
8. Stetigkeit 91

8. Stetigkeit

Nachdem wir uns gerade ausführlich mit Grenzwerten von Folgen und Reihen befasst haben, wollen
wir den Grenzwertbegriff nun auf Funktionen einer reellen (oder evtl. komplexen) Variablen ausdeh-
nen, also auf Funktionen f : D→ K mit einer Definitionsmenge D ⊂ K. Dies führt zum zentralen
Begriff der Stetigkeit solcher Funktionen.

Anschaulich ist die Frage dabei: Wenn eine Stelle a ∈ D mit Funktionswert f (a) gegeben ist, und
wir nun andere Punkte x ∈ D in der Nähe von a betrachten, liegt dann auch f (x) in der Nähe von
f (a)? Im Bild unten links ist dies der Fall: Laufen wir entlang des dick eingezeichneten Pfeils mit
x auf den Punkt a zu, so nähern sich auch die Funktionswerte f (x) dem Punkt f (a). In diesem Fall
werden wir sagen, dass f im Punkt a stetig ist.

x x
a a

f (a)

f (x)

x→ a
x→ a

⇒ f (x)→ f (a)

f ist stetig in a

f (a)

f (x)

f ist nicht stetig in a

aber f (x) ̸→ f (a)

Im Bild oben rechts dagegen führt der Sprung im Funktionsgraphen zu einem anderen Verhalten:
Nähern wir uns hier entlang des dick eingezeichneten Pfeils mit x dem Punkt a, so nähert sich f (x)
nicht dem Wert f (a), sondern dem oberen Punkt der Sprungstelle. In diesem Fall ist f im Punkt a
unstetig.

Um dies mathematisch exakt zu formulieren, wollen wir jetzt den Begriff von Funktionsgrenzwerten
einführen. Im linken Fall können wir dann sagen, dass f (x) mit x → a gegen f (a) konvergiert,
während dies im Fall rechts nicht so ist.

8.A Grenzwerte von Funktionen

Wie eben erläutert wollen wir das Verhalten von Funktionen f : D→ K mit D ⊂ K untersuchen,
wenn wir uns einem vorgegebenen Punkt a nähern. Dieser Wert a kann dabei, muss aber nicht un-
bedingt selbst Element von D sein. Wir sollten aber natürlich sicherstellen, dass wir uns zumindest
innerhalb von D dem Punkt a beliebig annähern können – also anschaulich gesprochen, dass a ent-
weder in D oder am Rand von D liegt. Formal bedeutet dies, dass a im Sinne der folgenden Definition
ein Berührpunkt von D sein muss.

Definition 8.1 (Berührpunkte). Es sei D⊂K eine Menge. Eine Zahl a ∈K heißt Berührpunkt von
D, wenn jede ε-Umgebung von a (siehe Bemerkung 5.2) mindestens einen Punkt aus D enthält, also
wenn es zu jedem ε > 0 ein x ∈ D gibt mit |x− a| < ε . Die Menge aller Berührpunkte von D wird
mit D bezeichnet und heißt der Abschluss von D.

Beispiel 8.2.

(a) Für ein D⊂K ist jedes a ∈ D Berührpunkt von D: Wir können in diesem Fall in der Defini-
tion 8.1 einfach x = a für jedes ε wählen. Es gilt also stets D⊂ D.
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(b) Für ein offenes reelles Intervall D = (a,b)⊂R ist D = [a,b] das zugehörige abgeschlossene
Intervall. Die Randpunkte a und b sind also Berührpunkte von D, die nicht selbst zu D
gehören.

Für derartige Berührpunkte können wir nun Grenzwerte von Funktionen definieren. Die Konstruk-
tion ist völlig analog zur Definition 5.1 (b) des Grenzwerts von Folgen:

Definition 8.3 (Grenzwerte von Funktionen). Es seien D ⊂ K eine Menge und f : D→ K eine
Funktion. Ferner sei a ∈ D ein Berührpunkt von D.

Dann heißt eine Zahl c ∈K Grenzwert von f in a, wenn

∀ε ∈ R>0 ∃δ ∈ R>0 ∀x ∈ D : |x−a|< δ ⇒ | f (x)− c|< ε.

Wie schon im Fall von Folgen werden wir sehen (siehe Bemerkung 8.13), dass ein solcher Grenzwert
im Fall der Existenz eindeutig ist, so dass wir also von dem Grenzwert von f in a sprechen können.
Wir schreiben dies dann als

lim
x→a

f (x) = c bzw. lim
x→a
x∈D

f (x) = c

oder auch als „ f (x)→ c für x→ a“, und sagen, dass f in a konvergent ist gegen c. Existiert ein
solcher Grenzwert nicht, so heißt f divergent in a.

Bemerkung 8.4. Gilt in Definition 8.3 sogar a∈D, so kommt als Grenzwert c nur f (a) in Frage: Wir
können dann nämlich x= a in der Grenzwertbedingung von Definition 8.3 setzen (so dass |x−a|< δ

in jedem Fall erfüllt ist) und erhalten damit | f (a)− c| < ε für alle ε – was nur möglich ist, wenn
c = f (a) ist.

Definition 8.5 (Stetigkeit). Es seien D⊂K eine Menge und f : D→K eine Funktion.

(a) Ist a∈D, so heißt f stetig in a, wenn der Grenzwert lim
x→a

f (x) existiert (und nach Bemerkung

8.4 damit zwangsläufig gleich f (a) ist), d. h. wenn

∀ε ∈ R>0 ∃δ ∈ R>0 ∀x ∈ D : |x−a|< δ ⇒ | f (x)− f (a)|< ε.

Die Funktion f heißt stetig (auf D), wenn sie in jedem Punkt a ∈ D stetig ist.

(b) Ist a∈D\D, so heißt f stetig fortsetzbar nach a, wenn der Grenzwert c = lim
x→a

f (x) existiert.
(In diesem Fall erhält man nämlich eine in a stetige Funktion

f̃ : D∪{a}→K, x 7→

{
f (x) für x ∈ D,

c für x = a,

die man als stetige Fortsetzung von f nach a bezeichnet.)

Bemerkung 8.6 (Anschauliche Deutung des Grenzwertbegriffs). Das Bild unten zeigt noch einmal
das Beispiel vom Anfang dieses Kapitels mit den eben eingeführten Notationen: Nach Definition
ist eine Funktion f : D→ K genau dann stetig in einem Punkt a ∈ D, wenn es zu jeder (beliebig
kleinen) ε-Umgebung Uε( f (a)) von f (a) eine δ -Umgebung Uδ (a) von a gibt, in der alle Punkte
von D nach Uε( f (a)) abgebildet werden, also so dass f (D∩Uδ (a))⊂Uε( f (a)) gilt. Im Bild unten
bedeutet dies, dass zu jedem auch noch so schmal gewählten grauen horizontalen Streifen um f (a)
eine Einschränkung von f auf eine hinreichend kleine Umgebung von a dazu führt, dass alle Funk-
tionswerte dort (im Bild unten dick eingezeichnet) in dem gewählten Streifen liegen. Dies entspricht
genau der ursprünglichen Motivation, dass eine kleine Änderung von x um a herum auch nur zu
einer kleinen Änderung der Funktionswerte f (x) um f (a) führen darf. Bei der linken Funktion ist
dies also der Fall, bei der rechten aufgrund der Sprungstelle jedoch nicht.
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x x
a a

f (a) Uε( f (a))

f (x)
Uδ (a) Uδ (a)

f ist stetig in a

f (a)

f (x)

Uε( f (a))

f ist nicht stetig in a

Die ebenfalls oft gehörte geometrische Interpretation, dass eine reelle Funktion stetig ist, wenn man
„ihren Graphen zeichnen kann, ohne den Stift abzusetzen“, ist übrigens etwas mit Vorsicht zu genie-
ßen, wie die Beispiele 8.7 (e) und (f) unten zeigen.

