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6. Komplexe Zahlen

Bisher haben wir uns nahezu ausschließlich mit dem euch aus der Schule bekannten Körper R der
reellen Zahlen befasst. In der Mathematik – und zwar sowohl in der Analysis als auch in der Alge-
bra – ist jedoch noch ein weiterer damit eng zusammenhängender Körper sehr wichtig: der Körper
der komplexen Zahlen. Die Idee dabei ist, einen Körper zu konstruieren, der die reellen Zahlen als
Teilmenge enthält (man nennt so etwas auch eine Körpererweiterung von R), und in dem jedes nicht
konstante Polynom (wie z. B. x 7→ x2 +1) eine Nullstelle besitzt. Außerdem werden die komplexen
Zahlen zur Einführung und Untersuchung der Winkelfunktionen in Abschnitt 9.B sehr nützlich sein.

6.A Die Konstruktion der komplexen Zahlen
Im Gegensatz zu den reellen Zahlen brauchen wir die komplexen nicht mehr axiomatisch vorauszu-
setzen – wir können sie explizit aus den reellen konstruieren.

Definition 6.1 (Komplexe Zahlen). Die Menge der komplexen Zahlen ist definiert als C := R2.
Wir betrachten auf dieser Menge die beiden Verknüpfungen

(x1,y1)+(x2,y2) := (x1 + x2,y1 + y2) (Addition)

und (x1,y1) · (x2,y2) := (x1x2− y1y2,x1y2 + y1x2) (Multiplikation).

Notation 6.2 (Komplexe Zahlen in der Form x+ iy). Beachte, dass für komplexe Zahlen, deren
zweite Komponente 0 ist, die Addition und Multiplikation

(x1,0)+(x2,0) = (x1 + x2,0) bzw. (x1,0) · (x2,0) = (x1x2,0)

genauso definiert ist wie für reelle Zahlen. Wir schreiben die komplexe Zahl (x,0) ∈ C daher in der
Regel auch einfach als x und fassen auf diese Art die reellen Zahlen als Teilmenge der komplexen
auf. Setzen wir weiterhin i := (0,1), so gilt

i2 = (0,1) · (0,1) = (−1,0) =−1

sowie für alle x,y ∈ R
x+ iy = (x,0)+(0,1)(y,0) = (x,0)+(0,y) = (x,y).

Diese Darstellung als x+ iy ist in der Tat auch die übliche Schreibweise für eine komplexe Zahl –
wir werden Elemente von C ab jetzt immer in dieser Form schreiben. Diese Notation hat den Vorteil,
dass sich die Rechenregeln für die Addition und Multiplikation aus Definition 6.1 ganz von selbst
ergeben, wenn man i als Variable auffasst und die Gleichung i2 = −1 berücksichtigt: Es ist dann
nämlich wie erwartet

(x1 + iy1)+(x2 + iy2) = (x1 + x2)+ i(y1 + y2)

und (x1 + iy1) · (x2 + iy2) = (x1x2− y1y2)+ i(x1y2 + x2y1) = x1x2 + i2y1y2 + ix1y2 + ix2y1.

Wenn man in ingenieurswissenschaftliche Bücher schaut, werden die komplexen Zahlen dort in der
Tat sogar oft so eingeführt: Man nehme einfach an, dass es eine Zahl i mit i2 =−1 gibt, und rechne
damit dann ganz normal weiter, als wäre nichts Besonderes passiert. Es sollte aber hoffentlich klar
sein, dass eine solche „Definition“ aus mathematischer Sicht unsinnig ist: Wenn wir bisher nur die
reellen Zahlen kennen, gibt es nach Lemma 4.16 (c) einfach keine Zahl, deren Quadrat gleich−1 ist –
und diese Situation wird natürlich auch nicht dadurch besser, dass wir diesem nicht existierenden
Objekt einen Namen i geben. Stattdessen müssen wir den Umweg über die korrekte Konstruktion aus
Definition 6.1 gehen, die uns garantiert, dass C erst einmal widerspruchsfrei definiert ist, und können
dann erst im Nachhinein untersuchen, welche Eigenschaften der reellen Zahlen sich tatsächlich auf
die komplexen übertragen. Dies sind nämlich auch nicht alle – so werden wir z. B. in Lemma 6.6
und Bemerkung 6.8 sehen, dass C zwar ein Körper, aber kein geordneter Körper ist.
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Definition 6.3 (Real- und Imaginärteil, Konjugation und Betrag). Es sei z = x+ iy ∈ C mit x,y ∈ R
wie in Notation 6.2.

(a) Man nennt x den Realteil und y den Imaginärteil von z; die Notation hierfür ist x = Rez
und y = Imz.

(b) Man nennt

z := x− iy die zu z komplex konjugierte Zahl

und |z| :=
√

x2 + y2 ∈ R≥0 den Betrag von z

(mit der reellen Wurzel aus Definition 5.30).

