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Grundlagen der Mathematik 1: Analysis

4. Weitere Eigenschaften der reellen Zahlen

Wir haben uns nun das elementare Handwerkszeug fiir diese Vorlesung erarbeitet und beginnen
jetzt mit dem Studium der eindimensionalen Analysis. Wer sich auch (bzw. zurzeit nur) fiir die
lineare Algebra interessiert, kann ab diesem Zeitpunkt auch zusitzlich (bzw. ausschlielich) den
Teil ,,Grundlagen der Mathematik 1: Lineare Algebra“ in den Kapiteln 13 bis 18 durcharbeiten.

Hier in diesem Kapitel wollen wir zunichst nach den gerade behandelten elementaren Eigenschaften
der reellen Zahlen noch ein paar weitere untersuchen, die vor allem in der Analysis niitzlich sind.
Unter anderem wird sich daraus am Ende dieses Kapitels auch eine vollstindige Charakterisierung
der reellen Zahlen ergeben.

4.A Potenzen in Korpern

Wir beginnen mit zwei weiteren oft vorkommenden Formeln zu Potenzen, die sich allein aus den
Eigenschaften aus Abschnitt 3.A herleiten lassen und somit nicht nur in den reellen Zahlen, sondern
sogar in beliebigen Korpern gelten. Mit der ersten — der sogenannten (endlichen) geometrischen
Reihe — kénnen wir den Wert einer Summe fortlaufender Potenzen eines Korperelements explizit
berechnen.

Satz 4.1 (Endliche geometrische Reihe). Es seien K ein Korper, g € K\{1} und n € N. Dann gilt
i qk _ 1— qn+1 .
k=0 I—q
Beweis. Die Aussage liele sich leicht mit Induktion iiber n zeigen. Der folgende sehr einfache alter-
native Beweis hilft jedoch auch dabei, sich die Formel zu merken: Multiplizieren wir die gesuchte
Summe }}_, ¢ =14g+q¢*+---+¢" mit 1 — g, so heben sich fast alle Terme weg und wir erhalten
sofort das gewiinschte Ergebnis: Es ist

(I+g+q++q") (1—q)=1+q+¢ + - +¢"

7q7q27.”7qniqn+1
:l_qn+1
und damit fiir ¢ # 1 wie behauptet
n l_qn+l
Y i =—"—. 0
k=0 I—q
Beispiel 4.2. In R ist z. B.
4 5
1-2 -31
142+4+8+16=Y 2k& 2 — 2 _3q,
+2+4+8+ Y T R

k=0

Die zweite Formel, die wir hier behandeln wollen, ist die sogenannte binomische Formel, die ei-
ne Verallgemeinerung der aus der Schule bekannten Formel (x 4 y)? = x? 4 2xy 4 y? auf hohere
Exponenten darstellt. Dazu benétigen wir zunéchst die folgende Definition.

Definition 4.3 (Fakultit und Binomialkoeffizienten).

(a) Fiir n € N setzen wir

n
nl = H i=12-----n €N (gesprochen ,,n-Fakultiit®),

i=1
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wobei 0! gemil Notation 3.9 (c) als 1 zu verstehen ist.

(b) Fiir k,n € N mit k < n definiert man ferner die Binomialkoeffizienten
!
(Z) = ﬁ (gesprochen ,,n iiber k),
die so genannt werden, weil sie in der binomischen Formel in Satz 4.7 auftreten. Sie sind

aufgrund der Definition zunéchst positive rationale Zahlen; wir werden aber in Bemerkung
4.6 sehen, dass sie sogar natiirliche Zahlen sind.

Bemerkung 4.4.
(a) Offensichtlich ist (g) = (Z) =1und (Z) = (nfk) fiir alle k,n € N mit k < n.

(b) Man kann im definierenden Ausdruck fiir (Z) die Faktoren von 1 bis n — k kiirzen und erhilt

damit die alternative Darstellung der Binomialkoeffizienten

<n) n! 1o o(n—k)-(n—k+1)----n  (n—k+1)-----n
k) kI

n—k)! (L k) (L (n—k) 1k ’
d.h. (Z) ist ein Bruch mit k Zahlen im Zihler und k Zahlen im Nenner, wobei man ,,im
Zihler von n nach unten und im Nenner von 1 nach oben zihlt“. Soistz.B. (|) =% =n

1
und (5) = "5 = 2t

Die wichtigste Identitit zwischen den Binomialkoeffizienten ist die folgende:

Lemma 4.5. Fiir alle n,k € Nmit 1 <k <n gilt (Z) + (kfl) = ("Z]).

