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9. Spezielle Funktionen

Nachdem wir jetzt schon recht viel allgemeine Theorie kennengelernt haben, wollen wir diese nun
anwenden, um einige bekannte spezielle Funktionen zu studieren (oder überhaupt erst einmal exakt
zu definieren), die ihr bereits aus der Schule kennt: die Exponential- und Logarithmusfunktion, die
allgemeine Potenz xa für a ∈ R, die Winkelfunktionen und ihre Umkehrfunktionen. Ausgangspunkt
aller dieser Funktionen ist letztlich die in Definition 7.26 (b) bereits eingeführte Exponentialfunktion

exp(x) :=
∞

∑
n=0

xn

n!
= 1+ x+

x2

2
+

x3

6
+ · · · für x ∈K.

Aus Folgerung 7.36 wissen wir schon, dass diese Funktion die Funktionalgleichung

exp(x+ y) = exp(x) · exp(y) für alle x,y ∈K

erfüllt. Außerdem ist sie nach Beispiel 8.40 (a) stetig, und aus der Reihendarstellung sieht man
sofort, dass exp(0) = 1.

Die weiteren Eigenschaften der Exponentialfunktion sind im reellen und komplexen Fall trotz der
gleich lautenden Definition sehr unterschiedlich. Wir werden diese beiden Fälle im Folgenden daher
separat untersuchen.

9.A Logarithmen und allgemeine Potenzen

Wir beginnen mit der reellen Exponentialfunktion und zeigen zunächst einige ihrer wichtigen Ei-
genschaften.

Satz 9.1 (Eigenschaften der reellen Exponentialfunktion).

(a) Es gilt exp(x)> 0 für alle x ∈ R.

(b) Die Funktion exp: R→ R ist streng monoton wachsend.

(c) Für alle n ∈ N gilt

lim
x→∞

exp(x)
xn = ∞ und lim

x→−∞
xn exp(x) = 0.

Insbesondere ist also lim
x→∞

exp(x) = ∞ und lim
x→−∞

exp(x) = 0.

(d) Für die Zahl e := exp(1) gilt 2 < e < 3. (Man nennt e die Eulersche Zahl; eine explizite
näherungsweise Berechnung der Exponentialreihe zeigt, dass e = 2,71828 . . . .)

Beweis.

(a) Für x≥ 0 ist dies aus der Reihendarstellung offensichtlich. Für x≤ 0 folgt aus der Funktio-
nalgleichung

exp(x) · exp(−x) = exp(0) = 1 und damit exp(x) =
1

exp(−x)
,

was nun wegen −x≥ 0 ebenfalls positiv ist.

(b) Es seien x,y ∈ R mit x < y. Wegen y− x > 0 folgt aus der Reihendarstellung der Exponenti-
alfunktion dann exp(y− x)> 1. Da nach (a) außerdem exp(x)> 0 gilt, erhalten wir mit der
Funktionalgleichung wie gewünscht

exp(y) = exp(x) · exp(y− x)> exp(x) ·1 = exp(x).
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(c) Für x > 0 ergibt sich aus der Reihendarstellung der Exponentialfunktion natürlich

exp(x)>
xn+1

(n+1)!
und damit

exp(x)
xn >

x
(n+1)!

.

für alle n ∈ N. Wegen lim
x→∞

x
(n+1)! = ∞ folgt damit auch lim

x→∞

exp(x)
xn = ∞.

Die Aussage für x→−∞ zeigt man analog: Für x < 0 ist −x > 0, und da wir in (a) schon
gesehen haben, dass exp(x) = 1

exp(−x) gilt, erhalten wir

exp(x) =
1

exp(−x)
<

1
(−x)n+1/(n+1)!

und damit |xn exp(x)|< (n+1)!
|x|

.

Wegen lim
x→−∞

(n+1)!
|x| = 0 ergibt sich damit auch lim

x→−∞
xn exp(x) = 0.

(d) Aus der Exponentialreihe erhalten wir sofort

e >
1
0!

+
1
1!

= 2,

und wegen n! = 1 ·2 ·3 · · · · ·n≥ 1 ·2 ·2 · · · · ·2 = 2n−1 mit Hilfe der geometrischen Reihe
aus Beispiel 7.3 (a) auch

e =
1
0!

+
∞

∑
n=1

1
n!

< 1+
∞

∑
n=1

1
2n−1 = 1+

∞

∑
n=0

1
2n = 1+

1
1− 1

2

= 3. □

Aufgabe 9.2 (Irrationalität von e). Finde für alle n ∈ N>0 explizit eine natürliche Zahl a ∈ N mit
a
n! < e < a+1

n! , und zeige so, dass e irrational ist.