Bemerkung 6.4. Offensichtlich lassen sich der Real- und Imaginärteil von z= x+ iy∈C ausdrücken
als

Rez =
1
2
(z+ z) und Imz =− i

2
(z− z),

während der Betrag wegen zz = (x+ iy)(x− iy) = x2− i2y2 = x2 + y2 auch als

|z|=
√

zz

geschrieben werden kann.

Bemerkung 6.5 (Geometrische Interpretation von C). Geometrisch können wir die Elemente von
C = R2 natürlich als Punkte der Ebene, der sogenannten komplexen Zahlenebene, zeichnen. Wir
wollen jetzt sehen, wie man die oben eingeführten Operationen für komplexe Zahlen in dieser
Zahlenebene grafisch veranschaulichen kann. Da diese Interpretation zwar für die Vorstellung sehr
wichtig ist, aber nicht für unsere späteren exakten Rechnungen benötigt wird, wollen wir dabei ein
paar einfache und sicherlich bekannte Prinzipien der Schulgeometrie ohne Beweis verwenden.

Zunächst einmal ist klar, dass die reellen Zahlen in C, also diejenigen der Form x+ i · 0, genau die
auf der horizontalen Achse sind. Der Betrag |z| einer komplexen Zahl ist nach Definition genau der
Abstand des Punktes z vom Ursprung, und die komplexe Konjugation entspricht einer Spiegelung an
der reellen Achse (wie im Bild unten links). Ebenso offensichtlich ist, dass zwei komplexe Zahlen
genau so addiert werden, wie ihr in der Schule Vektoren im R2 addiert habt, also indem man die Ver-
bindungsstrecken vom Ursprung zu z1 und z2 wie im folgenden Bild rechts zu einem Parallelogramm
zusammensetzt.
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Die Multiplikation dagegen ist schon interessanter. Der Einfachheit halber beschränken wir uns im
Bild unten auf den Fall, in dem Real- und Imaginärteil beider Zahlen positiv sind – die anderen
Fälle lassen sich analog behandeln. Wir haben dort links zwei komplexe Zahlen z1 und z2 wie oben
dargestellt (und zusätzlich die Winkel eingezeichnet, die die Verbindungsstrecken zum Ursprung mit
der positiven reellen Achse einschließen), und die zugehörigen rechtwinkligen Dreiecke rechts wie
folgt zusammengesetzt:

(a) Das Dreieck für z1 haben wir um den Faktor x2 zum Dreieck 0AB gestreckt.

(b) Das Dreieck für z2 haben wir um den Faktor |z1| gestreckt und um den Winkel ϕ1 gedreht, so
dass das Dreieck 0BC mit Seitenlängen |z1|x2, |z1|y2 und |z1| · |z2| entstanden ist (insbeson-
dere hat dieses Dreieck mit dem aus (a) also eine gemeinsame Kante 0B mit der Seitenlänge
|z1|x2).
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(c) CD ist die Senkrechte auf 0A, und BE die Senkrechte auf CD. Damit ist das Dreieck CEB
ähnlich zu 0AB, es ist daher die Streckung des Dreiecks für z1 um den Faktor y2 und hat
Seitenlängen x1y2, y1y2 und |z1|y2.
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Aus diesem Bild lesen wir nun direkt ab, dass C die Koordinaten (x1x2− y1y2,x1y2 + y1x2) hat, also
genau der Punkt z1 · z2 ist. Da dieser Punkt den Betrag |z1| · |z2| hat und den Winkel ϕ1 +ϕ2 mit der
positiven reellen Achse einschließt, sehen wir anschaulich:

Komplexe Zahlen werden multipliziert, indem man ihre Beträge multipliziert und ihre
Winkel addiert.

12
Wir wollen nun sehen, dass die Addition und Multiplikation auf C die erwarteten Eigenschaften
haben, also die Struktur eines Körpers bilden. Unsere Ergebnisse aus Kapitel 3 und Abschnitt 4.A
gelten somit unverändert auch für die komplexen Zahlen.

Lemma 6.6. C ist ein Körper.

Beweis (siehe auch Aufgabe 3.11). Die Kommutativität der Addition und Multiplikation ist aus der
Definition offensichtlich. Die Assoziativität der Addition und Multiplikation sowie die Distributivität
rechnet man einfach nach; wir zeigen hier exemplarisch die Distributivität: Für drei komplexe Zahlen
z1 = x1 + iy1, z2 = x2 + iy2, z3 = x3 + iy3 folgt (letztlich wegen der Distributivität in R)

(z1 + z2)z3 = ((x1 + x2)+ i(y1 + y2)) · (x3 + iy3)

= (x1 + x2)x3− (y1 + y2)y3 + i((x1 + x2)y3 +(y1 + y2)x3)

=
(
x1x3− y1y3 + i(x1y3 + y1x3)

)
+
(
x2x3− y2y3 + i(x2y3 + y2x3)

)
= z1z3 + z2z3.

