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6. Komplexe Zahlen

Bisher haben wir uns nahezu ausschlieflich mit dem euch aus der Schule bekannten Korper R der
reellen Zahlen befasst. In der Mathematik — und zwar sowohl in der Analysis als auch in der Alge-
bra — ist jedoch noch ein weiterer damit eng zusammenhingender Korper sehr wichtig: der Korper
der komplexen Zahlen. Die Idee dabei ist, einen Korper zu konstruieren, der die reellen Zahlen als
Teilmenge enthélt (man nennt so etwas auch eine Korpererweiterung von R), und in dem jedes nicht
konstante Polynom (wie z. B. x — x> + 1) eine Nullstelle besitzt. AuBerdem werden die komplexen
Zahlen zur Einfithrung und Untersuchung der Winkelfunktionen in Abschnitt 9.B sehr niitzlich sein.

6.A Die Konstruktion der komplexen Zahlen

Im Gegensatz zu den reellen Zahlen brauchen wir die komplexen nicht mehr axiomatisch vorauszu-
setzen — wir konnen sie explizit aus den reellen konstruieren.

Definition 6.1 (Komplexe Zahlen). Die Menge der komplexen Zahlen ist definiert als C := R?.
Wir betrachten auf dieser Menge die beiden Verkniipfungen

(x1,31) + (x2,52) = (X1 +x2,51 +2) (Addition)
und (x1,31) - (x2,32) 1= (x1x2 — y1¥2,X1y2 + y1x2)  (Multiplikation).

Notation 6.2 (Komplexe Zahlen in der Form x +iy). Beachte, dass fiir komplexe Zahlen, deren
zweite Komponente 0 ist, die Addition und Multiplikation

(x1,0) + (x2,0) = (x1 +x2,0) bzw. (x1,0) - (x2,0) = (x1x2,0)

genauso definiert ist wie fiir reelle Zahlen. Wir schreiben die komplexe Zahl (x,0) € C daher in der
Regel auch einfach als x und fassen auf diese Art die reellen Zahlen als Teilmenge der komplexen
auf. Setzen wir weiterhin i := (0, 1), so gilt

i =(0,1)-(0,1) = (=1,0) = —1
sowie fiir alle x,y € R
x+iy = (x,0) +(0,1)(5,0) = (x,0) + (0,y) = (x,y).
Diese Darstellung als x 4 1iy ist in der Tat auch die iibliche Schreibweise fiir eine komplexe Zahl —
wir werden Elemente von C ab jetzt immer in dieser Form schreiben. Diese Notation hat den Vorteil,
dass sich die Rechenregeln fiir die Addition und Multiplikation aus Definition 6.1 ganz von selbst

ergeben, wenn man i als Variable auffasst und die Gleichung i> = —1 beriicksichtigt: Es ist dann
nidmlich wie erwartet
(x1 +iy1) + (x2 +iy2) = (x1 +x2) +i(y1 +¥2)
und (1 +iy1) - (k2 Fiy2) = (v = yiy2) iy +xyi) = xx + Py + iy + oy

Wenn man in ingenieurswissenschaftliche Biicher schaut, werden die komplexen Zahlen dort in der
Tat sogar oft so eingefiihrt: Man nehme einfach an, dass es eine Zahl i mit i> = —1 gibt, und rechne
damit dann ganz normal weiter, als wire nichts Besonderes passiert. Es sollte aber hoffentlich klar
sein, dass eine solche ,,Definition* aus mathematischer Sicht unsinnig ist: Wenn wir bisher nur die
reellen Zahlen kennen, gibt es nach Lemma 4.16 (c) einfach keine Zahl, deren Quadrat gleich —1 ist—
und diese Situation wird natiirlich auch nicht dadurch besser, dass wir diesem nicht existierenden
Objekt einen Namen i geben. Stattdessen miissen wir den Umweg iiber die korrekte Konstruktion aus
Definition 6.1 gehen, die uns garantiert, dass C erst einmal widerspruchsfrei definiert ist, und konnen
dann erst im Nachhinein untersuchen, welche Eigenschaften der reellen Zahlen sich tatsédchlich auf
die komplexen iibertragen. Dies sind ndmlich auch nicht alle — so werden wir z.B. in Lemma 6.6
und Bemerkung 6.8 sehen, dass C zwar ein Korper, aber kein geordneter Korper ist.
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Definition 6.3 (Real- und Imaginirteil, Konjugation und Betrag). Es sei z=x+iy € C mitx,y € R
wie in Notation 6.2.

(a) Man nennt x den Realteil und y den Imaginérteil von z; die Notation hierfiir ist x = Rez
und y = Imz.