Beweis. Dies ergibt sich durch einfaches Nachrechnen mit der Darstellung aus Bemerkung 4.4 (b):

<n>+(kn >: (n—k—|—1)(n—k—|—2)~~~-~n+ (n—k+2)-----n

k —1 1ok 1o (k—1)
_ (n—k+1)(n—k=+2)-----n+k-(n—k+2)-----n
1-- -k
_(n41)-(n—k+2)-----n
1ok

(1) :

Bemerkung 4.6 (Pascalsches Dreieck). Man kann die Binomialkoeffizienten (’;) wie folgt in einem
dreieckigen Schema, dem sogenannten Pascalschen Dreieck, anordnen.

k. 0 !
! 0 ) Lot

+1
("¢)
Nach Bemerkung 4.4 (a) stehen auf den Schenkeln dieses Dreiecks nur Einsen, und nach Lemma
4.5 ergibt sich jede andere Zahl in diesem Diagramm als die Summe der beiden dariiber stehenden.
Insbesondere folgt daraus, dass alle Binomialkoeffizienten natiirliche Zahlen sind — was aus der

Definition aufgrund des Bruches ja nicht offensichtlich ist. Wir konnen sie damit fiir jeden Korper K
gemif} Notation 3.9 (d) als Elemente von K auffassen (was wir gleich in Satz 4.7 auch tun werden).
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Mit dieser Vorarbeit konnen wir nun die sehr wichtige binomische Formel beweisen. Thr Name
kommt {iibrigens von der lateinischen Vorsilbe ,,bi* fiir ,,zwei*: Ein Binom ist eine Summe, die
aus zwei Termen besteht, und die binomische Formel berechnet die Potenzen eines solchen Binoms.
Beachte, dass die Binomialkoeffizienten in dieser Formel gemif} Notation 3.9 (d) als Elemente des
Korpers K aufgefasst werden.

Satz 4.7 (Binomische Formel). Es seien K ein Korper, x,y € K und n € N. Dann gilt
" n
(x+y)"' = Z ( >xky"k.
i—o \k
Beispiel 4.8. Fiir n = 2 ergibt Satz 4.7 wie erwartet die bekannte Formel

2 2 2
(x+y)?= <O> XOy% 4 <1> xlyl 4 (2> X%y =y 4 2xy 27

Beweis von Satz 4.7. Wir beweisen die Formel mit Induktion iiber n. Fiir n = 0 sind beide Seiten der
Gleichung 1; die Aussage ist in diesem Fall also richtig. Fiir den Induktionsschritt nehmen wir nun
an, dass die Gleichung fiir ein gegebenes n € N richtig ist, und folgern daraus zunéchst

(x+y)"t = (x4y) (x+y)"

n
=(x+y)- Z <Z) XKk (nach Induktionsvoraussetzung)
k=0

n
= Z (n) kel yn—k 4 Z ( ) k gkl (durch Ausmultiplizieren)

n+1
= Z < 1) kyn=htl Z < ) kyn=k+1 " (Indexverschiebung k — k — 1 in der
k=1 ersten Summe, siche Notation 3.9 (c)).

Losen wir hier nun aus der ersten Summe den Term fiir k = n+ 1 und aus der zweiten den fiir k =0
heraus, so konnen wir diesen Ausdruck auch schreiben als

(x+y)**! :kil Kki1> + (Z)] kg Ik <n) n1g0 4 (g) 20y

n

1
= Z (n—|— ) K yrH=k gyt (nach Lemma 4.5).

Die letzten beiden Summanden x"*! und y**! sind hier aber genau diejenigen, die sich in der vor-
deren Summe ergeben, wenn man k = n+ 1 bzw. k = 0 setzt. Also konnen wir die Summe {iber £
gleich iiber alle Werte von O bis n + 1 laufen lassen und erhalten

(x_|_y)n+1 _ rf <I’l+ 1> )dcyn—kl—k
k 7

k=0
also genau die zu zeigende Gleichung fiir die Potenz n + 1. Die binomische Formel ist damit durch
Induktion bewiesen. O

Bemerkung 4.9 (Kombinatorische Deutung der Binomialkoeffizienten). Man kann sich die bino-
mische Formel natiirlich auch so entstanden denken, dass man den Ausdruck

