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5. Folgen und Grenzwerte

Nachdem wir die reellen Zahlen vollständig charakterisiert haben, wollen wir jetzt zur eigentlichen
Analysis kommen. Der zentrale Begriff ist dabei der des Grenzwerts, den ihr ja sicher in der Schule
schon in der einen oder anderen Form kennengelernt habt und den wir jetzt exakt einführen wollen.
Wir beginnen dabei mit Grenzwerten von Folgen, da sie für den Anfang einfacher sind als die später
auch noch wichtigen Grenzwerte von Funktionen.

5.A Grenzwerte von Folgen
Zur Untersuchung des Grenzwertbegriffs müssen wir als Erstes exakt definieren, was wir damit
meinen, dass sich eine (unendlich lange) Folge reeller Zahlen einem Wert beliebig genau annähert.

Definition 5.1 (Folgen und Grenzwerte).
(a) Eine Folge in einer Menge M ist eine Abbildung

N→M, n 7→ an.

Man schreibt eine solche Folge als (an)n∈N, einfach nur als (an)n, oder durch Aufzählen
der Folgenglieder als (a0,a1,a2, . . .). Hin und wieder ist in der Literatur auch die noch wei-
ter verkürzte Schreibweise (an) zu finden, die wir hier allerdings nicht verwenden wollen,
um Verwechslungen der Folge (an)n mit einem zufällig eingeklammerten Folgenglied an zu
vermeiden.
Manchmal ist es bequem, Folgen nicht beim Index 0, sondern bei einem anderen Startindex
n0 ∈Z beginnen zu lassen – wenn man dies in der Notation deutlich machen möchte, schreibt
man derartige Folgen als (an)n≥n0 .
In diesem Kapitel werden wir nur den Fall M =R, also sogenannte reelle Folgen betrachten.
Wir werden daher oft nur von einer Folge sprechen und damit dann immer eine reelle Folge
meinen. Später werden wir auch noch andere Folgen kennenlernen, z. B. Folgen komplexer
Zahlen in Abschnitt 6.C oder Folgen von Funktionen in Abschnitt 8.C.

(b) Eine Zahl a ∈ R heißt Grenzwert einer (reellen) Folge (an)n, wenn

∀ε ∈ R>0 ∃n0 ∈ N ∀n≥ n0 : |an−a|< ε.

Wir werden gleich in Lemma 5.5 sehen, dass eine Folge höchstens einen solchen Grenzwert
besitzen kann. Wenn ein solches a existiert, können wir also sagen, dass a der Grenzwert der
Folge (an)n ist. Man nennt die Folge in diesem Fall konvergent (gegen a) und schreibt dies
als

lim
n→∞

an = a

(die Bezeichnung kommt vom englischen Wort „limit“ bzw. dem lateinischen „limes“), oder
manchmal auch als an→ a (für n→ ∞). Existiert ein solcher Grenzwert nicht, so heißt die
Folge divergent.

Bemerkung 5.2 (Anschauliche Deutung des Grenzwertbegriffs). Um die Definition des Grenzwer-
tes in leicht verständliche Worte zu fassen, führen wir ein paar intuitive Notationen ein. Für a ∈ R
und ε ∈ R>0 heißt das offene Intervall

Uε(a) := {x ∈ R : |x−a|< ε}= (a− ε,a+ ε)

die ε-Umgebung von a. Die Grenzwertbedingung besagt nun genau, dass in jeder solchen ε-Um-
gebung von a – egal wie klein das ε gewählt ist – alle Folgenglieder ab einem gewissen n0 liegen,
wobei dieses n0 natürlich von dem gewählten ε abhängen darf. Im Beispielbild unten wäre das z. B.
für n0 = 3 der Fall, denn a3,a4,a5, . . . liegen alle in Uε(a).
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a− ε a+ ε

R

a0a1a2a3a4· · ·Uε(a)

a

Man kann diese Tatsache auch so ausdrücken, dass in jeder ε-Umgebung alle bis auf endlich viele
Folgenglieder liegen müssen (nämlich alle bis auf evtl. a0, . . . ,an0−1). In der Analysis verwendet
man gerne den Buchstaben ε für eine kleine positive Zahl und die Sprechweise „fast alle“ für „alle
bis auf endlich viele“, und kann damit die Grenzwertbedingung auch in Worten formulieren:

Eine Zahl a ist genau dann Grenzwert einer Folge, wenn in jeder ε-Umgebung von a
fast alle Folgenglieder liegen.

Anschaulich bedeutet das natürlich einfach, dass sich die Folgenglieder beliebig dicht dem Grenz-
wert annähern. Beachte auch, dass dies insbesondere bedeutet, dass das Abändern oder Weglassen
endlich vieler Folgenglieder nichts daran ändert, ob und gegen welchen Grenzwert eine Folge kon-
vergiert. Der Startindex einer Folge wie in Definition 5.1 (a) ist für ihre Konvergenz also irrelevant.

Beispiel 5.3. Hier sind ein paar sehr wichtige Beispiele von Grenzwerten:

(a) Es ist offensichtlich, dass eine konstante Folge, in der alle Folgenglieder den gleichen Wert
a ∈ R haben, gegen eben dieses a konvergiert, d. h. dass lim

n→∞
a = a gilt: Hier liegen ja sogar

alle Folgenglieder in jeder beliebigen ε-Umgebung von a.

(b) Wir behaupten, dass lim
n→∞

1
n = 0 gilt.

Um dies mit Hilfe der Definition 5.1 (b) zu beweisen, sei zunächst ein ε ∈ R>0 beliebig
vorgegeben; wir müssen zeigen, dass fast alle Glieder der Folge

( 1
n

)
n≥1 in der ε-Umgebung

von 0 liegen. Dies ist aber sehr einfach: Nach der archimedischen Ordnung von R wie in
Bemerkung 4.31 (a) gibt es ein n0 ∈ N mit 1

n0
< ε . Mit einem solchen n0 gilt dann für alle

n≥ n0 ∣∣∣∣1n −0
∣∣∣∣= 1

n
≤ 1

n0
< ε,

wobei wir die Rechenregeln für Ungleichungen aus Lemma 4.16 verwendet haben. Fast alle
Folgenglieder, nämlich alle 1

n für n ≥ n0, liegen also in der ε-Umgebung von 0. Damit gilt
nach Definition lim

n→∞

1
n = 0.

Beachte, dass wir hierbei zu unserem ε gar kein konkretes n0 angegeben haben, das die
Grenzwertbedingung erfüllt. Wir hätten dies hier leicht tun können, z. B.

n0 :=
⌊

1
ε
+1
⌋

mit der Gaußklammer aus Bemerkung 4.34, denn dann ist n0 eine natürliche Zahl größer als
1
ε

, und damit wie oben 1
n0

< ε . Aber zur Überprüfung der Grenzwertbedingung ist es nicht
nötig, ein konkretes n0 anzugeben – erst recht nicht das kleinste (also „beste“) mögliche n0.
In der Tat wäre eine solche Bestimmung des kleinstmöglichen n0 für die allermeisten Folgen
auch sehr aufwendig oder sogar gar nicht praktisch durchführbar.

(c) (Geometrische Folge) Es sei q ∈ R mit |q|< 1; wir behaupten, dass dann lim
n→∞

qn = 0 gilt.

Für q= 0 ist dies natürlich klar, da wir dann eine ab dem ersten Glied konstante Folge haben.
Ansonsten sei wie in (b) wieder ε ∈ R>0 beliebig vorgegeben. Wir setzen x := 1

|q| −1, also

|q|= 1
1+x ; wegen |q|< 1 ist natürlich x > 0. Nach Bemerkung 4.31 (a) gibt es nun ein n0 ∈N
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mit 1
n0

< ε x. Es gilt dann für alle n≥ n0

|qn−0|= |q|n (1)
=

1
(1+ x)n

(2)
≤ 1

1+nx
(mit x > 0 nach der Bernoulli-Ungleichung aus Satz 4.20)

(3)
<

1
nx

(wegen 1 > 0)

(4)
≤ 1

n0 x
(wegen n≥ n0)

(5)
< ε,

(
wegen

1
n0

< ε x
)

woraus die Behauptung folgt.

Bemerkung 5.4 (Rückwärtsrechnen). Wenn ihr euch die Rechnung in Beispiel 5.3 (c) angeschaut
habt, werdet ihr vermutlich keine Probleme haben, sie nachzuvollziehen – aber euch sicher auch
fragen, wie ihr darauf jemals selbst hättet kommen sollen. Insbesondere die Festlegungen von x und
n0 vor Beginn der Rechnung fallen ja doch sehr vom Himmel.