(b) Man nennt

Z:=x—1y die zu z komplex konjugierte Zahl

und  |z]:=+/x2+y2 €R>( den Betrag von z
(mit der reellen Wurzel aus Definition 5.30).

Bemerkung 6.4. Offensichtlich lassen sich der Real- und Imaginirteil von z =x+iy € C ausdriicken
als

1 i
Rezzi(z—%) und Imzz—i(z—f)a

wihrend der Betrag wegen zZ = (x +iy)(x —iy) = x> —i%y? = x? +y* auch als
|zl = VzzZ
geschrieben werden kann.

Bemerkung 6.5 (Geometrische Interpretation von C). Geometrisch konnen wir die Elemente von
C = R? natiirlich als Punkte der Ebene, der sogenannten komplexen Zahlenebene, zeichnen. Wir
wollen jetzt sehen, wie man die oben eingefiihrten Operationen fiir komplexe Zahlen in dieser
Zahlenebene grafisch veranschaulichen kann. Da diese Interpretation zwar fiir die Vorstellung sehr
wichtig ist, aber nicht fiir unsere spiteren exakten Rechnungen benétigt wird, wollen wir dabei ein
paar einfache und sicherlich bekannte Prinzipien der Schulgeometrie ohne Beweis verwenden.

Zunichst einmal ist klar, dass die reellen Zahlen in C, also diejenigen der Form x +1i- 0, genau die
auf der horizontalen Achse sind. Der Betrag |z| einer komplexen Zahl ist nach Definition genau der
Abstand des Punktes z vom Ursprung, und die komplexe Konjugation entspricht einer Spiegelung an
der reellen Achse (wie im Bild unten links). Ebenso offensichtlich ist, dass zwei komplexe Zahlen
genau so addiert werden, wie ihr in der Schule Vektoren im R? addiert habt, also indem man die Ver-
bindungsstrecken vom Ursprung zu z; und z; wie im folgenden Bild rechts zu einem Parallelogramm
zusammensetzt.
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Die Multiplikation dagegen ist schon interessanter. Der Einfachheit halber beschrianken wir uns im
Bild unten auf den Fall, in dem Real- und Imaginérteil beider Zahlen positiv sind — die anderen
Fille lassen sich analog behandeln. Wir haben dort links zwei komplexe Zahlen z; und z; wie oben
dargestellt (und zusitzlich die Winkel eingezeichnet, die die Verbindungsstrecken zum Ursprung mit
der positiven reellen Achse einschlieBen), und die zugehorigen rechtwinkligen Dreiecke rechts wie
folgt zusammengesetzt:

(a) Das Dreieck fiir z; haben wir um den Faktor x, zum Dreieck 0AB gestreckt.

(b) Das Dreieck fiir z» haben wir um den Faktor |z;| gestreckt und um den Winkel ¢; gedreht, so
dass das Dreieck 0BC mit Seitenldngen |z1|x2, |z1]|y2 und |z1| - |z2| entstanden ist (insbeson-
dere hat dieses Dreieck mit dem aus (a) also eine gemeinsame Kante 0B mit der Seitenlinge
|z1]x2).
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(c) CD ist die Senkrechte auf OA, und BE die Senkrechte auf CD. Damit ist das Dreieck CEB
dhnlich zu 0AB, es ist daher die Streckung des Dreiecks fiir z; um den Faktor y, und hat
Seitenldngen x1yz, y1y2 und |z1|y2.

C
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|21]
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0 1) : |z1] 2
xi
|z1] - |22
2 y2 _ B
‘ZZ| 2
yix2
A (]
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Aus diesem Bild lesen wir nun direkt ab, dass C die Koordinaten (xjx, — y1y2,x1y2 4 y1x2) hat, also
genau der Punkt z; - z; ist. Da dieser Punkt den Betrag |z1| - |z2| hat und den Winkel ¢; + ¢, mit der
positiven reellen Achse einschlie3t, sehen wir anschaulich:

Komplexe Zahlen werden multipliziert, indem man ihre Betrige multipliziert und ihre
Winkel addiert.

Wir wollen nun sehen, dass die Addition und Multiplikation auf C die erwarteten Eigenschaften
haben, also die Struktur eines Korpers bilden. Unsere Ergebnisse aus Kapitel 3 und Abschnitt 4. A
gelten somit unverindert auch fiir die komplexen Zahlen.

Lemma 6.6. C ist ein Korper.

