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INTERSECTIONS ON TROPICAL MODULI SPACES

JOHANNES RAU

ABSTRACT. This article tries to answer the question: How far can thelado-geometric theory of rational
descendant Gromov-Witten invariants be carried over tartgcal world? Given the fact that our moduli
spaces are non-compact, the answer is surprisingly paisiile discuss universal families and the string,
divisor and dilaton equations, we prove a splitting lemmscdeing the intersection with a “boundary” di-
visor and we give two criteria that suffice to prove the trapicersion of a particular WDVV or topological
recursion equation. Discussing these criteria in the cheerues inR! or R2, we prove, for example, that
for the toric varietiedP!, P2, P! x P!, Fy, Bl2(P2), Bl3(P?) and with Psi-conditions only in combina-
tion with point conditions, the tropical and conventionakdendant Gromov-Witten invariants coincide. In
particular, we can unify and simplify the proofs of the pm& tropical enumerative results.

INTRODUCTION

Over the last few years, the list of results in tropical entatiee geometry became quite long. However,
lacking an appropriate tropical intersection theory, nesésting results are obtained by

e relating the tropical numbers directly to the conventiomags (cf. [Mi03]) and then using the
algebro-geometric theory,

e or by involved ad hoc computations (ed. [GMO05], [KMO06], [FMMRQ08], [CIM08]), which

moreover have to be repeated for each new class of enuneepatislem.

On the other hand, based dn [Mi06], the basic constructiénsopical intersection theory are now
developed in[[ARO7]. Furthermore, ih [GKMO7] the author@whthat the moduli spaces of rational
tropical curves are tropical cycles in the sense_of [ARO€Jyde we can apply intersection theory to
them. Moreover, in[[Mi07] G. Mikhalkin proposes the defiaitiof tropical Psi-divisors, which, as it
is shown in [KMO7], can also be integrated into the approdcfARO7]. Under these circumstances
the obvious program is: Along the lines of the algebro-getimtheory of descendant Gromov-Witten
invariants, construct a tropical copy of this theory — asasupossible. First attempts in this spirit are
contained in[[GKMQY],[[KM06] and[[MRQO8]. This article triede carry out this program consequently
and in detail.

The “ready for use” main theorerhs 5118 &and 5.20 state thakf@s well as for any complete smooth
toric surface and certain degrees, and with Psi-conditahsin combination with point conditions, the
tropical and conventional descendant Gromov-Witten ilawvds coincide. In particular, this unifies and
simplifies the proofs of the previous tropical enumeratasuits for rational curves.

Tropical geometry, as far as it is explored now, can be reghes an image of the geometry inside
the big open torus of a toric variety. This has the advantage in a sense, tropical geometry merges
the geometry of all toric varieties simultaneously. Theeotside of the coin is that there is no tropical
counterpart of curves with components in the boundary otdhie variety in question, and therefore
the moduli spaces of tropical curves are non-compact. Ratély, tropical intersection theory works
on such spaces, but still, we will see that this fact causesidin differences to the conventional theory,
which become manifest [0 3.113 and in the two criteria that ilenged to prove the WDVV equations
and the topological recursion (€f5.4 dnd|5.7).

The article contains the following parts: In sectldn 1 wevide the necessary intersection-theoretic
tools. In particular, in subsectidn 1.8 we show that the fespldcement rule for Minkowski weights
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defined in [ES94] coincides with the intersection productropical cycles introduced in [AR07, sec-
tion 9]. In sectior 2 we cover the case of abstract curves. keepthe universal family property of
the forgetful magfty, the dilaton equation and reprove the main theorenm of [KMJHe degrees of
top-dimensional intersection products of Psi-classesqtal to their conventional counterparts. For
this purpose, we introduce tropical analogues of boundiargals and analyze the intersections, push-
forwards and pull-backs of boundary and Psi-divisors. i8e@ extends this to parametrized curves.
Moreover, we define tropical descendant Gromov-Wittenriaves and verify general string and divisor
equations. Sectidd 4 deals with the intersection of a oneedsional family of curves with a bound-
ary divisor. Using the concept of general position, we deavwsplitting lemma which states that this
intersection can be decomposed into products of intesectin smaller moduli spaces — if a certain
condition on the directions appearing in some fans is fatfillTherefore, a discussion of this condition
follows. Finally, in sectioli b we put things together. Wetfgtate the WDVV equations and the topo-
logical recursion, requiring two conditions: The just miened condition concerning certain directions,
and the other one previously known as “the existence of aractetd bounded edge”. After an anal-
ysis of this contracted edge condition, the final subse@idnproves the equality of the tropical and
conventional descendant Gromov-Witten invariants as ioeed before.

1. INTERSECTION THEORY

This section is devoted to providing us with the intersettioeoretic tools we will need to attack the
problems of tropical Gromov-Witten theory in a satisfagtaay. Hereby, the subsectionsILT11.2] 1.3,
[I:4 andTb recall the important definitions and results ffBR07] and [ARO8] (however, note that our
notations will sometimes slightly differ from the originahes). Parts of this summary already appeared

in [MRQ8].

1.1. Cycles. A cycle X is a balanced (weighted, pure-dimensional, rational arighgadral) complex
(resp. fan) in a finite-dimensional vector spate= A ® R with underlying latticeA (the most common
case isV = R", whose underlying lattice, if not specified otherwiseZi§. The top-dimensional
polyhedra (resp. cones) ik are calledacets the codimension one polyhedra (resp. cones) are called
ridges Balancedmeans that for each ridgec X the followingbalancing condition at is satisfied:
The weighted sum of the primitive vectors of the face@roundr

Z w(a)va/r

o x (dim(X)
T<Oo
vanishes “modula™, or, precisely, lies in the linear vector space spanned,enoted by/,. Here, a
primitive vector, /., of o modulor is a vector inA that points fromr towardso and fulfills the primitive
condition: The latticeZv,,,, + (V> N A) must be equal to the latticé, N A. Slightly differently, in
[ARQ7] the class o/, moduloV is called primitive vector and, /. is just a representative of it. We
will abbreviate the latticd’, N A by A,.
The support of X, denoted byX, is the union of all facets ifX' with non-zero weight. We calk
irreducibleif for any cycleY of the same dimension witly"| C | X | there exists an integer € Z such
thatY = i - X. Thepositive part ofX, denoted byX *, is the set of all faces contained in a facet with
positive weight. Ageneral element of X is an element: € | X| that lies in the interior of a facet.

1.2. Cycles modulo refinement.By abuse of notation, aycleis also a class of balanced fans with
common refinement and agreeing weights.rafional functiony on such a class is just a rational
function on a fanX contained in the class. We can generalize our intersectiotiygt to such classes
of fans[X] by definingy - [X] := [¢ - X]. In the following, we try to avoid these technical aspects
whenever possible. We will also omit the brackets distieging between fans and their classes, hoping
that no confusion arises.
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1.3. The divisor of a rational function and intersection products. A (non-zero) rational function on
X is afunctiony : | X| — R thatis integer affine (resp. linear) on each polyhedrorp(resne). Here,
integer linearmeans that it maps lattice elements to integersiategjer affinemeans that it is a sum
of an integer linear function (called thi@ear part) and a real constant. Thdvisor of p, denoted by
div(p) = ¢ - X, is the balanced subcomplex (resp. subfanXofonstructed inTARQ7, 3.3], namely
the codimension one skeletdn \ X (4imX) together with the weights,,. x (1) for each ridger € X.
These weights are given by the formula

wox(T) = D w(0)p0(vese) = (D wlohvoss ),

cex® sex®
T<0o T<0o

wherey, : V, — R denotes the linear part of the affine functipjz . Note that the balancing condition
of X aroundr ensures that the argument @f is indeed an element df.. The motivation for this
definition is illustrated in the following picture.

Fmax{z,O} / Fmax{x,y,O}

R S
R Ndiv(max{z, 0}) R2 div(max{x,y,0})

The graphl’, of ¢ in X x R is a polyhedral complex whose polyhedra are in one-to-onespon-
dence with those ok, but in general’, is not balanced. However, it can be completed to a cycle by
adding facets ir{0, —1)-direction at each ridge df,,, equipped with the above weights. Now, if we
(imaginary) intersect this tropically completed graphgofvith X x {—oc} (i.e. compute the tropical
zero locus ofp), we obtain the cycléiv(p) = ¢ - X of our definition.

If ¢ is globally affine (resp. linear), all weights are zero, whige denote byy - X = 0. Let the
support ofp, denoted byy|, be the subcomplex aX containing the points: € | X| wherey is not
locally affine. Then we havieo- X| C |¢|. Furthermore, the intersection product is bilinear (504,
3.6]). As the restriction of a rational function to a subey@ again a rational function, we can also
form multiple intersection products; - ... - ¢; - X. In this case we will sometimes omitX” to keep
formulas shorter. Note that multiple intersection produre commutative (sele [AR07, 3.7]).

By [ARQ7, definition 9.3] it is also possible to form the ingection product of two cycleX, Y in V =

A ® R: We choose coordinates, . . ., z,, on A (and denote the same coordinates on the second factor
of VxV byuy,...,y). Thenthe diagonah in V x V is given byA = max{x1,y1} - - - max{z,, y, }

(V x V). Furthermore we consider the function A — V, (x, ) — . Then the intersection product

of X andY in V is given by

XY :=m (max{z,y1} - max{z,,y,} - (X xY)).

This intersection product is independent of the chosendinates, commutative, associative, bilinear,
admits the identity elemenf and satisfy(¢ - X)-Y = ¢ - (X - Y), wherey is a rational function on
X.

1.4. Morphisms and projection formula. A morphism ofcycleX C V =A@ RandY C V' =
A @ Risamapf : |X| — [Y] that is induced from a linear map fromto A’ and that maps each
polyhedron (resp. cone) of into a one ofY. We call f anisomorphismand writeX = Y, if there
exists an inverse morphism and if for all facets X we havevy (0) = wy (f(0)).

Such a morphisrpulls back rational functiong onY” to rational functions*(¢) = ¢ o f on X. Note
that the second condition of a morphism makes sure that wetlbave to refineX further. f*(p) is
already affine (resp. linear) on each cone. The inclusféfy)| € f~1(|¢|) holds, as the composition
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of an affine and a linear function is again affine.

Furthermore, we capush forward subcycles of X to subcycles,.(Z) of Y of same dimension. This
is due [GKMO7, 2.24 and 2.25] in the case of fans and can bergkred to complexes (see [ARO07,
7.3]). We can omit further refinements here if we assumefiaj € Y forall o € X. Thenf.(Z) is
defined by assigning the following weights to ttien (Z)-dimensional polyhedra’ € Y:

wy(z)(0') = Z |Aor/f(Ag)| - wz (o)
oeX
flo)=c’
By definition we havef.(Z)| C f(|Z]).
Theprojection formula(see [ARQY, 4.8]) connects all the above constructions via

F(f* () - X) = ¢ fu(X).

1.5. Rational equivalence. Here we summarize the definitions and result$ of [AR08].

Let X be a zero-dimensional cycle. Thedegreedeg(X) of X denotes the sum of the weights of all
pointsinY".

Now let X be an arbitrary cycle and let, ¢ be two rational functions oiX'. We call them(rationally)
equivalentf ¢ — ¢ is the sum of a bounded and a globally linear function. Obsliguhis property is
preserved when pulled back. Furthermoré; ifs an one-dimensional subcycle 8f thendeg(p- X) =
deg(® - Y') holds (see[ARQO7, lemma 8.3]).

Let X be a cycle and leY” be a subcycle. We call rationally equivalent to zeradenoted by ~ 0, if
there exists a morphisph: X’ — X and a bounded rational functignon X’ such that

flo-X) =Y.

This property commutes with taking cartesian productgrs#ction products (of functions as well as of
cycles) and with pushing forward. MoreoverYifis zero-dimensional, the¥i ~ 0 impliesdeg(Y") = 0.
Let Y be another subcycle of. Then we cally” andY rationally equivalentf Y — Y is rationally
equivalent to zero.
If X,Y liveinV = A®R, we call thermumerically equivalerif for any cycleZ in V' of complemen-
tary dimension the equation

deg(X - Z) =deg(Y - Z)
holds.

The easiest example of rationally equivalent cycles arestations: LetX be a cycle in/ = A® R and
let us denote byX + v denote the translation o€ by an arbitrary vectoo € V. Then

X~X+vo
holds.

Let X be a cycle int = A ® R. We define thedegreeor recession farof X, denoted by (X), as
follows: §(X) is is supported on the puredlim (X )-dimensional part of the polyhedral set

U re(o).

oceX
Here, therecession conec(c) of a polyhedror is defined to be the cone containing all vectors V/
such that, starting at an arbitrary poine o, the rayx + Ruv is contained inr. Now, for a fine enough
fan structure on this polyhedral set, the weights are given b

w(;(x)(a/) = Z wx (o).
ceX
o’ Cre(o)
In particular, if X is a curve, thed(X) is just the union of all unbounded rays i and the weights
are the sums of the weights of the raysinof given direction. Geometrically, we simply shrink all
bounded edges of to a point and move the final single vertex to the origin.
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The main result of [ARO8] is that for cycle¥ in V = A ® R, rational equivalence, numerical equiva-
lence and “having the same degree” coincides. To proveahignportant substep is to show thétis
always rationally equivalent to its degree,

X ~ 8(X).

1.6. Local computation of intersection products. Let X be a cycle and let € X be a polyhedron in
X. We define thestar of X at 7 to be the fan

Starx (1) := {d|r < 0 € X},

whereg denotes the cone ¥/ V, spanned by the image ef-7 under the quotientmap: V' — V/V.
We make it into a cycle by definingg.. , (-)(7) = wx (o) for all facetsa of Starx (7) (note thaty
preserves the codimension of the polyhedra). This fan amtdl the local information o aroundr
and can be considered as the tropical version of a small beigbod of an interior point of (divided
by the “trivial part” V). Its dimension equals the codimensionrah X . As an example for our way of
speaking, we call a cycl& locally irreducibleif for all = € X the cycleStarx () is irreducible. Note
that locally irreducible implies irreducible, but not thner way around.

Let furthermorep be a rational function oX. Choose an arbitrary affine functianwith ¢|. = |.
Theny — v induces a rational function dtarx (7) which we denote by ™ (and call it agerm ofp
at 7). This function is only unique up to adding a linear functi@rnich suffices for our intersection-
theoretic purposes.

In the following proposition we will express the locality ofir intersection product in terms of these
notions.

Proposition 1.1. Let X be a cycle with polyhedra < o € X. Lety, ¢1, ... ¢; be rational functions
on X. Then the following statements are true:

(@) Stargiary (r)(0) = Starx (o)
(b) (¢7)7 = ¢ (up to adding a linear function)
(c) Star,.x (1) = ¢7 - Starx (1)

(d) Stary,.....x(7) =¢] ... @] - Starx(7)
(e) If I = dim(X) — dim(7), theNwe,. ..o, x (T) = Wer. o7 starx () ({0}), I.€. we can compute
the weight ofr in 1 - ... ¢; - X “locally” in Starx (7).

Proof. (a) and (b) are immediate consequences of the definitionol{dws from (c) by induction and
(e) is just a special case of (d), namely wheh .. .- ¢ - Starx (7) is zero-dimensional. Hence we are
left with (c).

