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9. Spezielle Funktionen

Nachdem wir jetzt schon recht viel allgemeine Theorie kennengelernt haben, wollen wir diese nun
anwenden, um einige bekannte spezielle Funktionen zu studieren (oder iiberhaupt erst einmal exakt
zu definieren), die ihr bereits aus der Schule kennt: die Exponential- und Logarithmusfunktion, die
allgemeine Potenz x“ fiir a € R, die Winkelfunktionen und ihre Umkehrfunktionen. Ausgangspunkt
aller dieser Funktionen ist letztlich die in Definition 7.26 (b) bereits eingefiihrte Exponentialfunktion

o N x2 x3
exp(x) ::,;)E = 1+x+3+€+~~ fiir x € K.
Aus Folgerung 7.36 wissen wir schon, dass diese Funktion die Funktionalgleichung
exp(x+y) =exp(x)-exp(y) furallex,ycK

erfiillt. AuBlerdem ist sie nach Beispiel 8.40 (a) stetig, und aus der Reihendarstellung sieht man
sofort, dass exp(0) = 1.

Die weiteren Eigenschaften der Exponentialfunktion sind im reellen und komplexen Fall trotz der
gleich lautenden Definition sehr unterschiedlich. Wir werden diese beiden Félle im Folgenden daher
separat untersuchen.

9.A Logarithmen und allgemeine Potenzen

Wir beginnen mit der reellen Exponentialfunktion und zeigen zunéchst einige ihrer wichtigen Ei-
genschaften.

Satz 9.1 (Eigenschaften der reellen Exponentialfunktion).
(a) Es gilt exp(x) > 0 fiir alle x € R.
(b) Die Funktion exp: R — R ist streng monoton wachsend.
(c) Fiirallen € N gilt
lim exp(x) =oo und lim x" exp(x) =0.
x—oo XN X—y—o0
Insbesondere ist also lim exp(x) = oo und lim exp(x) = 0.
X—roo X—y—o0
(d) Fiir die Zahl e := exp(1l) gilt 2 < e < 3. (Man nennt e die Eulersche Zahl; eine explizite
ndherungsweise Berechnung der Exponentialreihe zeigt, dass e =2,71828....)
Beweis.

(a) Fir x > 0 ist dies aus der Reihendarstellung offensichtlich. Fiir x < 0 folgt aus der Funktio-
nalgleichung
1
exp(x) -exp(—x) =exp(0) =1 und damit exp(x) = xp(x)’
was nun wegen —x > 0 ebenfalls positiv ist.

(b) Esseienx,y € R mitx <y. Wegen y —x > 0 folgt aus der Reihendarstellung der Exponenti-
alfunktion dann exp(y —x) > 1. Da nach (a) auBerdem exp(x) > 0 gilt, erhalten wir mit der
Funktionalgleichung wie gewiinscht

exp(y) = exp(x) -exp(y —x) > exp(x) - 1 = exp(x).
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(c) Fiir x > 0 ergibt sich aus der Reihendarstellung der Exponentialfunktion natiirlich

K ) exp(x) x
exp(x) > 1)1 und damit o > CE
fiir alle n € N. Wegen hrn 0 o +1) = oo folgt damit auch }21010 e*}(’,?‘) = oo,

Die Aussage fiir x — —oo zeigt man analog: Fiir x < 0 ist —x > 0, und da wir in (a) schon
gesehen haben, dass exp(x) = - &ilt, erhalten wir

eXp(
1 1 . (n+1)!
= < d damit X" <
exp(x) o) < 1! und dami |x" exp(x)] ]
Wegen lim ("‘tll) = 0 ergibt sich damit auch lim x" exp(x) =0.
X—>—o00 X——o0
(d) Aus der Exponentialreihe erhalten wir sofort
1 1
c > 6 + F = 2,
und wegenn! =1-2-3- --- .n>1-2-2- ... .2 =2""! mit Hilfe der geometrischen Reihe
aus Beispiel 7.3 (a) auch
1 | | o 1 1

Aufgabe 9.2 (Irrationalitdt von e). Finde fiir alle n € N+ explizit eine natiirliche Zahl a € N mit

n, <e< “;r,l, und zeige so, dass e irrational ist.

Bemerkung 9.3.

(a) Da die (uneigentlichen) Grenzwerte von exp(x) fiir x — 4o nach Satz 9.1 (b) gleich oo
bzw. 0 sind, bedeutet die Aussage desselben Satzes fiir n > 0 gerade, dass sich in diesen
Grenzwerten, die ja von der Form Z bzw. teo -0 sind, die Exponentialfunktion gegeniiber
der Potenz x" durchsetzt. Man sagt auch, ,,die Exponentialfunktion ist fiir x — Zoo stérker
als jede Potenz*.

