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5. Folgen und Grenzwerte

Nachdem wir die reellen Zahlen vollstindig charakterisiert haben, wollen wir jetzt zur eigentlichen
Analysis kommen. Der zentrale Begriff ist dabei der des Grenzwerts, den ihr ja sicher in der Schule
schon in der einen oder anderen Form kennengelernt habt und den wir jetzt exakt einfiithren wollen.
Wir beginnen dabei mit Grenzwerten von Folgen, da sie fiir den Anfang einfacher sind als die spéter
auch noch wichtigen Grenzwerte von Funktionen.

5.A Grenzwerte von Folgen

Zur Untersuchung des Grenzwertbegriffs miissen wir als Erstes exakt definieren, was wir damit
meinen, dass sich eine (unendlich lange) Folge reeller Zahlen einem Wert beliebig genau annéhert.

Definition 5.1 (Folgen und Grenzwerte).
(a) Eine Folge in einer Menge M ist eine Abbildung
N—M, n— a,.

Man schreibt eine solche Folge als (ay,)qen, einfach nur als (ay),, oder durch Aufzéhlen
der Folgenglieder als (ag,ay,as,...). Hin und wieder ist in der Literatur auch die noch wei-
ter verkiirzte Schreibweise (a,) zu finden, die wir hier allerdings nicht verwenden wollen,
um Verwechslungen der Folge (a,), mit einem zufillig eingeklammerten Folgenglied a,, zu
vermeiden.

Manchmal ist es bequem, Folgen nicht beim Index 0, sondern bei einem anderen Startindex
ngy € Z beginnen zu lassen — wenn man dies in der Notation deutlich machen mochte, schreibt
man derartige Folgen als (a,)n>n,-

In diesem Kapitel werden wir nur den Fall M = R, also sogenannte reelle Folgen betrachten.
Wir werden daher oft nur von einer Folge sprechen und damit dann immer eine reelle Folge
meinen. Spiter werden wir auch noch andere Folgen kennenlernen, z. B. Folgen komplexer
Zahlen in Abschnitt 6.C oder Folgen von Funktionen in Abschnitt 8.C.

(b) Eine Zahl a € R heiBt Grenzwert einer (reellen) Folge (ay,),, wenn
VeeRs0InpeNVn>ng: |a,—a| < e.

Wir werden gleich in Lemma 5.5 sehen, dass eine Folge hochstens einen solchen Grenzwert
besitzen kann. Wenn ein solches a existiert, konnen wir also sagen, dass a der Grenzwert der
Folge (ay), ist. Man nennt die Folge in diesem Fall konvergent (gegen a) und schreibt dies
als

lima, =a
n—oo

(die Bezeichnung kommt vom englischen Wort ,.limit* bzw. dem lateinischen ,,limes*), oder
manchmal auch als a, — a (fiir n — o). Existiert ein solcher Grenzwert nicht, so heif3it die
Folge divergent.

Bemerkung 5.2 (Anschauliche Deutung des Grenzwertbegriffs). Um die Definition des Grenzwer-
tes in leicht verstindliche Worte zu fassen, fithren wir ein paar intuitive Notationen ein. Fiir a € R
und € € R+ heilit das offene Intervall

Ueg(a) ={xeR:|x—a|<e}=(a—¢g,a+e)

die e-Umgebung von a. Die Grenzwertbedingung besagt nun genau, dass in jeder solchen €-Um-
gebung von a — egal wie klein das € gewdhlt ist — alle Folgenglieder ab einem gewissen ng liegen,
wobei dieses ng natiirlich von dem gewéhlten € abhéngen darf. Im Beispielbild unten wére das z. B.
fiir ng = 3 der Fall, denn a3,a4,as, ... liegen alle in Ug (a).
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Ue(a) seeagazy a» ap  ap

o )

a—& a-+ €

Man kann diese Tatsache auch so ausdriicken, dass in jeder €e-Umgebung alle bis auf endlich viele
Folgenglieder liegen miissen (ndmlich alle bis auf evtl. ag,...,a,,—1). In der Analysis verwendet
man gerne den Buchstaben & fiir eine kleine positive Zahl und die Sprechweise ,.fast alle* fiir ,,alle
bis auf endlich viele®, und kann damit die Grenzwertbedingung auch in Worten formulieren:

Eine Zahl a ist genau dann Grenzwert einer Folge, wenn in jeder €-Umgebung von a
fast alle Folgenglieder liegen.

Anschaulich bedeutet das natiirlich einfach, dass sich die Folgenglieder beliebig dicht dem Grenz-
wert anndhern. Beachte auch, dass dies insbesondere bedeutet, dass das Abidndern oder Weglassen
endlich vieler Folgenglieder nichts daran dndert, ob und gegen welchen Grenzwert eine Folge kon-
vergiert. Der Startindex einer Folge wie in Definition 5.1 (a) ist fiir ihre Konvergenz also irrelevant.

Beispiel 5.3. Hier sind ein paar sehr wichtige Beispiele von Grenzwerten:

(a)

(b)

©

Es ist offensichtlich, dass eine konstante Folge, in der alle Folgenglieder den gleichen Wert
a € R haben, gegen eben dieses a konvergiert, d. h. dass lim a = a gilt: Hier liegen ja sogar
n—soo

alle Folgenglieder in jeder beliebigen €-Umgebung von a.
Wir behaupten, dass lim 1 = 0 gilt.
n—yoo

Um dies mit Hilfe der Definition 5.1 (b) zu beweisen, sei zunéchst ein € € R beliebig
vorgegeben; wir miissen zeigen, dass fast alle Glieder der Folge (%)n>l in der e-Umgebung
von 0 liegen. Dies ist aber sehr einfach: Nach der archimedischen Ordnung von R wie in
Bemerkung 4.31 (a) gibt es ein nyp € N mit % < €. Mit einem solchen nq gilt dann fiir alle
n>nop

1

o=t
n

no

<&,
n

wobei wir die Rechenregeln fiir Ungleichungen aus Lemma 4.16 verwendet haben. Fast alle
Folgenglieder, ndmlich alle % fiir n > nop, liegen also in der e-Umgebung von 0. Damit gilt
nach Definition lim % =0.

n—yoo
Beachte, dass wir hierbei zu unserem € gar kein konkretes ny angegeben haben, das die
Grenzwertbedingung erfiillt. Wir hitten dies hier leicht tun konnen, z. B.

1
=|-41
no \JS + J

mit der GauBBklammer aus Bemerkung 4.34, denn dann ist ng eine natiirliche Zahl groBer als
é, und damit wie oben % < €. Aber zur Uberpriifung der Grenzwertbedingung ist es nicht
notig, ein konkretes ng anzugeben — erst recht nicht das kleinste (also ,,beste*) mogliche nyg.
In der Tat wire eine solche Bestimmung des kleinstmdglichen ny fiir die allermeisten Folgen
auch sehr aufwendig oder sogar gar nicht praktisch durchfiihrbar.

(Geometrische Folge) Es sei ¢ € R mit |g| < 1; wir behaupten, dass dann lim ¢" = 0 gilt.
n—soo

Fiir ¢ = O ist dies natiirlich klar, da wir dann eine ab dem ersten Glied konstante Folge haben.
Ansonsten sei wie in (b) wieder € € R+ beliebig vorgegeben. Wir setzen x := ﬁ —1, also

lg| = I—Jlrx; wegen |g| < 1 ist natiirlich x > 0. Nach Bemerkung 4.31 (a) gibt es nun einng € N
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mit % < gx. Es gilt dann fiir alle n > ng

1) 1
lg" =0 =q|" =

(1 +x)11
@ 1 . . .
< T (mit x > 0 nach der Bernoulli-Ungleichung aus Satz 4.20)

nx

3 1
< — (wegen 1 > 0)

nx
@ 1
< — (wegen n > ng)

nox
) 1
< &, (wegen — < ex)

no

woraus die Behauptung folgt.

Bemerkung 5.4 (Riickwirtsrechnen). Wenn ihr euch die Rechnung in Beispiel 5.3 (c) angeschaut
habt, werdet ihr vermutlich keine Probleme haben, sie nachzuvollziehen — aber euch sicher auch
fragen, wie ihr darauf jemals selbst hittet kommen sollen. Insbesondere die Festlegungen von x und
ng vor Beginn der Rechnung fallen ja doch sehr vom Himmel.

Die Antwort hierauf ist einfach, dass ich den Beweis zunéchst , riickwérts durchgefiihrt habe, bevor
ich angefangen habe, ihn aufzuschreiben. Ich habe also mit der Rechnung oben begonnen, bevor ich
wusste, was z. B. ng spiter einmal sein wiirde, und mir etwa folgendes gedacht:

Okay, wir miissen sehen, dass |¢"| fiir n — oo kleiner als das gegebene € wird. Nehmen wir
der Einfachheit halber erst einmal g > 0 an, dann miissen wir also eine Ungleichungskette
q" < --- < € finden. Bisher wissen wir nichts dariiber, wie sich Potenzen mit wachsendem
Exponenten verhalten ... aber wir hatten die Bernoulli-Ungleichung (1 +x)" > 1+ nx ge-
zeigt, die Potenzen durch lineare Funktionen abschitzen kann. Um die anwenden zu konnen,
konnten wir vielleicht ¢ = 1 4 x setzen? Nein, das hilft nicht, denn dann wiirde die Unglei-
chung ¢" = (1+x)" > 1+ nx ja in die falsche Richtung gehen. Also versuchen wir lieber
q= ﬁ, das dreht ,,>* zu ,,<* um. Moment, gibt es so ein x iiberhaupt und erfiillt das die
Voraussetzungen der Bernoulli-Ungleichung? Ja, die Gleichung ist ja dquivalent zu x = é -1,
und es ist g < 1, also x > 0, das passt. Damit haben wir die Schritte (1) und (2) oben.