Letr := dim(X) — dim(7) be the codimension af in X. The statement is trivial when= 0: Both
sides ard). Assumer = 1. In this case, we only have to check

wtp-X(T) = wnp"-StarX(T)({O})‘
By adding an affine function we can assume thiat= 0 without changing the intersection product and

in particular the weight of in ¢ - X. But then we can replace both weights according to their tiefin
and observe that

wtp-X(T) = Z (U(O')(pg (UG’/T) = Z w(&)g@T (Ua'/{O}) = wnp"-StarX(‘r)({O})

O'EX(dim(X)) 5€Starx(7-)(1)
T<0o

holds true, a$v, ] = vs /{0y € V/ V.
Now let us assume > 1 and letr’ be a ridge inX. Then we can use the previous case as well as (a)
and (b) and obtain

@.0)

r=1 r=1 _
w‘/"X(T) = wap",-StarX(T’)({O}) (np")",-StarSta,.X(,.)(T’)({O}) = wtp"-Starx(T)(Tl)’

which proves the claim. O
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We can extend this to the case of the intersection produgt@tycles.

Lemma 1.2. Let X, Y be two cycles iV = R ® A. Then the equation
Starx.y (1) = Starx () - Stary (7).
holds for all polyhedrar € X - Y.

Proof. First, we fix some notation. Let;,...,z, be a lattice basis oA"Y such that the firstl :=
codimy (7) elements generaté-. When we consider the produktx A, the same coordinates on the
second factor will be denoted hy, . .., y,. Furthermore,lef\ : V' — V x V, 2z — (z, z) denote the
diagonal map. By definition of the intersection product ofleg and using 111 (d) we have to compute

Starmax{z: yi}-- max{zry, - (X xv) (A(T)) = max{z1,y1} - - -max{z,,y,} - Starx vy (A(7))
and
max{xz1,y1} - max{xq,yq} - (Starx(7) x Stary (7))
respectively. Thus the statement follows from the fact that

max{Tai1, Yat1} - max{zy, y-} - (VX V/AVL)) — V/VexV/V,,
(z,y) — (z,9)

is an isomorphism and can be restricted to an isomorphismef{z+1, yat1} - - - max{z,, y,} -
Stary xy (A(7)) andStarx (1) x Stary (7). O

1.7. Transversal Intersections. If we intersect two cycles(, Y the generic case is the following:

Definition 1.3. Let X, Y be two cycles in’ = A ® R of codimensior: resp. d. We sayX andY
intersect transversallyf X NY is of pure codimension + d and if for each facet in X NY the
corresponding neighbourhooisir x (7) andStary (7) are (transversal) affine subspaced/of

In this case, by locality of the intersection product, thenpatation ofX - Y can be reduced to the
intersection of vector spaces. This motivates the follgygtudy of intersections of linear functions and
spaces.

Lemma 1.4. Lethq,..., h; be integer linear functions ol (I < dim(V) =: r) and define the ra-
tional functionsy; := max{h;,0} onV. LetH : V — R! be the linear function witht (z) =
(hi(x),...,h(z)) andlet us assume thaf has full rank. Therp; -...- ;- V is equal to the subspace
ker(H) with weightind(H) := |Z'/H(A)|. Here we givéV the fan structure consisting of all cones
where each of the; is either positive or zero or negative, with all weights kgein

Proof. Let us assumeé = 1 first (i.e. H = hy) In this case we have to compute the weight of the only
ridge inV which ish{ = ker(H). This ridge is contained in the two facets corresponding te 0 and

h; < 0. Letvs> = —v< be corresponding primitive vectors. This implies that feamplev> generates
the one-dimensional lattick/h;- = hy(A) and thereforéZ/h,(A)| = hy(vs>). On the other hand we
can compute the weight &f" in h; - V to be

wny-v(hi) = @1(vs) + @1(v<) = ha(vs) + 0= |Z/h (A)].

Now we make induction fof > 1. The induction hypothesis says that - ...¢; - V' is equal to the
subspacéer(H') with weightind(H"), whereH’ = hy x ... x h;. By applying the casé= 1 to the
vector spacéer(H') = (ker(H') NZ") ® R, we obtain thatp; - ...¢; - V is equal to the subspace
hi Nker(H') = ker(H) with weightind(hi |xer(#)) - ind(H’). We have to show that this weight
coincides withind(H ). This follows from the exact sequence

0 — hiker(H')NA) — H(A) — H'(A) — 0
ha () = H(z) = (h(2),0)
H(zx) —  H'(x)
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and its induced quotient sequence
0 — Z-Y/H'(A) — Z')H(A) — Z/hi(ker(H')NA) — 0.
(I
Remarkl.5. In the special case= r the weight of{0} in the intersection product; - ...- ¢, - V'is
|Z"/H (A)|, which equalg det(M )| whereM is a matrix representation df with respect to a lattice
basis ofA and the standard basis®f. This version of the statement is contained in [MR08]. Nt t

it can be extended to the case whéfénas not full rank, as then the intersection product as welas
determinantlet (M) are zero.

Now we use this lemma to compute the intersection of two lise@spaces.

Lemma 1.6. LetU, W be two subspaces &f = R ® A (with rational slope) such tha/ + W = V. If
we considel/, W as cycles with weight, their intersection product can be computed to be

U-W =|A/Ay + Awl| - (UNW).

Proof. By definition we have to compute
max{zy,y1} - -max{x,,y.} - (U x W),

(where we chose arbitrary coordinates/on Instead ofnax{z;, y; }, we can as well substract the linear
functiony; and use the functionaax{z; — y;,0}. Now we can applifT14. In our case, the functidn
is just
H:AxA — A,
(,y) — z—y.
Restricted tdJ x W, this provides
U-W =|AH(Ay x Aw)| - mu(ker(H)) = |[A/Auy F Aw| - (UNW).

Now, as a combination 6f 1.2 ahd1l.6, we obtain the followiegpit.

Corollary 1.7. Let X,Y be two cycles iV = R ® A that intersect transversally. Thel - Y =
(X NY,wxny) with the following weight function: Any facetin X NY is the intersection of two
facetso, o’ in X resp.Y. Then the weightof = 0 N o’ is

wxny(cNa') =wx(o)wy (6")|A/Ay + Ay |.

1.8. Comparison to the “fan displacement rule”. In[ES94] the authors introduce Minkowski weights
to describe the Chow cohomology groups of a toric variety lmioatorially. In particular, they compute
the cup-product of these cohomology groups in terms of Miviéd weights. In this subsection we show
explicitly that, when we interpret Minkowski weights asyiical cycles, this cup-product coincides with
our product of tropical cycles. Another approach to thisdapgiven in [Katz06, section 9]

Let © be a complete fan in a vector spdée= R @ A of dimension- (in [ES94], the fan is callech and
the lattice is calledV). Let ©(*) denote the set df-dimensional cones i® (in [FS94], the exponent
indicates the codimension, i.A*) meangd("—#)).

Definition 1.8 (cf. [FS94], section 2) A Minkowski weight: of codimensiork is an integer-valued
function on©("—*) that satisfies for any € @ —+-1)

Z c(0)vs/r € Ay

cc0r—k)
7Co

(in [ES94], primitive vectors are denoted hy ).
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Let c be a Minkowski weight of codimensidn Of course, if we sekX (c) to be the far J,,.,_,
with weight functione, the Minkowski weight condition precisely coincides withrdoalancing condi-
tion, i.e. X (c) is a tropical cycle of codimensidn

In [ES9Z] it is shown that Minkowski weights are in one-toeorprrespondence with the operational
Chow cohomology classes of the toric variety associateledan© and therefore admit a cup-product
with the following properties. Let, ¢’ be Minkowski weights of codimensiok, k’. Then the cup-
productc U ¢’ is a Minkowski weight of codimensioh + &’ given by

(cud)(m) = Y mj, -clo) ().
ce@”k

!
UIGQT—k
7Co,0"

Here, the coefficients are not unique but depend on the chbegeneric vector € V. If we fix such
a vectorv, then

o0 T

(cf. [FS94, introduction]).

The tools introduced in the previous sections make it sy o prove rigorously that the cup-product
of Minkowski weights coincides with our intersection pratlof tropical cycles irl/.

. [A/Ao + Ay i (0 +v) N’ # 0,
m _
0 otherwise

Theorem 1.9. Letc, ¢’ be Minkowski weights of codimensibnk’. Then the following equation holds:
X(c) - X(d)=X(cU()

Proof. For each facet in X (cU ¢’) we have to show

wx (e)-x(e)(T) = (cU)(T).
First, note that we can compute both sides locallyseirg (7), where we of course define the “local”
Minkowski weights byc(a) := c(o) andé'(6”) := ¢/(o’). For the left hand side this follows from 1.2
and for the right hand side it follows froM\ /A, + Ay/| = [(A/A2)/(As + Ao ) /AZ)].
Therefore we can assumiet+ k¥’ = r» andr = {0}. In this case, by plugging in the definition on the
right hand side and choosing a generic veeter IV, it remains to show

deg(X(c)- X(c)) = Z [A/Ay + Apr| - (o) - (o).
UE@Tﬁk/
o'cemk
(o+v)No’ #0

Now, for a generic vector € V we can assume th& (c¢) + v and X (¢) intersect transversally (in
fact, this is what the authors df [F§94] mean by a genericorgciNote that, in fact, the sum on the
right hand side runs through all points in the intersectiérXdc) + v and X (¢’). Therefore, by 117
it equalsdeg((X (c) + v) - X(¢')). ButasX(c) + v and X (¢) are rationally equivalent, the equation
deg(X (c)- X (")) = deg((X (c) +v) - X(¢')) holds and the statement follows. O

1.9. Convexity and Positivity. A non-zero cycleX is calledpositive denotedX > 0, if all weights
are non-negative. By throwing away the facets with weigtend all polyhedra contained in only such
facets) we can assume all weights to be positive. A ratiamattiony on X is calledconvexif it is
locally the restriction of a convex function di. The pull-backf*(¢) of a convex function is again
convex, as the composition of a convex function and a linesgp im again convex. Moreover, 4 is a
subcycle ofX, theny|, 7 is also convex ot . Combining positivity and convexity we get the following
result.

Lemma 1.10. Let X be a positive cycle and let be a convex function oX. Then

(a) ¢ - X is positive and
(b) [o] = |- X].
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Proof. First of all note that we can assume tits a one-dimensional fan, as all intersection weights
can be computed locally modulo the ridge (Ef-11.1 (c)) andvesity is preserved when adding lin-
ear functions or when considering the function induced @nghotient. Thus we assume thit =
{{0}, p1,...,pr} is @ one-dimensional fan with positive weight$p;) > 0. The statements of the
lemma translate to

(@) ¢ convex= ¢ - X >0,
(b) ¢ convex,p - X =0 = ¢ linear.

We use the following criteria for linearity and convexityetiy be a rational function oX and let us
abbreviate the primitive vector of the ray by v;. Then

i) ¢islinearifandonlyifforall\,..., A\, € Rwith ", \;jv; = 0 it holds
Z Az(p(vz) = 07
ii) ¢ is convexif and only if for all positive\;, ..., A, > 0 with 3. A;v; = 0 it holds

Now letp be convex. We can apply criterion ii) to the coefficiest®;), which are positive and satisfy
>, w(pi)vi = 0. This provides

wex ({03) = > wlps)e(vi) = 0,
which proves (a).
For (b), let us assume that, w(p;)¢(vi) = 0 (i.e. ¢ - X = 0) buty is not linear. Then by i) there exist
ALy A With Y70 Au; = 0 but -, Aip(v;) # 0. W.Lo.g. we can assunie, A;p(v;) < 0 (otherwise
we replace); by —\;). For large enougld’ € R the coefficients\; := \; + Cw(p;) are all positive
and still satisfy) . Miv; = 0and); X;¢(v;) < 0, which contradicts ii). Therefore is linear, which
proves(b). O

An easy but useful application of this lemma is the followorg:

Lemma 1.11. Let f : X — Y be a morphism of cycles and let us assume #has positive. Let
furthermorey, . . ., p; denote convex functions ah Then the following equation of sets holds:

[f*(p1) - f* () - X1 S f -0 Y)

Proof. This can be proven by an easy inductiont # 1 we have

[f*(p1) - X[ =1 (p1)l € fHlen]) = F (o1 - Y)),
where the equalities follow from .10 (a). Now for arbitramye can apply the case of a single function
to ¢, obtaining
[f*(p) - X1 S fHlor - Y.
This shows that we can restrict the morphigrno f : f*(¢1) - X — ¢ - Y. As; - Y is still positive
by[1.70 (b), we can apply the induction hypothesis to thifia®n, which yields the result. O

1.10. Complete intersections. We define the set af-dimensionatomplete intersectiongS (X ) c
Znw(X) to be the set ofn-dimensional cycles iX obtained as a intersection produgt- - - ¢; - X
(wherel = dim(X) — m).
Let C,C" € Z&(X) be complete intersections given By= ¢, --- ¢, - X andC’ = ¢} --- ¢}, - X.
Then we define

C-C =g @) X
Using commutativity of the intersection product of funetiothis multiplication is independent of the
chosen functions, commutative and satisfiés C'| = |C| N |C’|. Note that, ifX =V = A®R, it
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follows from [ARO7, corollary 9.8] that this definition caiides with the usual intersection product of
cycles. .

LetC € Z&-(X) be given byC' = ¢ ---¢; - X and letf : Y — X be a tropical morphism. Then we
would like to define the pull-back a@f' along f to be the complete intersection

FHC) = f (1) (1) - Y.

However, in general this definition is not independent of¢chesen function., . . ., ;. But it works
in the following case:

Corollary 1.12. Let X, Y be two cyclesand let : X x Y — X be the projection onto the first factor.
Moreover, letZ be a complete intersection &f x Y and consider the map = «|; : Z — X. Now, if
C = 1 -+ - X is acomplete intersection iX, then the pull-back

f(C) = f"(p1) - f(w) - Z
is well-defined and the equation
i) < (e
holds.

Proof. First, we apply[[ARQY, 9.6], which yields
(1) 7 (o) (X XY )1 - X)xY =CxY.

Thereforef* (1) - - f*(¢1) - Z is just the product of the complete intersectighs Y andZ, which
does not depend on any choices. Moreover, its support isitmt in|C' x Y| and the equation of sets
follows. O

Remarkl.13 (Pulling back preserves numerical equivalente} C, C’ be complete intersections &I
and letf : Y — R" be a tropical morphism. Then, andC’ are numerically equivalent, alst (C)
andf*(C") are numerically equivalent in the following senseZlfs an arbitrary complete intersection
in Y of complementary dimension, then

deg(f*(C) - Z) = deg(f*(C") - Z)
holds. This follows from the projection formula:
deg(f*(C) - Z) = deg(f+(f*(C) - Z)) = deg(C - f.(2))

In particular, if we move around@' in V, the numerical properties of the pull-backs of the origead
the translated cycle coincide. This motivates the follaysnbsection about general position.

1.11. General position. We now investigate what we can say about the set-theoregiinpaige of a
general translation of a cycle under a morphjgm

Lemma 1.14. Let X be a pure-dimensional polyhedral complex andfletX — R" be a morphism of
polyhedral complexes (i.€. is linear on every polyhedron of). Furthermore, let”' be a polyhedral
complex inR” and consider the subcomplé¢x ' (C) of X consisting of all polyhedra N f=1(v),7 €
X,~ € C. Then for a general translatio6” = C + v (i.e. v € R" can be chosen from an open dense
subset ofR") the codimension of each non-empty polyhedronf—!(v) of X is equal to

codimx (1 N (7)) = codimx (7) + codimg- (7).