Bemerkung 9.3.
(a) Da die (uneigentlichen) Grenzwerte von exp(x) für x → ±∞ nach Satz 9.1 (b) gleich ∞

bzw. 0 sind, bedeutet die Aussage desselben Satzes für n > 0 gerade, dass sich in diesen
Grenzwerten, die ja von der Form ∞

∞
bzw. ±∞ · 0 sind, die Exponentialfunktion gegenüber

der Potenz xn durchsetzt. Man sagt auch, „die Exponentialfunktion ist für x→±∞ stärker
als jede Potenz“.

(b) Im Bild unten links haben wir den Graphen der reellen Exponentialfunktion gemäß Satz 9.1
skizziert. Da exp nach Beispiel 8.40 (a) stetig und nach Satz 9.1 (b) streng monoton wach-
send ist, existiert nach Satz 8.28 eine Umkehrfunktion (wie in Beispiel 8.29 zunächst für
Start- und Zielmenge [−R,R]→ [exp(−R),exp(R)] für alle R > 0, dann durch den Übergang
R→ ∞ aber auch für R→ R>0):

1

1−1

exp(x)

x

1

−1
1

log(x)

x

e

e

20

Definition 9.4 (Logarithmus). Die Umkehrfunktion der Exponentialfunktion exp: R→ R>0 wird
mit

log : R>0→ R, x 7→ log(x)

bezeichnet und heißt die (natürliche) Logarithmusfunktion. Sie ist im Bild oben rechts dargestellt.
Statt log(x) ist oft auch die Bezeichnung ln(x) üblich.

Notation 9.5 (Schreibweise spezieller Funktionen). Bei den speziellen Funktionen, die wir in die-
sem Kapitel kennenlernen werden, ist es zur Vereinfachung der Notation oft üblich, die Klammern
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beim Funktionsargument wegzulassen, wenn es sich nur um eine einfache Zahl oder Variable han-
delt, also z. B. logx statt log(x) zu schreiben. Ist das Funktionsargument jedoch ein zusammenge-
setzter Ausdruck, sind die Klammern zwingend erforderlich: log(x+ y) kann man nicht als logx+ y
schreiben, da logx+ y immer als (logx)+ y zu verstehen ist.

Bemerkung 9.6 (Eigenschaften der Logarithmusfunktion). Unsere bisher gezeigten Eigenschaften
der Exponentialfunktion übertragen sich natürlich sofort auf die Logarithmusfunktion:

(a) log ist stetig und streng monoton wachsend nach Satz 8.28.

(b) log1 = 0 und loge = 1.

(c) Die Grenzwerte aus Satz 9.1 (b) übertragen sich durch Vertauschen von Start- und Zielraum
auf den Logarithmus als lim

x→∞
logx = ∞ und lim

x→0
logx =−∞.

(d) Wenden wir die Funktionalgleichung der Exponentialfunktion auf logx und logy für x,y > 0
an, so erhalten wir

exp(logx+ logy) = exp(logx) · exp(logy) = x · y

und damit durch Logarithmieren

logx+ logy = log(x · y) für x,y ∈ R>0,

was die Funktionalgleichung der Logarithmusfunktion genannt wird.

Eine der wichtigsten Anwendungen der Logarithmusfunktion ist, dass man mit ihr allgemeine Po-
tenzen definieren kann – also Potenzen der Form xa, wobei a nun nicht mehr wie bisher in Z liegen
muss, sondern eine beliebige reelle Zahl sein kann:

Definition 9.7 (Allgemeine Potenzen). Für x ∈ R>0 und a ∈ R definieren wir die Potenz

xa := exp(a logx)

(wir werden in Bemerkung 9.9 (a) noch sehen, dass dies für a ∈ Z mit unserer alten Definition aus
Notation 3.9 (b) übereinstimmt – was dann auch diese neue, allgemeinere Definition motiviert).

Lemma 9.8 (Rechenregeln für allgemeine Potenzen). Für alle x,y ∈ R>0 und a,b ∈ R gilt

(a) x0 = 1 und x1 = x;

(b) xa+b = xa · xb und x−a = 1
xa ;

(c) xab = (xa)b;

(d) (xy)a = xa · ya.

Beweis. Alle Beweise sind einfaches Nachrechnen mit Hilfe der Funktionalgleichung:

(a) x0 = exp(0 · logx) = exp(0) = 1 und x1 = exp(logx) = x.

(b) Es ist

xa+b = exp((a+b) logx) = exp(a logx+b logx) = exp(a logx) · exp(b logx) = xa · xb.

Setzen wir in dieser Gleichung b =−a, so ergibt sich ferner 1 = xa ·x−a und damit x−a = 1
xa .

(c) Es gilt

(xa)b = exp(b log(xa)) = exp(b log(exp(a logx))) = exp(ab logx) = xab.

(d) Es ist

(xy)a = exp(a log(xy)) = exp(a logx+a logy) = exp(a logx) · exp(a logy) = xa · ya. □
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Bemerkung 9.9.

