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8. Stetigkeit

Nachdem wir uns gerade ausfiihrlich mit Grenzwerten von Folgen und Reihen befasst haben, wollen
wir den Grenzwertbegriff nun auf Funktionen einer reellen (oder evtl. komplexen) Variablen ausdeh-
nen, also auf Funktionen f: D — K mit einer Definitionsmenge D C K. Dies fiihrt zum zentralen
Begriff der Stetigkeit solcher Funktionen.

Anschaulich ist die Frage dabei: Wenn eine Stelle a € D mit Funktionswert f(a) gegeben ist, und
wir nun andere Punkte x € D in der Nihe von a betrachten, liegt dann auch f(x) in der Nihe von
f(a)? Im Bild unten links ist dies der Fall: Laufen wir entlang des dick eingezeichneten Pfeils mit
x auf den Punkt a zu, so nihern sich auch die Funktionswerte f(x) dem Punkt f(a). In diesem Fall
werden wir sagen, dass f im Punkt a stetig ist.

f(x) f(x)

fiststetigina f ist nicht stetig in a

Im Bild oben rechts dagegen fiihrt der Sprung im Funktionsgraphen zu einem anderen Verhalten:
Nihern wir uns hier entlang des dick eingezeichneten Pfeils mit x dem Punkt a, so néhert sich f(x)
nicht dem Wert f(a), sondern dem oberen Punkt der Sprungstelle. In diesem Fall ist f im Punkt a
unstetig.

Um dies mathematisch exakt zu formulieren, wollen wir jetzt den Begriff von Funktionsgrenzwerten
einfithren. Im linken Fall kénnen wir dann sagen, dass f(x) mit x — a gegen f(a) konvergiert,
wihrend dies im Fall rechts nicht so ist.

8.A Grenzwerte von Funktionen

Wie eben erldutert wollen wir das Verhalten von Funktionen f: D — K mit D C K untersuchen,
wenn wir uns einem vorgegebenen Punkt a nidhern. Dieser Wert a kann dabei, muss aber nicht un-
bedingt selbst Element von D sein. Wir sollten aber natiirlich sicherstellen, dass wir uns zumindest
innerhalb von D dem Punkt a beliebig anndhern konnen — also anschaulich gesprochen, dass a ent-
weder in D oder am Rand von D liegt. Formal bedeutet dies, dass a im Sinne der folgenden Definition
ein Beriihrpunkt von D sein muss.

Definition 8.1 (Beriithrpunkte). Es sei D C K eine Menge. Eine Zahl a € K heif3t Berithrpunkt von
D, wenn jede e-Umgebung von a (siche Bemerkung 5.2) mindestens einen Punkt aus D enthiilt, also
wenn es zu jedem € > 0 ein x € D gibt mit |x — a| < €. Die Menge aller Beriihrpunkte von D wird
mit D bezeichnet und heiBt der Abschluss von D.

Beispiel 8.2.

(a) Firein D C Kiist jedes a € D Beriihrpunkt von D: Wir kénnen in diesem Fall in der Defini-
tion 8.1 einfach x = a fiir jedes & wihlen. Es gilt also stets D C D.
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(b) Fiir ein offenes reelles Intervall D = (a,b) C R ist D = [a, b] das zugehérige abgeschlossene
Intervall. Die Randpunkte a und b sind also Beriihrpunkte von D, die nicht selbst zu D
gehoren.

Fiir derartige Beriihrpunkte konnen wir nun Grenzwerte von Funktionen definieren. Die Konstruk-
tion ist vollig analog zur Definition 5.1 (b) des Grenzwerts von Folgen:

Definition 8.3 (Grenzwerte von Funktionen). Es seien D C K eine Menge und f: D — K eine
Funktion. Ferner sei a € D ein Beriihrpunkt von D.

Dann heif3t eine Zahl ¢ € K Grenzwert von f in a, wenn
VeeR.) I ER g VXED: [x—a| < 6= |f(x)—c|<e.

Wie schon im Fall von Folgen werden wir sehen (siche Bemerkung 8.13), dass ein solcher Grenzwert
im Fall der Existenz eindeutig ist, so dass wir also von dem Grenzwert von f in a sprechen konnen.
Wir schreiben dies dann als
}}_I}(ll flx)=c bzw. lim f(x) =c
xeD
oder auch als ,,f(x) — ¢ fiir x — a“, und sagen, dass f in a konvergent ist gegen c. Existiert ein
solcher Grenzwert nicht, so heifit f divergent in a.

Bemerkung 8.4. Giltin Definition 8.3 sogar a € D, so kommt als Grenzwert ¢ nur f(a) in Frage: Wir
konnen dann nimlich x = @ in der Grenzwertbedingung von Definition 8.3 setzen (so dass |x —a| <
in jedem Fall erfuillt ist) und erhalten damit |f(a) —c| < € fiir alle € — was nur mdglich ist, wenn

¢ = f(a) ist.
Definition 8.5 (Stetigkeit). Es seien D C K eine Menge und f: D — K eine Funktion.

(a) Ista € D, so heiBt f stetig in ¢, wenn der Grenzwert lim f(x) existiert (und nach Bemerkung
xX—a

8.4 damit zwangsldufig gleich f(a) ist), d. h. wenn
VeeRsg IS €R g VxED: [x—a|<d=|f(x)— f(a)| < €.

Die Funktion f heifit stetig (auf D), wenn sie in jedem Punkt a € D stetig ist.

(b) Ista € D\D, so heiBt f stetig fortsetzbar nach a, wenn der Grenzwert ¢ = lim f(x) existiert.
xX—a
(In diesem Fall erhilt man ndmlich eine in a stetige Funktion

f(x) firxeD,

c firx =a,

f:buU{a} =K, xn—>{

die man als stetige Fortsetzung von f nach a bezeichnet.)

Bemerkung 8.6 (Anschauliche Deutung des Grenzwertbegriffs). Das Bild unten zeigt noch einmal
das Beispiel vom Anfang dieses Kapitels mit den eben eingefiihrten Notationen: Nach Definition
ist eine Funktion f: D — K genau dann stetig in einem Punkt a € D, wenn es zu jeder (beliebig
kleinen) e-Umgebung Ue(f(a)) von f(a) eine §-Umgebung Us(a) von a gibt, in der alle Punkte
von D nach Ug(f(a)) abgebildet werden, also so dass f(DNUs(a)) C Ug(f(a)) gilt. Im Bild unten
bedeutet dies, dass zu jedem auch noch so schmal gewéhlten grauen horizontalen Streifen um f(a)
eine Einschriankung von f auf eine hinreichend kleine Umgebung von a dazu fiihrt, dass alle Funk-
tionswerte dort (im Bild unten dick eingezeichnet) in dem gewéhlten Streifen liegen. Dies entspricht
genau der urspriinglichen Motivation, dass eine kleine Anderung von x um a herum auch nur zu
einer kleinen Anderung der Funktionswerte f(x) um f(a) fiihren darf. Bei der linken Funktion ist
dies also der Fall, bei der rechten aufgrund der Sprungstelle jedoch nicht.
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a a
f iststetigina f ist nicht stetig in a

Die ebenfalls oft gehorte geometrische Interpretation, dass eine reelle Funktion stetig ist, wenn man
,ihren Graphen zeichnen kann, ohne den Stift abzusetzen®, ist iibrigens etwas mit Vorsicht zu genie-
Ben, wie die Beispiele 8.7 (e) und (f) unten zeigen.

