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7. Reihen

Wir wollen uns nun mit einem speziellen Typ von Folgen beschiftigen, der in der Praxis sehr haufig
vorkommt: ndmlich Folgen, die in der Form

(Clo, ap+ap, ap+a)+as, )

gegeben sind, deren Grenzwert wir also anschaulich als die ,,unendliche Summe* ag +a; +az +---
auffassen konnen. Derartige Folgen bezeichnet man als Reihen. Wir werden solche Reihen im reellen
und komplexen Fall gleichzeitig betrachten und arbeiten daher im Folgenden in der Regel iiber dem
Korper K wie in Bemerkung 6.19.

7.A Grenzwerte von Reihen

Da Reihen letztlich nichts anderes als spezielle Folgen sind, konnen wir die Definition und die
ersten Eigenschaften von Folgen und Grenzwerten natiirlich unmittelbar auf unsere neue Situation
iibertragen. Dies wollen wir nun im ersten Abschnitt dieses Kapitels tun.

Definition 7.1 (Reihen). Es sei (a,)nen eine Folge in K. Dann heiBt die Folge (sy)nen mit
N
SN = Zanzao+a1+"'+aN
n=0
die Folge der Partialsummen von (a,), bzw. die zu (a,), gehorige Reihe. Wir bezeichnen sowohl
diese Reihe als auch ihren Grenzwert Al/im sy (sofern er existiert) mit
—00

Zan bzw. ap+aj+ax+---.

n=0
Genau wie bei Folgen kann auch eine Reihe bei einem anderen Startindex ng € Z als bei 0 anfangen;
in diesem Fall schreiben wir sie natiirlich als

Z a, bzw. auy+ayr1+agy2+-c .
n=n

Bemerkung 7.2.

(a) Da jede Reihe nach Definition eine Folge ist, iibertragen sich die Begriffe Konvergenz und
Divergenz, Beschrinktheit usw. aus Kapitel 5 direkt auf Reihen.

(b) Die Doppelbelegung des Symbols Y~ a, sowohl fiir die Reihe (also die Folge ihrer Par-
tialsummen) als auch fiir ihren Grenzwert ist zwar mathematisch unschon, aber in der Lite-
ratur so fest verankert, dass wir hier nicht davon abweichen wollen. Es sollte dadurch kei-
ne Verwirrung entstehen: Wenn wir von Eigenschaften einer Folge reden, also z. B. sagen,
dass Y a, konvergiert oder divergiert, so meinen wir natiirlich die Partialsummenfolge —
wihrend z. B. in Gleichungen der Form Y ;> ;a, = a der Grenzwert der Reihe gemeint ist.
Wenn Verwechslungen zu befiirchten sind, konnen wir natiirlich auch immer die eindeutige

Schreibweise (ZnN:o an) ve fir die Reihe und Al’im YN, a, fiir ihren Grenzwert benutzen.
—So0

Beispiel 7.3.

(a) (Unendliche geometrische Reihe) Wir betrachten die Reihe Y, ,¢" fiir ein g € K. Fiir
q = 1 ist diese Reihe 14141+ ... natiirlich unbeschrinkt und damit divergent. Ansonsten
haben wir in Satz 4.1 gesehen, dass

N N+1

I—g¢q
q'=——"
,,;o 1—¢
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Der Grenzwert fiir N — oo ergibt sich nun sofort aus Beispiel 6.26: Da Al/im gV nur fiir
—yo0

lg] < 1 existiert und dann gleich 0 ist, erhalten wir also
N
1

i ¢" = lim Z q" =
n=0 n=0

—  firlg| <1, ()
lI—¢q

wihrend die Reihe in allen anderen Fillen divergiert.

N—roo

Ein interessanter konkreter Fall dieser Reihe ist die Frage, ob die Dezimalzahl 0,9999...
gleich 1 oder ,.etwas kleiner* als 1 ist. Dies konnen wir nun beantworten, denn die einzig
mogliche mathematisch korrekte Definition dieser Zahl ist natiirlich die geometrische Reihe
> _ 9 & /1\"% 9 1
0,9999... =Y 9.107" = —. (7) S — 1.
n; 10 /= \10 10 1— %

Die Zahl 0,9999... ist daher wirklich gleich 1 — in diesem Fall ist die Dezimaldarstellung
einer reellen Zahl also nicht eindeutig.

(b) (Teleskopreihen) Wir wollen den Grenzwert der Reihe Y, m bestimmen. Normaler-

weise lassen sich derartige Reihen nicht ohne weiteres berechnen, aber in diesem ganz spe-
1 1 1

ziellen Fall konnen wir einen Trick anwenden: Wegen = - — —— koOnnen wir die
n(n+1) n  n+l

Partialsummen der Reihe schreiben als

,iln(nlﬂ):i(i_nL)

Derartige Reihen, bei denen sich in den Partialsummen durch geeignete Differenzen alle Ter-
me bis auf einen Start- und Endterm wegheben, bezeichnet man als Teleskopreihen (weil die
Summe sozusagen wie ein Teleskop ,,zusammengeschoben® werden kann). Der Grenzwert
der Reihe lisst sich dann natiirlich einfach berechnen; in diesem Fall ist er

=1l

> 1 N 1
= 1i - 1-—— ) =1
ng’ln(n-i-l) Nl—rgo,;n(n—&—l) N—Igo( N—|—1>

(c) (Harmonische Reihe) Die Reihe )~ % divergiert: Fiir die Partialsummen mit Index N = 2k

gilt
2
HZIE:H%+(§+i)+(§+g+%+§)+---+(2,(,—11“+-~+2ik)
>4 3+ (D (Grdrdrd ot (k)
=1+3+ 3 + : +ot 3
=1+%

Dal+ % mit k unbeschridnkt wichst, ist die gegebene Reihe also unbeschrinkt und damit
nach Lemma 5.8 divergent.

Die folgenden einfachen Rechenregeln fiir Reihen — die Vertriglichkeit mit Summen, Differenzen,
Multiplikation mit Konstanten sowie im Fall des Korpers R mit Ungleichungen — ergeben sich sofort
aus denen fiir Folgen in Kapitel 5.

Lemma 7.4 (Rechenregeln fiir Reihen). Es seien Y qa, und Y _b, konvergente Reihen in K.
Dann gilt:

@ Y (an+b)=Y ant Y byund ¥ (ai—b,) = ¥ ar— Y by
n=0 n=0 n=0 n=0 n=0 n=0
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a,.