Beweis (siehe auch Aufgabe 3.11). Die Kommutativitit der Addition und Multiplikation ist aus der
Definition offensichtlich. Die Assoziativitit der Addition und Multiplikation sowie die Distributivitét
rechnet man einfach nach; wir zeigen hier exemplarisch die Distributivitit: Fiir drei komplexe Zahlen
71 = X1 +1y1, 22 = X2 +1y2, 73 = x3 +iy3 folgt (letztlich wegen der Distributivitit in R)

(z1+22)z3 = ((x1 +x2) +i(y1 +y2)) - (x3 +iy3)
= (x1 +x2)x3 — (y1 +y2)y3 +i((x1 +x2)y3 + (1 +y2)x3)

= (x1x3 —y1y3+i(xys +y1x3)) + (x2x3 — yoys +1 (x2y3 +y2x3))
=213 + 2223-

Das additive neutrale Element ist 0, das additive Inverse zu z = x + iy natiirlich —z = —x —iy. Das
multiplikative neutrale Element ist 1, das multiplikative Inverse zu z = x +1iy # 0 ist

X -y

: (—ip)xr+iy) _ 2+
212 J“xz_f_yz7 =

X R .
+1 (X+1y) = =
<x2+y2 xz+y2) (x+1y) P )
Beispiel 6.7 (Division komplexer Zahlen). Erwihnenswert ist an Lemma 6.6 wohl vor allem die
Existenz einer Division, da ja zunichst einmal nicht offensichtlich ist, wie man fiir eine komplexe
Zahl z = x + iy das multiplikative Inverse % = J:iy wieder in der Form x’ +1iy’ schreiben kann. Die
Merkregel hierfiir ist, dass man diesen Bruch mit Z zu % = % erweitert, so dass der Nenner zu der

denn O
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nach Bemerkung 6.4 reellen Zahl zZ = |z|> wird und somit das i aus dem Nenner verschwindet. So
ist z. B.
1 1-2i 1-2i 1 2,

1121 (1+2)(1-2) 124225 5°
Bemerkung 6.8 (C ist kein geordneter Korper). C ist zwar ein Korper, kann aber nicht zu einem
geordneten Korper gemacht werden. Andernfalls miisste nimlich i> als Quadrat einer Zahl ungleich
0 nach Lemma 4.16 (c) positiv sein — was aber natiirlich ein Widerspruch ist, da andererseits i2=—1
nach demselben Lemma auch eine negative Zahl sein miisste.

Es ergibt also keinen Sinn zu fragen, welche von zwei gegebenen komplexen Zahlen groBer ist
als die andere. Damit sind unsere Ergebnisse aus den Abschnitten 4.B und 4.C auf die komplexen
Zahlen nicht anwendbar; z. B. sind die Begriffe von Supremum und Infimum sowie Maximum und
Minimum fiir Teilmengen von komplexen Zahlen nicht definiert.

6.B Eigenschaften der komplexen Zahlen

Auch wenn C kein geordneter Korper ist, haben wir in Definition 6.3 (b) bereits wie fiir R auch
fir C eine Betragsfunktion eingefiihrt, die immer reelle Werte annimmt und es uns somit erlaubt,
komplexe Zahlen betragsméfig miteinander zu vergleichen. Wir wollen nun sehen, dass diese kom-
plexe Betragsfunktion in der Tat sogar die gleichen Eigenschaften wie die reelle Betragsfunktion in
Lemma 4.18 (a) und (c) hat, auch wenn der Beweis dafiir in C ganz anders ist als in R.

Lemma 6.9 (Eigenschaften der komplexen Konjugation und Betragsfunktion). Fiir alle z1,z0 € C
gilt
(@ Zi=zna+to=u+nundZiz2 =212
(b) |Rezy| < lz1| und |Imz;| < |z
© |lz1z2l =z1] |22
@) |z1 +z2| <|z1|+|z2| (Dreiecksungleichung).

>

s

Beweis. Wie tiblich sei z; = x1 4+1y; und zp = xp +1iy».

(a) Dies rechnet man einfach nach: Es ist 7j = x; —iy; = x| +iy; = z;, sowie

tan=xi+tx+iyi+n)=xi+x—iyi+y)=21+2

und

T2 = X102 —y1y2 Fi(x1y2 +y1x2) = x1x0 — y1y2 —i(x1y2 +y1x2) = (x1 —iy1) (x2 —iy2)
=7122-

(b) Es gilt

534 (a)
[Rezi|=|xi|= /a7 < /aj+yi=lal;

analog folgt dies auch fiir den Imaginérteil.

(c) Bei der geometrischen Deutung der komplexen Multiplikation in Bemerkung 6.5 haben wir
dies bereits anschaulich gesehen; man rechnet es aber auch mit (a) sofort nach: Nach Be-
merkung 6.4 ist

534 _ —
lz122] =Vazn -T2 @ Vazion 2 Vamven= lz1] - |z2]-

(d) Zunichst ist nach (a) und Bemerkung 6.4

|Z1+Zz‘2:(Zl+Z2)m:ZIH+Z25+ZIE+ZZH: |Zl|2+|Z2|2+Z15+ﬁ
= |21 +|z2|* +2 Re(z1 7).

