Grundlagen der Mathematik 1: Analysis – Blatt 14

(keine Abgabe)

(1) Berechne die folgenden (z. T. unbestimmten bzw. uneigentlichen) Integrale:

(a)
$$\int_0^\infty x^2 e^{-2x} dx$$
; (b) $\int \frac{x^3 + x^2 + 1}{x^3 - x} dx$; (c) $\int_0^{\frac{\pi}{2}} \sin^8 x \cos^3 x dx$; (d) $\int_{-1}^1 \frac{x^7}{\cos^7 x} dx$.

- (2) Es sei $f: \mathbb{R}_{\geq 1} \to \mathbb{R}_{\geq 0}$ eine stetige und monoton fallende Funktion.
 - (a) Zeige, dass das uneigentliche Integral $\int_1^\infty f(x) dx$ das gleiche Konvergenzverhalten wie die Reihe $\sum_{n=1}^\infty f(n)$ hat, d. h. es sind entweder beide konvergent oder beide divergent.
 - (b) Für welche $a \in \mathbb{R}$ konvergiert die Reihe $\sum_{n=1}^{\infty} \frac{1}{n^a}$?

Gilt die Aussage von (a) auch ohne die Voraussetzung, dass f monoton fallend ist?

- (3) (a) Berechne für $ein\ n \in \{5,6,7,8,9,10\}$ das unbestimmte Integral $\int x^n \sin(x^5) dx$. (Hinweis: Die richtige Wahl von n ist entscheidend, denn das Integral ist nur für einen dieser Werte berechenbar.)
 - (b) Man zeige: Ist $f: \mathbb{R}_{\geq 0} \to \mathbb{R}$ stetig mit $\int_0^1 f(ax) dx = 1$ für alle $a \in \mathbb{R}_{>0}$, dann ist f konstant gleich 1.
 - (c) Es sei $f: \mathbb{R} \to \mathbb{R}$ eine stetige Funktion. Zeige für alle $x \in \mathbb{R}$

$$\int_0^x (x-t) f(t) dt = \int_0^x \left(\int_0^t f(u) du \right) dt.$$