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7. Reihen

Wir wollen uns nun mit einem speziellen Typ von Folgen beschäftigen, der in der Praxis sehr häufig
vorkommt: nämlich Folgen, die in der Form

(a0, a0 +a1, a0 +a1 +a2, . . .)

gegeben sind, deren Grenzwert wir also anschaulich als die „unendliche Summe“ a0 +a1 +a2 + · · ·
auffassen können. Derartige Folgen bezeichnet man als Reihen. Wir werden solche Reihen im reellen
und komplexen Fall gleichzeitig betrachten und arbeiten daher im Folgenden in der Regel über dem
Körper K wie in Bemerkung 6.19.

7.A Grenzwerte von Reihen

Da Reihen letztlich nichts anderes als spezielle Folgen sind, können wir die Definition und die
ersten Eigenschaften von Folgen und Grenzwerten natürlich unmittelbar auf unsere neue Situation
übertragen. Dies wollen wir nun im ersten Abschnitt dieses Kapitels tun.

Definition 7.1 (Reihen). Es sei (an)n∈N eine Folge in K. Dann heißt die Folge (sN)N∈N mit

sN =
N

∑
n=0

an = a0 +a1 + · · ·+aN

die Folge der Partialsummen von (an)n bzw. die zu (an)n gehörige Reihe. Wir bezeichnen sowohl
diese Reihe als auch ihren Grenzwert lim

N→∞
sN (sofern er existiert) mit

∞

∑
n=0

an bzw. a0 +a1 +a2 + · · · .

Genau wie bei Folgen kann auch eine Reihe bei einem anderen Startindex n0 ∈Z als bei 0 anfangen;
in diesem Fall schreiben wir sie natürlich als

∞

∑
n=n0

an bzw. an0 +an0+1 +an0+2 + · · · .

Bemerkung 7.2.
(a) Da jede Reihe nach Definition eine Folge ist, übertragen sich die Begriffe Konvergenz und

Divergenz, Beschränktheit usw. aus Kapitel 5 direkt auf Reihen.

(b) Die Doppelbelegung des Symbols ∑
∞
n=0 an sowohl für die Reihe (also die Folge ihrer Par-

tialsummen) als auch für ihren Grenzwert ist zwar mathematisch unschön, aber in der Lite-
ratur so fest verankert, dass wir hier nicht davon abweichen wollen. Es sollte dadurch kei-
ne Verwirrung entstehen: Wenn wir von Eigenschaften einer Folge reden, also z. B. sagen,
dass ∑

∞
n=0 an konvergiert oder divergiert, so meinen wir natürlich die Partialsummenfolge –

während z. B. in Gleichungen der Form ∑
∞
n=0 an = a der Grenzwert der Reihe gemeint ist.

Wenn Verwechslungen zu befürchten sind, können wir natürlich auch immer die eindeutige
Schreibweise

(
∑

N
n=0 an

)
N∈N für die Reihe und lim

N→∞
∑

N
n=0 an für ihren Grenzwert benutzen.

Beispiel 7.3.
(a) (Unendliche geometrische Reihe) Wir betrachten die Reihe ∑

∞
n=0 qn für ein q ∈ K. Für

q = 1 ist diese Reihe 1+1+1+ . . . natürlich unbeschränkt und damit divergent. Ansonsten
haben wir in Satz 4.1 gesehen, dass

N

∑
n=0

qn =
1−qN+1

1−q
.
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Der Grenzwert für N → ∞ ergibt sich nun sofort aus Beispiel 6.26: Da lim
N→∞

qN+1 nur für

|q|< 1 existiert und dann gleich 0 ist, erhalten wir also
∞

∑
n=0

qn = lim
N→∞

N

∑
n=0

qn =
1

1−q
für |q|< 1, (∗)

während die Reihe in allen anderen Fällen divergiert.

Ein interessanter konkreter Fall dieser Reihe ist die Frage, ob die Dezimalzahl 0,9999 . . .
gleich 1 oder „etwas kleiner“ als 1 ist. Dies können wir nun beantworten, denn die einzig
mögliche mathematisch korrekte Definition dieser Zahl ist natürlich die geometrische Reihe

0,9999 . . .=
∞

∑
n=1

9 ·10−n =
9

10
·

∞

∑
n=0

( 1
10

)n (∗)
=

9
10
· 1

1− 1
10

= 1.

Die Zahl 0,9999 . . . ist daher wirklich gleich 1 – in diesem Fall ist die Dezimaldarstellung
einer reellen Zahl also nicht eindeutig.

(b) (Teleskopreihen) Wir wollen den Grenzwert der Reihe ∑
∞
n=1

1
n(n+1) bestimmen. Normaler-

weise lassen sich derartige Reihen nicht ohne weiteres berechnen, aber in diesem ganz spe-
ziellen Fall können wir einen Trick anwenden: Wegen 1

n(n+1) =
1
n −

1
n+1 können wir die

Partialsummen der Reihe schreiben als
N

∑
n=1

1
n(n+1)

=
N

∑
n=1

(
1
n
− 1

n+1

)
=

(
1
1
− 1

2

)
+

(
1
2
− 1

3

)
+

(
1
3
− 1

4

)
+ · · ·+

(
1
N
− 1

N +1

)
=

1
1
− 1

N +1
.

Derartige Reihen, bei denen sich in den Partialsummen durch geeignete Differenzen alle Ter-
me bis auf einen Start- und Endterm wegheben, bezeichnet man als Teleskopreihen (weil die
Summe sozusagen wie ein Teleskop „zusammengeschoben“ werden kann). Der Grenzwert
der Reihe lässt sich dann natürlich einfach berechnen; in diesem Fall ist er

∞

∑
n=1

1
n(n+1)

= lim
N→∞

N

∑
n=1

1
n(n+1)

= lim
N→∞

(
1− 1

N +1

)
= 1.

(c) (Harmonische Reihe) Die Reihe ∑
∞
n=1

1
n divergiert: Für die Partialsummen mit Index N = 2k

gilt

2k

∑
n=1

1
n
= 1 + 1

2 +
( 1

3 +
1
4

)
+
( 1

5 +
1
6 +

1
7 +

1
8

)
+ · · ·+

(
1

2k−1+1 + · · ·+
1
2k

)
≥ 1 + 1

2 +
( 1

4 +
1
4

)
+
( 1

8 +
1
8 +

1
8 +

1
8

)
+ · · ·+

(
1
2k + · · ·+ 1

2k

)
= 1 + 1

2 + 1
2 + 1

2 + · · ·+ 1
2

= 1 + k
2 .

Da 1+ k
2 mit k unbeschränkt wächst, ist die gegebene Reihe also unbeschränkt und damit

nach Lemma 5.8 divergent.

Die folgenden einfachen Rechenregeln für Reihen – die Verträglichkeit mit Summen, Differenzen,
Multiplikation mit Konstanten sowie im Fall des Körpers R mit Ungleichungen – ergeben sich sofort
aus denen für Folgen in Kapitel 5.

Lemma 7.4 (Rechenregeln für Reihen). Es seien ∑
∞
n=0 an und ∑

∞
n=0 bn konvergente Reihen in K.