Jetzt miissen wir also ﬁ weiter abschitzen und sehen, warum dieser Term gegen O geht.
Die 1 im Nenner stort. Wir konnten sicher auch mit ihr weiter rechnen, aber einfacher wére
. . . 1 1 . o . . . .
der Ausdruck ohne sie. Es ist ja auch 1 < ;-, d. h. die Abschitzung geht in die richtige
Richtung, und der neue Ausdruck é geht immer noch gegen 0. Also lassen wir die 1 in (3)
einfach weg. Wie wir jetzt weiter machen konnen, wissen wir aus Beispiel 5.3 (b): Ist nun

n > ng und % < €x, so erhalten wir in (4) und (5) die gewiinschte Abschétzung.

Nachdem wir diese Uberlegungen durchgefiihrt haben, konnen wir schlieBlich noch die Betrige
wieder einarbeiten und den Beweis dann so aufschreiben wie oben.

Beachte, dass es natiirlich viele verschiedene Arten gibt, derartige Abschidtzungen durchzufiihren.
Aber nicht jede Abschitzung, die richtig ist, ist auch zielfithrend: So hitten wir z. B. in (3) oben auch

versuchen konnen, den Term nx wegzulassen und die Abschitzung mit ; Jrlnx < % fortzusetzen. Diese

Ungleichung ist genauso richtig wie (3), aber der neue Ausdruck % = 1 geht offensichtlich mit n — oo
nicht mehr gegen 0, so dass wir die gewiinschte Folgerung - - - < € jetzt nicht mehr erreichen konnen.
Man muss beim Abschitzen also stets einen geeigneten Mittelweg finden und aufpassen, dass man
weder zu wenig noch zu viel abschitzt. Dadurch erfordern derartige Rechnungen oft eine geschickte
und vielleicht nicht ganz offensichtliche Idee. Am Anfang ist das sicher ungewohnt, aber im Laufe
der Zeit werdet ihr ein gewisses Gefiihl dafiir entwickeln, welche Art von Abschitzung in welchen
Fillen sinnvoll sein konnte. Aber so oder so — fiir das reine Nachvollziehen einer Abschitzung, die
jemand anders gefunden hat (wie z. B. wenn ihr den Beweis in Beispiel 5.3 (c) lest und verstehen
wollt), sind solche Ideen natiirlich nicht notwendig.
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Wir wollen nun die bereits in Definition 5.1 versprochene Aussage beweisen, dass der Grenzwert
einer Folge (sofern er existiert) immer eindeutig ist. Anschaulich ist diese Aussage natiirlich sofort
einleuchtend: Es konnen nicht fast alle Folgenglieder beliebig nahe an zwei verschiedenen Zahlen
liegen. Denn wenn wir disjunkte e-Umgebungen der beiden Grenzwerte wihlen, kann jedes Folgen-
glied natiirlich immer nur in einer der beiden Umgebungen liegen — und somit kénnen nicht fast alle
in beiden Umgebungen liegen. Formal aufgeschrieben sieht diese Beweisidee so aus:

Lemma 5.5 (Eindeutigkeit des Grenzwerts). Jede Folge hat hochstens einen Grenzwert.

Beweis. Angenommen, die Aussage wire falsch, d.h. es gibe eine Folge (ay), mit a, — a und
a, — b fiir gewisse a,b € R mit a # b.

Wihlen wir dann € := @ als den halben Abstand zwi-

schen a und b, so gilt wie im Bild rechts Ug (@) NUe (b) =0, Ue(a) o Ue(b) ¢
denn aus x € Ug(a) NUg(b) wiirde mit der Dreiecksunglei- a b
chung der Widerspruch

la—b|=|la—x+x—b| <|a—x|+|x—b|<e+e=2e=|a—D
folgen.

Aber wegen a,, — a gilt a, € Ug(a) fiir fast alle n (also fiir alle n > n; mit einem gewissen n; € N),
und wegen a, — b genauso a, € Ug(b) fiir fast alle n (also fiir alle n > np mit einem gewissen
ny € N). Damit folgt auch a, € Ug(a) NU,(b) fur fast alle n (ndmlich fiir alle n, bei denen beide
Aussagen gelten, also fiir n > max(n,n;)), was ein Widerspruch zu U, (a) NUg (b) = 0 ist und somit
das Lemma beweist. O

Bemerkung 5.6. Wir sehen im Beweis von Lemma 5.5, dass die ,,fast alle“~-Notation den Vorteil hat,
dass wir uns oft das explizite Arbeiten mit dem ng aus Definition 5.1 (b) (von dem wir ja meistens
ohnehin nicht wirklich wissen miissen, welchen Wert es genau hat) sparen konnen. Die einzige
Eigenschaft, die wir hier wirklich gebraucht haben, ist die: Wenn eine Aussage A(n) fiir fast alle n
gilt, und eine weitere Aussage B(n) ebenfalls fiir fast alle (aber nicht notwendig fiir die gleichen),
dann gelten auch A(n) und B(n) zusammen fiir fast alle n — nédmlich fiir alle bis auf die endlich vielen
Ausnahmen fiir A(n) und B(n).

Natiirlich gibt es auch Folgen ohne Grenzwert. Die einfachste Moglichkeit dafiir ist, dass ihre Glie-
der unbeschrinkt wachsen und sich somit keiner Zahl annihern kénnen. Dies wollen wir jetzt formal
untersuchen.

Definition 5.7 (Beschrinkte Folgen). Eine Folge (a,), heift beschrinkt, wenn die Menge ihrer
Folgenglieder beschrinkt ist, also wenn es ein s € R gibt mit |a,| < s fiir alle n € N.

Lemma 5.8. Jede konvergente Folge ist beschrdnkt.

Beweis. Es sei (a,), eine konvergente Folge mit Grenzwert a. Dann gibt es zu € = 1 ein np, so dass
|a, — a| < € = 1 und damit nach der Dreiecksungleichung auch

|an| = |an —a+a| <|ay—al+|a| < 1+]q|
fiir alle n > ng gilt. Damit ist dann aber |a,| < s fiir alle n € N, wenn wir
s :=max(|ao|,|ai1],...,|any—1],1+al)
setzen. Also ist (a,), beschrinkt. O
Beispiel 5.9.
(a) Die Folge
(an)n = (1,0,2,0,3,0,...)
ist unbeschrinkt (da die Menge N ihrer Folgenglieder nach Satz 4.30 unbeschrinkt ist) und
damit nach Lemma 5.8 divergent.
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(b) Auch die geometrische Folge (¢"), aus Beispiel 5.3 (c) ist fiir |¢| > 1 unbeschrinkt und damit
divergent: Ist ndmlich s € R beliebig, so konnen wir nach der archimedischen Ordnung
von R ein n € N wihlen mit n > Iq\%’ und erhalten mit der Bernoulli-Ungleichung

4.20
lqI" = (1+1g[=1)" = 1+n(lg=1) > n(lg| =1) >s.

Wie rechnet man nun aber Grenzwerte konkret aus, wenn man nicht jedes Mal wieder auf die Defini-
tion zuriickgehen mochte? Gliicklicherweise gibt es dafiir die Grenzwertsétze, die besagen, dass man
Grenzwerte mit Summen, Differenzen, Produkten und Quotienten vertauschen kann, und die damit
oft eine konkrete Berechnung ermdglichen. Zum Beweis dieser Aussage benotigen wir zunéchst ein
Lemma.

Definition 5.10 (Nullfolgen). Eine Folge heif3t Nullfolge, wenn sie gegen 0 konvergiert. Offensicht-
lich konvergiert eine Folge (a,), damit nach Definition genau dann gegen a € R, wenn (a, —a),
eine Nullfolge ist.

Lemma 5.11. Ist (a,), eine beschrinkte Folge und (by), eine Nullfolge, so ist auch (anby), eine
Nullfolge.