Proof. For eachr in X and~ in C we consider the map

fr : AffSpan(t) — R",
induced byf|,. Now we are interested inN f~1(y/) = 7 N f- () for general translations’ of ~.
We have to distinguish the cases(lfp) + V., = R” and In{f;) + V,, # R". In the latter casef*(v')
is empty for genera}’. In the former casef~*(+') is a polyhedron of dimensiatim(7) + dim(vy) —r,
and for general/ it is disjoint from or intersects the interior of, in which caser N f~1 (/) has the
same dimensiodim(7) — codimg- (), which is the expected dimension.
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As there are only finitely many pairs v, this holds simultanously for all pairs for general enough
translations of”. O

This technical statement has the following more applicablesequences:

Corollary 1.15 (Preimages of general translationget f; : X — R", k = 1,...,n be morphisms of
pure-dimensional polyhedral complexes anddgt & = 1,...,n be cycles irR”. Then for a general
translationCy, = Cj, + v, vx € R” the following holds: EitheZ := f; ' (C))n...N f71(C)) is
empty or

(a) the codimension of in X equals the sum

codimy (Z) = ZcodimRr (Cr),
k=1

(b) Z is pure-dimensional,

(c) if a polyhedrona of Z is contained in a polyhedron of X, the codimensions satisfy
codimx (1) < codimg(«) (in particular, the interior of a facet o is contained in the in-
terior of a facet ofX),

(d) if the imagesf«(«) of a polyhedronx of Z are contained in polyhedrg, of C, the codimen-
sions satisfyy;'_, codime, (7)) < codimz(a).

Proof. It is easy to prove the statement in the case 1: (a), (b) and (c) are immediate consequences
of .14 and (d) follows from applying 1.4 to thfe — codimz(«) — 1)-dimensional skeleton af;
(if v, belonged to this skeleton, would be contained in its preimage, which (for general tiaiens)
contradicts (a)). Now the statement follows if we apply thsecof a single morphism i x ... x f, :
X — (RM)™andC :=Cy x ... x Cp. O

Remarkl.16 Sticking to the notation of the previous statement, let ssiae thatX is a cycle and that
the mapsf), are tropical morphisms. Moreover, we assume that the nfiggse projections (at least
after composing with an isomorphism) and that the compléXesare complete intersections. Then
fi(Ch) - f£(Cy,) is also a pure-dimensional object of the same dimensiginagC ). ..N 11 (CL).
Indeed[ 1.1 shows that

[fi(CL) - Fa(Ca)l € FTH(CD NN f7H(E)

holds. Hence we should think ¢ (C4) - - - f(C,,) as the polyhedral set”*(C}) N ... N f,1(C")
with the additional data of weights.

2. INTERSECTIONS ON THE SPACE OF ABSTRACT CURVES

Let us start with a definition of smooth abstract curves. Ascall model of a curve we will use the
following fan. Letey, ..., e, be the standard basis " and setg := —e; — ... — e,.. We define the
one-dimensional fan

L" = {{O}a Rz(—eo), s ,RZ(—&«)},
with weightsw(R> (—e;)) = 1 for all i. This fan is balanced becausesgf+ ... + ¢, = 0.

R R? R3
—eq
—eq
_
—es

L L? L3
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Note that this fan is also irreducible, as+ . . . + ¢, = 0 is the only equation that the generating vectors
fulfill.

Definition 2.1. A smooth abstract curv€' is a one-dimensional connected cycle that is locally isemor
phic to L for suitabler (i.e. for each verteX” in C we haveStaro (V) = Lv/(V)). Thegenus ol is
the first Betti number ofC|. An n-marked smooth abstract cury€’, z, ..., z,) is a smooth abstract
curveC with n unbounded rays (callddave$, which are labelled by, ... z,. If we instead label the
leaves by elements of some finite getve will call it an 7-marked curve.

Remark2.2. As no other abstract curves will be considered we will oftemtd'smooth”. Note that
by definitionC' is (locally) irreducible. We will always consider abstracirves up to isomorphisms.
Still, our definition provides” with the structure of a connected graph equipped with a metiich

is essentially the definition of an abstract curve in exgstiterature, in particular in [GKMO7]. This
“old” definition has the disadvantage, that, when embedttiege graphs, the balancing condition must
be included in the definition of the embedding morphism (§&€NI07, 4.1]).

A way out of this is to use the glueing techniques developdARD7] and start with a genuine abstract
connected cycle of dimension one. Beyond the structure oétierngraph, these objects contain the
data of local pictures of the balancing condition aroundaasctexl”. But this picture is uniquely fixed
to be L**(Y) by the requirement of smoothness. Using this more compliba¢finition, an embedding
morphism is just a morphism of cyclgs: C' — R".

Our definition here requires additionally that a global edibeg of our curve exists (which we then
forget as we identify isomorphic curves). Basically we dis tio avoid glueing. However, when in-
vestigating universal families it will turn out that our dwfion is not a restriction (at least for rational
curves), but that each rational curve in the “old” sense hasn@nical embedding as a smooth curve in
some bigR".

We now give a criterion to decide whether a one-dimensiaralfithr + 1 rays is isomorphic td.” or
not. Following our way of speaking, we could also call it a sithmess criterion.

Lemma 2.3(Smoothness criterion)et X be a one dimensional fan in = A ® R withr + 1 rays, all
with weightl and generated by the primitive vectars . . . , v,.. Then the following are equivalent:

(a) X isisomorphic tal.".

(b) For arbitrary real coefficients\q, ..., A\, € R we have
i)
DAvi=0 & A=...=X\ & X\-—\=0forali,j,
=0
ii)

Y Avi €A & AN —)eZforalli,j.
=0

Proof. As (b) holds forL", the direction (a}= (b) follows.
On the other hand, if (b) holds, an isomorphism is given by
Q : RT — VX = <|X|>R,
e; = U;.
This linear map is well-defined and bijective by (b) i). Moveoby ii) (and also i)) it follows that the

vectorsy; generate the latticd N V. Therefore(Z") = A N Vx, which implies thaf? as well as its
inverse map are integer maps, hence tropical morphisms. O

The tropical analoguéM,, := My ,,n > 3 of the space of stable-marked abstract curves is (a
quotient of) the space of trees, or the tropical Grassmasie@[GKMO7, section 3], and aldo [S$04],
[Mi07]). The fan.M,, is stratified by cones corresponding to combinatorial tygfetsees. A general
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curve (i.e. an element in the interior of a facet) i8-galent metric tree. All facets are equipped with
weight1.

The important thing is that, sincét,, C R(g)/lm@n) fulfills the balancing condition and therefore is
a tropical cycle, our intersection-theoretic construtsifrom above are available on this moduli space.

The coordinates iR(3) describe the metric of the tree, i.e. the j}-entry measures the distance
between the vertices adjacent to the leawgandz ;. If we work with M,, 11, the extra leaf is labelled
by 2. In the following we assume > 4 (M3 is just a point). Whenever we writd.J, we mean that

I andJ form a non-trivial partition ofin] = {1,...,n} (or of {0} U [n] if we work with M, ;1). If

|I| # 1 # |J|, such a partition describes a ray.M,, generated by the abstract curve with only one

bounded edge
R Ty, Zj,
Vi = z‘el>—<& ie € M,,.

edge of length

A cone of M,, contains the ray generated by, ; if and only if the corresponding combinatorial type
contains a bounded edge that subdivides the leaved iatal /. In this sense, we can regard the set of
partitions as “global” labels of the edges of a curve, whitelabels the leafk; if I = {i} or J = {i}
and a bounded edge otherwise.

We will sometimes also think df;| ; as a vector iR(3), in which case we also alloW| =1or|J| =1
to get easier formulas. However, &g,y i\ (v} = ®(0,...,0,1,0,...,0), these vectors vanish modulo

Im(®). Note that the underlying lattice at:) is notZ@), but is the lattice generated by these vectors
Vi1, denoted by, (see [GKMO07, 3.3]).

We will now define divisors respectively rational functiaghat play the role of “boundary” divisors in
our moduli space. They all lie in the codimension one skelefo\,,, therefore represent higher-valent
curves. Note that our nomenclature is a bit confusing heventf we call all curves parametrized by
M., smooth, we consider the codimension one skeletoMof to be (part of) the boundary of1,,
which classically consists of singular curves.

As M., is simplicial, we can define a rational function #1,, by assigning an integer to eaéh/: The
integers are the values of the functiori4t; and on each cone, we extend the function by linearity.

Definition 2.4. We define the rational functiop;| ; by

1 |f I - Ila
o117 (Vpy) = { 0 otherwise

Furthermore, we use the notation
Pkl = Pk, 1} [n]\{k,I}
fork #£ 1.

The ridges ofM,, are combinatorial types of curves with one 4-valent ventexich we will draw like
this:

B2
Here A, B, C and D denote the four parts of the combinatorial type adjacertaaitvalent vertex and
by abuse of notations also the sets of leaves belonging$gti (as, in most cases, this is the only
information needed).
When we want to compute the weight of a ridgeZ in the divisor of a rational function om,,, we
need to know howM,, looks like locally aroundx 2. In fact, it is easy to see th&tary, (5x52)
contains three facets corresponding to the three typesnobvimg the4-valent vertex by inserting
a new bounded edge. The (representatives of the) primitxgovs areV4 g jcup, Vauc|pup and

Vaup|uc- For the balancing condition arou@:kg, it suffices to show the equation

Vausicup + Vaucpup + Vaup|puc = Vajpucup + Vejaucup + Vejausup + Vbpjausuc:
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as all vectors on the right hand side lie in the vector spaaarsgd by the ridggx Z, as required. But
the equation follows from the fact that, on the level of neetrees, the distance between two marked
leaves is identical on both sides: If both leaves belongacstime sefl, B, C, D, the distance 9, if
not, it is2.

This discussion also shows that,, is locally irreducible: AsStara4, ($x2) contains the minimal
number of three facets, all with weightit is necessarily irreducible for afix 2.

Let us now compute the divisors of the functiang;.

Lemma 2.5. The weight of a facet idiv(;|.;) (which is a ridge inM,,) is (up to permuting the names
of I, J and of A, B, C, D respectively, which we always allow in the sequel)

1 if [ = AUB,
we,, (px8) =4 -1 fI=A,
0 otherwise

Proof. Following from the previous discussion, the weightpfZ in div(¢rs) is by definition

Weor, BxE) = ¢ns(Vausicup) + ¢110Vaueisup) + 110 Vaup|suc)
—¢110(Vaisucup) — ¢110(Vejavcun) — ¢115(Vejausup) — 115 (Vplausue)-

Hence, this weight ig if I is the union of two of the setd, B, C, D and is—1 if I equals one of the
four sets. Otherwise, it i8. O

Remark?2.6. These divisors were computed before by Matthias Herold[f$he

Remark2.7. We will regard the divisorsliv(¢; ;) as the tropical analogue of the irreducible compo-
nents of the boundary of the moduli space of stable cuiVgs,. The positive partliv(e ;)" can

be regarded as the set of curves with bounded dtigevhose length has shrunk to zero. One might
think of such curves as reducible curves having two comptsneith leaves and.J respectively and
glued together at thé-valent vertex. The negative part can be considered as aatimm term due to
the non-compactness of the tropical moduli space.

This point of view is justified by the fact that in the follovgrwe will reprove many of the algebro-
geometric statements concerning the intersection-tiedrehaviour of boundary divisors. As a general
reference for the algebro-geometric theory we use the Uighela paper “Notes on psi classes’| [K] by
Joachim Kock. It is very useful for our purposes as it corgailhthe statements we are interested in in
down-to-earth terms.

Lemma 2.8(cf. [K] 1.2.5). The equation
®ij ik - Mp=0
holds forn > 4 and pairwise differenk, {,i € [n].

Proof. An abstract curvé€’ cannot simultanously have bounded edges with partitfensg |{, j} and
{1, k}|{i, k}° (as for example the first partition forcéandk to be adjacent to the sarBevalent vertex).
Let C be a curve ify; x|. At least after resolving d-valent vertex, it contains an edge with partition
{7, k}|{i, k}° and can thereforeot contain an edge with partitiofy, j }|{7, j}©. Buty; ; just measures
the length of such an edge if present. Thas;||,,, ,| = 0. O

Analogues of Psi-classes on tropiced,, have been defined recently by G. Mikhalkin ([Mi07]). How
such Psi-classes intersect is discussed in [KM07]. We wsadkion Psi-divisor instead of Psi-class to
emphasize that, in contrast to the algebro-geometric ¢tamzcally Psi-divisors ar@ot defined up to

rational equivalence. In fadf, 2124 suggests that we shibiné of a tropical Psi-divisor as a boundary
representation of the corresponding Psi-class. Let udlrb@important definitions and results of

[KMO7] here.
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Definition 2.9. We define thé:-th Psi-functiony,, by
I|(|I| -1

(n—1)(n—2)
for all partitionsI|.J with |I|,|J| > 2 andk € J.
Remark2.1Q Our functiony, equals the functiorfnﬁ—l)fk defined in [KMOQO7] (follows from [KMQO7,

Lemma 2.6]). In particulan)y, is a convex function (2cf.7, Remark 2.5]). Note that instpaper,

Y andyy) ; denote functions andot their corresponding divisors. On the other hand, as meetam
subsection 1.10, this is only a matter of notation. For seetion-theoretic purposes, the actual choice
of a function defining the same divisor does not matter.

Remark2.11 Obviously the numbers; (V7 ;) are only rational. A generalization of intersection theory
to rational numbers is straightforward, but nearly unnsass The weights of the divisor afy. turn
out to be integers (see the following proposition) and tlesist integer rational functions producing the
same divisor (sde 2.R4). This particular functignwas chosen i [KM0O7] because of its symmetry.

Proposition 2.12(see [KMO7] 3.5) The divisordiv(z;) consists of the cones corresponding to trees
where the marked ledfis at a4-valent vertex, i.e. the weight of a facetdiv (v ) (which is a ridge in
M.,)is

[ 1 if{k} = A,

o { 0 otherwise

Notation 2.13. As in the conventional case we will introduce the followinghotation that makes
formulas shorter and hides “unimportant” data such as timeb®u of marked leaves. For any positive
integersay, . .., a,, we define

(Tay =+ v Tay ) =0T - o0 - M,

Every factorr,, stands for a marked leaf and the index serves as the exponent with which the
corresponding Psi-function appears in the intersectiadyet. If Y a; = dim(M,,) = n — 3, the
above cycle is zero-dimensional (in fact, its only pointresponds to the curve without bounded edges
where all leaves are adjacent to one single vertex) and wealefi

(oo i) = dog (U1 -0 M),

Wipy (gX g)

The main theorem of [KMO7] computes these intersection petslof Psi-divisors:

Theorem 2.14(Intersections of Psi-divisors for abstract curves, 4.1). The intersection
product(7,, ... 7, ) is the subfan of\1,, consisting of the closure of the cones of dimension3 —
>, a; whose interior curve§’ have the property:

Letks,...,k; € N be the marked leaves adjacent to a verterf C. Then the valence 6f is

val(V) = ag, + ... + ax, + 3.

( val(V)—3
Aoy seeeyhg

Let us define the multiplicity of this vertex to helt(V) :=
conec in X is

). Then the weight of such a

wx(o) = Hmult(V),
14
where the product runs through all vertic&sof an interior curve ob.

In this section we will reprove the zero-dimensional cas¢hif theorem (see 2.22). To do this, we
first have to analyze how Psi- and boundary divisors int¢@ed how they behave when pulled back or
pushed forward along forgetful morphisms.

Lemma 2.15(cf. [K] 1.2.7). It holds
i g '1/%' M, =
forn > 4andk #1 € [n].
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Proof. Curves in|i;| cannot contain a bounded edge with partit{en; }|{7, j}¢, as the leai does not
lie at a3-valent vertex. Thug; ; vanishes or;|. O

The forgetful map\,,.; — M., that forgets the extra leaf, is denoted byt (cf. [GKMO7, 3.8]). By
[GKMQ7, 3.9] this map is a tropical morphism. Therefore we eak how Psi-functions behave when
pulled back alondjt,.

Proposition 2.16(Pull-back of Psi-functions, cf[[K] 1.3.1)Letn > 4 and letfty : M,,.1 — M,, be
the morphism that forgets the leaf. For k € [n] it holds

div(¢y) = div(ftg vr) + div(eo k).

