curves are non-compact. Fortunately, tropical intersection theory works
on such spaces, but still, we will see that this fact causes the main differences to the conventional theory,
which become manifest in 3.13 and in the two criteria that we will need to prove the WDVV equations
and the topological recursion (cf. 5.4 and 5.7).
The article contains the following parts: In section 1 we provide the necessary intersection-theoretic
tools. In particular, in subsection 1.8 we show that the fan displacement rule for Minkowski weights
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defined in [FS94] coincides with the intersection product oftropical cycles introduced in [AR07, sec-
tion 9]. In section 2 we cover the case of abstract curves. We prove the universal family property of
the forgetful mapft0, the dilaton equation and reprove the main theorem of [KM07]: The degrees of
top-dimensional intersection products of Psi-classes areequal to their conventional counterparts. For
this purpose, we introduce tropical analogues of boundary divisors and analyze the intersections, push-
forwards and pull-backs of boundary and Psi-divisors. Section 3 extends this to parametrized curves.
Moreover, we define tropical descendant Gromov-Witten invariants and verify general string and divisor
equations. Section 4 deals with the intersection of a one-dimensional family of curves with a bound-
ary divisor. Using the concept of general position, we derive a splitting lemma which states that this
intersection can be decomposed into products of intersections on smaller moduli spaces — if a certain
condition on the directions appearing in some fans is fulfilled. Therefore, a discussion of this condition
follows. Finally, in section 5 we put things together. We first state the WDVV equations and the topo-
logical recursion, requiring two conditions: The just mentioned condition concerning certain directions,
and the other one previously known as “the existence of a contracted bounded edge”. After an anal-
ysis of this contracted edge condition, the final subsection5.4 proves the equality of the tropical and
conventional descendant Gromov-Witten invariants as mentioned before.

1. INTERSECTION THEORY

This section is devoted to providing us with the intersection-theoretic tools we will need to attack the
problems of tropical Gromov-Witten theory in a satisfactory way. Hereby, the subsections 1.1, 1.2, 1.3,
1.4 and 1.5 recall the important definitions and results from[AR07] and [AR08] (however, note that our
notations will sometimes slightly differ from the originalones). Parts of this summary already appeared
in [MR08].

1.1. Cycles. A cycleX is a balanced (weighted, pure-dimensional, rational and polyhedral) complex
(resp. fan) in a finite-dimensional vector spaceV = Λ⊗R with underlying latticeΛ (the most common
case isV = Rr, whose underlying lattice, if not specified otherwise, isZr). The top-dimensional
polyhedra (resp. cones) inX are calledfacets, the codimension one polyhedra (resp. cones) are called
ridges. Balancedmeans that for each ridgeτ ∈ X the followingbalancing condition atτ is satisfied:
The weighted sum of the primitive vectors of the facetsσ aroundτ

∑

σ∈X(dim(X))

τ<σ

ω(σ)vσ/τ

vanishes “moduloτ ”, or, precisely, lies in the linear vector space spanned byτ , denoted byVτ . Here, a
primitive vectorvσ/τ ofσ moduloτ is a vector inΛ that points fromτ towardsσ and fulfills the primitive
condition: The latticeZvσ/τ + (Vτ ∩ Λ) must be equal to the latticeVσ ∩ Λ. Slightly differently, in
[AR07] the class ofvσ/τ moduloVτ is called primitive vector andvσ/τ is just a representative of it. We
will abbreviate the latticeVσ ∩ Λ by Λσ.
The support ofX , denoted byX , is the union of all facets inX with non-zero weight. We callX
irreducible if for any cycleY of the same dimension with|Y | ⊆ |X | there exists an integerµ ∈ Z such
thatY = µ ·X . Thepositive part ofX , denoted byX+, is the set of all faces contained in a facet with
positive weight. Ageneral elementx ofX is an elementx ∈ |X | that lies in the interior of a facet.

1.2. Cycles modulo refinement.By abuse of notation, acycle is also a class of balanced fans with
common refinement and agreeing weights. Arational functionϕ on such a class is just a rational
function on a fanX contained in the class. We can generalize our intersection product to such classes
of fans [X ] by definingϕ · [X ] := [ϕ · X ]. In the following, we try to avoid these technical aspects
whenever possible. We will also omit the brackets distinguishing between fans and their classes, hoping
that no confusion arises.
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1.3. The divisor of a rational function and intersection products. A (non-zero) rational function on
X is a functionϕ : |X | → R that is integer affine (resp. linear) on each polyhedron (resp. cone). Here,
integer linearmeans that it maps lattice elements to integers andinteger affinemeans that it is a sum
of an integer linear function (called thelinear part) and a real constant. Thedivisor ofϕ, denoted by
div(ϕ) = ϕ · X , is the balanced subcomplex (resp. subfan) ofX constructed in [AR07, 3.3], namely
the codimension one skeletonX \X(dimX) together with the weightsωϕ·X(τ) for each ridgeτ ∈ X .
These weights are given by the formula

ωϕ·X(τ) =
∑

σ∈X(k)

τ<σ

ω(σ)ϕσ(vσ/τ ) − ϕτ

( ∑

σ∈X(k)

τ<σ

ω(σ)vσ/τ

)
,

whereϕσ : Vσ → R denotes the linear part of the affine functionϕ|σ. Note that the balancing condition
of X aroundτ ensures that the argument ofϕτ is indeed an element ofVτ . The motivation for this
definition is illustrated in the following picture.

R2R div(max{x, 0})

Γmax{x,0} Γmax{x,y,0}

div(max{x, y, 0})

The graphΓϕ of ϕ in X × R is a polyhedral complex whose polyhedra are in one-to-one correspon-
dence with those ofX , but in generalΓϕ is not balanced. However, it can be completed to a cycle by
adding facets in(0,−1)-direction at each ridge ofΓϕ, equipped with the above weights. Now, if we
(imaginary) intersect this tropically completed graph ofϕ with X × {−∞} (i.e. compute the tropical
zero locus ofϕ), we obtain the cyclediv(ϕ) = ϕ ·X of our definition.
If ϕ is globally affine (resp. linear), all weights are zero, which we denote byϕ · X = 0. Let the
support ofϕ, denoted by|ϕ|, be the subcomplex ofX containing the pointsx ∈ |X | whereϕ is not
locally affine. Then we have|ϕ ·X | ⊆ |ϕ|. Furthermore, the intersection product is bilinear (see [AR07,
3.6]). As the restriction of a rational function to a subcycle is again a rational function, we can also
form multiple intersection productsϕ1 · . . . · ϕl ·X . In this case we will sometimes omit “·X” to keep
formulas shorter. Note that multiple intersection products are commutative (see [AR07, 3.7]).

By [AR07, definition 9.3] it is also possible to form the intersection product of two cyclesX,Y in V =
Λ ⊗ R: We choose coordinatesx1, . . . , xr onΛ (and denote the same coordinates on the second factor
of V ×V by y1, . . . , yr). Then the diagonal∆ in V ×V is given by∆ = max{x1, y1} · · ·max{xr, yr}·
(V × V ). Furthermore we consider the functionπ : ∆ → V, (x, x) 7→ x. Then the intersection product
of X andY in V is given by

X · Y := π∗
(
max{x1, y1} · · ·max{xr, yr} · (X × Y )

)
.

This intersection product is independent of the chosen coordinates, commutative, associative, bilinear,
admits the identity elementV and satisfy(ϕ ·X) · Y = ϕ · (X · Y ), whereϕ is a rational function on
X .

1.4. Morphisms and projection formula. A morphism of cyclesX ⊆ V = Λ ⊗ R andY ⊆ V ′ =
Λ′ ⊗ R is a mapf : |X | → |Y | that is induced from a linear map fromΛ to Λ′ and that maps each
polyhedron (resp. cone) ofX into a one ofY . We callf an isomorphismand writeX ∼= Y , if there
exists an inverse morphism and if for all facetsσ ∈ X we haveωX(σ) = ωY (f(σ)).
Such a morphismpulls back rational functionsϕ onY to rational functionsf∗(ϕ) = ϕ ◦ f onX . Note
that the second condition of a morphism makes sure that we do not have to refineX further. f∗(ϕ) is
already affine (resp. linear) on each cone. The inclusion|f∗(ϕ)| ⊆ f−1(|ϕ|) holds, as the composition
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of an affine and a linear function is again affine.
Furthermore, we canpush forward subcyclesZ of X to subcyclesf∗(Z) of Y of same dimension. This
is due [GKM07, 2.24 and 2.25] in the case of fans and can be generalized to complexes (see [AR07,
7.3]). We can omit further refinements here if we assume thatf(σ) ∈ Y for all σ ∈ X . Thenf∗(Z) is
defined by assigning the following weights to thedim(Z)-dimensional polyhedraσ′ ∈ Y :

ωf∗(Z)(σ
′) =

∑

σ∈X
f(σ)=σ′

|Λσ′/f(Λσ)| · ωZ(σ)

By definition we have|f∗(Z)| ⊆ f(|Z|).
Theprojection formula(see [AR07, 4.8]) connects all the above constructions via

f∗(f
∗(ϕ) ·X) = ϕ · f∗(X).

1.5. Rational equivalence.Here we summarize the definitions and results of [AR08].
Let X be a zero-dimensional cycle. Thendegreedeg(X) of X denotes the sum of the weights of all
points inY .
Now letX be an arbitrary cycle and letϕ, ϕ̃ be two rational functions onX . We call them(rationally)
equivalentif ϕ − ϕ̃ is the sum of a bounded and a globally linear function. Obviously, this property is
preserved when pulled back. Furthermore, ifY is an one-dimensional subcycle ofX , thendeg(ϕ·X) =
deg(ϕ̃ · Y ) holds (see [AR07, lemma 8.3]).
LetX be a cycle and letY be a subcycle. We callY rationally equivalent to zero, denoted byY ∼ 0, if
there exists a morphismf : X ′ → X and a bounded rational functionφ onX ′ such that

f∗(φ ·X ′) = Y.

This property commutes with taking cartesian products, intersection products (of functions as well as of
cycles) and with pushing forward. Moreover, ifY is zero-dimensional, thenY ∼ 0 impliesdeg(Y ) = 0.
Let Ỹ be another subcycle ofX . Then we callY andỸ rationally equivalentif Y − Ỹ is rationally
equivalent to zero.
If X,Y live in V = Λ⊗R, we call themnumerically equivalentif for any cycleZ in V of complemen-
tary dimension the equation

deg(X · Z) = deg(Y · Z)

holds.

The easiest example of rationally equivalent cycles are translations: LetX be a cycle inV = Λ⊗R and
let us denote byX + v denote the translation ofX by an arbitrary vectorv ∈ V . Then

X ∼ X + v

holds.

Let X be a cycle inV = Λ ⊗ R. We define thedegreeor recession fanof X , denoted byδ(X), as
follows: δ(X) is is supported on the purelydim(X)-dimensional part of the polyhedral set

⋃

σ∈X

rc(σ).

Here, therecession conerc(σ) of a polyhedronσ is defined to be the cone containing all vectorsv ∈ V
such that, starting at an arbitrary pointx ∈ σ, the rayx+ Rv is contained inσ. Now, for a fine enough
fan structure on this polyhedral set, the weights are given by

ωδ(X)(σ
′) :=

∑

σ∈X
σ′⊆rc(σ)

ωX(σ).

In particular, ifX is a curve, thenδ(X) is just the union of all unbounded rays inX and the weights
are the sums of the weights of the rays inX of given direction. Geometrically, we simply shrink all
bounded edges ofX to a point and move the final single vertex to the origin.



INTERSECTIONS ON TROPICAL MODULI SPACES 5

The main result of [AR08] is that for cyclesX in V = Λ ⊗ R, rational equivalence, numerical equiva-
lence and “having the same degree” coincides. To prove this,an important substep is to show thatX is
always rationally equivalent to its degree,

X ∼ δ(X).

1.6. Local computation of intersection products. LetX be a cycle and letτ ∈ X be a polyhedron in
X . We define thestar ofX at τ to be the fan

StarX(τ) := {σ̄|τ < σ ∈ X},

whereσ̄ denotes the cone inV/Vτ spanned by the image ofσ−τ under the quotient mapq : V → V/Vτ .
We make it into a cycle by definingωStarX(τ)(σ̄) = ωX(σ) for all facetsσ̄ of StarX(τ) (note thatq
preserves the codimension of the polyhedra). This fan contains all the local information ofX aroundτ
and can be considered as the tropical version of a small neighborhood of an interior point ofτ (divided
by the “trivial part”Vτ ). Its dimension equals the codimension ofτ in X . As an example for our way of
speaking, we call a cycleX locally irreducibleif for all τ ∈ X the cycleStarX(τ) is irreducible. Note
that locally irreducible implies irreducible, but not the other way around.
Let furthermoreϕ be a rational function onX . Choose an arbitrary affine functionψ with ϕ|τ = ψ|τ .
Thenϕ − ψ induces a rational function onStarX(τ) which we denote byϕτ (and call it agerm ofϕ
at τ ). This function is only unique up to adding a linear function, which suffices for our intersection-
theoretic purposes.
In the following proposition we will express the locality ofour intersection product in terms of these
notions.

Proposition 1.1. LetX be a cycle with polyhedraτ < σ ∈ X . Letϕ,ϕ1, . . . ϕl be rational functions
onX . Then the following statements are true:

(a) StarStarX (τ)(σ) = StarX(σ)
(b) (ϕτ )σ = ϕσ (up to adding a linear function)
(c) Starϕ·X(τ) = ϕτ · StarX(τ)
(d) Starϕ1·...·ϕl·X(τ) = ϕτ1 · . . . · ϕτl · StarX(τ)
(e) If l = dim(X) − dim(τ), thenωϕ1·...·ϕl·X(τ) = ωϕτ

1 ·...·ϕ
τ
l
·StarX(τ)({0}), i.e. we can compute

the weight ofτ in ϕ1 · . . . · ϕl ·X “locally” in StarX(τ).

Proof. (a) and (b) are immediate consequences of the definitions. (d) follows from (c) by induction and
(e) is just a special case of (d), namely whenϕτ1 · . . . ·ϕ

τ
l · StarX(τ) is zero-dimensional. Hence we are

left with (c).
Let r := dim(X) − dim(τ) be the codimension ofτ in X . The statement is trivial whenr = 0: Both
sides are0. Assumer = 1. In this case, we only have to check

ωϕ·X(τ) = ωϕτ ·StarX(τ)({0}).

By adding an affine function we can assume thatϕ|τ = 0 without changing the intersection product and
in particular the weight ofτ in ϕ ·X . But then we can replace both weights according to their definition
and observe that

ωϕ·X(τ) =
∑

σ∈X(dim(X))

τ<σ

ω(σ)ϕσ(vσ/τ ) =
∑

σ̄∈StarX(τ)(1)

ω(σ̄)ϕτ (vσ̄/{0}) = ωϕτ ·StarX(τ)({0})

holds true, as[vσ/τ ] = vσ̄/{0} ∈ V/Vτ .
Now let us assumer > 1 and letτ ′ be a ridge inX . Then we can use the previous case as well as (a)
and (b) and obtain

ωϕ·X(τ)
r=1
= ωϕτ′ ·StarX (τ ′)({0})

(a), (b)
= ω(ϕτ)τ′ ·StarStarX (τ)(τ ′)({0})

r=1
= ωϕτ ·StarX (τ)(τ̄

′),

which proves the claim. �
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We can extend this to the case of the intersection product of two cycles.

Lemma 1.2. LetX,Y be two cycles inV = R ⊗ Λ. Then the equation

StarX·Y (τ) = StarX(τ) · StarY (τ).

holds for all polyhedraτ ∈ X · Y .

Proof. First, we fix some notation. Letx1, . . . , xr be a lattice basis ofΛ∨ such that the firstd :=
codimV (τ) elements generateV ⊥

τ . When we consider the productΛ × Λ, the same coordinates on the
second factor will be denoted byy1, . . . , yr. Furthermore, let∆ : V → V × V, x 7→ (x, x) denote the
diagonal map. By definition of the intersection product of cycles and using 1.1 (d) we have to compute

Starmax{x1,y1}···max{xr,yr}·(X×Y )(∆(τ)) = max{x1, y1} · · ·max{xr, yr} · StarX×Y (∆(τ))

and
max{x1, y1} · · ·max{xd, yd} · (StarX(τ) × StarY (τ))

respectively. Thus the statement follows from the fact that

max{xd+1, yd+1} · · ·max{xr, yr} · (V × V/∆(Vτ )) → V/Vτ × V/Vτ ,

(x, y) 7→ (x, y)

is an isomorphism and can be restricted to an isomorphism ofmax{xd+1, yd+1} · · ·max{xr, yr} ·
StarX×Y (∆(τ)) andStarX(τ) × StarY (τ). �

1.7. Transversal Intersections. If we intersect two cyclesX,Y the generic case is the following:

Definition 1.3. Let X,Y be two cycles inV = Λ ⊗ R of codimensionc resp. d. We sayX andY
intersect transversallyif X ∩ Y is of pure codimensionc + d and if for each facetτ in X ∩ Y the
corresponding neighbourhoodsStarX(τ) andStarY (τ) are (transversal) affine subspaces ofV .

In this case, by locality of the intersection product, the computation ofX · Y can be reduced to the
intersection of vector spaces. This motivates the following study of intersections of linear functions and
spaces.

Lemma 1.4. Let h1, . . . , hl be integer linear functions onV (l ≤ dim(V ) =: r) and define the ra-
tional functionsϕi := max{hi, 0} on V . Let H : V → Rl be the linear function withH(x) =
(h1(x), . . . , hl(x)) and let us assume thatH has full rank. Thenϕ1 · . . . ·ϕl ·V is equal to the subspace
ker(H) with weightind(H) := |Zl/H(Λ)|. Here we giveV the fan structure consisting of all cones
where each of thehi is either positive or zero or negative, with all weights being 1.