Beweis. Es sei € € Ry beliebig. Da (ay,), beschrinkt ist, gilt |a,| < s fiirein s € R~ und alle n € N,
Da (b,), eine Nullfolge ist, ist weiterhin |b,| < £ fiir fast alle n. Also gilt fiir fast alle n auch die
Abschitzung |a,by,| = |a,|-|bs] < s-£ =€, d.h. (aby,), ist eine Nullfolge. O

Bemerkung 5.12 (Folgen mit Grenzwert ungleich 0). Es sei (a,), eine Folge, die gegen einen
Grenzwert a # 0 konvergiert. Eine unmittelbare, aber dennoch oft niitzliche Folgerung aus der
Grenzwertdefinition 5.1 ergibt sich, wenn wir dort € = % > 0 setzen: Fiir fast alle n ist dann
ay, € Ug(a), mit der Dreiecksungleichung nach unten aus Bemerkung 4.19 also

> lal— la— el
lan| = |a] = |a —an| > |a| — € = o
Hat eine Folge also einen Grenzwert a # 0, so sind insbesondere auch fast alle Folgenglieder un-
gleich O (und betragsmiBig sogar grofler als ‘izl).

Satz 5.13 (Grenzwertsitze fiir Folgen). Es seien (ay,), und (b,), zwei konvergente Folgen mit
a, — a und b, — b. Dann gilt:

(a) a,+b, —>a+bunda,—b, —a—>b.

(b) a, b, — ab.

(c) Ist b # 0, so sind auch fast alle b, # 0, und es gilt Z—Z - 7.

Beweis.
(a) Es sei € € R beliebig. Wegen a, — a und b, — b gilt |a, —a| < § und |b, —b| < § fiir
fast alle n. Damit folgt fiir fast alle n (sieche Bemerkung 5.6) mit der Dreiecksungleichung
€ €
|an + by, — (a+b)| <l|ay—a|+ |by—b| < 5—'—5 =g,
also wie behauptet a, + b, — a + b. Die Aussage tiber die Differenz der Grenzwerte folgt
natiirlich genauso.

(b) Fir alle n € N gilt zunichst
anby, — ab = ayb, — anb + ayb — ab = a, (b, — b) + b(a, —a). (D

Die Folge (a,), ist nach Voraussetzung konvergent und damit beschriinkt nach Lemma 5.8.
Weiterhin ist b, — b eine Nullfolge wegen b,, — b. Also ist auch (a, (b, —b)),, d. h. der erste
Summand rechts in (1), nach Lemma 5.11 eine Nullfolge. Genauso ergibt sich, dass auch der
zweite Summand (b(a, — a)), eine Nullfolge ist. Damit ist (1) die Summe zweier Nullfolgen,
nach (a) also ebenfalls eine Nullfolge. Dies zeigt a,b,, —ab — 0 und damit a,,b, — ab.
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(c) Nach Bemerkung 5.12 sind mit b # 0 auch fast alle b, ungleich 0, so dass wir (nach evtl.
Weglassen endlich vieler Glieder) die Quotlentenfolge (“”) betrachten konnen. Weil nach

derselben Bemerkung dann sogar |b,| > 7 und damit |5-| < ﬁ gilt, ist die Folge (3-),
auBerdem beschrinkt. Schreiben wir also

a, a ayb—ab, a,b—ab+ab—ab,

_i( )
by bbb, bb,, by bb
(an

(b—bn), @)
so ergibt sich die Behauptung genauso wie in (b): ( a)) ist eine Nullfolge (nach
Lemma 5.11 als Produkt der beschridnkten Folge ( by )n mit der Nullfolge (a, —a),), analog
ist auch (53~ (b —by)), eine Nullfolge. Damit ist (2) wieder die Summe zweier Nullfolgen,
nach (a) also ebenfalls eine Nullfolge — woraus 7* L= 5 5 folgt. g

Beispiel 5.14 (Grenzwerte von Quotienten von Polynomen). Wollen wir den Grenzwert der Fol-

ge (n%”H )n bestimmen, so konnen wir nicht direkt die Grenzwertsiatze anwenden, da Zihler und

Nenner natiirlich unbeschrinkt sind und damit nach Lemma 5.8 divergieren. Durch Kiirzen mit n?
konnen wir die Folgenglieder aber umschreiben, so dass wir den Grenzwert dann mit Satz 5.13 in
den Quotienten, die Summe und das Produkt hineinziehen kénnen und (mit Beispiel 5.3)

2n? 2 2 2

= = — =2 fiirn— o
R+l 1+ L 14T T 14000 urn

erhalten. Auf die gleiche Art kann man offensichtlich den Grenzwert jeder Folge berechnen, die
ein Quotient von zwei Polynomfunktionen in » ist, indem man zuerst mit der hochsten auftretenden
Potenz von n Kkiirzt.

Bemerkung 5.15. Beachte, dass Satz 5.13 nur angewendet werden kann, wenn beide Grenzwerte

lim a, und 11m b, existieren — ansonsten macht der Satz keine Aussage. Eine Rechnung hinzuschrei-
n—soo

ben wie z. B

2
im 2O i 2 i L T g
n~>oon—|—l n—|—3 n~>oon—|—l n%wn+3 n~>ool_|_% n~>w1+§
(mit Verweis an der Stelle (x) auf den Grenzwertsatz 5.13 (b)) ist daher eigentlich nicht korrekt,
da wir bei (x) ja noch nicht iiberpriift haben, ob die Grenzwerte der beiden einzelnen Briiche auch
wirklich existieren. Man miisste also theoretisch zuerst die Grenzwerte von % und "+3 separat
berechnen (bzw. ihre Existenz zeigen), und konnte dann erst die obige Rechnung (x) hinschreiben.
Da dies aber deutlich mehr Schreibaufwand wire und die Darstellung auch uniibersichtlicher machen
wiirde, wollen wir vereinbaren, dass wir die Grenzwertsitze in einer Rechnung wie oben auch schon
benutzen diirfen, wenn wir erst nachtréiglich iberpriifen, dass die Einzelgrenzwerte existieren.

Aufgabe 5.16. Bestimme die Grenzwerte (sofern sie existieren)

2 2 3 3n
"EE () lim 2 © lim

(a) lim Jlim @, lim .

n—eo n% 4n
Fiir (a) beweise man diesen Grenzwert zusitzlich direkt nach Definition, d. h. man gebe zu jedem
€ € R.g ein ng € N an, so dass die Grenzwertbedingung aus Definition 5.1 (b) gilt.

Aufgabe 5.17. Zu einer gegebenen Folge (a,)nen., definieren wir die Folge (b,)nen., ihrer Mittel-
werte durch

b, = w fiir alle n € N+ .

Man zeige: Ist (a,), konvergent mit Grenzwert a € R, so ist auch (b,), konvergent mit demselben
Grenzwert a. (Hinweis: Zur Vereinfachung der Rechnung ist es niitzlich, die Aussage zunichst fiir
eine Nullfolge (a,), zu beweisen, und den allgemeinen Fall dann darauf zuriickzufiihren.)
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Als Beispiele fiir divergente Folgen haben wir bisher nur unbeschrinkte Folgen gesehen. Aber auch
beschrinkte Folgen konnen natiirlich divergent sein, wie z. B. die Folge

(1)) ey = (1L,=1,1,=1,..),
in der alle geraden Folgenglieder gleich 1 und alle ungeraden gleich —1 sind, so dass fiir die gesamte
Folge kein Grenzwert existieren kann. Formal konnen wir dies mit dem Begriff der Teilfolgen und
Hiaufungspunkte ausdriicken.

Definition 5.18 (Umordnungen, Teilfolgen und Héiufungspunkte). Es sei (a,),cn eine Folge.

(a) Eine Umordnung von (a,)cn ist eine Folge der Form (a0, dg(1),a6(2), - ) = (do(n) )neN
fiir eine bijektive Abbildung o: N — N. Sie entsteht also einfach durch eine beliebige Per-
mutation aller Folgenglieder.

(b) Eine Teilfolge von (ay),cn ist eine Folge der Form (a,,an, ,an, , .. ) = (an, ke fiir gewisse
ng < ny <ny < ---, also eine Folge, die aus (a,),en durch Auswihlen bestimmter Folgen-
glieder unter Beibehaltung ihrer Reihenfolge entsteht.

(c) Eine Zahl a € R heifit Hiaufungspunkt von (a,),cn, wenn es eine Teilfolge von (ay)nen
gibt, die gegen a konvergiert.

Lemma 5.19 (Grenzwerte von Umordnungen und Teilfolgen). Konvergiert eine Folge (ay), gegen
einen Grenzwert a, so konvergiert auch jede Umordnung und jede Teilfolge von (a,), gegen a.

Insbesondere hat eine konvergente Folge also genau einen Hdufungspunkt, ndmlich ihren Grenzwert.

Beweis. Es sei € € R beliebig. Da die Folge (a,), gegen a konvergiert, hat sie nur endlich viele
Glieder, die auBerhalb von Ug(a) liegen. Jede Umordnung oder Teilfolge von (a,), hat damit aber
ebenfalls nur endlich viele Glieder aufierhalb von Ug(a), und somit konvergiert eine solche Umord-
nung oder Teilfolge ebenfalls gegen a. g

Beispiel 5.20.

(a) Die oben betrachtete Folge (a;)neny = ((—1)")peny = (1,—1,1,—1,...) besitzt die beiden
konstanten Teilfolgen

(QZn)nEN = (17 17 17)
und (a2n+1)n€N:(—1,—1,—1,...)
und damit die beiden Haufungspunkte 1 und —1. Sie ist also nach Lemma 5.19 divergent. In
der Tat werden wir in Beispiel 5.23 (a) sehen, dass 1 und —1 auch die einzigen Haufungs-
punkte von (ay), sind.