Beispiel 8.7.

(a)

(b)

(©

(d)

Die Identitit f: K — K, x — xist stetig: Sind a € K und € > 0 gegeben, so setze man 6 := €.
Dann gilt natiirlich fiir alle x € K mit |[x—a| < 8, dass | f(x) — f(a)| = |x—a| < § = €. Analog
zeigt man, dass konstante Funktionen stetig sind.

Wir zeigen, dass die Betragsfunktion f: K — K, x — |x] stetig ist. Es seien dazu a € K und
€ > 0 gegeben. Wir setzen wieder § := €. Dann folgt fiir alle x € K mit |x — a|] < J mit Hilfe
der Dreiecksungleichung nach unten

|x—a| > |x|—|a] und |x—a|>|a|—|x|

Da | f(x) — f(a)| = ||x| — |a|| aber eine der beiden Zahlen |x| — |a| und |a| — |x| sein muss,
ergibt sich in jedem Fall

If(x)=fla)| < |x—a]<d=¢.
Damit ist f stetig.

Analog ist die komplexe Konjugation f: C — C, z — 7 (siche Notation 6.2) stetig: Sind
a € Cund € > 0 gegeben, so setzen wir 6 := € und erhalten fiir alle z € C mit |z —a| < &

lf(x)—fla)|=z—a|=|z—a|=|z—a|< 6 =¢.

Die Funktion
0 fii 0
fiRSR, xs irx 70,
1 firx=0

(siehe Bild unten) ist in @ = 0 nicht stetig. Wollen wir dies formal zeigen, miissen wir die
Negation der Bedingung aus Definition 8.5 (a) beweisen, d. h.

Je>0Vo>03IxeR: |x—a| <dund |f(x)— f(a)| > €.

(Beachte dabei, dass die Negation der Aussage ,,]x —a| < 6 = |f(x) — f(a)| < & nach
Beispiel 1.9 (a) die angegebene Bedingung ,,|x —a| < 8 und |f(x) — f(a)| > € ist, und
nicht etwa eine Folgerung ,,|x —a| < § = |f(x) — f(a)| > €“)

Dies zu zeigen ist hier aber sehr einfach: Setzen wir € = % und ist 6 > 0 beliebig, so kénnen
wir x = % setzen und erhalten |x —a| = g <dund |[f(x)—f(a)|=|0-1]=1>¢.

Anders ausgedriickt existiert in diesem Fall der Grenzwert lin(l) f(x) nicht. Falls ihr jetzt
x—

gedacht hittet, dass dieser Grenzwert doch existiert und gleich 0 ist, so habt ihr damit sicher
gemeint, dass sich f(x) dem Wert 0 nihert, wenn x in der Nihe von 0, aber nicht gleich 0 ist.
Der Fall x = 0 (bzw. x = @) ist in Definition 8.3 aber nicht ausgeschlossen! Wenn wir dies
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ausschlieBen wollten, so miissten wir die Definitionsmenge von f auf R\{0} einschrinken
und wiirden dann in der Tat

lim f(x) =0

x—0

x#£0
erhalten.

Beachte jedoch, dass es hier in der Literatur zwei verschiedene Konventionen gibt: In man-
chen Biichern werden Funktionsgrenzwerte so definiert, dass lim immer fiir ;gl}l steht.
x—a a
(e) Die unten im Bild dargestellte Funktion

0 firx<o0,
1 firx>0

f:R\{O}—HKxH{

ist stetig — ja, wirklich! Sie ist ndmlich an jedem Punkt der Definitionsmenge, also an jedem
a # 0 stetig, weil sie in der Nihe eines jeden solchen Punktes (genauer: in der |a|-Umgebung
von a) konstant ist. Die Funktion f ist aber natiirlich nicht stetig fortsetzbar nach 0: Der
Grenzwert ligg) f(x) existiert nicht.

X

(f) Jede Funktion f: Z — R ist stetig (siehe unten). Das liegt anschaulich einfach daran, dass
wir hier gar keine Moglichkeit haben, ein gegebenes a € Z ein wenig so zu verdndern, dass
es immer noch in der Definitionsmenge liegt. Formal konnen wir in der Bedingung aus
Definition 8.5 (a) fiir jedes gegebene € > 0 immer 6 = % setzen und haben damit sicher

gestellt, dass |x —a| < 0 mit x € Z nur fiir x = a erfiillt ist, womit dann natiirlich auch

[f(x) = fa)| =0 < eist.

fx) fx) f(x)
o
1 1 °
o
PY [ ]
X X [ ) X

1

(d) (e) ()

Bemerkung 8.8 (Funktionen mit Grenzwert ungleich 0). Es seien D C K, f: D — K eine Funktion
und a € D mit ¢ := lim f(x) # 0. Aus Definition 8.3 fiir € = % erhalten wir dann wie in Bemerkung
x—a

5.12 ein 6 > 0, so dass | f(x) — ¢| < € und damit

[c]

[fE)l=1f(x) —ctel 2 e = |f(x) —¢| > |e] —e = >0
fiir alle x € D mit |x —a| < 0 gilt.
Insbesondere ergibt sich im Fall a € D also, dass eine in a stetige Funktion f mit f(a) # 0 auch in
einer 6-Umgebung von a ungleich 0 ist. Beispiel 8.7 (d) zeigt (bei a = 0), dass dies fiir unstetige
Funktionen im Allgemeinen natiirlich falsch ist.
Eine analoge Aussage gilt im Fall K = R auch ohne Betrége: Eine in a stetige reelle Funktion f mit
f(a) > 0 ist auch in einer 5-Umgebung von a positiv.

Aufgabe 8.9. Es seien m,n € N+ (. Berechne den Grenzwert lin} %

X—
Aufgabe 8.10. Zeige durch Riickgang auf die €-8-Definition der Stetigkeit, dass die Funktion
fi[=1,1] = R, x+— V1 —x? stetig ist.

Aufgabe 8.11. Esseien D C R, a € Dund f: D — R eine Funktion. Zeige, dass f genau dann in a
stetig ist, wenn f in a ,linksseitig und rechtsseitig stetig* ist, also dass

lim f(x) = f(a) & limf(x) = f(a) und lim £(x) = f(a).

x<a x>a
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Wie im Fall von Folgengrenzwerten wollen wir nun natiirlich auch fiir Grenzwerte von Funktionen
ein paar einfache Rechenregeln zeigen, z. B. dass solche Grenzwerte wie in Satz 5.13 mit Summen
und Produkten vertauschen. Gliicklicherweise lassen sich Grenzwerte von Funktionen mit Hilfe des
folgenden Satzes immer auf Grenzwerte von Folgen zuriickfiihren, so dass wir viele unserer Ergeb-
nisse dann sofort von Folgen auf Funktionen iibertragen konnen:

Satz 8.12 (Folgenkriterium). Es seien D C K und f: D — K eine Funktion.
(a) (Folgenkriterium fiir Funktionsgrenzwerte) Fiir a € D und c € K gilt

limf(x) =c <  Fiir jede Folge (x,), in D mit x, — a gilt f(x,) — c.
xX—a

(b) (Folgenkriterium fiir Stetigkeit) Fiir a € D gilt
fiststetigina < Fiir jede Folge (x,), in D mit x, — a gilt f(x,) — f(a).
Es ist dann also
lim £(x,) = £ ( lim x,),
d. h. ,,eine stetige Funktion f vertauscht mit der Grenzwertbildung von Folgen“.