Proof. Let us assumel = 1 first (i.e.H = h1) In this case we have to compute the weight of the only
ridge inV which ish⊥1 = ker(H). This ridge is contained in the two facets corresponding tohi ≥ 0 and
hi ≤ 0. Let v≥ = −v≤ be corresponding primitive vectors. This implies that for examplev≥ generates
the one-dimensional latticeΛ/h⊥1 ∼= h1(Λ) and therefore|Z/h1(Λ)| = h1(v≥). On the other hand we
can compute the weight ofh⊥1 in h1 · V to be

ωh1·V (h⊥1 ) = ϕ1(v≥) + ϕ1(v≤) = h1(v≥) + 0 = |Z/h1(Λ)|.

Now we make induction forl > 1. The induction hypothesis says thatϕ2 · . . . ϕl · V is equal to the
subspaceker(H ′) with weightind(H ′), whereH ′ = h2 × . . .× hl. By applying the casel = 1 to the
vector spaceker(H ′) = (ker(H ′) ∩ Zr) ⊗ R, we obtain thatϕ1 · . . . ϕl · V is equal to the subspace
h⊥1 ∩ ker(H ′) = ker(H) with weight ind(h1|ker(H′)) · ind(H ′). We have to show that this weight
coincides withind(H). This follows from the exact sequence

0 → h1(ker(H ′) ∩ Λ) → H(Λ) → H ′(Λ) → 0
h1(x) 7→ H(x) = (h1(x), 0)

H(x) 7→ H ′(x)



INTERSECTIONS ON TROPICAL MODULI SPACES 7

and its induced quotient sequence

0 → Zl−1/H ′(Λ) → Zl/H(Λ) → Z/h1(ker(H ′) ∩ Λ) → 0 .

�

Remark1.5. In the special casel = r the weight of{0} in the intersection productϕ1 · . . . · ϕr · V is
|Zr/H(Λ)|, which equals| det(M)| whereM is a matrix representation ofH with respect to a lattice
basis ofΛ and the standard basis ofZr. This version of the statement is contained in [MR08]. Note that
it can be extended to the case whereH has not full rank, as then the intersection product as well asthe
determinantdet(M) are zero.

Now we use this lemma to compute the intersection of two linear subspaces.

Lemma 1.6. LetU,W be two subspaces ofV = R⊗Λ (with rational slope) such thatU +W = V . If
we considerU,W as cycles with weight1, their intersection product can be computed to be

U ·W = |Λ/ΛU + ΛW | · (U ∩W ).

Proof. By definition we have to compute

max{x1, y1} · · ·max{xr, yr} · (U ×W ),

(where we chose arbitrary coordinates onΛ). Instead ofmax{xi, yi}, we can as well substract the linear
functionyi and use the functionsmax{xi − yi, 0}. Now we can apply 1.4. In our case, the functionH
is just

H : Λ × Λ → Λ,

(x, y) 7→ x− y.

Restricted toU ×W , this provides

U ·W = |Λ/H(ΛU × ΛW )| · π∗(ker(H)) = |Λ/ΛU ∓ ΛW | · (U ∩W ).

�

Now, as a combination of 1.2 and 1.6, we obtain the following result.

Corollary 1.7. Let X,Y be two cycles inV = R ⊗ Λ that intersect transversally. ThenX · Y =
(X ∩ Y, ωX∩Y ) with the following weight function: Any facetτ in X ∩ Y is the intersection of two
facetsσ, σ′ in X resp.Y . Then the weight ofτ = σ ∩ σ′ is

ωX∩Y (σ ∩ σ′) = ωX(σ)ωY (σ′)|Λ/Λσ + Λσ′ |.

1.8. Comparison to the “fan displacement rule”. In [FS94] the authors introduce Minkowski weights
to describe the Chow cohomology groups of a toric variety combinatorially. In particular, they compute
the cup-product of these cohomology groups in terms of Minkowski weights. In this subsection we show
explicitly that, when we interpret Minkowski weights as tropical cycles, this cup-product coincides with
our product of tropical cycles. Another approach to this topic is given in [Katz06, section 9]

Let Θ be a complete fan in a vector spaceV = R⊗Λ of dimensionr (in [FS94], the fan is called∆ and
the lattice is calledN ). Let Θ(k) denote the set ofk-dimensional cones inΘ (in [FS94], the exponent
indicates the codimension, i.e.∆(k) meansΘ(r−k)).

Definition 1.8 (cf. [FS94], section 2). A Minkowski weightc of codimensionk is an integer-valued
function onΘ(r−k) that satisfies for anyτ ∈ Θ(r−k−1)

∑

σ∈Θ(r−k)

τ⊆σ

c(σ)vσ/τ ∈ Λτ

(in [FS94], primitive vectors are denoted bynσ,τ ).
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Let c be a Minkowski weight of codimensionk. Of course, if we setX(c) to be the fan
⋃

0≤i≤r−k Θ(i)

with weight functionc, the Minkowski weight condition precisely coincides with our balancing condi-
tion, i.e.X(c) is a tropical cycle of codimensionk.

In [FS94] it is shown that Minkowski weights are in one-to-one correspondence with the operational
Chow cohomology classes of the toric variety associated to the fanΘ and therefore admit a cup-product
with the following properties. Letc, c′ be Minkowski weights of codimensionk, k′. Then the cup-
productc ∪ c′ is a Minkowski weight of codimensionk + k′ given by

(c ∪ c′)(τ) =
∑

σ∈Θr−k

σ′∈Θr−k′

τ⊆σ,σ′

mτ
σ,σ′ · c(σ) · c′(σ′).

Here, the coefficients are not unique but depend on the choiceof a generic vectorv ∈ V . If we fix such
a vectorv, then

mτ
σ,σ′ =

{
|Λ/Λσ + Λσ′ | if (σ + v) ∩ σ′ 6= ∅,

0 otherwise

(cf. [FS94, introduction]).

The tools introduced in the previous sections make it quite easy to prove rigorously that the cup-product
of Minkowski weights coincides with our intersection product of tropical cycles inV .

Theorem 1.9. Letc, c′ be Minkowski weights of codimensionk, k′. Then the following equation holds:

X(c) ·X(c′) = X(c ∪ c′)

Proof. For each facetτ in X(c ∪ c′) we have to show

ωX(c)·X(c′)(τ) = (c ∪ c′)(τ).

First, note that we can compute both sides locally onStarΘ(τ), where we of course define the “local”
Minkowski weights bȳc(σ̄) := c(σ) andc̄′(σ̄′) := c′(σ′). For the left hand side this follows from 1.2
and for the right hand side it follows from|Λ/Λσ + Λσ′ | = |(Λ/Λτ )/((Λσ + Λσ′)/Λτ )|.
Therefore we can assumek + k′ = r andτ = {0}. In this case, by plugging in the definition on the
right hand side and choosing a generic vectorv ∈ V , it remains to show

deg(X(c) ·X(c′)) =
∑

σ∈Θr−k

σ′∈Θr−k′

(σ+v)∩σ′ 6=∅

|Λ/Λσ + Λσ′ | · c(σ) · c′(σ′).

Now, for a generic vectorv ∈ V we can assume thatX(c) + v andX(c′) intersect transversally (in
fact, this is what the authors of [FS94] mean by a generic vector). Note that, in fact, the sum on the
right hand side runs through all points in the intersection of X(c) + v andX(c′). Therefore, by 1.7
it equalsdeg((X(c) + v) · X(c′)). But asX(c) + v andX(c) are rationally equivalent, the equation
deg(X(c) ·X(c′)) = deg((X(c) + v) ·X(c′)) holds and the statement follows. �

1.9. Convexity and Positivity. A non-zero cycleX is calledpositive, denotedX > 0, if all weights
are non-negative. By throwing away the facets with weight0 (and all polyhedra contained in only such
facets) we can assume all weights to be positive. A rational functionϕ onX is calledconvexif it is
locally the restriction of a convex function onV . The pull-backf∗(ϕ) of a convex function is again
convex, as the composition of a convex function and a linear map is again convex. Moreover, ifZ is a
subcycle ofX , thenϕ||Z| is also convex onZ. Combining positivity and convexity we get the following
result.

Lemma 1.10. LetX be a positive cycle and letϕ be a convex function onX . Then

(a) ϕ ·X is positive and
(b) |ϕ| = |ϕ ·X |.
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Proof. First of all note that we can assume thatX is a one-dimensional fan, as all intersection weights
can be computed locally modulo the ridge (cf. 1.1 (c)) and convexity is preserved when adding lin-
ear functions or when considering the function induced on the quotient. Thus we assume thatX =
{{0}, ρ1, . . . , ρr} is a one-dimensional fan with positive weightsω(ρi) > 0. The statements of the
lemma translate to

(a) ϕ convex⇒ ϕ ·X > 0,
(b) ϕ convex,ϕ ·X = 0 ⇒ ϕ linear.

We use the following criteria for linearity and convexity. Letϕ be a rational function onX and let us
abbreviate the primitive vector of the rayρi by vi. Then

i) ϕ is linear if and only if for allλ1, . . . , λr ∈ R with
∑

i λivi = 0 it holds
∑

i

λiϕ(vi) = 0,

ii) ϕ is convex if and only if for all positiveλ1, . . . , λr ≥ 0 with
∑

i λivi = 0 it holds
∑

i

λiϕ(vi) ≥ 0.

Now letϕ be convex. We can apply criterion ii) to the coefficientsω(ρi), which are positive and satisfy∑
i ω(ρi)vi = 0. This provides

ωϕ·X({0}) =
∑

i

ω(ρi)ϕ(vi) ≥ 0,

which proves (a).
For (b), let us assume that

∑
i ω(ρi)ϕ(vi) = 0 (i.e.ϕ ·X = 0) butϕ is not linear. Then by i) there exist

λ1, . . . , λr with
∑

i λivi = 0 but
∑

i λiϕ(vi) 6= 0. W.l.o.g. we can assume
∑

i λiϕ(vi) < 0 (otherwise
we replaceλi by −λi). For large enoughC ∈ R the coefficientsλ′i := λi + Cω(ρi) are all positive
and still satisfy

∑
i λ

′
ivi = 0 and

∑
i λ

′
iϕ(vi) < 0, which contradicts ii). Thereforeϕ is linear, which

proves(b). �

An easy but useful application of this lemma is the followingone:

Lemma 1.11. Let f : X → Y be a morphism of cycles and let us assume thatY is positive. Let
furthermoreϕ1, . . . , ϕl denote convex functions onY . Then the following equation of sets holds:

|f∗(ϕ1) · · · f
∗(ϕl) ·X | ⊆ f−1(|ϕ1 · · ·ϕl · Y |)

Proof. This can be proven by an easy induction: Ifl = 1 we have

|f∗(ϕ1) ·X | = |f∗(ϕ1)| ⊆ f−1(|ϕ1|) = f−1(|ϕ1 · Y |),

where the equalities follow from 1.10 (a). Now for arbitraryl we can apply the case of a single function
toϕl, obtaining

|f∗(ϕl) ·X | ⊆ f−1(|ϕl · Y |).

This shows that we can restrict the morphismf to f : f∗(ϕl) ·X → ϕl · Y . Asϕl · Y is still positive
by 1.10 (b), we can apply the induction hypothesis to this restriction, which yields the result. �

1.10. Complete intersections.We define the set ofm-dimensionalcomplete intersectionsZc.i.
m (X) ⊂

Zm(X) to be the set ofm-dimensional cycles inX obtained as a intersection productϕ1 · · ·ϕl · X
(wherel = dim(X) −m).
Let C,C′ ∈ Zc.i.

∗ (X) be complete intersections given byC = ϕ1 · · ·ϕl · X andC′ = ϕ′
1 · · ·ϕ

′
l′ · X .

Then we define
C · C′ := ϕ1 · · ·ϕl · ϕ

′
1 · · ·ϕ

′
l′ ·X.

Using commutativity of the intersection product of functions this multiplication is independent of the
chosen functions, commutative and satisfies|C · C′| = |C| ∩ |C′|. Note that, ifX = V = Λ ⊗ R, it
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follows from [AR07, corollary 9.8] that this definition coincides with the usual intersection product of
cycles.
LetC ∈ Zc.i.

m (X) be given byC = ϕ1 · · ·ϕl ·X and letf : Y → X be a tropical morphism. Then we
would like to define the pull-back ofC alongf to be the complete intersection

f∗(C) := f∗(ϕ1) · · · f
∗(ϕl) · Y.

However, in general this definition is not independent of thechosen functionsϕ1, . . . , ϕl. But it works
in the following case:

Corollary 1.12. LetX,Y be two cycles and letπ : X × Y → X be the projection onto the first factor.
Moreover, letZ be a complete intersection ofX × Y and consider the mapf = π|Z : Z → X . Now, if
C = ϕ1 · · ·ϕl ·X is a complete intersection inX , then the pull-back

f∗(C) := f∗(ϕ1) · · · f
∗(ϕl) · Z

is well-defined and the equation
|f∗(C)| ⊆ f−1(|C|)

holds.

Proof. First, we apply [AR07, 9.6], which yields

π∗(ϕ1) · · ·π
∗(ϕl) · (X × Y )(ϕ1 · · ·ϕl ·X) × Y = C × Y.

Thereforef∗(ϕ1) · · · f∗(ϕl) · Z is just the product of the complete intersectionsC × Y andZ, which
does not depend on any choices. Moreover, its support is contained in|C × Y | and the equation of sets
follows. �

Remark1.13 (Pulling back preserves numerical equivalence). LetC,C′ be complete intersections inRr

and letf : Y → Rr be a tropical morphism. Then, ifC andC′ are numerically equivalent, alsof∗(C)
andf∗(C′) are numerically equivalent in the following sense: IfZ is an arbitrary complete intersection
in Y of complementary dimension, then

deg(f∗(C) · Z) = deg(f∗(C′) · Z)

holds. This follows from the projection formula:

deg(f∗(C) · Z) = deg(f∗(f
∗(C) · Z)) = deg(C · f∗(Z))

In particular, if we move aroundC in V , the numerical properties of the pull-backs of the originaland
the translated cycle coincide. This motivates the following subsection about general position.

1.11. General position. We now investigate what we can say about the set-theoretic pre-image of a
general translation of a cycle under a morphismf .

Lemma 1.14. LetX be a pure-dimensional polyhedral complex and letf : X → Rr be a morphism of
polyhedral complexes (i.e.f is linear on every polyhedron ofX). Furthermore, letC be a polyhedral
complex inRr and consider the subcomplexf−1(C) ofX consisting of all polyhedraτ ∩ f−1(γ), τ ∈
X, γ ∈ C. Then for a general translationC′ = C + v (i.e. v ∈ Rr can be chosen from an open dense
subset ofRr) the codimension of each non-empty polyhedronτ ∩ f−1(γ) ofX is equal to

codimX(τ ∩ f−1(γ)) = codimX(τ) + codimRr(γ).

Proof. For eachτ in X andγ in C we consider the map

fτ : AffSpan(τ) → Rr,

induced byf |τ . Now we are interested inτ ∩ f−1(γ′) = τ ∩ f−1
τ (γ′) for general translationsγ′ of γ.

We have to distinguish the cases Im(fτ ) + Vγ = Rr and Im(fτ ) + Vγ 6= Rr. In the latter case,f−1
τ (γ′)

is empty for generalγ′. In the former case,f−1
τ (γ′) is a polyhedron of dimensiondim(τ)+dim(γ)−r,

and for generalγ′ it is disjoint fromτ or intersects the interior ofτ , in which caseτ ∩ f−1
τ (γ′) has the

same dimensiondim(τ) − codimRr (γ), which is the expected dimension.
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As there are only finitely many pairsτ, γ, this holds simultanously for all pairs for general enough
translations ofC. �

This technical statement has the following more applicableconsequences:

Corollary 1.15 (Preimages of general translations). Let fk : X → Rr, k = 1, . . . , n be morphisms of
pure-dimensional polyhedral complexes and letCk, k = 1, . . . , n be cycles inRr. Then for a general
translationC′

k = Ck + vk, vk ∈ Rr the following holds: EitherZ := f−1
1 (C′

1) ∩ . . . ∩ f−1
n (C′

n) is
empty or

(a) the codimension ofZ in X equals the sum

codimX(Z) =
n∑

k=1

codimRr(Ck),

(b) Z is pure-dimensional,
(c) if a polyhedronα of Z is contained in a polyhedronτ of X , the codimensions satisfy

codimX(τ) ≤ codimZ(α) (in particular, the interior of a facet ofZ is contained in the in-
terior of a facet ofX),

(d) if the imagesfk(α) of a polyhedronα of Z are contained in polyhedraγk ofCk, the codimen-
sions satisfy

∑n
k=1 codimCk

(γk) ≤ codimZ(α).

Proof. It is easy to prove the statement in the casen = 1: (a), (b) and (c) are immediate consequences
of 1.14 and (d) follows from applying 1.14 to the(r − codimZ(α) − 1)-dimensional skeleton ofC1

(if γ1 belonged to this skeleton,α would be contained in its preimage, which (for general translations)
contradicts (a)). Now the statement follows if we apply the case of a single morphism tof1 × . . .× fn :
X → (Rr)n andC := C1 × . . .× Cn. �

Remark1.16. Sticking to the notation of the previous statement, let us assume thatX is a cycle and that
the mapsfk are tropical morphisms. Moreover, we assume that the mapsfk are projections (at least
after composing with an isomorphism) and that the complexesCk are complete intersections. Then
f∗
1 (C1) · · · f∗

n(Cn) is also a pure-dimensional object of the same dimension asf−1
1 (C′

1)∩. . .∩f
−1
n (C′

n).
Indeed, 1.12 shows that

|f∗
1 (C1) · · · f

∗
n(Cn)| ⊆ f−1

1 (C′
1) ∩ . . . ∩ f

−1
n (C′

n)

holds. Hence we should think off∗
1 (C1) · · · f∗

n(Cn) as the polyhedral setf−1
1 (C′

1) ∩ . . . ∩ f
−1
n (C′

n)
with the additional data of weights.