(b) Im Bild unten links haben wir den Graphen der reellen Exponentialfunktion gemaf Satz 9.1
skizziert. Da exp nach Beispiel 8.40 (a) stetig und nach Satz 9.1 (b) streng monoton wach-
send ist, existiert nach Satz 8.28 eine Umkehrfunktion (wie in Beispiel 8.29 zunéchst fiir
Start- und Zielmenge [—R,R] — [exp(—R),exp(R)] fiir alle R > 0, dann durch den Ubergang
R — oo aber auch fiir R — R ():

exp(x) log(x)
1 € *
—1

Definition 9.4 (Logarithmus). Die Umkehrfunktion der Exponentialfunktion exp: R — R~ wird
mit

log: Ry — R, x— log(x)
bezeichnet und heilit die (natiirliche) Logarithmusfunktion. Sie ist im Bild oben rechts dargestellt.
Statt log(x) ist oft auch die Bezeichnung In(x) iiblich.

Notation 9.5 (Schreibweise spezieller Funktionen). Bei den speziellen Funktionen, die wir in die-
sem Kapitel kennenlernen werden, ist es zur Vereinfachung der Notation oft tiblich, die Klammern
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beim Funktionsargument wegzulassen, wenn es sich nur um eine einfache Zahl oder Variable han-
delt, also z.B. logx statt log(x) zu schreiben. Ist das Funktionsargument jedoch ein zusammenge-
setzter Ausdruck, sind die Klammern zwingend erforderlich: log(x + y) kann man nicht als logx +y
schreiben, da logx 4 y immer als (logx) +y zu verstehen ist.

Bemerkung 9.6 (Eigenschaften der Logarithmusfunktion). Unsere bisher gezeigten Eigenschaften
der Exponentialfunktion iibertragen sich natiirlich sofort auf die Logarithmusfunktion:

(a) log ist stetig und streng monoton wachsend nach Satz 8.28.
(b) logl =0und loge = 1.

(c) Die Grenzwerte aus Satz 9.1 (b) iibertragen sich durch Vertauschen von Start- und Zielraum
auf den Logarithmus als lim logx = oo und lin(l)logx = —oo,
X—ro0 x—

(d) Wenden wir die Funktionalgleichung der Exponentialfunktion auf logx und logy fiir x,y > 0
an, so erhalten wir

exp(logx+logy) = exp(logx) -exp(logy) =x-y
und damit durch Logarithmieren
logx+logy = log(x-y) fiir x,y € R-y,
was die Funktionalgleichung der Logarithmusfunktion genannt wird.
Eine der wichtigsten Anwendungen der Logarithmusfunktion ist, dass man mit ihr allgemeine Po-

tenzen definieren kann — also Potenzen der Form x“, wobei a nun nicht mehr wie bisher in Z liegen
muss, sondern eine beliebige reelle Zahl sein kann:

Definition 9.7 (Allgemeine Potenzen). Fiir x € R-o und a € R definieren wir die Potenz
x* :=exp(alogx)

(wir werden in Bemerkung 9.9 (a) noch sehen, dass dies fiir a € Z mit unserer alten Definition aus
Notation 3.9 (b) iibereinstimmt — was dann auch diese neue, allgemeinere Definition motiviert).

Lemma 9.8 (Rechenregeln fiir allgemeine Potenzen). Fiir alle x,y € R und a,b € R gilt
@ X=1undx!=x;
(b) x40 =3 xb und x~* = L;
(©) x® = (x2)b;
(d) (y)* =27y~
Beweis. Alle Beweise sind einfaches Nachrechnen mit Hilfe der Funktionalgleichung:
(a) x° =exp(0-logx) = exp(0) = 1 und x' = exp(logx) = x.
(b) Esist
X110 = exp((a+ b) logx) = exp(a logx+ b logx) = exp(a logx) - exp(b logx) = x* - x>

Setzen wir in dieser Gleichung b = —a, so ergibt sich ferner 1 = x?-x~% und damit x™¢ = x%

(c) Esgilt
(x*)? = exp(b log(x*)) = exp(b log(exp(a logx))) = exp(ab logx) = x®.
(d) Esist

(xy)* = exp(alog(xy)) = exp(alogx+alogy) = exp(alogx) -exp(alogy) =x*-y*. O
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Bemerkung 9.9.