Beweis. Wir beweisen zunichst Teil (a).

»=“: Es seien lim f(x) = ¢ und (x,), eine Folge in D mit x, — a; wir miissen f(x,) — ¢ zeigen.
x—a
Dazu sei € > 0 beliebig. Wegen lim f(x) = ¢ gibtes ein 6 > 0, so dass | f(x) — c| < € fiir alle
Xx—a

x € D mit [x—a| < & gilt. Wegen x,, — a ist aber |x, —a| < § fiir fast alle n, und damit dann
auch |f(x,) — c| < € fiir diese n. Damit gilt f(x,) — c.

»<=": Wir zeigen diese Richtung durch einen Widerspruchsbeweis und nehmen also an, dass ¢ kein
Grenzwert von f(x) in a ist, d. h. (durch Negation der Definition 8.3)

Je>0V6>03xeD: |x—a| <dund|f(x)—c| > €.

Wir wiihlen nun ein solches €. Indem wir § = % setzen, erhalten wir fiir alle n € Ny ein
X, € D mit |x, —a| < 1 und |f(x,) — ¢| > €. Fiir diese Folge gilt dann aber x, — a und
f(x4) # ¢ im Widerspruch zur Annahme.

Teil (b) folgt nun mit Definition 8.5 (a) sofort aus (a). O

Bemerkung 8.13. Mit Hilfe des Folgenkriteriums konnen wir nun sehr schnell viele Resultate iiber
Grenzwerte von Folgen auf Funktionen iibertragen. So folgt z. B. sofort, dass Grenzwerte von Funk-
tionen immer eindeutig sind, sofern sie existieren: Sind D C K, f: D — K, a € D und f(x) — c fiir
X — a, so konnen wir wegen a € D eine Folge (x,), in D mit x, — a wihlen, und erhalten mit Satz
8.12 (a) dann auch f(x,) — c. Da Folgengrenzwerte nach Lemma 5.5 aber eindeutig sind, ist dies
fiir hochstens ein ¢ moglich.

Die folgenden Rechenregeln ergeben sich ebenfalls sofort aus dem Folgenkriterium und sorgen auch
dafiir, dass wir fiir sehr viele Funktionen ohne weitere Rechnung direkt die Stetigkeit nachweisen
konnen:

Satz 8.14 (Grenzwertsétze fiir Funktionen). Es seien D C K und f,g: D — K zwei Funktionen.
Weiterhin sei a € D, so dass beide Grenzwerte lgn Sf(x) und liin g(x) existieren. Dann gilt
X—a X—a

lim(f(x) + g(x) = lim f(x) + lim g(x).

Eine analoge Aussage gilt auch fiir f(x) — g(x) und f(x) - g(x); und falls ligl g(x) # 0 gilt, auch fiir
X—a
flx)

HEN
Insbesondere sind fiir a € D also mit f und g auch f+g, f—g, f-g und é in a stetig (letzteres
wiederum nur, falls g(a) #0).
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Beweis. Beachte im Fall g zunidchst, dass die Definitionsmenge dieses Quotienten nicht ganz D,
sondern die evtl. kleinere Menge D' = {x € D : g(x) # 0} ist. Um iiberhaupt iiber den Grenzwert von
% fiir x — a sprechen zu kdnnen, miissen wir also zuerst iiberpriifen, dass a ein Berithrpunkt von D/

ist. Dies folgt aber aus Bemerkung 8.8, die besagt, dass g wegen lim g(x) # 0 in einer £-Umgebung
Xx—a
von a nirgends 0 wird, so dass D und D’ dort also iibereinstimmen.

Die eigentliche Behauptung des Lemmas ist nun eine direkte Ubertragung der Grenzwertsitze fiir
Folgen aus Satz 5.13. Wir betrachten hier nur den Fall der Addition, da die anderen drei Félle wort-
lich genauso bewiesen werden. Dazu berechnen wir den Grenzwert von f(x) -+ g(x) mit dem Fol-
genkriterium aus Satz 8.12 (a): Es sei (x,), eine beliebige Folge in D mit x, — a. Dann gilt nach
dem Folgenkriterium fiir f und g

lim f(x,) = lim f(x) und  lim g(x,) = lim g(x)

und damit nach Satz 5.13 (a)
Tim (£ (5) + 8(50)) = lim £ () + lim g(x,) = lim £(x) + lim g (x)
d.h. f(x,)+ g(x,) konvergiert fiir jede solche Folge gegen lim f(x) + lim g(x), also immer gegen
X—a xX—a

dieselbe Zahl. Wiederum nach dem Folgenkriterium — diesmal fiir f + g — ergibt sich damit also wie
gewlinscht auch

lim /() + §(0)) = lim /(x) + im 1), 0

X—a xX—a

Beispiel 8.15. Jede rationale Funktion, also jede Funktion der Form f(x) = % mit Polynomfunk-

tionen p(x) und g(x), ldsst sich natiirlich mit den vier Grundrechenarten aus der Identitit und den
konstanten Funktionen zusammensetzen. Damit folgt aus Satz 8.14, dass jede solche Funktion auf
jeder Definitionsmenge D C {x € K: g(x) # 0} — also iiberall dort, wo f tiberhaupt definiert werden
kann — stetig ist.

Als Nichstes wollen wir zeigen, dass auch Verkettungen stetiger Funktionen wieder stetig sind.
Dazu beweisen wir einen etwas allgemeineren Satz, der analog zur Vertauschbarkeit stetiger Funk-
tionen mit Folgengrenzwerten in Satz 8.12 (b) ist, und der auch oft zur Berechnung von Grenzwerten
niitzlich ist.

Satz 8.16 (Grenzwert einer Verkettung). Es seien f: D — Kmit D C K sowie g: D' — KmitD' CK
zwei Funktionen mit f(D) C D'. Ferner sei a € D, so dass liin f(x) existiert, in D' liegt, und g in
X—a

diesem Punkt stetig ist. Dann gilt

lim(g 0 f)(x) = g(lim /(x)).

Xx—a
d. h. ,fiir stetige g kann man die Anwendung von g mit der Grenzwertbildung vertauschen .
Insbesondere folgt fiir a € D also aus der Stetigkeit von f in a und der von g in f(a) auch die
Stetigkeit von go f in a, d. h. die Verkettung stetiger Funktionen ist stetig.
Beweis. Wir zeigen das Lemma wieder mit dem Folgenkriterium aus Satz 8.12 (a). Es sei also
(xn)n eine beliebige Folge in D mit x, — a. Weil der Grenzwert ¢ := liﬁm f(x) nach Voraussetzung
X—a

existiert, gilt f(x,) — ¢ nach dem Folgenkriterium fiir f. Da weiterhin g in ¢ stetig ist, gilt nach dem
Folgenkriterium fiir g auch (go f)(x,) = g(f(xn)) — g(c). Die Aussage des Lemmas ergibt sich
damit aus dem Folgenkriterium fiir go f. g

Aufgabe 8.17. Zeige, dass die Funktion

X fiir x € Q,

f: [0’1}_)R’xH{1—x fir v ¢ Q

genau im Punkt a = % stetig ist.