(b) Fiir c € Kist Z ca, =c-
n=0 n=0
(¢) Ist K=R und a, < b, fiir alle n, so ist Z a, < Z by,
n=0 n=0
Beweis. Alle behaupteten Aussagen gelten trivialerweise fiir die Partialsummen der Reihen (also
wenn die Summen bis zu einem festen N € N laufen). Ubergang zum Grenzwert liefert dann mit den

Sitzen 5.13 und 5.24 die Behauptungen. O

Eine analoge direkte Vertriaglichkeit mit der Multiplikation ist natiirlich nicht zu erwarten, weil ja
schon fiir die Partialsummen (¥ a,) - (¥3_bxs) nicht dasselbe ist wie Y3 anb,. Wir werden
aber spiter in Satz 7.35 noch eine Formel fiir das Produkt von Reihen finden.

Bevor wir nun mit der Herleitung allgemeiner Konvergenzkriterien fiir Reihen beginnen, wollen wir
noch zwei sehr einfache Hilfsaussagen festhalten, die aber dennoch oft niitzlich sind. Die erste von
ihnen ist so einfach, dass sie iiblicherweise als Trivialkriterium bezeichnet wird: Eine Reihe kann
hochstens dann konvergieren, wenn die aufsummierten Zahlen zumindest gegen 0 konvergieren.

Lemma 7.5 (Trivialkriterium). Ist die Reihe Y, o ay, konvergent, so ist (ay), eine Nullfolge.

Beweis. Existiert der Grenzwert }.;°_ a,, so folgt aus den Grenzwertsitzen
N N—1 o o
aN=Zan—Zan—>Zan—Zan=0 fiir N — oo, ]
n=0 n=0 n=0 n=0
Beispiel 7.6.

wm>
nzer =2#0.

(a) Die Reihe ), n%’jrzl ist divergent, denn nach Beispiel 5.14 ist lim
n—soo

(b) Das Trivialkriterium ist nicht umkehrbar: So ist z.B. zwar (%)n eine Nullfolge, aber die

harmonische Reihe } >, % nach Beispiel 7.3 (c) trotzdem divergent. Man kann mit diesem
Kriterium also immer nur die Divergenz einer Reihe nachweisen, aber nie die Konvergenz.

Dieses Beispiel zeigt auch noch etwas anderes: Bezeichnen wir mit a, = Y/, % die Par-
tialsummen der harmonischen Reihe, so ist die Folge (a,), zwar divergent, aber die Folge
(Ant1 —an)n = (nlﬁ)n konvergiert trotzdem gegen 0, d. h. es gilt

VeeRso Ing eNVn>ng: |ant1 —an| <E€.

Um die Aquivalenz zwischen konvergenten Folgen und Cauchyfolgen zu erhalten, geniigt es
in der Definition 6.22 einer Cauchyfolge also nicht, zwei benachbarte Folgenglieder a,, und
ay+1 miteinander zu vergleichen, sondern wir miissen zwei beliebige Folgenglieder a,,, und
a, (mit m,n > ng) nehmen!

Lemma 7.7. Eine Reihe Y, a, mit a, € R>g fiir alle n € N ist genau dann konvergent, wenn sie
beschrdnkt ist.

Beweis. Da alle aufsummierten Zahlen reell und nicht-negativ sind, ist die Folge ihrer Partialsum-
men monoton wachsend. Fiir eine reelle, monoton wachsende Folge ist die Konvergenz nach Lemma
5.8 und dem Monotoniekriterium aus Satz 5.28 aber dquivalent zur Beschrinktheit. 0

7.B Konvergenzkriterien fiir Reihen

Wie im Fall von Folgen im letzten Kapitel wollen wir nun einige Kriterien herleiten, mit denen
man die Konvergenz einer Reihe beweisen kann, ohne ihren Grenzwert zu kennen. Dabei bleiben
natiirlich alle Ergebnisse aus Abschnitt 5.B unverdndert anwendbar, da Reihen ja letztlich auch nur
Folgen sind. Es gibt aber einige zusitzliche Kriterien, die speziell auf den Fall von Reihen zuge-
schnitten und meistens einfacher zu iiberpriifen sind. Wir beginnen dabei mit einem Kriterium fiir
reelle Reihen, in denen abwechselnd positive und negative Glieder aufsummiert werden.
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Satz 7.8 (Leibniz-Kriterium). Ist (a,), eine monoton fallende Nullfolge in R, so ist die Reihe

=

Z(*l)nan =ay—ay+ay—az=E---
n=0

konvergent, und ihre Partialsummen sind abwechselnd obere und untere Schranken fiir ihren Grenz-

wert. (Derartige reelle Reihen, bei denen sich das Vorzeichen in der Summe immer abwechselt, nennt
man alternierend.)

Beweis. Esseisy =YN_,(—1)"a,, also (sy)y die Folge der Partialsummen der betrachteten Reihe.
Da (ay), monoton fallend und die Differenz zweier aufeinander folgender Glieder von (ay,), damit
nicht negativ ist, ist die Folge (son )y der geraden Partialsummen monoton fallend: Es gilt

SIN+2 = S2N — d2N+1 T A2N42 < SoN-
| S —
<0
Analog ist die Folge (soy+1)n der ungeraden Partialsummen monoton wachsend, wie auch das Bild
unten rechts zeigt. Damit haben wir ineinander liegende Intervalle
[SlaSZ]3[33354]:)[35356]:)”'7 SN
die eine Intervallschachtelung definieren, da die Liange ao® s
SON — S2N—1 = 42N —ar °
dieser Intervalle mit N — oo gegen O konvergiert. Nach Satz 5.39  s---- —',—" s
konvergieren also die geraden und ungeraden Partialsummen L IS
. : S3
monoton fallend bzw. wachsend gegen den gleichen Grenzwert o

s. Insbesondere sind die geraden und ungeraden Partialsummen N
also obere bzw. untere Schranken fiir s.

Auflerdem liegen damit in jeder e-Umgebung von s fast alle geraden und fast alle ungeraden Partial-
summen, und somit konvergiert auch die gesamte Folge der Partialsummen gegen s. g

Beispiel 7.9 (Alternierende harmonische Reihe). Die Reihe

= 11111
_1"7:_7 - —
L =gty -3t5F

ist nach dem Leibniz-Kriterium konvergent, denn % ist eine monoton fallende Nullfolge. Thren
Grenzwert konnen wir momentan noch nicht berechnen (in der Tat ist er gleich —log?2, wie wir
in Beispiel 11.15 (a) sehen werden), aber nach Satz 7.8 liegt er sicher zwischen den ersten beiden

Partialsummen —% = —1und —% —l—% = —%.