(a) Aus Lemma 9.8 (a) und (b) folgt insbesondere, dass im Fall a € N fiir unsere allgemeine

(b)

(©)

(d)

Potenz aus Definition 9.7

1 1
¥=x""*tl=y.....x  undgenauso x “=x'""l=_....._
— X X
a-mal ——
a-mal

gilt, dass sie dann also mit der alten Definition der Potenz aus Notation 3.9 (b) iiberein-
stimmt.

Nach Lemma 9.8 (¢) ist x — xa fiir a # 0 eine Umkehrfunktion zu x — x“, denn es ist
(x“)%:xlzx und (xa)*=x'=x

fiir alle x € R~ und a € R\{0}.

Da Umkehrfunktionen eindeutig sind und wir im Fall a € N+ aus Aufgabe 5.37 und Beispiel
8.29 bereits wissen, dass die Wurzelfunktion x — /x ebenfalls eine solche Umkehrfunktion

. . 1 .
ist, sehen wir also, dass xa = /x fiir alle x € R~ und a € Ny gilt.

Mit der Eulerschen Zahl e aus Satz 9.1 (d) ist offensichtlich e? = exp(a loge) = expa fiir alle
a € R. Man verwendet daher in der Regel die einfachere Potenzschreibweise e fiir expa.

Beachte, dass wir die allgemeine Potenz x* mit a € R nur fiir positive x definieren konnten,
weil fiir negative Zahlen kein Logarithmus existiert. In der Tat ist es auch einleuchtend, dass
ein Ausdruck wie z. B. (—l)ﬁ nicht sinnvoll definiert werden kann, da nicht einmal klar ist,
ob diese Zahl positiv oder negativ sein sollte.

9.B Winkelfunktionen

Nach der reellen wollen wir nun die komplexe Exponentialfunktion studieren, die uns schlieSlich zu
den Winkelfunktionen fithren wird. Wie in Bemerkung 9.9 (c) werden wir dabei die Exponential-
funktion auch im Komplexen in der Regel mit z — e® bezeichnen (obwohl es keine allgemeine Potenz
w* fiir w,z € C gibt). Thre wesentlichen Eigenschaften, die wir benotigen, um den Zusammenhang
mit Winkelfunktionen herstellen zu kénnen, sind die folgenden:

Satz 9.10 (Eigenschaften der komplexen Exponentialfunktion). Es gilt:

()
(b)

Beweis.

(a)

(b)

e’ =€ fiiralle z € C;

|el¥| = 1 fiir alle x € R.

Fiir die Partialsummen f;,(z) :=Y}_,, %A, der Exponentialfunktion folgt natiirlich f,,(Z) = f,(z)
durch fortgesetztes Anwenden von Lemma 6.9 (a). Da die komplexe Konjugation z — Z nach
Beispiel 8.7 (c) stetig ist, ergibt sich also nach dem Folgenkriterium fiir Stetigkeit aus Satz
8.12 (b)

& = lim £,(2) = lim £,(z) = Tim 7,(2) = &

Wegen |z| = /77 (siehe Bemerkung 6.4) erhalten wir nun mit (a)

|eix|:\/eix.e?:\/eix.eE:\/eix.e—ix:\/eix_ix:\/gzl. -
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Bemerkung 9.11. Satz 9.10 (b) besagt gerade, dass die komple-
xe Zahl e™ fiir reelle x immer auf dem Rand des Einheitskrei-
ses liegt. Multiplizieren wir zwei solche Zahlen e und e? fiir
x,y € R miteinander, so erhalten wir einerseits nach der Funktio-
nalgleichung der Exponentialfunktion die Zahl

et ely — el(x+y)

(d. h. die Exponenten addieren sich), andererseits haben wir aber
auch schon in Bemerkung 6.5 gesehen, dass sich bei der komple-
xen Multiplikation die Winkel, die die Zahlen mit der positiven
reellen Achse einschlieBen, ebenfalls addieren. Wir konnen den
Exponenten x der Zahl e'* daher wie im Bild rechts als ein Maf}
fiir diesen Winkel auffassen.

In der Tat werden wir in Aufgabe 9.16 sehen, dass dieses x genau die (im Bild oben rechts dick
eingezeichnete) Linge des Kreisbogens ist, der von 1 zu der Zahl e'* fiihrt — man sagt auch, dass x
der im Bogenmaf gemessene Winkel ist. Wir werden diese Aussage im Folgenden nicht benétigen,
sondern verwenden sie hier nur als Motivation dafiir, dass Real- und Imaginérteil von el (also die
beiden Koordinaten dieses Punktes in der Ebene) dann wie aus der Schule bekannt der Kosinus bzw.
Sinus des Winkels x sein sollten. Diese Idee machen wir nun zu unserer Definition von Kosinus und
Sinus.