(a) Aus Lemma 9.8 (a) und (b) folgt insbesondere, dass im Fall a ∈ N für unsere allgemeine
Potenz aus Definition 9.7

xa = x1+···+1 = x · · · · · x︸ ︷︷ ︸
a-mal

und genauso x−a = x−1−···−1 =
1
x
· · · · · 1

x︸ ︷︷ ︸
a-mal

gilt, dass sie dann also mit der alten Definition der Potenz aus Notation 3.9 (b) überein-
stimmt.

(b) Nach Lemma 9.8 (c) ist x 7→ x
1
a für a ̸= 0 eine Umkehrfunktion zu x 7→ xa, denn es ist

(xa)
1
a = x1 = x und

(
x

1
a
)a

= x1 = x

für alle x ∈ R>0 und a ∈ R\{0}.

Da Umkehrfunktionen eindeutig sind und wir im Fall a∈N>0 aus Aufgabe 5.37 und Beispiel
8.29 bereits wissen, dass die Wurzelfunktion x 7→ a

√
x ebenfalls eine solche Umkehrfunktion

ist, sehen wir also, dass x
1
a = a
√

x für alle x ∈ R>0 und a ∈ N>0 gilt.

(c) Mit der Eulerschen Zahl e aus Satz 9.1 (d) ist offensichtlich ea = exp(a loge) = expa für alle
a ∈ R. Man verwendet daher in der Regel die einfachere Potenzschreibweise ea für expa.

(d) Beachte, dass wir die allgemeine Potenz xa mit a ∈ R nur für positive x definieren konnten,
weil für negative Zahlen kein Logarithmus existiert. In der Tat ist es auch einleuchtend, dass
ein Ausdruck wie z. B. (−1)

√
2 nicht sinnvoll definiert werden kann, da nicht einmal klar ist,

ob diese Zahl positiv oder negativ sein sollte.

9.B Winkelfunktionen

Nach der reellen wollen wir nun die komplexe Exponentialfunktion studieren, die uns schließlich zu
den Winkelfunktionen führen wird. Wie in Bemerkung 9.9 (c) werden wir dabei die Exponential-
funktion auch im Komplexen in der Regel mit z 7→ ez bezeichnen (obwohl es keine allgemeine Potenz
wz für w,z ∈ C gibt). Ihre wesentlichen Eigenschaften, die wir benötigen, um den Zusammenhang
mit Winkelfunktionen herstellen zu können, sind die folgenden:

Satz 9.10 (Eigenschaften der komplexen Exponentialfunktion). Es gilt:

(a) ez = ez für alle z ∈ C;

(b) |eix|= 1 für alle x ∈ R.

Beweis.

(a) Für die Partialsummen fn(z) :=∑
n
k=0

zk

k! der Exponentialfunktion folgt natürlich fn(z)= fn(z)
durch fortgesetztes Anwenden von Lemma 6.9 (a). Da die komplexe Konjugation z 7→ z̄ nach
Beispiel 8.7 (c) stetig ist, ergibt sich also nach dem Folgenkriterium für Stetigkeit aus Satz
8.12 (b)

ez = lim
n→∞

fn(z) = lim
n→∞

fn(z) = lim
n→∞

fn(z) = ez.

(b) Wegen |z|=
√

zz (siehe Bemerkung 6.4) erhalten wir nun mit (a)

|eix|=
√

eix · eix =
√

eix · eix =
√

eix · e−ix =
√

eix−ix =
√

e0 = 1. □
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Bemerkung 9.11. Satz 9.10 (b) besagt gerade, dass die komple-
xe Zahl eix für reelle x immer auf dem Rand des Einheitskrei-
ses liegt. Multiplizieren wir zwei solche Zahlen eix und eiy für
x,y ∈R miteinander, so erhalten wir einerseits nach der Funktio-
nalgleichung der Exponentialfunktion die Zahl

eix · eiy = ei(x+y)

(d. h. die Exponenten addieren sich), andererseits haben wir aber
auch schon in Bemerkung 6.5 gesehen, dass sich bei der komple-
xen Multiplikation die Winkel, die die Zahlen mit der positiven
reellen Achse einschließen, ebenfalls addieren. Wir können den
Exponenten x der Zahl eix daher wie im Bild rechts als ein Maß
für diesen Winkel auffassen.

1

Imz

x Rez

eix

In der Tat werden wir in Aufgabe 9.16 sehen, dass dieses x genau die (im Bild oben rechts dick
eingezeichnete) Länge des Kreisbogens ist, der von 1 zu der Zahl eix führt – man sagt auch, dass x
der im Bogenmaß gemessene Winkel ist. Wir werden diese Aussage im Folgenden nicht benötigen,
sondern verwenden sie hier nur als Motivation dafür, dass Real- und Imaginärteil von eix (also die
beiden Koordinaten dieses Punktes in der Ebene) dann wie aus der Schule bekannt der Kosinus bzw.
Sinus des Winkels x sein sollten. Diese Idee machen wir nun zu unserer Definition von Kosinus und
Sinus.