(b) Fiir die Folge (ap), = (n+1),=(1,2,3,...) ist jede ihrer Teilfolgen unbeschrinkt und damit
nach Lemma 5.8 divergent. Also besitzt (a,), keine Hiufungspunkte.

Zur konkreten Berechnung von Haufungspunkten sind oft die folgenden beiden Lemmata niitzlich.

Lemma 5.21 (Aquivalente Charakterisierung von Hiufungspunkten). Eine Zahl a € R ist genau
dann ein Hiufungspunkt einer Folge (ay),, wenn in jeder €-Umgebung von a unendlich viele Fol-
genglieder a,, liegen.

Beweis.

,»=": Konvergiert eine Teilfolge von (a,), gegen a, so liegen in jeder e-Umgebung von a fast alle
Glieder der Teilfolge und somit insbesondere auch unendlich viele Glieder von (a,),.

113

<"1 Wir konstruieren eine Teilfolge (a,, )ren der gewiinschten Art wie folgt: Als Startindex neh-
men wir ng = 0. Ist nun fiir ein k € Ny ¢ der Index n;_ bereits konstruiert, so wihlen wir fiir
das nichste Folgenglied ein n; > nj_; mit |ank —al < % (dies ist moglich, da in der %-Umge-
bung von a nach Voraussetzung unendlich viele Folgenglieder liegen, also auch eines hinter
Any_)-
Die so konstruierte Teilfolge (a,, )ren konvergiert dann gegen a: Ist € € R+ gegeben und
ko € N-g mit % <& soist|ay —a| <1< % < ¢ fiir alle k > k. O
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Lemma 5.22 (Mischfolgen). Es seien (ay)nen eine Folge sowie (an, )ken und (ap, )ren zwei Teilfol-
gen, die zusammen die gesamte Folge ergeben, also so dass {n; : k € N} U {my : k € N} =N gilr.
Man sagt in diesem Fall auch, dass (an)nen eine Mischfolge von (ay, )ken und (am, ) ke ist.

Dann ist eine Zahl a € R genau dann ein Héiufungspunkt von (a,),en, wenn a ein Héaufungspunkt
von (ap, )ken oder (ap, )ken ist.

Beweis. Eine Zahl a ist nach Lemma 5.21 genau dann ein Haufungspunkt von (a,),, wenn in jeder
e-Umgebung von a unendlich viele Folgenglieder von (a,), liegen. Da (a,), eine Mischfolge von
(@, )i und (am, )i ist, ist dies natiirlich dquivalent dazu, dass in jeder solchen e-Umgebung unendlich
viele Folgenglieder von (ay, )i oder (a, )i liegen, also dass a ein Haufungspunkt (mindestens) einer
dieser beiden Teilfolgen ist. 0

Beispiel 5.23.

(a) Die Folge (ay)n, = ((—1)")nen aus Beispiel 5.20 (a) ist eine Mischfolge ihrer positiven und
negativen Glieder, die konstant gleich 1 bzw. —1 sind. Aus Lemma 5.22 folgt also, dass (a,),
genau die beiden Haufungspunkte 1 und —1 hat.

(b) Die divergente Folge (a,), = (1,0,2,0,3,0,...) aus Beispiel 5.9 (a) ist eine Mischfolge der
Folge (1,2,3,...) (die nach Beispiel 5.20 (b) keine Hiufungspunkte hat) und der konstanten
Folge 0 (die natiirlich 0 als einzigen Haufungspunkt hat). Damit hat (a,), nach Lemma 5.22
den einzigen Haufungspunkt 0. Wir sehen also (im Gegensatz zu Lemma 5.19), dass eine
Folge mit genau einem Haufungspunkt nicht notwendig konvergiert.

5.B KonvergenzKkriterien fiir Folgen

Nicht in allen Féllen lésst sich die Berechnung von Grenzwerten mit Hilfe der Grenzwertsitze auf
bereits bekannte zuriickfiihren. Wir benétigen daher noch weitere Techniken zur Grenzwertbestim-
mung und beginnen mit einem einfachen Vergleichskriterium.

Satz 5.24 (Vertriglichkeit des Grenzwerts mit Ungleichungen). Es seien (ay), und (b,), konvergen-
te Folgen mit a,, — a und b, — b. Dann gilt:
(a) Ist a, < by, fiir fast alle n, so auch a < b.

(b) (Einschachtelungssatz) Ist a = b, konvergieren also beide Folgen gegen denselben Grenz-
wert, und ist (c,), eine weitere reelle Folge mit a, < ¢, < b, fiir fast alle n, so konvergiert
auch (cy), gegen diesen Grenzwert a.

Beweis.

(a) Angenommen, es wire a > b. Wir setzen € := % Wegen a, — a und b,, — b wire dann
(nach Bemerkung 5.6) fiir fast alle n

ap € (a—¢€,a+€) und b,c(b—eb+e).
Zusammensetzen liefert a — € < a, < b, < b+ € fiir fast alle n, und damit a — b < 2¢€ im
Widerspruch zu € = %.
(b) Essei € € Ry beliebig. Diesmal gilt wegen a, — a und b, — a fiir fast alle n
a, € (a—¢e,a+¢e) und b, € (a—¢€,a+e),
und damita— € < a, <c¢, <b, <a+¢,alsoc, € (a—€,a+¢). Da g > 0 beliebig war, folgt

daraus wie behauptet ¢, — a. O

Bemerkung 5.25. Beachte, dass Satz 5.24 (a) nicht auch analog fiir die echte Ungleichung ,,<*

gilt: Ist z.B. @, =0 und b, = % fiir alle n > 1, so gilt zwar a,, < b, fiir alle n, aber die Grenzwerte

beider Folgen sind natiirlich gleich 0, d. h. es gilt nur lim a, < lim b,, gemif3 Satz 5.24 (a), aber
n—oo n—soo

nicht lim a,, < lim b,,.
n—soo n—oo
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Aufgabe 5.26. Bestimme den Grenzwert

n

, n
111590,;1 n? 4k

Alle unsere bisherigen Kriterien haben den entscheidenden Nachteil, dass sie Grenzwerte nur auf
andere bereits bekannte zuriickfithren konnen. In der Praxis werden aber viele Groen wie z. B.
Quadratwurzeln, 7, e oder der Sinus und Kosinus einer gegebenen Zahl iiberhaupt erst als Grenz-
werte geeigneter Folgen konstruiert. Die Konvergenz solcher Folgen werden wir also mit unseren
bisherigen Methoden nie nachweisen konnen.

Wir benotigen daher auch Kriterien, mit denen man die Konvergenz einer Folge selbst dann nachwei-
sen kann, wenn man ihren Grenzwert noch nicht vorher kennt oder gleichzeitig aus bereits bekannten
anderen Grenzwerten berechnen kann. Im Gegensatz zu unseren Ergebnissen aus Abschnitt 5.A, die
unveréndert auch in Q gelten wiirden, handelt es sich hierbei nun um Resultate, die ganz zentral das
Supremumsaxiom verwenden und daher nur in R gelten.

Das erste Kriterium dieser Art, das wir jetzt behandeln wollen, ist fiir Folgen anwendbar, deren
Folgenglieder mit wachsendem n immer grofler werden. Ist eine solche Folge nach oben beschrénkt,
so ist anschaulich klar, dass die Folgenglieder wie im Bild unten fiir wachsendes n ,,immer niher
zusammen riicken* miissen, was letztlich zur Konvergenz der Folge fithren sollte. Dies ist der Inhalt
des folgenden Satzes.

a < a < m<a<- | R
° o o >—o—o-oe |
. /‘ t obere Schranke
lim a,
n—yo0

Definition 5.27 (Monotone und beschrinkte Folgen). Es sei (ay), eine Folge.

(a) Die Folge (a,), heift monoton wachsend oder steigend, wenn a,, < a, fiir alle n € N,

also ag < a; <ap <--- und damit a,, < a, fiir alle m < n gilt. Gilt sogar a, < a,+ fir alle

n € N, so heift (a,), streng monoton wachsend oder steigend.
Analog heifit (a,), (streng) monoton fallend, wenn a, > a,y (bzw. a, > a,) fiir alle
n €N gilt.

(b) Analog zu Definition 5.7 heiBit (a,,), nach oben beschrinkt, wenn die Menge ihrer Folgen-
glieder nach oben beschrinkt ist, also wenn es ein s € R gibt mit a,, < s fiir alle n.

Analog heiBt (a, ), nach unten beschrinkt, wenn es ein s € R gibt mit a,, > s fiir alle n; die
Folge ist also genau dann beschrinkt, wenn sie nach oben und unten beschrinkt ist.

Satz 5.28 (Monotoniekriterium). Jede monoton wachsende, nach oben beschrinkte Folge (ay), in
R ist konvergent. (Analog ist dann natiirlich auch jede monoton fallende, nach unten beschrinkte
Folge konvergent.)

Beweis. Da die Menge M := {a, : n € N} C R aller Folgenglieder nicht leer und nach oben be-
schrénkt ist, existiert a := sup M nach dem Supremumsaxiom. Wir behaupten, dass a,, — a.