Die Antwort hierauf ist einfach, dass ich den Beweis zunächst „rückwärts“ durchgeführt habe, bevor
ich angefangen habe, ihn aufzuschreiben. Ich habe also mit der Rechnung oben begonnen, bevor ich
wusste, was z. B. n0 später einmal sein würde, und mir etwa folgendes gedacht:

Okay, wir müssen sehen, dass |qn| für n→ ∞ kleiner als das gegebene ε wird. Nehmen wir
der Einfachheit halber erst einmal q > 0 an, dann müssen wir also eine Ungleichungskette
qn < · · · < ε finden. Bisher wissen wir nichts darüber, wie sich Potenzen mit wachsendem
Exponenten verhalten . . . aber wir hatten die Bernoulli-Ungleichung (1+ x)n ≥ 1+ nx ge-
zeigt, die Potenzen durch lineare Funktionen abschätzen kann. Um die anwenden zu können,
könnten wir vielleicht q = 1+ x setzen? Nein, das hilft nicht, denn dann würde die Unglei-
chung qn = (1+ x)n ≥ 1+ nx ja in die falsche Richtung gehen. Also versuchen wir lieber
q = 1

1+x , das dreht „≥“ zu „≤“ um. Moment, gibt es so ein x überhaupt und erfüllt das die
Voraussetzungen der Bernoulli-Ungleichung? Ja, die Gleichung ist ja äquivalent zu x = 1

q−1,
und es ist q < 1, also x > 0, das passt. Damit haben wir die Schritte (1) und (2) oben.

Jetzt müssen wir also 1
1+nx weiter abschätzen und sehen, warum dieser Term gegen 0 geht.

Die 1 im Nenner stört. Wir könnten sicher auch mit ihr weiter rechnen, aber einfacher wäre
der Ausdruck ohne sie. Es ist ja auch 1

1+nx < 1
nx , d. h. die Abschätzung geht in die richtige

Richtung, und der neue Ausdruck 1
nx geht immer noch gegen 0. Also lassen wir die 1 in (3)

einfach weg. Wie wir jetzt weiter machen können, wissen wir aus Beispiel 5.3 (b): Ist nun
n≥ n0 und 1

n0
< ε x, so erhalten wir in (4) und (5) die gewünschte Abschätzung.

Nachdem wir diese Überlegungen durchgeführt haben, können wir schließlich noch die Beträge
wieder einarbeiten und den Beweis dann so aufschreiben wie oben.

Beachte, dass es natürlich viele verschiedene Arten gibt, derartige Abschätzungen durchzuführen.
Aber nicht jede Abschätzung, die richtig ist, ist auch zielführend: So hätten wir z. B. in (3) oben auch
versuchen können, den Term nx wegzulassen und die Abschätzung mit 1

1+nx <
1
1 fortzusetzen. Diese

Ungleichung ist genauso richtig wie (3), aber der neue Ausdruck 1
1 = 1 geht offensichtlich mit n→∞

nicht mehr gegen 0, so dass wir die gewünschte Folgerung · · ·< ε jetzt nicht mehr erreichen können.
Man muss beim Abschätzen also stets einen geeigneten Mittelweg finden und aufpassen, dass man
weder zu wenig noch zu viel abschätzt. Dadurch erfordern derartige Rechnungen oft eine geschickte
und vielleicht nicht ganz offensichtliche Idee. Am Anfang ist das sicher ungewohnt, aber im Laufe
der Zeit werdet ihr ein gewisses Gefühl dafür entwickeln, welche Art von Abschätzung in welchen
Fällen sinnvoll sein könnte. Aber so oder so – für das reine Nachvollziehen einer Abschätzung, die
jemand anders gefunden hat (wie z. B. wenn ihr den Beweis in Beispiel 5.3 (c) lest und verstehen
wollt), sind solche Ideen natürlich nicht notwendig.
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Wir wollen nun die bereits in Definition 5.1 versprochene Aussage beweisen, dass der Grenzwert
einer Folge (sofern er existiert) immer eindeutig ist. Anschaulich ist diese Aussage natürlich sofort
einleuchtend: Es können nicht fast alle Folgenglieder beliebig nahe an zwei verschiedenen Zahlen
liegen. Denn wenn wir disjunkte ε-Umgebungen der beiden Grenzwerte wählen, kann jedes Folgen-
glied natürlich immer nur in einer der beiden Umgebungen liegen – und somit können nicht fast alle
in beiden Umgebungen liegen. Formal aufgeschrieben sieht diese Beweisidee so aus:

Lemma 5.5 (Eindeutigkeit des Grenzwerts). Jede Folge hat höchstens einen Grenzwert.

Beweis. Angenommen, die Aussage wäre falsch, d. h. es gäbe eine Folge (an)n mit an → a und
an→ b für gewisse a,b ∈ R mit a ̸= b.

Wählen wir dann ε := |a−b|
2 als den halben Abstand zwi-

schen a und b, so gilt wie im Bild rechts Uε(a)∩Uε(b) = /0,
denn aus x ∈Uε(a)∩Uε(b) würde mit der Dreiecksunglei-
chung der Widerspruch

a b

Uε(a) Uε(b)

|a−b|= |a− x+ x−b| ≤ |a− x|+ |x−b|< ε + ε = 2ε = |a−b|
folgen.

Aber wegen an→ a gilt an ∈Uε(a) für fast alle n (also für alle n≥ n1 mit einem gewissen n1 ∈ N),
und wegen an → b genauso an ∈ Uε(b) für fast alle n (also für alle n ≥ n2 mit einem gewissen
n2 ∈ N). Damit folgt auch an ∈ Uε(a)∩Uε(b) für fast alle n (nämlich für alle n, bei denen beide
Aussagen gelten, also für n≥max(n1,n2)), was ein Widerspruch zu Uε(a)∩Uε(b) = /0 ist und somit
das Lemma beweist. □

Bemerkung 5.6. Wir sehen im Beweis von Lemma 5.5, dass die „fast alle“-Notation den Vorteil hat,
dass wir uns oft das explizite Arbeiten mit dem n0 aus Definition 5.1 (b) (von dem wir ja meistens
ohnehin nicht wirklich wissen müssen, welchen Wert es genau hat) sparen können. Die einzige
Eigenschaft, die wir hier wirklich gebraucht haben, ist die: Wenn eine Aussage A(n) für fast alle n
gilt, und eine weitere Aussage B(n) ebenfalls für fast alle (aber nicht notwendig für die gleichen),
dann gelten auch A(n) und B(n) zusammen für fast alle n – nämlich für alle bis auf die endlich vielen
Ausnahmen für A(n) und B(n).

Natürlich gibt es auch Folgen ohne Grenzwert. Die einfachste Möglichkeit dafür ist, dass ihre Glie-
der unbeschränkt wachsen und sich somit keiner Zahl annähern können. Dies wollen wir jetzt formal
untersuchen.

Definition 5.7 (Beschränkte Folgen). Eine Folge (an)n heißt beschränkt, wenn die Menge ihrer
Folgenglieder beschränkt ist, also wenn es ein s ∈ R gibt mit |an| ≤ s für alle n ∈ N.

Lemma 5.8. Jede konvergente Folge ist beschränkt.

Beweis. Es sei (an)n eine konvergente Folge mit Grenzwert a. Dann gibt es zu ε = 1 ein n0, so dass
|an−a|< ε = 1 und damit nach der Dreiecksungleichung auch

|an|= |an−a+a| ≤ |an−a|+ |a|< 1+ |a|
für alle n≥ n0 gilt. Damit ist dann aber |an| ≤ s für alle n ∈ N, wenn wir

s := max(|a0|, |a1|, . . . , |an0−1|,1+ |a|)
setzen. Also ist (an)n beschränkt. □

Beispiel 5.9.
(a) Die Folge

(an)n = (1,0,2,0,3,0, . . .)
ist unbeschränkt (da die Menge N ihrer Folgenglieder nach Satz 4.30 unbeschränkt ist) und
damit nach Lemma 5.8 divergent.
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(b) Auch die geometrische Folge (qn)n aus Beispiel 5.3 (c) ist für |q|> 1 unbeschränkt und damit
divergent: Ist nämlich s ∈ R>0 beliebig, so können wir nach der archimedischen Ordnung
von R ein n ∈ N wählen mit n > s

|q|−1 , und erhalten mit der Bernoulli-Ungleichung

|q|n = (1+ |q|−1)n 4.20
≥ 1+n(|q|−1)> n(|q|−1)> s.

Wie rechnet man nun aber Grenzwerte konkret aus, wenn man nicht jedes Mal wieder auf die Defini-
tion zurückgehen möchte? Glücklicherweise gibt es dafür die Grenzwertsätze, die besagen, dass man
Grenzwerte mit Summen, Differenzen, Produkten und Quotienten vertauschen kann, und die damit
oft eine konkrete Berechnung ermöglichen. Zum Beweis dieser Aussage benötigen wir zunächst ein
Lemma.

Definition 5.10 (Nullfolgen). Eine Folge heißt Nullfolge, wenn sie gegen 0 konvergiert. Offensicht-
lich konvergiert eine Folge (an)n damit nach Definition genau dann gegen a ∈ R, wenn (an− a)n
eine Nullfolge ist.

Lemma 5.11. Ist (an)n eine beschränkte Folge und (bn)n eine Nullfolge, so ist auch (anbn)n eine
Nullfolge.

Beweis. Es sei ε ∈R>0 beliebig. Da (an)n beschränkt ist, gilt |an| ≤ s für ein s∈R>0 und alle n∈N.
Da (bn)n eine Nullfolge ist, ist weiterhin |bn| < ε

s für fast alle n. Also gilt für fast alle n auch die
Abschätzung |anbn|= |an| · |bn|< s · ε

s = ε , d. h. (anbn)n ist eine Nullfolge. □

Bemerkung 5.12 (Folgen mit Grenzwert ungleich 0). Es sei (an)n eine Folge, die gegen einen
Grenzwert a ̸= 0 konvergiert. Eine unmittelbare, aber dennoch oft nützliche Folgerung aus der
Grenzwertdefinition 5.1 ergibt sich, wenn wir dort ε = |a|

2 > 0 setzen: Für fast alle n ist dann
an ∈Uε(a), mit der Dreiecksungleichung nach unten aus Bemerkung 4.19 also

|an| ≥ |a|− |a−an|> |a|− ε =
|a|
2
.