Das additive neutrale Element ist 0, das additive Inverse zu z = x+ iy natürlich −z = −x− iy. Das
multiplikative neutrale Element ist 1, das multiplikative Inverse zu z = x+ iy ̸= 0 ist

x
x2 + y2 + i

−y
x2 + y2 , denn

(
x

x2 + y2 + i
−y

x2 + y2

)
· (x+ iy) =

(x− iy)(x+ iy)
x2 + y2 =

x2 + y2

x2 + y2 = 1. □

Beispiel 6.7 (Division komplexer Zahlen). Erwähnenswert ist an Lemma 6.6 wohl vor allem die
Existenz einer Division, da ja zunächst einmal nicht offensichtlich ist, wie man für eine komplexe
Zahl z = x+ iy das multiplikative Inverse 1

z = 1
x+iy wieder in der Form x′+ iy′ schreiben kann. Die

Merkregel hierfür ist, dass man diesen Bruch mit z zu 1
z = z

zz erweitert, so dass der Nenner zu der
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nach Bemerkung 6.4 reellen Zahl zz = |z|2 wird und somit das i aus dem Nenner verschwindet. So
ist z. B.

1
1+2i

=
1−2i

(1+2i)(1−2i)
=

1−2i
12 +22 =

1
5
− 2

5
i.

Bemerkung 6.8 (C ist kein geordneter Körper). C ist zwar ein Körper, kann aber nicht zu einem
geordneten Körper gemacht werden. Andernfalls müsste nämlich i2 als Quadrat einer Zahl ungleich
0 nach Lemma 4.16 (c) positiv sein – was aber natürlich ein Widerspruch ist, da andererseits i2 =−1
nach demselben Lemma auch eine negative Zahl sein müsste.

Es ergibt also keinen Sinn zu fragen, welche von zwei gegebenen komplexen Zahlen größer ist
als die andere. Damit sind unsere Ergebnisse aus den Abschnitten 4.B und 4.C auf die komplexen
Zahlen nicht anwendbar; z. B. sind die Begriffe von Supremum und Infimum sowie Maximum und
Minimum für Teilmengen von komplexen Zahlen nicht definiert.

6.B Eigenschaften der komplexen Zahlen

Auch wenn C kein geordneter Körper ist, haben wir in Definition 6.3 (b) bereits wie für R auch
für C eine Betragsfunktion eingeführt, die immer reelle Werte annimmt und es uns somit erlaubt,
komplexe Zahlen betragsmäßig miteinander zu vergleichen. Wir wollen nun sehen, dass diese kom-
plexe Betragsfunktion in der Tat sogar die gleichen Eigenschaften wie die reelle Betragsfunktion in
Lemma 4.18 (a) und (c) hat, auch wenn der Beweis dafür in C ganz anders ist als in R.

Lemma 6.9 (Eigenschaften der komplexen Konjugation und Betragsfunktion). Für alle z1,z2 ∈ C
gilt

(a) z1 = z1, z1 + z2 = z1 + z2 und z1 z2 = z1 · z2;

(b) |Rez1| ≤ |z1| und | Imz1| ≤ |z1|;
(c) |z1 z2|= |z1| · |z2|;
(d) |z1 + z2| ≤ |z1|+ |z2| (Dreiecksungleichung).

Beweis. Wie üblich sei z1 = x1 + iy1 und z2 = x2 + iy2.

(a) Dies rechnet man einfach nach: Es ist z1 = x1− iy1 = x1 + iy1 = z1, sowie

z1 + z2 = x1 + x2 + i(y1 + y2) = x1 + x2− i(y1 + y2) = z1 + z2

und

z1 z2 = x1x2− y1y2 + i(x1y2 + y1x2) = x1x2− y1y2− i(x1y2 + y1x2) = (x1− iy1)(x2− iy2)

= z1 · z2.

(b) Es gilt

|Rez1|= |x1|=
√

x2
1

5.34 (a)
≤

√
x2

1 + y2
1 = |z1|;

analog folgt dies auch für den Imaginärteil.

(c) Bei der geometrischen Deutung der komplexen Multiplikation in Bemerkung 6.5 haben wir
dies bereits anschaulich gesehen; man rechnet es aber auch mit (a) sofort nach: Nach Be-
merkung 6.4 ist

|z1 z2|=
√

z1 z2 · z1 z2
(a)
=
√

z1 z1 z2z2
5.34 (b)
=
√

z1 z1 ·
√

z2 z2 = |z1| · |z2|.

(d) Zunächst ist nach (a) und Bemerkung 6.4

|z1 + z2|2 = (z1 + z2)(z1 + z2) = z1 z1 + z2 z2 + z1 z2 + z2 z1 = |z1|2 + |z2|2 + z1 z2 + z1 z2

= |z1|2 + |z2|2 +2 Re(z1 z2).