Definition 9.12 (Kosinus und Sinus). Für x ∈ R definieren wir Kosinus und Sinus als die reellen
Zahlen

cosx := Re(eix) und sinx := Im(eix),

so dass also eix = cosx + i sinx die Zerlegung der komplexen Exponentialfunktion in Real- und
Imaginärteil ist.

Bevor wir die Eigenschaften dieser beiden Funktionen studieren, wollen wir erst einmal zwei einfa-
che alternative Darstellungsweisen notieren:

Lemma 9.13 (Alternative Darstellung von Kosinus und Sinus).
(a) Für alle x ∈ R ist

cosx =
1
2
(
eix + e−ix) und sinx =− i

2
(
eix− e−ix).

(b) Kosinus und Sinus lassen sich darstellen als reelle Potenzreihen mit Konvergenzradius ∞

cosx =
∞

∑
n=0

(−1)n

(2n)!
x2n = 1− x2

2!
+

x4

4!
− x6

6!
±·· · ,

sinx =
∞

∑
n=0

(−1)n

(2n+1)!
x2n+1 = x− x3

3!
+

x5

5!
− x7

7!
±·· · .

Insbesondere sind Kosinus und Sinus nach Folgerung 8.39 also stetige Funktionen auf R.

Beweis.
(a) Dies folgt aus den allgemeinen Formeln Rez = 1

2 (z+ z) und Imz =− i
2 (z− z) (siehe Bemer-

kung 6.4) zusammen mit Satz 9.10 (a).
(b) Die Potenzreihendarstellungen ergeben sich mit (a) sofort aus

eix =
∞

∑
n=0

(ix)n

n!
= 1+ i

x1

1!
− x2

2!
− i

x3

3!
+

x4

4!
+ i

x5

5!
− x6

6!
− i

x7

7!
+ · · ·

und e−ix =
∞

∑
n=0

(−ix)n

n!
= 1− i

x1

1!
− x2

2!
+ i

x3

3!
+

x4

4!
− i

x5

5!
− x6

6!
+ i

x7

7!
+ · · · ,

da man konvergente Reihen nach Lemma 7.4 (a) gliedweise addieren kann. Weil diese Rei-
hendarstellung für alle x∈R gilt, ist der Konvergenzradius dieser Potenzreihen gleich ∞. □
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Wir listen nun zunächst die einfachsten Eigenschaften von Kosinus und Sinus auf, die sich direkt
aus der Definition ergeben.

Satz 9.14 (Eigenschaften von Kosinus und Sinus). Für alle x,y ∈ R gilt

(a) cos(−x) = cosx und sin(−x) =−sinx. (Der Graph von cos ist also achsensymmetrisch zur
vertikalen Achse, der von sin punktsymmetrisch zum Ursprung).

(b) (cosx)2 +(sinx)2 = 1; insbesondere ist also |cosx| ≤ 1 und |sinx| ≤ 1.

(c) (Additionstheoreme)

cos(x± y) = cosx cosy∓ sinx siny

und sin(x± y) = sinx cosy± cosx siny

(wobei die Gleichungen so zu verstehen sind, dass an beiden Stellen das obere oder an
beiden Stellen das untere Vorzeichen zu nehmen ist).

Beweis.

(a) Dies folgt z. B. unmittelbar aus Lemma 9.13 (a).

(b) Nach Satz 9.10 (b) ist (cosx)2 +(sinx)2 = (Re(eix))2 +(Im(eix))2 = |eix|2 = 1.

(c) Einerseits gilt nach der Funktionalgleichung der komplexen Exponentialfunktion

ei(x+y) = eix · eiy = (cosx+ i sinx)(cosy+ i siny)

= cosx cosy− sinx siny+ i
(

sinx cosy+ cosx siny
)
,

andererseits nach Definition aber auch

ei(x+y) = cos(x+ y)+ i sin(x+ y).

Vergleich von Real- und Imaginärteil liefert nun die behaupteten Formeln für cos(x+y) und
sin(x+y). Die Formeln für cos(x−y) und sin(x−y) ergeben sich daraus durch den Übergang
y→−y mit (a). □

Notation 9.15 (cosn x und sinn x). Für n ∈ N schreibt man zur Abkürzung oft auch cosn x und
sinn x anstatt (cosx)n und (sinx)n. Die Formel aus Satz 9.14 (b) schreibt sich dann z. B. kürzer
als cos2 x+ sin2 x = 1. Beachte aber, dass dies leicht zu Verwechslungen führen kann, weil wir die
Umkehrfunktion einer bijektiven Funktion f in Definition 2.20 ja mit x 7→ f−1(x) bezeichnet haben,
dies aber nach dieser neuen Notation auch als x 7→ ( f (x))−1 = 1

f (x) interpretiert werden könnte –
was natürlich etwas völlig anderes ist. Wir werden daher für Kosinus und Sinus die Schreibwei-
se cos−1(x) bzw. sin−1(x) überhaupt nicht verwenden, und den Umkehrfunktionen dieser beiden
Funktionen andere Namen geben (siehe Definition 9.25).