Beispiel 8.7.

(a) Die Identität f : K→K, x 7→ x ist stetig: Sind a∈K und ε > 0 gegeben, so setze man δ := ε .
Dann gilt natürlich für alle x∈K mit |x−a|< δ , dass | f (x)− f (a)|= |x−a|< δ = ε . Analog
zeigt man, dass konstante Funktionen stetig sind.

(b) Wir zeigen, dass die Betragsfunktion f : K→K, x 7→ |x| stetig ist. Es seien dazu a ∈K und
ε > 0 gegeben. Wir setzen wieder δ := ε . Dann folgt für alle x ∈K mit |x−a|< δ mit Hilfe
der Dreiecksungleichung nach unten

|x−a| ≥ |x|− |a| und |x−a| ≥ |a|− |x|.

Da | f (x)− f (a)| =
∣∣|x|− |a|∣∣ aber eine der beiden Zahlen |x|− |a| und |a|− |x| sein muss,

ergibt sich in jedem Fall

| f (x)− f (a)| ≤ |x−a|< δ = ε.

Damit ist f stetig.

(c) Analog ist die komplexe Konjugation f : C→ C, z 7→ z (siehe Notation 6.2) stetig: Sind
a ∈ C und ε > 0 gegeben, so setzen wir δ := ε und erhalten für alle z ∈ C mit |z−a|< δ

| f (z)− f (a)|= |z−a|= |z−a|= |z−a|< δ = ε.

(d) Die Funktion

f : R→ R, x 7→

{
0 für x ̸= 0,
1 für x = 0

(siehe Bild unten) ist in a = 0 nicht stetig. Wollen wir dies formal zeigen, müssen wir die
Negation der Bedingung aus Definition 8.5 (a) beweisen, d. h.

∃ε > 0 ∀δ > 0 ∃x ∈ R : |x−a|< δ und | f (x)− f (a)| ≥ ε.

(Beachte dabei, dass die Negation der Aussage „|x− a| < δ ⇒ | f (x)− f (a)| < ε“ nach
Beispiel 1.9 (a) die angegebene Bedingung „|x− a| < δ und | f (x)− f (a)| ≥ ε“ ist, und
nicht etwa eine Folgerung „|x−a|< δ ⇒ | f (x)− f (a)| ≥ ε“!)

Dies zu zeigen ist hier aber sehr einfach: Setzen wir ε = 1
2 und ist δ > 0 beliebig, so können

wir x = δ

2 setzen und erhalten |x−a|= δ

2 < δ und | f (x)− f (a)|= |0−1|= 1≥ ε . 17

Anders ausgedrückt existiert in diesem Fall der Grenzwert lim
x→0

f (x) nicht. Falls ihr jetzt

gedacht hättet, dass dieser Grenzwert doch existiert und gleich 0 ist, so habt ihr damit sicher
gemeint, dass sich f (x) dem Wert 0 nähert, wenn x in der Nähe von 0, aber nicht gleich 0 ist.
Der Fall x = 0 (bzw. x = a) ist in Definition 8.3 aber nicht ausgeschlossen! Wenn wir dies
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ausschließen wollten, so müssten wir die Definitionsmenge von f auf R\{0} einschränken
und würden dann in der Tat

lim
x→0
x ̸=0

f (x) = 0

erhalten.

Beachte jedoch, dass es hier in der Literatur zwei verschiedene Konventionen gibt: In man-
chen Büchern werden Funktionsgrenzwerte so definiert, dass lim

x→a
immer für lim

x→a
x ̸=a

steht.

(e) Die unten im Bild dargestellte Funktion

f : R\{0}→ R, x 7→

{
0 für x < 0,
1 für x > 0

ist stetig – ja, wirklich! Sie ist nämlich an jedem Punkt der Definitionsmenge, also an jedem
a ̸= 0 stetig, weil sie in der Nähe eines jeden solchen Punktes (genauer: in der |a|-Umgebung
von a) konstant ist. Die Funktion f ist aber natürlich nicht stetig fortsetzbar nach 0: Der
Grenzwert lim

x→0
f (x) existiert nicht.

(f) Jede Funktion f : Z→ R ist stetig (siehe unten). Das liegt anschaulich einfach daran, dass
wir hier gar keine Möglichkeit haben, ein gegebenes a ∈ Z ein wenig so zu verändern, dass
es immer noch in der Definitionsmenge liegt. Formal können wir in der Bedingung aus
Definition 8.5 (a) für jedes gegebene ε > 0 immer δ = 1

2 setzen und haben damit sicher
gestellt, dass |x− a| < δ mit x ∈ Z nur für x = a erfüllt ist, womit dann natürlich auch
| f (x)− f (a)|= 0 < ε ist.

x
1

x

1

x

1

(d) (e) (f)

f (x) f (x) f (x)

Bemerkung 8.8 (Funktionen mit Grenzwert ungleich 0). Es seien D⊂K, f : D→K eine Funktion
und a ∈D mit c := lim

x→a
f (x) ̸= 0. Aus Definition 8.3 für ε = |c|

2 erhalten wir dann wie in Bemerkung

5.12 ein δ > 0, so dass | f (x)− c|< ε und damit

| f (x)|= | f (x)− c+ c| ≥ |c|− | f (x)− c|> |c|− ε =
|c|
2

> 0

für alle x ∈ D mit |x−a|< δ gilt.

Insbesondere ergibt sich im Fall a ∈ D also, dass eine in a stetige Funktion f mit f (a) ̸= 0 auch in
einer δ -Umgebung von a ungleich 0 ist. Beispiel 8.7 (d) zeigt (bei a = 0), dass dies für unstetige
Funktionen im Allgemeinen natürlich falsch ist.

Eine analoge Aussage gilt im Fall K= R auch ohne Beträge: Eine in a stetige reelle Funktion f mit
f (a)> 0 ist auch in einer δ -Umgebung von a positiv.

Aufgabe 8.9. Es seien m,n ∈ N>0. Berechne den Grenzwert lim
x→1

xm−1
xn−1 .

Aufgabe 8.10. Zeige durch Rückgang auf die ε-δ -Definition der Stetigkeit, dass die Funktion
f : [−1,1]→ R, x 7→

√
1− x2 stetig ist.

Aufgabe 8.11. Es seien D⊂ R, a ∈ D und f : D→ R eine Funktion. Zeige, dass f genau dann in a
stetig ist, wenn f in a „linksseitig und rechtsseitig stetig“ ist, also dass

lim
x→a

f (x) = f (a) ⇔ lim
x→a
x≤a

f (x) = f (a) und lim
x→a
x≥a

f (x) = f (a).
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Wie im Fall von Folgengrenzwerten wollen wir nun natürlich auch für Grenzwerte von Funktionen
ein paar einfache Rechenregeln zeigen, z. B. dass solche Grenzwerte wie in Satz 5.13 mit Summen
und Produkten vertauschen. Glücklicherweise lassen sich Grenzwerte von Funktionen mit Hilfe des
folgenden Satzes immer auf Grenzwerte von Folgen zurückführen, so dass wir viele unserer Ergeb-
nisse dann sofort von Folgen auf Funktionen übertragen können:

Satz 8.12 (Folgenkriterium). Es seien D⊂K und f : D→K eine Funktion.

(a) (Folgenkriterium für Funktionsgrenzwerte) Für a ∈ D und c ∈K gilt

lim
x→a

f (x) = c ⇔ Für jede Folge (xn)n in D mit xn→ a gilt f (xn)→ c.

(b) (Folgenkriterium für Stetigkeit) Für a ∈ D gilt

f ist stetig in a ⇔ Für jede Folge (xn)n in D mit xn→ a gilt f (xn)→ f (a).