Ubrigens ist diese Reihe (ganz im Gegensatz z. B. zur Folge aus Beispiel 5.37) eine, die ,.extrem
langsam*® konvergiert: Um hier den Grenzwert auf kK Nachkommastellen genau zu berechnen, miissen
wir natiirlich mindestens die ersten 10X Summanden mitnehmen, denn der 10%-te Summand ist ja
10~% und #ndert somit in jedem Fall noch die k-te Nachkommastelle.

Wir kénnen an dieser alternierenden harmonischen Reihe aber noch eine weitere iiberraschende
Eigenschaft sehen. Dazu sortieren wir die aufzusummierenden Zahlen mal etwas um und schreiben
unsere Reihe als

1+1 +1+ l—i—l +1+ 1—1—1 +1+ 1+1 +1+

1 2 4 3 6 8 5 10 12 7 14 16 ’
Das Prinzip hierbei ist, dass die Terme (—1)" 1 ...
o fiir ungerade n der Reihe nach als erste Summanden in den Klammern stehen,

o fiir gerade, aber nicht durch 4 teilbare n der Reihe nach als zweite Summanden in den Klam-
mern stehen,

o fiir durch 4 teilbare n der Reihe nach au3erhalb der Klammern stehen.
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Es ist klar, dass wir hier wirklich nur die Summanden umsortiert, also keinen vergessen oder doppelt
hingeschrieben haben. Rechnen wir jetzt aber mal die Klammern aus, so erhalten wir

1 1 1 1 1 1 1 1
27i et 0 2 e
und damit genau die Hilfte der urspriinglichen Reihe! Da die Reihe nicht den Wert 0 hat (wie wir
oben schon gesehen haben, liegt ihr Wert ja zwischen —1 und —%), haben wir ihren Wert durch das

Umsortieren also tatsdchlich gedndert und miissen damit wohl oder iibel feststellen:

Das Umordnen der Summanden in einer konvergenten Reihe kann ihren Grenzwert dndern.

Das ist natiirlich extrem lastig, weil uns das sozusagen die Kommutativitit der Addition im Fall
von unendlichen Summen kaputt macht — was vollig der Intuition widerspricht und natiirlich auch
beim Rechnen mit solchen Reihen grofle Probleme bereitet. Gliicklicherweise gibt es einen relativ
eleganten Ausweg aus dieser Situation: Es gibt eine Eigenschaft von Reihen, die etwas stirker als
die normale Konvergenz ist, in vielen Féllen aber dennoch erfiillt ist und die Umsortierbarkeit ohne
Anderung des Grenzwerts garantiert. Diese wollen wir jetzt einfiihren.

Definition 7.10 (Absolute Konvergenz). Eine Reihe ) a, in K heifit absolut konvergent, wenn
die Reihe Y |a,| ihrer Betrige konvergiert, also nach Lemma 7.7 wenn diese Reihe Y, |an|
beschrinkt ist.

(Der Name kommt einfach daher, dass man den Betrag einer Zahl oft auch als Absolutbetrag be-
zeichnet.)

Fiir Reihen, in denen nur nicht-negative reelle Zahlen aufsummiert werden, stimmen die Begriffe
,.konvergent* und ,,absolut konvergent* offensichtlich iiberein. Wir wollen nun sehen, dass der Be-
griff der absoluten Konvergenz fiir allgemeine Reihen wirklich ,,stirker als die gewohnliche Kon-
vergenz ist, also dass aus der absoluten Konvergenz einer Reihe auch die Konvergenz folgt. Dazu
miissen wir zunéchst das Cauchy-Kriterium aus Satz 6.25 auf Reihen tibertragen. Auch hier ist die-
ses Kriterium wieder besonders deswegen wichtig, weil es zum einen zur Konvergenz dquivalent ist
(man mit ihm also Konvergenz genauso wie Divergenz nachweisen kann) und es aulerdem in R und
C gleichermaflen funktioniert.

Folgerung 7.11 (Cauchy-Kriterium fiir Reihen). Eine Reihe ), a, in K ist genau dann konver-

gent, wenn
m

L a

k=n+1

Ve>0dnpeNVm>n>ny: <E€.

Beweis. Nach Definition ist die Reihe Y ;a, genau dann konvergent, wenn die Folge (sy)y der
Partialsummen mit sy = ):nN:() ay, konvergiert. Wenden wir das Cauchy-Kriterium fiir Folgen aus Satz
6.25 auf (sy)n an, sehen wir, dass dies genau dann der Fall ist, wenn

Ve>03dng e NVmn>ng: |s,—sm| <€.

Natiirlich kénnen wir hier aus Symmetriegriinden m > n annehmen, und aus s, —s, = YL, | ax
folgt dann sofort die Behauptung.

Lemma 7.12. Jede absolut konvergente Reihe in K ist konvergent.

Beweis. Es sei Y a, eine absolut konvergente Reihe, d.h. die Reihe Y, |a,| sei konvergent.
Nach dem Cauchy-Kriterium aus Folgerung 7.11 gibt es also zu jedem € > 0 ein ng € N mit

m m
Y la|= ) lal<e
k=t 1 k=t 1

fiir alle m > n > ng. Dann ist nach der Dreiecksungleichung aber erst recht

m m
Z dag < Z |ak| <E§,
k=n-+1 k=n+1
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und damit ist wiederum nach dem Cauchy-Kriterium auch die Reihe ), a, konvergent. O

Beispiel 7.13. Die alternierende harmonische Reihe Y, (—1)" List nach Beispiel 7.9 konvergent.
Sie ist aber nicht absolut konvergent, da die harmonische Reihe )~ nach Beispiel 7.3 (c) diver-
giert. Die Umkehrung von Lemma 7.12 gilt also nicht.

Als Nichstes hatten wir behauptet, dass die absolute Konvergenz einer Reihe sicher stellt, dass man
die Summanden ohne Anderung des Grenzwerts umordnen kann. Dies wollen wir jetzt zeigen.

Definition 7.14 (Umordnungen einer Reihe). Es sei " a, eine Reihe in K und ¢ : N — N eine bi-
jektive Abbildung. Dann heifit die Reihe }7"  ag(,,) (die offensichtlich aus den gleichen Summanden
besteht, nur evtl. in anderer Reihenfolge) eine Umordnung von Y., dp.

Satz 7.15 (Umordnungssatz). Jede Umordnung einer absolut konvergenten Reihe ist ebenfalls ab-
solut konvergent und konvergiert gegen denselben Grenzwert.