Definition 9.12 (Kosinus und Sinus). Fiir x € R definieren wir Kosinus und Sinus als die reellen
Zahlen

cosx := Re(el¥) und sinx := Im(e™),
so dass also e = cosx +isinx die Zerlegung der komplexen Exponentialfunktion in Real- und
Imaginirteil ist.

Bevor wir die Eigenschaften dieser beiden Funktionen studieren, wollen wir erst einmal zwei einfa-
che alternative Darstellungsweisen notieren:

Lemma 9.13 (Alternative Darstellung von Kosinus und Sinus).
(a) Fiir alle x € R ist

ix

cosx = % (ei" + e*i)‘) und sinx = —% (e — e*b‘).

(b) Kosinus und Sinus lassen sich darstellen als reelle Potenzreihen mit Konvergenzradius oo

_ oo (_l)n o - x2 )C4 x6
Cosx_n;) 2n) " “lata et
< B Gt O LYot B N S
smxfnzb(zn_i_l)!x fxf§+§fﬁ:|:m

Insbesondere sind Kosinus und Sinus nach Folgerung 8.39 also stetige Funktionen auf R.

Beweis.

(a) Dies folgt aus den allgemeinen Formeln Rez = %(z +Z)und Imz = — % (z—7) (siche Bemer-
kung 6.4) zusammen mit Satz 9.10 (a).

(b) Die Potenzreihendarstellungen ergeben sich mit (a) sofort aus

< (i 2 3 4 5 6 7
e ()" x! ¥©oat P X
© _nZ:o TR TR TR TRAVTRIE TR TR TR
- _ix>n_ B I B
I N A TR TRAE TR Tl Rt TRAE TR

da man konvergente Reihen nach Lemma 7.4 (a) gliedweise addieren kann. Weil diese Rei-
hendarstellung fiir alle x € R gilt, ist der Konvergenzradius dieser Potenzreihen gleich eo.  [J
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Wir listen nun zunichst die einfachsten Eigenschaften von Kosinus und Sinus auf, die sich direkt
aus der Definition ergeben.

Satz 9.14 (Eigenschaften von Kosinus und Sinus). Fiir alle x,y € R gilt
(a) cos(—x) = cosx und sin(—x) = —sinx. (Der Graph von cos ist also achsensymmetrisch zur
vertikalen Achse, der von sin punktsymmetrisch zum Ursprung).
(b) (cosx)?+ (sinx)? = 1; insbesondere ist also | cosx| < 1 und |sinx| < 1.
(c) (Additionstheoreme)
cos(x+y) = cosx cosyFsinx siny

und sin(x+y) = sinx cosy 4 cosx siny

(wobei die Gleichungen so zu verstehen sind, dass an beiden Stellen das obere oder an
beiden Stellen das untere Vorzeichen zu nehmen ist).

Beweis.

(a) Dies folgt z. B. unmittelbar aus Lemma 9.13 (a).

(b) Nach Satz 9.10 (b) ist (cosx)? + (sinx)? = (Re(e™))? + (Im(e™))? = |e"*]? = 1.
(c) Einerseits gilt nach der Funktionalgleichung der komplexen Exponentialfunktion

) — . el = (cosx+1i sinx) (cosy+i siny)
= COosx cosy — sinx siny+1 (sinx COSy +CoSx siny) ,
andererseits nach Definition aber auch
) = cos(x+y) +isin(x+y).

Vergleich von Real- und Imaginirteil liefert nun die behaupteten Formeln fiir cos(x +y) und
sin(x+y). Die Formeln fiir cos(x —y) und sin(x —y) ergeben sich daraus durch den Ubergang
y — —y mit (a). O

Notation 9.15 (cos"x und sin”x). Fiir n € N schreibt man zur Abkiirzung oft auch cos”x und
sin”x anstatt (cosx)” und (sinx)”. Die Formel aus Satz 9.14 (b) schreibt sich dann z.B. kiirzer
als cos?x + sin?x = 1. Beachte aber, dass dies leicht zu Verwechslungen fiihren kann, weil wir die
Umkehrfunktion einer bijektiven Funktion f in Definition 2.20 ja mit x — f~!(x) bezeichnet haben,
dies aber nach dieser neuen Notation auch als x — (f(x))~' = ﬁ interpretiert werden konnte —
was natiirlich etwas vollig anderes ist. Wir werden daher fiir Kosinus und Sinus die Schreibwei-
se cos~!(x) bzw. sin~!(x) iiberhaupt nicht verwenden, und den Umkehrfunktionen dieser beiden

Funktionen andere Namen geben (siehe Definition 9.25).