Proof. This can be proven by explicitly computing the weights of¢bhdimension one faces of the three
divisors. We distinguish four cases (up to renamigs, C' and D):

wr($x8) | f=t f=1tg¢r = vox
A=1{0,k} 0 1 -1
A ={0}, B={k} 1 0 1
A=H{0,...},B={k} 1 1 0
otherwise 0 0 0

O

Corollary 2.17 (cf. [K] 1.3.2 and 1.3.3) Letn > 4 and letftg : M, 11 — M,, be the morphism that
forgets the leak,. Then fork € [n] the following formulas hold:

()
Cor = —fto (Vr) - pok
(b)
Y = ftg(¥r)® + fe5 (V) - ok
()

Uk = 5 () + (=1)" g i
Proof. All the formulas are easy applicationgof 2.15 &nd R.16. O

Lemma 2.18. Letn > 4 and letftg : M, +1 — M, be the morphism that forgets the leaf and
choosek € [n]. Then

fto* (diV((poyk)) = fto* (le(l/)k)) = ./\/ln

Proof. We showfto..(div(¢o.x)) = M,, by direct computation: Let’ be a facet of\,, corresponding

to a3-valent combinatorial type. Lét be the vertex adjacent o Then there exists precisely one cone
o in div(po,x) Whose image undet is o/, namely the cone obtained by attaching the additional leaf
xo to the vertext’. Moreover, on such a cone, the length of the bounded edgesnemchanged under
fto and therefordty(A,) = A,-. On the other hand, cones div(yy ;) with negative weight are not
mapped injectively, as in this caseg is adjacent to &-valent vertex and stabilization is needed. This
shows thafto. (div(eo k) = M.,.

The equatiorfty. (div(yy)) = M,, follows from the same argument or by using 2.16, the prayecu
formula andfty. (M ,+1) = 0 (because the dimension is too big).

Proposition 2.19(Univeral familyft, for abstract curves)Letp be a pointinM,, and letC,, = ft, ' (p)
be the fibre op under the forgetful morphisfi, : M,,+1 — M,,. Then the following holds:

(a) ¢, has the canonical structure of a one-dimensional polyhecenplex.

(b) The leaves of’, (as graph itself) are the facets wherg and another leaf; lie at the same
3-valent vertex (i.e. the leaves are givenby:= {y € Cp|po..(y) > 0}). Moreoverp € M,,
represents the-marked metric grapfiC,, L1, ..., Ly,).

(c) When we equip all its facets with weightC), is a smooth abstract curve (in the sensgof 2.1).
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(d) Let> , pwpr = @1 - ... - pn_3 - M,, be a zero-dimensional cycle ivt,, obtained as the
intersection product of convex functiops. Then

fto(p1) - f65(n—3) - Mny1 = Zukcpk

We write this asty (>, pepr) = Dk 11k Cp, -

Proof. (a): As polyhedral complexG, consists of the polyhedta, |, *(p) for each coner of M, ;.
The dimension of these polyhedra can be at most on#iasf(o)) > dim(o) — 1 (it depends on
whetherz is adjacent to &-valent or higher-valent vertex).

(b): LetI", denote the:-marked metric graph representedzbyThe bijective mag”, — C,, indicated
in the picture identifies the two graphs.

r I5 T I5

T p
Ty [ [ —— Ty C
XN— \ € Gy
ZTo T2 AN

T3 T3 Lo

(c): LetV be a vertex of’,. It corresponds to the metric graply with the extra leaf:, adjacent to
one of the vertices. Let us label the other edges adjacehigwértex byl, ..., m and let us divide
the other leavep:] = I U ... U I,,, according to via which edge one reachgd$rom z,. There aren
facets inC, adjacent td/ corresponding to moving, on one of the edges. Hereby on has to shorten
the edgély|I; as much as the length &f U {zo}|(Ix U {x0}) increases.

Zo
z;, 1 € I B o E,,
Ey/-
T, 1 € Iy

Thus the primitive integer vector of the corresponding fagéh respect td/ is given by
Vi = V5,Ufz0y — V-
Note that this formula as well as the following ones also hatdthe case thaf; consists only of a

single leafr; (which means;; is adjacent to the same vertexag, asVy,,; =0 € R("S )/Im( Diq).
To prove the statement we now Usel2.3 and verify the conditipand ii), which can be done by
applying some formulas of [KM0O7]. Lef be the set of two-element subsetgmf (i.e. not containing
0). It follows from [KMQ7, 2.3, 2.4, 2.6] that the vectoiig, S € S fulfill i) and ii) (with V =
R(ngl)/lm@nﬂ) andA = A,). Furthermore[[KMOY7, 2.6] gives us a representation of @aters in
terms of the vector¥g, namely

I, = Z Vs

;1 € I,

Ses
SCIy,
Vieo{aey = Z Vs,:—( Z VS)7
ses Ses

SNIL=0 SNI#0
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and therefore

Vi= (Y1801 Vs).

Ses
Now let A, ..., A\, be arbitrary real coefficients. Then we obtain the formula
Z)\ka = —( Z Ak + i) - V{i,j})-
k=1 {i,j}es
’L'le,jefk/

Now all differences of two coefficients on the left hand side— )}, can be obtained as differences of
two coefficients on the right hand side (choose elemeatsy, j € I/, € Ii+; then the coefficients of
Viiay andVy; gy differ by A + Mg — Apr — A = A — Ar). Conversely, a right hand side difference of
coefficients equals the sum of two left hand side differen¢€se coefficients o¥/y;, ;,; andVy;, ;.y
differ by (Ax, — Aiy) + (Mg, — iy ), Whereiy € Iy, ,io € Iy, ,j1 € I},, j2 € I1,.) Hence, as conditions
[2.3i) and ii) hold for the vectorgs, they also hold for the vectot;.

(d): First of all, the set-theoretic equation

| £t5(p1) -+ -t (Pn—3) - Muga] S ft5 " (1 -+ - oz - Mal) = 105,
k

follows from[I.I1. But the set&’),, | are pairwise disjoint (as they are fibres of pairwise diffiere
points) and belong to irreducible cycles (as the culgsare smooth abstract curves). Thus any one-
dimensional cycle whose support lieslif) |C,, | is actually a sund >, A\.C,, , A € Z. So it remains

to check that in our case these coefficieh{oincide withu,. To do this, we choose an arbitrary leaf
x; # xo and consider the functiopy ; on Cp, . On the leafL; of C}, , wherexz, andz; are adjacent

to the same3-valent vertex, it measures the length of the third edgevéisre it is constantly zero.
Thusyy ; - Cp, = Vp,., WhereV,, is the vertex olC,, adjacent tal; (wherez, andz; lie together at a
higher-valent vertex). Thus we get

ftox (40, - (Z AkCp,)) = ftox (Z MoV, ) = Z Ak Dk
k k k
On the other hand we can use projection formula[and 2.18 amgute
ftox (0,6 - it (1) - - - T65(Pn—3) - Mng1) = @1 ... - @n_s - ftou(0,i - Mpg1) = Zukpk-
&

Comparing the coefficients proves the statement. O

Remark2.20. Hence there is a one-to-one correspondence between cecaslag to the “old” defi-
nition (i.e. as metric graphs) and definition]2.1. In paftcuM,, parametrizes smooth abstract curves
in our sense.

Theorem 2.21(String equation for abstract curves, cf.][K] 1.4.For zero-dimensional intersection
products of Psi-divisors the following holds:

<T0 H Tak>d = Z<Tai_l HTak>d
k=1 1

- ki

Proof. The proof is identical to the algebro-geometric one: We tiaxampute degree of the intersec-
tion product[ [;_, ¢ - M,,41. First we replace each terttf* (k # 0) by £t (5 ) + £t ()1 -
w0, usingZI¥ (b) and multiply the product out. 4s ;. - w0 = 0 for k # k' (sed2.B), we only get
the followingn + 1 terms:

TT o)™ - Mo + D ft5 ()™ TT 65000 - @0+ Mo

k=1 i=1 v
Now we push this cycle forward alonfty, and use projection formula. The first term vanishes for
dimension reasons and, ag; pushes forward toV,, by [2.18, the other terms provide the desired
result. O
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Remark2.22 As in the classical case, the string equation suffices to coeml intersection numbers
of Psi-divisors of abstract curves (s€e€ [K, 1.5.1]). Namiély_ a; = n — 3, the equation

(n—3)!
arl ... ap!
holds. This was proven i [KM07, 4.2] using the paper’s mhegorem[KMQ7, 4.1] (cited here in 2.114).
Note, however, that in order to prove the string equatiorsais wot necessary to use [KM07, 4.1].

(Tay "+ " Tay) =

Lemma 2.23. Letn > 4 and letfty : M,,.1 — M,, be the morphism that forgets the last leaf. Then

. M, ifI={0,k}orJ=1{0,k} for somek € [n],
fto.(div(er ) = { 0 othervéise } 00 "

Proof. The first part is shown i 2.18. So let us consider the secortd Plaere exist € I and;j € J,
both different from0. Consider a facet’ in M,, corresponding to a combinatorial type whereand

x; are adjacent to the san3evalent vertexi/. All ridges in M,,+1 mapping ontos’, are obtained
by attachingr, to any of the vertices. If not attached 9 the induced partitiom, B, C, D cannot
separate andj. If attached toV/, the induced partition i§0}, {i}, {j}, D. It follows from {0,i} #

I and{0,j} # J that D intersects boti and.J and therefore none of these types is contained in
div(ey)7). Henceo’ is not contained in the push-forward éfv(¢; ;). But M, is irreducible, thus
fto*(le((p]IJ)) =0. 1

Lemma 2.24(cf. [K] 1.5.2). For n > 4 we define
(w1]z2,23) = Y div(eny).

I|J
1€1;2,3eJ

Then
div(¢n) = (21|22, 23).

Proof. We use induction on the number of leavesForn = 4, only the partition{1,4}|{2, 3} con-
tributes to the sum. Buliv(v;) as well asdiv(py 4)2,3) IS just the single vertex ioM4 parametriz-
ing the curvejxZ with weight 1. For the induction step, assume> 4 and consider the morphism
fto : Myn11 — M, thatforgets the leaf, and let/’|.J” be a partition ofn]. Thenfts(¢;|;) measures
the sum of the lengths of the edges separafirand.J’ if present. Hence we obtain

fto(0r10) = @rugoy s + €rruor-
Using the induction hypothesis, we conclude thgty, ) equals the sum on the right hand side except
for the partition{0, 1}|{0, 1}. This missing summand is providedby 2.16. O

Lemma 2.25(cf. [K] 1.6.1). Letn > 4 and letfty : M, +1 — M, be the morphism that forgets the
leafzq. Then
fto* (le(’L/JQ)) = (n - Q)Mn

Proof. 1. version: We express, as(zo|z1, z2) by[2.24 and use linearity of the push-forward. Lemma
[2.23 says that we geine M,, for eachyy i}(0,x3- and zero for each other; ;. As k runs through
{3,...,n}, the statement follows.

2. version: Alternatively we can obtain the result by direcomputing the number of facets dtiv ()
mapping onto a fixed facet iM,, as in[2.18: The ridges in,, .1 mapping onto a fixed facet iMm,,

are obtained by attaching the extra leadt an arbitrary vertex and in each case the correspondiigglat
index is1. Now each of these ridges had-aalent vertex adjacent tay, hence is contained idiv (¢).

So it remains to count the number of vertices @fFaalent rational graph with leaves, which is. — 2.
(Letv be the number of vertices, letbe the number of bounded edges. As there are no loops, we have
e = v — 1. On the other hand, count the number of flags in the given grapis is3v (each vertex is
3-valent, hence providesflags) as well age + n (each bounded edge provides two, each leaf provides
one flag). Plugging in gives = n — 2.) O
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Proposition 2.26 (Dilaton equation for abstract curves, cf.][K] 1.6.2et (I];_, 7.,) be a zero-
dimensional intersection product. Then

(ro- [T o) = (0 = 2)(] ] -
k=1 k=1

Proof. The proof is identical to the algebro-geometric one, usiddl 22.15[ 2.1, 2.25 and the projec-
tion formula.

As degree is preserved, we push forwérd- [],_, 7, ) along the forgetful morphisrft, forgetting

the extra leafry corresponding to the factat. To see what happens, we ise 2.17 (b) and replace each
termypt* by 5 (vr )% + ftg(¥r)* 1 - o, k. When we multiply the whole product out, all summands
containing a factop, j vanish when multiplied with), (sed 2.15). It follows

o - H et =1 - H fto (Y )"
k=1 k=1
and the projection formula together with.. (div(i)) = (n—2)M,, from[2:25 gives the desired result.
O

3. INTERSECTIONS ON THE SPACE OF PARAMETRIZED CURVES

A (labelled) degree\ in R” is a finite set of labels together with a map— Z" \ {0} to the set of
non-zero integer vectors. Furthermore the images of this, danoted by (x;),i € A as they will

later play the role of the directions of the leawgssum up to zero, i.€}_,_ , v(x;) = 0. The number
of elements inA is denoted by#A (to distingiush it from the support of a cycle). As an example

define theprojective degred (in dimension) to be the sef(r + 1)d] with the map

[(r+1)d] — Z"\{0},
1V..,d = —e€p,
d+1,...,2d — —eq,

rd+1,...,(r+1)d — —e,
where, as usuat,, . . ., e, denote the standard basis vectorsang=¢e¢; + ...+ e,.

Definition 3.1. An n-marked (labelled) parametrized curve of degrfeén R” is a tuple(C, h), where
C'is an[n] U A-marked smooth abstract curve amnd C — R" is a tropical morphism such that for all
leavest; the rayh(x;) C R” has directiorv(z;). Herewv(x;) is set to be zero if € [n]. The genus of
(C, h) is defined to be the genus 6f

Remark3.2 The leaves:;,i € [n] are callednarked leavesas they correspond to the marked points
of stable maps classically. Marked leaves are contractell biyr contrast to that we call the leaves
xi,1 € A non-contracted leave©ur curves are called “labelled” as also the non-contthigtaves are
labelled.

Two parametrized curve®’, h) and(C’, 1’) are called isomorphic (and therefore identified in the fol-
lowing) if there exists an isomorphisfin: C — C” identifying the labels and satisfyirig= %’ o ®.

Let us compare our definition to [GKMD7, definition 4.1]. Cdtiwhs (a) and (b) in that definition make
sure thath is a tropical morphism in our sense (at least locally; butiggeonsidering the universal
family of M'2°(R", A) we will see that a global integer affine mapmlways exists). Condition (c) is
also contained in our definition.