Beweis. Es seien )’ ;a, eine absolut konvergente Reihe und ¢ : N — N eine bijektive Abbildung.
Ferner sei € > 0 beliebig. Da Y, |a,| nach Voraussetzung konvergiert gibt es nach dem Cauchy-
Kriterium aus Folgerung 7.11 ein ng € N mit ;' . |ax| < § fiir alle m > n > ng. Insbesondere
haben wir fiir n = ng und m — oo also

oo

€
Y \ak|§§<8. (1)
k=ngp+1
Da o surjektiv ist, konnen wir ein n6 > no wihlen, so dass alle Summanden ao,...,ay, bis zum
ny-ten Term der Umordnung aufgetreten sind, also so dass
{0,1,...,n0} C {6(0),0(1),...,0(ny)} 2)

gilt. Wir betrachten nun fiir beliebiges n > n(, die Summe

n
Y (ao() —ar) = (ac(o) = ao0) + (ag(1) —a1) + -+ (dg(n) — an)-
k=0
Wegen (2) und n > nj, > ng treten in dieser Summe alle Glieder ay, . . . , a,, sowohl einmal mit positi-
vem als auch einmal mit negativem Vorzeichen auf, heben sich also heraus. Die iibrigen a,, mit n > ng
konnen sich ebenfalls herausheben, oder mit einem positiven oder negativen Vorzeichen auftreten.
Wir konnen dies symbolisch schreiben als

n

Z k) — ak) Ziakv

k=0
wobei die Summe hier iiber gewisse (endlich viele) k > ng lauft und fiir jedes solche k das Vorzeichen

von ay, positiv oder negativ sein kann. Damit konnen wir diesen Ausdruck mit der Dreiecksunglei-
chung betragsmifig abschitzen durch

n

Y (ac() —ar)

k=0

<Z\ak|< Z |ax| <£

k= n0+1

Daraus ergibt sich Y" ((dg(,) — @) = 0, und damit nach den iiblichen Rechenregeln aus Lemma 7.4

Y Ao = Y @t ). (Gom =) = ) an.
n=0 n=0 n=0 n=0

Die Umordnung }.;" (ds(,) konvergiert also gegen den gleichen Grenzwert wie die urspriingliche
Reihe. Wenden wir dieses Ergebnis nun auch noch auf die Reihe }>_ |a,| an, so erhalten wir ge-
nauso Y. |dg(n)| = Yo |an|, woraus die absolute Konvergenz der Umordnung folgt. O

Bemerkung 7.16 (Summen mit abzihlbar unendlicher Indexmenge). Da es bei ,,unendlichen Sum-
men* im Fall der absoluten Konvergenz also nicht auf die Reihenfolge der Summanden ankommt,
konnen wir damit auch derartige Summen definieren, bei denen die Summanden zunéchst einmal
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tiberhaupt keine vorgegebene Reihenfolge haben, sondern durch eine beliebige abzéhlbar unend-
liche Menge I indiziert werden: Ist a; € K fiir alle i € I, so wihlen wir eine bijektive Abbildung
0 : N — [.Ist dann die Reihe };"  ag(,) absolut konvergent, so schreiben wir den Wert dieser Reihe

als
Za, = Z asny €K

iel
Dies hédngt dann nach dem Umordnungssatz 7.15 nicht von der Wahl von ¢ ab, da sich die durch
eine andere Bijektion entstehende Reihe nur durch eine Umordnung unterscheidet und somit nichts
an der absoluten Konvergenz bzw. dem Grenzwert der Reihe dndert.

Ist die Reihe ;" ag(,) dagegen nicht absolut konvergent, so konnen wir Y ;c; a; nicht sinnvoll defi-
nieren. Auch fiir eine iiberabzéihlbare Indexmenge I ist eine solche Summenbildung nicht moglich,
wie die folgende Aufgabe zeigt — es kiime in nicht-trivialen Fillen ndmlich immer oo dabei heraus.

Aufgabe 7.17. Es seien a; € R fiir alle i in einer iiberabzéhlbaren Indexmenge /. Zeige, dass die
Summe aller dieser a; dann unbeschrinkt ist, also dass es zu jedem s € R eine endliche Teilmenge
JCIgibtmit),c;a; > s.

Aufgabe 7.18. Zeige die folgende Verallgemeinerung des Leibniz-Kriteriums ins Komplexe: Ist
(an)n eine reelle, monoton fallende Nullfolge, so konvergiert die Reihe Y, a, x" fiir alle x € K mit
|x| =1 und x # 1.

(Hinweis: Untersuche die Reihe Z an(x—1)x")
n=0

Aufgrund der schonen Eigenschaften absolut konvergenter Reihen werden wir uns im Folgenden
oftmals eher fiir die absolute als fiir die ,,gewohnliche” Konvergenz von Reihen interessieren. Wir
wollen nun ein paar Kriterien zusammentragen, mit denen man die absolute Konvergenz von Reihen
in vielen Fillen einfach nachpriifen kann. Das erste von ihnen ist eigentlich sehr offensichtlich:

Satz 7.19 (Majoranten-/Minorantenkriterium). Es seien Y, a, und Y, b, zwei Reihen in K
mit |a,| < |by| fiir fast alle n.
(a) IstY.,>_ob, absolut konvergent, so auch 'y, ay.
(Man nennt Y., by, in diesem Fall eine konvergente Majorante von Y > o ay.)
(b) Ist Y, ay, divergent, so auch'Y ;o |by|.

(Man nennt Y.,,_q ay in diesem Fall eine divergente Minorante von Y., |by|.)

Beweis.

(a) Ist Y» b, absolut konvergent, also Y |b,| beschrinkt, so ist wegen |a,| < |b,| fiir fast
alle n auch Y, |a,| beschrénkt, und damit Y, a, nach Lemma 7.7 absolut konvergent.

(b) Ist die Reihe Y, a, nicht konvergent, so ist sie nach Lemma 7.12 insbesondere auch nicht
absolut konvergent, und daher kann nach (a) auch Y b, nicht absolut konvergent sein,
d.h. die Reihe ¥ |b,| divergiert. O
Beispiel 7.20.
(a) Die Reihe Y, ; % ist konvergent: Wegen " +11)2 < n(n+1) firn>1ist) =~
Beispiel 7.3 (b) eine (absolut) konvergente Majorante von ),
die Reihe

n n+l) nach

+1) Damlt konvergiert
1 s 1 1 | o 1
— + —_— = =4 _— = —_
12 n;l (n_|_1)2 12 ’; n2 s 2

Beachte, dass man auf diese Art mit Hilfe des Majorantenkriteriums zwar die Konvergenz

der Reihe ), 2 beweisen, aber nicht ihren Grenzwert bestimmen kann (in der Tat kann

man zeigen, dass der Wert dieser Reihe gleich % ist).
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(b) Fiir k > 2 ist die Reihe } " ; ,,17 konvergent, denn wegen ﬁ < niz firallenist ), niz nach

(a) eine konvergente Majorante.