Es ist dann also
lim
n→∞

f (xn) = f
(

lim
n→∞

xn
)
,

d. h. „eine stetige Funktion f vertauscht mit der Grenzwertbildung von Folgen“.

Beweis. Wir beweisen zunächst Teil (a).

„⇒“: Es seien lim
x→a

f (x) = c und (xn)n eine Folge in D mit xn→ a; wir müssen f (xn)→ c zeigen.

Dazu sei ε > 0 beliebig. Wegen lim
x→a

f (x) = c gibt es ein δ > 0, so dass | f (x)−c|< ε für alle

x ∈D mit |x−a|< δ gilt. Wegen xn→ a ist aber |xn−a|< δ für fast alle n, und damit dann
auch | f (xn)− c|< ε für diese n. Damit gilt f (xn)→ c.

„⇐“: Wir zeigen diese Richtung durch einen Widerspruchsbeweis und nehmen also an, dass c kein
Grenzwert von f (x) in a ist, d. h. (durch Negation der Definition 8.3)

∃ε > 0 ∀δ > 0 ∃x ∈ D : |x−a|< δ und | f (x)− c| ≥ ε.

Wir wählen nun ein solches ε . Indem wir δ = 1
n setzen, erhalten wir für alle n ∈ N>0 ein

xn ∈ D mit |xn− a| < 1
n und | f (xn)− c| ≥ ε . Für diese Folge gilt dann aber xn → a und

f (xn) ̸→ c im Widerspruch zur Annahme.

Teil (b) folgt nun mit Definition 8.5 (a) sofort aus (a). □

Bemerkung 8.13. Mit Hilfe des Folgenkriteriums können wir nun sehr schnell viele Resultate über
Grenzwerte von Folgen auf Funktionen übertragen. So folgt z. B. sofort, dass Grenzwerte von Funk-
tionen immer eindeutig sind, sofern sie existieren: Sind D⊂K, f : D→K, a ∈ D und f (x)→ c für
x→ a, so können wir wegen a ∈ D eine Folge (xn)n in D mit xn→ a wählen, und erhalten mit Satz
8.12 (a) dann auch f (xn)→ c. Da Folgengrenzwerte nach Lemma 5.5 aber eindeutig sind, ist dies
für höchstens ein c möglich.

Die folgenden Rechenregeln ergeben sich ebenfalls sofort aus dem Folgenkriterium und sorgen auch
dafür, dass wir für sehr viele Funktionen ohne weitere Rechnung direkt die Stetigkeit nachweisen
können:

Satz 8.14 (Grenzwertsätze für Funktionen). Es seien D ⊂ K und f ,g : D→ K zwei Funktionen.
Weiterhin sei a ∈ D, so dass beide Grenzwerte lim

x→a
f (x) und lim

x→a
g(x) existieren. Dann gilt

lim
x→a

( f (x)+g(x)) = lim
x→a

f (x)+ lim
x→a

g(x).

Eine analoge Aussage gilt auch für f (x)−g(x) und f (x) ·g(x); und falls lim
x→a

g(x) ̸= 0 gilt, auch für
f (x)
g(x) .

Insbesondere sind für a ∈ D also mit f und g auch f + g, f − g, f · g und f
g in a stetig (letzteres

wiederum nur, falls g(a) ̸= 0).
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Beweis. Beachte im Fall f
g zunächst, dass die Definitionsmenge dieses Quotienten nicht ganz D,

sondern die evtl. kleinere Menge D′ = {x∈D : g(x) ̸= 0} ist. Um überhaupt über den Grenzwert von
f (x)
g(x) für x→ a sprechen zu können, müssen wir also zuerst überprüfen, dass a ein Berührpunkt von D′

ist. Dies folgt aber aus Bemerkung 8.8, die besagt, dass g wegen lim
x→a

g(x) ̸= 0 in einer ε-Umgebung

von a nirgends 0 wird, so dass D und D′ dort also übereinstimmen.

Die eigentliche Behauptung des Lemmas ist nun eine direkte Übertragung der Grenzwertsätze für
Folgen aus Satz 5.13. Wir betrachten hier nur den Fall der Addition, da die anderen drei Fälle wört-
lich genauso bewiesen werden. Dazu berechnen wir den Grenzwert von f (x)+ g(x) mit dem Fol-
genkriterium aus Satz 8.12 (a): Es sei (xn)n eine beliebige Folge in D mit xn → a. Dann gilt nach
dem Folgenkriterium für f und g

lim
n→∞

f (xn) = lim
x→a

f (x) und lim
n→∞

g(xn) = lim
x→a

g(x)

und damit nach Satz 5.13 (a)

lim
n→∞

( f (xn)+g(xn)) = lim
n→∞

f (xn)+ lim
n→∞

g(xn) = lim
x→a

f (x)+ lim
x→a

g(x),

d. h. f (xn)+ g(xn) konvergiert für jede solche Folge gegen lim
x→a

f (x)+ lim
x→a

g(x), also immer gegen
dieselbe Zahl. Wiederum nach dem Folgenkriterium – diesmal für f +g – ergibt sich damit also wie
gewünscht auch

lim
x→a

( f (x)+g(x)) = lim
x→a

f (x)+ lim
x→a

g(x). □

Beispiel 8.15. Jede rationale Funktion, also jede Funktion der Form f (x) = p(x)
q(x) mit Polynomfunk-

tionen p(x) und q(x), lässt sich natürlich mit den vier Grundrechenarten aus der Identität und den
konstanten Funktionen zusammensetzen. Damit folgt aus Satz 8.14, dass jede solche Funktion auf
jeder Definitionsmenge D⊂ {x ∈K : q(x) ̸= 0} – also überall dort, wo f überhaupt definiert werden
kann – stetig ist.

Als Nächstes wollen wir zeigen, dass auch Verkettungen stetiger Funktionen wieder stetig sind.
Dazu beweisen wir einen etwas allgemeineren Satz, der analog zur Vertauschbarkeit stetiger Funk-
tionen mit Folgengrenzwerten in Satz 8.12 (b) ist, und der auch oft zur Berechnung von Grenzwerten
nützlich ist.

Satz 8.16 (Grenzwert einer Verkettung). Es seien f : D→K mit D⊂K sowie g : D′→K mit D′⊂K
zwei Funktionen mit f (D) ⊂ D′. Ferner sei a ∈ D, so dass lim

x→a
f (x) existiert, in D′ liegt, und g in

diesem Punkt stetig ist. Dann gilt

lim
x→a

(g◦ f )(x) = g
(

lim
x→a

f (x)
)
,

d. h. „für stetige g kann man die Anwendung von g mit der Grenzwertbildung vertauschen“.

Insbesondere folgt für a ∈ D also aus der Stetigkeit von f in a und der von g in f (a) auch die
Stetigkeit von g◦ f in a, d. h. die Verkettung stetiger Funktionen ist stetig.

Beweis. Wir zeigen das Lemma wieder mit dem Folgenkriterium aus Satz 8.12 (a). Es sei also
(xn)n eine beliebige Folge in D mit xn → a. Weil der Grenzwert c := lim

x→a
f (x) nach Voraussetzung

existiert, gilt f (xn)→ c nach dem Folgenkriterium für f . Da weiterhin g in c stetig ist, gilt nach dem
Folgenkriterium für g auch (g ◦ f )(xn) = g( f (xn))→ g(c). Die Aussage des Lemmas ergibt sich
damit aus dem Folgenkriterium für g◦ f . □

Aufgabe 8.17. Zeige, dass die Funktion

f : [0,1]→ R, x 7→

{
x für x ∈Q,

1− x für x /∈Q

genau im Punkt a = 1
2 stetig ist.
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Aufgabe 8.18. Man beweise: Ist f : R→ R eine stetige Funktion, für die die Funktionalgleichung

f (x+ y) = f (x)+ f (y) für alle x,y ∈ R

gilt, so gibt es ein a ∈ R mit f (x) = ax für alle x ∈ R, d. h. f ist eine lineare Funktion.