8. Stetigkeit 97

Aufgabe 8.18. Man beweise: Ist f: R — R eine stetige Funktion, fiir die die Funktionalgleichung
flx4+y)=f(x)+f(y) firallex,ycR

gilt, so gibt es ein a € R mit f(x) = ax fiir alle x € R, d. h. f ist eine lineare Funktion.

Bleibt die Aussage richtig, wenn man iiberall R durch C ersetzt?

Genau wie bei Folgen wollen wir nun auch fiir Funktionen im reellen Fall uneigentliche Grenzwerte
einfiihren, und zwar sowohl in der Start- als auch in der Zielmenge: Wir wollen sowohl Grenzwerte

der Form lim f(x) definieren als auch sagen, was es bedeutet, dass der Grenzwert einer Funktion
X—yo0

gleich oo ist. Die folgende Definition ist vollig analog zu Definition 5.40.

Definition 8.19 (Uneigentliche Grenzwerte von Funktionen). Es seien D C Rund f: D — R eine
Funktion.

(a) Fiir a € D schreiben wir lim f(x) = oo, wenn
xX—a

VseR3IE>0VxeD: [x—a| <= f(x)>s.

Wie im Fall von Folgen in Definition 5.40 spricht man in diesem Fall von einem uneigent-
lichen Grenzwert bzw. sagt, dass f fiir x — a bestimmt divergiert.

(b) Ist D nach oben unbeschriinkt (so dass man x in f(x) iiberhaupt beliebig gro werden lassen
kann), so schreibt man lim f(x) = c fiir ein ¢ € R, wenn
X—ro0

Ve>03IreRVxeD:x>r=|f(x)—c|<e.

Kombiniert man dies nun noch mit (a), so erhélt man die Schreibweise lim f(x) = oo fiir
X—ro

VseRIAreRVxeD:x>r= f(x)>s.

Beachte, dass diese letzten beiden Notationen sogar exakt mit der Definition von Folgen-
grenzwerten aus Definition 5.1 (b) und 5.40 iibereinstimmen, wenn man sie auf eine Folge
(a,) als Funktion mit Definitionsmenge N anwendet.

Analog definiert man derartige Grenzwerte mit —oo statt oo.

Bemerkung 8.20. Man priift leicht nach, dass mit Definition 8.19 sowohl das Folgenkriterium fiir
Funktionsgrenzwerte aus Satz 8.12 (a) als auch die Grenzwertsitze aus Satz 8.14 auch fiir diese
uneigentlichen Grenzwerte gelten, wenn man die iiblichen Rechenregeln fiir o0 verwendet.

8.B Eigenschaften stetiger Funktionen

Nachdem wir nun von vielen Funktionen gesehen haben, wie man ihre Stetigkeit nachweisen kann,
wollen wir jetzt untersuchen, was wir davon haben, wenn wir wissen, dass eine gegebene Funktion
stetig ist. Dazu wollen wir einige sehr anschauliche Aussagen formal beweisen, die fiir reelle stetige
Funktionen auf einem abgeschlossenen Intervall [a,b] mit a < b gelten. Die erste von ihnen be-
sagt, dass eine solche Funktion mit je zwei Funktionswerten auch jeden Wert dazwischen annehmen
muss — was bei einer kontinuierlichen Anderung der Funktionswerte natiirlich zu erwarten ist.

Satz 8.21 (Zwischenwertsatz). Es sei f: [a,b] — R eine stetige Funktion. Dann gibt es zu jedem ¢
zwischen f(a) und f(b) ein x € [a,b] mit f(x) = c.

Beweis. Wir konnen ohne Einschriinkung annehmen, dass wie im Bild unten rechts f(a) < f(b)
und damit f(a) < ¢ < f(b) gilt. Ausgehend von [ag, bg] := [a, b] konstruieren wir nun rekursiv eine
Intervallschachtelung

[a,b] = [ao,bo] D [a1,b1] D [az,b2] O -+
mit in jedem Schritt halbierter Linge der Intervalle, so dass f(a,) < ¢ < f(b,) fiir alle n € N gilt:
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Ist [ay,by) fiir ein n € N bereits konstruiert, so betrachten

wir den Funktionswert f( ”"gb” ) in der Intervallmitte.

o Ist f(%tbe) > ¢ (wie im Bild im Fall n = 0), so er-
setzen wir die rechte Intervallgrenze durch den Mit-
telpunkt, setzen also a,+1 := a, und b,y := %.

e Ist dagegen f(%) < ¢ (wie im Fall n =1 im

Bild rechts), so ersetzen wir die linke Intervallgren-
ze durch den Mittelpunkt, setzen also a4 := @
und by, 11 1= by,

Fiir den nach Satz 5.39 durch diese Intervallschachtelung
definierten Punkt x € [a,b] gilt dann a, — x und b, — x,
nach dem Folgenkriterium aus Satz 8.12 also

f() = lim f(a) < e < lim f(by) = f(x)

n—se0

und damit f(x) =c. O

Als Nichstes wollen wir zeigen, dass eine stetige Funktion auf einem abgeschlossenen Intervall wie
in Satz 8.21 immer beschrinkt ist.

Definition 8.22 (Beschrinkte und monotone Funktionen). Es seien D C R und f: D — R eine
Funktion. Dann heifit f auf D ...

(a) (nach oben bzw. unten) beschrinkt, wenn die Menge f(D) C R aller Bildpunkte von f
(nach oben bzw. unten) beschrinkt ist.

(b) monoton wachsend oder steigend (bzw. streng monoton wachsend oder steigend), wenn
fiir alle x,y € D mit x <y gilt, dass f(x) < f(y) (bzw. f(x) < f(¥)). Analog definiert man
(streng) monoton fallend.

Satz 8.23. Jede stetige Funktion f: [a,b] — R auf einem abgeschlossenen Intervall ist beschrinkt.

Beweis. Angenommen, f wire unbeschrinkt. Dann gébe es zu jedem n € N ein x, € [a,b] mit
|f(x,)| > n. Beachte, dass die Folge (f(x,)), dann natiirlich unbeschrénkt, die Folge (x,), aber
beschriinkt ist (weil ja stets x, € [a,b] gilt). Nach dem Satz 6.21 von Bolzano-WeierstraB besitzt
(xn)n also eine konvergente Teilfolge (x,, )i; es sei x := klgrolo Xy -

Wegen a < x,, < b fiir alle k € N folgt aus Satz 5.24 (a) auch a < x < b, d.h. auch x liegt in der
Definitionsmenge [a,b] von f. Nach dem Folgenkriterium aus Satz 8.12 (b) miisste dann aber die
Folge (f(x,,))x gegen f(x) konvergieren — was ein Widerspruch dazu ist, dass diese Folge nach
Konstruktion unbeschrinkt und damit divergent ist. g

Bemerkung 8.24. Fiir nicht abgeschlossene Intervalle ist Satz 8.23 natiirlich im Allgemeinen falsch,
wie das Beispiel f(x) = % auf dem offenen Intervall (0, 1) zeigt.