Mit (b) können wir nun den dabei auftretenden Realteil abschätzen durch

Re(z1 z2)
4.18 (b)
≤ |Re(z1 z2)| ≤ |z1 z2|

(c)
= |z1| · |z2|= |z1| · |z2|,
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und erhalten so

|z1 + z2|2 ≤ |z1|2 + |z2|2 +2 |z1| · |z2|= (|z1|+ |z2|)2.

Wurzelziehen liefert nun mit Aufgabe 5.34 (a) die Behauptung. □

Bemerkung 6.10.

(a) Die Dreiecksungleichung hat eine sehr anschauliche
Bedeutung, die auch ihren Namen erklärt: Nach der
geometrischen Interpretation der Addition komplexer
Zahlen aus Bemerkung 6.5 besagt sie einfach, dass ei-
ne Seite in einem Dreieck (wie |z1 + z2| im Bild rechts)
höchstens so lang ist wie die Summe der beiden anderen
(hier |z1| und |z2|).

|z1|
0

z2

z1

|z2|

z1+z2

|z1+z2|

(b) Wenn ihr gleichzeitig die Parallelvorlesung „Algebraische Strukturen“ hört, werdet ihr si-
cher sehen, dass Lemma 6.9 (a) gerade besagt, dass die komplexe Konjugation z 7→ z ein
Gruppenhomomorphismus von (C,+) nach (C,+) und von (C\{0}, ·) nach (C\{0}, ·) ist.
Zusammen macht dies die komplexe Konjugation zu einem Körperhomomorphismus von C
nach C (in der Tat sogar zu einem Körperisomorphismus, da die Abbildung C→ C, z 7→ z
natürlich bijektiv ist).

Wie schon am Anfang dieses Kapitels erwähnt, besteht aber die wesentliche Eigenschaft der kom-
plexen Zahlen darin, dass in C jedes (nicht konstante) Polynom eine Nullstelle besitzt. Beachte, dass
dies ganz und gar nicht offensichtlich ist – da man jede komplexe Zahl als x+ iy mit x,y ∈ R und
i2 = −1 schreiben kann, sieht es ja eher so aus, als ob wir durch den Übergang von R nach C nur
eine „Quadratwurzel aus −1“ hinzugefügt haben, also nur dem Polynom z2 + 1 (oder bestenfalls
noch anderen quadratischen Polynomen) eine Nullstelle gegeben haben. Dass dies in der Tat auch
für Polynome beliebigen Grades gilt, und zwar sogar noch, wenn sie auch komplexe Koeffizienten
haben dürfen, ist der Inhalt des sogenannten Fundamentalsatzes der Algebra:

Satz 6.11 (Fundamentalsatz der Algebra). Jedes nicht konstante komplexe Polynom hat eine Null-
stelle in C.

Beweisidee. Es gibt mehrere (völlig) verschiedene Möglichkeiten, den Fundamentalsatz der Algebra
zu beweisen. Leider sind alle diese Beweise für uns aber momentan noch zu schwierig, und so muss
ich euch für einen exakten Beweis dieses Satzes auf weiterführende Vorlesungen vertrösten – in den
Vorlesungen „Einführung in die Funktionentheorie“, „Einführung in die Algebra“ und „Einführung
in die Topologie“ könnt ihr z. B. drei ganz verschiedene Beweise dieses Satzes sehen. Wir können
aber auch jetzt zumindest schon eine Beweisidee angeben, die hoffentlich dafür ausreicht, dass ihr
den Satz glaubt und ein Gefühl dafür bekommt, warum er richtig ist.

Es sei dazu f ein komplexes, nicht konstantes Polynom, das wir der Einfachheit halber natürlich als
normiert annehmen können. Es ist also

f (z) = zn +an−1zn−1 + · · ·+a1z+a0

für gewisse n ∈ N>0 und a0, . . . ,an−1 ∈ C. Wie können wir uns eine solche Funktion grafisch
vorstellen? Da ihre Start- und Zielmenge C ist, können wir ihren Graphen, der ja dann in
C×C = R2×R2 = R4 liegt, nicht mehr wirklich zeichnen. In den Bildern unten haben wir daher
den Startraum C links und den Zielraum C rechts dargestellt, und für einige Punkte im Startraum
die zugehörigen Bildpunkte im Zielraum eingezeichnet.

