Grundlagen der Mathematik 1: Lineare Algebra – Blatt 10

Abgabe: Montag, 20. Januar bis 16:00 Uhr

- (1) (a) Es sei V der Vektorraum aller Polynome vom Grad höchstens 2 mit Basis $B = (1, x+1, x^2+x)$. Ferner seien $C = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ und $f \colon V \to \mathbb{R}^2$ die lineare Abbildung mit $A_f^{B,C} = \begin{pmatrix} 1 & 0 & 1 \\ 3 & 1 & 1 \end{pmatrix}$. Man berechne:
 - (i) $f(x^2-5)$;
 - (ii) Ker f.
 - (b) Für $P = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ und $Q = \begin{pmatrix} 2 & 0 \\ 1 & 0 \end{pmatrix}$ ist B = (P, Q, PQ, QP) eine Basis von $\mathbb{R}^{2 \times 2}$ (das braucht ihr nicht zu beweisen). Wir betrachten die lineare Abbildung $f : \mathbb{R}^{2 \times 2} \to \mathbb{R}^{2 \times 2}$, $M \mapsto M^\mathsf{T}$. Man bestimme:
 - (i) die Abbildungsmatrix $A_f^{B,B}$;
 - (ii) die dazu inverse Matrix $(A_f^{B,B})^{-1}$;
 - (iii) eine Basis B' von $\mathbb{R}^{2\times 2}$ mit $A_f^{B,B'}=2E$.
- (2) Die *Spur* einer quadratischen Matrix $A = (a_{i,j})_{i,j} \in K^{n \times n}$ ist definiert als

$$\mathrm{Spur}A := \sum_{i=1}^{n} a_{i,i} \in K,$$

also als die Summe ihrer Diagonaleinträge. Man zeige:

- (a) Für alle $A, A' \in K^{n \times n}$ gilt Spur(AA') = Spur(A'A).
- (b) Sind V ein endlich erzeugter Vektorraum und $f: V \to V$ eine lineare Abbildung, so ist Spur $A_f^{B,B}$ für jede Basis B von V die gleiche Zahl. Wir bezeichnen sie daher auch mit Spur f. (Hinweis: Ihr dürft dabei schon das Ergebnis vom Beginn der kommenden Vorlesung verwenden: Ist B' eine weitere Basis von V, so gilt $A_f^{B',B'} = A^{B,B'}A_f^{B,B}A^{B',B}$.)
- (c) Ist $f: V \to V$ wie in (b) und $U:=\operatorname{Im} f$, so ist $\operatorname{Spur}(f|_U)=\operatorname{Spur} f$, wobei $f|_U: U \to U, x \mapsto f(x)$ die Einschränkung von f auf U im Start- und Zielbereich bezeichnet.