Hat eine Folge also einen Grenzwert a ̸= 0, so sind insbesondere auch fast alle Folgenglieder un-
gleich 0 (und betragsmäßig sogar größer als |a|2 ).

Satz 5.13 (Grenzwertsätze für Folgen). Es seien (an)n und (bn)n zwei konvergente Folgen mit
an→ a und bn→ b. Dann gilt:

(a) an +bn→ a+b und an−bn→ a−b.

(b) an bn→ ab.

(c) Ist b ̸= 0, so sind auch fast alle bn ̸= 0, und es gilt an
bn
→ a

b .

Beweis.

(a) Es sei ε ∈ R>0 beliebig. Wegen an → a und bn → b gilt |an− a| < ε

2 und |bn− b| < ε

2 für
fast alle n. Damit folgt für fast alle n (siehe Bemerkung 5.6) mit der Dreiecksungleichung

|an +bn− (a+b)| ≤ |an−a|+ |bn−b|< ε

2
+

ε

2
= ε,

also wie behauptet an + bn → a+ b. Die Aussage über die Differenz der Grenzwerte folgt
natürlich genauso.

(b) Für alle n ∈ N gilt zunächst

anbn−ab = anbn−anb+anb−ab = an(bn−b)+b(an−a). (1)

Die Folge (an)n ist nach Voraussetzung konvergent und damit beschränkt nach Lemma 5.8.
Weiterhin ist bn−b eine Nullfolge wegen bn→ b. Also ist auch (an(bn−b))n, d. h. der erste
Summand rechts in (1), nach Lemma 5.11 eine Nullfolge. Genauso ergibt sich, dass auch der
zweite Summand (b(an−a))n eine Nullfolge ist. Damit ist (1) die Summe zweier Nullfolgen,
nach (a) also ebenfalls eine Nullfolge. Dies zeigt anbn−ab→ 0 und damit anbn→ ab.
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(c) Nach Bemerkung 5.12 sind mit b ̸= 0 auch fast alle bn ungleich 0, so dass wir (nach evtl.
Weglassen endlich vieler Glieder) die Quotientenfolge

( an
bn

)
n betrachten können. Weil nach

derselben Bemerkung dann sogar |bn| > |b|
2 und damit

∣∣ 1
bn

∣∣ < 2
|b| gilt, ist die Folge

( 1
bn

)
n

außerdem beschränkt. Schreiben wir also

an

bn
− a

b
=

anb−abn

bbn
=

anb−ab+ab−abn

bbn
=

1
bn

(an−a)+
a

bbn
(b−bn), (2)

so ergibt sich die Behauptung genauso wie in (b):
( 1

bn
(an− a)

)
n ist eine Nullfolge (nach

Lemma 5.11 als Produkt der beschränkten Folge
( 1

bn

)
n mit der Nullfolge (an−a)n), analog

ist auch
( a

bbn
(b−bn)

)
n eine Nullfolge. Damit ist (2) wieder die Summe zweier Nullfolgen,

nach (a) also ebenfalls eine Nullfolge – woraus an
bn
→ a

b folgt. □

Beispiel 5.14 (Grenzwerte von Quotienten von Polynomen). Wollen wir den Grenzwert der Fol-
ge
( 2n2

n2+1

)
n bestimmen, so können wir nicht direkt die Grenzwertsätze anwenden, da Zähler und

Nenner natürlich unbeschränkt sind und damit nach Lemma 5.8 divergieren. Durch Kürzen mit n2

können wir die Folgenglieder aber umschreiben, so dass wir den Grenzwert dann mit Satz 5.13 in
den Quotienten, die Summe und das Produkt hineinziehen können und (mit Beispiel 5.3)

2n2

n2 +1
=

2
1+ 1

n2

=
2

1+ 1
n ·

1
n

→ 2
1+0 ·0

= 2 für n→ ∞

erhalten. Auf die gleiche Art kann man offensichtlich den Grenzwert jeder Folge berechnen, die
ein Quotient von zwei Polynomfunktionen in n ist, indem man zuerst mit der höchsten auftretenden
Potenz von n kürzt.

Bemerkung 5.15. Beachte, dass Satz 5.13 nur angewendet werden kann, wenn beide Grenzwerte
lim
n→∞

an und lim
n→∞

bn existieren – ansonsten macht der Satz keine Aussage. Eine Rechnung hinzuschrei-
ben wie z. B.

lim
n→∞

n
n+1

· n+2
n+3

(∗)
= lim

n→∞

n
n+1

· lim
n→∞

n+2
n+3

= lim
n→∞

1
1+ 1

n

· lim
n→∞

1+ 2
n

1+ 3
n

= 1 ·1 = 1

(mit Verweis an der Stelle (∗) auf den Grenzwertsatz 5.13 (b)) ist daher eigentlich nicht korrekt,
da wir bei (∗) ja noch nicht überprüft haben, ob die Grenzwerte der beiden einzelnen Brüche auch
wirklich existieren. Man müsste also theoretisch zuerst die Grenzwerte von n

n+1 und n+2
n+3 separat

berechnen (bzw. ihre Existenz zeigen), und könnte dann erst die obige Rechnung (∗) hinschreiben.
Da dies aber deutlich mehr Schreibaufwand wäre und die Darstellung auch unübersichtlicher machen
würde, wollen wir vereinbaren, dass wir die Grenzwertsätze in einer Rechnung wie oben auch schon
benutzen dürfen, wenn wir erst nachträglich überprüfen, dass die Einzelgrenzwerte existieren.

Aufgabe 5.16. Bestimme die Grenzwerte (sofern sie existieren)

(a) lim
n→∞

n2 +2
n2 +n

, (b) lim
n→∞

n3(n
3

) , (c) lim
n→∞

3n

n3 .

Für (a) beweise man diesen Grenzwert zusätzlich direkt nach Definition, d. h. man gebe zu jedem
ε ∈ R>0 ein n0 ∈ N an, so dass die Grenzwertbedingung aus Definition 5.1 (b) gilt.

Aufgabe 5.17. Zu einer gegebenen Folge (an)n∈N>0 definieren wir die Folge (bn)n∈N>0 ihrer Mittel-
werte durch

bn :=
a1 + · · ·+an

n
für alle n ∈ N>0.

Man zeige: Ist (an)n konvergent mit Grenzwert a ∈ R, so ist auch (bn)n konvergent mit demselben
Grenzwert a. (Hinweis: Zur Vereinfachung der Rechnung ist es nützlich, die Aussage zunächst für
eine Nullfolge (an)n zu beweisen, und den allgemeinen Fall dann darauf zurückzuführen.)
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Als Beispiele für divergente Folgen haben wir bisher nur unbeschränkte Folgen gesehen. Aber auch
beschränkte Folgen können natürlich divergent sein, wie z. B. die Folge(

(−1)n)
n∈N = (1,−1,1,−1, . . .),

in der alle geraden Folgenglieder gleich 1 und alle ungeraden gleich−1 sind, so dass für die gesamte
Folge kein Grenzwert existieren kann. Formal können wir dies mit dem Begriff der Teilfolgen und
Häufungspunkte ausdrücken.

Definition 5.18 (Umordnungen, Teilfolgen und Häufungspunkte). Es sei (an)n∈N eine Folge.

(a) Eine Umordnung von (an)n∈N ist eine Folge der Form (aσ(0),aσ(1),aσ(2), . . .) = (aσ(n))n∈N
für eine bijektive Abbildung σ : N→ N. Sie entsteht also einfach durch eine beliebige Per-
mutation aller Folgenglieder.

(b) Eine Teilfolge von (an)n∈N ist eine Folge der Form (an0 ,an1 ,an2 , . . .) = (ank)k∈N für gewisse
n0 < n1 < n2 < · · · , also eine Folge, die aus (an)n∈N durch Auswählen bestimmter Folgen-
glieder unter Beibehaltung ihrer Reihenfolge entsteht.

(c) Eine Zahl a ∈ R heißt Häufungspunkt von (an)n∈N, wenn es eine Teilfolge von (an)n∈N
gibt, die gegen a konvergiert.

Lemma 5.19 (Grenzwerte von Umordnungen und Teilfolgen). Konvergiert eine Folge (an)n gegen
einen Grenzwert a, so konvergiert auch jede Umordnung und jede Teilfolge von (an)n gegen a.

Insbesondere hat eine konvergente Folge also genau einen Häufungspunkt, nämlich ihren Grenzwert.

Beweis. Es sei ε ∈ R>0 beliebig. Da die Folge (an)n gegen a konvergiert, hat sie nur endlich viele
Glieder, die außerhalb von Uε(a) liegen. Jede Umordnung oder Teilfolge von (an)n hat damit aber
ebenfalls nur endlich viele Glieder außerhalb von Uε(a), und somit konvergiert eine solche Umord-
nung oder Teilfolge ebenfalls gegen a. □

Beispiel 5.20.
(a) Die oben betrachtete Folge (an)n∈N = ((−1)n)n∈N = (1,−1,1,−1, . . .) besitzt die beiden

konstanten Teilfolgen

(a2n)n∈N = (1,1,1, . . .)

und (a2n+1)n∈N = (−1,−1,−1, . . .)

und damit die beiden Häufungspunkte 1 und −1. Sie ist also nach Lemma 5.19 divergent. In
der Tat werden wir in Beispiel 5.23 (a) sehen, dass 1 und −1 auch die einzigen Häufungs-
punkte von (an)n sind.