Aufgabe 9.16 (BogenmaQ).

(a) Berechne den Grenzwert lim ILZOS"
x—0
(b) Esseix € R>o. Wir wollen zeigen, dass die ,,Bogenlénge™ entlang des Einheitskreises von 1
nach e” € C gleich x ist und e damit als der Punkt auf dem Einheitskreis aufgefasst werden

kann, der mit der positiven reellen Achse den Winkel x ,,im Bogenmal* einschlief3t.

Fiir alle n € N> unterteilen wir dazu den Kreisbogen wie im .
Bild durch die Zwischenpunkte /" mit k = 0,...,n. Die .
Lénge des geraden Streckenzuges, der diese Punkte der Rei-
he nach miteinander verbindet, ist dann
—1 .
L — nz |ei(k+1)x/n _ eikx/n|' gZix/n
n = eix/n
Zeige, dass lim L, = x. ]

n—oo
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Aufgabe 9.17. Es sei x € R. Finde und beweise eine explizite Formel fiir die Summen
n n
Z cos(kx) und sin(kx).

k=0 k=0

Als Nichstes wollen wir die Nullstellen und die Periodizitit von Kosinus und Sinus untersuchen. Aus
Bemerkung 9.11 (und dem, was ihr aus der Schule wisst) ist z. B. klar, dass diese beiden Funktionen
die Periode 27 besitzen sollten. Aber bisher wissen wir iiberhaupt noch nicht, was 7 eigentlich
genau ist! Wie ihr euch vielleicht schon denken konnt, wird auch hier der Ausweg wieder darin
bestehen, die Sache riickwérts anzugehen und die Zahl 7 iiber die Eigenschaften der Kosinus- und
Sinusfunktion zu definieren. Dazu benotigen wir das folgende Lemma.

Lemma 9.18.
(a) Fiir alle x € (0,2) ist sinx > 0.
(b) Die Kosinusfunktion ist im Intervall [0,2] streng monoton fallend, und es gilt cos0 > 0 sowie
cos2 < 0.
Beweis. Wir bemerken zuniichst, dass die Summanden der Exponentialreihe Y% 7 fiir 0 < x < 2

n!
ab dem x!-Term betragsmifig monoton fallend sind, denn fiir n > 1 ist

n+1 |
/() x < 2 L
x"/n!

Ton+l T 141

Dasselbe gilt dann natiirlich auch fiir die Glieder der Kosinus- und Sinusreihe, die nach Lemma
9.13 (b) ja bis auf das Vorzeichen genau die geraden bzw. ungeraden Terme der Exponentialreihe
sind. Da die Kosinus- und Sinusreihe zudem alternierend sind, sind ihre Partialsummen nach Satz
7.8 damit abwechselnd obere und untere Schranken fiir den Grenzwert (sofern wir mindestens bis
zum x'-Term aufsummieren, ab dem die Summanden betragsmiBig monoton fallen).

(a) Nach unserer Vorbemerkung folgt nun sofort fiir alle x € (0,2)
3 2 2

2
sianx—%zx(l—%)>x(1—€>:§>0.

(b) Natiirlich ist cos0 = 1 > 0. Fiir cos?2 gilt wieder nach der Vorbemerkung

22 24 4 16 1
2<l——=+—=1--4+—=—=<0.
R TR 2t~ 73°
Es bleibt also nur noch die strenge Monotonie zu zeigen. Es seien dazu x,y € [0,2] mitx <y
gegeben. Mit den Additionstheoremen aus Satz 9.14 (c) ergibt sich

cos (% iy;x) = cosy;x -cosy;x :Fsiny;x -sinygx.
Subtraktion dieser beiden Gleichungen voneinander liefert nun
cos(m—ku) —Cos (m — yfx) =-2 sinerx ~siny7x
2 2 2 2 N 2
~——
=y =x €(0,2) €(0,2)
mit (a) also cosy — cosx < 0 und damit wie behauptet cosx > cosy. 0

Da die Kosinusfunktion nach Lemma 9.13 (b) stetig ist, ergibt sich mit dem Zwischenwertsatz 8.21
aus Lemma 9.18 (b) also, dass es genau ein x € (0,2) gibt mit cosx = 0. Aus der Interpretation von
Bemerkung 9.11 sehen wir, dass diese Nullstelle des Kosinus genau bei x = % auftreten sollte, also
dort wo ¢! auf der imaginiren Achse liegt. Wir benutzen dies nun, um die Zahl 7 zu definieren:

Definition 9.19 (Die Zahl 7). Wir definieren die Zahl w € R als das Doppelte der (nach obigen
Uberlegungen eindeutig bestimmten) Nullstelle der Kosinusfunktion im Intervall [0,2]. (Eine nihe-
rungsweise Berechnung dieser Nullstelle zeigt, dass 7 = 3,14159....)
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Bemerkung 9.20.