Aufgabe 9.16 (Bogenmaß).
(a) Berechne den Grenzwert lim

x→0
1−cosx

x2 .

(b) Es sei x ∈R≥0. Wir wollen zeigen, dass die „Bogenlänge“ entlang des Einheitskreises von 1
nach eix ∈C gleich x ist und eix damit als der Punkt auf dem Einheitskreis aufgefasst werden
kann, der mit der positiven reellen Achse den Winkel x „im Bogenmaß“ einschließt.

Für alle n ∈ N>0 unterteilen wir dazu den Kreisbogen wie im
Bild durch die Zwischenpunkte eikx/n mit k = 0, . . . ,n. Die
Länge des geraden Streckenzuges, der diese Punkte der Rei-
he nach miteinander verbindet, ist dann

Ln =
n−1

∑
k=0

∣∣ei(k+1)x/n− eikx/n∣∣.
Zeige, dass lim

n→∞
Ln = x.

eix/n

eix

e2ix/n

1
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Aufgabe 9.17. Es sei x ∈ R. Finde und beweise eine explizite Formel für die Summen
n

∑
k=0

cos(kx) und
n

∑
k=0

sin(kx).

Als Nächstes wollen wir die Nullstellen und die Periodizität von Kosinus und Sinus untersuchen. Aus
Bemerkung 9.11 (und dem, was ihr aus der Schule wisst) ist z. B. klar, dass diese beiden Funktionen
die Periode 2π besitzen sollten. Aber bisher wissen wir überhaupt noch nicht, was π eigentlich
genau ist! Wie ihr euch vielleicht schon denken könnt, wird auch hier der Ausweg wieder darin
bestehen, die Sache rückwärts anzugehen und die Zahl π über die Eigenschaften der Kosinus- und
Sinusfunktion zu definieren. Dazu benötigen wir das folgende Lemma.

Lemma 9.18.
(a) Für alle x ∈ (0,2) ist sinx > 0.

(b) Die Kosinusfunktion ist im Intervall [0,2] streng monoton fallend, und es gilt cos0 > 0 sowie
cos2 < 0.

Beweis. Wir bemerken zunächst, dass die Summanden der Exponentialreihe ∑
∞
n=0

xn

n! für 0 < x ≤ 2
ab dem x1-Term betragsmäßig monoton fallend sind, denn für n≥ 1 ist∣∣∣∣xn+1/(n+1)!

xn/n!

∣∣∣∣= x
n+1

≤ 2
1+1

= 1.

Dasselbe gilt dann natürlich auch für die Glieder der Kosinus- und Sinusreihe, die nach Lemma
9.13 (b) ja bis auf das Vorzeichen genau die geraden bzw. ungeraden Terme der Exponentialreihe
sind. Da die Kosinus- und Sinusreihe zudem alternierend sind, sind ihre Partialsummen nach Satz
7.8 damit abwechselnd obere und untere Schranken für den Grenzwert (sofern wir mindestens bis
zum x1-Term aufsummieren, ab dem die Summanden betragsmäßig monoton fallen).

(a) Nach unserer Vorbemerkung folgt nun sofort für alle x ∈ (0,2)

sinx≥ x− x3

3!
= x
(

1− x2

6

)
> x
(

1− 22

6

)
=

x
3
> 0.

(b) Natürlich ist cos0 = 1 > 0. Für cos2 gilt wieder nach der Vorbemerkung

cos2≤ 1− 22

2!
+

24

4!
= 1− 4

2
+

16
24

=−1
3
< 0.

Es bleibt also nur noch die strenge Monotonie zu zeigen. Es seien dazu x,y ∈ [0,2] mit x < y
gegeben. Mit den Additionstheoremen aus Satz 9.14 (c) ergibt sich

cos
(y+ x

2
± y− x

2

)
= cos

y+ x
2
· cos

y− x
2
∓ sin

y+ x
2
· sin

y− x
2

.

Subtraktion dieser beiden Gleichungen voneinander liefert nun

cos
( y+ x

2
+

y− x
2︸ ︷︷ ︸

=y

)
− cos

( y+ x
2
− y− x

2︸ ︷︷ ︸
=x

)
=−2 sin

y+ x
2︸ ︷︷ ︸

∈(0,2)

·sin
y− x

2︸ ︷︷ ︸
∈(0,2)

,

mit (a) also cosy− cosx < 0 und damit wie behauptet cosx > cosy. □

Da die Kosinusfunktion nach Lemma 9.13 (b) stetig ist, ergibt sich mit dem Zwischenwertsatz 8.21
aus Lemma 9.18 (b) also, dass es genau ein x ∈ (0,2) gibt mit cosx = 0. Aus der Interpretation von
Bemerkung 9.11 sehen wir, dass diese Nullstelle des Kosinus genau bei x = π

2 auftreten sollte, also
dort wo eix auf der imaginären Achse liegt. Wir benutzen dies nun, um die Zahl π zu definieren:

Definition 9.19 (Die Zahl π). Wir definieren die Zahl π ∈ R als das Doppelte der (nach obigen
Überlegungen eindeutig bestimmten) Nullstelle der Kosinusfunktion im Intervall [0,2]. (Eine nähe-
rungsweise Berechnung dieser Nullstelle zeigt, dass π = 3,14159 . . . .)
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Bemerkung 9.20.
(a) Unsere Definition 9.19 ist natürlich nicht die einzig mögliche Art, wie man die Zahl π defi-

nieren kann. Man könnte genauso gut auch irgendeine andere charakteristische Eigenschaft
dieser Zahl als Definition verwenden, wie z. B. (was ja häufig gesagt wird) den Flächen-
inhalt des Einheitskreises. Allerdings wissen wir bisher noch gar nicht, wie man derartige
Flächeninhalte überhaupt definieren und berechnen kann. Für uns hat die etwas merkwürdig
scheinende Definition 9.19 daher einfach den Vorteil, dass sie am schnellsten zu den ge-
wünschten Resultaten führt (insbesondere auch ohne Flächeninhalte berechnen zu können).

(b) Da die Kosinusfunktion nach Lemma 9.18 (b) auf [0,2] streng monoton fallend ist, ist ihre
Einschränkung auf das Intervall [0, π

2 ] damit eine bijektive, streng monoton fallende Funk-
tion, die von cos0 = 1 nach cos π

2 = 0 läuft. Wir wollen nun sehen, wie wir aus diesem
Abschnitt der Kosinusfunktion die Kosinus- und Sinusfunktion auf ganz R rekonstruieren
können.

Satz 9.21 (Periodizität von Kosinus und Sinus).
(a) An den Stellen x ∈ {0, π

2 ,π,
3π

2 ,2π} nehmen eix, cosx und sinx die folgenden Werte an:

x 0 π

2 π
3π

2 2π

eix 1 i −1 −i 1
cosx 1 0 −1 0 1
sinx 0 1 0 −1 0

(b) Kosinus und Sinus sind 2π-periodisch, d. h. es gilt cos(x+2π)= cosx und sin(x+2π)= sinx
für alle x ∈ R.

(c) Für alle x ∈ R ist cos(π− x) =−cosx und sin(π

2 ± x) = cosx.

Beweis.

(a) Nach Definition 9.19 ist cos π

2 = 0. Für den Sinus gilt damit sin2 π

2 = 1−cos2 π

2 = 1−0 = 1
nach Satz 9.14 (b); da außerdem sin π

2 > 0 nach Lemma 9.18 (a) gilt, muss also sin π

2 = 1
sein. Damit ist ei π

2 = cos π

2 + i sin π

2 = i.

Die übrigen behaupteten Werte für ein π
2 mit n ∈ {0,1,2,3,4} folgen damit sofort nach der

Funktionalgleichung aus ein π
2 = (ei π

2 )n = in. Aufteilen dieser Zahlen in Real- und Imaginär-
teil liefert dann die Werte für Kosinus und Sinus in der Tabelle.

(b) Nach (a) ist ei·2π = 1 und damit ei·(x+2π) = eix ·ei·2π = eix. Aufteilen in Real- und Imaginärteil
liefert wieder die Behauptung.

(c) Wiederum mit (a) ist

cos(π− x) = cosπ cosx+ sinπ sinx = (−1) · cosx+0 · sinx =−cosx

und sin
(

π

2
± x
)
= sin

π

2
cosx± cos

π

2
sinx = 1 · cosx±0 · sinx = cosx

nach den Additionstheoremen aus Satz 9.14 (c). □

Bemerkung 9.22. Mit Satz 9.21 können wir nun aus dem Verlauf der Kosinusfunktion im Intervall
[0, π

2 ] (nach Bemerkung 9.20 (b) streng monoton fallend von 1 nach 0 verlaufend; im Bild unten dick
eingezeichnet) die gesamte Kosinus- und Sinusfunktion rekonstruieren:

• Satz 9.21 (c) für x ∈ [0, π

2 ] legt zunächst Kosinus und Sinus im Intervall [0,π] fest: Die
Graphen verlaufen hier „genauso“ wie beim Kosinus von 0 bis π

2 , nur gedreht bzw. gespiegelt
(im Bild unten als durchgezogene Linie markiert);

• Satz 9.14 (a) bestimmt Kosinus und Sinus damit dann auch im Intervall [−π,π] (im Bild
gestrichelt eingezeichnet);

• Satz 9.21 (b) schließlich besagt dann, dass dieser Verlauf von Kosinus und Sinus in beide
Richtungen 2π-periodisch fortgesetzt wird (wie im Bild gepunktet eingezeichnet).