Bleibt die Aussage richtig, wenn man überall R durch C ersetzt?

Genau wie bei Folgen wollen wir nun auch für Funktionen im reellen Fall uneigentliche Grenzwerte
einführen, und zwar sowohl in der Start- als auch in der Zielmenge: Wir wollen sowohl Grenzwerte
der Form lim

x→∞
f (x) definieren als auch sagen, was es bedeutet, dass der Grenzwert einer Funktion

gleich ∞ ist. Die folgende Definition ist völlig analog zu Definition 5.40.

Definition 8.19 (Uneigentliche Grenzwerte von Funktionen). Es seien D ⊂ R und f : D→ R eine
Funktion.

(a) Für a ∈ D schreiben wir lim
x→a

f (x) = ∞, wenn

∀s ∈ R ∃δ > 0 ∀x ∈ D : |x−a|< δ ⇒ f (x)> s.

Wie im Fall von Folgen in Definition 5.40 spricht man in diesem Fall von einem uneigent-
lichen Grenzwert bzw. sagt, dass f für x→ a bestimmt divergiert.

(b) Ist D nach oben unbeschränkt (so dass man x in f (x) überhaupt beliebig groß werden lassen
kann), so schreibt man lim

x→∞
f (x) = c für ein c ∈ R, wenn

∀ε > 0 ∃r ∈ R ∀x ∈ D : x≥ r⇒ | f (x)− c|< ε.

Kombiniert man dies nun noch mit (a), so erhält man die Schreibweise lim
x→∞

f (x) = ∞ für

∀s ∈ R ∃r ∈ R ∀x ∈ D : x≥ r⇒ f (x)> s.

Beachte, dass diese letzten beiden Notationen sogar exakt mit der Definition von Folgen-
grenzwerten aus Definition 5.1 (b) und 5.40 übereinstimmen, wenn man sie auf eine Folge
(an) als Funktion mit Definitionsmenge N anwendet.

Analog definiert man derartige Grenzwerte mit −∞ statt ∞.

Bemerkung 8.20. Man prüft leicht nach, dass mit Definition 8.19 sowohl das Folgenkriterium für
Funktionsgrenzwerte aus Satz 8.12 (a) als auch die Grenzwertsätze aus Satz 8.14 auch für diese
uneigentlichen Grenzwerte gelten, wenn man die üblichen Rechenregeln für ±∞ verwendet.

8.B Eigenschaften stetiger Funktionen

Nachdem wir nun von vielen Funktionen gesehen haben, wie man ihre Stetigkeit nachweisen kann,
wollen wir jetzt untersuchen, was wir davon haben, wenn wir wissen, dass eine gegebene Funktion
stetig ist. Dazu wollen wir einige sehr anschauliche Aussagen formal beweisen, die für reelle stetige
Funktionen auf einem abgeschlossenen Intervall [a,b] mit a < b gelten. Die erste von ihnen be-
sagt, dass eine solche Funktion mit je zwei Funktionswerten auch jeden Wert dazwischen annehmen
muss – was bei einer kontinuierlichen Änderung der Funktionswerte natürlich zu erwarten ist.

Satz 8.21 (Zwischenwertsatz). Es sei f : [a,b]→ R eine stetige Funktion. Dann gibt es zu jedem c
zwischen f (a) und f (b) ein x ∈ [a,b] mit f (x) = c.

Beweis. Wir können ohne Einschränkung annehmen, dass wie im Bild unten rechts f (a) ≤ f (b)
und damit f (a)≤ c≤ f (b) gilt. Ausgehend von [a0,b0] := [a,b] konstruieren wir nun rekursiv eine
Intervallschachtelung

[a,b] = [a0,b0]⊃ [a1,b1]⊃ [a2,b2]⊃ ·· ·
mit in jedem Schritt halbierter Länge der Intervalle, so dass f (an)≤ c≤ f (bn) für alle n ∈ N gilt:
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Ist [an,bn] für ein n ∈ N bereits konstruiert, so betrachten
wir den Funktionswert f ( an+bn

2 ) in der Intervallmitte.

• Ist f ( an+bn
2 )≥ c (wie im Bild im Fall n = 0), so er-

setzen wir die rechte Intervallgrenze durch den Mit-
telpunkt, setzen also an+1 := an und bn+1 := an+bn

2 .

• Ist dagegen f ( an+bn
2 ) < c (wie im Fall n = 1 im

Bild rechts), so ersetzen wir die linke Intervallgren-
ze durch den Mittelpunkt, setzen also an+1 := an+bn

2
und bn+1 := bn.

Für den nach Satz 5.39 durch diese Intervallschachtelung
definierten Punkt x ∈ [a,b] gilt dann an → x und bn → x,
nach dem Folgenkriterium aus Satz 8.12 also

f (a)

f (b)

c

x
a0
a1

a2
a3

b0
b1
b2

b3

ba

f

f (x) = lim
n→∞

f (an)≤ c≤ lim
n→∞

f (bn) = f (x)

und damit f (x) = c. □
18

Als Nächstes wollen wir zeigen, dass eine stetige Funktion auf einem abgeschlossenen Intervall wie
in Satz 8.21 immer beschränkt ist.

Definition 8.22 (Beschränkte und monotone Funktionen). Es seien D ⊂ R und f : D → R eine
Funktion. Dann heißt f auf D . . .

(a) (nach oben bzw. unten) beschränkt, wenn die Menge f (D) ⊂ R aller Bildpunkte von f
(nach oben bzw. unten) beschränkt ist.

(b) monoton wachsend oder steigend (bzw. streng monoton wachsend oder steigend), wenn
für alle x,y ∈ D mit x < y gilt, dass f (x) ≤ f (y) (bzw. f (x) < f (y)). Analog definiert man
(streng) monoton fallend.

Satz 8.23. Jede stetige Funktion f : [a,b]→ R auf einem abgeschlossenen Intervall ist beschränkt.

Beweis. Angenommen, f wäre unbeschränkt. Dann gäbe es zu jedem n ∈ N ein xn ∈ [a,b] mit
| f (xn)| > n. Beachte, dass die Folge ( f (xn))n dann natürlich unbeschränkt, die Folge (xn)n aber
beschränkt ist (weil ja stets xn ∈ [a,b] gilt). Nach dem Satz 6.21 von Bolzano-Weierstraß besitzt
(xn)n also eine konvergente Teilfolge (xnk)k; es sei x := lim

k→∞
xnk .

Wegen a ≤ xnk ≤ b für alle k ∈ N folgt aus Satz 5.24 (a) auch a ≤ x ≤ b, d. h. auch x liegt in der
Definitionsmenge [a,b] von f . Nach dem Folgenkriterium aus Satz 8.12 (b) müsste dann aber die
Folge ( f (xnk))k gegen f (x) konvergieren – was ein Widerspruch dazu ist, dass diese Folge nach
Konstruktion unbeschränkt und damit divergent ist. □

Bemerkung 8.24. Für nicht abgeschlossene Intervalle ist Satz 8.23 natürlich im Allgemeinen falsch,
wie das Beispiel f (x) = 1

x auf dem offenen Intervall (0,1) zeigt.