(b) Für die Folge (an)n =(n+1)n =(1,2,3, . . .) ist jede ihrer Teilfolgen unbeschränkt und damit
nach Lemma 5.8 divergent. Also besitzt (an)n keine Häufungspunkte.

09
Zur konkreten Berechnung von Häufungspunkten sind oft die folgenden beiden Lemmata nützlich.

Lemma 5.21 (Äquivalente Charakterisierung von Häufungspunkten). Eine Zahl a ∈ R ist genau
dann ein Häufungspunkt einer Folge (an)n, wenn in jeder ε-Umgebung von a unendlich viele Fol-
genglieder an liegen.

Beweis.

„⇒“: Konvergiert eine Teilfolge von (an)n gegen a, so liegen in jeder ε-Umgebung von a fast alle
Glieder der Teilfolge und somit insbesondere auch unendlich viele Glieder von (an)n.

„⇐“: Wir konstruieren eine Teilfolge (ank)k∈N der gewünschten Art wie folgt: Als Startindex neh-
men wir n0 = 0. Ist nun für ein k ∈N>0 der Index nk−1 bereits konstruiert, so wählen wir für
das nächste Folgenglied ein nk > nk−1 mit |ank−a|< 1

k (dies ist möglich, da in der 1
k -Umge-

bung von a nach Voraussetzung unendlich viele Folgenglieder liegen, also auch eines hinter
ank−1 ).

Die so konstruierte Teilfolge (ank)k∈N konvergiert dann gegen a: Ist ε ∈ R>0 gegeben und
k0 ∈ N>0 mit 1

k0
< ε , so ist |ank −a|< 1

k ≤
1
k0

< ε für alle k ≥ k0. □
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Lemma 5.22 (Mischfolgen). Es seien (an)n∈N eine Folge sowie (ank)k∈N und (amk)k∈N zwei Teilfol-
gen, die zusammen die gesamte Folge ergeben, also so dass {nk : k ∈ N} ·∪ {mk : k ∈ N} = N gilt.
Man sagt in diesem Fall auch, dass (an)n∈N eine Mischfolge von (ank)k∈N und (amk)k∈N ist.

Dann ist eine Zahl a ∈ R genau dann ein Häufungspunkt von (an)n∈N, wenn a ein Häufungspunkt
von (ank)k∈N oder (amk)k∈N ist.

Beweis. Eine Zahl a ist nach Lemma 5.21 genau dann ein Häufungspunkt von (an)n, wenn in jeder
ε-Umgebung von a unendlich viele Folgenglieder von (an)n liegen. Da (an)n eine Mischfolge von
(ank)k und (amk)k ist, ist dies natürlich äquivalent dazu, dass in jeder solchen ε-Umgebung unendlich
viele Folgenglieder von (ank)k oder (amk)k liegen, also dass a ein Häufungspunkt (mindestens) einer
dieser beiden Teilfolgen ist. □

Beispiel 5.23.
(a) Die Folge (an)n = ((−1)n)n∈N aus Beispiel 5.20 (a) ist eine Mischfolge ihrer positiven und

negativen Glieder, die konstant gleich 1 bzw.−1 sind. Aus Lemma 5.22 folgt also, dass (an)n
genau die beiden Häufungspunkte 1 und −1 hat.

(b) Die divergente Folge (an)n = (1,0,2,0,3,0, . . .) aus Beispiel 5.9 (a) ist eine Mischfolge der
Folge (1,2,3, . . .) (die nach Beispiel 5.20 (b) keine Häufungspunkte hat) und der konstanten
Folge 0 (die natürlich 0 als einzigen Häufungspunkt hat). Damit hat (an)n nach Lemma 5.22
den einzigen Häufungspunkt 0. Wir sehen also (im Gegensatz zu Lemma 5.19), dass eine
Folge mit genau einem Häufungspunkt nicht notwendig konvergiert.

5.B Konvergenzkriterien für Folgen

Nicht in allen Fällen lässt sich die Berechnung von Grenzwerten mit Hilfe der Grenzwertsätze auf
bereits bekannte zurückführen. Wir benötigen daher noch weitere Techniken zur Grenzwertbestim-
mung und beginnen mit einem einfachen Vergleichskriterium.

Satz 5.24 (Verträglichkeit des Grenzwerts mit Ungleichungen). Es seien (an)n und (bn)n konvergen-
te Folgen mit an→ a und bn→ b. Dann gilt:

(a) Ist an ≤ bn für fast alle n, so auch a≤ b.

(b) (Einschachtelungssatz) Ist a = b, konvergieren also beide Folgen gegen denselben Grenz-
wert, und ist (cn)n eine weitere reelle Folge mit an ≤ cn ≤ bn für fast alle n, so konvergiert
auch (cn)n gegen diesen Grenzwert a.

Beweis.

(a) Angenommen, es wäre a > b. Wir setzen ε := a−b
2 . Wegen an → a und bn → b wäre dann

(nach Bemerkung 5.6) für fast alle n

an ∈ (a− ε,a+ ε) und bn ∈ (b− ε,b+ ε).

Zusammensetzen liefert a− ε < an ≤ bn < b+ ε für fast alle n, und damit a− b < 2ε im
Widerspruch zu ε = a−b

2 .

(b) Es sei ε ∈ R>0 beliebig. Diesmal gilt wegen an→ a und bn→ a für fast alle n

an ∈ (a− ε,a+ ε) und bn ∈ (a− ε,a+ ε),

und damit a−ε < an ≤ cn ≤ bn < a+ε , also cn ∈ (a−ε,a+ε). Da ε > 0 beliebig war, folgt
daraus wie behauptet cn→ a. □

Bemerkung 5.25. Beachte, dass Satz 5.24 (a) nicht auch analog für die echte Ungleichung „<“
gilt: Ist z. B. an = 0 und bn =

1
n für alle n ≥ 1, so gilt zwar an < bn für alle n, aber die Grenzwerte

beider Folgen sind natürlich gleich 0, d. h. es gilt nur lim
n→∞

an ≤ lim
n→∞

bn gemäß Satz 5.24 (a), aber
nicht lim

n→∞
an < lim

n→∞
bn.
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Aufgabe 5.26. Bestimme den Grenzwert

lim
n→∞

n

∑
k=1

n
n2 + k

.

Alle unsere bisherigen Kriterien haben den entscheidenden Nachteil, dass sie Grenzwerte nur auf
andere bereits bekannte zurückführen können. In der Praxis werden aber viele Größen wie z. B.
Quadratwurzeln, π , e oder der Sinus und Kosinus einer gegebenen Zahl überhaupt erst als Grenz-
werte geeigneter Folgen konstruiert. Die Konvergenz solcher Folgen werden wir also mit unseren
bisherigen Methoden nie nachweisen können.

Wir benötigen daher auch Kriterien, mit denen man die Konvergenz einer Folge selbst dann nachwei-
sen kann, wenn man ihren Grenzwert noch nicht vorher kennt oder gleichzeitig aus bereits bekannten
anderen Grenzwerten berechnen kann. Im Gegensatz zu unseren Ergebnissen aus Abschnitt 5.A, die
unverändert auch in Q gelten würden, handelt es sich hierbei nun um Resultate, die ganz zentral das
Supremumsaxiom verwenden und daher nur in R gelten.

Das erste Kriterium dieser Art, das wir jetzt behandeln wollen, ist für Folgen anwendbar, deren
Folgenglieder mit wachsendem n immer größer werden. Ist eine solche Folge nach oben beschränkt,
so ist anschaulich klar, dass die Folgenglieder wie im Bild unten für wachsendes n „immer näher
zusammen rücken“ müssen, was letztlich zur Konvergenz der Folge führen sollte. Dies ist der Inhalt
des folgenden Satzes.

a0 a1≤ a2≤ a3≤ ≤·· · R

obere Schranke
lim
n→∞

an

Definition 5.27 (Monotone und beschränkte Folgen). Es sei (an)n eine Folge.

(a) Die Folge (an)n heißt monoton wachsend oder steigend, wenn an ≤ an+1 für alle n ∈ N,
also a0 ≤ a1 ≤ a2 ≤ ·· · und damit am ≤ an für alle m≤ n gilt. Gilt sogar an < an+1 für alle
n ∈ N, so heißt (an)n streng monoton wachsend oder steigend.

Analog heißt (an)n (streng) monoton fallend, wenn an ≥ an+1 (bzw. an > an+1) für alle
n ∈ N gilt.

(b) Analog zu Definition 5.7 heißt (an)n nach oben beschränkt, wenn die Menge ihrer Folgen-
glieder nach oben beschränkt ist, also wenn es ein s ∈ R gibt mit an ≤ s für alle n.

Analog heißt (an)n nach unten beschränkt, wenn es ein s ∈R gibt mit an ≥ s für alle n; die
Folge ist also genau dann beschränkt, wenn sie nach oben und unten beschränkt ist.

Satz 5.28 (Monotoniekriterium). Jede monoton wachsende, nach oben beschränkte Folge (an)n in
R ist konvergent. (Analog ist dann natürlich auch jede monoton fallende, nach unten beschränkte
Folge konvergent.)