Let M'@(R", A) be the moduli space of rationatmarked labelled parametrized curves of degkda
R". Its construction as a tropical cycle can be found in [GKM@7)]. After fixing one of the marked
leavesr; asanchor leaf(we avoid “root leaf” as, from the botanic point of view, tligsnonsense), we
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can identify M'2(R”, A) with Mua x R, where the first factor parametrizes the abstract carve
and the second factor contains the coordinates of the imaigéqf the anchor leaf;. So again, cones
in M'2(R" A) correspond to combinatorial types of the underlying albstcarves, but this time the
minimal cone is not zero- butdimensional because we can move the curi’in

For enumerative purposes, we would like to identify curvémse only difference is the labelling of
the non-contracted leaves. L&, (R", A) denote the set of thesmlabelledcurves. Then the number
of elements in a general fibre of the mag'2°(R", A) — M,,(R", A) forgetting the labelling of the

non-contracted leaves equals the number of possibilitiéshiel a general unlabelled curve, which is

Al = H n(v)!,

veZ\{0}
wheren(v) denotes the number of timeccurs as(z;), i € A. Therefore each enumerative invariant
computed onM'3(R” A) must simply be divided byA! to get the corresponding one.vt,, (R, A).
From now on,I|J denotes a (non-empty) partition ¢f]U A (or {0} U [n]U A if we work with
Mfﬂl(RT, A)). Again such partitions can be used as global labels of tige®df our curves. The
direction of the image of the corresponding edge uridisrgiven by

V1) = ZU(Iz) = _(ZU(IJ))
icl jed

(as an exception, the ordering bfand.J plays a little role here, namely;; = —v; ;). We callI[J
reducibleif v ; = 0 (i.e. if the corresponding edge is contracted). This iseajant to requiring that
the corresponding splitted sefss = I N A andA; = J N A fulfill the balancing condition, i.e. are
degrees on its own. Also the marked leaves split upfinfe= {i € I|v(z;) =0} U{j € Iv(x;) = 0}.
In this sense, the partition corresponds (nearly) to a atimeal partition(.S’, 8’| S”, 5”) of the marked
pointsS = S" U S” and the degreg = 3’ + 3", occuring for example in the splitting lemnial[K] 5.2.1.
However, note that in the tropical setting it is possible ¢orpute non-contracted leaves with the same
direction vector betweeh and J without changing the corresponding conventional partitieence in
general several tropical reducible partitions corresgorttle same conventional partition.
In contrast to that, the irreducible partitiodi§/ do not have a counterpart in the algebro-geometric
moduli space. A way to explain this is the following. If we tgbw the length of the edgB.J towards
infinity, the image of our curve undérremains unchanged il J is reducible. If not, some part of the
curve (depending on where we picked our anchor leaf) moweartts the “boundary” oR”. In our yet
uncompactified tropical moduli space, we have no limit pdnthis movement. Hence, these partitions
stand for the difference between the boundary structurdsedfopical resp. algebro-geometric moduli
spaces. As a consequence, to recover classical enumeestifts tropically, one principally can follow
two strategies. One could try to compactify the tropical mospaces and extend intersection theory to
the new boundary; up to now, no rigorous attempts in thisctiva have been made. Or one must check
that a in particular count the irreducible partitioHs do not contribute (which in existing literature is
contained in proving the existence of an contracted edgawteM 4-coordinate is arbitrarily big, see

[GMO5, 5.1] and[[MRO3, 4.4]).

Note that, independently of the choice of a anchor leafgtegists a forgetful maft’ : M'2°(R", A) —
M jua forgetting just the position of a curve B This forgetful magt’ : ME(R", A) — M,0a
is a morphism of tropical varieties, as after choosing a ant@#af and identifyingM'2°(R”, A) with
Mpua x R”, ft’ is just the projection onto the first factor. We use this to refPsi-functions on
MPBORT A).

Definition 3.3 (Psi-functions for parametrized curvedjor a partition/|J of [n] U A we define the
functiony ), on MEP(R™, A) to beft’*(ga??ﬁ"), Where<p§‘?§“is the corresponding function okt .
Fori = 1,...,n we definethe k-th Psi-function onM'3(R”, A) to bey, = ft"* (42", where the

YPSUis thek-th Psi-function onM ;) a.

Remark3.4. Again, in spite of defining functions we are actually intéeesin its divisors. Note that by
[I.12 the pull-backs of the respective divisors do not depentthe particular functions.
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We can immediately generalize statenfent.14 to pararedtdarves.

Lemma 3.5(Intersections of Psi-divisors for parametrized curvésta,, . .., a, be positive integers
and letX = [],_, ¥ MB(R", A) be a product of Psi-divisors. Thenis the subfan afM'3P(R™, A)
consisting of the closure of the cones of dimension #A — 3 — >""" | a; whose interior curveg’
have the property:

Letk,. ...k, C [n] be the marked leaves adjacent to a vefiierf C'. Then the valence 6f is

val(V) = ag, + ... + ax, + 3.

Let us define the multiplicity of this vertex to helt(V) := (a"jl(v);f). Then the weight of such a
g
coneo in X is

wx (o) = Hmult(V),
v
where the product runs through all vertic&sof an interior curve ob.

Proof. Choose an anchor leaf and identify'®*(R", A) with Mpua X R". Thenft’ is just the projec-
tion on the first factor and we can apply [AR07, 9.6], i.e. éast of intersecting the pull-backs of tlfig
on the product, we can just intersect theon the first factor and then multiply witR2. Thus,

n

X = (JT*™ - Mpzua) x R”,

k=1
where herepgbs”denotes a Psi-function ai(,,;uA. Now, as the weight oR" is one and the combina-
torics of a curve do not change unde, the statements follows from 2]14. O

Lemma 3.6. Let ft; be the mapM!®, (R", A) — M @(R", A) that forgets the extra leaf, and
assumen + #A > 4 (andn > 1). Furthermore, letr;, z;, ), be pairwise different leaves. Then the
following equations hold (where all the occurring interien products are computed in'2°(R"™, A)

or M (R", A) respectively):
(@  (cfIZ8)
@ij - Pik =0
(b)  (cf.[2I5)
@ij- i =0
(c) (cf.[Z.18)

div(¢g) = div(ftg ¥r) + div(eo k)

(d)  (cf.IZIT (@)
0ok = — fto(1r) - po.k

(e)  (cf.ZITY (b))

P = ft5 (V) + fto(vr) "~ - ok
() (cf. 2172 (c))

P = ftg () + (—1)* 1l 4
(@)  (cf.[ZI8)
fton (div(ipo,k)) = foo. (div(ep)) = MR, A)

(h) (cf.[223)

lab/mr H _ _

fto. (div(gr ) = { .(/)\/ln (R™, A) gtﬁe;véits),ek} or J = {0, k} for somek € [n],
()  (cf.223)
div(en) = (zilaj, o) == Y div(en),

11J
i€l j,ked
where the sum runs also througbn-reduciblgartitions.
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G)  (cf.EZZB)
fto. (div(1hp)) = (n + #A — 2) MR A),
(which isdifferentto the algebro-geometric factor — 2 that equals the abstract case).

Proof. As in the proof of 3.5, we apply JAR07, 9.6] to the morphisrh: MBEP(R™, A) = M, ua ¥
R" — M, jua forgetting the position irR”. This means that instead of computing the intersection
product onM'@(R™, A) we can compute them oM |,,;jua and therefore use the corresponding state-

ments for abstract curves. For statemgnis (h[ahd @lseuset, = t3°"x id. O

Definition 3.7 (Evaluation maps and its pull-backsjheevaluation mapv,, : M'2°(R", A) — R", for

k € [n], maps each parametrized cui¢g 1) to the position of its:-th leafi(zy) (see [GKMOY, 4.2]).

If we choose one of the marked leaves, sayas anchor leaf, then the evaluation maps are morphisms
from M|, jua x R" to R" obeying the following mapping rule:

(Cabstr7 P) — P+ Z (p”J(Cabstv) v

I|J
acl ,keJ

In particular, if our anchor leaf is chosen to bg thenevy, is just the projection onto the second factor.
LetC € Z&H(R") be givenbyC = hy - ... h; - X. Then we can apply 112 which states that there is a
well-definedpull-back ofC' alongevy,

evi(C) :=evi(hy) ... -evi(hy).

Proposition 3.8(Univeral familyfto, ev, for parametrized curves).etp be a pointinM'2°(R”, A) and
letC, = ft; ' (p) be the fibre of under the forgetful morphisti, : M2 (R", A) — MBR", A).
Then the following holds:

(a) When we equip all its facets with weightC), is a rational smooth abstract curve. Its leaves
are naturally[n] U A-marked byL; := {y € C}|¢0.(y) > 0}.

(b) The tuple(Cy, evo |ic,|) is ann-marked parametrized curve of degrée Moreover,p repre-
sents(Cy, evo ||, )

() Letd . pkpr = @1+ -+ Pnigpa—s - MEB(R", A) be a zero-dimensional cycle iIn'3(R", A)
obtained as the intersection product of convex functipnpsThen

15 (1) -t (Praga—s) - MBS (RT,A) =Y~ G,
k

We write this ast; (>, pepr) = Dk 116Cpy -

Proof. (a): First of all, let us fix an anchor leaf,,a € [n] in order to identifyM'3® (R", A) =
Mot gast x RT and ME(R”, A) = Mpj0a x R™. We use agaifity = ft3°°"x id, whereft3**"is
the corresponding forgetful map on the abstract spaces filedibre ofp = (p’, P) equalsC},, x { P},
whereC,, is the[n| U A-marked rational smooth abstract curve considerédin 2E¢).

(b): We have to check that the direction of the rays(L;) are correct. For curves ib;, the only length
that varies is that of the third edge adjacent to the sauvalent vertex as; andxz,. Hence we can use
the description oév, in[3.4 and obtain for alj € L;

evo |z, (y) = Q + ©0,i(y) - v{0,i}|{0,i}e

where@ € R is some constant vector. Butg ;}(10,:3c = v(z;) + v(z0) = v(x;) is the expected
direction.

To show thap = (p', P) representsC),, evo ||c,|) it actually suffices to prove that the anchor ldaf
of C, is mapped to the poir® underev,, which is obviously the case asy |, = ev, |1, andev, is
just the projection on the second factor@j x {P}.

(c): We can use literally the same proof as in the abstrae{Za (d) using_3Ig (). O
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Notation 3.9 (Tropical Gromov-Witten invariants)Let us now extend our-notation to the case of
parametrized curves. For any positive integers . ., a, and complete intersection cycles, ..., C,
€ Z¢"(R") we define

(Tar (C1) -+ T (CR))A =0 - evi(Ch) - i - evi(Cr) - MEP(RT, A).

Once again, each factey, (C},) stands for a marked leaf subjectdgp Psi-conditions and to the condi-
tion that it must mee€;,. Letc;, be the codimension afy, in R™. If 3 (ax + ¢) = dim(MP(R", A))
=n+ #A + r — 3, the above cycle is zero-dimensional and we denote its ddayre

(a1 (Ck) -+ Ta,, (Ck»ﬂg-
These numbers are call&édpical descendant Gromov-Witten invariants
Remarl3.10 (Enumerative relevance of tropical Gromov-Witteraimants) Let (7, (C1)-. . .-74, (Cp))
be an intersection product as defined above. If weXset [],_, ¥{* - MR, A) and apply LI5 to
the morphismsv;, : X — R”, we can conclude the following (as discussef in11.16): Aftptacing

all the cyclesC) by general translations (callegtneral conditionsn the following), Z := 7,,(C1) -
...~ Ta, (Cy)) is the set of curve€’ such that

e every verteX € C with adjacent marked leavés, . . ., k, fulfills
val(V)) > ag, + ... +ag, + 3,
e forallk =1,...,nitholds
er(C) € Ck.

Additionally, the facets of (i.e. general curves) are equipped with (possibly zeroyhisi

Moreover, assume that all the cyclés can be described by convex functids: - - ; - R". Then by
[I.T0, all these weights are positive (in particulai, reallyis the set of such curves).

Thus, if Z is zero-dimensionalleg(Z) = (74, (Ck) - ... - 74, (Ck)) is the number of curves satisfying
the above properties, counted with a certain integer migiiyyweight. Now again, if allC can be
described by convex functions, all these multiplicitiesl am particular(r,, (Cx) - ... - 7, (Ck)) are
positive.

Remark3.11 Letfty : M (R", A) — MBP(R", A) be the morphism that forgets the leaf. Then
by abuse of notation the equation

ftz(evk) = evy
holds for allk € [n].

Theorem 3.12(String equation for parametrized curves, Cfl [K] 4.3.1L¢t (70(R") - [T_; 7a, (Ck))a
be a zero-dimensional cycle. Then

(To®") - [ 7ar (Ck))a =D (7ap—1(Cr) - [ ] 7, (C1) -
k=1 k=1 £k
Theorem 3.13(Dilaton equation for parametrized curves, £fl [K] 4.3.The following equation holds:

(T R") - ] 7ar (Ck))a = (n+ #A = 2)(] ] 7ar (Ci))ar-

k=1 k=1
Proofs. In both cases, the proofs are completely analogous to thiemabsase using 3.6 abhd 3111

Remark3.14 Note that the factor appearing in the dilaton equation ifekht from the algebro-
geometric one, due t. () = (n + #A — 2) - M3(R", A) (cf. BE[Q])).

Lemma 3.15(cf. [K] 5.1.6). Leth be a rational function. Then
evi(h) - pri - MEP(R™, A) = evi(h) - ppy - MEP(RT, A)
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Proof. In all curves corresponding to points div(yy ), the leaved: andi lie at a common vertex.
Therefore their coordinates R™ must agree, which means;, || aiv(,, )| = €Vi || div(e,,)|- The result
follows.

For a given labelled degre&, we definej(A) to be the associated unlabelled degree in the sense of
subsectioh 1]55(A) is the one-dimensional balanced faniif consisting of all the rays generated by
the direction vectors;,, k € A appearing imA. The weight of such a rait>v, wherew is primitive, is
given by

Z |Zv | Zvy,|.

kEA
Vg EL>0V

Obviously, let(C, h) € M'3(R", A) be an arbitrary:-marked parametrized curve of degragthen
by definitiond (h(C)) = 6(A) holds.
For a given rational functioh on R” we defineh - A to bedeg(h - 6(A)).

Proposition 3.16 (cf. [K] 5.1.5). Let i be a rational function orR” and defineY := ev{(h) -
M (R™, A). Then

fto. (V) = (h- A)YMPP(R" A).

Proof. As our moduli spaceV?®(R", A) is irreducible, we know thaft. (V) = a - M3(R", A) for
an integery. To compute this number, we set:= n 4+ #A +r — 3 and consider the zero-dimensional
intersection product = ¢ - - - ¢,,, - M(R" A) of arbitrary convex functions, . . ., ¢,,, such that
deg(Z) #0(e.9.Z = ¢*™" - evy(P) for some pointP € R"). If we pull backZ alongft,, we know
by the projection formula

deg(evo(h) - ft5(Z)) = a - deg(Z).
On the other hand, by the universal family propertyftgfwe know thatZ is the union of the curves
represented by the points i (with according weights) and therefore the push-forwaig (ft;(Z2)) is
rationally equivalent to its degree

8evo. (ft5(2))) = deg(Z) - 6(A).
So, applying the projection formula teo, we obtain

deg(evo(h) - ft(Z)) = deg(Z) - (h - A).

But this impliesh - A = «, which proves the claim. O

Theorem 3.17 (Divisor equation, cf. [[K] 4.3.2) Let h be a rational function onR” and let
(ITi—; Tax (Ck))a be a one-dimensional cycle. Then

(ro(h) - ] 7an (Co))a = (B AX] ] 7 (Ci)a + > (Tap—1(h- Ck) [ ] 7, (C1)) -
k=1 k=1 k=1

14k

Proof. First we us€3Jp () aid {a): We replace each fagforby ftg (1) + ftg (1)~ - o x and
multiply out. All terms containing twg-factors vanish. In terms with only one factps ;,, we replace
evo(h) by evy(h) using[3.Ib. Now we push forward aloffigy and produce the desired equation by

applyind 3.1 andto. (div(po,k)) = ME(R", A). 0

4, SPLITTING CURVES

The basic fact used to compute intersection invariantdfgf,, (X, 3) is the recursive structure of its
boundary: Its irreducible components correspond to rddeaurves with a certain partition of the
combinatoric data and therefore are (nearly) a product of‘swnaller” moduli spaces. In this section
we will investigate how far this principle can be carried otgethe tropical world.
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4.1. The case of abstract curves.