Wir haben gerade gesehen, dass das Bild M = f ([a,b]) einer steti-
gen Funktion auf einem abgeschlossenen Intervall [a,b] immer be-
schränkt ist und damit also stets zwischen infM und supM liegt. Wir
wollen nun zeigen, dass Infimum und Supremum dieser Menge in
der Tat sogar Minimum und Maximum sind, also dass diese beiden
Zahlen auch als Werte von f angenommen werden – so wie z. B. im
Bild rechts f (x) = supM ist. a b

supM

infM

x

f

Satz 8.25 (Satz vom Maximum und Minimum). Jede stetige Funktion f : [a,b]→ R nimmt ein
Maximum und Minimum an, d. h. die Menge M = f ([a,b]) = { f (x) : x ∈ [a,b]} hat ein Maximum
und Minimum.
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Beweis. Wir zeigen die Aussage für das Maximum; das Minimum ergibt sich analog. Die Menge
M ist natürlich nicht leer und nach Satz 8.23 beschränkt, also existiert s := supM. Da s die kleinste
obere Schranke für M ist, ist s− 1

n für alle n ∈N>0 dann keine obere Schranke mehr. Wir finden also
ein xn ∈ [a,b] mit

s− 1
n
< f (xn)≤ s. (∗)

Nach dem Einschachtelungssatz 5.24 (b) konvergiert ( f (xn))n damit gegen s. Nun können wir aber
wieder nach dem Satz 6.21 von Bolzano-Weierstraß aus (xn)n eine konvergente Teilfolge (xnk)k
auswählen, die gegen ein x ∈ [a,b] konvergiert. Weil f in x stetig ist, gilt nach dem Folgenkriterium
aus Satz 8.12 (b) damit

f (x) = f
(

lim
k→∞

xnk

)
= lim

k→∞
f (xnk) = s. □

Die Ergebnisse aus den Sätzen Satz 8.21, 8.23 und 8.25 lassen sich übrigens einfach in einer einzigen
Aussage zusammenfassen:

Folgerung 8.26. Ist f : [a,b]→ R eine stetige Funktion auf einem abgeschlossenen Intervall [a,b],
so ist das Bild von f ebenfalls ein abgeschlossenes Intervall [c,d].

Beweis. Nach Satz 8.25 existieren c := min f ([a,b]) und d := max f ([a,b]). Insbesondere gilt damit
f ([a,b])⊂ [c,d], wobei die Werte c und d von f angenommen werden. Nach dem Zwischenwertsatz
werden damit von f aber auch alle Werte zwischen c und d angenommen, d. h. es ist in der Tat
f ([a,b]) = [c,d]. □

Aufgabe 8.27. Man zeige:

(a) Es seien f : R→R eine stetige Funktion mit f (0)= 0 sowie g : R\{0}→R eine beschränkte
stetige Funktion.

Dann ist die Funktion f ·g : R\{0}→R, x 7→ f (x) ·g(x) stetig in den Nullpunkt fortsetzbar.

(b) Jede bijektive, monoton wachsende Funktion f : [a,b]→ [c,d] zwischen abgeschlossenen
reellen Intervallen ist stetig.

Eine der wichtigsten Anwendungen dieser Aussage ist die Konstruktion von (stetigen) Umkehrfunk-
tionen für streng monotone Funktionen:

Satz 8.28 (Existenz und Stetigkeit von Umkehrfunktionen). Es sei f : [a,b]→ [c,d] eine stetige
und streng monoton wachsende Funktion mit c = f (a) und d = f (b). Dann ist f bijektiv, und ihre
Umkehrfunktion f−1 : [c,d]→ [a,b] ist ebenfalls stetig und streng monoton wachsend.

Analog gilt dies mit „streng monoton fallend“ statt „streng monoton wachsend“.

Beweis. Die Abbildung f ist surjektiv nach Folgerung 8.26. Sie ist auch injektiv, da sie streng
monoton wachsend ist. Also ist f bijektiv, und die Umkehrfunktion f−1 : [c,d]→ [a,b] existiert.
Sie ist notwendigerweise streng monoton wachsend, denn wenn es x,y ∈ [c,d] mit x < y und
f−1(x) ≥ f−1(y) gäbe, würde sich daraus durch Anwenden der streng monotonen Funktion f der
Widerspruch f ( f−1(x))≥ f ( f−1(y)), also x≥ y ergeben. Nach Aufgabe 8.27 (b) ist f−1 damit auch
stetig. □

Beispiel 8.29 (Wurzelfunktionen). Es seien n ∈ N>0 und R ∈ R>0 gegeben. Dann ist die Funktion
f : [0,R]→ [0,Rn], x 7→ xn nach Lemma 4.16 streng monoton wachsend und nach Beispiel 8.15 ste-
tig. Also ist die Umkehrfunktion f−1 : [0,Rn]→ [0,R], x 7→ n

√
x, die wir bereits aus Aufgabe 5.37

kennen, ebenfalls streng monoton wachsend und stetig. Betrachtet man diese Aussage für alle R
zusammen, ist damit auch die Wurzelfunktion f−1 : R≥0 → R≥0, x 7→ n

√
x streng monoton wach-

send und stetig. Ihr Graph ensteht wie im Bild unten durch Spiegelung des Graphen von f an der
gestrichelt eingezeichneten Diagonalen.
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x
1

1

xn

Umkehrfunktion

1

1

x

n
√

x

Aufgabe 8.30. Man beweise:

(a) Jede stetige Funktion f : [a,b]→ [a,b] hat einen Fixpunkt, d. h. ein x ∈ [a,b] mit f (x) = x.

Ist f darüber hinaus monoton wachsend, so konvergiert die rekursiv definierte Folge (xn)n
mit xn+1 = f (xn) für alle n ∈ N für ein beliebiges x0 ∈ [a,b] gegen einen Fixpunkt von f .

(b) Ist f : R→R eine stetige Funktion mit f (x) = f (x+1) für alle x ∈R (d. h. „ f ist periodisch
mit Periodenlänge 1“), dann gibt es ein a ∈ R mit f (a) = f (a+ 1

2 ). (Anschaulich bedeutet
dies z. B., dass es auf dem Äquator der Erde (mit Umfang 1 und Koordinate x) stets zwei
gegenüberliegende Punkte gibt, an denen die gleiche Temperatur f (x) herrscht.)

Aufgabe 8.31. Es sei f : R≥0→ R eine stetige Funktion mit lim
x→∞

f (x) = ∞. Zeige, dass f ein Mini-
mum annimmt.

Aufgabe 8.32. Man zeige:

(a) Es gibt keine stetige Funktion f : R→R, unter der jede reelle Zahl genau zwei Urbilder hat.

(b) Jede stetige Funktion f : R→R, die offene Intervalle auf offene Intervalle abbildet, ist streng
monoton.

(c) Ist f : R→ R eine beschränkte stetige Funktion, so gibt es eine Gerade in R2, die mit dem
Graphen von f mindestens drei Punkte gemeinsam hat.

8.C Gleichmäßige Konvergenz und Stetigkeit

Wir haben nun einige schöne Eigenschaften stetiger Funktionen gesehen und auch Methoden ken-
nengelernt, mit denen wir von vielen Funktionen ihre Stetigkeit nachweisen können. Allerdings ha-
ben wir dabei bisher eine wichtige Klasse von Funktionen ausgelassen – nämlich solche, die durch
den Grenzwert einer konvergenten Folge oder Reihe definiert sind, wie z. B. die Exponentialfunktion
oder ganz generell allgemeine Potenzreihen wie in Definition 7.26. Zur Untersuchung der Stetigkeit
derartiger Funktionen starten wir mit einem einfachen Beispiel.

Beispiel 8.33. In Definition 7.26 (b) hatten wir die Exponentialfunktion durch exp(x) = ∑
∞
k=0

xk

k! für
alle x ∈ C definiert, also als den Grenzwert

exp(x) = lim
n→∞

fn(x) mit fn(x) =
n

∑
k=0

xk

k!
.