Beweis. Da die Menge M := {an : n ∈ N} ⊂ R aller Folgenglieder nicht leer und nach oben be-
schränkt ist, existiert a := supM nach dem Supremumsaxiom. Wir behaupten, dass an→ a.

Es sei dazu ε ∈ R>0 beliebig. Da a die kleinste obere Schranke für M ist, ist a− ε keine obere
Schranke mehr. Es gibt also ein n0 ∈ N mit an0 > a− ε . Für alle n≥ n0 folgt dann

a− ε < an0 ≤ an (Monotonie)
≤ a (a ist obere Schranke der Folgenglieder)
< a+ ε,

also |an−a|< ε . Damit konvergiert (an)n gegen a. □

Als Beispiel für die Anwendung des Monotoniekriteriums wollen wir nun als Erstes zeigen, dass
jede nicht-negative reelle Zahl eine Quadratwurzel besitzt. Auch wenn euch diese Tatsache aus der
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Schule vielleicht „offensichtlich“ erscheint (und wir sie in Bemerkung 4.37 auch schon ohne Be-
weis benutzt haben), folgt sie dennoch nicht unmittelbar aus den Axiomen für R und muss damit
bewiesen werden. Eine Möglichkeit dafür ist, eine Folge (an)n zu konstruieren, deren Konvergenz
wir beweisen können, und deren Grenzwert nur die gewünschte Wurzel sein kann. Die Konstruktion
von (an)n ist dabei rekursiv, d. h. wir können (analog zur vollständigen Induktion) nicht direkt an für
alle n ∈ N angeben, sondern legen nur das erste Folgenglied a0 fest und geben dann eine Formel an,
mit der für alle n ∈ N aus an das nächste Folgenglied an+1 berechnet werden kann.

Lemma 5.29 (Existenz von Wurzeln, Heron-Verfahren). Es seien c ∈ R>0 und a0 ∈ R>0 gegeben.
Dann konvergiert die mit diesem Startwert a0 rekursiv definierte Folge (an)n mit

an+1 :=
1
2

(
an +

c
an

)
für alle n ∈ N (∗)

gegen ein a ∈ R>0 mit a2 = c.

Beweis. Wir zeigen die Konvergenz von (an)n mit dem Monotoniekriterium, indem wir nachweisen,
dass die Folge nach unten beschränkt und monoton fallend ist.

Aus der Rekursionsvorschrift (∗) ist offensichtlich, dass mit c und a0 auch alle Folgenglieder positiv
sind. Die Folge ist also sicher durch 0 nach unten beschränkt. In der Tat gilt für alle n ∈ N sogar

a2
n+1 =

1
4

(
an +

c
an

)2

=
1
4

a2
n +

1
2

c+
1
4

c2

a2
n
=

1
4

a2
n−

1
2

c+
1
4

c2

a2
n
+ c =

1
4

(
an−

c
an

)2

+ c≥ c

und somit a2
n ≥ c für alle n≥ 1. Daraus folgt für alle n≥ 1 aber auch

an+1

an
=

1
2

(
1+

c
a2

n

)
≤ 1

2

(
1+

c
c

)
= 1,

und damit an+1 ≤ an, die Folge ist also (mit Ausnahme evtl. des ersten Folgengliedes) monoton
fallend. Damit konvergiert (an)n nach Satz 5.28, d. h. der Grenzwert a := lim

n→∞
an existiert.

Um Informationen über den Grenzwert a zu bekommen, multiplizieren wir die Rekursionsgleichung
(∗) zunächst mit an und erhalten an+1an =

1
2 (a

2
n + c) für alle n ∈ N. Gehen wir in dieser Gleichung

nun zum Grenzwert über, so ergibt sich

lim
n→∞

an+1an = lim
n→∞

1
2

(
a2

n + c
)
, und damit a2 =

1
2

(
a2 + c

)
,

da die Folge (an+1)n = (a1,a2,a3, . . .) gegenüber (an)n = (a0,a1,a2, . . .) ja nur um ein Folgenglied
verschoben ist und somit als Teilfolge von (an)n ebenfalls gegen a konvergiert. Auflösen dieser Glei-
chung liefert nun sofort wie behauptet a2 = c. Da alle an positiv sind, ergibt Satz 5.24 (a) außerdem
auch a≥ 0; in der Tat ist wegen a2 = c > 0 dann sogar a > 0. □

Folgerung und Definition 5.30. Zu jedem c ∈ R≥0 gibt es eine eindeutig bestimmte Zahl a ∈ R≥0
mit a2 = c. Wir nennen sie die (Quadrat-)Wurzel aus c und schreiben sie als

√
c.

Beweis. Für c = 0 ist die Aussage mit a = 0 klar, daher können wir im Folgenden c > 0 annehmen.
Die Existenz einer Wurzel a folgt dann direkt aus Lemma 5.29. Das Polynom x 7→ x2−c hat nun die
positive Nullstelle a und die negative Nullstelle −a, und kann als Polynom vom Grad 2 nach Satz
3.19 (b) keine weiteren Nullstellen haben. Also ist die Wurzel a auch eindeutig bestimmt. □

Bemerkung 5.31 (Grenzwert rekursiver Folgen). Das Monotoniekriterium bietet sich oft für rekur-
siv definierte Folgen (an)n wie in Lemma 5.29 an, da die Monotonie ja durch den Vergleich von
an+1 und an nachgewiesen werden kann. Sehr nützlich ist dabei auch der Trick, wie im Beweis des
Lemmas in der Rekursionsgleichung zum Grenzwert überzugehen, um eine bestimmende Gleichung
für den Grenzwert zu finden.

Beispiel 5.32. Die folgende Tabelle zeigt den Anfang der Folge aus Lemma 5.29 im Fall c = 2 und
a0 = 1. Beachte, dass die Folge „extrem schnell“ konvergiert und daher sehr gut zur näherungswei-
sen Berechnung von Wurzeln geeignet ist – z. B. wenn man einem Computer, der bisher nur weiß,
wie man die vier Grundrechenarten ausführt, das Wurzelziehen beibringen möchte. In der Tat kann
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man zeigen, dass jeder Schritt die Anzahl der korrekten Dezimalstellen (die in der Tabelle unten fett
gedruckt sind) näherungsweise verdoppelt. Wir werden uns in dieser Vorlesung jedoch nicht wei-
ter mit der „Geschwindigkeit“ der Konvergenz von Folgen beschäftigen; derartige Fragestellungen
werdet ihr später in den Vorlesungen zur Praktischen Mathematik untersuchen.

n an
0 1,000000000000000000000000000000000000000000000000. . .
1 1,500000000000000000000000000000000000000000000000. . .
2 1,416666666666666666666666666666666666666666666666. . .
3 1,414215686274509803921568627450980392156862745098. . .
4 1,414213562374689910626295578890134910116559622115. . .
5 1,414213562373095048801689623502530243614981925776. . .
6 1,414213562373095048801688724209698078569671875377. . .

Aufgabe 5.33. Untersuche, ob die folgenden rekursiv definierten Folgen (an)n konvergieren, und
bestimme im Fall der Konvergenz den Grenzwert.

(a) a0 = 1, an =
√

an−1 +6 für alle n≥ 1;

(b) a0 = 1, a1 = 2, an =
1
2 (an−1 +an−2) für alle n≥ 2.

(Hinweis: Leite zunächst eine Formel für die Differenz an−an−1 zweier aufeinander folgen-
der Glieder her.)

Aufgabe 5.34. Es seien a,b ∈R≥0. Zeige, dass die Quadratwurzel die folgenden Eigenschaften hat:

(a) Gilt a≤ b, so auch
√

a≤
√

b (Monotonie).

(b)
√

ab =
√

a ·
√

b.

(c)
√

ab≤ a+b
2 .

(d) Konvergiert eine Folge (an)n in R≥0 gegen a, so gilt auch lim
n→∞

√
an =

√
a.

Aufgabe 5.35.
(a) Man zeige: Für alle a,b ∈ Z und k,n ∈ N ist (a+b

√
k)n +(a−b

√
k)n ∈ Z.

(b) Bestimme die 100. Nachkommastelle (im Dezimalsystem) von (2+
√

5)2024.

Aufgabe 5.36. Zeige, dass jedes (nicht-leere) offene Intervall in R unendlich viele rationale und
unendlich viele irrationale Zahlen enthält.

Aufgabe 5.37 (Existenz höherer Wurzeln in R). In dieser Aufgabe wollen wir analog zu Lemma 5.29
und Folgerung 5.30 beweisen, dass jede nicht-negative reelle Zahl c für alle k ∈N>0 eine eindeutige
k-te Wurzel besitzt. Wir definieren dazu für ein gegebenes c ∈ R>0, k ∈ N>0 und einen beliebigen
positiven Startwert a0 die Folge (an)n rekursiv durch

an+1 :=
1
k

(
(k−1)an +

c
ak−1

n

)
für alle n ∈ N.

Man beweise nun:

(a) Für alle n ∈ N ist ak
n+1 ≥ c.

(b) Die Folge (an)n ist ab dem zweiten Folgenglied monoton fallend.

(c) Zu jeder Zahl c ∈ R≥0 gibt es ein eindeutiges a ∈ R≥0 mit ak = c. Wir nennen dieses a die
k-te Wurzel aus c und schreiben sie als k

√
c.