Definition 4.1. Let S be a finite set. ByM g we denote the moduli space p§|-marked tropical
curves M, g where we label the leaves by elementsSin For each partitior|.J of [n] we construct
the mapp;|; : Mrugay X Myugyy — @117 - My, by the following rule: Given two curve®;, ps) €
Miugey X M jugyy, We remove the extra leavesandy and glue the curves together at the two vertices
to which these leaves have been adjacent. We could also sagiuwer andy together by creating a
bounded edge whose length we define t@dbin the coordinates of the space of tree metrics, this map
is given by the linear map

PI\J : R(é) X R(g) — R(g)’

(pr,ps) — b

where

DIk if k,lel,

Pk, = ka,l if k,l S J,

DPIka +p~1y,l ifkellel.
Attention: This map doesotinduce a linear map on the corresponding quotients in whichmduli
spaces are balanced and thereforg is not a tropical morphism of our moduli spaces. Even more,
pr1s is not even locally linear around ridges of our moduli spaw@ssidered as balanced complexes
in the quotients. On the other hang, ; is at least piecewise linear (i.e. it is linear on all cones of
Miugey X Mjugyy)- Itsimage is a polyhedral complex, namely the positivé pap; ; - M, (i.e. it
consists of all (faces of) facefsx 2 with AU B = I).

Definition 4.2 (Morphisms of rational polyhedral complexed)et X andY be (rational) polyhedral
complexes. Then anorphism of polyhedral complexissa mapp : | X| — |Y| that satisfies for each
polyhedrornr € X

@) plo) €Y,
(b) plo is affine linear,
(©) p(As) C Ap(a)'

We call p anisomorphism of polyhedral complexiéshere exists an inverse morphism. It other words,
an isomorphism is a bijection betwegki| and|Y'| (as well as betweeX andY’) andp(As) = A,
forallo € X.

Lemma 4.3 (Intersections of Psi-functions with the boundaryhe facets of the fap; - ¢7* - ... -
P - M,, with positive weight are precisely the cones M,, with the following properties:
Consider a curve in the interior of. Let E(V) € [n] be the set of leaves adjacent to a vertéand let
P(V) be theval(V')-fold partition of [n] obtained by removin§™. Then the following holds:

(a) There exists one special vertEgecwhose partitionP (Vsped is a subpartition off |.J and whose
valence i3, c vy ax) + 4-

(b) Letm; be the number of sets iR(Vsped contained inl. Thenm; + 1 = (ZkeE(V)m ax) +
3 (together with (a), the analogue; + 1 = (Z%E(Vm] ay) + 3 follows). In particular,
myr,my > 1.

(c) The valence of all other verticd$ equals(}_; ¢ ;v ax) + 3.

Furthermore, the facets of; ;- 7" - ... -¥a~ - M, with negative weight fulfill the same properties (a)
and (c) and the property

(b") Letm; (resp.m ;) be the number of sets iR(Vsped contained inf (resp.J). Thenm; =1 or
my = 1, i.e.I S P(‘/Spec) or J S P(‘/Spe(;).

Proof. We know howX := ¢{* -...- 9% - M,, looks like by[Z.I#. In the combinatorial type of a facet
of X the valence of each vertex(3_, . (v ax) + 3; in the combinatorial type of a ridge, there is one
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special vertewspecwith vaIence(ZkeE(V) ai) + 4. The balancing condition of a ridge is given by the

equation
Zwl/|J/V]/‘J/ = Z )\I/‘J/Vlll‘]/’
IJ’ g
IIGP(Vspec)

where the left hand sum runs through all superpartitibing’ of P(Vsped Not appearing in the right
hand sumw;/|;» denotes the weight of the facet obtained by inserting an édgéand ;| ;. is some
(rational) coefficient. Therefore the weightthat this ridge obtains when intersectingwith o, ; is
given by
0 if I|J is nota superpartition of (Vsped,
w=q Ay if 1€ P(Vsped OrJ € P(Vsped,
wry otherwise.

This already shows two implications: As all weightg, ;. are at least non-negative, a ridge can only
obtain a negative weight if it fulfills conditions (a), (b'hd (c). On the other hand, if a ridge of
satisfies properties (a), (b) and (c), then; and hence the ridge obtains a positive weight. It remains
to show the converse, which can be done by proving thaxall. are non-negative. To see this, we

consider the balancing equationmg) and compare some coordinate entries.

Let K be an arbitrary element dP(Vsped; We want to show thakx = Ak|k- IS hon-negative. We
choose two more arbitrary elemtnis, L, in P(Vspeg and fix some leavek € K, [, € L;. Now the
k,l;-entry of the right hand side equals + Az, and analogously thg, ls-entry equals\z,, + Ar,.
Therefore, by adding the twip, ;-entries and substracting the i>-entry we geAx. Meanwhile, on
the left hand side we get

2)\]{ = Z QJ]/‘J/ =+ Z w1/|J/ — Z QJ]/‘J/
g’ '’ g’
kel kel’ Lel
et laeJ’ lreJ’
= Zal/‘J/wI"J'a
g
where
2 ifkel, l,loeJ
o 0 ifk,lléf/, lhaeld
I =N 0 itk el, e
0 ifkl,lael.
But as all the weights /| ;» are non-negative, it follows thaty is non-negative. O
Lemma 4.4. The map
P11 : (ngk 'Mlu{z}) X (H Pt 'MJU{y}) — (org Y7 Y M) *
kel keJ

is a well-defined isomorphism of polyhedral complexes.

Proof. We have to check the conditions[of 4.2. Using the lengths @bitunded edges as local coor-
dinates on the cones, this is straightforward. The inverap is given by splitting a given curve at its
special verteNspeo O

4.2. The case of parametrized curves.

Definition 4.5. Let I|.J be a reducible partition and I&t;, A ; be the corresponding splitting of the
tropical degreé\. Let Z = max(x1,¥1) - ... - max(x,,y,) - R" x R" denote the diagonal iR” x R"
and consider the map

CVy X €Vy ! Mllag{z}(RT7 A[) X Ml?g{y}(Rr, AJ) — R" x R".
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We define
Zyy = (eve x evy)*(Z)
We furthermore define;; : Z;.; — MEP(R", A) by

Miugay X RT X My xR™ — Mpua xR
((p1,P),(ps,Q)) — (p(pr,ps),P),

where we choose the same anchor leat¥ef)), ,, (R", A7) and ME°(R", A).

Lemma 4.6. The map

Trg t Tl Zpy g = (e -t MR A))T

is a well-defined isomorphism of polyhedral complexes.

Proof. This follows from[4.4 and fronev, |z, , = ev, |z, , (which follows from boti1.T1% is
described by convex functions) as well as flﬁméz(x ev, can be considered as a projection)).]

Remark4.7. Obviously the positions of the marked leaves are preseradédn; ;, i.e. (by abuse of
notation) fori € I (resp.j € J) it holdsev; om;; = ev; (resp.ev; omy; = ev;).

Lemma4.8. LetE = (¢g)s - 74, (C1) - . .. - Ta, (Cn)) A be a zero-dimensional cycle. Then all points of
Eliein (pr, - ft -... - dar - MR, A))*,

Proof. By[L.] we can compute the weight of a pgint E locally aroundin X := @y ;97" -. . .-9pin -
ME(R™, A), namely we can focus ditary (p). Assumep ¢ (o717 - i - ... o - ME(R", A))*.
Then curves corresponding to pointsSitar x (p) contain a bounded edge corresponding to the partition
I|J (sed4.B). But ag|.J is chosen to be reducible, this edge is a contracted bourntigriehose length
does not change the positions of the marked leav&$ inTherefore, if we denote bay = evy x ... x

ev,, the product of all evaluation maps, the imagesedr x (p) underev has smaller dimension which
impliesev.(Starx (p)) = 0. Hence, by projection formula, the weight@fn £ must zero. O

We now simplify the situation by choosing general incideogeditions. The following statement com-
binedI.Ib, in particular item (c), and the preceding result

Corollary 4.9. LetE = (@7 - 70, (C1) - . .. - Ta,, (Cn)) a b€ a zero-dimensional cycle. If we substitute
the cycles”; by general translation, we can assume that all point&die in the interior of a facet of
(@rpg -t ... % - MBP(R", A))T. This operation does not change the degre® dfy remarkLIB.

Proposition 4.10. Let E' = (@77 - 74, (C1) - ... - 74,,(Cr)) A be a zero-dimensional cycle. Then the
equation

<SOI\J " Tay (Cl) e 'Tan(Cn»A = <Ta1 (Cl) e Tay (Cn) : ZI|J>AI7AJ
holds.

Proof. We denoteX := 7" -... ¢ - Zp ;andY = @7 -7 - .- ahpn - MR" A) and assume
that the condition€’; are general. Thdn 4.9 implies that, for each ppiat £, we have an isomorphism
of cyclesry; : Starx(wflb(p)) — Stary (p). By[1.1 this suffices to show that the weightspoénd

wﬂ},(p) in their respective intersection products coincide. O
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4.3. Splitting the diagonal. Up to now, we have seen that intersecting with a “boundamtfiony; ;
leads to intersection products in two smaller moduli spate®,  (R", A7) and M50, L (R™,A).
However, the factofev, x ev,)*(Z) still connects these two smaller spaces. In order to finaliye

at recursive equations of Gromov-Witten invariants, iteésidable to distribute this diagonal factor onto
the two moduli spaces and to obtain independent interseptioducts there. In the algebro-geometric
case, this can be easily done asdlessof the diagonal in e.g.P” x P" can be written as the sum of
products of classes in the factors

(2] = [L° x L")+ [L' x L") + ...+ [L" x L7,

whereL’ denotes ai-dimensional linear space Bi. But this camotcopied tropically (see below). For
the first time, we face a serious problem which is connectétetmon-compactness of our moduli space
MPP(R™ A): Our notion of rational equivalence is “too strong” for tiapplication, as it is inspired
by the idea that two rational equivalent objects should lbiemal equivalent irany compactification.
However, we will discuss here how far the conventional plamloe carried out anyways.

The general plan is the following: Set

Xp = (0(R") - [ ] 7ar (Ck))a, in M0, (R™, Ar)
kel
and
Xy = (@) [[rC)a,  in M, R, A)).
keJ
We want to compute the degree of
(Tay, (C1) - oo Ta, (C) - ZI\J)AI.,AJ = (evy X eVy)*(Z) (X7 x X),

or, by the projection formula,
deg(Z - (evyx(X1) x evy(X))).
Now we would like to replace the diagonglby something like

Si=Y (Ma x Ny,
whereM,, N, are cycles inR” such thatS intersectsev,(X;) x evy(X;) like Z. But note thatS
cannot be rationally equivalent 6 (in the sense of [ARQ8]), as this would imply that both cyaiasst
have the same recession fan, i.e. must have the same dietdiwards infinity. To come out of this, we
need more information about how the push-forwards X ;) andev, (X ;) look like; in particular, we
would like to know how their degrees/recession fans can likek Let us formalize this first.

Let © be a complete simplicial fan iR™ and letZ, (©) be the group ok-dimensinional cycleX whose
support lies in thé-dimesnional skeleton @, i.e. | X| C |©*)|. Fix a basis ofZ.(0) := ©}_,Z1(O)
denoted byBy, ..., B, (where we may assumg, = {0} andB,, = R"). If the degreej(X) of an
arbitrary cycle is contained i#, (©), we sayX is O-directional For such a cycle there exist integer
coefficients\. such thatX ~ §(X) = >7" | A\.Be..

For each ray € ©(1) with primitive vectorv, let ¢, be the rational function o® uniquely defined by

_J 1 it =p,
Polvy) = { 0 otherwise

Lemma 4.11. The linear map

Z*(e) - Zm+17
X = (deg(BOX)avdeg(BmX))a

(wheredeg(.) is set to be zero if the dimension of the argument is non-reimjective.
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Proof. Let X € Z;(0©) be an element of the kernel, which implies tdag(X - Y) = 0 forall Y €
Z.—1(©). Now, in fact the remaining is identical to the proof bf [ARA8&mma 6]: Assume thaX’
is non-zero and therefore there exists a cone ©%) such thatwy (o) # 0. As © is simplicial,
this cone is generated Byraysp, ..., pr. Let us considerp,, - X and in particular the weight of
7 := (p1, ..., pr—1) in this intersection product: As primitive vectog,, we can us Aa/Ai+Ap,€ [Vpx
(it might not be an integer vector, but modufp, it is a primitive generator of). Analogously, we can
get any primitive vector around as a multiple of an appropriatg. But asy,, is zero on all of these
vectors buw,, , we get

wx (o)
. =——""—#0.
w@ﬁk X(T) |AU/AT + Apk| #
Now induction shows
wx (o)
deg((ppl o Ppr X) = w‘/’pl"'sapk-X({O}) = |A /Ap ¥ ¥ Ap | 7é 0.
of/Ap + . .

This means we have founddirectional cycle” := ¢, - - - ¢, -R" € Z,_1(©) with deg(X-Y") # 0,
which contradicts the assumption thatis an element of the kernel. O

With respect to the basiBy, . .., B,,, the map defined in the previous lemma has the matrix repre-

sentationw := (deg(B. - By))es. Obviouslya is a symmetric matrix. The lemma implies that this
matrix is invertible overQ, and we denote the inverse by.¢).s. The coefficients of this matrix can
be used to replace the diagoabf R” x R” by a sum of products of cycles in the two factors (namely
> .t Ber(Be x By)) — at least with respect t©-directional cycles.

Lemma4.12. LetX ~ > A.B.,Y ~ Zf e B. be twoO-directional cycles ilR” with complemen-
tary dimension. Then

deg(Z - (X x Y)) = deg(X - Y) = 3 deg(X - B.)fes deg(Y - By).
e f

Proof. Denote) := (A1, ..., A ), it := (U1, - - -, ). We get

> _deg(X - Bo)Besdeg(Y -By) = (a- AT -5 (ap)
e.f
- )\T-aT-ﬁ-a-u
= MN.a-B-ap
M ap=deg(X -Y).

Using this, our original goal of deriving a tropical splittj lemma can be formulated as follows.

Theorem 4.13(Splitting Lemma, cf. [[K] 5.2.1) Let E = (g7 - [Th_; 7. (Cx))% be a zero-
dimensional cycle, wheré&|.J is a reducible partition. Moreover, let us assume tats a complete
simplicial fan such that (with the notations from abowve) (X;) andev,(X ;) are ©-directional. Let
By,. .., B,, be abasis o, (0) and let(S.s).; be the inverse matrix (oved) of (deg(B. - By))e;-
Then the following equation holds:

{erps - klillTak(Ck»A = (11 7a(Ck) - 70(Be))a; Bey (To(By) - kl;[]Tak (Cr))a,

e.f kel

Proof. Follows from the general plan above dnd 4.10. O
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Remark4.14 The toric version of this subsection could be formulatedadisws: We fix a complete
toric variety X corresponding to the simplicial fa®. The geometric meaning of the fact thtats sim-
plicial is that every Weil-divisor ofX is also Cartier. The grouf; (©) equals the group of Minkowski
weights of codimension — k and therefore is isomorphic to the Chow cohomology grdtip* (X ) of

X (cf. [FS94]). Consequently, the badis, ..., B,, corresponds to a basis of the cohomology classes.
Constructing the functiong, by determining its values on the rays is analogous to coctitigithe
Cartier-divisor whose corresponding Weil-divisor is tbheus-invariant divisor associated o It was
shown in subsectidn 1.8 that our tropical intersection pobdoincides with the fan displacement rule
in [ES94] and therefore compatible with the cup-produchef torresponding cohomology classes. In
particular, this shows that the matrideg(B. - By)).sy and its algebro-geometric counterpart coincide
(in particular[4.Ih also follows from the correspondingeddro-geometric statement). Moreover, this
implies that the coefficients. ; appearing in the splitting lemma really are the same as iasheciated
algebro-geometric version.

