Grundlagen der Mathematik 1: Analysis – Blatt 7

Abgabe: Donnerstag, 12. Dezember bis 16:00 Uhr

- (1) (a) Berechne den Realteil, Imaginärteil und Betrag von $z = \left(\frac{1-i}{\sqrt{2}}\right)^{2025}$.
 - (b) Bestimme alle $z \in \mathbb{C}$ mit $z^2 + 2iz + 2 4i = 0$.
 - (c) Bestimme und skizziere die Menge aller $z\in\mathbb{C}$, für die $2\operatorname{Im} z\cdot\operatorname{Im} \frac{1}{\overline{z}}=1$ gilt.
- (2) Zeige, dass eine komplexe Folge $(a_n)_n$ genau dann gegen $a \in \mathbb{C}$ konvergiert, wenn die Folgen $(\operatorname{Re} a_n)_n$ und $(\operatorname{Im} a_n)_n$ ihrer Real- und Imaginärteile gegen $\operatorname{Re} a$ bzw. $\operatorname{Im} a$ konvergieren.
- (3) Es sei $(a_n)_n$ eine Folge in \mathbb{K} . Man zeige: Gibt es ein $q \in \mathbb{R}_{\geq 0}$ mit q < 1, so dass

$$|a_{n+1} - a_n| \le q^n$$
 für alle $n \in \mathbb{N}$,

so ist $(a_n)_n$ eine Cauchyfolge.

(4) Für ein fest gegebenes $c \in \mathbb{C}$ mit $|c| < \frac{1}{4}$ definieren wir eine komplexe Folge $(a_n)_n$ rekursiv durch

$$a_0 = 0$$
 und $a_{n+1} = a_n^2 + c$ für alle $n \in \mathbb{N}$.

Zeige, dass $(a_n)_n$ konvergiert.

(Hinweis: Zeige zunächst, dass $\frac{1}{4}+|c|$ eine obere Schranke für die Beträge aller Folgenglieder ist.)