(x+y)"=(x+y)- - (x+y)
n-mal
nach dem Distributivgesetz ausmultipliziert. Im Fall n = 3 erhalten wir z. B. zunéchst ohne Verwen-
dung der Kommutativitét der Multiplikation

(43 = (x4) - (x+) - (x+)
= (x+y) - (xx+xy+yx+yy)
= XXX A XXY A= XYX A+ XYY A+ VXX A= YXY + YYx 4 yyy. ()
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Insgesamt bekommen wir also eine Summe aus Produkten mit jeweils n Faktoren x oder y. Jede
Moglichkeit, alle diese Faktoren separat als x oder y zu wéhlen, kommt dabei genau einmal vor.
Fassen wir nun mit der Kommutativitit der Multiplikation gleiche Terme zusammen, so erhalten
wir den Term x¥y"~* also genau so oft, wie wir Moglichkeiten haben, aus den n Faktoren die k
auszuwdhlen, die gleich x sein sollen. In (x) oben bekommen wir z. B. den Term xy2 dreimal, ndmlich
aus xyy, yxy und yyx. Nach der binomischen Formel ist der Vorfaktor von x*y"~* in (x +y)" aber
gerade (2’) . Daher ist dieser Binomialkoeffizient genau die Anzahl der Moglichkeiten, aus n Objekten
(hier: Faktoren) k auszuwihlen (hier: diejenigen, bei denen wir x gewéhlt haben). Man kann sich die
binomische Formel also als algebraische Formulierung dieser kombinatorischen Aussage vorstellen.

Aufgabe 4.10.
(a) Beweise fiir alle k,n € N mit k < n die Gleichung

E(0)-00)

(b) Zeige mit Induktion tiber n, dass die Gleichung

X+ tx,=d

n+d—1
n—1

fiir gegebenes n € N> o und d € N genau (
X1,...,X, besitzt.

) Losungen (x1,...,x,) in natiirlichen Zahlen

n

Aufgabe 4.11. Fiir alle n, p € N bezeichnen wir mit s,(n) := Z kP =17 4 ... +n” die Summe der
k=1
p-ten Potenzen aller natiirlichen Zahlen von 1 bis 7.

(a) Beweise fiir alle n, p € N die Formel

(p:)_1> so(n) + (p—lH> si(n) 4+ (p:1>sp(”) =(n+ 1P -1,

(b) Zeige mit Hilfe von (a), dass s, ein Polynom in # ist, und berechne dieses Polynom explizit.

Ist s, fiir alle p € N ein Polynom in n?
Aufgabe 4.12. Fiir ein gegebenes n € N betrachten wir das Polynom
FIRSR x4+ T fx 1.
Man zeige:

(a) Istnungerade, so hat f genau eine Nullstelle. Was ist ihre Vielfachheit?
(b) Istn gerade, so hat f keine Nullstelle.

4.B Geordnete Korper

Wir haben bisher von den reellen Zahlen nur die Korpereigenschaften, also die Eigenschaften der
vier Grundrechenarten ausgenutzt — und dabei z. B. in Beispiel 3.6 (b) gesehen, dass es auler den
reellen Zahlen auch noch ganz andere (und in der Tat sogar sehr viele) Korper gibt. Wir miissen
also noch weitere Eigenschaften auflisten, um die reellen Zahlen eindeutig zu charakterisieren. Dies
wollen wir im Rest dieses Kapitels tun.

Eine Eigenschaft der reellen Zahlen, die wir bisher vollig vernachldssigt haben, ist, dass man sie
ordnen kann, also dass man zwei Zahlen der GroBe nach vergleichen kann. Die Eigenschaften dieser
Ordnungsrelation werden im Begriff des sogenannten geordneten Korpers formalisiert.

Definition 4.13 (Geordnete Korper). Ein Korper K heifit geordneter oder angeordneter Korper,
wenn in ihm eine Menge P C K (die ,,Menge der positiven Zahlen*) gegeben ist, so dass die folgen-
den drei Eigenschaften gelten:
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(a) Fir alle x € K gilt genau eine der drei Eigenschaften x =0, x € P oder —x € P. (Im zweiten
Fall nennt man x eine positive Zahl, im dritten eine negative Zahl.)

(b) Firalle x,y € Pistx+y € P (,,die Summe zweier positiver Zahlen ist positiv*).