Es sei dazu € € R+ beliebig. Da a die kleinste obere Schranke fiir M ist, ist a — € keine obere
Schranke mehr. Es gibt also ein ng € N mit a,, > a — €. Fiir alle n > n folgt dann

a—€<ap, < ay (Monotonie)
<a (a ist obere Schranke der Folgenglieder)
<a+g,
also |a, —a| < €. Damit konvergiert (a,), gegen a. O

Als Beispiel fiir die Anwendung des Monotoniekriteriums wollen wir nun als Erstes zeigen, dass
jede nicht-negative reelle Zahl eine Quadratwurzel besitzt. Auch wenn euch diese Tatsache aus der
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Schule vielleicht ,,offensichtlich® erscheint (und wir sie in Bemerkung 4.37 auch schon ohne Be-
weis benutzt haben), folgt sie dennoch nicht unmittelbar aus den Axiomen fiir R und muss damit
bewiesen werden. Eine Moglichkeit dafiir ist, eine Folge (a,), zu konstruieren, deren Konvergenz
wir beweisen konnen, und deren Grenzwert nur die gewiinschte Wurzel sein kann. Die Konstruktion
von (ay,), ist dabei rekursiv, d. h. wir kénnen (analog zur vollstindigen Induktion) nicht direkt a,, fiir
alle n € N angeben, sondern legen nur das erste Folgenglied ag fest und geben dann eine Formel an,
mit der fiir alle n € N aus a,, das nidchste Folgenglied a,,1| berechnet werden kann.

Lemma 5.29 (Existenz von Wurzeln, Heron-Verfahren). Es seien ¢ € R~ und ag € R+ gegeben.
Dann konvergiert die mit diesem Startwert ag rekursiv definierte Folge (ay), mit

n

1
Anyl = 3 (an + ac) fiir allen € N (%)

gegen ein a € R mit a*> = c.

Beweis. Wir zeigen die Konvergenz von (aj, ), mit dem Monotoniekriterium, indem wir nachweisen,
dass die Folge nach unten beschrinkt und monoton fallend ist.

Aus der Rekursionsvorschrift (x) ist offensichtlich, dass mit ¢ und ag auch alle Folgenglieder positiv
sind. Die Folge ist also sicher durch 0 nach unten beschrénkt. In der Tat gilt fiir alle n € N sogar

, 1 +c2 12+1+1c2 1, 1+162+ 1 c2+>
o =~-\ap+— ) =-a,+-ct+-—=-a,—-c+—-—+c=—-|a,—— c>c
g\ g, 47T 42 4T 27 T4 4\ a, =

und somit a% > c fur alle n > 1. Daraus folgt fiir alle n > 1 aber auch

ap+1 1 c 1 c
=14+ )<= ({1+-)=1
s () = () -

und damit a,4; < a,, die Folge ist also (mit Ausnahme evtl. des ersten Folgengliedes) monoton
fallend. Damit konvergiert (a,), nach Satz 5.28, d. h. der Grenzwert a := lim a,, existiert.
n—yoo

Um Informationen iiber den Grenzwert a zu bekommen, multiplizieren wir die Rekursionsgleichung
(*) zundchst mit a, und erhalten a,,1a, = %(aﬁ + ¢) fiir alle n € N. Gehen wir in dieser Gleichung
nun zum Grenzwert {iber, so ergibt sich

. Ly . 2 179
,}5‘;""+'“":,}£‘;§<an+c>’ und damit a :E(a +c),

da die Folge (a,+1)n, = (a1,a2,as,...) gegeniiber (ay), = (ap,a1,az,...) janur um ein Folgenglied
verschoben ist und somit als Teilfolge von (ay,), ebenfalls gegen a konvergiert. Auflosen dieser Glei-
chung liefert nun sofort wie behauptet > = c. Da alle a,, positiv sind, ergibt Satz 5.24 (a) auBerdem
auch a > 0; in der Tat ist wegen a> = ¢ > 0 dann sogar a > 0. 0

Folgerung und Definition 5.30. Zu jedem c € R>q gibt es eine eindeutig bestimmte Zahl a € R>q
mit a* = c. Wir nennen sie die (Quadrat-)Wurzel aus ¢ und schreiben sie als Ve

Beweis. Fiir ¢ = 0 ist die Aussage mit a = 0 klar, daher kénnen wir im Folgenden ¢ > 0 annehmen.
Die Existenz einer Wurzel a folgt dann direkt aus Lemma 5.29. Das Polynom x — x> — ¢ hat nun die
positive Nullstelle a und die negative Nullstelle —a, und kann als Polynom vom Grad 2 nach Satz
3.19 (b) keine weiteren Nullstellen haben. Also ist die Wurzel a auch eindeutig bestimmt. [l

Bemerkung 5.31 (Grenzwert rekursiver Folgen). Das Monotoniekriterium bietet sich oft fiir rekur-
siv definierte Folgen (a,), wie in Lemma 5.29 an, da die Monotonie ja durch den Vergleich von
ap+1 und a, nachgewiesen werden kann. Sehr niitzlich ist dabei auch der Trick, wie im Beweis des
Lemmas in der Rekursionsgleichung zum Grenzwert iiberzugehen, um eine bestimmende Gleichung
fiir den Grenzwert zu finden.

Beispiel 5.32. Die folgende Tabelle zeigt den Anfang der Folge aus Lemma 5.29 im Fall ¢ = 2 und
ap = 1. Beachte, dass die Folge ,,extrem schnell* konvergiert und daher sehr gut zur niherungswei-
sen Berechnung von Wurzeln geeignet ist — z. B. wenn man einem Computer, der bisher nur weil3,
wie man die vier Grundrechenarten ausfiihrt, das Wurzelziehen beibringen mochte. In der Tat kann
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man zeigen, dass jeder Schritt die Anzahl der korrekten Dezimalstellen (die in der Tabelle unten fett
gedruckt sind) ndherungsweise verdoppelt. Wir werden uns in dieser Vorlesung jedoch nicht wei-
ter mit der ,,Geschwindigkeit* der Konvergenz von Folgen beschéftigen; derartige Fragestellungen
werdet ihr spiter in den Vorlesungen zur Praktischen Mathematik untersuchen.

dn

1,000000000000000000000000000000000000000000000000. . .
1,500000000000000000000000000000000000000000000000. . .
1,416666666666666666666666666666666666666666666666. . .
1,414215686274509803921568627450980392156862745098. ..
1,414213562374689910626295578890134910116559622115. ..
1,414213562373095048801689623502530243614981925776. ..
1,414213562373095048801688724209698078569671875377. ..

NN W= OIS

Aufgabe 5.33. Untersuche, ob die folgenden rekursiv definierten Folgen (a,), konvergieren, und
bestimme im Fall der Konvergenz den Grenzwert.

(@) ag=1, a, =/a, 1 +6firallen > 1;
(b) ap=1, a1 =2, ay = 3 (ay—1 +ay—2) firalle n > 2.

(Hinweis: Leite zunéchst eine Formel fiir die Differenz a, — a,—| zweier aufeinander folgen-
der Glieder her.)

Aufgabe 5.34. Es seien a,b € R>. Zeige, dass die Quadratwurzel die folgenden Eigenschaften hat:
(a) Gilt a < b, so auch v/a < v/b (Monotonie).
(b) Vab=/a-/b.
(c) Vab < %P,
(d) Konvergiert eine Folge (a,), in R>o gegen a, so gilt auch ,}glgo Van =+/a.

Aufgabe 5.35.
(a) Man zeige: Fiir alle a,b € Z und k,n € Nist (a +bVk)" + (a —bVk)" € Z.
(b) Bestimme die 100. Nachkommastelle (im Dezimalsystem) von (2 4+ +/5)29%4,

Aufgabe 5.36. Zeige, dass jedes (nicht-leere) offene Intervall in R unendlich viele rationale und
unendlich viele irrationale Zahlen enthilt.

Aufgabe 5.37 (Existenz hoherer Wurzeln in R). In dieser Aufgabe wollen wir analog zu Lemma 5.29
und Folgerung 5.30 beweisen, dass jede nicht-negative reelle Zahl c fiir alle k € N+ eine eindeutige
k-te Wurzel besitzt. Wir definieren dazu fiir ein gegebenes ¢ € R., k € N5 und einen beliebigen
positiven Startwert a¢ die Folge (ay), rekursiv durch

1
Apyl = — ((k— a,+ kc1> fiir alle n € N.
k a,

Man beweise nun:
(a) Fiiralle n € N ist al,‘lJrl >c.
(b) Die Folge (ay), ist ab dem zweiten Folgenglied monoton fallend.

(c) Zu jeder Zahl ¢ € R>( gibt es ein eindeutiges a € R>o mit a* = ¢. Wir nennen dieses a die
k-te Wurzel aus ¢ und schreiben sie als /c.