Dann gilt:

(a)
∞

∑
n=0

(an +bn) =
∞

∑
n=0

an +
∞

∑
n=0

bn und
∞

∑
n=0

(an−bn) =
∞

∑
n=0

an−
∞

∑
n=0

bn.
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(b) Für c ∈K ist
∞

∑
n=0

can = c ·
∞

∑
n=0

an.

(c) Ist K= R und an ≤ bn für alle n, so ist
∞

∑
n=0

an ≤
∞

∑
n=0

bn.

Beweis. Alle behaupteten Aussagen gelten trivialerweise für die Partialsummen der Reihen (also
wenn die Summen bis zu einem festen N ∈N laufen). Übergang zum Grenzwert liefert dann mit den
Sätzen 5.13 und 5.24 die Behauptungen. □

Eine analoge direkte Verträglichkeit mit der Multiplikation ist natürlich nicht zu erwarten, weil ja
schon für die Partialsummen

(
∑

N
n=0 an

)
·
(

∑
N
n=0 bn

)
nicht dasselbe ist wie ∑

N
n=0 anbn. Wir werden

aber später in Satz 7.35 noch eine Formel für das Produkt von Reihen finden.

Bevor wir nun mit der Herleitung allgemeiner Konvergenzkriterien für Reihen beginnen, wollen wir
noch zwei sehr einfache Hilfsaussagen festhalten, die aber dennoch oft nützlich sind. Die erste von
ihnen ist so einfach, dass sie üblicherweise als Trivialkriterium bezeichnet wird: Eine Reihe kann
höchstens dann konvergieren, wenn die aufsummierten Zahlen zumindest gegen 0 konvergieren.

Lemma 7.5 (Trivialkriterium). Ist die Reihe ∑
∞
n=0 an konvergent, so ist (an)n eine Nullfolge.

Beweis. Existiert der Grenzwert ∑
∞
n=0 an, so folgt aus den Grenzwertsätzen

aN =
N

∑
n=0

an−
N−1

∑
n=0

an →
∞

∑
n=0

an−
∞

∑
n=0

an = 0 für N→ ∞. □

Beispiel 7.6.

(a) Die Reihe ∑
∞
n=0

2n2

n2+1 ist divergent, denn nach Beispiel 5.14 ist lim
n→∞

2n2

n2+1 = 2 ̸= 0.

(b) Das Trivialkriterium ist nicht umkehrbar: So ist z. B. zwar
( 1

n

)
n eine Nullfolge, aber die

harmonische Reihe ∑
∞
n=1

1
n nach Beispiel 7.3 (c) trotzdem divergent. Man kann mit diesem

Kriterium also immer nur die Divergenz einer Reihe nachweisen, aber nie die Konvergenz.

Dieses Beispiel zeigt auch noch etwas anderes: Bezeichnen wir mit an = ∑
n
k=1

1
k die Par-

tialsummen der harmonischen Reihe, so ist die Folge (an)n zwar divergent, aber die Folge
(an+1−an)n =

( 1
n+1

)
n konvergiert trotzdem gegen 0, d. h. es gilt

∀ε ∈ R>0 ∃n0 ∈ N ∀n≥ n0 : |an+1−an|< ε.

Um die Äquivalenz zwischen konvergenten Folgen und Cauchyfolgen zu erhalten, genügt es
in der Definition 6.22 einer Cauchyfolge also nicht, zwei benachbarte Folgenglieder an und
an+1 miteinander zu vergleichen, sondern wir müssen zwei beliebige Folgenglieder am und
an (mit m,n≥ n0) nehmen!

Lemma 7.7. Eine Reihe ∑
∞
n=0 an mit an ∈ R≥0 für alle n ∈ N ist genau dann konvergent, wenn sie

beschränkt ist.

Beweis. Da alle aufsummierten Zahlen reell und nicht-negativ sind, ist die Folge ihrer Partialsum-
men monoton wachsend. Für eine reelle, monoton wachsende Folge ist die Konvergenz nach Lemma
5.8 und dem Monotoniekriterium aus Satz 5.28 aber äquivalent zur Beschränktheit. □

7.B Konvergenzkriterien für Reihen

Wie im Fall von Folgen im letzten Kapitel wollen wir nun einige Kriterien herleiten, mit denen
man die Konvergenz einer Reihe beweisen kann, ohne ihren Grenzwert zu kennen. Dabei bleiben
natürlich alle Ergebnisse aus Abschnitt 5.B unverändert anwendbar, da Reihen ja letztlich auch nur
Folgen sind. Es gibt aber einige zusätzliche Kriterien, die speziell auf den Fall von Reihen zuge-
schnitten und meistens einfacher zu überprüfen sind. Wir beginnen dabei mit einem Kriterium für
reelle Reihen, in denen abwechselnd positive und negative Glieder aufsummiert werden.
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Satz 7.8 (Leibniz-Kriterium). Ist (an)n eine monoton fallende Nullfolge in R≥0, so ist die Reihe
∞

∑
n=0

(−1)n an = a0−a1 +a2−a3±·· ·

konvergent, und ihre Partialsummen sind abwechselnd obere und untere Schranken für ihren Grenz-
wert. (Derartige reelle Reihen, bei denen sich das Vorzeichen in der Summe immer abwechselt, nennt
man alternierend.)

14

Beweis. Es sei sN = ∑
N
n=0(−1)n an, also (sN)N die Folge der Partialsummen der betrachteten Reihe.

Da (an)n monoton fallend und die Differenz zweier aufeinander folgender Glieder von (an)n damit
nicht negativ ist, ist die Folge (s2N)N der geraden Partialsummen monoton fallend: Es gilt

s2N+2 = s2N −a2N+1 +a2N+2︸ ︷︷ ︸
≤0

≤ s2N .

Analog ist die Folge (s2N+1)N der ungeraden Partialsummen monoton wachsend, wie auch das Bild
unten rechts zeigt. Damit haben wir ineinander liegende Intervalle

[s1,s2]⊃ [s3,s4]⊃ [s5,s6]⊃ ·· · ,

die eine Intervallschachtelung definieren, da die Länge

s2N− s2N−1 = a2N

dieser Intervalle mit N→∞ gegen 0 konvergiert. Nach Satz 5.39
konvergieren also die geraden und ungeraden Partialsummen
monoton fallend bzw. wachsend gegen den gleichen Grenzwert
s. Insbesondere sind die geraden und ungeraden Partialsummen
also obere bzw. untere Schranken für s.

s

s0

N

sN

s2

s1

s3

a0

−a1

+a2

−a3

Außerdem liegen damit in jeder ε-Umgebung von s fast alle geraden und fast alle ungeraden Partial-
summen, und somit konvergiert auch die gesamte Folge der Partialsummen gegen s. □

Beispiel 7.9 (Alternierende harmonische Reihe). Die Reihe
∞

∑
n=1

(−1)n 1
n
=−1

1
+

1
2
− 1

3
+

1
4
∓·· ·

ist nach dem Leibniz-Kriterium konvergent, denn 1
n ist eine monoton fallende Nullfolge. Ihren

Grenzwert können wir momentan noch nicht berechnen (in der Tat ist er gleich − log2, wie wir
in Beispiel 11.15 (a) sehen werden), aber nach Satz 7.8 liegt er sicher zwischen den ersten beiden
Partialsummen − 1

1 =−1 und − 1
1 +

1
2 =− 1

2 .