2. INTERSECTIONS ON THE SPACE OF ABSTRACT CURVES

Let us start with a definition of smooth abstract curves. As a local model of a curve we will use the
following fan. Lete1, . . . , er be the standard basis inRr and sete0 := −e1 − . . .− er. We define the
one-dimensional fan

Lr := {{0},R≥(−e0), . . . ,R≥(−er)},

with weightsω(R≥(−ei)) = 1 for all i. This fan is balanced because ofe0 + . . .+ er = 0.

R3

L3

−e2

−e3

−e1

−e0
R2

L2

R

L1
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Note that this fan is also irreducible, ase0 + . . .+er = 0 is the only equation that the generating vectors
fulfill.

Definition 2.1. A smooth abstract curveC is a one-dimensional connected cycle that is locally isomor-
phic toLr for suitabler (i.e. for each vertexV in C we haveStarC(V ) ∼= Lval(V )). Thegenus ofC is
the first Betti number of|C|. An n-marked smooth abstract curve(C, x1, . . . , xn) is a smooth abstract
curveC with n unbounded rays (calledleaves), which are labelled byx1, . . . xn. If we instead label the
leaves by elements of some finite setI, we will call it anI-marked curve.

Remark2.2. As no other abstract curves will be considered we will often omit “smooth”. Note that
by definitionC is (locally) irreducible. We will always consider abstractcurves up to isomorphisms.
Still, our definition providesC with the structure of a connected graph equipped with a metric, which
is essentially the definition of an abstract curve in existing literature, in particular in [GKM07]. This
“old” definition has the disadvantage, that, when embeddingthese graphs, the balancing condition must
be included in the definition of the embedding morphism (see [GKM07, 4.1]).
A way out of this is to use the glueing techniques developed in[AR07] and start with a genuine abstract
connected cycle of dimension one. Beyond the structure of a metric graph, these objects contain the
data of local pictures of the balancing condition around each vertexV . But this picture is uniquely fixed
to beLval(V ) by the requirement of smoothness. Using this more complicated definition, an embedding
morphism is just a morphism of cyclesf : C → Rr.
Our definition here requires additionally that a global embedding of our curve exists (which we then
forget as we identify isomorphic curves). Basically we do this to avoid glueing. However, when in-
vestigating universal families it will turn out that our definition is not a restriction (at least for rational
curves), but that each rational curve in the “old” sense has acanonical embedding as a smooth curve in
some bigRr.

We now give a criterion to decide whether a one-dimensional fan withr+ 1 rays is isomorphic toLr or
not. Following our way of speaking, we could also call it a smoothness criterion.

Lemma 2.3(Smoothness criterion). LetX be a one dimensional fan inV = Λ⊗R with r+ 1 rays, all
with weight1 and generated by the primitive vectorsv0, . . . , vr. Then the following are equivalent:

(a) X is isomorphic toLr.
(b) For arbitrary real coefficientsλ0, . . . , λr ∈ R we have

i)
r∑

i=0

λivi = 0 ⇔ λ0 = . . . = λr ⇔ λi − λj = 0 for all i, j,

ii)
r∑

i=0

λivi ∈ Λ ⇔ λi − λj ∈ Z for all i, j.

Proof. As (b) holds forLr, the direction (a)⇒ (b) follows.
On the other hand, if (b) holds, an isomorphism is given by

Ω : Rr → VX = 〈|X |〉R,

ei 7→ vi.

This linear map is well-defined and bijective by (b) i). Moreover by ii) (and also i)) it follows that the
vectorsvi generate the latticeΛ ∩ VX . ThereforeΩ(Zr) = Λ ∩ VX , which implies thatΩ as well as its
inverse map are integer maps, hence tropical morphisms. �

The tropical analogueMn := M0,n, n ≥ 3 of the space of stablen-marked abstract curves is (a
quotient of) the space of trees, or the tropical Grassmanian(see [GKM07, section 3], and also [SS04],
[Mi07]). The fanMn is stratified by cones corresponding to combinatorial typesof trees. A general
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curve (i.e. an element in the interior of a facet) is a3-valent metric tree. All facets are equipped with
weight1.

The important thing is that, sinceMn ⊆ R(n

2)/Im(Φn) fulfills the balancing condition and therefore is
a tropical cycle, our intersection-theoretic constructions from above are available on this moduli space.

The coordinates inR(n

2) describe the metric of the tree, i.e. the{i, j}-entry measures the distance
between the vertices adjacent to the leavesxi andxj . If we work withMn+1, the extra leaf is labelled
by x0. In the following we assumen ≥ 4 (M3 is just a point). Whenever we writeI|J , we mean that
I andJ form a non-trivial partition of[n] = {1, . . . , n} (or of {0} ∪ [n] if we work with Mn+1). If
|I| 6= 1 6= |J |, such a partition describes a ray inMn generated by the abstract curve with only one
bounded edge

edge of length1

VI|J := ∈ Mn.
xi,

i ∈ I
xj ,
j ∈ J

A cone ofMn contains the ray generated byVI|J if and only if the corresponding combinatorial type
contains a bounded edge that subdivides the leaves intoI andJ . In this sense, we can regard the set of
partitions as “global” labels of the edges of a curve, whereI|J labels the leafxi if I = {i} or J = {i}
and a bounded edge otherwise.

We will sometimes also think ofVI|J as a vector inR(n
2), in which case we also allow|I| = 1 or |J | = 1

to get easier formulas. However, asV{k}|[n]\{k} = Φ(0, . . . , 0, 1, 0, . . . , 0), these vectors vanish modulo

Im(Φ). Note that the underlying lattice ofR(n

2) is notZ(n

2), but is the lattice generated by these vectors
VI|J , denoted byΛn (see [GKM07, 3.3]).

We will now define divisors respectively rational functionsthat play the role of “boundary” divisors in
our moduli space. They all lie in the codimension one skeleton ofMn, therefore represent higher-valent
curves. Note that our nomenclature is a bit confusing here. Even if we call all curves parametrized by
Mn smooth, we consider the codimension one skeleton ofMn to be (part of) the boundary ofMn

which classically consists of singular curves.

AsMn is simplicial, we can define a rational function onMn by assigning an integer to eachI|J : The
integers are the values of the function atVI|J and on each cone, we extend the function by linearity.

Definition 2.4. We define the rational functionϕI|J by

ϕI|J(VI′|J′) :=

{
1 if I = I ′,
0 otherwise,

Furthermore, we use the notation
ϕk,l := ϕ{k,l}|[n]\{k,l}

for k 6= l.

The ridges ofMn are combinatorial types of curves with one 4-valent vertex,which we will draw like
this:

A
D×

B
C

HereA, B, C andD denote the four parts of the combinatorial type adjacent to the 4-valent vertex and
by abuse of notations also the sets of leaves belonging to this part (as, in most cases, this is the only
information needed).
When we want to compute the weight of a ridgeA

D×
B
C in the divisor of a rational function onMn, we

need to know howMn looks like locally aroundAD×
B
C . In fact, it is easy to see thatStarMn

(AD×
B
C)

contains three facets corresponding to the three types of removing the4-valent vertex by inserting
a new bounded edge. The (representatives of the) primitive vectors areVA∪B|C∪D, VA∪C|B∪D and
VA∪D|B∪C . For the balancing condition aroundAD×

B
C , it suffices to show the equation

VA∪B|C∪D + VA∪C|B∪D + VA∪D|B∪C = VA|B∪C∪D + VB|A∪C∪D + VC|A∪B∪D + VD|A∪B∪C ,
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as all vectors on the right hand side lie in the vector space spanned by the ridgeAD×
B
C , as required. But

the equation follows from the fact that, on the level of metric trees, the distance between two marked
leaves is identical on both sides: If both leaves belong to the same setA,B,C,D, the distance is0, if
not, it is2.
This discussion also shows thatMn is locally irreducible: AsStarMn

(AD×
B
C) contains the minimal

number of three facets, all with weight1, it is necessarily irreducible for allAD×
B
C .

Let us now compute the divisors of the functionsϕI|J .

Lemma 2.5. The weight of a facet indiv(ϕI|J ) (which is a ridge inMn) is (up to permuting the names
of I, J and ofA, B, C,D respectively, which we always allow in the sequel)

ωϕI|J
(AD×

B
C) =






1 if I = A ∪B,
−1 if I = A,
0 otherwise

Proof. Following from the previous discussion, the weight ofA
D×

B
C in div(ϕI|J) is by definition

ωϕI|J
(AD×

B
C) = ϕI|J (VA∪B|C∪D) + ϕI|J (VA∪C|B∪D) + ϕI|J(VA∪D|B∪C)

−ϕI|J(VA|B∪C∪D) − ϕI|J(VB|A∪C∪D) − ϕI|J(VC|A∪B∪D) − ϕI|J(VD|A∪B∪C).

Hence, this weight is1 if I is the union of two of the setsA,B,C,D and is−1 if I equals one of the
four sets. Otherwise, it is0. �

Remark2.6. These divisors were computed before by Matthias Herold (see[H]).

Remark2.7. We will regard the divisorsdiv(ϕI|J ) as the tropical analogue of the irreducible compo-
nents of the boundary of the moduli space of stable curvesM0,n. The positive partdiv(ϕI|J )+ can
be regarded as the set of curves with bounded edgeI|J whose length has shrunk to zero. One might
think of such curves as reducible curves having two components with leavesI andJ respectively and
glued together at the4-valent vertex. The negative part can be considered as a correction term due to
the non-compactness of the tropical moduli space.
This point of view is justified by the fact that in the following we will reprove many of the algebro-
geometric statements concerning the intersection-theoretic behaviour of boundary divisors. As a general
reference for the algebro-geometric theory we use the unpublished paper “Notes on psi classes” [K] by
Joachim Kock. It is very useful for our purposes as it contains all the statements we are interested in in
down-to-earth terms.

Lemma 2.8(cf. [K] 1.2.5). The equation

ϕi,j · ϕi,k ·Mn = 0

holds forn ≥ 4 and pairwise differentk, l, i ∈ [n].

Proof. An abstract curveC cannot simultanously have bounded edges with partitions{i, j}|{i, j}c and
{i, k}|{i, k}c (as for example the first partition forcesi andk to be adjacent to the same3-valent vertex).
Let C be a curve in|ϕi,k|. At least after resolving a4-valent vertex, it contains an edge with partition
{i, k}|{i, k}c and can thereforenot contain an edge with partition{i, j}|{i, j}c. Butϕi,j just measures
the length of such an edge if present. Thus,ϕi,j ||ϕi,k| ≡ 0. �

Analogues of Psi-classes on tropicalMn have been defined recently by G. Mikhalkin ([Mi07]). How
such Psi-classes intersect is discussed in [KM07]. We use the notion Psi-divisor instead of Psi-class to
emphasize that, in contrast to the algebro-geometric case,tropically Psi-divisors arenot defined up to
rational equivalence. In fact, 2.24 suggests that we shouldthink of a tropical Psi-divisor as a boundary
representation of the corresponding Psi-class. Let us recall the important definitions and results of
[KM07] here.
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Definition 2.9. We define thek-th Psi-functionψk by

ψk(VI|J ) :=
|I|(|I| − 1)

(n− 1)(n− 2)

for all partitionsI|J with |I|, |J | ≥ 2 andk ∈ J .

Remark2.10. Our functionψk equals the function 1

(n−1
2 )

fk defined in [KM07] (follows from [KM07,

Lemma 2.6]). In particular,ψk is a convex function (cf. [KM07, Remark 2.5]). Note that in this paper,
ψk andϕI|J denote functions andnot their corresponding divisors. On the other hand, as mentioned in
subsection 1.10, this is only a matter of notation. For intersection-theoretic purposes, the actual choice
of a function defining the same divisor does not matter.

Remark2.11. Obviously the numbersψk(VI|J) are only rational. A generalization of intersection theory
to rational numbers is straightforward, but nearly unnecessary: The weights of the divisor ofψk turn
out to be integers (see the following proposition) and thereexist integer rational functions producing the
same divisor (see 2.24). This particular functionψk was chosen in [KM07] because of its symmetry.

Proposition 2.12(see [KM07] 3.5). The divisordiv(ψk) consists of the cones corresponding to trees
where the marked leafk is at a4-valent vertex, i.e. the weight of a facet indiv(ψk) (which is a ridge in
Mn) is

ωψk
(AD×

B
C) =

{
1 if {k} = A,
0 otherwise

Notation 2.13. As in the conventional case we will introduce the followingτ -notation that makes
formulas shorter and hides “unimportant” data such as the number of marked leaves. For any positive
integersa1, . . . , an we define

(τa1 · . . . · τan
) := ψa1

1 · . . . · ψan
n ·Mn.

Every factorτak
stands for a marked leaf and the indexak serves as the exponent with which the

corresponding Psi-function appears in the intersection product. If
∑
ak = dim(Mn) = n − 3, the

above cycle is zero-dimensional (in fact, its only point corresponds to the curve without bounded edges
where all leaves are adjacent to one single vertex) and we define

〈τa1 · . . . · τan
〉 := deg

(
ψa1

1 · . . . · ψan
n ·Mn

)
.

The main theorem of [KM07] computes these intersection products of Psi-divisors:

Theorem 2.14(Intersections of Psi-divisors for abstract curves, see [KM07] 4.1). The intersection
product(τa1 · . . . · τan

) is the subfan ofMn consisting of the closure of the cones of dimensionn− 3−∑n
i=1 ai whose interior curvesC have the property:

Letk1, . . . , kq ⊆ N be the marked leaves adjacent to a vertexV ofC. Then the valence ofV is

val(V ) = ak1 + . . .+ akq
+ 3.

Let us define the multiplicity of this vertex to bemult(V ) :=
(

val(V )−3
ak1

,...,akq

)
. Then the weight of such a

coneσ in X is
ωX(σ) =

∏

V

mult(V ),

where the product runs through all verticesV of an interior curve ofσ.

In this section we will reprove the zero-dimensional case ofthis theorem (see 2.22). To do this, we
first have to analyze how Psi- and boundary divisors intersect and how they behave when pulled back or
pushed forward along forgetful morphisms.

Lemma 2.15(cf. [K] 1.2.7). It holds

ϕi,j · ψi ·Mn = 0

for n ≥ 4 andk 6= l ∈ [n].
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Proof. Curves in|ψi| cannot contain a bounded edge with partition{i, j}|{i, j}c, as the leafi does not
lie at a3-valent vertex. Thusϕi,j vanishes on|ψi|. �

The forgetful mapMn+1 → Mn that forgets the extra leafx0 is denoted byft0 (cf. [GKM07, 3.8]). By
[GKM07, 3.9] this map is a tropical morphism. Therefore we can ask how Psi-functions behave when
pulled back alongft0.

Proposition 2.16(Pull-back of Psi-functions, cf. [K] 1.3.1). Letn ≥ 4 and letft0 : Mn+1 → Mn be
the morphism that forgets the leafx0. For k ∈ [n] it holds

div(ψk) = div(ft∗0 ψk) + div(ϕ0,k).

Proof. This can be proven by explicitly computing the weights of thecodimension one faces of the three
divisors. We distinguish four cases (up to renamingA, B, C andD):

ωf (
A
D×

B
C) f = ψk f = ft∗0 ψk f = ϕ0,k

A = {0, k} 0 1 −1
A = {0}, B = {k} 1 0 1

A = {0, . . .}, B = {k} 1 1 0
otherwise 0 0 0

�

Corollary 2.17 (cf. [K] 1.3.2 and 1.3.3). Letn ≥ 4 and letft0 : Mn+1 → Mn be the morphism that
forgets the leafx0. Then fork ∈ [n] the following formulas hold:

(a)
ϕ2

0,k = − ft∗0(ψk) · ϕ0,k

(b)
ψak = ft∗0(ψk)

a + ft∗0(ψk)
a−1 · ϕ0,k

(c)
ψak = ft∗0(ψk)

a + (−1)a−1ϕa0,k

Proof. All the formulas are easy applications of 2.15 and 2.16. �

Lemma 2.18. Let n ≥ 4 and let ft0 : Mn+1 → Mn be the morphism that forgets the leafx0 and
choosek ∈ [n]. Then

ft0∗(div(ϕ0,k)) = ft0∗(div(ψk)) = Mn.

Proof. We showft0∗(div(ϕ0,k)) = Mn by direct computation: Letσ′ be a facet ofMn corresponding
to a3-valent combinatorial type. LetV be the vertex adjacent tok. Then there exists precisely one cone
σ in div(ϕ0,k) whose image underft0 is σ′, namely the cone obtained by attaching the additional leaf
x0 to the vertexV . Moreover, on such a cone, the length of the bounded edges remain unchanged under
ft0 and thereforeft0(Λσ) = Λσ′ . On the other hand, cones indiv(ϕ0,k) with negative weight are not
mapped injectively, as in this casex0 is adjacent to a3-valent vertex and stabilization is needed. This
shows thatft0∗(div(ϕ0,k)) = Mn.
The equationft0∗(div(ψk)) = Mn follows from the same argument or by using 2.16, the projection
formula andft0∗(Mn+1) = 0 (because the dimension is too big). �

Proposition 2.19(Univeral familyft0 for abstract curves). Letp be a point inMn and letCp = ft−1
0 (p)

be the fibre ofp under the forgetful morphismft0 : Mn+1 → Mn. Then the following holds:

(a) Cp has the canonical structure of a one-dimensional polyhedral complex.
(b) The leaves ofCp (as graph itself) are the facets wherex0 and another leafxi lie at the same

3-valent vertex (i.e. the leaves are given byLi := {y ∈ Cp|ϕ0,i(y) > 0}). Moreoverp ∈ Mn

represents then-marked metric graph(Cp, L1, . . . , Ln).
(c) When we equip all its facets with weight1, Cp is a smooth abstract curve (in the sense of 2.1).
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(d) Let
∑

k µkpk = ϕ1 · . . . · ϕn−3 · Mn be a zero-dimensional cycle inMn obtained as the
intersection product of convex functionsϕj . Then

ft∗0(ϕ1) · . . . · ft
∗
0(ϕn−3) · Mn+1 =

∑

k

µkCpk
.