Als Erstes wählen wir uns einmal eine feste, sehr große Zahl r ∈ R>0 und schauen, was passiert,
wenn wir mit z den Kreis um 0 mit Radius r durchlaufen. Wenn unsere Funktion einfach z 7→ zn

wäre, dann wüssten wir genau, wie f (z) auf dieser Kreislinie aussehen würde: Da bei der komplexen
Multiplikation nach Bemerkung 6.5 ja gerade Beträge multipliziert und Winkel addiert werden, ist
die n-te Potenz einer komplexen Zahl mit Betrag r und Winkel ϕ genau die Zahl mit Betrag rn und
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Winkel nϕ . Läuft also z einmal beim Radius r im Kreis herum, d. h. ϕ von 0 bis 2π , so läuft zn beim
Radius rn genau n-mal im Kreis herum, nämlich mit Winkel nϕ von 0 bis 2nπ .

Nun ist unser Polynom zwar nicht wirklich genau zn, aber für sehr große Beträge von z ist der
Term zn in f (z) mit der höchsten z-Potenz natürlich betragsmäßig viel größer als die anderen Terme
an−1zn−1+ · · ·+a1z+a0. Anschaulich bedeutet das, dass f (z) immer „in der Nähe“ von zn ist. Wenn
also zn beim Radius rn insgesamt n-mal auf einer exakten Kreislinie herumläuft, wird f (z) ein klein
wenig von diesem Weg abweichen, aber letztlich immer noch n-mal um den Ursprung herumlaufen.
Das Bild unten zeigt in der ersten Zeile einen solchen möglichen Weg für n = 2, bei dem also f (z) in
einem ungefähren Abstand von r2 zweimal um den Ursprung läuft, während z einmal auf dem Kreis
mit Radius r entlang läuft.

Rer

Im

Re

Im

f

z
f (z)

r2

r groß

Re

Im

Re

Im

f

r f (z0)
z0

r wird kleiner

Re

Im

Re

Im

f0

f (0) = a0

r = 0

Was passiert nun, wenn wir den Radius r des Kreises für z langsam kleiner machen und zu schließ-
lich 0 werden lassen, so wie im Bild von oben nach unten dargestellt? Natürlich wird sich dann
auch der von f (z) durchlaufene Weg in irgendeiner Form langsam ändern. Wir können nicht viel
darüber aussagen, wie diese Änderung genau aussieht – klar ist die Situation aber natürlich, wenn
der Radius wie in der unteren Zeile des Bildes gleich 0 geworden ist: Dann ist der Kreis für z zu
einem Punkt zusammengeschrumpft, und folglich muss natürlich auch der Weg von f (z) von der ur-
sprünglichen Schleife zu einem Punkt (nämlich zum Punkt f (0) = a0) zusammenschrumpfen. Aber
es ist anschaulich klar, dass man einen geschlossenen Weg, der ursprünglich n-mal um den Ursprung
herumgelaufen ist, nicht auf einen Punkt zusammenziehen kann, ohne ihn dabei mindestens einmal
über den Nullpunkt zu ziehen. Und genau an so einer Stelle, wo der Weg für f (z) den Nullpunkt
trifft, haben wir natürlich, was wir wollen: eine Nullstelle z0 von f , so wie in der mittleren Zeile
oben im Bild. □
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Auch wenn diese Beweisidee jetzt hoffentlich sehr anschaulich war, wäre es doch noch ein sehr
weiter Weg für uns, diese Argumente zu einem exakten Beweis zu machen. Ein wichtiger fehlender
Punkt ist z. B., dass wir irgendwie formalisieren müssten, was es genau heißt, dass „sich f (z) lang-
sam ändert, wenn sich z langsam ändert“. Denn nur wenn sich der Weg für f (z) oben langsam und
kontinuierlich ändert, können wir schließen, dass wir ihn irgendwann einmal über den Nullpunkt
ziehen müssen.

Bemerkung 6.12.
(a) Nach Satz 3.19 (a) folgt durch wiederholte Anwendung des Fundamentalsatzes der Algebra

sofort, dass jedes komplexe Polynom komplett in Linearfaktoren zerfällt, dass sich also jedes
solche Polynom f mit deg f = n ∈ N>0 als

f (z) = c(z− z1) · · · · · (z− zn)

für gewisse c,z1, . . . ,zn ∈ C mit c ̸= 0 schreiben lässt. Manchmal wird in der Literatur auch
diese Aussage als Fundamentalsatz der Algebra bezeichnet.

(b) Der Fundamentalsatz der Algebra garantiert uns zwar die Existenz einer Nullstelle eines
nicht konstanten komplexen Polynoms, er sagt uns aber nicht, wie wir eine solche Nullstelle
konkret finden können. In der Tat haben wir ja schon in Bemerkung 3.21 erwähnt, dass es zur
exakten Bestimmung von Nullstellen von Polynomen im Allgemeinen nur für kleine Grade
explizite Formeln gibt. Einen sehr einfachen und oft vorkommenden Fall, in dem sich die
Nullstellen jedoch schnell finden lassen, wollen wir hier kurz erwähnen:

Beispiel 6.13. Es sei f : C → C ein Polynom mit deg f = 2 und reellen Koeffizienten, das der
Einfachheit halber wieder normiert sei, d. h. es sei f (z) = z2+ pz+q für gewisse p,q∈R. In diesem
Fall lassen sich die (komplexen) Nullstellen von f schnell berechnen: Aus z2+ pz+q= 0 folgt durch
quadratische Ergänzung (

z+
p
2

)2
=

p2

4
−q =: D.