9. Spezielle Funktionen 115

1

−1

π

2 π
3π

2 2π

1

−1

π

2 π
3π

2 2π

cosx sinx

xx

21

Wie in der Schule definiert man schließlich noch den Tangens:

Definition 9.23 (Tangens). Für alle x ∈ R\{π

2 + nπ : n ∈ Z}, also nach Bemerkung 9.22 für alle x
mit cosx ̸= 0, heißt

tanx :=
sinx
cosx

der Tangens von x.

Bemerkung 9.24 (Eigenschaften des Tangens). Die wesentlichen Eigenschaften des Tangens erge-
ben sich unmittelbar aus denen des Kosinus und Sinus:

(a) Der Tangens ist auf seiner Definitionsmenge als Quo-
tient stetiger Funktionen stetig.

(b) Es ist

tan(−x) =
sin(−x)
cos(−x)

=
−sinx
cosx

=− tanx

nach Satz 9.14 (a) (d. h. der Graph von tan ist punkt-
symmetrisch zum Ursprung), und

tan(x+π) =
sin(x+π)

cos(x+π)
=
−sinx
−cosx

= tanx

1

−1
π

π

2
π

4

tanx

x

nach Bemerkung 9.22 (d. h. tan ist periodisch mit Periode π). Der Graph der Tangensfunktion
ist wegen dieser Symmetrien also bereits durch den Graphen im Intervall [0, π

2 ) bestimmt.

(c) Es ist tan0 = sin0
cos0 = 0

1 = 0 sowie tan π

4 = 1, denn nach Satz 9.21 (c) ist sin π

4 = cos π

4 .
Weiterhin ist

lim
x→π/2
x<π/2

tanx = ∞,

da in diesem Grenzfall sinx→ 1 gilt und cosx von der positiven Seite gegen 0 konvergiert.

(d) Die Tangensfunktion ist auf [0, π

2 ) (und damit nach der Symmetrie aus (b) auch auf (−π

2 ,
π

2 ))
streng monoton wachsend: Für x,y ∈ [0, π

2 ) mit x < y ist sinx < siny und cosx > cosy > 0
nach Bemerkung 9.22, also

tanx =
sinx
cosx

<
siny
cosy

= tany.

Wir können nun natürlich auf den Intervallen, auf denen die Winkelfunktionen stetig und streng
monoton sind, nach Satz 8.28 die Umkehrfunktionen definieren. Aufgrund der Periodizität haben
wir dabei in allen drei Fällen eine Wahl, welches solche Intervall wir betrachten. Üblicherweise
verwendet man die folgenden:

Definition 9.25 (Umkehrfunktionen der Winkelfunktionen). Die Umkehrfunktion von . . .

(a) cos : [0,π]→ [−1,1] heißt Arkuskosinus arccos : [−1,1]→ [0,π].

(b) sin : [−π

2 ,
π

2 ]→ [−1,1] heißt Arkussinus arcsin : [−1,1]→ [−π

2 ,
π

2 ].

(c) tan :
(
− π

2 ,
π

2

)
→ R heißt Arkustangens arctan : R→

(
− π

2 ,
π

2

)
.
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x

π

2

−π

2

π

4

1−1

arctanx

x
1−1

π

2

π

arccosx

x
1−1

−π

2

π

2

arcsinx

Bemerkung 9.26.
(a) Beachte, dass die Arkusfunktionen nur in den betrachteten Intervallen die Umkehrfunktio-

nen der Winkelfunktionen sind; es ist also z. B. arcsin(sinx) = x nur für x ∈ [−π

2 ,
π

2 ], wohin-
gegen z. B. arcsin(sinπ) = arcsin0 = 0 ist.

(b) Wie bei den anderen bisher betrachteten Umkehrfunktionen ergeben sich die Eigenschaften
der Arkusfunktionen natürlich wieder direkt aus denen der Winkelfunktionen. So sind z. B.
alle Arkusfunktionen stetig und streng monoton nach Satz 8.28 (wachsend für arcsin und
arctan, fallend für arccos), und die wichtigsten speziellen Werte und Symmetrien sind wie
im Bild oben dargestellt.

Als Anwendung der Arkusfunktionen wollen wir zum Abschluss dieses
Kapitels nun noch die sogenannte Polarkoordinatendarstellung komple-
xer Zahlen behandeln, mit der sich Rechnungen in C oft wesentlich
vereinfachen lassen. Die Idee dabei ist einfach, dass man durch Multi-
plikation einer Zahl eiϕ auf dem Einheitskreis (siehe Bemerkung 9.11)
mit einer positiven reellen Zahl r jeden Punkt der komplexen Zahlen-
ebene (mit Ausnahme des Nullpunkts) erreichen können sollte, wobei
wie im Bild rechts r gerade der Betrag und ϕ der Winkel des betrachte-
ten Punktes ist. Man kann einen solchen Punkt also auch durch Angabe
der Werte von r und ϕ (anstatt durch Real- und Imaginärteil) charakte-
risieren:

Imz

r

ϕ Rez

z = r eiϕ

Satz 9.27 (Polarkoordinatendarstellung).
(a) Jede komplexe Zahl z ∈ C\{0} lässt sich in der Form z = r eiϕ mit r ∈ R>0 und ϕ ∈ R

schreiben.