We write this asft∗0(
∑

k µkpk) =
∑
k µkCpk

.

Proof. (a): As polyhedral complex,Cp consists of the polyhedraft0 |−1
σ (p) for each coneσ of Mn+1.

The dimension of these polyhedra can be at most one asdim(f0(σ)) ≥ dim(σ) − 1 (it depends on
whetherx0 is adjacent to a3-valent or higher-valent vertex).
(b): LetΓp denote then-marked metric graph represented byp. The bijective mapΓp → Cp indicated
in the picture identifies the two graphs.

x5

x4

x2

x1
Γp x5

x4

x2

x1

x0x3x3

∈ Cp

(c): Let V be a vertex ofCp. It corresponds to the metric graphΓp with the extra leafx0 adjacent to
one of the vertices. Let us label the other edges adjacent to this vertex by1, . . . ,m and let us divide
the other leaves[n] = I1 ·∪ . . . ·∪ Im according to via which edge one reachesxi from x0. There arem
facets inCp adjacent toV corresponding to movingx0 on one of the edges. Hereby on has to shorten
the edgeIk|Ick as much as the length ofIk ∪ {x0}|(Ik ∪ {x0})c increases.

...

...

E2

xi, i ∈ I1
xi, i ∈ Im

E1 Em

xi, i ∈ I2

x0

x0 x0

x0

1 −1

−1
1

V1

V2
Vm

−1 1

Thus the primitive integer vector of the corresponding facet with respect toV is given by

Vk := VIk∪{x0} − VIk
.

Note that this formula as well as the following ones also holds in the case thatIk consists only of a

single leafxi (which meansxi is adjacent to the same vertex asx0), asV{xi} = 0 ∈ R(n+1
2 )/Im(Φn+1).

To prove the statement we now use 2.3 and verify the conditions i) and ii), which can be done by
applying some formulas of [KM07]. LetS be the set of two-element subsets of[n] (i.e. not containing
0). It follows from [KM07, 2.3, 2.4, 2.6] that the vectorsVS , S ∈ S fulfill i) and ii) (with V =

R(n+1
2 )/Im(Φn+1) andΛ = Λn). Furthermore [KM07, 2.6] gives us a representation of our vectors in

terms of the vectorsVS , namely

VIk
=

∑

S∈S
S⊆Ik

VS

VIk∪{x0} =
∑

S∈S
S∩Ik=∅

VS ,= −
( ∑

S∈S
S∩Ik 6=∅

VS

)
,
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and therefore
Vk = −

( ∑

S∈S

|S ∩ Ik| · VS
)
.

Now letλ1, . . . , λm be arbitrary real coefficients. Then we obtain the formula
m∑

k=1

λkVk = −
( ∑

{i,j}∈S
i∈Ik,j∈Ik′

(λk + λk′ ) · V{i,j}

)
.

Now all differences of two coefficients on the left hand sideλk − λ′k can be obtained as differences of
two coefficients on the right hand side (choose elementsi ∈ Ik, j ∈ Ik′ , l ∈ Ik′′ ; then the coefficients of
V{i,l} andV{j,l} differ byλk+λk′′ −λk′ −λk′′ = λk−λk′ ). Conversely, a right hand side difference of
coefficients equals the sum of two left hand side differences. (The coefficients ofV{i1,i2} andV{j1,j2}
differ by (λk1 − λl1) + (λk2 − λl2), wherei1 ∈ Ik1 , i2 ∈ Ik2 , j1 ∈ Il1 , j2 ∈ Il2 .) Hence, as conditions
2.3 i) and ii) hold for the vectorsVS , they also hold for the vectorsVk.
(d): First of all, the set-theoretic equation

| ft∗0(ϕ1) · . . . · ft
∗
0(ϕn−3) · Mn+1| ⊆ ft−1

0 (|ϕ1 · . . . · ϕn−3 · Mn|) =
⋃

k

|Cpk
|.

follows from 1.11. But the sets|Cpk
| are pairwise disjoint (as they are fibres of pairwise different

points) and belong to irreducible cycles (as the curvesCpk
are smooth abstract curves). Thus any one-

dimensional cycle whose support lies in
⋃
i |Cpk

| is actually a sum
∑

k λkCpk
, λk ∈ Z. So it remains

to check that in our case these coefficientsλk coincide withµk. To do this, we choose an arbitrary leaf
xi 6= x0 and consider the functionϕ0,i onCpk

. On the leafLi of Cpk
, wherex0 andxi are adjacent

to the same3-valent vertex, it measures the length of the third edge, elsewhere it is constantly zero.
Thusϕ0,i · Cpk

= Vpk
, whereVpk

is the vertex ofCpk
adjacent toLi (wherex0 andxi lie together at a

higher-valent vertex). Thus we get

ft0∗
(
ϕ0,i · (

∑

k

λkCpk
)
)

= ft0∗
( ∑

k

λkVpk

)
=

∑

k

λkpk.

On the other hand we can use projection formula and 2.18 and compute

ft0∗
(
ϕ0,i · ft

∗
0(ϕ1) · . . . · ft

∗
0(ϕn−3) · Mn+1

)
= ϕ1 · . . . · ϕn−3 · ft0∗(ϕ0,i ·Mn+1) =

∑

k

µkpk.

Comparing the coefficients proves the statement. �

Remark2.20. Hence there is a one-to-one correspondence between curves according to the “old” defi-
nition (i.e. as metric graphs) and definition 2.1. In particular,Mn parametrizes smooth abstract curves
in our sense.

Theorem 2.21(String equation for abstract curves, cf. [K] 1.4.2). For zero-dimensional intersection
products of Psi-divisors the following holds:

〈τ0

n∏

k=1

τak
〉d =

n∑

i=1

〈τai−1

∏
k 6=i

τak
〉d

Proof. The proof is identical to the algebro-geometric one: We haveto compute degree of the intersec-
tion product

∏n
k=1 ψ

ak

k ·Mn+1. First we replace each termψak

k (k 6= 0) by ft∗0(ψk)
ak + ft∗0(ψk)

ak−1 ·
ϕ0,k using 2.17 (b) and multiply the product out. Asϕ0,k · ϕ0,k′ = 0 for k 6= k′ (see 2.8), we only get
the followingn+ 1 terms:

n∏

k=1

ft∗0(ψk)
ak · Mn+1 +

n∑

i=1

ft∗0(ψi)
ai−1 ·

∏
k 6=i

ft∗0(ψk)
ak · ϕ0,i · Mn+1

Now we push this cycle forward alongft0 and use projection formula. The first term vanishes for
dimension reasons and, asϕ0,i pushes forward toMn by 2.18, the other terms provide the desired
result. �
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Remark2.22. As in the classical case, the string equation suffices to compute all intersection numbers
of Psi-divisors of abstract curves (see [K, 1.5.1]). Namely, if

∑
ai = n− 3, the equation

〈τa1 · . . . · τan
〉 =

(n− 3)!

a1! · . . . · an!

holds. This was proven in [KM07, 4.2] using the paper’s main theorem [KM07, 4.1] (cited here in 2.14).
Note, however, that in order to prove the string equation it was not necessary to use [KM07, 4.1].

Lemma 2.23. Letn > 4 and letft0 : Mn+1 → Mn be the morphism that forgets the last leaf. Then

ft0∗(div(ϕI|J )) =

{
Mn if I = {0, k} or J = {0, k} for somek ∈ [n],
0 otherwise.

Proof. The first part is shown in 2.18. So let us consider the second part: There existi ∈ I andj ∈ J ,
both different from0. Consider a facetσ′ in Mn corresponding to a combinatorial type wherexi and
xj are adjacent to the same3-valent vertexV . All ridges in Mn+1 mapping ontoσ′, are obtained
by attachingx0 to any of the vertices. If not attached toV , the induced partitionA,B,C,D cannot
separatei andj. If attached toV , the induced partition is{0}, {i}, {j}, D. It follows from {0, i} 6=
I and{0, j} 6= J thatD intersects bothI andJ and therefore none of these types is contained in
div(ϕI|J ). Henceσ′ is not contained in the push-forward ofdiv(ϕI|J ). But Mn is irreducible, thus
ft0∗(div(ϕI|J )) = 0. �

Lemma 2.24(cf. [K] 1.5.2). For n ≥ 4 we define

(x1|x2, x3) :=
∑

I|J
1∈I; 2,3∈J

div(ϕI|J ).

Then
div(ψ1) = (x1|x2, x3).

Proof. We use induction on the number of leavesn. Forn = 4, only the partition{1, 4}|{2, 3} con-
tributes to the sum. Butdiv(ψ1) as well asdiv(ϕ1,4|2,3) is just the single vertex inM4 parametriz-
ing the curve1

4×
2
3 with weight 1. For the induction step, assumen ≥ 4 and consider the morphism

ft0 : Mn+1 → Mn that forgets the leafx0 and letI ′|J ′ be a partition of[n]. Thenft∗0(ϕI′|J′) measures
the sum of the lengths of the edges separatingI ′ andJ ′ if present. Hence we obtain

ft∗0(ϕI′|J′) = ϕI′∪{0}|J′ + ϕI′|J′∪{0}.

Using the induction hypothesis, we conclude thatft∗0(ψ1) equals the sum on the right hand side except
for the partition{0, 1}|{0, 1}c. This missing summand is provided by 2.16. �

Lemma 2.25(cf. [K] 1.6.1). Letn ≥ 4 and letft0 : Mn+1 → Mn be the morphism that forgets the
leafx0. Then

ft0∗(div(ψ0)) = (n− 2)Mn.

Proof. 1. version: We expressψ0 as(x0|x1, x2) by 2.24 and use linearity of the push-forward. Lemma
2.23 says that we getoneMn for eachϕ{0,k}|{0,k}c and zero for each otherϕI|J . As k runs through
{3, . . . , n}, the statement follows.
2. version: Alternatively we can obtain the result by directly computing the number of facets indiv(ψ0)
mapping onto a fixed facet inMn as in 2.18: The ridges inMn+1 mapping onto a fixed facet inMn

are obtained by attaching the extra leafn at an arbitrary vertex and in each case the corresponding lattice
index is1. Now each of these ridges has a4-valent vertex adjacent tox0, hence is contained indiv(ψ0).
So it remains to count the number of vertices of a3-valent rational graph withn leaves, which isn− 2.
(Let v be the number of vertices, lete be the number of bounded edges. As there are no loops, we have
e = v − 1. On the other hand, count the number of flags in the given graph. This is3v (each vertex is
3-valent, hence provides3 flags) as well as2e+n (each bounded edge provides two, each leaf provides
one flag). Plugging in givesv = n− 2.) �
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Proposition 2.26 (Dilaton equation for abstract curves, cf. [K] 1.6.2). Let 〈
∏n
k=1 τak

〉 be a zero-
dimensional intersection product. Then

〈τ1 ·
n∏

k=1

τak
〉 = (n− 2)〈

n∏

k=1

τak
〉.

Proof. The proof is identical to the algebro-geometric one, using 2.17, 2.15, 2.18, 2.25 and the projec-
tion formula.
As degree is preserved, we push forward(τ1 ·

∏n
k=1 τak

) along the forgetful morphismft0 forgetting
the extra leafx0 corresponding to the factorτ1. To see what happens, we use 2.17 (b) and replace each
termψak

k by ft∗0(ψk)
ak + ft∗0(ψk)

ak−1 · ϕ0,k. When we multiply the whole product out, all summands
containing a factorϕ0,k vanish when multiplied withψ0 (see 2.15). It follows

ψ0 ·
n∏

k=1

ψak

k = ψ0 ·
n∏

k=1

ft∗0(ψk)
ak

and the projection formula together withft0∗(div(ψ0)) = (n−2)Mn from 2.25 gives the desired result.
�

3. INTERSECTIONS ON THE SPACE OF PARAMETRIZED CURVES

A (labelled) degree∆ in Rr is a finite set of labels together with a map∆ → Zr \ {0} to the set of
non-zero integer vectors. Furthermore the images of this map, denoted byv(xi), i ∈ ∆ as they will
later play the role of the directions of the leavesxi, sum up to zero, i.e.

∑
i∈∆ v(xi) = 0. The number

of elements in∆ is denoted by#∆ (to distingiush it from the support of a cycle). As an example, we
define theprojective degreed (in dimensionr) to be the set[(r + 1)d] with the map

[(r + 1)d] → Zr \ {0},

1, . . . , d 7→ −e0,

d+ 1, . . . , 2d 7→ −e1,

...
...

rd+ 1, . . . , (r + 1)d 7→ −er,

where, as usual,e1, . . . , er denote the standard basis vectors ande0 := e1 + . . .+ er.

Definition 3.1. An n-marked (labelled) parametrized curve of degree∆ in Rr is a tuple(C, h), where
C is an[n] ·∪∆-marked smooth abstract curve andh : C → Rr is a tropical morphism such that for all
leavesxi the rayh(xi) ⊆ Rr has directionv(xi). Herev(xi) is set to be zero ifi ∈ [n]. The genus of
(C, h) is defined to be the genus ofC.

Remark3.2. The leavesxi, i ∈ [n] are calledmarked leaves, as they correspond to the marked points
of stable maps classically. Marked leaves are contracted byh. In contrast to that we call the leaves
xi, i ∈ ∆ non-contracted leaves. Our curves are called “labelled” as also the non-contracted leaves are
labelled.
Two parametrized curves(C, h) and(C′, h′) are called isomorphic (and therefore identified in the fol-
lowing) if there exists an isomorphismΦ : C → C′ identifying the labels and satisfyingh = h′ ◦ Φ.
Let us compare our definition to [GKM07, definition 4.1]. Conditions (a) and (b) in that definition make
sure thath is a tropical morphism in our sense (at least locally; but again, considering the universal
family of Mlab

n (Rr,∆) we will see that a global integer affine maph always exists). Condition (c) is
also contained in our definition.

LetMlab
n (Rr,∆) be the moduli space of rationaln-marked labelled parametrized curves of degree∆ in

Rr. Its construction as a tropical cycle can be found in [GKM07,4.7]. After fixing one of the marked
leavesxi asanchor leaf(we avoid “root leaf” as, from the botanic point of view, thisis nonsense), we
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can identifyMlab
n (Rr,∆) with M[n]∪∆ × Rr, where the first factor parametrizes the abstract curveC

and the second factor contains the coordinates of the image point of the anchor leafxi. So again, cones
in Mlab

n (Rr,∆) correspond to combinatorial types of the underlying abstract curves, but this time the
minimal cone is not zero- butr-dimensional because we can move the curve inRr.
For enumerative purposes, we would like to identify curves whose only difference is the labelling of
the non-contracted leaves. LetMn(R

r,∆) denote the set of theseunlabelledcurves. Then the number
of elements in a general fibre of the mapMlab

n (Rr,∆) → Mn(R
r,∆) forgetting the labelling of the

non-contracted leaves equals the number of possibilities to label a general unlabelled curve, which is

∆! :=
∏

v∈Zr\{0}

n(v)!,

wheren(v) denotes the number of timesv occurs asv(xi), i ∈ ∆. Therefore each enumerative invariant
computed onMlab

n (Rr,∆) must simply be divided by∆! to get the corresponding one inMn(R
r,∆).

From now on,I|J denotes a (non-empty) partition of[n] ·∪∆ (or {0} ·∪ [n] ·∪∆ if we work with
Mlab

n+1(R
r,∆)). Again such partitions can be used as global labels of the edges of our curves. The

direction of the image of the corresponding edge underh is given by

vI|J :=
∑

i∈I

v(xi) = −(
∑

j∈J

v(xj))

(as an exception, the ordering ofI andJ plays a little role here, namelyvI|J = −vJ|I ). We callI|J
reducibleif vI|J = 0 (i.e. if the corresponding edge is contracted). This is equivalent to requiring that
the corresponding splitted sets∆I = I ∩ ∆ and∆J = J ∩ ∆ fulfill the balancing condition, i.e. are
degrees on its own. Also the marked leaves split up into[n] = {i ∈ I|v(xi) = 0} ·∪ {j ∈ I|v(xj) = 0}.
In this sense, the partition corresponds (nearly) to a conventional partition(S′, β′|S′′, β′′) of the marked
pointsS = S′ ·∪ S′′ and the degreeβ = β′ + β′′, occuring for example in the splitting lemma [K] 5.2.1.
However, note that in the tropical setting it is possible to permute non-contracted leaves with the same
direction vector betweenI andJ without changing the corresponding conventional partition, hence in
general several tropical reducible partitions correspondto the same conventional partition.
In contrast to that, the irreducible partitionsI|J do not have a counterpart in the algebro-geometric
moduli space. A way to explain this is the following. If we letgrow the length of the edgeI|J towards
infinity, the image of our curve underh remains unchanged ifI|J is reducible. If not, some part of the
curve (depending on where we picked our anchor leaf) moves towards the “boundary” ofRr. In our yet
uncompactified tropical moduli space, we have no limit pointfor this movement. Hence, these partitions
stand for the difference between the boundary structures ofthe tropical resp. algebro-geometric moduli
spaces. As a consequence, to recover classical enumerativeresults tropically, one principally can follow
two strategies. One could try to compactify the tropical moduli spaces and extend intersection theory to
the new boundary; up to now, no rigorous attempts in this direction have been made. Or one must check
that a in particular count the irreducible partitionsI|J do not contribute (which in existing literature is
contained in proving the existence of an contracted edge when theM4-coordinate is arbitrarily big, see
[GM05, 5.1] and [MR08, 4.4]).