Übrigens ist diese Reihe (ganz im Gegensatz z. B. zur Folge aus Beispiel 5.37) eine, die „extrem
langsam“ konvergiert: Um hier den Grenzwert auf k Nachkommastellen genau zu berechnen, müssen
wir natürlich mindestens die ersten 10k Summanden mitnehmen, denn der 10k-te Summand ist ja
10−k und ändert somit in jedem Fall noch die k-te Nachkommastelle.

Wir können an dieser alternierenden harmonischen Reihe aber noch eine weitere überraschende
Eigenschaft sehen. Dazu sortieren wir die aufzusummierenden Zahlen mal etwas um und schreiben
unsere Reihe als(

−1
1
+

1
2

)
+

1
4
+

(
−1

3
+

1
6

)
+

1
8
+

(
−1

5
+

1
10

)
+

1
12

+

(
−1

7
+

1
14

)
+

1
16

+ · · · .

Das Prinzip hierbei ist, dass die Terme (−1)n 1
n . . .

• für ungerade n der Reihe nach als erste Summanden in den Klammern stehen,

• für gerade, aber nicht durch 4 teilbare n der Reihe nach als zweite Summanden in den Klam-
mern stehen,

• für durch 4 teilbare n der Reihe nach außerhalb der Klammern stehen.



80 Andreas Gathmann

Es ist klar, dass wir hier wirklich nur die Summanden umsortiert, also keinen vergessen oder doppelt
hingeschrieben haben. Rechnen wir jetzt aber mal die Klammern aus, so erhalten wir

−1
2
+

1
4
− 1

6
+

1
8
− 1

10
+

1
12
− 1

14
+

1
16
∓·· ·

und damit genau die Hälfte der ursprünglichen Reihe! Da die Reihe nicht den Wert 0 hat (wie wir
oben schon gesehen haben, liegt ihr Wert ja zwischen −1 und − 1

2 ), haben wir ihren Wert durch das
Umsortieren also tatsächlich geändert und müssen damit wohl oder übel feststellen:

Das Umordnen der Summanden in einer konvergenten Reihe kann ihren Grenzwert ändern.

Das ist natürlich extrem lästig, weil uns das sozusagen die Kommutativität der Addition im Fall
von unendlichen Summen kaputt macht – was völlig der Intuition widerspricht und natürlich auch
beim Rechnen mit solchen Reihen große Probleme bereitet. Glücklicherweise gibt es einen relativ
eleganten Ausweg aus dieser Situation: Es gibt eine Eigenschaft von Reihen, die etwas stärker als
die normale Konvergenz ist, in vielen Fällen aber dennoch erfüllt ist und die Umsortierbarkeit ohne
Änderung des Grenzwerts garantiert. Diese wollen wir jetzt einführen.

Definition 7.10 (Absolute Konvergenz). Eine Reihe ∑
∞
n=0 an in K heißt absolut konvergent, wenn

die Reihe ∑
∞
n=0 |an| ihrer Beträge konvergiert, also nach Lemma 7.7 wenn diese Reihe ∑

∞
n=0 |an|

beschränkt ist.
(Der Name kommt einfach daher, dass man den Betrag einer Zahl oft auch als Absolutbetrag be-
zeichnet.)

Für Reihen, in denen nur nicht-negative reelle Zahlen aufsummiert werden, stimmen die Begriffe
„konvergent“ und „absolut konvergent“ offensichtlich überein. Wir wollen nun sehen, dass der Be-
griff der absoluten Konvergenz für allgemeine Reihen wirklich „stärker“ als die gewöhnliche Kon-
vergenz ist, also dass aus der absoluten Konvergenz einer Reihe auch die Konvergenz folgt. Dazu
müssen wir zunächst das Cauchy-Kriterium aus Satz 6.25 auf Reihen übertragen. Auch hier ist die-
ses Kriterium wieder besonders deswegen wichtig, weil es zum einen zur Konvergenz äquivalent ist
(man mit ihm also Konvergenz genauso wie Divergenz nachweisen kann) und es außerdem in R und
C gleichermaßen funktioniert.

Folgerung 7.11 (Cauchy-Kriterium für Reihen). Eine Reihe ∑
∞
n=0 an in K ist genau dann konver-

gent, wenn

∀ε > 0 ∃n0 ∈ N ∀m≥ n≥ n0 :

∣∣∣∣∣ m

∑
k=n+1

ak

∣∣∣∣∣< ε.

Beweis. Nach Definition ist die Reihe ∑
∞
n=0 an genau dann konvergent, wenn die Folge (sN)N der

Partialsummen mit sN =∑
N
n=0 an konvergiert. Wenden wir das Cauchy-Kriterium für Folgen aus Satz

6.25 auf (sN)N an, sehen wir, dass dies genau dann der Fall ist, wenn

∀ε > 0 ∃n0 ∈ N ∀m,n≥ n0 : |sn− sm|< ε.

Natürlich können wir hier aus Symmetriegründen m ≥ n annehmen, und aus sm− sn = ∑
m
k=n+1 ak

folgt dann sofort die Behauptung. □

Lemma 7.12. Jede absolut konvergente Reihe in K ist konvergent.

Beweis. Es sei ∑
∞
n=0 an eine absolut konvergente Reihe, d. h. die Reihe ∑

∞
n=0 |an| sei konvergent.

Nach dem Cauchy-Kriterium aus Folgerung 7.11 gibt es also zu jedem ε > 0 ein n0 ∈ N mit∣∣∣∣∣ m

∑
k=n+1

|ak|

∣∣∣∣∣= m

∑
k=n+1

|ak|< ε

für alle m≥ n≥ n0. Dann ist nach der Dreiecksungleichung aber erst recht∣∣∣∣∣ m

∑
k=n+1

ak

∣∣∣∣∣≤ m

∑
k=n+1

|ak|< ε,
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und damit ist wiederum nach dem Cauchy-Kriterium auch die Reihe ∑
∞
n=0 an konvergent. □

Beispiel 7.13. Die alternierende harmonische Reihe ∑
∞
n=1(−1)n 1

n ist nach Beispiel 7.9 konvergent.
Sie ist aber nicht absolut konvergent, da die harmonische Reihe ∑

∞
n=1

1
n nach Beispiel 7.3 (c) diver-

giert. Die Umkehrung von Lemma 7.12 gilt also nicht.

Als Nächstes hatten wir behauptet, dass die absolute Konvergenz einer Reihe sicher stellt, dass man
die Summanden ohne Änderung des Grenzwerts umordnen kann. Dies wollen wir jetzt zeigen.

Definition 7.14 (Umordnungen einer Reihe). Es sei ∑
∞
n=0 an eine Reihe in K und σ : N→N eine bi-

jektive Abbildung. Dann heißt die Reihe ∑
∞
n=0 aσ(n) (die offensichtlich aus den gleichen Summanden

besteht, nur evtl. in anderer Reihenfolge) eine Umordnung von ∑
∞
n=0 an.

Satz 7.15 (Umordnungssatz). Jede Umordnung einer absolut konvergenten Reihe ist ebenfalls ab-
solut konvergent und konvergiert gegen denselben Grenzwert.

Beweis. Es seien ∑
∞
n=0 an eine absolut konvergente Reihe und σ : N→ N eine bijektive Abbildung.