Aufgabe 5.38. Es sei M C R nicht leer und nach oben beschrinkt. Zeige, dass fiir s € R die folgenden
Aussagen dquivalent sind:

(a) s=supM.
(b) s ist eine obere Schranke fiir M, und es gibt eine Folge (a,), von Elementen aus M mit

lim a, =s.
n—oo
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Kombiniert man die Monotoniekriterien fiir wachsende und fallende Folgen miteinander, kann man
einen Grenzwert wie folgt von beiden Seiten einschachteln.

Satz 5.39 (Intervallschachtelung). Gegeben sei fiir alle
n € N ein abgeschlossenes Intervall I, = [by,cy) in R, so

dass Iy DI Db D --- (also die Intervalle ineinander lie- bo a €0 R
gen) und r}glolc(cn.— by) = 0 (also die Liingen der Intervalle - I
gegen 0 konvergieren,). =L '

. . . . e I3
Dann gibt es genau ein a € R, das in allen diesen Interval- Sl 154

len liegt, und es gilt b, — a und ¢, — a.

Beweis. Die Folge (b,), der unteren Intervallgrenzen ist monoton wachsend und nach oben be-
schrinkt (z. B. durch ¢p), nach dem Monotoniekriterium aus Satz 5.28 also konvergent. Genauso ist
(¢n)n monoton fallend und nach unten beschrénkt, und damit ebenfalls konvergent. Da die Léngen
der Intervalle nach Voraussetzung gegen 0 konvergieren, folgt nach Satz 5.13 also

lim ¢, — lim b, = lim (¢, —b,) =0 = lim b, = lim c,.
n—oo n—eo n—yoco N—soo N—>oc0

Es sei a := lim b, = lim ¢, der gemeinsame Grenzwert dieser beiden Folgen.
n—yoo n—oo

Nach dem Beweis von Satz 5.28 ist a eine obere Schranke fiir alle b,, und eine untere Schranke fiir
alle ¢,. Es gilt also a € [by,c,] = I, fiir alle n. Ist umgekehrt @’ € R mit @’ € I, und damit b, < da’ <c¢,
fiir alle n, so folgt daraus durch Grenzwertbildung mit Satz 5.24 auch a < d’ < q, also d’ = a. Somit
gibt es genau eine Zahl in allen gegebenen Intervallen, ndmlich a. d

Zum Abschluss dieses Abschnitts wollen wir analog zu den uneigentlichen Suprema in Bemerkung
4.38 auch uneigentliche Grenzwerte definieren, also festlegen, was es heifit, dass eine Folge ,,den
Grenzwert oo besitzt”. Dies hat den Vorteil, dass viele Aussagen iiber konvergente Folgen mit ge-
wohnlichen Grenzwerten in R auf diesen Fall verallgemeinert werden konnen.

Definition 5.40 (Uneigentliche Grenzwerte von Folgen). Fiir eine Folge (a,), in R schreiben wir

a, — oo bzw. lim a,, = o, wenn
n—yo0

VseR dng e NVn>ngy: a, > s,

also wenn zu jeder vorgegebenen Schranke s fast alle Folgenglieder groler als s sind. Analog defi-
niert man die Eigenschaft lim @, = —oo.
n—oo

Beachte, dass derartige Folgen natiirlich insbesondere unbeschriankt und damit nach Lemma 5.8
divergent sind. Man bezeichnet sie als bestimmt divergent und nennt co bzw. —co einen uneigentli-
chen Grenzwert. Ist (a,), divergent und besitzt nicht in obigem Sinne den Grenzwert oo oder —oo,
so nennt man (aj, ), unbestimmt divergent.

Beispiel 5.41.
(a) Die Folge (an), = (1,2,3,...) ist bestimmt divergent mit uneigentlichem Grenzwert
lim a,, = co.
n—o0

(b) Die Folge (by), = (1,0,2,0,3,0,...) aus Beispiel 5.9 (a) ist unbestimmt divergent (da z. B.
nicht fast alle Folgenglieder grofer als 1 sind).
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Bemerkung 5.42 (Grenzwertsitze fiir uneigentliche Grenzwerte). Die Grenzwertsitze aus Satz 5.13
gelten auch fiir uneigentliche Grenzwerte wie in Definition 5.40, wenn man die formalen Rechenre-
geln fiir oo

a+oo=o00 firaeR,
oo+oo:oo’
a-oo=-co fiira e Ry,

00~OO:00,

gzO firaeR

o0

und analog fiir —eo bzw. a € R definiert. Die Beweise dieser Aussagen sind letztlich analog zu
denen von Satz 5.13, jedoch in den einzelnen Fillen immer etwas unterschiedlich, da die Bedingung
fiir den Grenzwert o aus Definition 5.40 ja formal anders aussieht als die eines endlichen Grenzwerts
in Definition 5.1. Wir werden die Beweise hier nur exemplarisch in Aufgabe 5.43 betrachten.

Beachte aber, dass die Grenzwertsétze auch weiterhin keine Aussage liefern, wenn eine der betrach-
teten Folgen unbestimmt divergent ist oder sich Ausdriicke der Form co — oo, 0 - o0 oder = ergeben,
die sich nicht sinnvoll definieren lassen.

Aufgabe 5.43. Es seien (a,), und (b,), zwei reelle Zahlenfolgen.

(a) Man zeige: Gilt a, — a € R~ und b, — oo, so ist auch a, b,, — .
(b) Man zeige: Gilt a,, — oo und b,, — oo, so ist auch a, + b,, — co.

(¢) Kann man in (b) die Bedingung des Grenzwerts o auch durch ,,nach oben unbeschrinkt*
ersetzen, d. h. gilt fiir nach oben unbeschrinkte Folgen (a,), und (b,), auch, dass (a, +b,)x
nach oben unbeschrinkt ist?

Bemerkung 5.44 (Monotoniekriterium mit uneigentlichem Grenzwert). Auch das Monotoniekrite-
rium aus Satz 5.28 ldsst sich auf eine Variante mit uneigentlichen Grenzwerten erweitern: Ist eine
reelle Folge (a,), zwar monoton wachsend, aber nicht nach oben beschriinkt, so gibt es zu jedem
s € R zunichst ein ng € N mit a,, > s, und wegen der Monotonie dann auch mit a, > s fiir alle
n > ng. Nach Definition 5.40 ist damit dann also }gl; a, = oo. Wir konnen Satz 5.28 also dahin-

gehend verallgemeinern, dass jede monotone reelle Folge einen evtl. uneigentlichen Grenzwert in
R U {+eo} hat, also konvergent oder bestimmt divergent ist.

5.C Limes superior und inferior

Bisher haben wir das Verhalten einer Folge (ay), fiir n — oo in der Regel durch ihren Grenzwert be-
schrieben. Selbst wenn wir hierbei uneigentliche Grenzwerte wie in Definition 5.40 zulassen, funk-
tioniert dies aber natiirlich nicht bei unbestimmt divergenten Folgen, die keinen solchen Grenzwert
besitzen.

Um solche Folgen zu untersuchen, konnen wir wie in Definition 5.18 (c) versuchen, auf Haufungs-
punkte auszuweichen. In der Tat wollen wir jetzt zeigen, dass jede Folge (zumindest im uneigentli-
chen Sinne) auch wirklich mindestens einen Haufungspunkt besitzt. Der Einfachheit halber betrach-
ten wir hierfiir zunichst nur beschrinkte reelle Folgen, deren Hiaufungspunkte dann also in R liegen
miissen. In diesem Fall werden wir in Folgerung 5.48 sehen, dass die folgende Konstruktion stets
einen Haufungspunkt liefert — und zwar sogar einen ganz bestimmten, nimlich den grof3ten.

Konstruktion 5.45. Es sei (a,), eine beschrinkte reelle Folge. Wie im Bild unten fiir die Folge
(an), mit a, = (—1)" (1+ 1) dargestellt konstruieren wir nun die Hilfsfolge (s,), durch

sn := sup{ay 1 k > n},

d. h. wir betrachten das Supremum aller Folgenglieder, wobei wir aber fiir s, erst beim n-ten Folgen-
glied anfangen.
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Beachte dabei, dass die Mengen {a; : k > n} nach Voraussetzung beschriinkt sind und die Suprema
s, damit nach dem Supremumsaxiom in R existieren. AuBerdem folgt aus der Beschrinktheit der
Folgenglieder, dass auch (s,), eine beschréinkte Folge ist.

Dariiber hinaus ist die Folge (s,), monoton fallend: Die obere Schranke s, der Menge {ay : k > n}
ja auch eine obere Schranke der Teilmenge {ay : k > n+ 1} C {a; : k > n} und muss damit grofer
oder gleich der kleinsten oberen Schranke s, von {a; : k > n+1} sein —d. h. es ist 5,41 < s5.

Wir haben also gesehen, dass (s, ), eine monoton fallende und (nach unten) beschrinkte reelle Folge
ist. Nach dem Monotoniekriterium aus Satz 5.28 besitzt sie also einen Grenzwert. Im oben darge-
stellten Beispiel ist dieser Grenzwert offensichtlich 1. Da die Hiufungspunkte unserer Beispielfolge
nach dem Mischfolgenlemma 5.22 genau +1 sind, ist der Grenzwert von (s, ), hier also gerade der
groBte Haufungspunkt von (a,),. Bevor wir zeigen, dass dies immer der Fall ist, geben wir der so
konstruierten Zahl noch einen Namen.