Note that, independently of the choice of a anchor leaf, there exists a forgetful mapft′ : Mlab
n (Rr,∆) →

M[n]∪∆ forgetting just the position of a curve inRr. This forgetful mapft′ : Mlab
n (Rr,∆) → M[n]∪∆

is a morphism of tropical varieties, as after choosing a anchor leaf and identifyingMlab
n (Rr,∆) with

M[n]∪∆ × Rr, ft′ is just the projection onto the first factor. We use this to define Psi-functions on
Mlab

n (Rr,∆).

Definition 3.3 (Psi-functions for parametrized curves). For a partitionI|J of [n] ∪ ∆ we define the
functionϕI|J onMlab

n (Rr,∆) to beft′∗(ϕabstr
I|J ), whereϕabstr

I|J is the corresponding function onM[n]∪∆.

For i = 1, . . . , n we definethek-th Psi-function onMlab
n (Rr,∆) to beψk := ft′∗(ψabstr

k ), where the
ψabstr
k is thek-th Psi-function onM[n]∪∆.

Remark3.4. Again, in spite of defining functions we are actually interested in its divisors. Note that by
1.12 the pull-backs of the respective divisors do not dependon the particular functions.
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We can immediately generalize statement 2.14 to parametrized curves.

Lemma 3.5(Intersections of Psi-divisors for parametrized curves). Leta1, . . . , an be positive integers
and letX =

∏n
k=1 ψ

ak

k ·Mlab
n (Rr,∆) be a product of Psi-divisors. ThenX is the subfan ofMlab

n (Rr,∆)
consisting of the closure of the cones of dimensionn + #∆ − 3 −

∑n
i=1 ai whose interior curvesC

have the property:
Letk1, . . . , kq ⊆ [n] be the marked leaves adjacent to a vertexV ofC. Then the valence ofV is

val(V ) = ak1 + . . .+ akq
+ 3.

Let us define the multiplicity of this vertex to bemult(V ) :=
(

val(V )−3
ak1

,...,akq

)
. Then the weight of such a

coneσ in X is
ωX(σ) =

∏

V

mult(V ),

where the product runs through all verticesV of an interior curve ofσ.

Proof. Choose an anchor leaf and identifyMlab
n (Rr,∆) with M[n]∪∆ ×Rr. Thenft′ is just the projec-

tion on the first factor and we can apply [AR07, 9.6], i.e. instead of intersecting the pull-backs of thefk
on the product, we can just intersect thefk on the first factor and then multiply withR2. Thus,

X = (

n∏

k=1

(ψabstr
k )ak ·M[n]∪∆) × Rr,

where hereψabstr
k denotes a Psi-function onM[n]∪∆. Now, as the weight ofRr is one and the combina-

torics of a curve do not change underft′, the statements follows from 2.14. �

Lemma 3.6. Let ft0 be the mapMlab
n+1(R

r,∆) → Mlab
n (Rr,∆) that forgets the extra leafx0 and

assumen + #∆ ≥ 4 (andn ≥ 1). Furthermore, letxi, xj , xk be pairwise different leaves. Then the
following equations hold (where all the occurring intersection products are computed inMlab

n (Rr,∆)
or Mlab

n+1(R
r ,∆) respectively):

(a) (cf. 2.8)
ϕi,j · ϕi,k = 0

(b) (cf. 2.15)
ϕi,j · ψi = 0

(c) (cf. 2.16)
div(ψk) = div(ft∗0 ψk) + div(ϕ0,k)

(d) (cf. 2.17 (a))
ϕ2

0,k = − ft∗0(ψk) · ϕ0,k

(e) (cf. 2.17 (b))
ψak = ft∗0(ψk)

a + ft∗0(ψk)
a−1 · ϕ0,k

(f) (cf. 2.17 (c))
ψak = ft∗0(ψk)

a + (−1)a−1ϕa0,k
(g) (cf. 2.18)

ft0∗(div(ϕ0,k)) = ft0∗(div(ψk)) = Mlab
n (Rr,∆)

(h) (cf. 2.23)

ft0∗(div(ϕI|J )) =

{
Mlab

n (Rr,∆) if I = {0, k} or J = {0, k} for somek ∈ [n],
0 otherwise.

(i) (cf. 2.24)
div(ψi) = (xi|xj , xk) :=

∑

I|J
i∈I; j,k∈J

div(ϕI|J),

where the sum runs also throughnon-reduciblepartitions.
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(j) (cf. 2.25)
ft0∗(div(ψ0)) = (n+ #∆ − 2)Mlab

n (Rr,∆),

(which isdifferentto the algebro-geometric factorn− 2 that equals the abstract case).

Proof. As in the proof of 3.5, we apply [AR07, 9.6] to the morphismft′ : Mlab
n (Rr,∆) = M[n]∪∆ ×

Rr → M[n]∪∆ forgetting the position inRr. This means that instead of computing the intersection
product onMlab

n (Rr,∆) we can compute them onM[n]∪∆ and therefore use the corresponding state-
ments for abstract curves. For statements (c) – (h) and (j) wealso useft0 = ftabstr

0 × id. �

Definition 3.7 (Evaluation maps and its pull-backs). Theevaluation mapevk : Mlab
n (Rr,∆) → Rr, for

k ∈ [n], maps each parametrized curve(C, h) to the position of itsk-th leafh(xk) (see [GKM07, 4.2]).
If we choose one of the marked leaves, sayxa, as anchor leaf, then the evaluation maps are morphisms
fromM[n]∪∆ × Rr to Rr obeying the following mapping rule:

(Cabstr, P ) 7→ P +
∑

I|J
a∈I,k∈J

ϕI|J(Cabstr) vI|J

In particular, if our anchor leaf is chosen to bexk, thenevk is just the projection onto the second factor.
LetC ∈ Zc.i.

m (Rr) be given byC = h1 · . . . · hl ·X . Then we can apply 1.12 which states that there is a
well-definedpull-back ofC alongevk

ev∗
k(C) := ev∗

k(h1) · . . . · ev
∗
k(hl).

Proposition 3.8(Univeral familyft0, ev0 for parametrized curves). Letp be a point inMlab
n (Rr,∆) and

let Cp = ft−1
0 (p) be the fibre ofp under the forgetful morphismft0 : Mlab

n+1(R
r,∆) → Mlab

n (Rr,∆).
Then the following holds:

(a) When we equip all its facets with weight1, Cp is a rational smooth abstract curve. Its leaves
are naturally[n] ·∪∆-marked byLi := {y ∈ Cp|ϕ0,i(y) > 0}.

(b) The tuple(Cp, ev0 ||Cp|) is ann-marked parametrized curve of degree∆. Moreover,p repre-
sents(Cp, ev0 ||Cp|).

(c) Let
∑
k µkpk = ϕ1 · . . . ·ϕn+#∆−3 ·Mlab

n (Rr,∆) be a zero-dimensional cycle inMlab
n (Rr,∆)

obtained as the intersection product of convex functionsϕj . Then

ft∗0(ϕ1) · . . . · ft
∗
0(ϕn+#∆−3) ·M

lab
n+1(R

r,∆) =
∑

k

µkCpk
.

We write this asft∗0(
∑

k µkpk) =
∑
k µkCpk

.

Proof. (a): First of all, let us fix an anchor leafxa, a ∈ [n] in order to identifyMlab
n+1(R

r,∆) =

Mn+#∆+1 × Rr andMlab
n (Rr,∆) = M[n]∪∆ × Rr. We use againft0 = ftabstr

0 × id, whereftabstr
0 is

the corresponding forgetful map on the abstract spaces. Then the fibre ofp = (p′, P ) equalsCp′ ×{P},
whereCp′ is the[n] ·∪∆-marked rational smooth abstract curve considered in 2.19 (a)–(c).
(b): We have to check that the direction of the raysev0(Li) are correct. For curves inLi, the only length
that varies is that of the third edge adjacent to the same3-valent vertex asxi andx0. Hence we can use
the description ofev0 in 3.7 and obtain for ally ∈ Li

ev0 |Li
(y) = Q+ ϕ0,i(y) · v{0,i}|{0,i}c ,

whereQ ∈ Rr is some constant vector. Butv{0,i}|{0,i}c = v(xi) + v(x0) = v(xi) is the expected
direction.
To show thatp = (p′, P ) represents(Cp, ev0 ||Cp|) it actually suffices to prove that the anchor leafLa
of Cp is mapped to the pointP underev0, which is obviously the case asev0 |La

= eva |La
andeva is

just the projection on the second factor ofCp′ × {P}.
(c): We can use literally the same proof as in the abstract case 2.19 (d) using 3.6 (g). �
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Notation 3.9 (Tropical Gromov-Witten invariants). Let us now extend ourτ -notation to the case of
parametrized curves. For any positive integersa1, . . . , an and complete intersection cyclesC1, . . . , Cn
∈ Zc.i.

∗ (Rr) we define

(τa1(C1) · . . . · τan
(Cn))R

r

∆ := ψa1
1 · ev∗

1(C1) · . . . · ψ
an
n · ev∗

n(Cn) ·Mlab
n (Rr,∆).

Once again, each factorτak
(Ck) stands for a marked leaf subject toak Psi-conditions and to the condi-

tion that it must meetCk. Let ck be the codimension ofCk in Rr. If
∑

(ak + ck) = dim(Mlab
n (Rr,∆))

= n+ #∆ + r − 3, the above cycle is zero-dimensional and we denote its degree by

〈τa1(Ck) · . . . · τan
(Ck)〉

R
r

∆ .

These numbers are calledtropical descendant Gromov-Witten invariants.

Remark3.10 (Enumerative relevance of tropical Gromov-Witten invariants). Let (τa1(C1)·. . .·τan
(Cn))

be an intersection product as defined above. If we setX =
∏n
k=1 ψ

ak

k · Mlab
n (Rr,∆) and apply 1.15 to

the morphismsevk : X → Rr, we can conclude the following (as discussed in 1.16): Afterreplacing
all the cyclesCk by general translations (calledgeneral conditionsin the following),Z := τa1(C1) ·
. . . · τan

(Cn)) is the set of curvesC such that

• every vertexV ∈ C with adjacent marked leavesk1, . . . , kq fulfills

val(V ) ≥ ak1 + . . .+ akq
+ 3,

• for all k = 1, . . . , n it holds
evk(C) ∈ Ck.

Additionally, the facets ofZ (i.e. general curves) are equipped with (possibly zero) weights.
Moreover, assume that all the cyclesCk can be described by convex functionsh1 · · ·hl · Rr. Then by
1.10, all these weights are positive (in particular,|Z| really is the set of such curves).
Thus, ifZ is zero-dimensional,deg(Z) = 〈τa1(Ck) · . . . · τan

(Ck)〉 is the number of curves satisfying
the above properties, counted with a certain integer multiplicity/weight. Now again, if allCk can be
described by convex functions, all these multiplicities and in particular〈τa1 (Ck) · . . . · τan

(Ck)〉 are
positive.

Remark3.11. Let ft0 : Mlab
n+1(R

r,∆) → Mlab
n (Rr,∆) be the morphism that forgets the leafx0. Then

by abuse of notation the equation
ft∗0(evk) = evk

holds for allk ∈ [n].

Theorem 3.12(String equation for parametrized curves, cf. [K] 4.3.1). Let (τ0(Rr) ·
∏n
k=1 τak

(Ck))∆
be a zero-dimensional cycle. Then

〈τ0(R
r) ·

n∏

k=1

τak
(Ck)〉∆ =

n∑

k=1

〈τak−1(Ck) ·
∏

l 6=k

τal
(Cl)〉∆.

Theorem 3.13(Dilaton equation for parametrized curves, cf. [K] 4.3.1). The following equation holds:

〈τ1(R
r) ·

n∏

k=1

τak
(Ck)〉∆ = (n+ #∆ − 2)〈

n∏

k=1

τak
(Ck)〉∆.

Proofs. In both cases, the proofs are completely analogous to the abstract case using 3.6 and 3.11.�

Remark3.14. Note that the factor appearing in the dilaton equation is different from the algebro-
geometric one, due toft0∗(ψ0) = (n+ #∆ − 2) · Mlab

n (Rr,∆) (cf. 3.6 (j)).

Lemma 3.15(cf. [K] 5.1.6). Leth be a rational function. Then

ev∗
k(h) · ϕk,l ·M

lab
n (Rr,∆) = ev∗

l (h) · ϕk,l · M
lab
n (Rr,∆)
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Proof. In all curves corresponding to points indiv(ϕk,l), the leavesk and l lie at a common vertex.
Therefore their coordinates inRr must agree, which meansevk || div(ϕk,l)| = evl || div(ϕk,l)|. The result
follows. �

For a given labelled degree∆, we defineδ(∆) to be the associated unlabelled degree in the sense of
subsection 1.5:δ(∆) is the one-dimensional balanced fan inRr consisting of all the rays generated by
the direction vectorsvk, k ∈ ∆ appearing in∆. The weight of such a rayR≥v, wherev is primitive, is
given by ∑

k∈∆
vk∈Z>0v

|Zv/Zvk|.

Obviously, let(C, h) ∈ Mlab
n (Rr,∆) be an arbitraryn-marked parametrized curve of degree∆, then

by definitionδ(h(C)) = δ(∆) holds.
For a given rational functionh onRr we defineh · ∆ to bedeg(h · δ(∆)).

Proposition 3.16 (cf. [K] 5.1.5). Let h be a rational function onRr and defineY := ev∗
0(h) ·

Mlab
n+1(R

r,∆). Then

ft0∗(Y ) = (h · ∆)Mlab
n (Rr,∆).

Proof. As our moduli spaceMlab
n (Rr,∆) is irreducible, we know thatft0∗(Y ) = α · Mlab

n (Rr,∆) for
an integerα. To compute this number, we setm := n+ #∆+ r− 3 and consider the zero-dimensional
intersection productZ = ϕ1 · · ·ϕm · Mlab

n (Rr,∆) of arbitrary convex functionsϕ1, . . . , ϕm such that
deg(Z) 6= 0 (e.g.Z = ψm−r

1 · ev1(P ) for some pointP ∈ Rr). If we pull backZ alongft0, we know
by the projection formula

deg(ev0(h) · ft
∗
0(Z)) = α · deg(Z).

On the other hand, by the universal family property offt0 we know thatZ is the union of the curves
represented by the points inZ (with according weights) and therefore the push-forwardev0∗(ft

∗
0(Z)) is

rationally equivalent to its degree

δ(ev0∗(ft
∗
0(Z))) = deg(Z) · δ(∆).

So, applying the projection formula toev0, we obtain

deg(ev0(h) · ft
∗
0(Z)) = deg(Z) · (h · ∆).

But this impliesh · ∆ = α, which proves the claim. �

Theorem 3.17 (Divisor equation, cf. [K] 4.3.2). Let h be a rational function onRr and let
(
∏n
k=1 τak

(Ck))∆ be a one-dimensional cycle. Then

〈τ0(h) ·
n∏

k=1

τak
(Ck)〉∆ = (h · ∆)〈

n∏

k=1

τak
(Ck)〉∆ +

n∑

k=1

〈τak−1(h · Ck)
∏

l 6=k

τal
(Cl)〉∆.

Proof. First we use 3.6 (e) and (a): We replace each factorψak

k by ft∗0(ψk)
ak + ft∗0(ψk)

ak−1 · ϕ0,k and
multiply out. All terms containing twoϕ-factors vanish. In terms with only one factorϕ0,k, we replace
ev0(h) by evk(h) using 3.15. Now we push forward alongft0 and produce the desired equation by
applying 3.16 andft0∗(div(ϕ0,k)) = Mlab

n (Rr,∆). �

4. SPLITTING CURVES

The basic fact used to compute intersection invariants ofMg,n(X, β) is the recursive structure of its
boundary: Its irreducible components correspond to reducible curves with a certain partition of the
combinatoric data and therefore are (nearly) a product of two “smaller” moduli spaces. In this section
we will investigate how far this principle can be carried over to the tropical world.
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4.1. The case of abstract curves.

Definition 4.1. Let S be a finite set. ByMS we denote the moduli space of|S|-marked tropical
curvesM|S| where we label the leaves by elements inS. For each partitionI|J of [n] we construct
the mapρI|J : MI∪{x} ×MJ∪{y} → ϕI|J · Mn by the following rule: Given two curves(pI , pJ) ∈
MI∪{x}×MJ∪{y}, we remove the extra leavesx andy and glue the curves together at the two vertices
to which these leaves have been adjacent. We could also say, we gluex andy together by creating a
bounded edge whose length we define to be0. In the coordinates of the space of tree metrics, this map
is given by the linear map

ρI|J : R(I
2) × R(J

2) → R(n
2),

(pI , pJ) 7→ p,

where

pk,l :=





pIk,l if k, l ∈ I,
pJk,l if k, l ∈ J,
pIk,x + pJy,l if k ∈ I, l ∈ J.

Attention: This map doesnot induce a linear map on the corresponding quotients in which our moduli
spaces are balanced and thereforeρI|J is not a tropical morphism of our moduli spaces. Even more,
ρI|J is not even locally linear around ridges of our moduli spacesconsidered as balanced complexes
in the quotients. On the other hand,ρI|J is at least piecewise linear (i.e. it is linear on all cones of
MI∪{x} ×MJ∪{y}). Its image is a polyhedral complex, namely the positive part of ϕI|J · Mn (i.e. it
consists of all (faces of) facetsAD×

B
C with A ∪B = I).