Mit (b) konnen wir nun den dabei auftretenden Realteil abschétzen durch

_418() B L © B
Re(z1z2) < |Re(z122)| < |a1z2| = a2 = |z - |z2],



70 Andreas Gathmann

und erhalten so
21+ 22 < lal’ + |2 +2 [l 12 = (a1 | + |2])*.
Wurzelziehen liefert nun mit Aufgabe 5.34 (a) die Behauptung. (]
Bemerkung 6.10.

(a) Die Dreiecksungleichung hat eine sehr anschauliche
Bedeutung, die auch ihren Namen erklirt: Nach der -
geometrischen Interpretation der Addition komplexer e
Zahlen aus Bemerkung 6.5 besagt sie einfach, dass ei- /I |z1+2
ne Seite in einem Dreieck (wie |z; + z2| im Bild rechts)
hochstens so lang ist wie die Summe der beiden anderen
(hier |z;| und |z2|). 0

(b) Wenn ihr gleichzeitig die Parallelvorlesung ,,Algebraische Strukturen hort, werdet ihr si-
cher sehen, dass Lemma 6.9 (a) gerade besagt, dass die komplexe Konjugation z — 7 ein
Gruppenhomomorphismus von (C,+) nach (C,+) und von (C\{0}, -) nach (C\{0}, - ) ist.
Zusammen macht dies die komplexe Konjugation zu einem Kérperhomomorphismus von C
nach C (in der Tat sogar zu einem Korperisomorphismus, da die Abbildung C — C, z+ 7
natiirlich bijektiv ist).

Wie schon am Anfang dieses Kapitels erwihnt, besteht aber die wesentliche Eigenschaft der kom-
plexen Zahlen darin, dass in C jedes (nicht konstante) Polynom eine Nullstelle besitzt. Beachte, dass
dies ganz und gar nicht offensichtlich ist — da man jede komplexe Zahl als x + iy mit x,y € R und
i> = —1 schreiben kann, sieht es ja eher so aus, als ob wir durch den Ubergang von R nach C nur
eine ,,Quadratwurzel aus —1* hinzugefiigt haben, also nur dem Polynom 2Z+1 (oder bestenfalls
noch anderen quadratischen Polynomen) eine Nullstelle gegeben haben. Dass dies in der Tat auch
fiir Polynome beliebigen Grades gilt, und zwar sogar noch, wenn sie auch komplexe Koeffizienten
haben diirfen, ist der Inhalt des sogenannten Fundamentalsatzes der Algebra:

Satz 6.11 (Fundamentalsatz der Algebra). Jedes nicht konstante komplexe Polynom hat eine Null-
stelle in C.

Beweisidee. Es gibt mehrere (vollig) verschiedene Moglichkeiten, den Fundamentalsatz der Algebra
zu beweisen. Leider sind alle diese Beweise fiir uns aber momentan noch zu schwierig, und so muss
ich euch fiir einen exakten Beweis dieses Satzes auf weiterfithrende Vorlesungen vertrosten — in den
Vorlesungen ,,Einfithrung in die Funktionentheorie®, ,,Einfiihrung in die Algebra“ und ,,Einfiihrung
in die Topologie* konnt ihr z. B. drei ganz verschiedene Beweise dieses Satzes sehen. Wir konnen
aber auch jetzt zumindest schon eine Beweisidee angeben, die hoffentlich dafiir ausreicht, dass ihr
den Satz glaubt und ein Gefiihl dafiir bekommt, warum er richtig ist.

Es sei dazu f ein komplexes, nicht konstantes Polynom, das wir der Einfachheit halber natiirlich als
normiert annehmen konnen. Es ist also

fR)=7"+a, 12" '+ +aiz+ag

fiir gewisse n € N5g und ay,...,a,-1 € C. Wie konnen wir uns eine solche Funktion grafisch
vorstellen? Da ihre Start- und Zielmenge C ist, konnen wir ihren Graphen, der ja dann in
C x C = R? x R? = R* liegt, nicht mehr wirklich zeichnen. In den Bildern unten haben wir daher
den Startraum C links und den Zielraum C rechts dargestellt, und fiir einige Punkte im Startraum
die zugehorigen Bildpunkte im Zielraum eingezeichnet.