Für D≥ 0 ergeben sich durch Wurzelziehen natürlich die (reellen) Nullstellen − p
2 ±
√

D. Für D < 0
gibt es keine reellen Lösungen, aber wegen i2 = −1 erhalten wir stattdessen die beiden komplexen
Lösungen − p

2 ± i
√
−D.

Aufgabe 6.14. Für n = 1,2,3 bestimme und skizziere man die Menge aller z ∈ C, für die die Glei-
chung 2 Imz · Im 1

z = n gilt.

Aufgabe 6.15.
(a) Zeige (ohne Verwendung des Fundamentalsatzes der Algebra), dass auch in C Quadratwur-

zeln existieren, also dass es zu jedem w ∈ C ein z ∈ C gibt mit z2 = w.

(b) Beweise den Fundamentalsatz der Algebra für Polynome vom Grad 2.

Aufgabe 6.16. Stelle die folgenden Zahlen in der Form x+ iy mit x,y ∈ R dar:

(a) z = 2+i
1−i ;

(b) z =
(

1+i√
2

)−2025
;

(c) alle Lösungen der Gleichung z4 + z2 +1 = 0;

(d) alle z ∈ C mit
∣∣ z−1

z−i

∣∣< 1.

6.C Reelle und komplexe Folgen

Auch wenn C nach Bemerkung 6.8 kein geordneter Körper ist, können wir mit Hilfe der Betrags-
funktion aus Definition 6.3 sagen, was es bedeutet, dass sich eine Folge komplexer Zahlen einem
Grenzwert annähert. In der Tat können wir die reelle Grenzwertdefinition 5.1 (b) wörtlich auf den
reellen Fall übertragen:
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Definition 6.17 (Grenzwerte komplexer Folgen). Eine komplexe Zahl a heißt Grenzwert einer Fol-
ge (an)n in C, wenn

∀ε ∈ R>0 ∃n0 ∈ N ∀n≥ n0 : |an−a|< ε.

Wie im Reellen sagt man in diesem Fall auch hier, dass (an)n gegen a konvergiert. Existiert kein
solcher Grenzwert, so heißt die Folge divergent.

Bemerkung 6.18 (Anschauliche Deutung des Grenzwertbegriffs in
C). Definieren wir für ein komplexes a ∈ C und reelles ε ∈ R>0
analog zu Bemerkung 5.2 wieder die ε-Umgebung von a als

Uε(a) := {x ∈ C : |x−a|< ε},
so ist dies wie im Bild rechts nun ein Kreis in der komplexen Ebe-
ne mit Mittelpunkt a und Radius ε . Die Grenzwertbedingung besagt
weiterhin, dass in jeder ε-Umgebung fast alle Folgenglieder liegen,
und kann damit wieder so interpretiert werden, dass sich die Folgen-
glieder beliebig dicht dem Grenzwert nähern.

a0

a1
a2

a3
a4· · ·

C

ε

Uε(a)

a

Bemerkung 6.19 (Übertragung der Grenzwerteigenschaften von R auf C). Aufgrund der gleichen
Grenzwertdefinition 5.1 bzw. 6.17 sowie der gleichen Eigenschaften der Betragsfunktion aus Lem-
ma 4.18 bzw. 6.9 (insbesondere der Dreiecksungleichung) gelten sehr viele Resultate über reelle
Grenzwerte genauso auch für komplexe. In der Tat übertragen sich alle Definitionen und Sätze aus
Abschnitt 5.A mit wörtlich den gleichen Beweisen unmittelbar auf komplexe Folgen (an)n:

(a) die Definitionen von Nullfolgen, Häufungspunkten und beschränkten Folgen (wobei die
Schranke s mit |an| ≤ s für alle n natürlich weiterhin reell bleibt);

(b) die Eindeutigkeit des Grenzwerts (und damit die Notation lim
n→∞

an), der Grenzwert lim
n→∞

qn = 0

für |q|< 1, die Beschränktheit konvergenter Folgen, die Grenzwertsätze und die äquivalenten
Charakterisierungen von Häufungspunkten.

Ihr könnt euch gerne selbst davon überzeugen und Abschnitt 5.A noch einmal unter der Vorausset-
zung durchlesen, dass alle Folgen nun komplex sind – es werden keinerlei Änderungen erforderlich
sein. Wir werden die Ergebnisse dieses Abschnitts daher im Folgenden auch im Komplexen verwen-
den, ohne jedes Mal wieder darauf hinzuweisen. Um solche Aussagen in Zukunft für den reellen und
komplexen Fall gleichzeitig aufschreiben zu können, vereinbaren wir:

Im Folgenden steht K immer für einen der Körper R oder C.