Definition 4.2 (Morphisms of rational polyhedral complexes). Let X andY be (rational) polyhedral
complexes. Then amorphism of polyhedral complexesis a mapρ : |X | → |Y | that satisfies for each
polyhedronσ ∈ X

(a) ρ(σ) ∈ Y ,
(b) ρ|σ is affine linear,
(c) ρ(Λσ) ⊆ Λρ(σ).

We callρ an isomorphism of polyhedral complexesif there exists an inverse morphism. It other words,
an isomorphism is a bijection between|X | and|Y | (as well as betweenX andY ) andρ(Λσ) = Λρ(σ)

for all σ ∈ X .

Lemma 4.3(Intersections of Psi-functions with the boundary). The facets of the fanϕI|J · ψa1
1 · . . . ·

ψan
n · Mn with positive weight are precisely the conesσ in Mn with the following properties:

Consider a curve in the interior ofσ. LetE(V ) ∈ [n] be the set of leaves adjacent to a vertexV and let
P (V ) be theval(V )-fold partition of[n] obtained by removingV . Then the following holds:

(a) There exists one special vertexVspecwhose partitionP (Vspec) is a subpartition ofI|J and whose
valence is(

∑
k∈E(V ) ak) + 4.

(b) LetmI be the number of sets inP (Vspec) contained inI. ThenmI + 1 = (
∑

k∈E(V )∩I ak) +

3 (together with (a), the analoguemJ + 1 = (
∑

k∈E(V )∩J ak) + 3 follows). In particular,
mI ,mJ > 1.

(c) The valence of all other verticesV equals(
∑

k∈E(V ) ak) + 3.

Furthermore, the facets ofϕI|J ·ψ
a1
1 · . . . ·ψan

n ·Mn with negative weight fulfill the same properties (a)
and (c) and the property

(b’) LetmI (resp.mJ ) be the number of sets inP (Vspec) contained inI (resp.J). ThenmI = 1 or
mJ = 1, i.e. I ∈ P (Vspec) or J ∈ P (Vspec).

Proof. We know howX := ψa1
1 · . . . ·ψan

n ·Mn looks like by 2.14. In the combinatorial type of a facet
of X the valence of each vertex is(

∑
k∈E(V ) ak) + 3; in the combinatorial type of a ridge, there is one
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special vertexVspecwith valence(
∑

k∈E(V ) ak) + 4. The balancing condition of a ridge is given by the
equation ∑

I′|J′

ωI′|J′VI′|J′ =
∑

I′|J′

I′∈P (Vspec)

λI′|J′VI′|J′ ,

where the left hand sum runs through all superpartitionsI ′|J ′ of P (Vspec) not appearing in the right
hand sum,ωI′|J′ denotes the weight of the facet obtained by inserting an edgeI ′|J ′ andλI′|J′ is some
(rational) coefficient. Therefore the weightω that this ridge obtains when intersectingX with ϕI|J is
given by

ω =






0 if I|J is not a superpartition ofP (Vspec),

λI|J if I ∈ P (Vspec) or J ∈ P (Vspec),

ωI|J otherwise.

This already shows two implications: As all weightsωI′|J′ are at least non-negative, a ridge can only
obtain a negative weight if it fulfills conditions (a), (b’) and (c). On the other hand, if a ridge ofX
satisfies properties (a), (b) and (c), thenωI|J and hence the ridge obtains a positive weight. It remains
to show the converse, which can be done by proving that allλI′|J′ are non-negative. To see this, we

consider the balancing equation inR(r
2) and compare some coordinate entries.

Let K be an arbitrary element ofP (Vspec); we want to show thatλK := λK|Kc is non-negative. We
choose two more arbitrary elemtntsL1, L2 in P (Vspec) and fix some leavesk ∈ K, li ∈ Li. Now the
k, li-entry of the right hand side equalsλK + λLi

and analogously thel1, l2-entry equalsλL1 + λL2 .
Therefore, by adding the twok, li-entries and substracting thel1, l2-entry we get2λK . Meanwhile, on
the left hand side we get

2λK =
∑

I′|J′

k∈I′

l1∈J
′

ωI′|J′ +
∑

I′|J′

k∈I′

l2∈J
′

ωI′|J′ −
∑

I′|J′

l1∈I
′

l2∈J
′

ωI′|J′

=
∑

I′|J′

αI′|J′ωI′|J′ ,

where

αI′|J′ =






2 if k ∈ I ′, l1, l2 ∈ J ′

0 if k, l1 ∈ I ′, l2 ∈ J ′

0 if k, l2 ∈ I ′, l1 ∈ J ′

0 if k, l1, l2 ∈ I ′.

But as all the weightsωI′|J′ are non-negative, it follows thatλK is non-negative. �

Lemma 4.4. The map

ρI|J :
( ∏

k∈I

ψak

k ·MI∪{x}

)
×

( ∏

k∈J

ψak

k · MJ∪{y}

)
→ (ϕI|J · ψa1

1 · . . . · ψan
n ·Mn)

+

is a well-defined isomorphism of polyhedral complexes.

Proof. We have to check the conditions of 4.2. Using the lengths of the bounded edges as local coor-
dinates on the cones, this is straightforward. The inverse map is given by splitting a given curve at its
special vertexVspec. �

4.2. The case of parametrized curves.

Definition 4.5. Let I|J be a reducible partition and let∆I ,∆J be the corresponding splitting of the
tropical degree∆. LetZ = max(x1, y1) · . . . · max(xr , yr) · Rr × Rr denote the diagonal inRr × Rr

and consider the map

evx× evy : Mlab
I∪{x}(R

r,∆I) ×Mlab
J∪{y}(R

r,∆J ) → Rr × Rr.
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We define

ZI|J := (evx× evy)
∗(Z)

We furthermore defineπI|J : ZI|J → Mlab
n (Rr ,∆) by

MI∪{x} × Rr ×MJ∪{y} × Rr → M[n]∪∆ × Rr

(
(pI , P ), (pJ , Q)

)
7→ (ρ(pI , pJ), P ),

where we choose the same anchor leaf forMlab
I∪{x}(R

r,∆I) andMlab
n (Rr,∆).

Lemma 4.6. The map

πI|J : ψa1
1 · . . . · ψan

n · ZI|J → (ϕI|J · ψa1
1 · . . . · ψan

n · Mlab
n (Rr,∆))+

is a well-defined isomorphism of polyhedral complexes.

Proof. This follows from 4.4 and fromevx |ZI|J
= evy |ZI|J

(which follows from both 1.11 (Z is
described by convex functions) as well as from 1.12 (evx× evy can be considered as a projection)).�

Remark4.7. Obviously the positions of the marked leaves are preserved underπI|J , i.e. (by abuse of
notation) fori ∈ I (resp.j ∈ J) it holdsevi ◦πI|J = evi (resp.evj ◦πI|J = evj).

Lemma 4.8. LetE = (ϕI|J · τa1(C1) · . . . · τan
(Cn))∆ be a zero-dimensional cycle. Then all points of

E lie in (ϕI|J · ψa1
1 · . . . · ψan

n · Mlab
n (Rr,∆))+.

Proof. By 1.1 we can compute the weight of a pointp ∈ E locally aroundp inX := ϕI|J ·ψ
a1
1 ·. . .·ψan

n ·

Mlab
n (Rr,∆), namely we can focus onStarX(p). Assumep /∈ (ϕI|J ·ψa1

1 · . . . ·ψan
n ·Mlab

n (Rr,∆))+.
Then curves corresponding to points inStarX(p) contain a bounded edge corresponding to the partition
I|J (see 4.3). But asI|J is chosen to be reducible, this edge is a contracted bounded edge whose length
does not change the positions of the marked leaves inRr. Therefore, if we denote byev = ev1 × . . .×
evn the product of all evaluation maps, the image ofStarX(p) underev has smaller dimension which
impliesev∗(StarX(p)) = 0. Hence, by projection formula, the weight ofp in E must zero. �

We now simplify the situation by choosing general incidenceconditions. The following statement com-
bines 1.15, in particular item (c), and the preceding result.

Corollary 4.9. LetE = (ϕI|J · τa1(C1) · . . . · τan
(Cn))∆ be a zero-dimensional cycle. If we substitute

the cyclesCi by general translation, we can assume that all points ofE lie in the interior of a facet of
(ϕI|J ·ψ

a1
1 · . . . ·ψan

n ·Mlab
n (Rr,∆))+. This operation does not change the degree ofE by remark 1.13.

Proposition 4.10. LetE = (ϕI|J · τa1(C1) · . . . · τan
(Cn))∆ be a zero-dimensional cycle. Then the

equation

〈ϕI|J · τa1(C1) · . . . · τan
(Cn)〉∆ = 〈τa1(C1) · . . . · τan

(Cn) · ZI|J〉∆I ,∆J

holds.

Proof. We denoteX := ψa1
1 · . . . ·ψan

n ·ZI|J andY := ϕI|J ·ψ
a1
1 · . . . ·ψan

n ·Mlab
n (Rr,∆) and assume

that the conditionsCi are general. Then 4.9 implies that, for each pointp ∈ E, we have an isomorphism
of cyclesπI|J : StarX(π−1

I|J (p)) → StarY (p). By 1.1 this suffices to show that the weights ofp and

π−1
I|J(p) in their respective intersection products coincide. �
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4.3. Splitting the diagonal. Up to now, we have seen that intersecting with a “boundary” functionϕI|J
leads to intersection products in two smaller moduli spacesMlab

I∪{x}(R
r,∆I) andMlab

J∪{y}(R
r,∆J).

However, the factor(evx× evy)
∗(Z) still connects these two smaller spaces. In order to finally arrive

at recursive equations of Gromov-Witten invariants, it is desirable to distribute this diagonal factor onto
the two moduli spaces and to obtain independent intersection products there. In the algebro-geometric
case, this can be easily done as theclassof the diagonalZ in e.g.Pr × Pr can be written as the sum of
products of classes in the factors

[Z] = [L0 × Lr] + [L1 × Lr−1] + . . .+ [Lr × L0],

whereLi denotes ani-dimensional linear space inPr. But this cannotcopied tropically (see below). For
the first time, we face a serious problem which is connected tothe non-compactness of our moduli space
Mlab

n (Rr,∆): Our notion of rational equivalence is “too strong” for thisapplication, as it is inspired
by the idea that two rational equivalent objects should be rational equivalent inanycompactification.
However, we will discuss here how far the conventional plan can be carried out anyways.

The general plan is the following: Set

XI := (τ0(R
r) ·

∏

k∈I

τak
(Ck))∆I

in Mlab
I∪{x}(R

r,∆I)

and

XJ := (τ0(R
r) ·

∏

k∈J

τak
(Ck))∆J

in Mlab
J∪{y}(R

r,∆J).

We want to compute the degree of

(τa1 (C1) · . . . · τan
(Cn) · ZI|J)∆I ,∆J

= (evx× evy)
∗(Z) · (XI ×XJ),

or, by the projection formula,

deg(Z · (evx(XI) × evy(XJ ))).

Now we would like to replace the diagonalZ by something like

S :=
∑

α

(Mα ×Nα),

whereMα, Nα are cycles inRr such thatS intersectsevx(XI) × evy(XJ) like Z. But note thatS
cannot be rationally equivalent toZ (in the sense of [AR08]), as this would imply that both cyclesmust
have the same recession fan, i.e. must have the same directions towards infinity. To come out of this, we
need more information about how the push-forwardsevx(XI) andevy(XJ) look like; in particular, we
would like to know how their degrees/recession fans can looklike. Let us formalize this first.

LetΘ be a complete simplicial fan inRr and letZk(Θ) be the group ofk-dimensinional cyclesX whose
support lies in thek-dimesnional skeleton ofΘ, i.e. |X | ⊆ |Θ(k)|. Fix a basis ofZ∗(Θ) := ⊕rk=0Zk(Θ)
denoted byB0, . . . , Bm (where we may assumeB0 = {0} andBm = Rr). If the degreeδ(X) of an
arbitrary cycle is contained inZ∗(Θ), we sayX is Θ-directional. For such a cycle there exist integer
coefficientsλe such thatX ∼ δ(X) =

∑m
e=1 λeBe.

For each rayρ ∈ Θ(1) with primitive vectorvρ letϕρ be the rational function onΘ uniquely defined by

ϕρ(vρ′ ) =

{
1 if ρ′ = ρ,
0 otherwise.

Lemma 4.11. The linear map

Z∗(Θ) → Zm+1,

X 7→ (deg(B0 ·X), . . . ,deg(Bm ·X)),

(wheredeg(.) is set to be zero if the dimension of the argument is non-zero)is injective.



30 JOHANNES RAU

Proof. Let X ∈ Zk(Θ) be an element of the kernel, which implies thatdeg(X · Y ) = 0 for all Y ∈
Zr−k(Θ). Now, in fact the remaining is identical to the proof of [AR08, Lemma 6]: Assume thatX
is non-zero and therefore there exists a coneσ ∈ Θ(k) such thatωX(σ) 6= 0. As Θ is simplicial,
this cone is generated byk raysρ1, . . . , ρk. Let us considerϕρk

· X and in particular the weight of
τ := 〈ρ1, . . . , ρk−1〉 in this intersection product: As primitive vectorvσ/τ we can use 1

|Λσ/Λτ+Λρk
|vρk

(it might not be an integer vector, but moduloVτ , it is a primitive generator ofσ). Analogously, we can
get any primitive vector aroundτ as a multiple of an appropriatevρ. But asϕρk

is zero on all of these
vectors butvρk

, we get

ωϕρk
·X(τ) =

ωX(σ)

|Λσ/Λτ + Λρk
|
6= 0.

Now induction shows

deg(ϕρ1 · · ·ϕρk
·X) = ωϕρ1 ···ϕρk

·X({0}) =
ωX(σ)

|Λσ/Λρ1 + . . .+ Λρk
|
6= 0.

This means we have found aΘ-directional cycleY := ϕρ1 · · ·ϕρk
·Rr ∈ Zr−k(Θ) with deg(X ·Y ) 6= 0,

which contradicts the assumption thatX is an element of the kernel. �

With respect to the basisB0, . . . , Bm, the map defined in the previous lemma has the matrix repre-
sentationα := (deg(Be · Bf ))ef . Obviouslyα is a symmetric matrix. The lemma implies that this
matrix is invertible overQ, and we denote the inverse by(βef )ef . The coefficients of this matrix can
be used to replace the diagonalZ of Rr ×Rr by a sum of products of cycles in the two factors (namely∑

e,f βef (Be ×Bf )) — at least with respect toΘ-directional cycles.

Lemma 4.12. LetX ∼
∑
e λeBe, Y ∼

∑
f µeBe be twoΘ-directional cycles inRr with complemen-

tary dimension. Then

deg(Z · (X × Y )) = deg(X · Y ) =
∑

e,f

deg(X ·Be)βef deg(Y · Bf ).

Proof. Denoteλ := (λ1, . . . , λm), µ := (µ1, . . . , µm). We get
∑

e,f

deg(X ·Be)βef deg(Y ·Bf ) = (α · λ)T · β · (α · µ)

= λT · αT · β · α · µ

= λT · α · β · α · µ

= λT · α · µ = deg(X · Y ).

�

Using this, our original goal of deriving a tropical splitting lemma can be formulated as follows.

Theorem 4.13 (Splitting Lemma, cf. [K] 5.2.1). Let E = (ϕI|J ·
∏n
k=1 τak

(Ck))
R

r

∆ be a zero-
dimensional cycle, whereI|J is a reducible partition. Moreover, let us assume thatΘ is a complete
simplicial fan such that (with the notations from above)evx(XI) andevy(XJ ) are Θ-directional. Let
B0, . . . , Bm be a basis ofZ∗(Θ) and let(βef )ef be the inverse matrix (overQ) of (deg(Be · Bf ))ef .
Then the following equation holds:

〈ϕI|J ·
n∏
k=1

τak
(Ck)〉∆ =

∑

e,f

〈
∏
k∈I

τak
(Ck) · τ0(Be)〉∆I

βef 〈τ0(Bf ) ·
∏
k∈J

τak
(Ck)〉∆J

Proof. Follows from the general plan above and 4.10. �
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Remark4.14. The toric version of this subsection could be formulated as follows: We fix a complete
toric varietyX corresponding to the simplicial fanΘ. The geometric meaning of the fact thatΘ is sim-
plicial is that every Weil-divisor ofX is also Cartier. The groupZk(Θ) equals the group of Minkowski
weights of codimensionr− k and therefore is isomorphic to the Chow cohomology groupAr−k(X) of
X (cf. [FS94]). Consequently, the basisB0, . . . , Bm corresponds to a basis of the cohomology classes.
Constructing the functionsϕρ by determining its values on the rays is analogous to constructing the
Cartier-divisor whose corresponding Weil-divisor is the torus-invariant divisor associated toρ. It was
shown in subsection 1.8 that our tropical intersection product coincides with the fan displacement rule
in [FS94] and therefore compatible with the cup-product of the corresponding cohomology classes. In
particular, this shows that the matrix(deg(Be · Bf ))ef and its algebro-geometric counterpart coincide
(in particular, 4.11 also follows from the corresponding algebro-geometric statement). Moreover, this
implies that the coefficientsβef appearing in the splitting lemma really are the same as in theassociated
algebro-geometric version.

4.4. The directions of families of curves. In order to recursively determine invariants, the above split-
ting lemma is only useful if, at least for a certain class of invariants, the fan of directionsΘ is fixed and
well-known. This is one of the main problems when transferring the algebro-geometric theory to the
tropical set-up. However, in this subsection we will show that in some cases the problem can be solved.