Als Erstes wihlen wir uns einmal eine feste, sehr groe Zahl r € R und schauen, was passiert,
wenn wir mit z den Kreis um O mit Radius r durchlaufen. Wenn unsere Funktion einfach z — z"
wire, dann wiissten wir genau, wie f(z) auf dieser Kreislinie aussehen wiirde: Da bei der komplexen
Multiplikation nach Bemerkung 6.5 ja gerade Betrige multipliziert und Winkel addiert werden, ist
die n-te Potenz einer komplexen Zahl mit Betrag » und Winkel ¢ genau die Zahl mit Betrag " und
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Winkel n ¢. Lauft also z einmal beim Radius » im Kreis herum, d. h. ¢ von 0 bis 27, so lduft z” beim
Radius 7* genau n-mal im Kreis herum, ndmlich mit Winkel n¢ von 0 bis 2a7.

Nun ist unser Polynom zwar nicht wirklich genau 7z, aber fiir sehr grofle Betrdge von z ist der
Term 7" in f(z) mit der hochsten z-Potenz natiirlich betragsmifig viel groBer als die anderen Terme
an_17"'4---+ajz+ag. Anschaulich bedeutet das, dass f(z) immer ,,in der Nihe* von 2" ist. Wenn
also 7" beim Radius 7" insgesamt n-mal auf einer exakten Kreislinie herumléuft, wird f(z) ein klein
wenig von diesem Weg abweichen, aber letztlich immer noch n-mal um den Ursprung herumlaufen.
Das Bild unten zeigt in der ersten Zeile einen solchen méglichen Weg fiir n = 2, bei dem also f(z) in
einem ungefihren Abstand von 7> zweimal um den Ursprung liuft, wihrend z einmal auf dem Kreis

mit Radius r entlang lauft.
Im
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Was passiert nun, wenn wir den Radius r des Kreises fiir z langsam kleiner machen und zu schlief3-
lich 0 werden lassen, so wie im Bild von oben nach unten dargestellt? Natiirlich wird sich dann
auch der von f(z) durchlaufene Weg in irgendeiner Form langsam #ndern. Wir kénnen nicht viel
dariiber aussagen, wie diese Anderung genau aussieht — klar ist die Situation aber natiirlich, wenn
der Radius wie in der unteren Zeile des Bildes gleich O geworden ist: Dann ist der Kreis fiir z zu
einem Punkt zusammengeschrumpft, und folglich muss natiirlich auch der Weg von f(z) von der ur-
spriinglichen Schleife zu einem Punkt (ndmlich zum Punkt f(0) = ag) zusammenschrumpfen. Aber
es ist anschaulich klar, dass man einen geschlossenen Weg, der urspriinglich n-mal um den Ursprung
herumgelaufen ist, nicht auf einen Punkt zusammenziehen kann, ohne ihn dabei mindestens einmal
iiber den Nullpunkt zu ziehen. Und genau an so einer Stelle, wo der Weg fiir f(z) den Nullpunkt
trifft, haben wir natiirlich, was wir wollen: eine Nullstelle zy von f, so wie in der mittleren Zeile
oben im Bild. 0
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Auch wenn diese Beweisidee jetzt hoffentlich sehr anschaulich war, wire es doch noch ein sehr
weiter Weg fiir uns, diese Argumente zu einem exakten Beweis zu machen. Ein wichtiger fehlender
Punkt ist z. B., dass wir irgendwie formalisieren miissten, was es genau heif}t, dass ,,sich f(z) lang-
sam #ndert, wenn sich z langsam éndert®. Denn nur wenn sich der Weg fiir f(z) oben langsam und
kontinuierlich dndert, kénnen wir schlieBen, dass wir ihn irgendwann einmal iiber den Nullpunkt
ziehen miissen.

Bemerkung 6.12.

(a) Nach Satz 3.19 (a) folgt durch wiederholte Anwendung des Fundamentalsatzes der Algebra
sofort, dass jedes komplexe Polynom komplett in Linearfaktoren zerfillt, dass sich also jedes
solche Polynom f mit deg f = n € Ny als

f@)=clz—z1)- - -(2—)
fiir gewisse ¢, z1,-..,2, € C mit ¢ # 0 schreiben ldsst. Manchmal wird in der Literatur auch
diese Aussage als Fundamentalsatz der Algebra bezeichnet.

(b) Der Fundamentalsatz der Algebra garantiert uns zwar die Existenz einer Nullstelle eines
nicht konstanten komplexen Polynoms, er sagt uns aber nicht, wie wir eine solche Nullstelle
konkret finden konnen. In der Tat haben wir ja schon in Bemerkung 3.21 erwéhnt, dass es zur
exakten Bestimmung von Nullstellen von Polynomen im Allgemeinen nur fiir kleine Grade
explizite Formeln gibt. Einen sehr einfachen und oft vorkommenden Fall, in dem sich die
Nullstellen jedoch schnell finden lassen, wollen wir hier kurz erwéhnen:

Beispiel 6.13. Es sei f: C — C ein Polynom mit deg f = 2 und reellen Koeffizienten, das der
Einfachheit halber wieder normiert sei, d. h. es sei f(z) = z> + pz+ ¢ fiir gewisse p,q € R. In diesem
Fall lassen sich die (komplexen) Nullstellen von f schnell berechnen: Aus z2 + pz+¢q = 0 folgt durch
quadratische Ergénzung

2
P ) 2p
~) ==——g=:D.
(Z t3) =779
Fiir D > 0 ergeben sich durch Wurzelziehen natiirlich die (reellen) Nullstellen —g ++/D. Fiir D < 0
gibt es keine reellen Losungen, aber wegen i = —1 erhalten wir stattdessen die beiden komplexen

Losungen —& +iy/—D.

Aufgabe 6.14. Fiir n = 1,2,3 bestimme und skizziere man die Menge aller z € C, fiir die die Glei-
chung 2 Imz- Im% =n gilt.

Aufgabe 6.15.

(a) Zeige (ohne Verwendung des Fundamentalsatzes der Algebra), dass auch in C Quadratwur-
zeln existieren, also dass es zu jedem w € C ein z € C gibt mit z> = w.

(b) Beweise den Fundamentalsatz der Algebra fiir Polynome vom Grad 2.

Aufgabe 6.16. Stelle die folgenden Zahlen in der Form x +1iy mit x,y € R dar:
(@) z=24;
1) 0%,
0 z= ()
(c) alle Losungen der Gleichung z* +z2 41 =0;
(d) alle z € C mit || < 1.

6.C Reelle und komplexe Folgen

Auch wenn C nach Bemerkung 6.8 kein geordneter Korper ist, konnen wir mit Hilfe der Betrags-
funktion aus Definition 6.3 sagen, was es bedeutet, dass sich eine Folge komplexer Zahlen einem
Grenzwert anndhert. In der Tat konnen wir die reelle Grenzwertdefinition 5.1 (b) wortlich auf den
reellen Fall tibertragen:
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Definition 6.17 (Grenzwerte komplexer Folgen). Eine komplexe Zahl a heifit Grenzwert einer Fol-
ge (ay), in C, wenn

VeeRsg IngeNVn>ngp: |a,—a| < €.

Wie im Reellen sagt man in diesem Fall auch hier, dass (a,), gegen a konvergiert. Existiert kein
solcher Grenzwert, so heifit die Folge divergent.

Bemerkung 6.18 (Anschauliche Deutung des Grenzwertbegriffs in
C). Definieren wir fiir ein komplexes a € C und reelles € € R
analog zu Bemerkung 5.2 wieder die £-Umgebung von a als

Ug(a) ={xeC:|x—a| <&}, Ue(d) ‘o Has
L . . .. e & e
so ist dies wie im Bild rechts nun ein Kreis in der komplexen Ebe- s=y ¢ &
ne mit Mittelpunkt a und Radius €. Die Grenzwertbedingung besagt da do
weiterhin, dass in jeder e-Umgebung fast alle Folgenglieder liegen, C

und kann damit wieder so interpretiert werden, dass sich die Folgen-
glieder beliebig dicht dem Grenzwert nihern.

Bemerkung 6.19 (Ubertragung der Grenzwerteigenschaften von R auf C). Aufgrund der gleichen
Grenzwertdefinition 5.1 bzw. 6.17 sowie der gleichen Eigenschaften der Betragsfunktion aus Lem-
ma 4.18 bzw. 6.9 (insbesondere der Dreiecksungleichung) gelten sehr viele Resultate iiber reelle
Grenzwerte genauso auch fiir komplexe. In der Tat iibertragen sich alle Definitionen und Sétze aus
Abschnitt 5.A mit wortlich den gleichen Beweisen unmittelbar auf komplexe Folgen (ay,),:

(a) die Definitionen von Nullfolgen, Haufungspunkten und beschriankten Folgen (wobei die
Schranke s mit |a,| < s fiir alle n natiirlich weiterhin reell bleibt);

(b) die Eindeutigkeit des Grenzwerts (und damit die Notation lim ay,), der Grenzwert lim ¢" =0
n—oo n—yoo

fiir |¢| < 1, die Beschrinktheit konvergenter Folgen, die Grenzwertsétze und die dquivalenten
Charakterisierungen von Haufungspunkten.

Thr konnt euch gerne selbst davon iiberzeugen und Abschnitt 5.A noch einmal unter der Vorausset-
zung durchlesen, dass alle Folgen nun komplex sind — es werden keinerlei Anderungen erforderlich
sein. Wir werden die Ergebnisse dieses Abschnitts daher im Folgenden auch im Komplexen verwen-
den, ohne jedes Mal wieder darauf hinzuweisen. Um solche Aussagen in Zukunft fiir den reellen und
komplexen Fall gleichzeitig aufschreiben zu kénnen, vereinbaren wir:

Im Folgenden steht K immer fiir einen der Korper R oder C.