Ferner sei ε > 0 beliebig. Da ∑
∞
n=0 |an| nach Voraussetzung konvergiert, gibt es nach dem Cauchy-

Kriterium aus Folgerung 7.11 ein n0 ∈ N mit ∑
m
k=n+1 |ak| < ε

2 für alle m ≥ n ≥ n0. Insbesondere
haben wir für n = n0 und m→ ∞ also

∞

∑
k=n0+1

|ak| ≤
ε

2
< ε. (1)

Da σ surjektiv ist, können wir ein n′0 ≥ n0 wählen, so dass alle Summanden a0, . . . ,an0 bis zum
n′0-ten Term der Umordnung aufgetreten sind, also so dass

{0,1, . . . ,n0} ⊂ {σ(0),σ(1), . . . ,σ(n′0)} (2)

gilt. Wir betrachten nun für beliebiges n≥ n′0 die Summe
n

∑
k=0

(aσ(k)−ak) = (aσ(0)−a0)+(aσ(1)−a1)+ · · ·+(aσ(n)−an).

Wegen (2) und n≥ n′0 ≥ n0 treten in dieser Summe alle Glieder a0, . . . ,an0 sowohl einmal mit positi-
vem als auch einmal mit negativem Vorzeichen auf, heben sich also heraus. Die übrigen an mit n> n0
können sich ebenfalls herausheben, oder mit einem positiven oder negativen Vorzeichen auftreten.
Wir können dies symbolisch schreiben als

n

∑
k=0

(aσ(k)−ak) = ∑
k
±ak,

wobei die Summe hier über gewisse (endlich viele) k > n0 läuft und für jedes solche k das Vorzeichen
von ak positiv oder negativ sein kann. Damit können wir diesen Ausdruck mit der Dreiecksunglei-
chung betragsmäßig abschätzen durch∣∣∣∣∣ n

∑
k=0

(aσ(k)−ak)

∣∣∣∣∣=
∣∣∣∣∣∑k
±ak

∣∣∣∣∣≤∑
k
|ak| ≤

∞

∑
k=n0+1

|ak|
(1)
< ε.

Daraus ergibt sich ∑
∞
n=0(aσ(n)−an) = 0, und damit nach den üblichen Rechenregeln aus Lemma 7.4

∞

∑
n=0

aσ(n) =
∞

∑
n=0

an +
∞

∑
n=0

(aσ(n)−an) =
∞

∑
n=0

an.

Die Umordnung ∑
∞
n=0 aσ(n) konvergiert also gegen den gleichen Grenzwert wie die ursprüngliche

Reihe. Wenden wir dieses Ergebnis nun auch noch auf die Reihe ∑
∞
n=0 |an| an, so erhalten wir ge-

nauso ∑
∞
n=0 |aσ(n)|= ∑

∞
n=0 |an|, woraus die absolute Konvergenz der Umordnung folgt. □

Bemerkung 7.16 (Summen mit abzählbar unendlicher Indexmenge). Da es bei „unendlichen Sum-
men“ im Fall der absoluten Konvergenz also nicht auf die Reihenfolge der Summanden ankommt,
können wir damit auch derartige Summen definieren, bei denen die Summanden zunächst einmal



82 Andreas Gathmann

überhaupt keine vorgegebene Reihenfolge haben, sondern durch eine beliebige abzählbar unend-
liche Menge I indiziert werden: Ist ai ∈ K für alle i ∈ I, so wählen wir eine bijektive Abbildung
σ : N→ I. Ist dann die Reihe ∑

∞
n=0 aσ(n) absolut konvergent, so schreiben wir den Wert dieser Reihe

als

∑
i∈I

ai :=
∞

∑
n=0

aσ(n) ∈K.

Dies hängt dann nach dem Umordnungssatz 7.15 nicht von der Wahl von σ ab, da sich die durch
eine andere Bijektion entstehende Reihe nur durch eine Umordnung unterscheidet und somit nichts
an der absoluten Konvergenz bzw. dem Grenzwert der Reihe ändert.

Ist die Reihe ∑
∞
n=0 aσ(n) dagegen nicht absolut konvergent, so können wir ∑i∈I ai nicht sinnvoll defi-

nieren. Auch für eine überabzählbare Indexmenge I ist eine solche Summenbildung nicht möglich,
wie die folgende Aufgabe zeigt – es käme in nicht-trivialen Fällen nämlich immer ∞ dabei heraus.

Aufgabe 7.17. Es seien ai ∈ R>0 für alle i in einer überabzählbaren Indexmenge I. Zeige, dass die
Summe aller dieser ai dann unbeschränkt ist, also dass es zu jedem s ∈R>0 eine endliche Teilmenge
J ⊂ I gibt mit ∑i∈J ai > s.

Aufgabe 7.18. Zeige die folgende Verallgemeinerung des Leibniz-Kriteriums ins Komplexe: Ist
(an)n eine reelle, monoton fallende Nullfolge, so konvergiert die Reihe ∑

∞
n=0 an xn für alle x ∈K mit

|x|= 1 und x ̸= 1.

(Hinweis: Untersuche die Reihe
∞

∑
n=0

an (x−1)xn.)

Aufgrund der schönen Eigenschaften absolut konvergenter Reihen werden wir uns im Folgenden
oftmals eher für die absolute als für die „gewöhnliche“ Konvergenz von Reihen interessieren. Wir
wollen nun ein paar Kriterien zusammentragen, mit denen man die absolute Konvergenz von Reihen
in vielen Fällen einfach nachprüfen kann. Das erste von ihnen ist eigentlich sehr offensichtlich:

Satz 7.19 (Majoranten-/Minorantenkriterium). Es seien ∑
∞
n=0 an und ∑

∞
n=0 bn zwei Reihen in K

mit |an| ≤ |bn| für fast alle n.

(a) Ist ∑
∞
n=0 bn absolut konvergent, so auch ∑

∞
n=0 an.

(Man nennt ∑
∞
n=0 bn in diesem Fall eine konvergente Majorante von ∑

∞
n=0 an.)

(b) Ist ∑
∞
n=0 an divergent, so auch ∑

∞
n=0 |bn|.

(Man nennt ∑
∞
n=0 an in diesem Fall eine divergente Minorante von ∑

∞
n=0 |bn|.)

Beweis.

(a) Ist ∑
∞
n=0 bn absolut konvergent, also ∑

∞
n=0 |bn| beschränkt, so ist wegen |an| ≤ |bn| für fast

alle n auch ∑
∞
n=0 |an| beschränkt, und damit ∑

∞
n=0 an nach Lemma 7.7 absolut konvergent.

(b) Ist die Reihe ∑
∞
n=0 an nicht konvergent, so ist sie nach Lemma 7.12 insbesondere auch nicht

absolut konvergent, und daher kann nach (a) auch ∑
∞
n=0 bn nicht absolut konvergent sein,

d. h. die Reihe ∑
∞
n=0 |bn| divergiert. □

Beispiel 7.20.
(a) Die Reihe ∑

∞
n=1

1
n2 ist konvergent: Wegen 1

(n+1)2 ≤ 1
n(n+1) für n ≥ 1 ist ∑

∞
n=1

1
n(n+1) nach

Beispiel 7.3 (b) eine (absolut) konvergente Majorante von ∑
∞
n=1

1
(n+1)2 . Damit konvergiert

die Reihe
1
12 +

∞

∑
n=1

1
(n+1)2 =

1
12 +

∞

∑
n=2

1
n2 =

∞

∑
n=1

1
n2 .