(c) Die Reihe ¥, -1 dagegen ist divergent, denn wegen L > 1 st die harmonische Reihe

=1 Vi Vi
Yo % aus Beispiel 7.3 (c) eine divergente Minorante.

1
n

Aufgabe 7.21. Es sei (ay), eine Folge in K mit a, # —1 fiir alle n € N. Man zeige:

Qn

Z ay ist absolut konvergent < Z

ist absolut konvergent.
n=0 n=0 an

Wenn man mit dem Majorantenkriterium die (absolute) Konvergenz einer Reihe nachweisen mochte,
stellt sich natiirlich die Frage, wo man eine konvergente Majorante herbekommt. Sehr oft kann man
hierfiir einfach eine geometrische Reihe Y " ¢" fiir ein ¢ € R>o mit ¢ < 1 wie in Beispiel 7.3 (a)
verwenden. Aus diesem Ansatz ergeben sich in der Tat die folgenden beiden allgemeinen Kriterien,
die sehr oft anwendbar sind:

Satz 7.22 (Quotientenkriterium). Es sei Z ay eine Reihe in K mit a, # 0 fiir fast alle n. Dann
n=0
gilt:
aZ—:' < 1, so ist die Reihe Z ay, absolut konvergent.
n=0

(a) Ist lim
n—soo

(b) Ist lim
n—soo

ant1
an

> 1, so ist die Reihe Z ay divergent.
n=0

An+1

Der Fall lim
n—oo

= oo ist dabei in (b) zugelassen. Ist die Folge (

An+1
n

) Jjedoch unbestimmt
n

divergent oder konvergiert sie gegen 1, so macht das Quotientenkriterium keine Aussage.

dntl

n
an

Beweis. Esseia:= lim € RxU {eo}.
n—soo =

(a) Ist a < 1, so konnen wir ein € > 0 wihlen, so dass auch noch g :=a+¢€ < 1 gilt. Wegen

lim ‘ag—“’ = qa gibt es dann ein ny € N, so dass
n—soo | dn

an+-1
an

<a+€e=gq firallen > ny,

und damit |a,41| < q|ay|. Daraus ergibt sich fiir alle n > ng
|an‘ <qlan1| < qz |an 2| <--- < g"™™ |a,,0|.

Also ist die Reihe Y" (4" |a,,| eine Majorante der gegebenen Reihe Y~ a,. Wegen
q < 1 konvergiert sie nach Beispiel 7.3 (a) absolut, denn es ist
oo B B (=] B 1
Y q" " lang| =7 ang| Y 4" =" lang| T
n=0 n=0 —q
Die zu beweisende Aussage folgt damit aus dem Majorantenkriterium von Satz 7.19.

(b) Ista € Rmita > 1, so konnen wir ein € > 0 finden mit a — € > 1. In diesem Fall gibt es nach
der Grenzwertbedingung ein ng € N, so dass

An+1

an

>a—€>1 firallen> ngp.

Beachte, dass dies auch im Fall a = oo gilt, denn auch dann sind ja insbesondere fast alle
AL grofer als 1.

Also gilt |a,41| > |ay| fiir alle n > ng. Damit ist (|ay,|), ab np aber eine monoton wachsende
Folge positiver Zahlen, und kann somit keine Nullfolge sein. Die gegebene Reihe divergiert
also nach dem Trivialkriterium aus Lemma 7.5. 0
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Das zweite, recht dhnliche Kriterium, das auf dem Vergleich mit der geometrischen Reihe beruht,
benutzt die hoheren Wurzeln aus Aufgabe 5.37.

Satz 7.23 (Wurzelkriterium). Fiir jede Reihe Z a, in K gilt:
n=0

(a) Ist limsup {/|a,| < 1, so ist die Reihe Z ay absolut konvergent.
n=0

n—oo

(b) Ist limsup {/|a,| > 1, so ist die Reihe Z ay divergent.
n—eo n=0

Der Fall limsup {/|a,| = o ist dabei in (b) wieder zugelassen. Ist jedoch limsup {/|a,| = 1, so macht
n—soo n—soo
das Wurzelkriterium keine Aussage.

Beweis. Es sei a:=limsup {/|a,| € R>oU{co}.

n—soo

(a) Fiira < 1 sei wieder € > 0 mit g := a+ € < 1. Nach Lemma 5.47 (a) gilt dann

Va| <a+e=gq, also  a,| < 4"

fiir fast alle n. Alsoist ) ~_,¢" eine Majorante der gegebenen Reihe. Da diese wegen g < 1
nach Beispiel 7.3 (a) (absolut) konvergiert, konvergiert auch )~ a, nach dem Majoranten-
kriterium aus Satz 7.19 absolut.

(b) Ista € R mita > 1, so wihlen wir ein € > 0 mit @ — € > 1. Diesmal folgt dann aus Lemma

5.47 (b), dass
Vl|an| >a—e>1

fiir unendlich viele n. Beachte, dass dies auch im Fall a = oo gilt, weil die Folge ({/|ax|)n
dann eine Teilfolge mit uneigentlichem Grenzwert oo hat.