Die Inhalte der Abschnitte 5.B und 5.C benötigen jedoch wirklich einen geordneten Körper und
nicht nur das Konzept des Abstandes zweier Zahlen. Ergebnisse wie das Monotoniekriterium, die
Intervallschachtelung oder die Existenz eines Limes superior haben daher keine Entsprechung im
Komplexen.

Aufgabe 6.20. Es sei (an)n eine Folge in C. Beweise, dass (an)n genau dann gegen die komplexe
Zahl a konvergiert, wenn die Folgen (Rean)n und (Iman)n ihrer Real- und Imaginärteile gegen Rea
bzw. Ima konvergieren.

Da wir die Konvergenzkriterien aus Abschnitt 5.B, mit denen wir die Konvergenz einer Folge auch
ohne Kenntnis oder gleichzeitige Berechnung des Grenzwerts beweisen konnten, in C nicht mehr
zur Verfügung haben, wollen wir nun noch zwei sehr wichtige Konvergenzkriterien behandeln, die
sowohl in R als auch in C gelten.

Satz 6.21 (Satz von Bolzano-Weierstraß). Jede beschränkte Folge (an)n in K besitzt einen Häu-
fungspunkt.



74 Andreas Gathmann

Beweis. Für den Fall K= R haben wir dies bereits in Folgerung 5.48 gesehen: Der Limes superior
von (an)n ist ein Häufungspunkt.

Im Fall K= C stellen wir zunächst fest, dass nach Lemma 6.9 (b) mit (an)n auch die reellen Folgen
(Rean)n und (Iman)n beschränkt sind. Nach dem Satz von Bolzano-Weierstraß für R (den wir ja
schon bewiesen haben) gibt es also zunächst eine Teilfolge von (an)n, in der die Realteile gegen
ein a ∈ R konvergieren, und dann innerhalb dieser Teilfolge eine weitere Teilfolge, in der auch die
Imaginärteile gegen ein b ∈ R konvergieren. Nach Aufgabe 6.20 konvergiert diese Teilfolge dann
gegen a+ ib, d. h. a+ ib ist ein Häufungspunkt von (an)n. □

Das letzte wichtige Konvergenzkriterium, das wir hier beweisen wollen – das sogenannte Cauchy-
Kriterium – sieht fast so aus wie die Definition der Konvergenz. Der Unterschied besteht lediglich
darin, dass wir nicht verlangen, dass sich die Folgenglieder einem gegebenen Grenzwert beliebig
dicht annähern, sondern nur, dass sie sich untereinander beliebig nahe kommen. Auf diese Art müs-
sen wir den Grenzwert der Folge also wiederum nicht vorher kennen, um das Kriterium anwenden
zu können. Im Gegensatz zu unseren bisherigen Kriterien hat das Cauchy-Kriterium aber auch noch
den weiteren entscheidenden Vorteil, dass es äquivalent zur Konvergenz ist und somit auch zum
Beweis der Divergenz einer Folge verwendet werden kann.

Die Eigenschaft, dass sich die Folgenglieder untereinander beliebig nahe kommen, sieht formal wie
folgt aus.

Definition 6.22 (Cauchyfolgen). Eine Folge (an)n in K heißt Cauchyfolge, wenn

∀ε ∈ R>0 ∃n0 ∈ N ∀m,n≥ n0 : |am−an|< ε.

Bemerkung 6.23. Jede konvergente Folge ist eine Cauchyfolge: Ist (an)n konvergent mit Grenzwert
a ∈ K, so gibt es zu jedem ε ∈ R>0 ein n0 ∈ N mit |an−a| < ε

2 für alle n ≥ n0. Dann gilt nach der
Dreiecksungleichung aber auch für alle m,n≥ n0

|am−an|= |(am−a)+(a−an)| ≤ |am−a|+ |a−an|<
ε

2
+

ε

2
= ε,

d. h. (an)n ist eine Cauchyfolge.
13

Diese Tatsache, dass eine konvergente Folge immer eine Cauchyfolge ist, ist also sehr einfach zu
zeigen und wäre z. B. auch in Q richtig: Wenn die Folgenglieder gegen einen Grenzwert streben,
müssen sie sich natürlich auch untereinander beliebig nahe kommen. Die Umkehrung dagegen ist
weit weniger klar: Da Q ja „Löcher“ auf der Zahlengeraden hat, könnte es ja sein, dass sich die
Glieder einer rationalen Folge zwar beliebig annähern, aber sich an einem solchen Loch häufen und
daher kein Grenzwert der Folge in Q existiert. Dass so etwas in R oder C nicht passieren kann, weil
es dort keine solchen Löcher gibt, wird als Vollständigkeit dieser Körper bezeichnet (siehe auch
Definition 23.28). Um dies zu zeigen, benötigen wir zunächst ein kleines Lemma analog zu Lemma
5.8:

Lemma 6.24. Jede Cauchyfolge in K ist beschränkt.