Aufgabe 5.38. Es sei M⊂R nicht leer und nach oben beschränkt. Zeige, dass für s∈R die folgenden
Aussagen äquivalent sind:

(a) s = supM.

(b) s ist eine obere Schranke für M, und es gibt eine Folge (an)n von Elementen aus M mit
lim
n→∞

an = s.
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10

Kombiniert man die Monotoniekriterien für wachsende und fallende Folgen miteinander, kann man
einen Grenzwert wie folgt von beiden Seiten einschachteln.

Satz 5.39 (Intervallschachtelung). Gegeben sei für alle
n ∈ N ein abgeschlossenes Intervall In = [bn,cn] in R, so
dass I0 ⊃ I1 ⊃ I2 ⊃ ·· · (also die Intervalle ineinander lie-
gen) und lim

n→∞
(cn−bn) = 0 (also die Längen der Intervalle

gegen 0 konvergieren).

Dann gibt es genau ein a ∈R, das in allen diesen Interval-
len liegt, und es gilt bn→ a und cn→ a.

I1I2I3I4I5

I0

b0 a Rc0

Beweis. Die Folge (bn)n der unteren Intervallgrenzen ist monoton wachsend und nach oben be-
schränkt (z. B. durch c0), nach dem Monotoniekriterium aus Satz 5.28 also konvergent. Genauso ist
(cn)n monoton fallend und nach unten beschränkt, und damit ebenfalls konvergent. Da die Längen
der Intervalle nach Voraussetzung gegen 0 konvergieren, folgt nach Satz 5.13 also

lim
n→∞

cn− lim
n→∞

bn = lim
n→∞

(cn−bn) = 0 ⇒ lim
n→∞

bn = lim
n→∞

cn.

Es sei a := lim
n→∞

bn = lim
n→∞

cn der gemeinsame Grenzwert dieser beiden Folgen.

Nach dem Beweis von Satz 5.28 ist a eine obere Schranke für alle bn und eine untere Schranke für
alle cn. Es gilt also a∈ [bn,cn] = In für alle n. Ist umgekehrt a′ ∈R mit a′ ∈ In und damit bn ≤ a′ ≤ cn
für alle n, so folgt daraus durch Grenzwertbildung mit Satz 5.24 auch a≤ a′ ≤ a, also a′ = a. Somit
gibt es genau eine Zahl in allen gegebenen Intervallen, nämlich a. □

Zum Abschluss dieses Abschnitts wollen wir analog zu den uneigentlichen Suprema in Bemerkung
4.38 auch uneigentliche Grenzwerte definieren, also festlegen, was es heißt, dass eine Folge „den
Grenzwert ∞ besitzt“. Dies hat den Vorteil, dass viele Aussagen über konvergente Folgen mit ge-
wöhnlichen Grenzwerten in R auf diesen Fall verallgemeinert werden können.

Definition 5.40 (Uneigentliche Grenzwerte von Folgen). Für eine Folge (an)n in R schreiben wir
an→ ∞ bzw. lim

n→∞
an = ∞, wenn

∀s ∈ R ∃n0 ∈ N ∀n≥ n0 : an > s,

also wenn zu jeder vorgegebenen Schranke s fast alle Folgenglieder größer als s sind. Analog defi-
niert man die Eigenschaft lim

n→∞
an =−∞.

Beachte, dass derartige Folgen natürlich insbesondere unbeschränkt und damit nach Lemma 5.8
divergent sind. Man bezeichnet sie als bestimmt divergent und nennt ∞ bzw. −∞ einen uneigentli-
chen Grenzwert. Ist (an)n divergent und besitzt nicht in obigem Sinne den Grenzwert ∞ oder −∞,
so nennt man (an)n unbestimmt divergent.

Beispiel 5.41.

(a) Die Folge (an)n = (1,2,3, . . .) ist bestimmt divergent mit uneigentlichem Grenzwert
lim
n→∞

an = ∞.

(b) Die Folge (bn)n = (1,0,2,0,3,0, . . .) aus Beispiel 5.9 (a) ist unbestimmt divergent (da z. B.
nicht fast alle Folgenglieder größer als 1 sind).
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Bemerkung 5.42 (Grenzwertsätze für uneigentliche Grenzwerte). Die Grenzwertsätze aus Satz 5.13
gelten auch für uneigentliche Grenzwerte wie in Definition 5.40, wenn man die formalen Rechenre-
geln für ∞

a+∞ = ∞ für a ∈ R,
∞+∞ = ∞,

a ·∞ = ∞ für a ∈ R>0,

∞ ·∞ = ∞,
a
∞

= 0 für a ∈ R

und analog für −∞ bzw. a ∈ R<0 definiert. Die Beweise dieser Aussagen sind letztlich analog zu
denen von Satz 5.13, jedoch in den einzelnen Fällen immer etwas unterschiedlich, da die Bedingung
für den Grenzwert ∞ aus Definition 5.40 ja formal anders aussieht als die eines endlichen Grenzwerts
in Definition 5.1. Wir werden die Beweise hier nur exemplarisch in Aufgabe 5.43 betrachten.

Beachte aber, dass die Grenzwertsätze auch weiterhin keine Aussage liefern, wenn eine der betrach-
teten Folgen unbestimmt divergent ist oder sich Ausdrücke der Form ∞−∞, 0 ·∞ oder ∞

∞
ergeben,

die sich nicht sinnvoll definieren lassen.

Aufgabe 5.43. Es seien (an)n und (bn)n zwei reelle Zahlenfolgen.

(a) Man zeige: Gilt an→ a ∈ R>0 und bn→ ∞, so ist auch an bn→ ∞.

(b) Man zeige: Gilt an→ ∞ und bn→ ∞, so ist auch an +bn→ ∞.

(c) Kann man in (b) die Bedingung des Grenzwerts ∞ auch durch „nach oben unbeschränkt“
ersetzen, d. h. gilt für nach oben unbeschränkte Folgen (an)n und (bn)n auch, dass (an+bn)n
nach oben unbeschränkt ist?

Bemerkung 5.44 (Monotoniekriterium mit uneigentlichem Grenzwert). Auch das Monotoniekrite-
rium aus Satz 5.28 lässt sich auf eine Variante mit uneigentlichen Grenzwerten erweitern: Ist eine
reelle Folge (an)n zwar monoton wachsend, aber nicht nach oben beschränkt, so gibt es zu jedem
s ∈ R zunächst ein n0 ∈ N mit an0 > s, und wegen der Monotonie dann auch mit an > s für alle
n ≥ n0. Nach Definition 5.40 ist damit dann also lim

n→∞
an = ∞. Wir können Satz 5.28 also dahin-

gehend verallgemeinern, dass jede monotone reelle Folge einen evtl. uneigentlichen Grenzwert in
R∪{±∞} hat, also konvergent oder bestimmt divergent ist.

5.C Limes superior und inferior

Bisher haben wir das Verhalten einer Folge (an)n für n→ ∞ in der Regel durch ihren Grenzwert be-
schrieben. Selbst wenn wir hierbei uneigentliche Grenzwerte wie in Definition 5.40 zulassen, funk-
tioniert dies aber natürlich nicht bei unbestimmt divergenten Folgen, die keinen solchen Grenzwert
besitzen.

Um solche Folgen zu untersuchen, können wir wie in Definition 5.18 (c) versuchen, auf Häufungs-
punkte auszuweichen. In der Tat wollen wir jetzt zeigen, dass jede Folge (zumindest im uneigentli-
chen Sinne) auch wirklich mindestens einen Häufungspunkt besitzt. Der Einfachheit halber betrach-
ten wir hierfür zunächst nur beschränkte reelle Folgen, deren Häufungspunkte dann also in R liegen
müssen. In diesem Fall werden wir in Folgerung 5.48 sehen, dass die folgende Konstruktion stets
einen Häufungspunkt liefert – und zwar sogar einen ganz bestimmten, nämlich den größten.

Konstruktion 5.45. Es sei (an)n eine beschränkte reelle Folge. Wie im Bild unten für die Folge
(an)n mit an = (−1)n (1+ 1

n ) dargestellt konstruieren wir nun die Hilfsfolge (sn)n durch

sn := sup{ak : k ≥ n},
d. h. wir betrachten das Supremum aller Folgenglieder, wobei wir aber für sn erst beim n-ten Folgen-
glied anfangen.



5. Folgen und Grenzwerte 61

n

an

1

−1
1 2 3 4 5 6

s1 = s2
s3 = s4

s5 = s6

Beachte dabei, dass die Mengen {ak : k ≥ n} nach Voraussetzung beschränkt sind und die Suprema
sn damit nach dem Supremumsaxiom in R existieren. Außerdem folgt aus der Beschränktheit der
Folgenglieder, dass auch (sn)n eine beschränkte Folge ist.

Darüber hinaus ist die Folge (sn)n monoton fallend: Die obere Schranke sn der Menge {ak : k ≥ n}
ja auch eine obere Schranke der Teilmenge {ak : k ≥ n+ 1} ⊂ {ak : k ≥ n} und muss damit größer
oder gleich der kleinsten oberen Schranke sn+1 von {ak : k ≥ n+1} sein – d. h. es ist sn+1 ≤ sn.