Damit ist aber auch |a,| > 1 fiir unendlich viele n. Also ist (a,), keine Nullfolge, und die
gegebene Reihe divergiert nach dem Trivialkriterium aus Lemma 7.5. g

Bemerkung 7.24 (Vergleich von Quotienten- und Wurzelkriterium). Das Quotientenkriterium hat

An+1
an

ldsst als die Wurzel {/|a,|. Allerdings bendtigen wir im Quotientenkriterium einen Grenzwert der
Quotientenfolge, wihrend im Wurzelkriterium der Limes superior der Wurzelfolge geniigt, der ja
nach Bemerkung 5.52 zumindest im uneigentlichen Sinne stets existiert.

gegeniiber dem Wurzelkriterium den Vorteil, dass sich der Quotient oft einfacher berechnen

Dies liegt daran, dass wir fiir die Induktion im Beweis von Satz 7.22 brauchten, dass fast alle Quo-
tienten in (a) kleiner als a + € und in (b) grofer als a — € sind, so dass a dort der Grenzwert der
Quotientenfolge sein musste. Im Beweis von Satz 7.23 brauchten wir dagegen in (a) zwar auch, dass
fast alle Wurzeln kleiner als a + € sind, aber in (b) reichten unendlich viele Wurzeln grofler als a — €.
Mit dieser Beobachtung sieht man allerdings mit Hilfe von Lemma 5.47 auch, dass wir den Grenz-
wert im Quotientenkriterium von Satz 7.22 in (a) durch den Limes superior und in (b) durch den
Limes inferior ersetzen konnten, um so noch allgemeinere Aussagen zu erhalten. Hat die Quotien-
tenfolge jedoch mehrere Haufungspunkte, von denen einer grof3er als 1 und einer kleiner als 1 ist, so
lasst sich aus der Idee des Quotientenkriteriums aber endgiiltig keine Aussage iiber die Konvergenz
der Reihe mehr herleiten.

Beispiel 7.25.
(a) Betrachten wir fiir ein ¢ € K mit ¢ # 0 die geometrische Reihe } " ¢" selbst, ist also a, = g"
in der Notation von Satz 7.22 und 7.23, so ist offensichtlich = {/|au| = |¢| unabhéngig

von n, und sowohl Quotienten- als auch Wurzelkriterium reproduzieren einfach das Ergebnis
aus Beispiel 7.3 (a) in den Fillen mit |g| # 1.

An+1
An
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(b) Fir die alternierende harmonische Reihe Y a, =Y, (—1)" % aus Beispiel 7.9 macht das
Quotientenkriterium keine Aussage, denn dort gilt
—1)" 1/ (n+1 n 1
: 2—1)/"(/;1 )‘: PEE R
n
fiir n — co. Dies war natiirlich zu erwarten, da diese Reihe ja auch weder absolut konvergent
noch divergent ist.

An+1
an

(c) DieReihe ) (Jﬁ)n ist nach dem Wurzelkriterium (absolut) konvergent, denn es ist

n
n n n 1 1
= = 4)7
<2n+1) 2n+1 241 72
fiir n — oo,

(d) Fiir alle x € K ist die Reihe

= X X3
Y o=l
= n! 2 6
nach dem Quotientenkriterium absolut konvergent, denn es gilt
Xt !
/(n+1) _ 50
x"/n! n+1
fiir n — o. Auf diese Art haben wir also letztlich eine Funktion von K nach K definiert, die
jedem x den Wert der Reihe } " fl—': zuordnet.

Al

Es handelt sich bei diesem letzten Beispiel genau um die Exponentialfunktion, die ihr zumindest im
reellen Fall bereits aus der Schule kennt. Sie ist aber letztlich nur ein spezielles Beispiel fiir eine
sehr grofe Klasse von Funktionen, die sich in der Form x — Y ~_, a, x" fiir gewisse a,, € K schreiben
lassen. Wir wollen derartige Funktionen, die in dieser Vorlesung immer wieder vorkommen werden,
daher jetzt einfithren und etwas genauer untersuchen.

7.C Potenzreihen

Potenzreihen kann man sich in gewissem Sinne als Verallgemeinerung der Polynome aus Abschnitt
3.C vorstellen: statt endlicher Summen ag +ajx+ - - -+ a,x" in einer Variablen x betrachten wir nun
unendliche Reihen der Form

Zanx’l =aytax+ax>+---.
n=0

Wir beginnen mit der formalen Definition solcher Reihen, zusammen mit dem wohl wichtigsten
Beispiel: der Exponentialfunktion.

Definition 7.26 (Potenzreihen und die Exponentialfunktion).

(a) Ist (a,), eine Folge in K und x € K, so heifit die Reihe }',»_a,x" die Potenzreihe in x mit
Koeffizienten (ay),. Ist D C K die Menge aller x, fiir die diese Reihe konvergiert, so kdnnen
wir die Potenzreihe offensichtlich als Funktion von D nach K auffassen.

Der Startindex einer Potenzreihe darf auch grofler als O sein (dann kann man die ersten
Koeffizienten ja gleich O setzen), aber nie kleiner als 0 — eine Potenzreihe in x enthilt nach
Definition keine negativen Potenzen von x.

(b) Die Exponentialfunktion ist die Potenzreihenfunktion

o X
exp: K— K mit exp(x) = "}
n=0"""

(die nach Beispiel 7.25 (d) fiir alle x € K absolut konvergiert).
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Aus dem Wurzelkriterium konnen wir sofort eine allgemeine Aussage ableiten, auf welchen Gebie-
ten derartige Potenzreihen konvergieren: ndmlich auf um 0 zentrierten Intervallen (im Fall K = R)
bzw. auf Kreisen um 0 (im Fall K = C).

Satz und Definition 7.27 (Konvergenzgebiete von Potenzreihen, Formel von Cauchy-Hadamard).
Es sei) ;" oa,x" eine Potenzreihe iiber K und

€R>oU{eo}

1
y=
limsup /| ay|
n—soo
(beachte, dass dieser Wert nach Bemerkung 5.52 in jedem Fall existiert). Dann gilt:
(@) fiir alle x € K mit |x| < r ist die Potenzreihe absolut konvergent;
(b) fiir alle x € K mit |x| > r ist die Potenzreihe divergent.

Im Fall |x| = r kann keine allgemeine Aussage iiber die Konvergenz der Reihe getroffen werden.

Die geometrische Deutung dieser Konvergenzaussagen im reellen bzw. komplexen Fall zeigt das
folgende Bild. Man nennt r den Konvergenzradius und {x € K : |x| < r} das Konvergenzgebiet der
Potenzreihe.

divergent
; absolut ;
divergent Konvergent divergent
R
B —— >
—r 0 r

Beweis. Wir wenden das Wurzelkriterium aus Satz 7.23 auf die Potenzreihe )" (a,x" an: Nach
Aufgabe 5.51 (b) ist fiir alle x € K

limsup /|a, x| = limsup (|x| Vi |a,,|) = |x| - limsup v/ |a,| = Ll
oo n—oo0

)
n—soo n— r

2]
-

also konvergiert die Reihe absolut fiir = < 1 (d. h. |x| < r) und divergiert fiir @ >1(d.h|x|>r. O

Bemerkung 7.28. Beachte, dass die Eigenschaften (a) und (b) aus Satz 7.27 den Konvergenzradius
eindeutig charakterisieren als

r = sup {|x| :x € Kmit Z anx" konvergent}. (*)
n=0

So ist z. B. auch ohne Berechnung des Ausdrucks fiir r in Satz 7.27 klar, dass die Exponentialreihe
aus Definition 7.26 (b) den Konvergenzradius o hat, da sie ja auf ganz K konvergiert. In der Tat wird
die Gleichung (x) in der Literatur auch oft als Definition des Konvergenzradius einer Potenzreihe
benutzt.