Beweis. Nicht nur die Aussage, sondern auch ihr Beweis ist völlig analog zu Lemma 5.8: Es sei (an)n
eine Cauchyfolge in K. Dann gibt es zu ε = 1 ein n0, so dass |am− an| < ε = 1 für alle m,n ≥ n0
ist. Insbesondere gilt dies also für m = n0, und damit erhalten wir nach der Dreiecksungleichung für
alle n≥ n0

|an|= |an−an0 +an0 | ≤ |an−an0 |+ |an0 |< 1+ |an0 |.
Damit folgt nun aber |an| ≤ s für alle n ∈ N, wenn wir

s := max(|a0|, |a1|, . . . , |an0−1|,1+ |an0 |)
setzen. Also ist (an)n beschränkt. □

Satz 6.25 (Cauchy-Kriterium für Folgen, Vollständigkeit von K). Jede Cauchyfolge in K konver-
giert.

Nach Bemerkung 6.23 konvergiert eine Folge in K also genau dann, wenn sie eine Cauchyfolge ist.
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Beweis. Es sei (an)n eine Cauchyfolge in K. Dann ist (an)n nach Lemma 6.24 beschränkt und besitzt
damit nach dem Satz 6.21 von Bolzano-Weierstraß einen Häufungspunkt a. Wir behaupten, dass
(an)n sogar schon gegen a konvergiert.

Um dies zu zeigen, sei ε ∈ R>0 beliebig. Da (an)n eine Cauchyfolge ist, gibt es ein n0 ∈ N, so dass

|am−an|<
ε

2
für alle m,n≥ n0.

Weil a ein Häufungspunkt von (an)n ist, gilt nach Lemma 5.21 weiterhin

|am−a|< ε

2
für unendlich viele m,

und damit insbesondere für ein m ≥ n0. Wir können diese beiden Ungleichungen also miteinander
kombinieren und erhalten für ein solches m nach der Dreiecksungleichung

|an−a|= |an−am +am−a| ≤ |an−am|+ |am−a|< ε

2
+

ε

2
= ε

für alle n≥ n0. Damit ist (an)n konvergent gegen a. □

Beispiel 6.26 (Noch einmal die geometrische Folge). Wir betrachten noch einmal die geometrische
Folge (qn)n für ein q ∈K. Aus Beispiel 5.3 (c) und 5.9 (b) wissen wir bereits, dass (qn)n für |q|< 1
gegen 0 konvergiert und für |q|> 1 divergiert. Außerdem ist klar, dass die Folge für q = 1 konstant
ist und damit konvergiert. Wir zeigen nun mit dem Cauchy-Kriterium in den übrigen Fällen, also
wenn |q|= 1 und q ̸= 1, dass die Folge divergiert. Dazu müssen wir also beweisen, dass (qn)n keine
Cauchyfolge ist, d. h. (nach den Regeln der Negation aus Bemerkung 1.8)

∃ε > 0 ∀n0 ∈ N ∃m,n≥ n0 : |qm−qn| ≥ ε.

Um dies zu zeigen, setzen wir ε := |q−1|> 0. Nun sei n0 ∈N beliebig; wir setzen dann m = n0 +1
und n = n0. Mit diesen Werten folgt

|qm−qn|= |qn0+1−qn0 |= |qn0(q−1)|= |q|n0︸︷︷︸
=1

· |q−1|︸ ︷︷ ︸
=ε

= ε.

Also ist (qn)n keine Cauchyfolge und damit nach Satz 6.25 nicht
konvergent. Das Bild rechts illustriert dies: Nach der geometri-
schen Interpretation der komplexen Multiplikation aus Bemer-
kung 6.5 läuft die Folge für |q| = 1 und q ̸= 1 „mit konstanter
Geschwindigkeit“ auf dem Einheitskreis herum und nähert sich
somit keinem Grenzwert beliebig an.

q1

q2

q4

C

q3

q0 = 1

Aufgabe 6.27. Es sei (an)n eine Folge in K. Man zeige: Gibt es ein q ∈ R≥0 mit q < 1, so dass

|an+1−an| ≤ qn für alle n ∈ N,
so ist (an)n eine Cauchyfolge.

Aufgabe 6.28. Für ein fest gegebenes c ∈ C mit |c| < 1
4 definieren wir eine komplexe Folge (an)n

rekursiv durch
a0 = 0 und an+1 = a2

n + c für alle n ∈ N.
Zeige, dass (an)n konvergiert.

(Hinweis: Zeige zunächst, dass 1
4 + |c| eine obere Schranke für die Beträge aller Folgenglieder ist.)