Natürlich ist jede einzelne Partialsumme fn nach Beispiel 8.15 eine stetige Funktion in x. Da sich
diese Partialsummen für n→ ∞ immer mehr der Exponentialfunktion annähern, würden wir nun
hoffen, dass aus der Stetigkeit aller fn auch die Stetigkeit der Grenzfunktion, also der Exponenti-
alfunktion folgt. Allgemein fragen wir uns also: Sind fn : D→ K für n ∈ N stetige Funktionen auf
einer Menge D⊂K, so dass für alle x ∈ D der Grenzwert

f (x) := lim
n→∞

fn(x)

existiert (wir sagen in diesem Fall auch, dass die Funktionen fn punktweise gegen f konvergieren –
siehe Definition 8.34), ist dann auch diese Grenzfunktion f : D→K stetig? Der Fall der reellen Ex-
ponentialfunktion auf dem Intervall [0,1] ist im folgenden Bild links dargestellt, wobei die einzelnen
fn gestrichelt und die Grenzfunktion f dick eingezeichnet ist.
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1

1

f3

f2

f1

ε

a b

f

c1

1 f0(x) = 1

f1(x) = 1+ x
f2(x) = 1+ x+ x2

2

f (x) = exp(x)

fn(x) =
n

∑
k=0

xk

k!
, f (x) = exp(x) fn(x) = xn, f (x) =

{
0 für x < 1
1 für x = 1

Es sieht hier also bereits so aus, als ob die Grenzfunktion wie gewünscht stetig ist, und in der Tat
werden wir auch sehen, dass dies bei der Exponentialfunktion wirklich der Fall ist. Allerdings ist die
Situation im Allgemeinen leider nicht ganz so schön, wie man es sich wünschen würde. Betrachten
wir z. B. einmal die Funktionen

fn : D = [0,1]→ R, x 7→ xn

wie im Bild oben rechts, so existiert nach Beispiel 5.3 (c) zwar der Grenzwert

f (x) := lim
n→∞

fn(x) = lim
n→∞

xn =

{
0 für x < 1,
1 für x = 1

für alle x ∈ D, aber die Grenzfunktion ist hier offensichtlich nicht stetig! Wir halten also fest:

Konvergiert eine Folge stetiger Funktionen fn : D→K punktweise gegen eine Grenz-
funktion f : D→K, so muss f nicht notwendig stetig sein!

Analog zum Fall der Umordnungen von Reihen in Beispiel 7.9 wird auch hier der Ausweg aus
diesem Problem darin bestehen, eine stärkere Form der Konvergenz einer Folge stetiger Funktionen
einzuführen, die letztlich die Stetigkeit der Grenzfunktion sicherstellt.

In der Tat können wir an unserem obigen Beispiel fn(x) = xn auch schon motivieren, wie dieses
stärkere Kriterium aussehen wird, denn man sieht an diesem Bild bereits recht deutlich, wo das
Problem liegt: Es ist zwar richtig, dass für jedes x ∈ [0,1) der Grenzwert lim

n→∞
xn gleich 0 ist, d. h.

dass xn < ε für alle n ab einem gewissen n0 gilt – aber dieses n0 hängt extrem vom betrachteten
Punkt x ab und wird insbesondere für x→ 1 immer größer. So kann man z. B. für den Wert x = a im
Bild oben rechts noch n0 = 1 wählen, beim Wert x = b braucht man mindestens n0 = 3, beim Wert
x = c schon mindestens n0 = 5. Je weiter sich x dem Wert 1 nähert, um so größer muss man dieses
n0 wählen – bis es im Grenzfall x = 1 schließlich gar kein solches n0 mehr gibt, so dass 0 nicht
mehr der Grenzwert der Folge lim

n→∞
xn ist. Im Bild oben links hingegen kann man für die dargestellte

ε-Umgebung um f z. B. n0 = 3 für alle x (in dem dort betrachteten Intervall [0,1]) wählen, denn
f3, f4, f5, . . . liegen komplett in dem grau eingezeichneten Streifen.

Es kommt bei der Grenzwertdefinition also anscheinend darauf an, ob man das verlangte n0 unab-
hängig vom betrachteten Punkt x wählen kann. Dies führt auf die folgende Definition:

Definition 8.34 (Gleichmäßige Konvergenz). Es seien D ⊂ K und f : D→ K eine Funktion. Wei-
terhin sei für alle n ∈ N eine Funktion fn : D → K gegeben – man nennt ( fn)n dann auch eine
Funktionenfolge auf D.

(a) Ist lim
n→∞

fn(x) = f (x) für alle x ∈ D, d. h. gilt

∀x ∈ D ∀ε > 0 ∃n0 ∈ N ∀n≥ n0 : | fn(x)− f (x)|< ε,

so nennt man ( fn)n punktweise konvergent gegen f . Beachte, dass n0 hierbei nicht nur von
ε , sondern auch vom betrachteten Punkt x abhängen darf.
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(b) Kann man n0 in (a) auch unabhängig von x wählen, d. h. gilt sogar

∀ε > 0 ∃n0 ∈ N ∀x ∈ D ∀n≥ n0 : | fn(x)− f (x)|< ε,

so heißt die Funktionenfolge ( fn)n auf D gleichmäßig konvergent gegen f .

Bemerkung 8.35.
(a) Beachte, dass die gleichmäßige Konvergenz nach Definition kein „punktweises Konzept“

ist, also nicht an jedem Punkt der Definitionsmenge D separat überprüft werden kann. Es
ergibt also z. B. keinen Sinn, zu sagen, eine Funktionenfolge auf D sei „in jedem Punkt von
D gleichmäßig konvergent“. Stattdessen muss man bei der Bestimmung der gleichmäßigen
Konvergenz immer alle Punkte von D gleichzeitig betrachten.

(b) Natürlich ist jede gleichmäßig konvergente Funktionenfolge ( fn)n auf D auch punktweise
konvergent mit der gleichen Grenzfunktion f .

Wollen wir also die gleichmäßige Konvergenz von ( fn)n untersuchen, so werden wir in der
Regel zunächst mit der punktweisen Konvergenz beginnen und für alle x ∈ D die Grenz-
werte f (x) := lim

n→∞
fn(x) bestimmen. Existiert dann einer dieser Grenzwerte nicht, so ist die

Funktionenfolge damit nicht punktweise, also auch nicht gleichmäßig konvergent. Ansons-
ten ist die so bestimmte Funktion f die Grenzfunktion, mit der wir für die gleichmäßige
Konvergenz die Bedingung aus Definition 8.34 (b) überprüfen müssen.

19
Unser wichtigstes Beispiel von Funktionenfolgen sind Potenzreihen wie z. B. die Exponentialreihe in
Beispiel 8.33, und glücklicherweise sind diese in folgendem Sinne immer gleichmäßig konvergent.

Satz 8.36 (Gleichmäßige Konvergenz von Potenzreihen). Jede Potenzreihe ∑
∞
k=0 ak xk in K mit Kon-

vergenzradius r ist gleichmäßig konvergent auf jeder Menge der Form

KR := {x ∈K : |x| ≤ R} für 0≤ R < r

(d. h. die Folge ( fn)n der Partialsummen fn(x) = ∑
n
k=0 ak xk konvergiert gleichmäßig auf jedem KR

gegen die Grenzfunktion f mit f (x) = ∑
∞
k=0 ak xk).

konvergent
gleichmäßig

divergent

0

R
r

C

0

konvergent divergentdivergent gleichmäßig

−R
−r

R
r

R

Mit anderen Worten konvergieren Potenzreihen also gleichmäßig auf jedem abgeschlossenen Inter-
vall (für K= R) bzw. Kreis (für K= C) innerhalb des Konvergenzgebiets.