Es sollte nicht iiberraschen, dass man nicht nur mit dem Wurzelkriterium, sondern auch mit dem
Quotientenkriterium eine Aussage iiber den Konvergenzradius einer Potenzreihe treffen kann. Al-
lerdings ist diese nicht ganz so universell, da sie wie in Satz 7.22 die Existenz des Grenzwerts der
Quotientenfolge der Koeffizienten voraussetzt.

Satz 7.29 (Alternative Formel fiir den Konvergenzradius einer Potenzreihe). Es sei ), _a,x" eine
Potenzreihe in K mit a, # 0 fiir fast alle n. Existiert dann der Grenzwert
an

r= lim
n—oo

€ RxgU{oo},
an+1

so ist dies der Konvergenzradius der Potenzreihe.
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Beweis. Wegen

n .xn+1 n n
lim |25 im <|x|~ i1 )x|~lim Wit | _
=0 ap X" n—reo a, n—eo | q, r
konvergiert die Potenzreihe nach Satz 7.22 absolut fiir |x| < r und divergiert fiir [x| > r. Nach Be-
merkung 7.28 ist r damit der Konvergenzradius der Reihe. O
Beispiel 7.30.
(a) Die Potenzreihe ), %" hat nach Satz 7.29 den Konvergenzradius
1 1 1
r—tim | =i 2 i (1+7) —1,
n—soo 1/(n + 1) n—o 1 n—soo n

konvergiert also fiir alle x € K mit |x| < 1 absolut und divergiert fiir alle x mit |x| > 1. Fiir
|x| = 1 treten in der Tat verschiedene Fille auf: Im Fall x = 1 erhalten wir die harmonische
Reihe, die nach Beispiel 7.3 (c) divergiert, wihrend wir fiir x = —1 die alternierende harmo-
nische Reihe haben, die nach Beispiel 7.9 konvergiert. Dies zeigt noch einmal, dass unsere
obigen nur von |x| abhiingigen Kriterien auf dem Rand des Konvergenzgebiets wirklich keine
allgemeine Aussage machen konnen.

(b) Fiir den Konvergenzradius der Potenzreihe ) >, nx" gilt nach Satz 7.27 und 7.29

1 . .
r=—— sowie r= lim
limsup /n n—yoo
n—oo

n+1

Vergleich dieser beiden Ergebnisse liefert also limsup /n = 1. Fiir alle € > 0 gilt damit nach
n—oo

Lemma 5.47 (a), dass {/n < 1+ ¢ fiir fast alle n. Natiirlich ist aber auch /n > 1 fiir alle n,
und damit ergibt sich zusammen

lim ¢/n=1

n—oo

(was gar nicht so offensichtlich ist, da der Ausdruck /n fiir wachsendes n ja durch das n
unter der Wurzel groBer, durch das Ziehen der n-ten Wurzel aber kleiner wird).

Aufgabe 7.31. Untersuche die folgenden Reihen auf Konvergenz (im Fall (c) in Abhéngigkeit von
x eR):

s n = 7! > n
(@) E)m7 (b) I;) Pl (© Z +1x’.

2
n=0 "
Eine Berechnung des Grenzwerts im Fall der Konvergenz ist nicht erforderlich.
Aufgabe 7.32. Zeige, dass jede Potenzreihe ), a,x" in K denselben Konvergenzradius wie ihre
formale Ableitung* Y >, na,x"~! hat, aber nicht notwendig fiir die gleichen x konvergiert.
(Wir werden in Folgerung 10.27 sehen, dass dies dann auch genau die ,,gewohnliche Ableitung der
urspriinglichen Reihe ist.)

Aufgabe 7.33. Es sei (ay), eine Folge in K. Man zeige:

(a) Ist a, der Quotient von zwei Polynomen in n, so machen weder das Quotienten- noch das
Waurzelkriterium eine Aussage iiber die Konvergenz der Reihe Y~ a,.

(b) Macht das Wurzelkriterium keine Aussage iiber die Konvergenz der Reihe Y, a,,, so macht
auch das Quotientenkriterium keine Aussage dariiber.

Aufgabe 7.34 (Alternative Darstellung der Exponentialfunktion). Zeige, dass fiir alle x € K
. X\"
exp(x) = ,}5130 (1 + ;)

gilt. (Hinweis: Eine Moglichkeit besteht darin, durch eine geeignete Abschitzung zu zeigen, dass
n k

(Bu)-(+0)
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mit n — oo gegen 0 konvergiert.)

Der Ausdruck lim (1 + %)” in dieser Darstellung der Exponentialfunktion hat iibrigens eine sehr
n—soo

anschauliche Interpretation: Wenn ihr 1 Euro zu einem Zinssatz x ein Jahr lang anlegt und sich die
Bank bereit erklart, nicht einmal am Ende des Jahres den Betrag x an Zinsen auszuzahlen, sondern
stattdessen n-mal einen Zinssatz von % bezahlt, so habt ihr dadurch am Ende des Jahres aufgrund
des Zinseszinses natiirlich mehr Geld als bei einer einmaligen Zinszahlung, nimlich genau (1 + %)”.
Die gerade gezeigte Formel besagt, dass ihr selbst fiir n — oo, also wenn ihr die Bank zu einer unend-
lichen Aufteilung der Zinsen auf diese Art iiberreden konntet, dadurch kein unendliches Vermogen

aufbauen konntet, sondern am Ende des Jahres lediglich den Betrag von exp(x) hittet.

Zum Schluss dieses Kapitels wollen wir nun noch Produkte von Reihen untersuchen. Haben wir
z.B. zwei Potenzreihen };” agx* und Y obi x!, so wiirden wir erwarten, dass wir ihr Produkt
fiir alle x im Durchschnitt der Konvergenzgebiete der beiden Reihen wie folgt durch ,,unendliches
Ausmultiplizieren berechnen und wieder zu einer neuen Potenzreihe zusammenfassen konnen:

(Zakxk) . <Zb1xl> = (ag+arx+arx*+---)-(bo+byx+byx*+---)
=0 i=0
L agbo + (aohy +arbo)x+ (aohy +arby +azbo) x> + -+
= chx”
n=0

mit ¢, = Yy_qakb,—r. Wir wollen nun zeigen, dass dies in der Tat erlaubt ist — und zwar auch fiir
allgemeine Reihen, nicht nur fiir Potenzreihen (also wenn wir uns das x in der obigen Rechnung
wegdenken). Da die einzelnen ausmultiplizierten Summanden in der entstehenden Reihe dabei aber
irgendwie sortiert werden miissen, sollte es in Anbetracht des Umordnungssatzes 7.15 nicht iiberra-
schen, dass wir fiir die Giiltigkeit dieser Rechnung die absolute Konvergenz der Reihen bendtigen.