Die Inhalte der Abschnitte 5.B und 5.C benoétigen jedoch wirklich einen geordneten Korper und
nicht nur das Konzept des Abstandes zweier Zahlen. Ergebnisse wie das Monotoniekriterium, die
Intervallschachtelung oder die Existenz eines Limes superior haben daher keine Entsprechung im
Komplexen.

Aufgabe 6.20. Es sei (ay), eine Folge in C. Beweise, dass (ay), genau dann gegen die komplexe
Zahl a konvergiert, wenn die Folgen (Reay), und (Imay,), ihrer Real- und Imaginérteile gegen Rea
bzw. Ima konvergieren.

Da wir die Konvergenzkriterien aus Abschnitt 5.B, mit denen wir die Konvergenz einer Folge auch
ohne Kenntnis oder gleichzeitige Berechnung des Grenzwerts beweisen konnten, in C nicht mehr
zur Verfiigung haben, wollen wir nun noch zwei sehr wichtige Konvergenzkriterien behandeln, die
sowohl in R als auch in C gelten.

Satz 6.21 (Satz von Bolzano-WeierstraBl). Jede beschriinkte Folge (ay), in K besitzt einen Heiu-
fungspunkt.
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Beweis. Fiir den Fall K = R haben wir dies bereits in Folgerung 5.48 gesehen: Der Limes superior
von (ay), ist ein Haufungspunkt.

Im Fall K = C stellen wir zunichst fest, dass nach Lemma 6.9 (b) mit (a, ), auch die reellen Folgen
(Reay), und (Imay), beschrinkt sind. Nach dem Satz von Bolzano-Weierstra$ fiir R (den wir ja
schon bewiesen haben) gibt es also zunichst eine Teilfolge von (a,),, in der die Realteile gegen
ein a € R konvergieren, und dann innerhalb dieser Teilfolge eine weitere Teilfolge, in der auch die
Imaginirteile gegen ein b € R konvergieren. Nach Aufgabe 6.20 konvergiert diese Teilfolge dann
gegen a+ib, d. h. a+ib ist ein Hiufungspunkt von (a,),. O

Das letzte wichtige Konvergenzkriterium, das wir hier beweisen wollen — das sogenannte Cauchy-
Kriterium — sieht fast so aus wie die Definition der Konvergenz. Der Unterschied besteht lediglich
darin, dass wir nicht verlangen, dass sich die Folgenglieder einem gegebenen Grenzwert beliebig
dicht annéhern, sondern nur, dass sie sich untereinander beliebig nahe kommen. Auf diese Art miis-
sen wir den Grenzwert der Folge also wiederum nicht vorher kennen, um das Kriterium anwenden
zu konnen. Im Gegensatz zu unseren bisherigen Kriterien hat das Cauchy-Kriterium aber auch noch
den weiteren entscheidenden Vorteil, dass es dquivalent zur Konvergenz ist und somit auch zum
Beweis der Divergenz einer Folge verwendet werden kann.

Die Eigenschaft, dass sich die Folgenglieder untereinander beliebig nahe kommen, sieht formal wie
folgt aus.

Definition 6.22 (Cauchyfolgen). Eine Folge (a,), in K heift Cauchyfolge, wenn
Ve eRso Ing eNVmn>ng: |a, —ay| < €.

Bemerkung 6.23. Jede konvergente Folge ist eine Cauchyfolge: Ist (a,), konvergent mit Grenzwert
a € K, so gibt es zu jedem € € R~ ein ng € N mit |a, —a| < § fiir alle n > ng. Dann gilt nach der
Dreiecksungleichung aber auch fiir alle m,n > ng
€ €
|am — an| = |(am —a) + (@ —an)| < |aw —al +|a—ay| < §+§ =¢&,
d.h. (a,), ist eine Cauchyfolge.

Diese Tatsache, dass eine konvergente Folge immer eine Cauchyfolge ist, ist also sehr einfach zu
zeigen und wire z. B. auch in Q richtig: Wenn die Folgenglieder gegen einen Grenzwert streben,
miissen sie sich natiirlich auch untereinander beliebig nahe kommen. Die Umkehrung dagegen ist
weit weniger klar: Da Q ja ,Locher auf der Zahlengeraden hat, konnte es ja sein, dass sich die
Glieder einer rationalen Folge zwar beliebig annédhern, aber sich an einem solchen Loch hédufen und
daher kein Grenzwert der Folge in Q existiert. Dass so etwas in R oder C nicht passieren kann, weil
es dort keine solchen Locher gibt, wird als Vollstindigkeit dieser Korper bezeichnet (siehe auch
Definition 23.28). Um dies zu zeigen, bendtigen wir zunéchst ein kleines Lemma analog zu Lemma
5.8:

Lemma 6.24. Jede Cauchyfolge in K ist beschrdnkt.