Definition 5.46 (Limes superior und inferior). Fiir eine beschriinkte reelle Folge (a,), definieren
wir
den Limes superior limsup a, := lim (sup{a : k > n})
n—oo n—eo

und den Limes inferior  liminf a, := lim (inf{ay : k > n}).
n—soo n—oo
In der Literatur sind hierfiir auch die Schreibweisen lima,, bzw. lima, iiblich.

Das folgende Lemma zeigt, dass sich der Limes superior (und analog der Limes inferior) in gewis-
sem Sinne wie eine ,,Mischung® aus einem Grenzwert und einem Haufungspunkt verhélt: Wihrend
fiir einen Grenzwert a ja in jeder e-Umgebung U (a) fast alle Folgenglieder, fiir einen Haufungs-
punkt nach Lemma 5.21 aber nur unendlich viele Glieder liegen miissen, ist der Limes superior die
(eindeutig bestimmte) Zahl a, fiir die fiir alle € fast alle Folgenglieder kleiner als @+ €, und unendlich
viele grofer als a — € sind.

Lemma 5.47 (Aquivalente Charakterisierung des Limes superior). Es seien (ay), eine beschrinkte

reelle Folge und a € R. Dann gilt a = limsupa,, genau dann, wenn fiir alle € > 0 die folgenden
n—yoo

beiden Bedingungen erfiillt sind:

(a) Fiir fast alle nist a, < a—+ €.

(b) Fiir unendlich viele n ist a,, > a — €.
(Eine analoge Aussage gilt natiirlich auch fiir den Limes inferior.)

Beweis. Wie in Konstruktion 5.45 sei s, = sup{ay : k > n}, so dass also limsupa, = lim s, gilt.
N—yoo n—oeo

Weiterhin sei € > 0 beliebig.

»= Es gelte s, — a, also s, € (a — €,a+ €) fiir fast alle n. Wir miissen (a) und (b) zeigen.

Da s, eine obere Schranke fiir {a; : k > n} (also insbesondere fiir a,,) ist, gilt a, <s, <a+¢€
fiir fast alle n. Dies zeigt (a).

Um (b) zu zeigen, nehmen wir an, es gébe nur endlich viele #» mit a, > a — €. Dann gibe es
also ein ng € N mit a, < a — € fiir alle n > ng, d. h. a — € wiire eine obere Schranke fiir alle
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diese Folgenglieder. Daraus folgt dann aber auch s, < a — € fiir alle n > ng, im Widerspruch
zu s, — a.

»<=*: 'Wir setzen nun (a) und (b) voraus und miissen s, € (a — €,a + €) fiir fast alle n zeigen.

Nach (a) gibt es ein ng € N mit a, < a + % fiir alle n > ng. Damit ist fiir diese n auch
sp=sup{a:k>n} <a+5 <a+e.

Weiterhin gibt es nach (b) zu jedem n € N ein k > n mit a; > a — €, woraus natiirlich auch
sp = sup{ag : k > n} > a— ¢ folgt.

Insgesamt gilt also s, € (a — €,a + €) fiir fast alle n. O

Aus diesem Lemma ergibt sich nun die folgende wichtige Charakterisierung des Limes superior (und
inferior), mit der man diese Zahl oft sehr einfach bestimmen kann.

Folgerung 5.48. Fiir jede beschrinkte reelle Folge (ay), ist limsupa, der grofite Héufungspunkt

n—so0
von (ay),. (Analog ist dann natiirlich liminfa,, der kleinste Héiufungspunkt von (ay),.)
n—oo

Insbesondere besitzt also jede beschrinkte reelle Folge einen Hdiufungspunkt (Satz von Bolzano-
Weierstraf fiir R).

Beweis. Es seien a = limsupa, und € > 0 beliebig. Aus (a) und (b) von Lemma 5.47 folgt dann
n—oo

a— € < ap < a+ ¢ fir unendlich viele n, d. h. nach Lemma 5.21 ist a ein Hidufungspunkt von (ay,),.

Andererseits ist aber kein b > a ein Haufungspunkt von (a,),: Setzen wir nidmlich € = h%“ >0, so
ista+ & = b — €, und somit gilt nach Lemma 5.47 (a) fiir fast alle n

ap<ate=b—e = a,¢((b—¢€b+e).

Damit kann b kein Hiufungspunkt von (a,), sein. O
Beispiel 5.49.

(a) Die Folge (an)nen., mit @, = (—1)" (14 1) ist eine Mischfolge aus den geraden Gliedern
ay =1+ i — 1 und den ungeraden Gliedern ap,+; = —(1+ Tlﬂ) — —1, sie hat nach
Lemma 5.22 also die einzigen Haufungspunkte 1 und —1. Aus Folgerung 5.48 ergibt sich
damit sofort limsupa, = 1 und liminfa, = —1.

n—oo Lt

(b) Ist (a,), eine konvergente reelle Folge, so ist ihr Grenzwert a nach Lemma 5.19 der einzige

Hiaufungspunkt. Also ist dann limsupa, = lirginfan = a nach Folgerung 5.48.
n—oo n—reo

Ist umgekehrt (a,), eine beschrinkte reelle Folge mit limsupa, = liminfa, =: a, so folgt
n—yoo n—oo

aus Lemma 5.47 (a) fiir alle € > 0, dass a — € < a, < a+ € fiir fast alle n ist — wobei sich die

erste Ungleichung aus liminfa, = a und die zweite aus limsupa, = a ergibt. Also ist (a,),
n—oo n—soco
dann konvergent mit Grenzwert a.

Aufgabe 5.50. Berechne limsupa, und lin; infa, fir a, = 1
Nn—roo

n—yoo Vindtnt(=1)mn”
Aufgabe 5.51.
(a) Es seien (ay,), und (b,), zwei beschrinkte Folgen positiver Zahlen. Zeige, dass

limsup(a,b,) < limsupa, -limsupb,,
n—yoo n—yoo Nn—00

und gib ein Beispiel dafiir an, dass hier im Allgemeinen keine Gleichheit gilt.

(b) Beweise, dass in (a) jedoch stets die Gleichheit gilt, wenn (a,), oder (b,), konvergent ist.

Bemerkung 5.52 (Uneigentliche Werte fiir Limes superior und inferior). Lisst man fiir Supremum,
Infimum und Grenzwerte wie in Bemerkung 4.38 und Definition 5.40 formal auch 4o zu, so kann
man den Limes superior und Limes inferior nach Bemerkung 5.44 genau wie in Definition 5.46 auch
fiir beliebige reelle Folgen konstruieren und erhélt dann Werte in R U {+oo}.
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Aufgabe 5.53. Zeige, dass die Aussage von Folgerung 5.48 auch fiir beliebige reelle Folgen richtig
ist, wenn man wie in Bemerkung 5.52 die uneigentlichen Werte +eo fiir Hiufungspunkte sowie den
Limes superior und inferior zulésst.

Insbesondere gibt es also auch vom Satz von Bolzano-Weierstrall die erweiterte Form, dass jede
(nicht notwendig beschrinkte) reelle Folge einen (evtl. uneigentlichen) Haufungspunkt hat.

5.D Michtigkeiten von Mengen

Zum Abschluss dieses Kapitels wollen wir noch ein Thema behandeln, das wir auch schon deutlich
frither hitten ansprechen konnen, aber das durch unsere Ergebnisse zu Folgen nun einfacher zu unter-
suchen ist: die Frage nach der ,,Grof3e” von Mengen. Gibt es zu zwei Mengen M und N eine bijektive
Abbildung f: M — N und damit wie im rechten Bild von Definition 2.8 eine 1:1-Beziehung zwi-
schen ihren Elementen, so konnen wir uns diese beiden Mengen anschaulich als ,,gleich gro* vor-
stellen. Ist z. B. M = {x1,...,x,} eine endliche Menge mit n Elementen, so ist N = {f(x1),..., f(xn)}
(da f surjektiv ist und somit alle Elemente von N trifft) — und in dieser Aufzéihlung der Elemente
von N steht auch kein Element doppelt, da f injektiv ist. Also hat N dann ebenfalls n Elemente, d. h.
genauso viele Elemente wie M.

Wir wollen dieses Konzept nun fiir unendliche Mengen untersuchen. Ist es auch in diesem Fall noch
sinnvoll, sich zwei Mengen M und N als ,,gleich grof3* vorzustellen, wenn eine bijektive Abbildung
f: M — N zwischen ihnen existiert? Gibt es iiberhaupt ,,verschieden grofie unendliche Mengen*?
Da diese Frage intuitiv nicht mehr besonders gut zugénglich ist, sollten wir natiirlich zunéchst erst
einmal exakt definieren, woriiber wir reden wollen.
Definition 5.54 (Gleichmichtige und abzéhlbare Mengen).
(a) Zwei Mengen M und N heiflen gleichméchtig, wenn es zwischen ihnen eine bijektive Ab-
bildung f: M — N gibt.
(b) Eine Menge M heifit ...
o abzihlbar unendlich, wenn sie gleichmichtig zu N ist, also wenn es eine bijektive
Abbildung f: N — M gibt.
e abzihlbar, wenn sie endlich oder abzédhlbar unendlich ist.

e iiberabzihlbar, wenn sie nicht abzihlbar ist.
Bemerkung 5.55. Die Gleichmichtigkeit erfiillt formal die Eigenschaften einer Aquivalenzrelation:

(a) Jede Menge M ist gleichmichtig zu sich selbst (mit der Identitét idy, : M — M).