Satz 7.35 (Cauchy-Produkt von Reihen). Es seien Y ax und Y. by zwei absolut konvergente
Reihen in K. Setzen wir dann

n
Cn = Z axb,_
k=0

fiir alle n € N, so ist auch die Reihe Y, c, absolut konvergent, und es gilt

(£) (£9)-£-

k=0

Beweis. Nach Voraussetzung existieren die Grenzwerte A :=Y';”  |ax| und B := Y77 |b;| in R. Wir
zeigen, dass die Summe Z(,g 1)eN? Gk b, tiber die nach Beispiel 5.59 (a) abzdhlbare Indexmenge N x N
im Sinne von Bemerkung 7.16 existiert und mit dem Wert beider Seiten der Gleichung (x) iiberein-
stimmt. Dazu betrachten wir die beiden im folgenden Bild dargestellten Aufzihlungen von N?: eine
»~quadratische®, und eine ,,schrige* wie im Cantorschen Diagonalverfahren im Beweis von Satz 5.58.

012 3 4—1 01 2 3 4—1
D e A
BNEEEN
NN I I
R
k

(a) (b)



(@)

(b)
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Summieren wir zunichst die Betrdge |a; b;| in der Reihenfolge dieser ,,quadratischen” Auf-
zdhlung, so erhalten wir nach der Summation von hochstens n? Termen, also denen im Qua-
drat links oben mit n Zeilen und Spalten, maximal den Wert

n—1n—1 n—1 n—1
Y Y labl= (Z |ak|> : <Z |bz|> <A-B.
k=0 i=0 k=0 i=0

Die Reihe iiber alle |a; b;| ist (in dieser Aufzidhlungsreihenfolge) also beschrinkt. Damit ist
die Reihe tiber a;b; nach Definition 7.10 absolut konvergent, und nach Bemerkung 7.16
existiert somit die Reihe Y. e ax bi-

Um den Wert dieser Reihe zu bestimmen, konnen wir nach Lemma 5.19 auch nur eine Teil-
folge der Partialsummenfolge betrachten. Nehmen wir hierzu die Partialsummen, bei denen
wir die ersten n> Terme aufaddieren, und lassen dort n gegen oo gehen, so erhalten wir

n—1n-—1 n—1 n—1 o0 )
Z akaZJEO];);)akblzgggo(Zak)-(Zbl> 513 (Zak)~<12‘6b1>,

(k,1)eN2 k=0 =0 k=0
also die linke Seite von ().

In dieser ,,schrigen™ Aufzihlungsreihenfolge konnen wir den Wert von Y. /e ax by analog
als Grenzwert fiir N — oo der Partialsummen bestimmen, bei denen wir die ersten N Diago-
nalen aufsummieren. Da die Summe der gy b; entlang der Diagonale mit k + [ = n gerade c,
ist, erhalten wir so

N—1 oo
ayb; = lim Ccp = C
(k7”ZEN2 kU1 N—)w,;) n n;() n

und damit durch Vergleich mit (a) die behauptete Gleichheit (x). Weil die ersten N Diago-
nalen auflerdem im Quadrat links oben mit N Zeilen und Spalten enthalten sind, haben wir
weiterhin mit der Dreiecksungleichung

N-1 N=1| n N-1 n N-1 N-1
Yl = X | Yati< ¥ Ylal bl < (L lal)- (Lo} <48
n=0 n=0 | k=0 n=0 k=0 k=0 1=0

und damit auch die absolute Konvergenz von ), ¢, gezeigt. 0

Die wohl wichtigste Anwendung des Cauchy-Produkts erhalten wir im Fall der Exponentialfunktion.

Folgerung 7.36 (Funktionalgleichung der Exponentialfunktion). Fiir alle x,y € K gilt

exp(x) -exp(y) = exp(x+y).

Beweis. Nach Beispiel 7.25 (d) und Definition 7.26 (b) konvergiert die Exponentialreihe auf ganz K
absolut. Also gilt fiir alle x,y € K

exn(s)-exn) = (371 ) (L)

0
n xk ynfk
Z —- (nach dem Cauchy-Produkt aus Satz 7.35)
k! (n—k)!

(nach der binomischen Formel aus Satz 4.7)

was zu zeigen war. g
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Bemerkung 7.37 (Produkte von Potenzreihen). Sind ;7 ax ¥ und Yoo b; x' zwei Potenzreihen in
x mit Konvergenzradien r; bzw. rp, so gilt nach Satz 7.35 fiir alle x € K mit |x| < min(rj,r2) (wo
also nach Satz 7.27 beide Potenzreihen absolut konvergieren)

(5) (£29)-5 (B )

d. h. das Produkt zweier Potenzreihen mit Konvergenzradien r; und r; ist wieder eine Potenzreihe,
deren Konvergenzradius mindestens min(ry,r) betrigt und die wie erwartet durch ,,unendliches
Ausmultiplizieren* berechnet werden kann.

Dies ist ein erstes Beispiel fiir ein generelles Prinzip, das wir in den folgenden Kapiteln immer
wieder sehen werden (siehe z. B. Bemerkung 12.38): Potenzreihen haben sehr viele schone Eigen-
schaften — obwohl sie als ,,unendliche Summe von Potenzfunktionen® definiert sind, kann man mit
ihnen nahezu immer wie mit Polynomen rechnen, also als ob sie eine ,,endliche Summe von Potenz-
funktionen‘ wéren.

Aufgabe 7.38. Es sei ¢ € C mit |¢| < 1. Berechne das Cauchy-Produkt (Z;:o q”)2 und damit den
Wert der Reihe Y " (ng".

o

Aufgabe 7.39. Fiir alle n € N sei aq, = % Zeige in diesem Fall, dass die Reihe Z a, zwar
n=0

konvergiert, aber dass ihr Cauchy-Produkt mit sich selbst wie in Satz 7.35
o n
Z Z Agln—k
n=0 k=0
divergiert.