(c) Fir alle x,y € P ist xy € P (,,das Produkt zweier positiver Zahlen ist positiv‘).
In diesem Fall schreibt man x < y oder y > x falls y—x € P, und x <y oder y > x falls y — x € P oder
y = x. (Insbesondere ist also x > 0 genau dann, wenn x € P, und x < 0 genau dann, wenn —x € P;
auflerdem gilt nach (a) fiir x,y € K stets genau eine der Aussagen x =y, x <y oder y < x.)
Beispiel 4.14.

(a) R ist ein geordneter Korper (was wir hier wiederum axiomatisch voraussetzen wollen).
Nennt man in der Teilmenge @ von R genau die Zahlen positiv, die es auch in R sind,
so ist damit auch Q ein geordneter Korper.

(b) Der Korper Z, aus Beispiel 3.6 (b) kann nicht zu einem geordneten Korper gemacht werden:
Das Element 1 = u ist nicht gleich 0, also miisste nach Definition 4.13 (a) genau eine der
beiden Eigenschaften 1 € P und —1 € P gelten. Dies ist aber unmoglich, da wegen 1 +1=0
in Z; die Gleichung —1 = 1 gilt.

Bemerkung 4.15 (Partielle und totale Ordnungen). Ist K ein geordneter Korper, so ist < wie in
Definition 4.13 natiirlich eine Relation auf K im Sinne von Definition 2.1. Sie besitzt die folgenden
Eigenschaften fiir alle x,y,z € K:

(a) Reflexivitit: Es gilt x < x.

(b) Antisymmetrie: Ist x < y und y < x, so folgt x = y.

(c¢) Transitivitit: Gilt x < yund y < z, so folgt auch x < z.

(d) Totalitét: Es gilt (mindestens) eine der Aussagen x <y und y < x. (Mit anderen Worten:

»Zwei beliebige Elemente von K sind stets miteinander vergleichbar.*)

In der Tat folgt (a) unmittelbar aus Definition 4.13. Da x < y nach Definition dquivalent zu y —x € P
oder y—x=0ist, und y < x zu —(y —x) € P oder y —x = 0, ergeben sich (b) und (d) auBerdem
aus Definition 4.13 (a). Die Aussage (c) schlieBlich ist trivial falls x =y oder y = z; andernfalls gilt
y—x€Poderz—yé€ P, und damitz—x = (y—x)+ (z—y) € P, also x < z, nach Definition 4.13 (b).

Auf einer beliebigen Menge K (die also nicht notwendig ein Korper ist) nennt man eine Relation <
mit den Eigenschaften (a), (b) und (c) eine partielle Ordnung. Gilt zusitzlich noch (d), so heifit <
eine (totale) Ordnung auf K. Jeder geordnete Korper K liefert also eine totale Ordnung auf K.

Das Standardbeispiel fiir eine partielle Ordnung auf einer Menge ist die Teilmengenrelation auf der
Potenzmenge 42 (M) einer beliebigen Menge M: Sind A, B,C € & (M) Teilmengen von M, so gilt
natiirlich A C A; aus A C Bund B C A folgt A = B; und aus A C Bund B C C folgt A C C. Diese
partielle Ordnung ist aber in der Regel nicht total: Fiir M = N sind die Teilmengen A = {0} und
B = {1} nicht vergleichbar, denn es gilt weder A C B noch B C A.

Wie schon bei den Kérpern wollen wir nun auch hier fiir einen geordneten Korper kurz die wichtigs-
ten Eigenschaften ableiten, die aus der Definition folgen (und die euch fiir die reellen Zahlen sicher
bekannt sind). Wir werden sie im Folgenden verwenden, ohne jedes Mal darauf hinzuweisen.

Lemma 4.16 (Eigenschaften geordneter Korper). Fiir alle x,y,z in einem geordneten Korper K gilt:
(a) Istx <y, sofolgtx+z<y+z
(b) Istx <yundz >0, so gilt auch xz < yz. Ist dagegen x < y und z < 0, so folgt xz > yz.
(Ungleichungen drehen sich also bei der Multiplikation mit einer negativen Zahl um.)
(¢) Gilt x+#0, so ist x2 > 0. Insbesondere ist also 1 > 0.
(d) Wenn 0 < x <y, dann folgt 0 < y~! < x~1,

Entsprechende Aussagen gelten natiirlich auch fiir die nicht-strikten Ungleichungen < bzw. >.
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Beweis.
(a) Istx<y,alsoy—x€ P,soistauch (y+z)— (x+z)=y—x€P,alsox+z<y+z

(b) Gilt wieder y—x € P und z € P, so folgt aus Definition 4.13 (c) auch (y—x)z=yz—xz € P,
also xz < yz. Ist hingegen z < 0, also —z € P, so gilt diesmal (y —x)(—z) = xz—yz € P, also
¥z < XZ.