Wir haben gerade gesehen, dass das Bild M = f([a,b]) einer steti-
gen Funktion auf einem abgeschlossenen Intervall [a,b] immer be-
schrinkt ist und damit also stets zwischen inf M und sup M liegt. Wir
wollen nun zeigen, dass Infimum und Supremum dieser Menge in
der Tat sogar Minimum und Maximum sind, also dass diese beiden
Zahlen auch als Werte von f angenommen werden — so wie z. B. im
Bild rechts f(x) = supM ist.

Satz 8.25 (Satz vom Maximum und Minimum). Jede stetige Funktion f: [a,b] — R nimmt ein
Maximum und Minimum an, d. h. die Menge M = f([a,b]) = {f(x) : x € [a,b]} hat ein Maximum
und Minimum.
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Beweis. Wir zeigen die Aussage fiir das Maximum; das Minimum ergibt sich analog. Die Menge
M ist natiirlich nicht leer und nach Satz 8.23 beschrinkt, also existiert s := sup M. Da s die kleinste
obere Schranke fiir M ist, ist s — % fiir alle n € N+ dann keine obere Schranke mehr. Wir finden also
ein x, € [a,b] mit

1
sf£<f(xn)§s. (%)

Nach dem Einschachtelungssatz 5.24 (b) konvergiert (f(x,)), damit gegen s. Nun kénnen wir aber
wieder nach dem Satz 6.21 von Bolzano-Weierstral aus (x,), eine konvergente Teilfolge (xy, )«
auswihlen, die gegen ein x € [a,b] konvergiert. Weil f in x stetig ist, gilt nach dem Folgenkriterium
aus Satz 8.12 (b) damit

fx)=r( Jim Xng) = lim fx,) =s. O

Die Ergebnisse aus den Sitzen Satz 8.21, 8.23 und 8.25 lassen sich iibrigens einfach in einer einzigen
Aussage zusammenfassen:

Folgerung 8.26. Ist f: [a,b] — R eine stetige Funktion auf einem abgeschlossenen Intervall [a,b],
so ist das Bild von f ebenfalls ein abgeschlossenes Intervall [c,d).

Beweis. Nach Satz 8.25 existieren ¢ := min f([a,b]) und d := max f([a, b]). Insbesondere gilt damit
f([a,b]) C [c,d], wobei die Werte ¢ und d von f angenommen werden. Nach dem Zwischenwertsatz
werden damit von f aber auch alle Werte zwischen ¢ und d angenommen, d. h. es ist in der Tat

f(la,b]) = [c,d]. O
Aufgabe 8.27. Man zeige:

(a) Esseien f: R — R eine stetige Funktion mit £(0) = 0 sowie g: R\{0} — R eine beschrinkte
stetige Funktion.

Dann ist die Funktion f-g: R\{0} = R, x+— f(x) - g(x) stetig in den Nullpunkt fortsetzbar.

(b) Jede bijektive, monoton wachsende Funktion f: [a,b] — [c,d] zwischen abgeschlossenen
reellen Intervallen ist stetig.

Eine der wichtigsten Anwendungen dieser Aussage ist die Konstruktion von (stetigen) Umkehrfunk-
tionen fiir streng monotone Funktionen:

Satz 8.28 (Existenz und Stetigkeit von Umkehrfunktionen). Es sei f: [a,b] — [c,d] eine stetige
und streng monoton wachsende Funktion mit ¢ = f(a) und d = f(b). Dann ist f bijektiv, und ihre
Umbkehrfunktion f~': [c,d) — [a,b] ist ebenfalls stetig und streng monoton wachsend.

Analog gilt dies mit ,,streng monoton fallend statt ,, streng monoton wachsend .

Beweis. Die Abbildung f ist surjektiv nach Folgerung 8.26. Sie ist auch injektiv, da sie streng
monoton wachsend ist. Also ist f bijektiv, und die Umkehrfunktion f~': [c,d] — [a,b] existiert.
Sie ist notwendigerweise streng monoton wachsend, denn wenn es x,y € [c,d] mit x < y und
f~'(x) > f~'(y) gibe, wiirde sich daraus durch Anwenden der streng monotonen Funktion f der
Widerspruch £(f~'(x)) > £(f~'(y)), also x > y ergeben. Nach Aufgabe 8.27 (b) ist f~! damit auch
stetig. g

Beispiel 8.29 (Wurzelfunktionen). Es seien n € Ny und R € R~ gegeben. Dann ist die Funktion
f:[0,R] — [0,R"], x — x" nach Lemma 4.16 streng monoton wachsend und nach Beispiel 8.15 ste-
tig. Also ist die Umkehrfunktion f~!: [0,R"] — [0,R], x + </, die wir bereits aus Aufgabe 5.37
kennen, ebenfalls streng monoton wachsend und stetig. Betrachtet man diese Aussage fiir alle R
zusammen, ist damit auch die Wurzelfunktion f~': R>g — Rxq, x + {/x streng monoton wach-
send und stetig. Thr Graph ensteht wie im Bild unten durch Spiegelung des Graphen von f an der
gestrichelt eingezeichneten Diagonalen.
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Umkehrfunktion

Aufgabe 8.30. Man beweise:
(a) Jede stetige Funktion f: [a,b] — [a,b] hat einen Fixpunkt, d. h. ein x € [a,b] mit f(x) = x.
Ist f dariiber hinaus monoton wachsend, so konvergiert die rekursiv definierte Folge (x,),
mit x,+1 = f(x,) fiir alle n € N fiir ein beliebiges xo € [a,b] gegen einen Fixpunkt von f.
(b) Ist f: R — R eine stetige Funktion mit f(x) = f(x+ 1) fiir alle x € R (d. h. ,,f ist periodisch
mit Periodenldnge 1), dann gibt es ein a € R mit f(a) = f(a+ %) (Anschaulich bedeutet

dies z.B., dass es auf dem Aquator der Erde (mit Umfang 1 und Koordinate x) stets zwei
gegeniiberliegende Punkte gibt, an denen die gleiche Temperatur f(x) herrscht.)

Aufgabe 8.31. Essei f: R>o — R eine stetige Funktion mit 1211 f(x) = oo. Zeige, dass f ein Mini-
X—>o0

mum annimmt.
Aufgabe 8.32. Man zeige:

(a) Es gibt keine stetige Funktion f: R — R, unter der jede reelle Zahl genau zwei Urbilder hat.

(b) Jede stetige Funktion f: R — R, die offene Intervalle auf offene Intervalle abbildet, ist streng
monoton.

(c) Ist f: R — R eine beschrinkte stetige Funktion, so gibt es eine Gerade in R2, die mit dem
Graphen von f mindestens drei Punkte gemeinsam hat.

8.C GleichmiBige Konvergenz und Stetigkeit

Wir haben nun einige schone Eigenschaften stetiger Funktionen gesehen und auch Methoden ken-
nengelernt, mit denen wir von vielen Funktionen ihre Stetigkeit nachweisen konnen. Allerdings ha-
ben wir dabei bisher eine wichtige Klasse von Funktionen ausgelassen — ndmlich solche, die durch
den Grenzwert einer konvergenten Folge oder Reihe definiert sind, wie z. B. die Exponentialfunktion
oder ganz generell allgemeine Potenzreihen wie in Definition 7.26. Zur Untersuchung der Stetigkeit
derartiger Funktionen starten wir mit einem einfachen Beispiel.