Beweis. Wir weisen das Kriterium aus Definition 8.34 (b) direkt nach. Es sei dazu ε > 0 beliebig.
Wegen R < r konvergiert die Reihe ∑

∞
k=0 ak Rk nach Satz 7.27 absolut. Es gibt also ein n0 ∈ N, so

dass ∣∣∣∣∣ ∞

∑
k=0
|ak| ·Rk−

n

∑
k=0
|ak| ·Rk

∣∣∣∣∣= ∞

∑
k=n+1

|ak| ·Rk < ε

für alle n≥ n0 gilt. Dann folgt für alle n≥ n0 und x ∈K mit |x| ≤ R aber auch

| f (x)− fn(x)|=

∣∣∣∣∣ ∞

∑
k=0

ak xk−
n

∑
k=0

ak xk

∣∣∣∣∣=
∣∣∣∣∣ ∞

∑
k=n+1

ak xk

∣∣∣∣∣≤ ∞

∑
k=n+1

|ak| · |x|k ≤
∞

∑
k=n+1

|ak| ·Rk < ε.

Da wir unser n0 hierbei unabhängig von x ∈ KR wählen konnten, ist die Potenzreihe auf KR also
gleichmäßig konvergent. □



8. Stetigkeit 103

Beachte, dass man den Wert von R in Satz 8.36 beliebig nahe an r wählen darf. Insbesondere findet
man also zu jedem x ∈K im Konvergenzgebiet D = {x ∈K : |x|< r} ein R, so dass x in KR enthalten
ist. Da die gleichmäßige Konvergenz gemäß Bemerkung 8.35 (a) nicht punktweise überprüft werden
kann, bedeutet dies jedoch nicht, dass die Potenzreihe auch auf ganz D gleichmäßig konvergiert!
Hier ist ein einfaches Gegenbeispiel dafür:

Beispiel 8.37. Die geometrische Reihe f (x) = ∑
∞
k=0 xk hat nach Beispiel 7.3 (a) das Konvergenz-

gebiet D = {x ∈ K : |x| < 1}, also den Konvergenzradius 1. Wir behaupten, dass f auf D nicht
gleichmäßig konvergent ist, d. h. dass die Umkehrung der Bedingung aus Definition 8.34 (b)

∃ε > 0 ∀n0 ∈ N ∃x ∈ D ∃n≥ n0 :

∣∣∣∣∣ ∞

∑
k=0

xk−
n

∑
k=0

xk

∣∣∣∣∣≥ ε

gilt. Dazu wählen wir ε := 1; es sei n0 ∈N gegeben, und wir setzen n := n0. Für alle x ∈D mit x > 0
ist nun nach der Formel für die geometrische Reihe aus Beispiel 7.3 (a)∣∣∣∣∣ ∞

∑
k=0

xk−
n

∑
k=0

xk

∣∣∣∣∣= ∞

∑
k=n+1

xk = xn+1 ·
∞

∑
k=0

xk =
xn+1

1− x
.

Nähert sich x nun innerhalb von D dem Wert 1, so wächst dieser Ausdruck offensichtlich unbe-
schränkt an. Also gibt es insbesondere ein x ∈ D, für das dieser Ausdruck mindestens gleich 1 = ε

ist, was zu zeigen war.

Wir kommen nun zu dem zentralen Satz, der in Beispiel 8.33 die Motivation für die Einführung der
gleichmäßigen Konvergenz war:

Satz 8.38 (Der gleichmäßige Grenzwert stetiger Funktionen ist stetig). Es seien D ⊂ K und ( fn)n
eine Folge stetiger Funktionen fn : D→ K, die gleichmäßig gegen eine Grenzfunktion f : D→ K
konvergiert. Dann ist auch f stetig.

Beweis. Wir weisen das ε-δ -Kriterium aus Definition 8.5 (a) für f nach. Es seien dazu a ∈ D und
ε > 0 beliebig. Da ( fn)n gleichmäßig gegen f konvergiert, gibt es ein n0 ∈ N, so dass

| fn(x)− f (x)|< ε

3
für alle x ∈ D und alle n≥ n0 (1)

gilt (insbesondere also auch für x = a). Wir benötigen dies nur für n := n0: Wegen der Stetigkeit von
fn gibt es dann ein δ > 0 mit

| fn(x)− fn(a)|<
ε

3
für alle x ∈ D mit |x−a|< δ . (2)

Insgesamt folgt damit für alle x ∈ D mit |x−a|< δ nach der Dreiecksungleichung

| f (x)− f (a)|= | f (x)− fn(x)+ fn(x)− fn(a)+ fn(a)− f (a)|
≤ | f (x)− fn(x)|︸ ︷︷ ︸

< ε

3 nach (1)

+ | fn(x)− fn(a)|︸ ︷︷ ︸
< ε

3 nach (2)

+ | fn(a)− f (a)|︸ ︷︷ ︸
< ε

3 nach (1)

< ε. □

Folgerung 8.39 (Stetigkeit von Potenzreihen). Jede Potenzreihe in K ist in ihrem Konvergenzgebiet
stetig.

Beweis. Wir betrachten eine Potenzreihenfunktion f in K mit Konvergenzradius r, also eine Funk-
tion der Form f (x) = lim

n→∞
fn(x) mit fn(x) = ∑

n
k=0 ak xk für alle x ∈K mit |x|< r.

Es sei nun ein c ∈ K mit |c| < r gegeben; wir müssen zeigen, dass f in c stetig ist. Wähle dazu
ein R > 0 mit |c| < R < r. Dann ist f nach Satz 8.36 auf KR = {x ∈ K : |x| ≤ R} der gleichmäßige
Grenzwert der stetigen Partialsummen fn. Also ist diese Grenzfunktion f nach Satz 8.38 auf KR und
damit insbesondere in c stetig. □
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Beispiel 8.40.

(a) Die Exponentialfunktion exp: K→K ist als Potenzreihe mit Konvergenzradius ∞ nach Fol-
gerung 8.39 auf ganz K stetig.

(b) Die reelle Funktionenfolge (xn)n auf [0,1] aus Beispiel 8.33 ist nach Satz 8.38 nicht gleich-
mäßig konvergent, da ihre Grenzfunktion nicht stetig ist. (Natürlich könnte man dies auch
analog zu Beispiel 8.37 direkt nachrechnen.)

Aufgabe 8.41 (Supremumsnorm).

(a) Zu einer Funktion f : D→K mit D⊂K definieren wir die Supremumsnorm

∥ f∥sup := sup{| f (x)| : x ∈ D} ∈ R≥0∪{∞}.

Zeige, dass eine Funktionenfolge ( fn)n auf D genau dann gleichmäßig gegen f konvergiert,
wenn ∥ fn− f∥sup→ 0 für n→ ∞ gilt.

(b) Zeige, dass die reelle Funktionenfolge ( fn)n mit fn(x) = nx
1+nx zwar nicht auf R>0, aber auf

jedem Intervall [a,∞) mit a > 0 gleichmäßig konvergiert.

Aufgabe 8.42.

(a) Für n ∈ N>0 sei fn : R→ R, x 7→
√

x2 + 1
n . Zeige, dass die Funktionenfolge ( fn)n auf R

gleichmäßig konvergiert.

(b) Zeige, dass die Exponentialreihe auf R nicht gleichmäßig konvergiert.

Aufgabe 8.43 (Koeffizientenvergleich für Potenzreihen). Es sei f (x) = ∑
∞
n=0 an xn eine Potenzreihe

über K mit Konvergenzradius mindestens r > 0.

(a) Zeige mit vollständiger Induktion: Ist f (x) = 0 für alle x ∈ K mit |x| < r, so gilt bereits
an = 0 für alle n ∈N (d. h. ist der Wert der Reihe gleich 0 für alle diese x, so sind bereits alle
Koeffizienten der Reihe gleich 0).