(a) Unsere Definition 9.19 ist natiirlich nicht die einzig mogliche Art, wie man die Zahl 7 defi-
nieren kann. Man konnte genauso gut auch irgendeine andere charakteristische Eigenschaft
dieser Zahl als Definition verwenden, wie z.B. (was ja hdufig gesagt wird) den Fldchen-
inhalt des Einheitskreises. Allerdings wissen wir bisher noch gar nicht, wie man derartige
Flacheninhalte iiberhaupt definieren und berechnen kann. Fiir uns hat die etwas merkwiirdig
scheinende Definition 9.19 daher einfach den Vorteil, dass sie am schnellsten zu den ge-
wiinschten Resultaten fiihrt (insbesondere auch ohne Fldcheninhalte berechnen zu konnen).

(b) Da die Kosinusfunktion nach Lemma 9.18 (b) auf [0,2] streng monoton fallend ist, ist ihre
Einschrinkung auf das Intervall [0, %] damit eine bijektive, streng monoton fallende Funk-
tion, die von cosO = 1 nach cos% = 0 lauft. Wir wollen nun sehen, wie wir aus diesem
Abschnitt der Kosinusfunktion die Kosinus- und Sinusfunktion auf ganz R rekonstruieren
konnen.

Satz 9.21 (Periodizitit von Kosinus und Sinus).

(a) An den Stellen x € {0, %, T, 37”,276} nehmen e, cosx und sinx die folgenden Werte an:

X 0 7 = 37” 2
e 1 i -1 -1 1
cosx|1 0 —-1 O 1
sinx [0 1 0 -1 O

(b) Kosinus und Sinus sind 27-periodisch, d. h. es gilt cos(x+2m) = cosx und sin(x+27) = sinx
fiir alle x € R.

(¢) Fiir alle x € R ist cos(mw — x) = —cosx und sin(% £x) = cosx.

Beweis.

(a) Nach Definition 9.19 ist cos 7 = 0. Fiir den Sinus gilt damit sin? Z=1- cos? I=1-0=1
nach Satz 9.14 (b); da auBBerdem sin% > 0 nach Lemma 9.18 (a) gilt, muss also sin% =1
sein. Damit ist €2 = cos T +ising =i
Die iibrigen behaupteten Werte fiir "3 mitn € {0,1,2,3,4} folgen damit sofort nach der

Funktionalgleichung aus e = (¢'7 )" = i". Aufteilen dieser Zahlen in Real- und Imaginir-
teil liefert dann die Werte fiir Kosinus und Sinus in der Tabelle.

(b) Nach (a) iste'2" = 1 und damit e ("+2%) = ¢i¥. 127 — ¢i¥_ Aufteilen in Real- und Imaginirteil
liefert wieder die Behauptung.

(¢) Wiederum mit (a) ist

cos(m —x) =cosmw cosx+sin7 sinx = (—1)-cosx+0-sinx = —cosx
. T . T T . .
und sin (5 ix) = sin 5 cosx =+ cos 5 sinx =1-cosx=+0-sinx = cosx
nach den Additionstheoremen aus Satz 9.14 (c). ]

Bemerkung 9.22. Mit Satz 9.21 kénnen wir nun aus dem Verlauf der Kosinusfunktion im Intervall
[0, 7] (nach Bemerkung 9.20 (b) streng monoton fallend von 1 nach 0 verlaufend; im Bild unten dick
eingezeichnet) die gesamte Kosinus- und Sinusfunktion rekonstruieren:

e Satz 9.21 (c) fiir x € [0, %] legt zunichst Kosinus und Sinus im Intervall [0, 7] fest: Die
Graphen verlaufen hier ,,genauso* wie beim Kosinus von 0 bis 7, nur gedreht bzw. gespiegelt
(im Bild unten als durchgezogene Linie markiert);

e Satz 9.14 (a) bestimmt Kosinus und Sinus damit dann auch im Intervall [—7, 7] (im Bild
gestrichelt eingezeichnet);

e Satz 9.21 (b) schlieBlich besagt dann, dass dieser Verlauf von Kosinus und Sinus in beide
Richtungen 27-periodisch fortgesetzt wird (wie im Bild gepunktet eingezeichnet).
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Wie in der Schule definiert man schlieflich noch den Tangens:

Definition 9.23 (Tangens). Fiir alle x € R\{Z +nm : n € Z}, also nach Bemerkung 9.22 fiir alle x
mit cosx # 0, heifit

der Tangens von x.