Beispiel 8.33. In Definition 7.26 (b) hatten wir die Exponentialfunktion durch exp(x) = Y7 ’f(—f fiir
alle x € C definiert, also als den Grenzwert

o xk
= ! '

Natiirlich ist jede einzelne Partialsumme f,, nach Beispiel 8.15 eine stetige Funktion in x. Da sich
diese Partialsummen fiir # — oo immer mehr der Exponentialfunktion annihern, wiirden wir nun
hoffen, dass aus der Stetigkeit aller f,, auch die Stetigkeit der Grenzfunktion, also der Exponenti-
alfunktion folgt. Allgemein fragen wir uns also: Sind f,: D — K fiir n € N stetige Funktionen auf
einer Menge D C K, so dass fiir alle x € D der Grenzwert
f(0) = lim £,(x)

existiert (wir sagen in diesem Fall auch, dass die Funktionen f;, punktweise gegen f konvergieren —
siche Definition 8.34), ist dann auch diese Grenzfunktion f: D — K stetig? Der Fall der reellen Ex-
ponentialfunktion auf dem Intervall [0, 1] ist im folgenden Bild links dargestellt, wobei die einzelnen
fn gestrichelt und die Grenzfunktion f dick eingezeichnet ist.

exp(x) = r}gtolo Su(x) mit  f(x) =
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1.

(x) = exple) y
2

l+x+% s

2 f 7 ’:

’, /

1 —+x /1’ )/ //1 I

v /o

|

2 ok ; 0 firx<1
fn(x):k;)g, f(x) = exp(x) Jalx) =", f()c):{1 fir x — 1

Es sieht hier also bereits so aus, als ob die Grenzfunktion wie gewiinscht stetig ist, und in der Tat
werden wir auch sehen, dass dies bei der Exponentialfunktion wirklich der Fall ist. Allerdings ist die
Situation im Allgemeinen leider nicht ganz so schon, wie man es sich wiinschen wiirde. Betrachten
wir z. B. einmal die Funktionen

[ D=10,1] > R, x —x"
wie im Bild oben rechts, so existiert nach Beispiel 5.3 (c) zwar der Grenzwert

e |
F(x) = Tim fu(x) = lim »" = {0 dirx < 1,
n—reo n—soo

1 firx=1

fiir alle x € D, aber die Grenzfunktion ist hier offensichtlich nicht stetig! Wir halten also fest:

Konvergiert eine Folge stetiger Funktionen f,,: D — K punktweise gegen eine Grenz-
funktion f: D — K, so muss f nicht notwendig stetig sein!

Analog zum Fall der Umordnungen von Reihen in Beispiel 7.9 wird auch hier der Ausweg aus
diesem Problem darin bestehen, eine stirkere Form der Konvergenz einer Folge stetiger Funktionen
einzufiihren, die letztlich die Stetigkeit der Grenzfunktion sicherstellt.

In der Tat kénnen wir an unserem obigen Beispiel f,(x) = x" auch schon motivieren, wie dieses

stiarkere Kriterium aussehen wird, denn man sieht an diesem Bild bereits recht deutlich, wo das

Problem liegt: Es ist zwar richtig, dass fiir jedes x € [0,1) der Grenzwert lim x" gleich 0 ist, d. h.
n—soo

dass x" < ¢ fiir alle n ab einem gewissen ng gilt — aber dieses ng hingt extrem vom betrachteten
Punkt x ab und wird insbesondere fiir x — 1 immer groBer. So kann man z. B. fiir den Wert x = a im
Bild oben rechts noch ny = 1 wihlen, beim Wert x = b braucht man mindestens ng = 3, beim Wert
x = ¢ schon mindestens ng = 5. Je weiter sich x dem Wert 1 nihert, um so groer muss man dieses
no wihlen — bis es im Grenzfall x = 1 schlieBlich gar kein solches ny mehr gibt, so dass 0 nicht
mehr der Grenzwert der Folge r}gr(}o x" ist. Im Bild oben links hingegen kann man fiir die dargestellte

e-Umgebung um f z.B. ng = 3 fiir alle x (in dem dort betrachteten Intervall [0, 1]) wihlen, denn
13, f4, f5,... liegen komplett in dem grau eingezeichneten Streifen.

Es kommt bei der Grenzwertdefinition also anscheinend darauf an, ob man das verlangte ng unab-
hingig vom betrachteten Punkt x wihlen kann. Dies fiihrt auf die folgende Definition:

Definition 8.34 (Gleichmifige Konvergenz). Es seien D C K und f: D — K eine Funktion. Wei-
terhin sei fiir alle n € N eine Funktion f,,: D — K gegeben — man nennt (f,), dann auch eine
Funktionenfolge auf D.

(a) Ist lijn Jfa(x) = f(x) fiir alle x € D, d. h. gilt
n—oo
VxeDVe>03ngeNVn>ng: |fulx) — f(x)| <&,

so nennt man ( f,,), punktweise konvergent gegen f. Beachte, dass ng hierbei nicht nur von
€, sondern auch vom betrachteten Punkt x abhingen darf.
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(b) Kann man ng in (a) auch unabhingig von x wéhlen, d. h. gilt sogar
Ve>03InpeNVxeDVn>ngy: |fulx) — f(x)| <&,
so heiBt die Funktionenfolge (f;,), auf D gleichmiBig konvergent gegen f.
Bemerkung 8.35.

(a) Beachte, dass die gleichméBige Konvergenz nach Definition kein ,,punktweises Konzept*
ist, also nicht an jedem Punkt der Definitionsmenge D separat iiberpriift werden kann. Es
ergibt also z. B. keinen Sinn, zu sagen, eine Funktionenfolge auf D sei ,,in jedem Punkt von
D gleichmiBig konvergent. Stattdessen muss man bei der Bestimmung der gleichmifigen
Konvergenz immer alle Punkte von D gleichzeitig betrachten.

(b) Natiirlich ist jede gleichmiBig konvergente Funktionenfolge (f;,), auf D auch punktweise
konvergent mit der gleichen Grenzfunktion f.

Wollen wir also die gleichmiBige Konvergenz von (f;,), untersuchen, so werden wir in der

Regel zunichst mit der punktweisen Konvergenz beginnen und fiir alle x € D die Grenz-

werte f(x) := lim f,(x) bestimmen. Existiert dann einer dieser Grenzwerte nicht, so ist die
n—yoo

Funktionenfolge damit nicht punktweise, also auch nicht gleichméfig konvergent. Ansons-

ten ist die so bestimmte Funktion f die Grenzfunktion, mit der wir fiir die gleichmifige

Konvergenz die Bedingung aus Definition 8.34 (b) iiberpriifen miissen.

Unser wichtigstes Beispiel von Funktionenfolgen sind Potenzreihen wie z. B. die Exponentialreihe in
Beispiel 8.33, und gliicklicherweise sind diese in folgendem Sinne immer gleichmiflig konvergent.