Remark4.15. In the easiest case, namely ifr = 1, the situation is trivial: There is one unique complete
simplicial fanΘ = {R≤0, {0},R≥0} and any subcycle isΘ-directional. Also, it is obvious that 4.12
holds (withB0 = {0}, B1 = R).

Let us now consider curves in the plane. LetF = (τ0(R
2) ·

∏n
k=1 τak

(Ck))
R

2

∆ be a one-dimensional
family of plane curves (with unrestricted leafx0). We defineΘ(F ) to the complete fan inR2 which con-
tains the following rays: All directions appearing in∆ and furthermore all rays inδ(Ck) if dim(Ck) = 1
andak > 0.

Lemma 4.16. LetF = (τ0(R
2) ·

∏n
k=1 τak

(Ck))
R

2

∆ be a one-dimensional family of plane curves (with
unrestricted leafx0). Let us furthermore assume thatak ≤ 1 if dim(Ck) = 2 (i.e. if a leaf is not
restricted byev-conditions, only one Psi-condition is allowed). Thenev0∗(F ) is Θ(F )-directional.

Proof. As before, we replace each factorψak

k by ft∗0(ψk)
ak + ft∗0(ψk)

ak−1 · ϕ0,k and multiply out.
Consider the term withoutϕ-factors: It is the fiber of(

∏n
k=1 τak

(Ck))∆ (which is finite) underft0 (see
univeral family property 3.8) and moreover the push-forward of the fibre alongev0 is just the sum/union
of the images inRr of the parametrized curves corresponding to the points in

∏n
k=1 τak

(Ck))∆. But
these curves have degree∆, thus by definition their images areΘ(F )-directional.
So let us consider the term with the factorϕ0,k. Here,ev0 andevk coincide (see 3.15), so we can in
fact compute the push-forward alongevk. As evk = evk ◦ ft0 (by abuse of notation), we can first push-
forward alongft0 and get the term(τak−1(Ck) ·

∏
l 6=k τal

(Cl)).
Now, if dim(Ck) = 2, by our assumptionsak − 1 = 0 – in which case we can use induction to prove
the statement – or this term does not appear at all.
On the other hand, ifdim(Ck) = 0, 1, we can use the fact that the push-forward is certainly contained
in Ck – therefore,dim(Ck) = 0 is trivial anddim(Ck) = 1 works as we added the directions ofCk to
Θ(F ) if ak > 0.
This finishes the proof, as all terms with moreϕ-factors vanish. �

Remark4.17. A weaker version of this lemma can be obtained by directly investigating on how the
image underev0 of an unbounded ray inF looks like, using general conditions (see [MR08, 3.7]).

Remark4.18. Consider the familyF = (τ0(R
2)τ0(P )τ2(R

2))R
2

1 = ev∗
1(P ) ·ψ2

2 ·M
lab
3 (R2, 1) of curves

of projective degree1. It consists of the following types of curves:
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0

P P

P P

ev0 ev0 ev0

P

P P
+ + =

ev0∗(F )

0 2
1

2 0 1 12

Its push-forward alongev0 also contains the inverted standard directions(1, 0), (0, 1) and(−1,−1).
Therefore this family is a counterexample of our statement if we drop the condition on the number of
Psi-conditions allowed at leaves not restricted by incidence conditions.

Remark4.19. For higher dimensions (r ≥ 2), only few cases are explored. If we restrict to projective
degreed and banish all Psi-conditions, i.e. for a familyF = (τ0(R

r) ·
∏n
k=1 τ0(Ck))d of arbitrary

dimension, it is proven in [GZ] thatev0∗(F ) is Θ-directional, whereΘ is the complete simplicial fan
in Rr consisting of all cones generated by at mostr of the vectors−e0,−e1, . . . ,−er. We conjecture
that a similar proof also works for Psi-conditions at point-conditions. Beyond this, the behaviour of the
push-forwards is mainly unknown up to now.

5. WDVV EQUATIONS AND TOPOLOGICAL RECURSION

5.1. WDVV equations. Let xi, xj , xk, xl be pairwise different marked leaves and consider the forget-
ful mapft : Mlab

n (Rr,∆) → M{i,j,k,l}.

Lemma 5.1. The equation
ft∗(ϕ{i,j}|{k,l}) =

∑

I|J
i,j∈I,k,l∈J

ϕI|J

holds, where the sum on the right side runs throughall (also non-reducible) partitions withi, j ∈ I and
k, l ∈ J .

Proof. Note thatft(VI|J ) = VI∩{i,j,k,l}|J∩{i,j,k,l}. Thereforeϕ(ft(VI|J )) = 1 if i, j ∈ I, k, l ∈ J and
zero otherwise. �

Now we face the crucial difference to the conventional setting: The right sum also runs over non-
reducible partitions, which do not correspond to somethingin the algebro-geometric case. Let us add
up only thoseϕI|J with I|J non-reducible and denote the sum byφ, i.e.

φi,j|k,l :=
∑

I|J non-red.
i,j∈I,k,l∈J

ϕI|J

We would like to show thatφi,j|k,l is bounded, as then it would not change the degree of a zero-
dimensional intersection product and could derive the sameformulas as in the conventional case. So let
us investigate what this fucntion measures:
Let F = (

∏n
k=1 τak

(Ck))∆ be a one-dimensional family of curves with general conditions. Consider
a facetσ of F representing curveswith contracted bounded edgeE (calledreducible curves). Then we
can change the length ofE while keeping all other lenghts and our curve will still match the incidence
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conditions. As our conditions are general, the set of curvesfulfilling the incidence conditions set-
theoretically is also1-dimensional. Hence, all curves inσ just differ by the length ofE, whereas all
other lengths are fixed. But this means thatφi,j|k,l is constant onσ.
Now, letσ be a facet ofF representing curveswithoutcontracted bounded edgeE (callednon-reducible
curves). This means, for all non-reducible partitionsI|J , the respective functionϕI|J is identically zero
onσ. Therefore, onσ, φi,j|k,l coincides withft∗(ϕ{i,j}|{k,l}).

Lemma 5.2. Let F = (
∏n
k=1 τak

(Ck))∆ be a one-dimensional family of curves with general condi-
tions. Letσ be a facet ofF . Then

φi,j|k,l |σ =

{
ϕ{i,j}|{k,l} ◦ ft if interior curves ofσ are non-reducible
const otherwise.

In other words: Proving thatφi,j|k,l is bounded on a family one-dimensional familyF is the same
asproving that curves inF with largeMi,j,k,l-coordinate must contain a contracted bounded edge.
This is the way of speaking in existing literature (e.g. [GM05, proposition 5.1], [KM06, proposition
6.1], [MR08, section 4]). We will address this difficult problem in its own subsection and first state the
desired results here.

Lemma 5.3(cf. [K] 5.3.2). LetF = (
∏n
k=1 τak

(Ck))∆ be a one-dimensional family of curves. Fur-
thermore assume thatφi,j|k,l is bounded. Then the equation

〈ft∗(ϕ{i,j}|{k,l}) ·
n∏
k=1

τak
(Ck)〉∆ =

∑

I|J reducible
i,j∈I,k,l∈J

〈ϕI|J ·
n∏
k=1

τak
(Ck)〉∆

holds.

Proof. This follows from 5.1 and the fact that the degree of a boundedfunction intersected with a one-
dimensional cycle is zero. Therefore, ifφi,j|k,l is bounded, the degree of

〈φi,j|k,l ·
n∏

k=1

τak
(Ck)〉∆

is zero and hence this term can be omitted. �

Finally, we can state the following version of the WDVV equations:

As before, we fix a complete simplicial fanΘ and a basisB0, . . . , Bm of Z∗(Θ). Furthermore, let
(βef )ef be the inverse matrix (overQ) of the matrix(deg(Be ·Bf ))ef .

Theorem 5.4(WDVV equations, cf. [K] 5.3.3). Let F = (
∏n
k=1 τak

(Ck))∆ be a one-dimensional
family of curves and fix four pairwise different marked leavesxi, xj , xk, xl. Moreover, we assume that
the following conditions hold:

(a) For any reducible partitionI|J with i, j ∈ I; k, l ∈ J or i, k ∈ I; j, l ∈ J the push-forwards
evx(XI) andevy(XJ) areΘ-directional (with notations from section 4).

(b) The functionsφi,j|k,l andφi,k|j,l are bounded onF .

Then the WDVV equation
∑

I|J reducible
i,j∈I,k,l∈J

∑

e,f

〈
∏
k∈I

τak
(Ck) · τ0(Be)〉∆I

βef 〈τ0(Bf ) ·
∏
k∈J

τak
(Ck)〉∆J

=
∑

I|J reducible
i,k∈I,j,l∈J

∑

e,f

〈
∏
k∈I

τak
(Ck) · τ0(Be)〉∆I

βef 〈τ0(Bf ) ·
∏
k∈J

τak
(Ck)〉∆J

holds, where the sums run through reducible partitions only.
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Proof. The statement follows from 5.3 and the fact that onM{i,j,k,l} the functionsϕ{i,j}|{k,l} and
ϕ{i,k}|{j,l} are rationally equivalent. In fact, they only differ by a linear function and therefore have the
same divisor, namely the single vertex inM{i,j,k,l}. �

Remark5.5. In the algebro-geometric version of these equations (cf. [K, 5.3.3] or (with proofs) [FP,
equation (54) and (55)]) the big sum(s) usually run like

∑
β1,β2

∑
A,B, whereβ1, β2 are cohomology

classes such thatβ1 + β2 = β andA ·∪B = [n] is a partition of the marks. We can proceed accordingly
and let our sum run through unlabelled instead of labelled degrees, as unlabelled degrees correspond via
Minkowski weights to cohomology classes. If we collect all reducible partitionsI ·∪ J = ∆ ·∪ [n], such
that the unlabelled degreesδ(∆I), δ(∆J ) coincide, we obtain a class of ∆!

∆I !·∆J ! elements. On the other
hand, as mentioned at the beginning of section 3, counting curves with labelled non-contracted leaves
leads to an overcounting by the factor∆!, i.e. if δ := δ(∆) is an unlabelled degree, we should define

〈
n∏

k=1

τak
(Ck)〉δ :=

1

∆!
〈
n∏

k=1

τak
(Ck)〉∆.

So by switching to “unlabelled” invariants, the above factor ∆!
∆I !·∆J ! cancels and we obtain

∑

δI ,δJ

δI+δJ=δ

∑

A ·∪ B=[n]

i,j∈A,k,l∈B

∑

e,f

〈
∏
k∈A

τak
(Ck) · τ0(Be)〉δI

βef 〈τ0(Bf ) ·
∏
k∈B

τak
(Ck)〉δJ

=
∑

δI ,δJ

δI+δJ=δ

∑

A ·∪B=[n]

i,k∈A,j,l∈B

∑

e,f

〈
∏
k∈A

τak
(Ck) · τ0(Be)〉δI

βef 〈τ0(Bf ) ·
∏
k∈B

τak
(Ck)〉δJ

,

which is now combinatorially identical to the algebro-geometric version.

5.2. Topological recursion. In the same flavour as in the previous subsection, we will alsoformulate
a tropical version of the equations known as “topological recursion”.

Let xi, xk, xl be pairwise different marked leaves. We know from 2.24 that we can express the Psi-
divisorψi in terms of “boundary” divisors, namely

div(ψi) =
∑

I|J
i∈I,k,l∈J

div(ϕI|J ).

Now again we give a name to the term that has no algebro-geometric counterpart

φi|k,l =
∑

I|J non-red.
i∈I;k,l∈J

ϕI|J .

As in the previous subsection, we can describe this functionas follows.

Lemma 5.6. Let F = (
∏n
k=1 τak

(Ck))∆ be a one-dimensional family of curves with general condi-
tions. Letσ be a facet ofF . Then

φi|k,l|σ =

{ ∑
length of edge that seperatesi fromk, l if interior curves ofσ are non-reducible

const otherwise.

Again, we fix a complete simplicial fanΘ and a basisB0, . . . , Bm of Z∗(Θ). Furthermore, let(βef )ef
be the inverse matrix (overQ) of the matrix(deg(Be · Bf ))ef .

Theorem 5.7(Topological recursion, cf. [K] 5.4.1). LetF = (
∏n
k=1 τak

(Ck))∆ be a one-dimensional
family of curves and fix three pairwise different marked leavesxi, xk, xl. Moreover, we assume that the
following conditions hold:

(a) For any reducible partitionI|J with i ∈ I; k, l ∈ J the push-forwardsevx(XI) andevy(XJ )
areΘ-directional (with notations from section 4).
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(b) The functionφi|k,l is bounded onF .

Then the topological recursion

〈ψi ·
n∏
k=1

τak
(Ck)〉∆ =

∑

I|J reducible
i∈I,k,l∈J

∑

e,f

〈
∏
k∈I

τak
(Ck) · τ0(Be)〉∆I

βef 〈τ0(Bf ) ·
∏
k∈J

τak
(Ck)〉∆J

holds, where the sum runs through reducible partitions only.

Remark5.8. In the same way as in 5.5 we obtain the “unlabelled” version

〈ψi ·
n∏
k=1

τak
(Ck)〉δ =

∑

δI ,δJ

δI+δJ=δ

∑

A ·∪B=[n]

i∈A,k,l∈B

∑

e,f

〈
∏
k∈A

τak
(Ck) · τ0(Be)〉δI

βef 〈τ0(Bf ) ·
∏
k∈B

τak
(Ck)〉δJ

,

which coincides combinatorially with the algebro-geometric version of this equation.

5.3. Contracted bounded edges.As a preparation for the more difficult case of plane curves, we first
assumer = 1.

Lemma 5.9. Let P1, . . . , Pn be points in general position inR1 and letF = (
∏n
k=1 τak

(Pk))
R

1

d be
a one-dimensional family inMlab

n (R1, d). Then for any choice of marked leavesxi, xj , xk, xl, the
functionsφi,j|k,l andφi|k,l are bounded onF .

Proof. For general conditions,F set-theoretically coincides with the set of curves satisfying the given
incidence and valence conditions. Consider a general curveC ∈ F . ThenC is also a general curve
in the Psi-productX :=

∏n
k=1 ψ

ak

k . As we cut downX by n point conditions anddim(F ) = 1, the
dimension ofX must ben+1, henceC containsn bounded edges. AsC is a rational curve, this implies
n+ 1 vertices. Therefore there exists a vertexV not adjacent to a marked leafxk, k ∈ [n]. Now, either
one of the three adjacent edges is a contracted bounded edge.Then the deformation ofC in F is given
by changing the length of this edge, but this does not affectφi,j|k,l or φi|k,l by definition. Or, if all of
the adjacent edges are non-contracted, the deformation ofC in F is given by movingV (and changing
the lengths accordingly).

v1 v

v2

Note that the edgev cannot be unbounded as its direction “vector” is not primitive. Therefore, if this
deformation is supposed to be unbounded,v1, v2 must be unbounded. But in this case only the length
of v grows infinitely. But asv does not separate any marked leaves, this does not changeφi,j|k,l and
φi|k,l. �

Now let us consider the case of plane curves, i.e.r = 2. We fix the following notation: LetF =

(
∏n
k=1 τak

(Ck))
R

2

∆ be a one-dimensional family of plane curves with general conditions and and let
L ·∪M ·∪N = [n] be the partition of the labels such that

codim(Ck) =






0 if k ∈ L,

1 if k ∈M,

2 if k ∈ N.

First we study how the deformation of a general curveC in F can look like.

Lemma 5.10(Variation of [MR08] 4.4). Let us assume

i) ak = 0 for all k ∈ L ∪M , i.e. Psi-conditions are only allowed together with point conditions.
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Then the following holds:
Letσ be a facet ofF and letC ∈ σ be a general curve. Then the deformation ofC insideσ is described
by one of the following cases:

(I) C contains acontracted bounded edge. Then the deformation insideσ is given by changing the
length of this edge arbitrarily.

(II) C has a three-valentdegenerated vertexV of one of the following three types:
(a) One of the adjacent edges is a marked leafi ∈ L.
(b) One of the adjacent edges is a marked leafj ∈M and the linear spans of the corresponding

lineCj at evj(C) and of the other two edges adjacent toV coincide (i.e. the curvesC and
theCj donot intersect transversally atevj(C)).

(c) All edges adjacent toV are non-contracted, but their span nearV is still only one-dimen-
sional; w.l.o.g. we denote the edge alone on one side ofV by v and the two edges on the
other side byv1, v2.

(b) (c)(a)

v1 v1v2 v2

j

v

v2

v1

i

Cj

In all these cases the deformation insideσ is given by movingV .
(III) C contains amovable stringS, i.e. a two-valent subgraph ofC homeomorphic toR such that

all edges are non-contracted and all vertices ofS are three-valent inC and not degenerated in
the sense of case (II). Then the deformation ofC is given by movingS while all vertices not
contained inS remain fixed (in particular, only edges in or adjacent toS change their lengths).

Proof. Again, for general conditions,F set-theoretically coincides with the set of curves satisfying the
given incidence and valence conditions. Thus finding the deformation ofC insideσ is the same as
finding a way of changing the position and the length of the bounded edges ofC such that the resulting
curve still meets the incidence conditionsCk.
It is obvious that in the cases (I) and (II) changing the length of the contracted bounded edge respectively
moving the degenerated vertexV leads to such deformations.
In case (III) the non-degeneracy of the vertices makes sure that both ends ofS consist of non-contracted
ends and that a small movement of one of these ends leads to a well-defined movement of the whole
string (a more detailed description can be found in the proofof [MR08, 4.4]).
Finally, this list of cases is really complete, asC always contains a string whose vertices are three-
valent inC and whose ends are either non-contracted leaves or marked leaves inL. This follows from
the same calculation as in [MR08, 4.3], with the only difference that we have to replace the number3d
by #∆. �

We have now seen how a general curveC ∈ F can be deformed. In a second step, we will now focus
on unbounded deformations.