(b) Ist M gleichméchtig zu N, so ist auch N gleichméchtig zu M (denn mit einer bijektiven
Abbildung f: M — N ist nach Aufgabe 2.25 auch ihre Umkehrung f~!: N — M bijektiv).

(c) Ist M gleichmichtig zu N und N gleichméchtig zu P, so ist auch M gleichméchtig zu P (denn
die Verkettung bijektiver Abbildungen ist nach Aufgabe 2.25 wieder bijektiv).

Man konnte daher versucht sein zu sagen, dass die Gleichmichtigkeit eine Aquivalenzrelation auf
der Menge aller Mengen ist. Dies ist jedoch nicht ganz korrekt, da wir wie in Bemerkung 1.13
erldutert keine ,,Menge aller Mengen‘ bilden kénnen.

Beispiel 5.56.

(a) Wie wir am Anfang dieses Abschnitts gesehen haben, sind zwei endliche Mengen M und
N genau dann gleichméchtig, wenn sie gleich viele Elemente haben, also wenn |M| = |N|
gilt. Insbesondere ist eine endliche Menge also nie gleichmichtig zu einer echten Teilmenge
von ihr: Wenn wir von einer endlichen Menge Elemente entfernen, wird sie in diesem Sinne
,.kleiner® — was natiirlich nicht allzu tiberraschend sein sollte.

(b) Fiir unendliche Mengen ist dies jedoch falsch: Die Menge N={0, 1,2,3,... } ist gleichméch-
tig zu ihrer echten Teilmenge N\{0} = {1,2,3,...}, z. B. durch die bijektive Abbildung

fiN—->N\{0}, n—>n+1,

11
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die jede Zahl um 1 erhoht.
Bemerkung 5.57.

(a) Die abzihlbar unendlichen Mengen sind genau diejenigen, die sich als Aufzdhlung in der
Form M = {x¢,x1,x2,...} mit x, # x, fiir alle m,n € N mit m # n schreiben lassen: Die
Funktion f: N — M, n — x, ist dann die geforderte bijektive Abbildung. Dies erklirt auch
den Begriff ,,abzihlbar unendlich®. Wir sehen so auch z. B. schon, dass auch die Menge Z
der ganzen Zahlen abzihlbar ist, da wirsie z. B. als Z = {0, —1,1,—2,2,—3,3, ... } schreiben
konnen.

(b) Aus (a) ergibt sich direkt, dass jede Teilmenge M einer abzéhlbaren Menge N wieder abzéhl-
bar ist: Ist N = {xq,x1,x2,... } abzihlbar (mit einer evtl. abbrechenden Aufzihlung), so ldsst
sich jede Teilmenge M C N durch Weglassen gewisser Elemente als M = {x;;,Xn, ;Xny,--- }
fiir geeignete (evtl. endlich viele) ngp < n; < nmp < --- schreiben, ist damit also ebenfalls
abzihlbar.

Abzihlbare Mengen bleiben aber nicht nur abzihlbar, wenn man Elemente von ihnen entfernt. Man
kann sie umgekehrt auch noch um ,,sehr viele* Elemente vergroflern, ohne dass sie dadurch iiberab-
zdhlbar werden. Konkret wollen wir jetzt zeigen, dass wir sogar abzihlbar viele abzéhlbare Mengen
vereinigen konnen und dabei immer noch eine abzéhlbare Menge erhalten. Im folgenden Satz sind
diese abzidhlbaren Mengen dazu mit M; bezeichnet, wobei i die Mengen durchnummeriert und damit
selbst abzédhlbar viele Werte (in der sogenannten Indexmenge) annehmen kann.

Satz 5.58 (Abzihlbare Vereinigungen abzéhlbarer Mengen sind abzihlbar). Es seien I eine abzdiihl-
bare Indexmenge sowie M; fiir alle i € I eine abzdhlbare Menge. Dann ist die Vereinigung aller
dieser Mengen M, geschrieben | J;c; M;, ebenfalls abzihlbar.

Beweis. Nach Bemerkung 5.57 (a) konnen wir die Elemente von I sowie allen M; mit i € [ in der
Form

]:{io,il,iz,...} und M,-k:{xkﬁo,xkvl,xkﬁz,...} furkeN
aufzidhlen (wobei einige dieser Mengen auch endlich sein konnen, so dass die Aufzdhlungen dann
also irgendwo abbrechen). Wir konnen die Elemente aller M; damit in der folgenden Form auflisten
und abzidhlen:

M:

s X00 - Xo4 -
M;, : X1,3
M;, : X2.0 x2>L X22
/ /
M;, : X3,0

Wir haben also

UM = {x00, X0,1,X10, X02,X1,1,%2,0, X03,X12,%2,1,%3,0, X0.4,X13,X22,--- }.

il
Dabei miissen wir in dieser Aufzédhlung alle nicht vorhandenen Positionen (wenn einige der Mengen
I oder M; endlich sind) und bereits vorher vorgekommene Elemente (wenn die M; nicht disjunkt
sind) weglassen. Auf diese Art sehen wir also, dass [ J;c; M; endlich oder abzéhlbar unendlich sein
muss. Man bezeichnet die obige Abzihlart auch als das Cantorsche Diagonalverfahren. g

Beispiel 5.59.

(a) Sind M und N abzihlbare Mengen, so ist nach Satz 5.58 auch ihr Produkt M x N abzéhlbar,
da man es als abzihlbare Vereinigung | J,,cp({m} x N) abzihlbarer Mengen schreiben kann.
(b) Fir ein festes g € Ny ist die Menge M, = {5 pE Z} aller rationalen Zahlen, die sich
als Bruch mit Nenner g schreiben lassen, bijektiv zu Z und damit nach Bemerkung 5.57 (a)
abzihlbar. Damit ist nach Satz 5.58 auch die Menge Q = U en_, My aller rationalen Zahlen



5. Folgen und Grenzwerte 65

abzihlbar. Auch wenn es der ersten Intuition vermutlich widerspricht, gibt es in diesem Sinne
also ,,genauso viele® rationale wie natiirliche Zahlen.

Auch wenn wir mit Satz 5.58 jetzt von sehr vielen Mengen sehen konnen, dass sie abzihlbar sind,
gibt es dennoch unendliche Mengen, die ,,zu gro* sind, um eine bijektive Abbildung nach N zuzu-
lassen. Das einfachste Beispiel hierfiir ist die Menge der reellen Zahlen.

Satz 5.60. Die Menge R ist iiberabzihlbar.

Beweis. Dies ist eine unmittelbare Folge der Intervallschachtelung aus Satz 5.39: Angenommen,
wir hitten eine Aufzéhlung R = {x¢,x1,x2,...} der reellen Zahlen. Wir konstruieren dann rekursiv
eine Intervallschachtelung Iy D I} D I, D --- aus Intervallen I, der Linge 3%, von der wir lediglich
verlangen, dass fiir alle n die Zahl x,, nicht in ,, liegt. Dies ist natiirlich sehr einfach: Wir wéhlen fiir
I,,+1 immer das linke Drittel von I,, — es sei denn, die Zahl x,, 11 liegt in diesem Drittel; dann wihlen
wir fiir 7,11 das rechte Drittel von I,,. Da die Liange 3% der Intervalle mit n — o gegen 0 konvergiert,
erhalten wir so auch wirklich eine Intervallschachtelung.

Nach Satz 5.39 gibt es dann aber ein a € R, das in allen I, liegt und damit keine der Zahlen x,, € R\I,
sein kann, also im Widerspruch zur Annahme in unserer Aufzihlung von R nicht enthalten ist. [

Zusammenfassend konnen wir also sagen, dass es im Sinne der Gleichmichtigkeit zwar ,,genauso
viele natiirliche wie ganze oder rationale, aber ,,deutlich mehr* reelle Zahlen gibt.

Beispiel 5.61. Nach Beispiel 5.59 (b) gibt es eine Aufzéhlung Q = {x¢,x1,xp,...} der rationalen
Zahlen. Fassen wir diese als Folge (x,),en auf, so liegen in jeder e-Umgebung jeder reellen Zahl
nach Aufgabe 5.36 unendlich viele Folgenglieder. Also ist jede reelle Zahl ein Haufungspunkt dieser
Folge: Eine (abzihlbare) Folge kann durchaus iiberabzihlbar viele Haufungspunkte haben!

Aufgabe 5.62. Untersuche die folgenden Mengen auf Abzihlbarkeit:

(a) die Menge aller zweielementigen Teilmengen von N;
(b) die Menge aller endlichen Teilmengen von N;

(c) die Menge aller Teilmengen von N (also die Potenzmenge £?(N) von N).