Beachte, dass man auf diese Art mit Hilfe des Majorantenkriteriums zwar die Konvergenz
der Reihe ∑

∞
n=1

1
n2 beweisen, aber nicht ihren Grenzwert bestimmen kann (in der Tat kann

man zeigen, dass der Wert dieser Reihe gleich π2

6 ist).
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(b) Für k ≥ 2 ist die Reihe ∑
∞
n=1

1
nk konvergent, denn wegen 1

nk ≤ 1
n2 für alle n ist ∑

∞
n=1

1
n2 nach

(a) eine konvergente Majorante.

(c) Die Reihe ∑
∞
n=1

1√
n dagegen ist divergent, denn wegen 1√

n ≥
1
n ist die harmonische Reihe

∑
∞
n=1

1
n aus Beispiel 7.3 (c) eine divergente Minorante.

Aufgabe 7.21. Es sei (an)n eine Folge in K mit an ̸=−1 für alle n ∈ N. Man zeige:
∞

∑
n=0

an ist absolut konvergent ⇔
∞

∑
n=0

an

1+an
ist absolut konvergent.

Wenn man mit dem Majorantenkriterium die (absolute) Konvergenz einer Reihe nachweisen möchte,
stellt sich natürlich die Frage, wo man eine konvergente Majorante herbekommt. Sehr oft kann man
hierfür einfach eine geometrische Reihe ∑

∞
n=0 qn für ein q ∈ R>0 mit q < 1 wie in Beispiel 7.3 (a)

verwenden. Aus diesem Ansatz ergeben sich in der Tat die folgenden beiden allgemeinen Kriterien,
die sehr oft anwendbar sind:

Satz 7.22 (Quotientenkriterium). Es sei
∞

∑
n=0

an eine Reihe in K mit an ̸= 0 für fast alle n. Dann

gilt:

(a) Ist lim
n→∞

∣∣∣ an+1
an

∣∣∣< 1, so ist die Reihe
∞

∑
n=0

an absolut konvergent.

(b) Ist lim
n→∞

∣∣∣ an+1
an

∣∣∣> 1, so ist die Reihe
∞

∑
n=0

an divergent.

Der Fall lim
n→∞

∣∣∣ an+1
an

∣∣∣ = ∞ ist dabei in (b) zugelassen. Ist die Folge
(∣∣∣ an+1

an

∣∣∣)
n

jedoch unbestimmt
divergent oder konvergiert sie gegen 1, so macht das Quotientenkriterium keine Aussage.

Beweis. Es sei a := lim
n→∞

∣∣∣ an+1
an

∣∣∣ ∈ R≥0∪{∞}.

(a) Ist a < 1, so können wir ein ε > 0 wählen, so dass auch noch q := a+ ε < 1 gilt. Wegen
lim
n→∞

∣∣∣ an+1
an

∣∣∣= a gibt es dann ein n0 ∈ N, so dass∣∣∣∣an+1

an

∣∣∣∣< a+ ε = q für alle n≥ n0,

und damit |an+1|< q |an|. Daraus ergibt sich für alle n≥ n0

|an|< q |an−1|< q2 |an−2|< · · ·< qn−n0 |an0 |.
Also ist die Reihe ∑

∞
n=0 qn−n0 |an0 | eine Majorante der gegebenen Reihe ∑

∞
n=0 an. Wegen

q < 1 konvergiert sie nach Beispiel 7.3 (a) absolut, denn es ist
∞

∑
n=0

qn−n0 |an0 |= q−n0 |an0 |
∞

∑
n=0

qn = q−n0 |an0 | ·
1

1−q
.

Die zu beweisende Aussage folgt damit aus dem Majorantenkriterium von Satz 7.19. 15

(b) Ist a∈R mit a > 1, so können wir ein ε > 0 finden mit a−ε > 1. In diesem Fall gibt es nach
der Grenzwertbedingung ein n0 ∈ N, so dass∣∣∣∣an+1

an

∣∣∣∣> a− ε > 1 für alle n≥ n0.

Beachte, dass dies auch im Fall a = ∞ gilt, denn auch dann sind ja insbesondere fast alle∣∣∣ an+1
an

∣∣∣ größer als 1.

Also gilt |an+1|> |an| für alle n≥ n0. Damit ist (|an|)n ab n0 aber eine monoton wachsende
Folge positiver Zahlen, und kann somit keine Nullfolge sein. Die gegebene Reihe divergiert
also nach dem Trivialkriterium aus Lemma 7.5. □
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Das zweite, recht ähnliche Kriterium, das auf dem Vergleich mit der geometrischen Reihe beruht,
benutzt die höheren Wurzeln aus Aufgabe 5.37.

Satz 7.23 (Wurzelkriterium). Für jede Reihe
∞

∑
n=0

an in K gilt:

(a) Ist limsup
n→∞

n
√
|an|< 1, so ist die Reihe

∞

∑
n=0

an absolut konvergent.

(b) Ist limsup
n→∞

n
√
|an|> 1, so ist die Reihe

∞

∑
n=0

an divergent.

Der Fall limsup
n→∞

n
√
|an|=∞ ist dabei in (b) wieder zugelassen. Ist jedoch limsup

n→∞

n
√
|an|= 1, so macht

das Wurzelkriterium keine Aussage.

Beweis. Es sei a := limsup
n→∞

n
√
|an| ∈ R≥0∪{∞}.

(a) Für a < 1 sei wieder ε > 0 mit q := a+ ε < 1. Nach Lemma 5.47 (a) gilt dann
n
√
|an|< a+ ε = q, also |an|< qn

für fast alle n. Also ist ∑
∞
n=0 qn eine Majorante der gegebenen Reihe. Da diese wegen q < 1

nach Beispiel 7.3 (a) (absolut) konvergiert, konvergiert auch ∑
∞
n=0 an nach dem Majoranten-

kriterium aus Satz 7.19 absolut.

(b) Ist a ∈ R mit a > 1, so wählen wir ein ε > 0 mit a− ε > 1. Diesmal folgt dann aus Lemma
5.47 (b), dass

n
√
|an|> a− ε > 1

für unendlich viele n. Beachte, dass dies auch im Fall a = ∞ gilt, weil die Folge ( n
√
|an|)n

dann eine Teilfolge mit uneigentlichem Grenzwert ∞ hat.

Damit ist aber auch |an| > 1 für unendlich viele n. Also ist (an)n keine Nullfolge, und die
gegebene Reihe divergiert nach dem Trivialkriterium aus Lemma 7.5. □

Bemerkung 7.24 (Vergleich von Quotienten- und Wurzelkriterium). Das Quotientenkriterium hat
gegenüber dem Wurzelkriterium den Vorteil, dass sich der Quotient

∣∣∣ an+1
an

∣∣∣ oft einfacher berechnen

lässt als die Wurzel n
√
|an|. Allerdings benötigen wir im Quotientenkriterium einen Grenzwert der

Quotientenfolge, während im Wurzelkriterium der Limes superior der Wurzelfolge genügt, der ja
nach Bemerkung 5.52 zumindest im uneigentlichen Sinne stets existiert.