(b) Man zeige: Ist g(x) = ∑
∞
n=0 bn xn eine weitere Potenzreihe mit Konvergenzradius mindestens

r und gilt f (x) = g(x) für alle x ∈K mit |x|< r, so ist bereits an = bn für alle n ∈ N.

Zum Abschluss dieses Kapitels wollen wir nun noch das Konzept der gleichmäßigen Stetigkeit ein-
führen, das wir später (z. B. in Satz 12.12) noch benötigen werden und das eine sehr ähnliche Idee
wie die gleichmäßige Konvergenz hat:

Definition 8.44 (Gleichmäßige Stetigkeit). Es seien D⊂K und f : D→K eine Funktion. Bekannt-
lich heißt die Funktion f nach Definition 8.5 stetig, wenn sie in jedem Punkt a ∈ D stetig ist, also
wenn gilt

∀a ∈ D ∀ε > 0 ∃δ > 0 ∀x ∈ D : |x−a|< δ ⇒ | f (x)− f (a)|< ε.

Beachte, dass δ hierbei (analog zu n0 in Definition 8.34 (a)) nicht nur von ε , sondern auch vom
betrachteten Punkt a abhängen darf. Kann man δ jedoch auch unabhängig von a wählen, gilt also

∀ε > 0 ∃δ > 0 ∀a ∈ D ∀x ∈ D : |x−a|< δ ⇒ | f (x)− f (a)|< ε,

so nennt man f auf D gleichmäßig stetig.

Bemerkung 8.45. Genau wie die gleichmäßige Konvergenz (siehe Bemerkung 8.35 (a)) ist auch
die gleichmäßige Stetigkeit einer Funktion f : D→K kein punktweises Konzept, sondern kann nur
nachgewiesen werden, indem man alle Punkte von D gleichzeitig betrachtet.

Beispiel 8.46. Wir behaupten, dass die nach Beispiel 8.15 stetige Funktion

f : R>0→ R, x 7→ 1
x
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nicht gleichmäßig stetig ist. Anschaulich ist diese Aussage im
Bild rechts dargestellt: Die Stetigkeit von f bedeutet ja gera-
de, dass wir zu jeder ε-Umgebung Uε( f (x)) eines Bildpunktes
f (x) eine δ -Umgebung von x finden, die ganz nach Uε( f (x))
abgebildet wird. Zum Punkt x = a haben wir in der Skizze
eine ε-Umgebung von f (a) grau eingezeichnet, und auf der
x-Achse eine dazu passende δ -Umgebung wie in Bemerkung
8.6 dick markiert. Wenn wir nun auf einen (viel) kleineren
Wert x = b gehen und das gleiche ε wie oben behalten, so
sehen wir, dass wir das zugehörige δ viel kleiner wählen müs-
sen. Wenn sich x der 0 nähert, müssen wir bei gleich blei-
bendem ε das δ in der Tat sogar gegen 0 gehen lassen. Dies
bedeutet, dass wir für festgehaltenes ε kein δ finden können,
das in jedem Punkt x > 0 funktioniert – und das wiederum
bedeutet genau, dass f nicht gleichmäßig stetig ist.

x

f (x) = 1
x

ab

f (a)

f (b)

Wollen wir diese Aussage formal beweisen, so müssen wir die Negation der Bedingung aus Defini-
tion 8.44 nachweisen, d. h.

∃ε > 0 ∀δ > 0 ∃a ∈ D ∃x ∈ D : |x−a|< δ und | f (x)− f (a)| ≥ ε.

Dies ist schnell gezeigt: Wir setzen ε := 1; es sei δ > 0 beliebig. Dann wählen wir x= δ und a= δ

1+δ
,

und es gilt wegen x > a

|x−a|= δ − δ

1+δ
< δ und | f (x)− f (a)|=

∣∣∣∣ 1
δ
− 1+δ

δ

∣∣∣∣= 1≥ ε.

Um dagegen die gleichmäßige Stetigkeit einer Funktion nachzuweisen, sind oft die folgenden bei-
den hinreichenden Bedingungen in Lemma 8.48 und Satz 8.50 nützlich, die sich deutlich einfacher
überprüfen lassen als die Definition.

Definition 8.47 (Lipschitz-Stetigkeit). Es sei D ⊂ K. Eine Funktion f : D→ K heißt Lipschitz-
stetig, wenn es ein L ∈ R>0 gibt, so dass

| f (x)− f (y)| ≤ L · |x− y|
für alle x,y ∈ D gilt. Man nennt L in diesem Fall eine Lipschitz-Konstante für f .

Lemma 8.48. Jede Lipschitz-stetige Funktion ist gleichmäßig stetig (und damit insbesondere auch
stetig).

Beweis. Es seien D ⊂ K und f : D→ K eine Lipschitz-stetige Funktion mit Lipschitz-Konstante
L ∈ R>0. Um die gleichmäßige Stetigkeit von f wie in Definition 8.44 zu zeigen, sei ε ∈ R>0
beliebig. Setzen wir dann δ := ε

L , so gilt für alle a,x ∈ D mit |x−a|< δ wie gewünscht

| f (x)− f (a)|
8.47
≤ L · |x−a|< Lδ = ε. □

Beispiel 8.49. Es sei

f : R≥1→ R, x 7→ 1
x

noch einmal die Funktion aus Beispiel 8.46, bei der wir diesmal aber den Definitionsbereich so
verkleinert haben, dass wir uns darin nicht mehr der 0 nähern können. Dann ist f Lipschitz-stetig
mit Lipschitz-Konstante 1, denn für alle x,y ∈ R≥1 gilt

| f (x)− f (y)|=
∣∣∣∣1x − 1

y

∣∣∣∣= |x− y|
|x| · |y|

≤ |x− y|.

Nach Lemma 8.48 ist diese gegenüber Beispiel 8.46 eingeschränkte Funktion f nun also gleichmäßig
stetig.

Satz 8.50. Jede stetige Funktion f : [a,b] → R auf einem abgeschlossenen reellen Intervall ist
gleichmäßig stetig.
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Beweis. Angenommen, f wäre nicht gleichmäßig stetig. Dann würde wie in Beispiel 8.46 das Ge-
genteil der Bedingung aus Definition 8.44 gelten, d. h.

∃ε > 0 ∀δ > 0 ∃x,y ∈ [a,b] : |y− x|< δ und | f (y)− f (x)| ≥ ε.

Wählen wir ein solches ε , so finden wir also mit δ = 1
n zu jedem n ∈ N>0 Zahlen xn,yn ∈ [a,b] mit

|yn−xn|< 1
n und | f (yn)− f (xn)| ≥ ε . Insbesondere ist dann lim

n→∞
(yn−xn) = 0. Wählen wir nun nach

dem Satz 6.21 von Bolzano-Weierstraß eine gegen ein x ∈ [a,b] konvergente Teilfolge (xnk)k von
(xn)n, so folgt

lim
k→∞

xnk = x und lim
k→∞

ynk = lim
k→∞

xnk + lim
k→∞

(ynk − xnk) = x+0 = x,

d. h. die entsprechende Teilfolge von (yn)n konvergiert ebenfalls gegen x. Wegen der Stetigkeit von
f in x ergibt sich dann aber nach dem Folgenkriterium aus Satz 8.12 (b)

lim
k→∞

( f (ynk)− f (xnk)) = lim
k→∞

f (ynk)− lim
k→∞

f (xnk) = f (x)− f (x) = 0,

im Widerspruch zu | f (ynk)− f (xnk)| ≥ ε für alle k. □

Aufgabe 8.51. Zeige dass die Wurzelfunktion f : [0,1]→R, x 7→
√

x zwar gleichmäßig stetig, aber
nicht Lipschitz-stetig ist.