(b) Die Darstellung aus (a) ist eindeutig bis auf ganzzahlige Vielfache von 2π in ϕ , d. h. für
r,r′ ∈R>0 und ϕ,ϕ ′ ∈R gilt r eiϕ = r′eiϕ ′ genau dann wenn r′ = r und ϕ ′−ϕ = 2πn für ein
n ∈ Z.

Man nennt r und ϕ die Polarkoordinaten von z.

Beweis.

(a) Wir setzen r := |z|. Es bleibt also noch zu zeigen, dass es ein ϕ ∈ R gibt mit z = |z|eiϕ ,
d. h. dass sich die komplexe Zahl z

|z| , die ja jetzt Betrag 1 hat, in der Form eiϕ schreiben
lässt. Aufgeteilt in Real- und Imaginärteil bedeutet dies genau, dass wir z

|z| =: x + iy als
cosϕ + i sinϕ schreiben wollen, d. h. wir suchen zu x,y ∈R mit x2+y2 = 1 eine Zahl ϕ ∈R
mit

cosϕ = x und sinϕ = y. (∗)
Wegen x2 + y2 = 1 ist insbesondere |x| ≤ 1, wir können also α := arccosx setzen, so dass
schon einmal cosα = x gilt. Nun ist mit Satz 9.14 (b)

y2 = 1− x2 = 1− cos2
α = sin2

α
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und damit y =±sinα . Im Fall des Vorzeichens „+“ ergibt nun ϕ := α , im Fall des Vorzei-
chens „−“ hingegen ϕ :=−α die gewünschten Relationen (∗).

(b) Zunächst ist r eiϕ = r′ eiϕ ′ genau dann, wenn r = r′ und eiϕ = eiϕ ′ (für die Richtung „⇐“ neh-
men wir auf beiden Seiten den Betrag). Weiterhin ist eiϕ = eiϕ ′ , also ei(ϕ ′−ϕ) = 1, äquivalent
zu

cos(ϕ ′−ϕ) = 1 und sin(ϕ ′−ϕ) = 0.
Aus Bemerkung 9.22 ergibt sich nun, dass dies genau dann der Fall ist, wenn ϕ ′−ϕ ein
ganzzahliges Vielfaches von 2π ist. □

Beispiel 9.28.
(a) In Polarkoordinaten ist insbesondere die Multiplikation zweier komplexer Zahlen sehr ein-

fach: Es ist
(r1 eiϕ1) · (r2 eiϕ2) = (r1r2)ei(ϕ1+ϕ2),

was die algebraische Version der geometrischen Aussage aus Bemerkung 6.5 ist, dass sich
bei der Multiplikation komplexer Zahlen die Beträge multiplizieren und die Winkel addieren.

(b) (Einheitswurzeln) In Polarkoordinaten können wir in C besonders einfach die Gleichung
zn = 1 für n ∈ N>0 lösen. Schreiben wir nämlich z = r eiϕ , so wollen wir also

zn = rn einϕ = 1 = 1ei·0,

was nach der Eindeutigkeitsaussage aus Satz 9.27 (b) bedeutet, dass

rn = 1 und nϕ = 2πk für ein k ∈ Z,

also r = 1 und ϕ = 2πk
n für ein k ∈ Z. Da man die Po-

larkoordinaten stets so wählen kann, dass ϕ ∈ [0,2π) ist,
genügt es dabei, sich auf die Werte k ∈ {0,1, . . . ,n− 1}
zu beschränken. Die komplexen Lösungen der Gleichung
zn = 1 sind also genau die n Zahlen

zk = e
2πik

n für k = 0, . . . ,n−1.

Man bezeichnet diese Zahlen als die n-ten Einheitswur-
zeln; sie bilden die Ecken eines regelmäßigen n-Ecks
(wie im Bild rechts für das Beispiel n = 5 dargestellt).

Rez
1

Imz
e

2πi
5

e
6πi
5

e
8πi
5

e
4πi
5

Aufgabe 9.29.
(a) Bestimme cos π

6 und sin π

6 .

(b) Stelle alle komplexen Lösungen der Gleichung z6 =−8 sowohl in Polarkoordinaten z = reiϕ

als auch ohne Verwendung von Winkelfunktionen in der Form z = x+ iy dar. Wo liegen sie
in der komplexen Zahlenebene?

Aufgabe 9.30.
(a) Zeige, dass

tan(x+ y) =
tanx+ tany

1− tanx · tany
für alle x,y ∈ R, für die diese Ausdrücke definiert sind.

(b) Skizziere die Funktion

f : R\{−1}→ R, x 7→ arctanx+ arctan
(

1− x
1+ x

)
und begründe dabei alle wesentlichen qualitativen Merkmale des Funktionsgraphen.