Dies liegt daran, dass wir für die Induktion im Beweis von Satz 7.22 brauchten, dass fast alle Quo-
tienten in (a) kleiner als a+ ε und in (b) größer als a− ε sind, so dass a dort der Grenzwert der
Quotientenfolge sein musste. Im Beweis von Satz 7.23 brauchten wir dagegen in (a) zwar auch, dass
fast alle Wurzeln kleiner als a+ε sind, aber in (b) reichten unendlich viele Wurzeln größer als a−ε .

Mit dieser Beobachtung sieht man allerdings mit Hilfe von Lemma 5.47 auch, dass wir den Grenz-
wert im Quotientenkriterium von Satz 7.22 in (a) durch den Limes superior und in (b) durch den
Limes inferior ersetzen könnten, um so noch allgemeinere Aussagen zu erhalten. Hat die Quotien-
tenfolge jedoch mehrere Häufungspunkte, von denen einer größer als 1 und einer kleiner als 1 ist, so
lässt sich aus der Idee des Quotientenkriteriums aber endgültig keine Aussage über die Konvergenz
der Reihe mehr herleiten.

Beispiel 7.25.
(a) Betrachten wir für ein q∈K mit q ̸= 0 die geometrische Reihe ∑

∞
n=0 qn selbst, ist also an = qn

in der Notation von Satz 7.22 und 7.23, so ist offensichtlich
∣∣∣ an+1

an

∣∣∣= n
√
|an|= |q| unabhängig

von n, und sowohl Quotienten- als auch Wurzelkriterium reproduzieren einfach das Ergebnis
aus Beispiel 7.3 (a) in den Fällen mit |q| ̸= 1.
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(b) Für die alternierende harmonische Reihe ∑
∞
n=1 an = ∑

∞
n=1(−1)n 1

n aus Beispiel 7.9 macht das
Quotientenkriterium keine Aussage, denn dort gilt∣∣∣∣an+1

an

∣∣∣∣= ∣∣∣∣ (−1)n+1/(n+1)
(−1)n/n

∣∣∣∣= n
n+1

=
1

1+ 1
n

→ 1

für n→ ∞. Dies war natürlich zu erwarten, da diese Reihe ja auch weder absolut konvergent
noch divergent ist.

(c) Die Reihe ∑
∞
n=0
( n

2n+1

)n ist nach dem Wurzelkriterium (absolut) konvergent, denn es ist

n
√(

n
2n+1

)n

=
n

2n+1
=

1
2+ 1

n

→ 1
2

für n→ ∞.

(d) Für alle x ∈K ist die Reihe
∞

∑
n=0

xn

n!
= 1+ x+

x2

2
+

x3

6
+ · · ·

nach dem Quotientenkriterium absolut konvergent, denn es gilt∣∣∣∣xn+1/(n+1)!
xn/n!

∣∣∣∣= |x|
n+1

→ 0

für n→ ∞. Auf diese Art haben wir also letztlich eine Funktion von K nach K definiert, die
jedem x den Wert der Reihe ∑

∞
n=0

xn

n! zuordnet.

Es handelt sich bei diesem letzten Beispiel genau um die Exponentialfunktion, die ihr zumindest im
reellen Fall bereits aus der Schule kennt. Sie ist aber letztlich nur ein spezielles Beispiel für eine
sehr große Klasse von Funktionen, die sich in der Form x 7→∑

∞
n=0 an xn für gewisse an ∈K schreiben

lassen. Wir wollen derartige Funktionen, die in dieser Vorlesung immer wieder vorkommen werden,
daher jetzt einführen und etwas genauer untersuchen.

7.C Potenzreihen

Potenzreihen kann man sich in gewissem Sinne als Verallgemeinerung der Polynome aus Abschnitt
3.C vorstellen: statt endlicher Summen a0 +a1x+ · · ·+anxn in einer Variablen x betrachten wir nun
unendliche Reihen der Form

∞

∑
n=0

an xn = a0 +a1x+a2x2 + · · · .

Wir beginnen mit der formalen Definition solcher Reihen, zusammen mit dem wohl wichtigsten
Beispiel: der Exponentialfunktion.

Definition 7.26 (Potenzreihen und die Exponentialfunktion).
(a) Ist (an)n eine Folge in K und x ∈ K, so heißt die Reihe ∑

∞
n=0 an xn die Potenzreihe in x mit

Koeffizienten (an)n. Ist D⊂K die Menge aller x, für die diese Reihe konvergiert, so können
wir die Potenzreihe offensichtlich als Funktion von D nach K auffassen.

Der Startindex einer Potenzreihe darf auch größer als 0 sein (dann kann man die ersten
Koeffizienten ja gleich 0 setzen), aber nie kleiner als 0 – eine Potenzreihe in x enthält nach
Definition keine negativen Potenzen von x.

(b) Die Exponentialfunktion ist die Potenzreihenfunktion

exp: K→K mit exp(x) =
∞

∑
n=0

xn

n!

(die nach Beispiel 7.25 (d) für alle x ∈K absolut konvergiert).
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Aus dem Wurzelkriterium können wir sofort eine allgemeine Aussage ableiten, auf welchen Gebie-
ten derartige Potenzreihen konvergieren: nämlich auf um 0 zentrierten Intervallen (im Fall K = R)
bzw. auf Kreisen um 0 (im Fall K= C).

Satz und Definition 7.27 (Konvergenzgebiete von Potenzreihen, Formel von Cauchy-Hadamard).
Es sei ∑

∞
n=0 an xn eine Potenzreihe über K und

r =
1

limsup
n→∞

n
√
|an|

∈ R≥0∪{∞}

(beachte, dass dieser Wert nach Bemerkung 5.52 in jedem Fall existiert). Dann gilt:

(a) für alle x ∈K mit |x|< r ist die Potenzreihe absolut konvergent;

(b) für alle x ∈K mit |x|> r ist die Potenzreihe divergent.

Im Fall |x|= r kann keine allgemeine Aussage über die Konvergenz der Reihe getroffen werden.

Die geometrische Deutung dieser Konvergenzaussagen im reellen bzw. komplexen Fall zeigt das
folgende Bild. Man nennt r den Konvergenzradius und {x ∈K : |x|< r} das Konvergenzgebiet der
Potenzreihe.

0 r−r

konvergent
absolut divergentdivergent

0 r

konvergent
absolut

divergent C

R

Beweis. Wir wenden das Wurzelkriterium aus Satz 7.23 auf die Potenzreihe ∑
∞
n=0 an xn an: Nach

Aufgabe 5.51 (b) ist für alle x ∈K

limsup
n→∞

n
√
|an xn|= limsup

n→∞

(
|x| · n
√
|an|
)
= |x| · limsup

n→∞

n
√
|an|=

|x|
r
,

also konvergiert die Reihe absolut für |x|r < 1 (d. h. |x|< r) und divergiert für |x|r > 1 (d. h. |x|> r). □

Bemerkung 7.28. Beachte, dass die Eigenschaften (a) und (b) aus Satz 7.27 den Konvergenzradius
eindeutig charakterisieren als

r = sup
{
|x| : x ∈K mit

∞

∑
n=0

an xn konvergent
}
. (∗)

So ist z. B. auch ohne Berechnung des Ausdrucks für r in Satz 7.27 klar, dass die Exponentialreihe
aus Definition 7.26 (b) den Konvergenzradius ∞ hat, da sie ja auf ganz K konvergiert. In der Tat wird
die Gleichung (∗) in der Literatur auch oft als Definition des Konvergenzradius einer Potenzreihe
benutzt.