Satz 8.36 (GleichmiBige Konvergenz von Potenzreihen). Jede Potenzreihe Y ;. aix* in K mit Kon-
vergenzradius r ist gleichmdf3ig konvergent auf jeder Menge der Form

Kp:={xeK:|x| <R} firO<R<r
(d. h. die Folge (f,)n der Partialsummen f,(x) = Y4_,arx* konvergiert gleichmdpig auf jedem Kg
gegen die Grenzfunktion f mit f(x) = Yy ax*).
divergent C

; leichmafi ;
dlverf.g\,‘ent %<0nvergentg dl\?rgent
R

TR

-r
—R R

Mit anderen Worten konvergieren Potenzreihen also gleichmdflig auf jedem abgeschlossenen Inter-
vall (fiir K = R) bzw. Kreis (fiir K = C) innerhalb des Konvergenzgebiets.

Beweis. Wir weisen das Kriterium aus Definition 8.34 (b) direkt nach. Es sei dazu € > 0 beliebig.
Wegen R < r konvergiert die Reihe } ;7 ay R* nach Satz 7.27 absolut. Es gibt also ein ng € N, so

dass
oo n

Ylal R =Y |a|-R| = Y |ul R <e

k=0 k=0 k=n+1
fiir alle n > ng gilt. Dann folgt fiir alle n > ng und x € K mit |x| < R aber auch

i akxk - i akxk i akxk
k=0 k=0

k=n+1
Da wir unser ng hierbei unabhéngig von x € Kg wihlen konnten, ist die Potenzreihe auf K also
gleichméBig konvergent. ]

=)

=

< Y lal W< Y Jul-R <e.
k=n+1 k=n+1

f(x) = falx)| =
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Beachte, dass man den Wert von R in Satz 8.36 beliebig nahe an r wihlen darf. Insbesondere findet
man also zu jedem x € K im Konvergenzgebiet D = {x € K: |x| < r} ein R, so dass x in K enthalten
ist. Da die gleichmiBige Konvergenz gemif3 Bemerkung 8.35 (a) nicht punktweise iiberpriift werden
kann, bedeutet dies jedoch nicht, dass die Potenzreihe auch auf ganz D gleichmifig konvergiert!
Hier ist ein einfaches Gegenbeispiel dafiir:

Beispiel 8.37. Die geometrische Reihe f(x) = ZZ’:Oxk hat nach Beispiel 7.3 (a) das Konvergenz-
gebiet D = {x € K : |x| < 1}, also den Konvergenzradius 1. Wir behaupten, dass f auf D nicht
gleichmiBig konvergent ist, d. h. dass die Umkehrung der Bedingung aus Definition 8.34 (b)

IR
=0 k=0

gilt. Dazu wihlen wir € := 1; es sei ng € N gegeben, und wir setzen n := ng. Fiir alle x € D mitx > 0
ist nun nach der Formel fiir die geometrische Reihe aus Beispiel 7.3 (a)

oo n
Y-y
k=0 k=0

Nihert sich x nun innerhalb von D dem Wert 1, so wichst dieser Ausdruck offensichtlich unbe-

schriankt an. Also gibt es insbesondere ein x € D, fiir das dieser Ausdruck mindestens gleich 1 = €
ist, was zu zeigen war.

de>0VnpeN3IxeD In>ngp: >e

_ v k,xn+1.°°)g(7xn+l
=) A= k;) -

k=n+1

Wir kommen nun zu dem zentralen Satz, der in Beispiel 8.33 die Motivation fiir die Einfithrung der
gleichméBigen Konvergenz war:

Satz 8.38 (Der gleichmiBige Grenzwert stetiger Funktionen ist stetig). Es seien D C K und (f,)n
eine Folge stetiger Funktionen f,: D — K, die gleichmdflig gegen eine Grenzfunktion f: D — K
konvergiert. Dann ist auch f stetig.

Beweis. Wir weisen das €-6-Kriterium aus Definition 8.5 (a) fiir f nach. Es seien dazu a € D und
€ > 0 beliebig. Da (f,), gleichmiBig gegen f konvergiert, gibt es ein ng € N, so dass

() — F(0)] <§ fiir alle x € D und alle n > no )

gilt (insbesondere also auch fiir x = a). Wir benétigen dies nur fiir n := ng: Wegen der Stetigkeit von
f» gibt es dann ein 0 > 0 mit

|fn(x)—f,,(a)\<§ fiir alle x € D mit |x —a| < &. 2)

Insgesamt folgt damit fiir alle x € D mit |x — a| < § nach der Dreiecksungleichung

[f(x) = f@)| = [f(x) = fu(x) + fulx) = fula) + fu(a) — f(a)]
< f) =S+ [ falx) = fal@)| + ]| fula) — f(a)|
< £ nach (1) < £ nach (2) < £ nach (1)

<E. O

Folgerung 8.39 (Stetigkeit von Potenzreihen). Jede Potenzreihe in K ist in ihrem Konvergenzgebiet
stetig.

Beweis. Wir betrachten eine Potenzreihenfunktion f in K mit Konvergenzradius r, also eine Funk-
tion der Form f(x) = lim £, (x) mit £, (x) = Y{_oaxx* fiir alle x € K mit |x| < r.
n—yoo

Es sei nun ein ¢ € K mit |c| < r gegeben; wir miissen zeigen, dass f in c¢ stetig ist. Wihle dazu
ein R > 0 mit |¢| < R < r. Dann ist f nach Satz 8.36 auf Kz = {x € K : |x| < R} der gleichmiBige
Grenzwert der stetigen Partialsummen f,,. Also ist diese Grenzfunktion f nach Satz 8.38 auf Kz und
damit insbesondere in c stetig. g
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Beispiel 8.40.

(a) Die Exponentialfunktion exp: K — K ist als Potenzreihe mit Konvergenzradius e nach Fol-
gerung 8.39 auf ganz K stetig.

(b) Die reelle Funktionenfolge (x"), auf [0, 1] aus Beispiel 8.33 ist nach Satz 8.38 nicht gleich-
méBig konvergent, da ihre Grenzfunktion nicht stetig ist. (Natiirlich konnte man dies auch
analog zu Beispiel 8.37 direkt nachrechnen.)

Aufgabe 8.41 (Supremumsnorm).
(a) Zu einer Funktion f: D — K mit D C K definieren wir die Supremumsnorm

1/ llsup := sup{|f (x)

Zeige, dass eine Funktionenfolge (f,), auf D genau dann gleichméBig gegen f konvergiert,
wenn || f, — f/lsup — O fiir n — oo gilt.

:x€D}  €RsoU{e}.

(b) Zeige, dass die reelle Funktionenfolge (fy), mit f,(x) = 175 zwar nicht auf R, aber auf

jedem Intervall [a, ) mit a > 0 gleichmiBig konvergiert.
Aufgabe 8.42.
(a) Firn € Nog sei f: R > R, x> /x2+ % Zeige, dass die Funktionenfolge (f,), auf R
gleichmifig konvergiert.

(b) Zeige, dass die Exponentialreihe auf R nicht gleichmifig konvergiert.

Aufgabe 8.43 (Koeffizientenvergleich fiir Potenzreihen). Es sei f(x) = Y,_ja,x" eine Potenzreihe
tiber K mit Konvergenzradius mindestens r > 0.