Bemerkung 9.24 (Eigenschaften des Tangens). Die wesentlichen Eigenschaften des Tangens erge-
ben sich unmittelbar aus denen des Kosinus und Sinus:

(a) Der Tangens ist auf seiner Definitionsmenge als Quo-

X

I

nach Satz 9.14 (a) (d.h. der Graph von tan ist punkt- /
symmetrisch zum Ursprung), und

K - . ] ' tanx
tient stetiger Funktionen stetig. 5
(b) Esist
sin(—x)  —sinx L/
tan(—x) = (=x) = = —tanx ! :
cos(—x)  cosx : /
z T

sin(x+ )
tan(x+ ) = cos(i 1 7) =

nach Bemerkung 9.22 (d. h. tan ist periodisch mit Periode 7). Der Graph der Tangensfunktion
ist wegen dieser Symmetrien also bereits durch den Graphen im Intervall [0, Z) bestimmt.

(¢) Es ist tan0 = Zg;% = % = 0 sowie tan§ = 1, denn nach Satz 9.21 (c) ist sin§ = cos 7.

Weiterhin ist

lim tanx = oo,
x—m/2
x<m/2

da in diesem Grenzfall sinx — 1 gilt und cosx von der positiven Seite gegen 0 konvergiert.

(d) Die Tangensfunktion ist auf [0, Z) (und damit nach der Symmetrie aus (b) auch auf (-7, 7))
streng monoton wachsend: Fiir x,y € [0, %) mit x < y ist sinx < siny und cosx > cosy > 0

nach Bemerkung 9.22, also

sinx  siny
< _

=tany.

COSX  Ccosy

Wir konnen nun natiirlich auf den Intervallen, auf denen die Winkelfunktionen stetig und streng
monoton sind, nach Satz 8.28 die Umkehrfunktionen definieren. Aufgrund der Periodizitit haben

wir dabei in allen drei Fillen eine Wahl, welches solche Intervall wir betrachten. Ublicherweise
verwendet man die folgenden:

Definition 9.25 (Umkehrfunktionen der Winkelfunktionen). Die Umkehrfunktion von ...
(a) cos: [0,m] — [—1,1] heift Arkuskosinus arccos: [—1,1] — [0, 7].

(b) sin: [-%,%] = [—1,1] heiBt Arkussinus arcsin: [—1,1] — [

(c) tan: (—%,%) — R heiBt Arkustangens arctan: R — (— %, %
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Bemerkung 9.26.

(a) Beachte, dass die Arkusfunktionen nur in den betrachteten Intervallen die Umkehrfunktio-
nen der Winkelfunktionen sind; es ist also z. B. arcsin(sinx) = x nur fiir x € [~ 7, 7], wohin-

gegen z. B. arcsin(sin ) = arcsin0 = 0 ist.

(b) Wie bei den anderen bisher betrachteten Umkehrfunktionen ergeben sich die Eigenschaften
der Arkusfunktionen natiirlich wieder direkt aus denen der Winkelfunktionen. So sind z. B.
alle Arkusfunktionen stetig und streng monoton nach Satz 8.28 (wachsend fiir arcsin und
arctan, fallend fiir arccos), und die wichtigsten speziellen Werte und Symmetrien sind wie
im Bild oben dargestellt.

Als Anwendung der Arkusfunktionen wollen wir zum Abschluss dieses

Kapitels nun noch die sogenannte Polarkoordinatendarstellung komple-

xer Zahlen behandeln, mit der sich Rechnungen in C oft wesentlich Imz )
vereinfachen lassen. Die Idee dabei ist einfach, dass man durch Multi- z=re'?
plikation einer Zahl ¢'? auf dem Einheitskreis (siehe Bemerkung 9.11)
mit einer positiven reellen Zahl r jeden Punkt der komplexen Zahlen-
ebene (mit Ausnahme des Nullpunkts) erreichen konnen sollte, wobei ® Rez
wie im Bild rechts r gerade der Betrag und ¢ der Winkel des betrachte-
ten Punktes ist. Man kann einen solchen Punkt also auch durch Angabe
der Werte von r und ¢ (anstatt durch Real- und Imaginirteil) charakte-
risieren:

Satz 9.27 (Polarkoordinatendarstellung).