Es sollte nicht überraschen, dass man nicht nur mit dem Wurzelkriterium, sondern auch mit dem
Quotientenkriterium eine Aussage über den Konvergenzradius einer Potenzreihe treffen kann. Al-
lerdings ist diese nicht ganz so universell, da sie wie in Satz 7.22 die Existenz des Grenzwerts der
Quotientenfolge der Koeffizienten voraussetzt.

Satz 7.29 (Alternative Formel für den Konvergenzradius einer Potenzreihe). Es sei ∑
∞
n=0 an xn eine

Potenzreihe in K mit an ̸= 0 für fast alle n. Existiert dann der Grenzwert

r = lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣ ∈ R≥0∪{∞},

so ist dies der Konvergenzradius der Potenzreihe.
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Beweis. Wegen

lim
n→∞

∣∣∣∣an+1 xn+1

an xn

∣∣∣∣= lim
n→∞

(
|x| ·
∣∣∣∣an+1

an

∣∣∣∣)= |x| · lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣= |x|r
konvergiert die Potenzreihe nach Satz 7.22 absolut für |x| < r und divergiert für |x| > r. Nach Be-
merkung 7.28 ist r damit der Konvergenzradius der Reihe. □

Beispiel 7.30.
(a) Die Potenzreihe ∑

∞
n=1

xn

n hat nach Satz 7.29 den Konvergenzradius

r = lim
n→∞

∣∣∣∣ 1/n
1/(n+1)

∣∣∣∣= lim
n→∞

n+1
n

= lim
n→∞

(
1+

1
n

)
= 1,

konvergiert also für alle x ∈ K mit |x| < 1 absolut und divergiert für alle x mit |x| > 1. Für
|x| = 1 treten in der Tat verschiedene Fälle auf: Im Fall x = 1 erhalten wir die harmonische
Reihe, die nach Beispiel 7.3 (c) divergiert, während wir für x =−1 die alternierende harmo-
nische Reihe haben, die nach Beispiel 7.9 konvergiert. Dies zeigt noch einmal, dass unsere
obigen nur von |x| abhängigen Kriterien auf dem Rand des Konvergenzgebiets wirklich keine
allgemeine Aussage machen können.

(b) Für den Konvergenzradius der Potenzreihe ∑
∞
n=0 nxn gilt nach Satz 7.27 und 7.29

r =
1

limsup
n→∞

n
√

n
sowie r = lim

n→∞

∣∣∣∣ n
n+1

∣∣∣∣= 1.

Vergleich dieser beiden Ergebnisse liefert also limsup
n→∞

n
√

n = 1. Für alle ε > 0 gilt damit nach

Lemma 5.47 (a), dass n
√

n < 1+ ε für fast alle n. Natürlich ist aber auch n
√

n ≥ 1 für alle n,
und damit ergibt sich zusammen

lim
n→∞

n
√

n = 1

(was gar nicht so offensichtlich ist, da der Ausdruck n
√

n für wachsendes n ja durch das n
unter der Wurzel größer, durch das Ziehen der n-ten Wurzel aber kleiner wird).

Aufgabe 7.31. Untersuche die folgenden Reihen auf Konvergenz (im Fall (c) in Abhängigkeit von
x ∈ R):

(a)
∞

∑
n=0

n
(3+(−1)n)n , (b)

∞

∑
n=0

n!
nn , (c)

∞

∑
n=0

n
n2 +1

xn.

Eine Berechnung des Grenzwerts im Fall der Konvergenz ist nicht erforderlich.

Aufgabe 7.32. Zeige, dass jede Potenzreihe ∑
∞
n=0 an xn in K denselben Konvergenzradius wie ihre

„formale Ableitung“ ∑
∞
n=1 nan xn−1 hat, aber nicht notwendig für die gleichen x konvergiert.

(Wir werden in Folgerung 10.27 sehen, dass dies dann auch genau die „gewöhnliche“ Ableitung der
ursprünglichen Reihe ist.)

Aufgabe 7.33. Es sei (an)n eine Folge in K. Man zeige:

(a) Ist an der Quotient von zwei Polynomen in n, so machen weder das Quotienten- noch das
Wurzelkriterium eine Aussage über die Konvergenz der Reihe ∑

∞
n=0 an.

(b) Macht das Wurzelkriterium keine Aussage über die Konvergenz der Reihe ∑
∞
n=0 an, so macht

auch das Quotientenkriterium keine Aussage darüber.

Aufgabe 7.34 (Alternative Darstellung der Exponentialfunktion). Zeige, dass für alle x ∈K

exp(x) = lim
n→∞

(
1+

x
n

)n

gilt. (Hinweis: Eine Möglichkeit besteht darin, durch eine geeignete Abschätzung zu zeigen, dass( n

∑
k=0

xk

k!

)
−
(

1+
x
n

)n



88 Andreas Gathmann

mit n→ ∞ gegen 0 konvergiert.)

Der Ausdruck lim
n→∞

(
1+ x

n

)n in dieser Darstellung der Exponentialfunktion hat übrigens eine sehr
anschauliche Interpretation: Wenn ihr 1 Euro zu einem Zinssatz x ein Jahr lang anlegt und sich die
Bank bereit erklärt, nicht einmal am Ende des Jahres den Betrag x an Zinsen auszuzahlen, sondern
stattdessen n-mal einen Zinssatz von x

n bezahlt, so habt ihr dadurch am Ende des Jahres aufgrund
des Zinseszinses natürlich mehr Geld als bei einer einmaligen Zinszahlung, nämlich genau

(
1+ x

n

)n.
Die gerade gezeigte Formel besagt, dass ihr selbst für n→∞, also wenn ihr die Bank zu einer unend-
lichen Aufteilung der Zinsen auf diese Art überreden könntet, dadurch kein unendliches Vermögen
aufbauen könntet, sondern am Ende des Jahres lediglich den Betrag von exp(x) hättet.

Zum Schluss dieses Kapitels wollen wir nun noch Produkte von Reihen untersuchen. Haben wir
z. B. zwei Potenzreihen ∑

∞
k=0 ak xk und ∑

∞
l=0 bl xl , so würden wir erwarten, dass wir ihr Produkt

für alle x im Durchschnitt der Konvergenzgebiete der beiden Reihen wie folgt durch „unendliches
Ausmultiplizieren“ berechnen und wieder zu einer neuen Potenzreihe zusammenfassen können:(

∞

∑
k=0

ak xk

)
·

(
∞

∑
l=0

bl xl

)
= (a0 +a1 x+a2 x2 + · · ·) · (b0 +b1 x+b2 x2 + · · ·)

?
= a0b0 +(a0b1 +a1b0)x+(a0b2 +a1b1 +a2b0)x2 + · · ·

=
∞

∑
n=0

cn xn

mit cn = ∑
n
k=0 akbn−k. Wir wollen nun zeigen, dass dies in der Tat erlaubt ist – und zwar auch für

allgemeine Reihen, nicht nur für Potenzreihen (also wenn wir uns das x in der obigen Rechnung
wegdenken). Da die einzelnen ausmultiplizierten Summanden in der entstehenden Reihe dabei aber
irgendwie sortiert werden müssen, sollte es in Anbetracht des Umordnungssatzes 7.15 nicht überra-
schen, dass wir für die Gültigkeit dieser Rechnung die absolute Konvergenz der Reihen benötigen.