(a) Zeige mit vollstindiger Induktion: Ist f(x) = 0 fiir alle x € K mit |x| < r, so gilt bereits
a, = 0 fiir alle n € N (d. h. ist der Wert der Reihe gleich O fiir alle diese x, so sind bereits alle
Koeffizienten der Reihe gleich 0).

(b) Man zeige: Ist g(x) =Y~ b, x" eine weitere Potenzreihe mit Konvergenzradius mindestens
rund gilt f(x) = g(x) fiir alle x € K mit |x| < r, so ist bereits a, = b, fiir alle n € N.

Zum Abschluss dieses Kapitels wollen wir nun noch das Konzept der gleichmiBigen Stetigkeit ein-
fiihren, das wir spéter (z. B. in Satz 12.12) noch benétigen werden und das eine sehr dhnliche Idee
wie die gleichméBige Konvergenz hat:

Definition 8.44 (Gleichmifige Stetigkeit). Es seien D C K und f: D — K eine Funktion. Bekannt-
lich heif3t die Funktion f nach Definition 8.5 stetig, wenn sie in jedem Punkt a € D stetig ist, also
wenn gilt

YaeDVe>030>0VxeD: [x—a|<d=|f(x)—f(a)| <e.

Beachte, dass & hierbei (analog zu ng in Definition 8.34 (a)) nicht nur von &, sondern auch vom
betrachteten Punkt a abhingen darf. Kann man & jedoch auch unabhingig von a wihlen, gilt also

Ve>038>0VaeDVxeD: [x—a|<d=|f(x)—fla)| <&,
so nennt man f auf D gleichmiBig stetig.

Bemerkung 8.45. Genau wie die gleichmiflige Konvergenz (siche Bemerkung 8.35 (a)) ist auch
die gleichméaBige Stetigkeit einer Funktion f: D — K kein punktweises Konzept, sondern kann nur
nachgewiesen werden, indem man alle Punkte von D gleichzeitig betrachtet.

Beispiel 8.46. Wir behaupten, dass die nach Beispiel 8.15 stetige Funktion

1
fiRso—R, x— -
X
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nicht gleichméaBig stetig ist. Anschaulich ist diese Aussage im
Bild rechts dargestellt: Die Stetigkeit von f bedeutet ja gera-
de, dass wir zu jeder e-Umgebung U, (f(x)) eines Bildpunktes
f(x) eine 8-Umgebung von x finden, die ganz nach Ug(f(x))
abgebildet wird. Zum Punkt x = a haben wir in der Skizze
eine e-Umgebung von f(a) grau eingezeichnet, und auf der
x-Achse eine dazu passende §-Umgebung wie in Bemerkung
8.6 dick markiert. Wenn wir nun auf einen (viel) kleineren
Wert x = b gehen und das gleiche € wie oben behalten, so
sehen wir, dass wir das zugehorige 8 viel kleiner wihlen miis-
sen. Wenn sich x der O nihert, miissen wir bei gleich blei-
bendem & das O in der Tat sogar gegen O gehen lassen. Dies
bedeutet, dass wir fiir festgehaltenes € kein 0 finden konnen,
das in jedem Punkt x > O funktioniert — und das wiederum
bedeutet genau, dass f nicht gleichméBig stetig ist.

Wollen wir diese Aussage formal beweisen, so miissen wir die Negation der Bedingung aus Defini-
tion 8.44 nachweisen, d. h.

Je>0V0>0JaeDIxeD: |x—a| <dund|f(x)— f(a)] > €.
Dies ist schnell gezeigt: Wir setzen € := 1; es sei 6 > 0 beliebig. Dann wiihlen wir x = 8 und a = HLS’
und es gilt wegen x > a
1) 1 146

\x—a|:5—1+—6<5 und f(x)—f(a)|:’6—6 =1>e.

Um dagegen die gleichmiBige Stetigkeit einer Funktion nachzuweisen, sind oft die folgenden bei-
den hinreichenden Bedingungen in Lemma 8.48 und Satz 8.50 niitzlich, die sich deutlich einfacher
tiberpriifen lassen als die Definition.

Definition 8.47 (Lipschitz-Stetigkeit). Es sei D C K. Eine Funktion f: D — K heifit Lipschitz-
stetig, wenn es ein L € R+ gibt, so dass

[f () —f) < L-|x—yl
fuir alle x,y € D gilt. Man nennt L in diesem Fall eine Lipschitz-Konstante fiir f.

Lemma 8.48. Jede Lipschitz-stetige Funktion ist gleichmdpf3ig stetig (und damit insbesondere auch
stetig).

Beweis. Es seien D C K und f: D — K eine Lipschitz-stetige Funktion mit Lipschitz-Konstante
L € Ryp. Um die gleichmiBige Stetigkeit von f wie in Definition 8.44 zu zeigen, sei € € Ry
beliebig. Setzen wir dann & := ¥, so gilt fiir alle a,x € D mit [x —a| < & wie gewiinscht

8.47
|[f(x)=f(a)] < L-|x—a|<Lé=¢. O
Beispiel 8.49. Es sei
1
f: R21 - R, x+— ;

noch einmal die Funktion aus Beispiel 8.46, bei der wir diesmal aber den Definitionsbereich so
verkleinert haben, dass wir uns darin nicht mehr der 0 nidhern kénnen. Dann ist f Lipschitz-stetig
mit Lipschitz-Konstante 1, denn fiir alle x,y € R> gilt

L1 =yl
-0l = |11 -

x oyl Iyl
Nach Lemma 8.48 ist diese gegeniiber Beispiel 8.46 eingeschrinkte Funktion f nun also gleichméBig

stetig.

<lx—yl

Satz 8.50. Jede stetige Funktion f: [a,b] — R auf einem abgeschlossenen reellen Intervall ist
gleichmdf3ig stetig.



106 Andreas Gathmann

Beweis. Angenommen, f wére nicht gleichméBig stetig. Dann wiirde wie in Beispiel 8.46 das Ge-
genteil der Bedingung aus Definition 8.44 gelten, d. h.

Je>0Vd>03x,y€ab]: [y—x|<dund |f(y)— f(x)] > €.
Wiihlen wir ein solches €, so finden wir also mit § = % zu jedem n € N Zahlen x,,y, € [a,b] mit
[yn —xn| < % und | f(yn) — f(x4)| > €. Insbesondere ist dann Jﬂ()’n —x,) = 0. Wiihlen wir nun nach
dem Satz 6.21 von Bolzano-Weierstral} eine gegen ein x € [a,b] konvergente Teilfolge (x,, ) von
(xn)n» so folgt

limx,, =x und lim = lim x,,, + lim —Xp, ) =x+0=x
koo k—)ooynk koo K k%w(ynk nk) ’

d. h. die entsprechende Teilfolge von (y,), konvergiert ebenfalls gegen x. Wegen der Stetigkeit von
f in x ergibt sich dann aber nach dem Folgenkriterium aus Satz 8.12 (b)

1im () = £ () = Jim £n) = Jim f(,) = £(x) = () =0,
im Widerspruch zu |f(y,, ) — f(xy, )| > € fiir alle k. O

Aufgabe 8.51. Zeige dass die Wurzelfunktion f: [0,1] — R, x — /x zwar gleichmiBig stetig, aber
nicht Lipschitz-stetig ist.