Wir haben also gesehen, dass (sn)n eine monoton fallende und (nach unten) beschränkte reelle Folge
ist. Nach dem Monotoniekriterium aus Satz 5.28 besitzt sie also einen Grenzwert. Im oben darge-
stellten Beispiel ist dieser Grenzwert offensichtlich 1. Da die Häufungspunkte unserer Beispielfolge
nach dem Mischfolgenlemma 5.22 genau ±1 sind, ist der Grenzwert von (sn)n hier also gerade der
größte Häufungspunkt von (an)n. Bevor wir zeigen, dass dies immer der Fall ist, geben wir der so
konstruierten Zahl noch einen Namen.

Definition 5.46 (Limes superior und inferior). Für eine beschränkte reelle Folge (an)n definieren
wir

den Limes superior limsup
n→∞

an := lim
n→∞

(
sup{ak : k ≥ n}

)
und den Limes inferior liminf

n→∞
an := lim

n→∞

(
inf{ak : k ≥ n}

)
.

In der Literatur sind hierfür auch die Schreibweisen liman bzw. liman üblich.

Das folgende Lemma zeigt, dass sich der Limes superior (und analog der Limes inferior) in gewis-
sem Sinne wie eine „Mischung“ aus einem Grenzwert und einem Häufungspunkt verhält: Während
für einen Grenzwert a ja in jeder ε-Umgebung Uε(a) fast alle Folgenglieder, für einen Häufungs-
punkt nach Lemma 5.21 aber nur unendlich viele Glieder liegen müssen, ist der Limes superior die
(eindeutig bestimmte) Zahl a, für die für alle ε fast alle Folgenglieder kleiner als a+ε , und unendlich
viele größer als a− ε sind.

Lemma 5.47 (Äquivalente Charakterisierung des Limes superior). Es seien (an)n eine beschränkte
reelle Folge und a ∈ R. Dann gilt a = limsup

n→∞

an genau dann, wenn für alle ε > 0 die folgenden

beiden Bedingungen erfüllt sind:

(a) Für fast alle n ist an < a+ ε .

(b) Für unendlich viele n ist an > a− ε .

(Eine analoge Aussage gilt natürlich auch für den Limes inferior.)

Beweis. Wie in Konstruktion 5.45 sei sn = sup{ak : k ≥ n}, so dass also limsup
n→∞

an = lim
n→∞

sn gilt.

Weiterhin sei ε > 0 beliebig.

„⇒“: Es gelte sn→ a, also sn ∈ (a− ε,a+ ε) für fast alle n. Wir müssen (a) und (b) zeigen.

Da sn eine obere Schranke für {ak : k≥ n} (also insbesondere für an) ist, gilt an ≤ sn < a+ε

für fast alle n. Dies zeigt (a).

Um (b) zu zeigen, nehmen wir an, es gäbe nur endlich viele n mit an > a− ε . Dann gäbe es
also ein n0 ∈ N mit an ≤ a− ε für alle n ≥ n0, d. h. a− ε wäre eine obere Schranke für alle
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diese Folgenglieder. Daraus folgt dann aber auch sn ≤ a−ε für alle n≥ n0, im Widerspruch
zu sn→ a.

„⇐“: Wir setzen nun (a) und (b) voraus und müssen sn ∈ (a− ε,a+ ε) für fast alle n zeigen.

Nach (a) gibt es ein n0 ∈ N mit an < a + ε

2 für alle n ≥ n0. Damit ist für diese n auch
sn = sup{ak : k ≥ n} ≤ a+ ε

2 < a+ ε .

Weiterhin gibt es nach (b) zu jedem n ∈ N ein k ≥ n mit ak > a− ε , woraus natürlich auch
sn = sup{ak : k ≥ n}> a− ε folgt.

Insgesamt gilt also sn ∈ (a− ε,a+ ε) für fast alle n. □

Aus diesem Lemma ergibt sich nun die folgende wichtige Charakterisierung des Limes superior (und
inferior), mit der man diese Zahl oft sehr einfach bestimmen kann.

Folgerung 5.48. Für jede beschränkte reelle Folge (an)n ist limsup
n→∞

an der größte Häufungspunkt

von (an)n. (Analog ist dann natürlich liminf
n→∞

an der kleinste Häufungspunkt von (an)n.)

Insbesondere besitzt also jede beschränkte reelle Folge einen Häufungspunkt (Satz von Bolzano-
Weierstraß für R).

Beweis. Es seien a = limsup
n→∞

an und ε > 0 beliebig. Aus (a) und (b) von Lemma 5.47 folgt dann

a− ε < an < a+ ε für unendlich viele n, d. h. nach Lemma 5.21 ist a ein Häufungspunkt von (an)n.

Andererseits ist aber kein b > a ein Häufungspunkt von (an)n: Setzen wir nämlich ε = b−a
2 > 0, so

ist a+ ε = b− ε , und somit gilt nach Lemma 5.47 (a) für fast alle n

an < a+ ε = b− ε ⇒ an /∈ (b− ε,b+ ε).

Damit kann b kein Häufungspunkt von (an)n sein. □

Beispiel 5.49.
(a) Die Folge (an)n∈N>0 mit an = (−1)n (1+ 1

n ) ist eine Mischfolge aus den geraden Gliedern
a2n = 1+ 1

2n → 1 und den ungeraden Gliedern a2n+1 = −(1+ 1
2n+1 )→ −1, sie hat nach

Lemma 5.22 also die einzigen Häufungspunkte 1 und −1. Aus Folgerung 5.48 ergibt sich
damit sofort limsup

n→∞

an = 1 und liminf
n→∞

an =−1.

(b) Ist (an)n eine konvergente reelle Folge, so ist ihr Grenzwert a nach Lemma 5.19 der einzige
Häufungspunkt. Also ist dann limsup

n→∞

an = liminf
n→∞

an = a nach Folgerung 5.48.

Ist umgekehrt (an)n eine beschränkte reelle Folge mit limsup
n→∞

an = liminf
n→∞

an =: a, so folgt

aus Lemma 5.47 (a) für alle ε > 0, dass a−ε < an < a+ε für fast alle n ist – wobei sich die
erste Ungleichung aus liminf

n→∞
an = a und die zweite aus limsup

n→∞

an = a ergibt. Also ist (an)n

dann konvergent mit Grenzwert a.

Aufgabe 5.50. Berechne limsup
n→∞

an und liminf
n→∞

an für an =
1√

n2+n+(−1)n·n
.

Aufgabe 5.51.
(a) Es seien (an)n und (bn)n zwei beschränkte Folgen positiver Zahlen. Zeige, dass

limsup
n→∞

(anbn) ≤ limsup
n→∞

an · limsup
n→∞

bn,

und gib ein Beispiel dafür an, dass hier im Allgemeinen keine Gleichheit gilt.

(b) Beweise, dass in (a) jedoch stets die Gleichheit gilt, wenn (an)n oder (bn)n konvergent ist.

Bemerkung 5.52 (Uneigentliche Werte für Limes superior und inferior). Lässt man für Supremum,
Infimum und Grenzwerte wie in Bemerkung 4.38 und Definition 5.40 formal auch ±∞ zu, so kann
man den Limes superior und Limes inferior nach Bemerkung 5.44 genau wie in Definition 5.46 auch
für beliebige reelle Folgen konstruieren und erhält dann Werte in R∪{±∞}.
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Aufgabe 5.53. Zeige, dass die Aussage von Folgerung 5.48 auch für beliebige reelle Folgen richtig
ist, wenn man wie in Bemerkung 5.52 die uneigentlichen Werte ±∞ für Häufungspunkte sowie den
Limes superior und inferior zulässt.

Insbesondere gibt es also auch vom Satz von Bolzano-Weierstraß die erweiterte Form, dass jede
(nicht notwendig beschränkte) reelle Folge einen (evtl. uneigentlichen) Häufungspunkt hat.

11

5.D Mächtigkeiten von Mengen

Zum Abschluss dieses Kapitels wollen wir noch ein Thema behandeln, das wir auch schon deutlich
früher hätten ansprechen können, aber das durch unsere Ergebnisse zu Folgen nun einfacher zu unter-
suchen ist: die Frage nach der „Größe“ von Mengen. Gibt es zu zwei Mengen M und N eine bijektive
Abbildung f : M→ N und damit wie im rechten Bild von Definition 2.8 eine 1:1-Beziehung zwi-
schen ihren Elementen, so können wir uns diese beiden Mengen anschaulich als „gleich groß“ vor-
stellen. Ist z. B. M = {x1, . . . ,xn} eine endliche Menge mit n Elementen, so ist N = { f (x1), . . . , f (xn)}
(da f surjektiv ist und somit alle Elemente von N trifft) – und in dieser Aufzählung der Elemente
von N steht auch kein Element doppelt, da f injektiv ist. Also hat N dann ebenfalls n Elemente, d. h.
genauso viele Elemente wie M.

Wir wollen dieses Konzept nun für unendliche Mengen untersuchen. Ist es auch in diesem Fall noch
sinnvoll, sich zwei Mengen M und N als „gleich groß“ vorzustellen, wenn eine bijektive Abbildung
f : M→ N zwischen ihnen existiert? Gibt es überhaupt „verschieden große unendliche Mengen“?
Da diese Frage intuitiv nicht mehr besonders gut zugänglich ist, sollten wir natürlich zunächst erst
einmal exakt definieren, worüber wir reden wollen.