Beweis. Nicht nur die Aussage, sondern auch ihr Beweis ist vollig analog zu Lemma 5.8: Es sei (ay ),
eine Cauchyfolge in K. Dann gibt es zu € = 1 ein ng, so dass |a, —a,| < € =1 fiir alle m,n > ng
ist. Insbesondere gilt dies also fiir m = ng, und damit erhalten wir nach der Dreiecksungleichung fiir
alle n > ny
|an| = |an — any + ang| < an — any| + [ang| <1+ [ang|-
Damit folgt nun aber |a,| < s fiir alle n € N, wenn wir
s :=max(|aol, |ail, ..., ang—1] 1+ |an,|)
setzen. Also ist (a,), beschrinkt. O

Satz 6.25 (Cauchy-Kriterium fiir Folgen, Vollstindigkeit von K). Jede Cauchyfolge in K konver-
giert.

Nach Bemerkung 6.23 konvergiert eine Folge in K also genau dann, wenn sie eine Cauchyfolge ist.
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Beweis. Es sei (ay), eine Cauchyfolge in K. Dann ist (a, ), nach Lemma 6.24 beschrinkt und besitzt
damit nach dem Satz 6.21 von Bolzano-Weierstral einen Haufungspunkt a. Wir behaupten, dass
(an)n sogar schon gegen a konvergiert.

Um dies zu zeigen, sei € € R~ beliebig. Da (a,), eine Cauchyfolge ist, gibt es ein ny € N, so dass
lam — an| < g fiir alle m,n > ny.
Weil a ein Haufungspunkt von (a,), ist, gilt nach Lemma 5.21 weiterhin
|am —al < g fiir unendlich viele m,

und damit insbesondere fiir ein m > np. Wir konnen diese beiden Ungleichungen also miteinander
kombinieren und erhalten fiir ein solches m nach der Dreiecksungleichung
€ €
|an —a| = |an — am + am —a| < |ay — am| + |am — a| < 5—&—5 =€
fiir alle n > ng. Damit ist (a,), konvergent gegen a. O

Beispiel 6.26 (Noch einmal die geometrische Folge). Wir betrachten noch einmal die geometrische
Folge (¢"), fiir ein ¢ € K. Aus Beispiel 5.3 (c) und 5.9 (b) wissen wir bereits, dass (¢"), fir |g| < 1
gegen 0 konvergiert und fiir |g| > 1 divergiert. AuBerdem ist klar, dass die Folge fiir ¢ = 1 konstant
ist und damit konvergiert. Wir zeigen nun mit dem Cauchy-Kriterium in den tibrigen Fillen, also
wenn |¢| = 1 und g # 1, dass die Folge divergiert. Dazu miissen wir also beweisen, dass (¢"), keine
Cauchyfolge ist, d. h. (nach den Regeln der Negation aus Bemerkung 1.8)

Je>0VnpeNImn>ng: |g" —4"| > €.

Um dies zu zeigen, setzen wir € := |¢ — 1| > 0. Nun sei ny € N beliebig; wir setzen dann m = ng + 1
und n = ny. Mit diesen Werten folgt

lq" —q"| =g — g™ =" (g—1)| =g |~ 1| =& To-1- o
—~ ——

=1 =€ qs .\ql
Also ist (¢"), keine Cauchyfolge und damit nach Satz 6.25 nicht : / Y
konvergent. Das Bild rechts illustriert dies: Nach der geometri- : o
schen Interpretation der komplexen Multiplikation aus Bemer- \
kung 6.5 lduft die Folge fiir |¢g| = 1 und ¢ # 1 ,,mit konstanter N /
Geschwindigkeit” auf dem Einheitskreis herum und néhert sich N .
somit keinem Grenzwert beliebig an.

Aufgabe 6.27. Es sei (ay), eine Folge in K. Man zeige: Gibt es ein g € R>¢ mit g < 1, so dass
laps1 —an| < ¢" firallen €N,
so ist (a, ), eine Cauchyfolge.

Aufgabe 6.28. Fiir ein fest gegebenes ¢ € C mit |c| < } definieren wir eine komplexe Folge (ay),
rekursiv durch
ap=0 und a4 = aﬁ—&—c fiir alle n € N.

Zeige, dass (ay,), konvergiert.

(Hinweis: Zeige zunéchst, dass % + |c| eine obere Schranke fiir die Betrige aller Folgenglieder ist.)