4.4. The directions of families of curves. In order to recursively determine invariants, the abovi-spl
ting lemma is only useful if, at least for a certain class ogimants, the fan of directior® is fixed and
well-known. This is one of the main problems when transfertthe algebro-geometric theory to the
tropical set-up. However, in this subsection we will shoattim some cases the problem can be solved.

Remarkd.15 In the easiest case, namely-if= 1, the situation is trivial: There is one unique complete
simplicial fan® = {R<(, {0}, R>(} and any subcycle i®-directional. Also, it is obvious th&f 412
holds (withBy = {0}, B; = R).

Let us now consider curves in the plane. Fet= (7o(R?) - []}_, Ta,C(C'k))ﬂﬁ2 be a one-dimensional
family of plane curves (with unrestricted leaf). We defined (F) to the complete fan ift? which con-
tains the following rays: All directions appearingdnand furthermore all rays it Cy, ) if dim(Cy) = 1
anday > 0.

Lemma 4.16. Let F = (1o(R?) - [[1—; Tas (C;C))]lg2 be a one-dimensional family of plane curves (with
unrestricted leafry). Let us furthermore assume that < 1 if dim(C%) = 2 (i.e. if a leaf is not
restricted byev-conditions, only one Psi-condition is allowed). Then, (F') is ©(F)-directional.

Proof. As before, we replace each factof* by ft (1) + ft5(vr)* 1 - o x and multiply out.
Consider the term without-factors: It is the fiber of [, _; 7., (Cx))a (which is finite) undeft, (see
univeral family propert{/318) and moreover the push-fohafrthe fibre alongv, is just the sum/union
of the images irR" of the parametrized curves corresponding to the poinfgjn, 7., (C))a. But
these curves have degrée thus by definition their images aé¥ F')-directional.

So let us consider the term with the factay ;. Here,evy andev, coincide (se€3.15), so we can in
fact compute the push-forward aloag,. Asevy = evy, o ftg (by abuse of notation), we can first push-
forward alongt, and get the terniir,, —1(Ck) - [ [,y 7a, (C1)).

Now, if dim(C%) = 2, by our assumptions;, — 1 = 0 — in which case we can use induction to prove
the statement — or this term does not appear at all.

On the other hand, ilim(C%) = 0, 1, we can use the fact that the push-forward is certainly ¢oath
in C}, — thereforedim(C},) = 0 s trivial anddim(C},) = 1 works as we added the directions@f to
O(F) if ar, > 0.

This finishes the proof, as all terms with masdactors vanish. O

Remark4.17. A weaker version of this lemma can be obtained by directhegtigating on how the
image undeev, of an unbounded ray i’ looks like, using general conditions (seée [MR08, 3.7]).

Remark4.18 Consider the familyF = (7(R2)7o(P)72(R2)E" = evi(P)-12- M3(R2, 1) of curves
of projective degreé. It consists of the following types of curves:
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0\ % 12
P
GVQ l evo GVQ
eVO*
Its push-forward alongv, also contains the inverted standard directi¢hd)), )and(—1,-1).

Therefore this family is a counterexample of our statemiewei drop the cond|t|0n on the number of
Psi-conditions allowed at leaves not restricted by incigeronditions.

Remark4.19 For higher dimensions-(> 2), only few cases are explored. If we restrict to projective
degreed and banish all Psi-conditions, i.e. for a fami#y = (70(R") - [T;_, 70(Ck))a Of arbitrary
dimension, it is proven il [GZ] thatv,.(F') is ©-directional, where is the complete simplicial fan
in R” consisting of all cones generated by at mosf the vectors—eg, —eq, ..., —e,.. We conjecture
that a similar proof also works for Psi-conditions at painfaditions. Beyond this, the behaviour of the
push-forwards is mainly unknown up to now.

5. WDVV EQUATIONS AND TOPOLOGICAL RECURSION

5.1. WDVV equations. Letz;, x;, zi, z; be pairwise different marked leaves and consider the foerget
ful mapft : MEP(R", A) — M jxy-

Lemma 5.1. The equation

B (Prpen) = D $1

IJ
i,jel ke

holds, where the sum on the right side runs throatiffalso non-reducible) partitions with j € 7 and
k,leJ.

Proof. Note thatft (V7 7) = Vingijkiyongiki- Therefores(ft(Vy ;) = 1if 4,5 € I,k,1 € J and
zero otherwise. O

Now we face the crucial difference to the conventional sgttiThe right sum also runs over non-
reducible partitions, which do not correspond to sometinipe algebro-geometric case. Let us add
up only thosep; ; with I].J non-reducible and denote the sumdayi.e.

Gijied = >, @1

I|J non-red.
i,jelkled

We would like to show that; ;. is bounded, as then it would not change the degree of a zero-
dimensional intersection product and could derive the dammeulas as in the conventional case. So let
us investigate what this fucntion measures:

Let F' = ([1,_; 7ax (Ck))a be a one-dimensional family of curves with general condgioConsider

a facets of F' representing curvesith contracted bounded edde(calledreducible curves Then we

can change the length é&f while keeping all other lenghts and our curve will still matbe incidence
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conditions. As our conditions are general, the set of cufu#fdling the incidence conditions set-
theoretically is alsd-dimensional. Hence, all curves injust differ by the length of, whereas all
other lengths are fixed. But this means tha});, ; is constant om.

Now, leto be a facet of representing curvesithoutcontracted bounded eddge(callednon-reducible
curvey. This means, for all non-reducible partitiohls/, the respective functiop; ; is identically zero
ono. Therefore, ow, ¢; ;. coincides withft™ (v g; 3 (k.i})-

Lemma 5.2. Let F = ([],_; 7a, (Ck))a be a one-dimensional family of curves with general condi-
tions. Leto be a facet of. Then

b5 ialy = ®1ijy{k,y © ft if interior curves ofo are non-reducible
vilktle = const otherwise

In other words: Proving thap; j;; is bounded on a family one-dimensional famityis the same
asproving that curves inf’ with large M, ; 1 ;-coordinate must contain a contracted bounded edge
This is the way of speaking in existing literature (e.g._[GI@roposition 5.1],[[KMOB, proposition
6.1], [MROE, section 4]). We will address this difficult pden in its own subsection and first state the
desired results here.

Lemma 5.3(cf. [K] 5.3.2). Let F' = ([];_, 7a, (Ck))a be a one-dimensional family of curves. Fur-
thermore assume thay ; ;. ; is bounded. Then the equation

" (epaymn) - raCa= D (ens- 11 7a(Ck))a
k=1 1|.J reducible k=1
ijelkie]

holds.

Proof. This follows from[5.1 and the fact that the degree of a bourfdedtion intersected with a one-
dimensional cycle is zero. Thereforegif ;. ; is bounded, the degree of

(Bi, ki - H Tar (Ck)) A

k=1
is zero and hence this term can be omitted. O

Finally, we can state the following version of the WDVV eqoas:

As before, we fix a complete simplicial fa® and a basis3y, ..., B, of Z.(0). Furthermore, let
(Bef)er be the inverse matrix (oveéd) of the matrix(deg(Be - By))e;-

Theorem 5.4(WDVV equations, cf. [[K] 5.3.3) Let F¥ = ([[;_, 7a, (Ck))a be a one-dimensional
family of curves and fix four pairwise different marked leswg z;, 1, x;. Moreover, we assume that
the following conditions hold:

(a) For any reducible partition/|.J with,j € I;k,l € Jor i,k € I;4,1 € J the push-forwards
ev;(Xr) andev, (X ;) are ©-directional (with notations from secti¢n 4).
(b) The functionsp; ;.,; and; 1, are bounded orF".

Then the WDVV equation
> Y (7 (Ck) - 7o(Be))a, Bes (10(By) - kl;[]Tak(Ck)MJ

I)J reducible e,f FEL
ijel kit

= > D7) 7o(Be)as s (o(Bp) - T rau (Cia,

1| reducible e, f F€!
i,kel, jled

holds, where the sums run through reducible partitions only



34 JOHANNES RAU

Proof. The statement follows frofi 5.3 and the fact that.bty; ; . ;3 the functionsey; ;14,3 and
©yikyI{j,0) are rationally equivalent. In fact, they only differ by adir function and therefore have the
same divisor, namely the single vertexir; ; 1. i} O

Remarks.5. In the algebro-geometric version of these equations [cf.5R.3] or (with proofs)[[EP,
equation (54) and (55)]) the big sum(s) usually run |K‘%1,52 ZAB, wheref;, 2 are cohomology
classes such that + 8, = S andA U B = [n] is a partition of the marks. We can proceed accordingly
and let our sum run through unlabelled instead of labellepleks, as unlabelled degrees correspond via
Minkowski weights to cohomology classes. If we collect alflucible partitiond U J = A U [n], such
that the unlabelled degre&&A ), 5(A ;) coincide, we obtain a class %fT elements. On the other
hand, as mentioned at the beginning of sedtion 3, countingesuith labelled non-contracted leaves
leads to an overcounting by the factzt, i.e. if 6 := §(A) is an unlabelled degree, we should define

(IT 7au (Ci))s = $<H Tar (Ck)) A
k=1

T k=1
So by switching to “unlabelled” invariants, the above facﬁel% cancels and we obtain

> > Z HTak Cr) - 10(Be))s; Bey (to(By) - 11 7a (Ck))s,
5101 AL Bl Ke kEB

Sr4d,=5
I+ i,jEA,k,ICB

= > Z anrak (C) - T0(Be))sy By (10(By) - TI 7ar (Ci)sss

01,65 Al B= keB
7= i kEA,_],lEB
which is now combinatorially identical to the algebro-geart version.

5.2. Topological recursion. In the same flavour as in the previous subsection, we will fsoulate
a tropical version of the equations known as “topologicelrsion”.

Let z;, z1, ; be pairwise different marked leaves. We know friom 2.24 thatoan express the Psi-
divisor; in terms of “boundary” divisors, namely

div(y;) = Z div(er)).
11J
i€l k,le]

Now again we give a name to the term that has no algebro-geicroetinterpart

Gkt =Y, Pr-

I|J non-red.
icl;k,led

As in the previous subsection, we can describe this funetsofollows.

Lemma 5.6. Let F' = ([[,_; 7a, (Ck))a be a one-dimensional family of curves with general condi-
tions. Leto be a facet of". Then

Sik il = > length of edge that seperateBom k., if interior curves ofo are non-reducible
ikt = const otherwise

Again, we fix a complete simplicial fa® and a basiBy, . .., B,, of Z.(0). Furthermore, letS.s).r
be the inverse matrix (ové) of the matrix(deg(B. - By))es

Theorem 5.7(Topological recursion, cf[[K] 5.4.1)Let F' = (T];_, 7a, (Ck))a be a one-dimensional
family of curves and fix three pairwise different marked ésay, =y, ;. Moreover, we assume that the
following conditions hold:

(a) For any reducible partition/|.J with ¢ € I;k,1 € J the push-forwardsv,(X;) andev, (X )
are ©-directional (with notations from sectidn 4).
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(b) The functionp;|;.; is bounded o

Then the topological recursion

(i - kli_llTak (Cre))a = Z Z [ 74, (Cr) - 10(Be))a, Ber (10(By) - I 70, (Ck))a,

I|J reducible e, f kel keJ
i€l k,led

holds, where the sum runs through reducible partitions .only

Remarks.8. In the same way as [n 3.5 we obtain the “unlabelled” version

(s HTak Ca= >, > D H Tar (Ck) - 10(Be))s; Bes (to(By) - 11 7a, (Ck))s, s
or, 57 AU B=[n] & f keB
’ i€ Ak,leB

which coincides combinatorially with the algebro-georiwatersion of this equation.

5.3. Contracted bounded edgesAs a preparation for the more difficult case of plane curvesfivst
assume: = 1.

Lemma 5.9. Let P, ..., P, be points in general position iRR! and letF = (I],_; 7a, (Pk))ﬂc}1 be
a one-dimensional family ioM'2°(R!, d). Then for any choice of marked leaves xj, T, 7, the
functionsg; j,,; and¢;;,,; are bounded o,

Proof. For general conditiond; set-theoretically coincides with the set of curves saitigfithe given
incidence and valence conditions. Consider a general alrge F'. ThenC' is also a general curve
in the Psi-productX’ := [];_, ¥;*. As we cut downX by n point conditions andlim(F) = 1, the
dimension ofX must ben + 1, henceC contains: bounded edges. AS is a rational curve, this implies
n + 1 vertices. Therefore there exists a vertéxot adjacent to a marked leaf, k € [n]. Now, either
one of the three adjacent edges is a contracted bounded Eage the deformation af’ in F'is given
by changing the length of this edge, but this does not atggf, ; or ¢, by definition. Or, if all of
the adjacent edges are non-contracted, the deformationmfF is given by moving” (and changing
the lengths accordingly).

U1 - v
e ——
V2

Note that the edge cannot be unbounded as its direction “vector” is not priveitiTherefore, if this
deformation is supposed to be unboundady» must be unbounded. But in this case only the length
of v grows infinitely. But asx does not separate any marked leaves, this does not ckiange and

Gilk,1- O

Now let us consider the case of plane curves, .e= 2. We fix the following notation: LetF' =
(I, Ta,c(Ck))ﬂi2 be a one-dimensional family of plane curves with generab@@ns and and let
LU MUN = [n] be the partition of the labels such that

0 ifkel,
codim(Cy) =41 ifke M,
2 ifkeN.

First we study how the deformation of a general cutvim F' can look like.
Lemma 5.10(Variation of [MRO8] 4.4) Let us assume

i) a, =0forall k € LU M,i.e. Psi-conditions are only allowed together with poiahditions.



36 JOHANNES RAU

Then the following holds:
Leto be afacet of' and letC' € o be a general curve. Then the deformatiortbihsides is described
by one of the following cases:

() C contains acontracted bounded edg€hen the deformation insideis given by changing the
length of this edge arbitrarily.
(I C has a three-valendegenerated vertéX of one of the following three types:

(a) One of the adjacent edges is a marked leaf L.

(b) One of the adjacent edges is a marked lgaf M and the linear spans of the corresponding
line C; atev;(C) and of the other two edges adjacentfaoincide (i.e. the curveS and
the C; donotintersect transversally atv, (C')).

(c) All edges adjacent td” are non-contracted, but their span netris still only one-dimen-
sional; w.l.0.g. we denote the edge alone on one sidé by v and the two edges on the
other side by, vs.

() (b) ()
i J
! /
/ /
v / [ v { V U1 v
1 ® 2 1 2
Cj v2

In all these cases the deformation insidés given by movind’.

(Il C contains amovable stringS, i.e. a two-valent subgraph @ homeomorphic t@® such that
all edges are non-contracted and all verticesSoéire three-valent irC' and not degenerated in
the sense of case (ll). Then the deformatioal given by moving' while all vertices not
contained inS remain fixed (in particular, only edges in or adjacentda@hange their lengths).

Proof. Again, for general conditiondy set-theoretically coincides with the set of curves saitigfyhe
given incidence and valence conditions. Thus finding themedtion ofC' inside o is the same as
finding a way of changing the position and the length of thengi®a edges of’ such that the resulting
curve still meets the incidence conditiofg.

Itis obvious that in the cases (1) and (I1) changing the lerafthe contracted bounded edge respectively
moving the degenerated vertexleads to such deformations.

In case (IIl) the non-degeneracy of the vertices makes batdbth ends of consist of non-contracted
ends and that a small movement of one of these ends leads tt-defieed movement of the whole
string (a more detailed description can be found in the pod{i¥IR08, 4.4]).

Finally, this list of cases is really complete, @salways contains a string whose vertices are three-
valent inC and whose ends are either non-contracted leaves or maikezklenl.. This follows from

the same calculation as in [MRO08, 4.3], with the only diffece that we have to replace the numbér

by #A. O

We have now seen how a general cuéves F' can be deformed. In a second step, we will now focus
on unbounded deformations.