Definition 5.54 (Gleichmächtige und abzählbare Mengen).
(a) Zwei Mengen M und N heißen gleichmächtig, wenn es zwischen ihnen eine bijektive Ab-

bildung f : M→ N gibt.

(b) Eine Menge M heißt . . .

• abzählbar unendlich, wenn sie gleichmächtig zu N ist, also wenn es eine bijektive
Abbildung f : N→M gibt.

• abzählbar, wenn sie endlich oder abzählbar unendlich ist.

• überabzählbar, wenn sie nicht abzählbar ist.

Bemerkung 5.55. Die Gleichmächtigkeit erfüllt formal die Eigenschaften einer Äquivalenzrelation:

(a) Jede Menge M ist gleichmächtig zu sich selbst (mit der Identität idM : M→M).

(b) Ist M gleichmächtig zu N, so ist auch N gleichmächtig zu M (denn mit einer bijektiven
Abbildung f : M→ N ist nach Aufgabe 2.25 auch ihre Umkehrung f−1 : N→M bijektiv).

(c) Ist M gleichmächtig zu N und N gleichmächtig zu P, so ist auch M gleichmächtig zu P (denn
die Verkettung bijektiver Abbildungen ist nach Aufgabe 2.25 wieder bijektiv).

Man könnte daher versucht sein zu sagen, dass die Gleichmächtigkeit eine Äquivalenzrelation auf
der Menge aller Mengen ist. Dies ist jedoch nicht ganz korrekt, da wir wie in Bemerkung 1.13
erläutert keine „Menge aller Mengen“ bilden können.

Beispiel 5.56.
(a) Wie wir am Anfang dieses Abschnitts gesehen haben, sind zwei endliche Mengen M und

N genau dann gleichmächtig, wenn sie gleich viele Elemente haben, also wenn |M| = |N|
gilt. Insbesondere ist eine endliche Menge also nie gleichmächtig zu einer echten Teilmenge
von ihr: Wenn wir von einer endlichen Menge Elemente entfernen, wird sie in diesem Sinne
„kleiner“ – was natürlich nicht allzu überraschend sein sollte.

(b) Für unendliche Mengen ist dies jedoch falsch: Die Menge N= {0,1,2,3, . . .} ist gleichmäch-
tig zu ihrer echten Teilmenge N\{0}= {1,2,3, . . .}, z. B. durch die bijektive Abbildung

f : N→ N\{0}, n 7→ n+1,
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die jede Zahl um 1 erhöht.

Bemerkung 5.57.
(a) Die abzählbar unendlichen Mengen sind genau diejenigen, die sich als Aufzählung in der

Form M = {x0,x1,x2, . . .} mit xm ̸= xn für alle m,n ∈ N mit m ̸= n schreiben lassen: Die
Funktion f : N→M, n 7→ xn ist dann die geforderte bijektive Abbildung. Dies erklärt auch
den Begriff „abzählbar unendlich“. Wir sehen so auch z. B. schon, dass auch die Menge Z
der ganzen Zahlen abzählbar ist, da wir sie z. B. als Z= {0,−1,1,−2,2,−3,3, . . .} schreiben
können.

(b) Aus (a) ergibt sich direkt, dass jede Teilmenge M einer abzählbaren Menge N wieder abzähl-
bar ist: Ist N = {x0,x1,x2, . . .} abzählbar (mit einer evtl. abbrechenden Aufzählung), so lässt
sich jede Teilmenge M ⊂ N durch Weglassen gewisser Elemente als M = {xn0 ,xn1 ,xn2 , . . .}
für geeignete (evtl. endlich viele) n0 < n1 < n2 < · · · schreiben, ist damit also ebenfalls
abzählbar.

Abzählbare Mengen bleiben aber nicht nur abzählbar, wenn man Elemente von ihnen entfernt. Man
kann sie umgekehrt auch noch um „sehr viele“ Elemente vergrößern, ohne dass sie dadurch überab-
zählbar werden. Konkret wollen wir jetzt zeigen, dass wir sogar abzählbar viele abzählbare Mengen
vereinigen können und dabei immer noch eine abzählbare Menge erhalten. Im folgenden Satz sind
diese abzählbaren Mengen dazu mit Mi bezeichnet, wobei i die Mengen durchnummeriert und damit
selbst abzählbar viele Werte (in der sogenannten Indexmenge) annehmen kann.

Satz 5.58 (Abzählbare Vereinigungen abzählbarer Mengen sind abzählbar). Es seien I eine abzähl-
bare Indexmenge sowie Mi für alle i ∈ I eine abzählbare Menge. Dann ist die Vereinigung aller
dieser Mengen Mi, geschrieben

⋃
i∈I Mi, ebenfalls abzählbar.

Beweis. Nach Bemerkung 5.57 (a) können wir die Elemente von I sowie allen Mi mit i ∈ I in der
Form

I = {i0, i1, i2, . . .} und Mik = {xk,0,xk,1,xk,2, . . .} für k ∈ N
aufzählen (wobei einige dieser Mengen auch endlich sein können, so dass die Aufzählungen dann
also irgendwo abbrechen). Wir können die Elemente aller Mi damit in der folgenden Form auflisten
und abzählen:

· · ·Mi0 :

Mi1 :

Mi2 :

Mi3 :

x0,4x0,3

x1,3

x0,2

x1,2

x2,2

x0,1

x1,1

x2,1

x0,0

x1,0

x2,0

x3,0

Wir haben also⋃
i∈I

Mi = {x0,0, x0,1,x1,0, x0,2,x1,1,x2,0, x0,3,x1,2,x2,1,x3,0, x0,4,x1,3,x2,2, . . .}.

Dabei müssen wir in dieser Aufzählung alle nicht vorhandenen Positionen (wenn einige der Mengen
I oder Mi endlich sind) und bereits vorher vorgekommene Elemente (wenn die Mi nicht disjunkt
sind) weglassen. Auf diese Art sehen wir also, dass

⋃
i∈I Mi endlich oder abzählbar unendlich sein

muss. Man bezeichnet die obige Abzählart auch als das Cantorsche Diagonalverfahren. □

Beispiel 5.59.
(a) Sind M und N abzählbare Mengen, so ist nach Satz 5.58 auch ihr Produkt M×N abzählbar,

da man es als abzählbare Vereinigung
⋃

m∈M({m}×N) abzählbarer Mengen schreiben kann.

(b) Für ein festes q ∈ N>0 ist die Menge Mq =
{ p

q : p ∈ Z
}

aller rationalen Zahlen, die sich
als Bruch mit Nenner q schreiben lassen, bijektiv zu Z und damit nach Bemerkung 5.57 (a)
abzählbar. Damit ist nach Satz 5.58 auch die Menge Q=

⋃
q∈N>0

Mq aller rationalen Zahlen
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abzählbar. Auch wenn es der ersten Intuition vermutlich widerspricht, gibt es in diesem Sinne
also „genauso viele“ rationale wie natürliche Zahlen.

Auch wenn wir mit Satz 5.58 jetzt von sehr vielen Mengen sehen können, dass sie abzählbar sind,
gibt es dennoch unendliche Mengen, die „zu groß“ sind, um eine bijektive Abbildung nach N zuzu-
lassen. Das einfachste Beispiel hierfür ist die Menge der reellen Zahlen.

Satz 5.60. Die Menge R ist überabzählbar.

Beweis. Dies ist eine unmittelbare Folge der Intervallschachtelung aus Satz 5.39: Angenommen,
wir hätten eine Aufzählung R = {x0,x1,x2, . . .} der reellen Zahlen. Wir konstruieren dann rekursiv
eine Intervallschachtelung I0 ⊃ I1 ⊃ I2 ⊃ ·· · aus Intervallen In der Länge 1

3n , von der wir lediglich
verlangen, dass für alle n die Zahl xn nicht in In liegt. Dies ist natürlich sehr einfach: Wir wählen für
In+1 immer das linke Drittel von In – es sei denn, die Zahl xn+1 liegt in diesem Drittel; dann wählen
wir für In+1 das rechte Drittel von In. Da die Länge 1

3n der Intervalle mit n→∞ gegen 0 konvergiert,
erhalten wir so auch wirklich eine Intervallschachtelung.

Nach Satz 5.39 gibt es dann aber ein a∈R, das in allen In liegt und damit keine der Zahlen xn ∈R\In
sein kann, also im Widerspruch zur Annahme in unserer Aufzählung von R nicht enthalten ist. □

Zusammenfassend können wir also sagen, dass es im Sinne der Gleichmächtigkeit zwar „genauso
viele“ natürliche wie ganze oder rationale, aber „deutlich mehr“ reelle Zahlen gibt.

Beispiel 5.61. Nach Beispiel 5.59 (b) gibt es eine Aufzählung Q = {x0,x1,x2, . . .} der rationalen
Zahlen. Fassen wir diese als Folge (xn)n∈N auf, so liegen in jeder ε-Umgebung jeder reellen Zahl
nach Aufgabe 5.36 unendlich viele Folgenglieder. Also ist jede reelle Zahl ein Häufungspunkt dieser
Folge: Eine (abzählbare) Folge kann durchaus überabzählbar viele Häufungspunkte haben!

Aufgabe 5.62. Untersuche die folgenden Mengen auf Abzählbarkeit:

(a) die Menge aller zweielementigen Teilmengen von N;

(b) die Menge aller endlichen Teilmengen von N;

(c) die Menge aller Teilmengen von N (also die Potenzmenge P(N) von N).