(a) Jede komplexe Zahl z € C\{0} lisst sich in der Form z = re'® mit r € Rug und ¢ € R
schreiben.

(b) Die Darstellung aus (a) ist eindeutig bis auf ganzzahlige Vielfache von 271 in ¢, d. h. fiir
rr € Ragund @,¢' € R gilt ré® = Fe'? genau dann wenn r' = r und ¢' — ¢ = 27t fiir ein
neZz.

Man nennt r und ¢ die Polarkoordinaten von z.

Beweis.
(a) Wir setzen r := |z|. Es bleibt also noch zu zeigen, dass es ein ¢ € R gibt mit z = |z|e!?,
d.h. dass sich die komplexe Zahl %, die ja jetzt Betrag 1 hat, in der Form e'? schreiben
lasst. Aufgeteilt in Real- und Imaginérteil bedeutet dies genau, dass wir é—l =:x+1iy als

cos ¢ + i sin ¢ schreiben wollen, d. h. wir suchen zu x,y € R mit x> +y? = 1 eine Zahl ¢ € R
mit

cosQ =x und sing = y. (%)
Wegen x2 —i—y2 = 1 ist insbesondere |x| < 1, wir konnen also o := arccosx setzen, so dass
schon einmal cos o = x gilt. Nun ist mit Satz 9.14 (b)

VY =1-x>=1—cos’ o =sin’a
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und damit y = =+ sin . Im Fall des Vorzeichens ,,+* ergibt nun ¢ := ¢, im Fall des Vorzei-
chens ,,—“ hingegen ¢ := — die gewiinschten Relationen (x).

(b) Zunichstist rel? =/ el?’ genau dann, wenn r = 7/ und ¢l = el (fiir die Richtung ,,<=* neh-

men wir auf beiden Seiten den Betrag). Weiterhin ist el = i’ also e!(?'~%) = 1, #quivalent
7u

cos('—@)=1 und  sin(¢'—¢)=0.
Aus Bemerkung 9.22 ergibt sich nun, dass dies genau dann der Fall ist, wenn ¢’ — @ ein

ganzzahliges Vielfaches von 27 ist. O
Beispiel 9.28.
(a) In Polarkoordinaten ist insbesondere die Multiplikation zweier komplexer Zahlen sehr ein-
fach: Es ist

(rie'®)- (r2e'?) = (ryry) (1492
was die algebraische Version der geometrischen Aussage aus Bemerkung 6.5 ist, dass sich
bei der Multiplikation komplexer Zahlen die Betrige multiplizieren und die Winkel addieren.

(b) (Einheitswurzeln) In Polarkoordinaten konnen wir in (C besonders einfach die Gleichung
7" =1 fiir n € Ny 16sen. Schreiben wir namlich z = re'?, so wollen wir also

= rnein(p — 1= 1ei~0,
was nach der Eindeutigkeitsaussage aus Satz 9.27 (b) bedeutet, dass

=1 und n@ = 27k fiir ein k € Z,
21k

also r =1 und ¢ = £= fiir ein k € Z. Da man die Po- Imz
larkoordinaten stets so wihlen kann, dass ¢ € [0,27) ist,
geniigt es dabei, sich auf die Werte k € {0,1,...,n— 1} i e s

zu beschrinken. Die komplexen Losungen der Gleichung y v
7" =1 sind also genau die n Zahlen i

\
\
2mik T I-

Zr=en firk=0,....,.n—1. '

Man bezeichnet diese Zahlen als die n-ten Einheitswur- 6 & /
zeln; sie bilden die Ecken eines regelméBigen n-Ecks A
(wie im Bild rechts fiir das Beispiel n = 5 dargestellt). e

Aufgabe 9.29.
(a) Bestimme cos % und sin Z.

(b) Stelle alle komplexen Losungen der Gleichung z® = —8 sowohl in Polarkoordinaten z = rel?
als auch ohne Verwendung von Winkelfunktionen in der Form z = x 4 iy dar. Wo liegen sie
in der komplexen Zahlenebene?

Aufgabe 9.30.

(a) Zeige, dass

tan(x+y) tanx +tany
an(x = —
Y 1 —tanx-tany

fiir alle x,y € R, fiir die diese Ausdriicke definiert sind.
(b) Skizziere die Funktion

I—x
:R\{-1} = R, x> arct t
FiR\{-1} , X — arctanx -+ arctan (1+x>

und begriinde dabei alle wesentlichen qualitativen Merkmale des Funktionsgraphen.