Definition 5.11. A fan Θ in R2 is calledstrongly unimodularif anytwo independent primitive vectors
generating rays ofΘ form a basis ofZ2.
For a given degree∆ let Θ(∆) be the fan consisting of all rays generated by a direction vector appearing
in ∆ (i.e. Θ(∆) is the fan supportingδ(∆)). A degree∆ in R2 is calledstrongly unimodularif Θ(∆)
is strongly unimodular and if all direction vectors appearing in ∆ are primitive. This ensures that for
every pair of independent vectorsv1, v2 appearing in∆, the dual triangle to the fan spanned byv1, v2
and−(v1 + v2) does not contain interior lattice points.

Remark5.12. Let us investigate which (one-dimensional) fans inR2 (up to isomorphism) are strongly
unimodular. This discussion is also contained in [Fra, 5.3].
Let Θ be a fan inR2 and letPG be the set of all primitive generators of rays ofΘ. W.l.o.g. we can
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assume that(−1, 0) is contained inPG. Then being strongly unimodular requires that they-coordinate
of all vectors inPG is either1, 0 or−1. But note that two vectors(α, 1) and(β, 1) form a lattice basis
if and only if |α − β| = 1 (i.e. the vectors must be neighbours inZ × {1}). In particular, at most two
such vectors can appear inPG (and analogously,PG can contain at most two vectors withy-coordinate
−1). Therefore letr = 0, 1, 2 (resp.s = 0, 1, 2) be the number of vectors inPG with positive (resp.
negative)y-coordinate and lett = 1, 2 be the number of vectors inPG with y-coordinate0. Moreover,
for any two vectors(α, 1) and(β,−1) we must have|α+ β| = 0 or 1 (i.e. (β,−1) must coincide with
or must be a neighbour of−(α, 1)). Keeping this in mind, we can distinguish the following cases:

(a) r = s = 0, t = 2
We obtain the degenerated fanΘP1×K∗ . Θ

P1×K∗

(b) r = s = 0, t = 1 or r = 0, s 6= 0 or r 6= 0, s = 0
In this case, the fanΘ can not appear asΘ(∆), as no assignment
of positive weights can makeΘ balanced.

(c) r = s = 1, t = 2
We obtain the two non-isomorphic fans
ΘP1×P1 andΘF1.

Θ
P1×P1 ΘF1

(d) r = 1, s = t = 2 or s = 1, r = t = 2
Up to isomorphisms we obtain the fanΘBl2(P2). ΘBl2(P2)

(e) r = s = t = 2
We obtain the fanΘBl3(P2). ΘBl3(P2)

(f) r = s = t = 1
We obtain the fanΘP2. Θ

P2

(g) r = 2, s ≥ 1, t = 1 or r ≥ 1, s = 2, t = 1
In this cases|Θ| must contain a one-dimensional subspace.
Therefore, after applying an automorphism ofZ2, we can as-
sumet = 2, which was dealt with in the other cases.

Thus∆ is strongly unimodular if and only if all direction vectors are primitive andΘ(∆) corresponds
to one of the following toric varietiesP1 × K∗, P2, P1 × P1, F1, Bl2(P2), Bl3(P2).

Lemma 5.13(Variation of [MR08] 4.4). We assume

i) ak = 0 for all k ∈ L ∪M ,
ii) ∆ is strongly unimodular.
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Then the following holds:
Letσ be aunboundedfacet ofF and letC ∈ σ be a general curve. Then the deformation ofC in σ is
described by one of the following cases:

(I) C contains a contracted bounded edge whose length can be changed arbitrarily.
(II) C has a three-valent degenerated vertexV of one the three types described above. Furthermore,

in the cases (a) and (b) (of 5.10 (II)) one of the edgesv1, v2 is bounded, the other one unbounded,
whereas in case (c) the edgev is bounded andv1, v2 are unbounded.

(III) C contains a movable stringS with two non-contracted leavesv1, v2 and only one adjacent
bounded edgew. The deformation ofC is given by increasing the length ofw.

xk

v2

w

Ck

v1

Furthermore, ifxk, k ∈ M is a marked leaf adjacent toS, thenh(xk) is a general point in an
unbounded facet ofCk whose outgoing direction vectorv lies in the interior of the cone spanned
byv1, v2.

Proof. Nothing happens in the cases (I), (II) (a) and (b). In case (II) (c), the edgev cannot be unbounded
asv = −v1 − v2 is not primitive. Therefore the two edges on the other side ofV must be unbounded.
In case (III), the proof of the first statement is fully contained in the last part of the proof of [MR08, 4.4]
(using the fact that∆ is strongly unimodular in the last step). The second statement concerning adjacent
marked leavesxk, k ∈M is obvious as the deformation is supposed to be unbounded. �

Theorem 5.14. Letxi, xj , xk, xl be pairwise different marked leaves and let us assume

i) ak = 0 for all k ∈ L ∪M ,
ii) ∆ is strongly unimodular,
iii) if i, j ∈M (resp.k, l ∈M ), then for any pair of independent direction vectorsv1, v2 appearing

in ∆, the interior of the cone spanned byv1, v2 does not intersect both degreesδ(Ci) andδ(Cj)
(resp.δ(Ck) andδ(Cl)).

Thenφi,j|k,l is bounded.
If we additionally require

iv) i ∈ N ,

then alsoφi|k,l is bounded.

Proof. As conditions i) and ii) hold, we can apply 5.13, which describes the unbounded facets ofF .
We have to show thatφi,j|k,l (resp. φi|k,l) is bounded on these facets. In case (I), the only changing
length is that of a contracted edge and therefore not measured by bothφi,j|k,l andφi|k,l. In case (II),
the edge whose length is growing infinitely cannot separate more then one marked leafxk, k ∈ L ∪M
from the others. Therefore this length cannot contribute toφi,j|k,l and — by condition iv) — toφi|k,l.
Finally, condition iii) (and also condition iv)) is made such thatφi,j|k,l andφi|k,l are also bounded in
case (III). �

Remark5.15. The conditions i) – iv) appearing in the above statements arenot only sufficient but, in
most cases, also necessary for the statements to hold:

iv) If condition iv) in 5.14 is not satisfied, we can get the following things:
• If i ∈ L, then the degenerated vertex of type (a) leads to an unboundedφi|k,l.
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• If i ∈ M andρ is a ray inCi whose direction vectorvρ also appears in∆, then in general
we will find curves inF with a degenerated vertex of type (b), whose unbounded movement
will makeφi|k,l unbounded.

• If i ∈ M andρ is a ray inCi whose direction vectorvρ lies between two direction vectors
v1, v2 appearing in∆, this will in general lead to curves inF with unbounded deformations
of case (III) such that the outward directions arev1, v2 and such thatxi is adjacent to the
moved string. So again,φi|k,l is in general unbounded.

iii) If condition iii) is not satisfied, we will in general getunbounded deformations of the following
type:

xj
v1

v2

Cj

xi Ci

In this case we havei, j ∈ M and the interior of the cone spanned byv1, v2 contains direction
vectors of bothCi andCj . As in generalxk, xl will lie on the other side of the growing edgew,
φi,j|k,l will be unbounded.

ii) If we drop condition ii), i.e. if we allow non-unimodulardegrees∆, two things can happen: If we
allow non-primitive direction vectors, then we get deformations of type (II) (c) with unbounded
edgev. Therefore the lengths ofv1 andv2, which can in general separate arbitrary marked
leaves, grow infinitely. IfΘ(∆) is not supposed to be strongly unimodular, then the description
of unbounded deformations of case (III) in 5.13 becomes incorrect, as there will appear more
complicated strings with more adjacent bounded edges than just one. The example ofF2 is
analyzed in detail in [Fra] and [FM, e.g. 2.10].

i) If we drop condition i), i.e. if we allow Psi-conditions also at marked leaves which are not fixed
by points, we end up with more complicated kinds of deformations of general curves inF . The
following picture shows an example of an unbounded deformation in a one-dimensional family
of plane curves of projective degree2.

e

C2

C3

C4

C ∈ F = (τ1(C1)τ1(C2)τ1(C3)τ1(C4))
R

2

2

C1

Here,C has to meet all the four tropical linesC1, . . . , C4 with one Psi-condition. Note that the
indicated deformation ofC is indeed unbounded and that the length of the(1,−1)-edgee grows
infinitely. This example can be extended in the following way: One can glue arbitrary (fixed)
curves to the non-contracted leaves ofC in direction(1, 1), obtaining more families admitting
such a deformation. In particular, the edgee can separate arbitrary kinds of points, showing that
in generalφi,j|k,l andφi|k,l can be unbounded for any choice ofi, j, k, l.
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In higher dimensions (r ≥ 3), up to now only the following case is studied:

Theorem 5.16([Zim] 4.86). Let F = (
∏n
k=1 τ0(Vk))

R
r

d be a one-dimensional family of curves of
projective degreed in Rr which donotsatisfy Psi-conditions, but incidence conditions given byconven-
tional linear spacesVk ⊆ Rr. Then for any choice of{i, j, k, l} ∈ [n] the functionφi,j|k,l is bounded
onF .

5.4. Comparison to the algebro-geometric invariants.In the special case of an empty degree, de-
noted by∆ = 0, the situation is analogous to the algebro-geometric one.

Lemma 5.17. LetZ = (
∏n
k=1 τak

(Ck))0 be a zero-dimensional intersection product inMlab
n (Rr, 0).

Thendeg(Z) is non-zero if and only if
∑n

k=1 codim(Ck) = r (or equivalently
∑n

k=1 ak = n − 3). In
this case,

deg(Z) =

(
n− 3

a1, . . . , an

)
deg(C1 · · ·Ck)

holds.

Proof. By definitionMlab
n (Rr, 0) is isomorphic toMn×Rr. Moreover, as∆ = 0, all evaluation maps

evi coincide with the projection onto the second factor, which we therefore denote byev. Now let
X :=

∏n
k=1 ψ

ak

k = (
∏n
k=1(ψ

abstr
k )ak) × Rr be the intersection of all Psi-divisors. Then the projection

formula applied toev yields
deg(Z) = deg(C1 · · ·Cn · ev∗(X)).

But ev∗(X) is non-zero if and only if
∑n

k=1 ak = n− 3. If so, by 2.22 we knowev∗(X) =
(

n−3
a1,...,an

)
·

Rr, which proves the statement. �

Now we are finally ready to compare the tropical invariants for plane tropical curves to the algebro-
geometric ones using the equations proven in the previous subsections.

Theorem 5.18. Let

• Θ be a complete (not necessarily strongly) unimodular fan inR2 and letX := X(Θ) denote
the corresponding smooth toric variety,

• γ1, . . . , γn ∈ A∗(X) be cohomology classes ofX , which correspond to Minkowski weights by
[FS94, theorem 2.1], and denote byC1, . . . , Cn the corresponding tropicalΘ-directional cycles,

• ∆ be a strongly unimodular degree whose unlabelled degreeδ(∆) is Θ-directional, and let
β ∈ A1(X) be the corresponding cohomology class.

• a1, . . . , an be non-negative integers such thatak = 0 if dim(Ck) > 0.

Then the tropical and algebro-geometric descendant Gromov-Witten invariants satisfy

1

∆!
〈τa1(C1) · · · τan

(Cn)〉R
2

∆ = 〈τa1(γ1) · · · τan
(γn)〉Xβ .

Proof. First we choose a basisB0, . . . , Bm of Z∗(Θ). Via [FS94, theorem 2.1] this also describes a
basisη0, . . . , ηm of A∗(X), and [FS94, proposition 3.1] together with 1.9 prove that

deg(Be · Bf ) = deg(ηe · ηf )

holds. This implies that, if we use WDVV equations or topological recursion with respect to these
bases, then the diagonal coefficientsβef appearing in the tropical and in the algebro-geometric setting
coincide. Thus, as discussed in the remarks 5.5 and 5.8 the numbers 1

∆!〈τa1(C1) · · · τan
(Cn)〉∆ =

〈τa1(C1) · · · τan
(Cn)〉δ(∆) and 〈τa1(γ1) · · · τan

(γn)〉Xβ satisfy a certain set of identical WDVV and
topological recursion equations (where on the tropical side we have to be slightly more careful about
i, j, k, l satisfying condition iii) and iv) of 5.14) as well as the string and divisor equation. Therefore we
can finish the proof by showing that the numbers can be computed recursively, using these equations,
from some initial numbers and that these initial numbers coincide.
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We separate the labels of the marked leaves into the setsL ·∪M ·∪N = [n] according to the (co)dimen-
sion of Ck as in subsection 5.3. First we use topological recursion to reduce the number of Psi-
conditions: We pick a marked leafxi with ai > 0 (and thereforei ∈ N ) and an arbitrary pair of
marked leavesxk, xl satisfying condition iii) of 5.14. If suchxk, xl do not exist, we can add them using
the divisor equation backwards with appropriate rational functionshk, hl. Namely, ifX = P1 × P1 we
can usehk = hl = max{0, x, y, x+ y}, otherwise we can usehk = hl = max{0, x, y}. Note also that
this choice ensures thathk · ∆ = hl · ∆ is non-zero for every possible degree, so we do not divide by
zero. After eliminating all Psi-conditions in this way, we can assumeak = 0 for all k ∈ [n], i.e. we are
back in the case of usual (primary) Gromov-Witten invariants. After applying string and divisor equa-
tion we can assume thatL = M = ∅ and it remains to compute invariants of the form〈

∏n
k=1 τ0(Pk)〉∆

for pointsP1, . . . , Pn ∈ R2. Comparing dimension shows#∆ = n+1. Let us first consider the general
casen ≥ 3. Here we consider the one-dimensional familyF = (τ0(Ci)τ0(Cj)

∏n−1
k=1 τ0(Pk))∆ with

arbitraryΘ-directional curvesCi, Cj such thatCi ·Cj is non-zero and such that condition iii) of 5.14 is
satisfied (e.g. we can choose the divisors of the functions wechose above). We letxi, xj be the first two
marked leaves as indicated, and choosek, l ∈ [n− 1] arbitrarily. In the corresponding WDVV equation
only one extremal partitionI|J with ∆I = 0,∆J = ∆ does not vanish. This follows from 5.17 and
codim(Pk) + codim(Pl), codim(Ci) + codim(Pk), codim(Cj) + codim(Pl) > 2. Moreover, the only
remaining extremal partitionI = {i, j}, J = ∆ ·∪ [n− 1] provides the term

〈τ0(Ci)τ0(Cj)τ0(R
2)〉0 · 〈τ0(P )

n−1∏

k=1

τ0(Pk)〉∆ = deg(Ci · Cj) · 〈
n∏

k=1

τ0(Pk)〉∆.

Hence, we can lead back the computation of〈
∏n
k=1 τ0(Pk)〉∆ to invariants of smaller degree. We can

repeat this until we arrive at the initial invariants withn = 1 or n = 2. In these cases#∆ = 2 or
#∆ = 3 and therefore the only possible degrees (up to identification via linear isomorphisms ofZr) are
∆ = {−e1, e1} and∆ = {−e1,−e2, e1 + e2}. In both cases, it is easy to show by direct computation
that〈τ0(P1)〉∆ = 1 and〈τ0(P1)τ0(P2)〉∆ = 1 hold. �

Remark5.19. Note that the left hand tropical side of the equation

1

∆!
〈τa1 (C1) · · · τan

(Cn)〉R
2

∆ = 〈τa1(γ1) · · · τan
(γn)〉

X
β

is in fact independent of the fanΘ (provided thatΘ is fine enough), and therefore the right hand algebro-
geometric side does also not depend onX . This implies that, for two complete smooth toric surfaces
and for “common” cohomology classes, their descendant Gromov-Witten invariants appearing in the
theorem coincide. This seems to be a new result fordescendantinvariants. Without Psi-classes, over-
lapping results were proven in the course of studying Gromov-Witten invariants of blow-ups (cf. [GP],
[G], [Hu]).

Remark5.20. Similarly we can deal with the caser = 1, i.e. we can prove

1

d!2
〈τ0(R

1)l
n∏

k=1

τak
(Pk)〉

R
1

d = 〈τ0([P
1])l

n∏

k=1

τak
([pt])〉P

1

d ,

where the left hand side is a tropical, the right hand side a conventional invariant and[pt] denotes the
class of a pointpt ∈ P1. In fact, after applying the string equation, we are left with the case wherel = 0.
Now we use 5.9 and topological recursion to reduce the numberof Psi-conditions (where, ifn < 3, we
first add more marked leaves using the divisor equation). Finally, whenak = 0 for all k ∈ [n], it follows
d = 1 and we can compute directly〈τ0(P )〉R

1

1 = 1. For the case of the rational Hurwitz numbers
H0
d := 〈τ1([pt])2d−2〉P

1

d , this result was basically known before (cf. [CJM08, lemma 9.7]), but the proof
is based on the different point of view. In [CJM08] the resultis a specialization of considerations for
higher genus, not for higher dimensionr as it is the case here.

Remark5.21. The discussion in 5.15 and the factorn + #∆ − 2 appearing in the tropical dilaton
equation 3.13, instead ofn − 2 in the algebro-geometric version, show that for more difficult degrees
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∆ (if r = 2) and for Psi-conditions at marked leavesxk with dim(Ck) > 0, the corresponding tropical
and conventional invariants are in general different. For example, if we add a marked leaf that has to
satisfy only a Psi-condition, the different factors in the dilaton equations immediately lead to different
invariants.

Remark5.22. Based on 4.19 and 5.16, we can extend the above equalities of tropical and conventional
primary Gromov-Witten invariants to higher dimensions. Wepostpone this to [GZ].
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