Definition 5.11. A fan © in R? is calledstrongly unimodulaif anytwo independent primitive vectors
generating rays o form a basis ofZ2.

For a given degreA let ©(A) be the fan consisting of all rays generated by a directiotoveppearing
in A (i.e. ©(A) is the fan supporting(A)). A degreeA in R? is calledstrongly unimodulaif ©(A)

is strongly unimodular and if all direction vectors appegrin A are primitive. This ensures that for
every pair of independent vectars, vo appearing i, the dual triangle to the fan spanneddyy v
and—(v; + v9) does not contain interior lattice points.

Remark5.12 Let us investigate which (one-dimensional) fan®h (up to isomorphism) are strongly
unimodular. This discussion is also containedin][Fra,.5.3]
Let © be a fan inR? and let PG be the set of all primitive generators of rays@f W.l.o.g. we can
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assume that—1, 0) is contained inPG. Then being strongly unimodular requires that ¢heoordinate
of all vectors inPG is eitherl, 0 or —1. But note that two vectorgy, 1) and(3, 1) form a lattice basis
if and only if | — 8| = 1 (i.e. the vectors must be neighboursZink {1}). In particular, at most two
such vectors can appearitGG (and analogoushy®?’G can contain at most two vectors wighcoordinate
—1). Therefore letr = 0,1,2 (resp.s = 0, 1,2) be the number of vectors iRG with positive (resp.
negative)y-coordinate and let = 1, 2 be the number of vectors iRG with y-coordinate). Moreover,

for any two vectorga, 1) and(3, —1) we must havéa + 5| = 0 or 1 (i.e. (3, —1) must coincide with
or must be a neighbour ef(«, 1)). Keeping this in mind, we can distinguish the following es:s

@r=s=0,t=2
We obtain the degenerated f@p: , . Op1 i

by r=s=0,t=10orr=0,s#A00rr #0,s=0
In this case, the fa® can not appear &(A), as no assignment
of positive weights can make balanced.

C)r=s=1t=2

We obtain the two non-isomorphic fans — ©zixet Or,
Op1 p1 and@Fl.

dyr=1,s=t=20rs=1,r=t=2
Up to isomorphisms we obtain the fé&;, »2). Oni,(p2)

e r=s=t=2

We obtain the far® g, (p2). QBIS(P/

M r=s=t=1

We obtain the fa®p:. Op2 /

@ r=2,s>1,t=1orr>1,s=2t=1
In this cases|®| must contain a one-dimensional subspace.
Therefore, after applying an automorphismZf, we can as-
sumet = 2, which was dealt with in the other cases.

ThusA is strongly unimodular if and only if all direction vectorsegprimitive and®(A) corresponds
to one of the following toric varietieB* x K*, P2, P! x P!, Fy, Bl2(P?), Bis(P?).

Lemma 5.13(Variation of [MR08] 4.4) We assume

i) a, =0forall ke LUM,
i) A is strongly unimodular.
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Then the following holds:
Leto be aunboundedacet of F and letC' € o be a general curve. Then the deformatiorCoin o is
described by one of the following cases:

() C contains a contracted bounded edge whose length can be etlamnbitrarily.

(I) C has athree-valent degenerated vertéwf one the three types described above. Furthermore,
in the cases (a) and (b) (f5110 (1)) one of the edge®, is bounded, the other one unbounded,
whereas in case (c) the edgés bounded and, , v, are unbounded.

(Il C contains a movable string with two non-contracted leaves, v» and only one adjacent
bounded edge. The deformation of’ is given by increasing the length of

Furthermore, ifzy, k € M is a marked leaf adjacent t8, theni(zy) is a general pointin an
unbounded facet @f, whose outgoing direction vectodies in the interior of the cone spanned
byvl, V2.

Proof. Nothing happens in the cases (1), (Il) (a) and (b). In cag€g)| the edge cannot be unbounded
asv = —wv; — vy iS not primitive. Therefore the two edges on the other sid¥ ofiust be unbounded.
In case (lll), the proof of the first statement is fully comid in the last part of the proof ¢f [MRDS, 4.4]
(using the fact thad is strongly unimodular in the last step). The second statéouncerning adjacent
marked leavesy, k € M is obvious as the deformation is supposed to be unbounded. O

Theorem 5.14. Letx;, x;, x1, 2, be pairwise different marked leaves and let us assume

i) ap, =0forall ke LUM,
i) A is strongly unimodular,
i) ifi,j € M (resp.k,l € M), then for any pair of independent direction vectoysv, appearing
in A, the interior of the cone spanned by, v, does not intersect both degre¥g’;) andd(C;)
(resp.d(C) andd(Cy)).

Theng; ;1 is bounded.
If we additionally require

iv) i € N,

then alsog;,; is bounded.

Proof. As conditions i) and ii) hold, we can apgdly 5113, which delses the unbounded facets Bf

We have to show thap; ;.. (resp. ¢;x,;) is bounded on these facets. In case (1), the only changing
length is that of a contracted edge and therefore not medqsyréothg; ., andg; ;. In case (ll),

the edge whose length is growing infinitely cannot separatesrthen one marked leaf,, k € L U M

from the others. Therefore this length cannot contribute;tg;. ; and — by condition iv) — tap; ;.
Finally, condition iii) (and also condition iv)) is made suthaté; ;,, and¢;;,; are also bounded in
case (ll1). O

Remark5.15 The conditions i) — iv) appearing in the above statementsiat®nly sufficient but, in
most cases, also necessary for the statements to hold:

iv) If condition iv) in[5.14 is not satisfied, we can get theléoling things:
e If i € L, then the degenerated vertex of type (a) leads to an unbdunge.
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e If i € M andp is aray inC; whose direction vectar, also appears if\, then in general
we will find curves inF" with a degenerated vertex of type (b), whose unbounded merem
will make ¢;;,; unbounded.

e If i € M andp is a ray inC; whose direction vectar, lies between two direction vectors
v1, v appearing im\, this will in general lead to curves il with unbounded deformations
of case (lll) such that the outward directions afev, and such that; is adjacent to the
moved string. So agaiw; is in general unbounded.

i) If condition iii) is not satisfied, we will in general getnbounded deformations of the following

i)

type:

In this case we have j € M and the interior of the cone spanneddiyy v, contains direction
vectors of bottC; andC;. As in generalr;,, ; will lie on the other side of the growing edge
®i.4)k,. Will be unbounded.

If we drop conditionii), i.e. if we allow non-unimodulaegreeg\, two things can happen: If we
allow non-primitive direction vectors, then we get defotioas of type (II) (c) with unbounded
edgewv. Therefore the lengths af; and v, which can in general separate arbitrary marked
leaves, grow infinitely. I9(A) is not supposed to be strongly unimodular, then the degmnipt
of unbounded deformations of case (l11)In 5.13 becomesrieoo, as there will appear more
complicated strings with more adjacent bounded edges thetrope. The example @, is
analyzed in detail if [Fia] and [FM, e.g. 2.10].

If we drop condition i), i.e. if we allow Psi-conditionssa at marked leaves which are not fixed
by points, we end up with more complicated kinds of deforovatiof general curves ifi. The
following picture shows an example of an unbounded defaonah a one-dimensional family
of plane curves of projective degree

e

C € F = (r(C1)r1(Ca)m1 (Cs) 1 (Ca))E

Here,C has to meet all the four tropical lin€, . . . , C4 with one Psi-condition. Note that the
indicated deformation of' is indeed unbounded and that the length of(the-1)-edgee grows
infinitely. This example can be extended in the following w&ne can glue arbitrary (fixed)
curves to the non-contracted leaveg'din direction(1, 1), obtaining more families admitting
such a deformation. In particular, the edgean separate arbitrary kinds of points, showing that
in general; ;;.; andg;;,; can be unbounded for any choiceiof, &, [.
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In higher dimensions+(> 3), up to now only the following case is studied:

Theorem 5.16([Zim] 4.86). Let F' = (I],_, 7o(Vk))% be a one-dimensional family of curves of
projective degred in R” which donotsatisfy Psi-conditions, but incidence conditions giverctyven-
tional linear spaced’, C R". Then for any choice ofi, j, k, 1} € [n] the functiong; j ;. ; is bounded
OonF.

5.4. Comparison to the algebro-geometric invariants.In the special case of an empty degree, de-
noted byA = 0, the situation is analogous to the algebro-geometric one.

Lemma 5.17. Let Z = ([]}_, 7a, (Ck))o be a zero-dimensional intersection productM!2*(R", 0).
Thendeg(Z) is non-zero if and only i§"}_, codim(Cy) = r (or equivalentlyd~;'_, a = n — 3). In
this case,

n—3

deu(2) = ( ) descr-+- )

Ai,...,0n

holds.

Proof. By definition M!2°(R", 0) is isomorphic taM,, x R". Moreover, as\ = 0, all evaluation maps
ev; coincide with the projection onto the second factor, whiah tiverefore denote byv. Now let
X = [, v = (I, (v3sNar) x R" be the intersection of all Psi-divisors. Then the projectio
formula applied tev yields

deg(Z) = deg(Cy -+ - C, - evi (X)).
Butev..(X) is non-zeroifand only i, ar = n — 3. If so, byZZ22 we knowev..(X) = (,"7° ).
R", which proves the statement. O

Now we are finally ready to compare the tropical invariantsdiane tropical curves to the algebro-
geometric ones using the equations proven in the previdasestions.

Theorem 5.18. Let

e O be a complete (not necessarily strongly) unimodular faikfnand let X := X (©) denote
the corresponding smooth toric variety,

® V1,...,7 € A*(X) be cohomology classes &f, which correspond to Minkowski weights by
[ES94, theorem 2.1hnd denote by, . . ., C,, the corresponding tropicab-directional cycles,

e A be a strongly unimodular degree whose unlabelled ded(e¥) is ©-directional, and let
3 € AY(X) be the corresponding cohomology class.

e ay,...,a, be non-negative integers such that= 0 if dim(C}) > 0.

Then the tropical and algebro-geometric descendant GreWvidten invariants satisfy

S (C1) Ty (C)E = (s (1) 7o )

Proof. First we choose a basiy, ..., B,, of Z.(0©). Via [ES94, theorem 2.1] this also describes a
basisny, . .., nm of A*(X), and [ES94, proposition 3.1] together with11.9 prove that

deg(B. - By) = deg(ne - nf)

holds. This implies that, if we use WDVV equations or topabadj recursion with respect to these
bases, then the diagonal coefficiefity’ appearing in the tropical and in the algebro-geometriéraptt
coincide. Thus, as discussed in the rem&rk$ 5.5[afd 5.8 tmdens 1 (7o, (C1) - - - 7a, (Cn))a =
(T, (C1) -+ 7a, (Cn))s(ay @nd (7o, (1) -~ 7a, (7n)) 5 Salisfy a certain set of identical WDVV and
topological recursion equations (where on the tropicat sig have to be slightly more careful about
i, J, k, [ satisfying condition iii) and iv) df 5.14) as well as the sggiand divisor equation. Therefore we
can finish the proof by showing that the numbers can be cordpetirsively, using these equations,
from some initial numbers and that these initial numberadde.
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We separate the labels of the marked leaves into thesetd/ U N = [n] according to the (co)dimen-
sion of C}, as in subsectioh §.3. First we use topological recursiorethuce the number of Psi-
conditions: We pick a marked leaf; with a; > 0 (and therefore € N) and an arbitrary pair of
marked leaves;,, z; satisfying condition iii) of 5.14. If such,, z; do not exist, we can add them using
the divisor equation backwards with appropriate rationatfionshy, h;. Namely, if X = P! x P! we
can useh, = h; = max{0, z,y, z + y}, otherwise we can udg, = h; = max{0, z, y}. Note also that
this choice ensures thaj, - A = h; - A is non-zero for every possible degree, so we do not divide by
zero. After eliminating all Psi-conditions in this way, warcassume;, = 0 for all & € [n], i.e. we are
back in the case of usual (primary) Gromov-Witten invasamtfter applying string and divisor equa-
tion we can assume that= M = () and it remains to compute invariants of the fofpi,_, 70(Px))a
for pointsPy, ..., P, € R2. Comparing dimension showsA = n+ 1. Let us first consider the general
casen > 3. Here we consider the one-dimensional fanfily= (7, (C;)70(C}) Z;ll T0(Ps))a With
arbitrary©-directional curve€’;, C; such that; - C; is non-zero and such that condition iii)[0f 5114 is
satisfied (e.g. we can choose the divisors of the functionshese above). We lej;, «; be the first two
marked leaves as indicated, and chobdec [n — 1] arbitrarily. In the corresponding WDVV equation
only one extremal partitiod|J with A; = 0, A; = A does not vanish. This follows from 5117 and
codim(Py) 4 codim(F,;), codim(C;) 4+ codim(Py ), codim(C;) + codim(P;) > 2. Moreover, the only
remaining extremal partitioh = {7, j}, J = AU [n — 1] provides the term

n—1
<T()(Ci)TQ(Oj)T0(R2)>O H ’7'0 Pk A = deg C O H ’7'0 Pk

k=1
Hence, we can lead back the computatior[df,_, 7o(P%))a to invariants of smaller degree. We can
repeat this until we arrive at the initial invariants with= 1 or n = 2. In these caseg#A = 2 or
#A = 3 and therefore the only possible degrees (up to identificati@ linear isomorphisms &") are
A ={—e1,e;} andA = {—e;, —es, €1 + €2 }. In both cases, it is easy to show by direct computation
that<To(P1)>A =1 and<To(P1)To(P2)>A =1 hold. O

Remark5.19 Note that the left hand tropical side of the equation

1 2
Al (7a, (C1) -+ Ta,, (Cn)>ﬂ§ = (Ta;(M1) " Ta,, ('Yn)>é(

is in fact independent of the fa (provided tha® is fine enough), and therefore the right hand algebro-
geometric side does also not dependXn This implies that, for two complete smooth toric surfaces
and for “common” cohomology classes, their descendant @weWitten invariants appearing in the
theorem coincide. This seems to be a new resulti&scendaninvariants. Without Psi-classes, over-
lapping results were proven in the course of studying GroMfitten invariants of blow-ups (cf_[GP],

[E[l! [m])
Remark5.20 Similarly we can deal with the case= 1, i.e. we can prove

1
d12<7'0 (RY! HTak (Pr) >d = (1o(] HTak [pt])) d,
k=1

where the left hand side is a tropical, the right hand sidersentional invariant an¢pt] denotes the
class of a poinpt € P!. In fact, after applying the string equation, we are leftwiite case wherke= 0.
Now we usé¢ 519 and topological recursion to reduce the nuwfidesi-conditions (where, i, < 3, we
first add more marked leaves using the divisor equationplljirwhena;, = 0 for all k € [n], it follows

d = 1 and we can compute directlyo(P)ﬂf1 = 1. For the case of the rational Hurwitz numbers
HY = (r1(]pt])24=2)E" this result was basically known before (¢f. [CIMO08, lemnig)9but the proof

is based on the different point of view. InTCIMO08] the ressila specialization of considerations for
higher genus, not for higher dimensiems it is the case here.

Remark5.21 The discussion il 5.15 and the facter+ #A — 2 appearing in the tropical dilaton
equatior 3.713, instead of — 2 in the algebro-geometric version, show that for more diffidegrees
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A (if » = 2) and for Psi-conditions at marked leavgswith dim(C%) > 0, the corresponding tropical
and conventional invariants are in general different. F@neple, if we add a marked leaf that has to
satisfy only a Psi-condition, the different factors in thiatbn equations immediately lead to different
invariants.

Remarks.22 Based o 4.19 arid 5116, we can extend the above equalitiespafal and conventional
primary Gromov-Witten invariants to higher dimensions. péstpone this td [GZ].
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