Satz 7.35 (Cauchy-Produkt von Reihen). Es seien ∑
∞
k=0 ak und ∑

∞
l=0 bl zwei absolut konvergente

Reihen in K. Setzen wir dann

cn =
n

∑
k=0

ak bn−k

für alle n ∈ N, so ist auch die Reihe ∑
∞
n=0 cn absolut konvergent, und es gilt(
∞

∑
k=0

ak

)
·
(

∞

∑
l=0

bl

)
=

∞

∑
n=0

cn. (∗)

16

Beweis. Nach Voraussetzung existieren die Grenzwerte A := ∑
∞
k=0 |ak| und B := ∑

∞
l=0 |bl | in R. Wir

zeigen, dass die Summe ∑(k,l)∈N2 ak bl über die nach Beispiel 5.59 (a) abzählbare Indexmenge N×N
im Sinne von Bemerkung 7.16 existiert und mit dem Wert beider Seiten der Gleichung (∗) überein-
stimmt. Dazu betrachten wir die beiden im folgenden Bild dargestellten Aufzählungen von N2: eine
„quadratische“, und eine „schräge“ wie im Cantorschen Diagonalverfahren im Beweis von Satz 5.58.
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0
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(a) Summieren wir zunächst die Beträge |ak bl | in der Reihenfolge dieser „quadratischen“ Auf-
zählung, so erhalten wir nach der Summation von höchstens n2 Termen, also denen im Qua-
drat links oben mit n Zeilen und Spalten, maximal den Wert

n−1

∑
k=0

n−1

∑
l=0
|ak bl |=

( n−1

∑
k=0
|ak|
)
·
(n−1

∑
l=0
|bl |
)
≤ A ·B.

Die Reihe über alle |ak bl | ist (in dieser Aufzählungsreihenfolge) also beschränkt. Damit ist
die Reihe über ak bl nach Definition 7.10 absolut konvergent, und nach Bemerkung 7.16
existiert somit die Reihe ∑(k,l)∈N2 ak bl .

Um den Wert dieser Reihe zu bestimmen, können wir nach Lemma 5.19 auch nur eine Teil-
folge der Partialsummenfolge betrachten. Nehmen wir hierzu die Partialsummen, bei denen
wir die ersten n2 Terme aufaddieren, und lassen dort n gegen ∞ gehen, so erhalten wir

∑
(k,l)∈N2

ak bl = lim
n→∞

n−1

∑
k=0

n−1

∑
l=0

ak bl = lim
n→∞

(n−1

∑
k=0

ak

)
·
(n−1

∑
l=0

bl

)
5.13
=

(
∞

∑
k=0

ak

)
·
(

∞

∑
l=0

bl

)
,

also die linke Seite von (∗).
(b) In dieser „schrägen“ Aufzählungsreihenfolge können wir den Wert von ∑(k,l)∈N2 ak bl analog

als Grenzwert für N→ ∞ der Partialsummen bestimmen, bei denen wir die ersten N Diago-
nalen aufsummieren. Da die Summe der ak bl entlang der Diagonale mit k+ l = n gerade cn
ist, erhalten wir so

∑
(k,l)∈N2

ak bl = lim
N→∞

N−1

∑
n=0

cn =
∞

∑
n=0

cn

und damit durch Vergleich mit (a) die behauptete Gleichheit (∗). Weil die ersten N Diago-
nalen außerdem im Quadrat links oben mit N Zeilen und Spalten enthalten sind, haben wir
weiterhin mit der Dreiecksungleichung

N−1

∑
n=0
|cn|=

N−1

∑
n=0

∣∣∣∣ n

∑
k=0

ak bn−k

∣∣∣∣≤ N−1

∑
n=0

n

∑
k=0
|ak| · |bn−k| ≤

(N−1

∑
k=0
|ak|
)
·
(N−1

∑
l=0
|bl |
)
≤ A ·B

und damit auch die absolute Konvergenz von ∑
∞
n=0 cn gezeigt. □

Die wohl wichtigste Anwendung des Cauchy-Produkts erhalten wir im Fall der Exponentialfunktion.

Folgerung 7.36 (Funktionalgleichung der Exponentialfunktion). Für alle x,y ∈K gilt

exp(x) · exp(y) = exp(x+ y).

Beweis. Nach Beispiel 7.25 (d) und Definition 7.26 (b) konvergiert die Exponentialreihe auf ganz K
absolut. Also gilt für alle x,y ∈K

exp(x) · exp(y) =
(

∞

∑
k=0

xk

k!

)
·
(

∞

∑
l=0

yl

l!

)
=

∞

∑
n=0

( n

∑
k=0

xk

k!
· yn−k

(n− k)!

)
(nach dem Cauchy-Produkt aus Satz 7.35)

=
∞

∑
n=0

1
n!
·
( n

∑
k=0

(
n
k

)
xkyn−k

)
=

∞

∑
n=0

(x+ y)n

n!
(nach der binomischen Formel aus Satz 4.7)

= exp(x+ y),

was zu zeigen war. □
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Bemerkung 7.37 (Produkte von Potenzreihen). Sind ∑
∞
k=0 ak xk und ∑

∞
l=0 bl xl zwei Potenzreihen in

x mit Konvergenzradien r1 bzw. r2, so gilt nach Satz 7.35 für alle x ∈ K mit |x| < min(r1,r2) (wo
also nach Satz 7.27 beide Potenzreihen absolut konvergieren)(

∞

∑
k=0

ak xk
)
·
(

∞

∑
l=0

bl xl
)
=

∞

∑
n=0

( n

∑
k=0

ak bn−k

)
xn,

d. h. das Produkt zweier Potenzreihen mit Konvergenzradien r1 und r2 ist wieder eine Potenzreihe,
deren Konvergenzradius mindestens min(r1,r2) beträgt und die wie erwartet durch „unendliches
Ausmultiplizieren“ berechnet werden kann.

Dies ist ein erstes Beispiel für ein generelles Prinzip, das wir in den folgenden Kapiteln immer
wieder sehen werden (siehe z. B. Bemerkung 12.38): Potenzreihen haben sehr viele schöne Eigen-
schaften – obwohl sie als „unendliche Summe von Potenzfunktionen“ definiert sind, kann man mit
ihnen nahezu immer wie mit Polynomen rechnen, also als ob sie eine „endliche Summe von Potenz-
funktionen“ wären.

Aufgabe 7.38. Es sei q ∈ C mit |q| < 1. Berechne das Cauchy-Produkt
(

∑
∞
n=0 qn

)2 und damit den
Wert der Reihe ∑

∞
n=0 nqn.

Aufgabe 7.39. Für alle n ∈ N sei an = (−1)n
√

n+1
. Zeige in diesem Fall, dass die Reihe

∞

∑
n=0

an zwar

konvergiert, aber dass ihr Cauchy-Produkt mit sich selbst wie in Satz 7.35
∞

∑
n=0

n

∑
k=0

akan−k

divergiert.