(c) Istx € P, so ist natiirlich auch x*> € P nach Definition 4.13 (c). Ist —x € P, so folgt genauso

x? = (—x)? € P. Also ist fiir x # 0 in jedem Fall x*> > 0. Insbesondere ist damit 1 = 1-1 > 0.

(d) Wegen x > 0 folgt aus (c) und Definition 4.13 (c) zunichst x~! = x- ()c_l)2 €P,alsox” ' >0.
Genauso ergibt sich y~! > 0. Ist nun x < y, so folgt aus (b) durch Multiplikation mit der
positiven Zahl x~' y~! die Ungleichung xx~'y~! < yx~!1y~! alsoy~! < x~!, was zu zeigen
war. g

Notation 4.17 (Intervalle und Betrag). Die folgenden Notationen verwendet man hzufig in einem
geordneten Korper K.

(a) Sind a,b € K mit a < b, so definiert man die folgenden Teilmengen von K:
e [a,b] :={x € K:a<x<b} (abgeschlossene bzw. kompakte Intervalle);
e (a,b):={x € K:a<x< b} (offene Intervalle);
o [a,b) :={x € K:a <x< b} (halboffene Intervalle);
o [a,) = K>, ={x € K : x> a} (uneigentliche Intervalle);

und analog natiirlich (a,b], (a,e), (—eo,b] und (—eo,b). Wenn wir derartige Intervalle im
Fall K = R graphisch darstellen, deuten wir wie im Bild unten meistens durch Rundungen
an den Intervallgrenzen an, ob die Randpunkte mit dazugehoren sollen oder nicht.

In der Literatur sind statt der runden Klammern oft auch ,.falsch herum geoffnete” eckige
Klammern iiblich, also z. B. [a, [ statt [a,b).

(b) Fiir x € K definieren wir den Betrag von x als

o X falls x > 0,
x| =
—x fallsx <O0.

Insbesondere gilt also immer |x| > 0. Im Fall K = R sieht die Betragsfunktion natiirlich wie
im folgenden Bild rechts aus.

vy

[an)
n

(a,b) [a,%0)

Die wichtigsten beiden Eigenschaften der Betragsfunktion sind ihre ,,Vertriglichkeit” mit Addition
und Multiplikation:

Lemma 4.18 (Eigenschaften der Betragsfunktion). Fiir alle x,y in einem geordneten Korper K gilt:
(@) |xy| = |x| - |y|- Insbesondere ergibt sich daraus fiiry = —1, dass | — x| = |x|.
(b) x < x|

©) |x+y| < |x|+|y|- Diese Ungleichung bezeichnet man als Dreiecksungleichung — wir werden
in Bemerkung 6.10 (a) sehen, warum.

Beweis.

(a) Wir machen eine Fallunterscheidung je nach Vorzeichen von x und y. Ist z.B. x > 0 und
y <0, so ist xy < 0 und damit nach Definition des Betrages |x| = x, [y| = —y und |xy| = —xy.

06
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Zusammensetzen dieser Gleichungen ergibt die Behauptung |xy| = —xy =x- (—y) = |x| - |y].
Die anderen Fille der moglichen Vorzeichenverteilungen beweist man genauso.

(b) Firx <O0istx <0 < |x|; fiir x > 0istx = |x].
(c) Nach (b), angewendet auf x und y, gilt (mit Lemma 4.16 (a))
x+y <|x|+yl. ey
Wenden wir (b) hingegen auf —x und —y an, so folgt auch
@

—x =y <[ =xf 4| =y = ¥+ Dl @
Aber |x+ y| ist in jedem Fall eine der beiden Zahlen x + y oder —x — y. Damit folgt die
Behauptung |x+ y| < |x| + |y| aus (1) und (2). O

Bemerkung 4.19 (Dreiecksungleichung nach oben und unten). Die Dreiecksungleichung aus Lem-
ma 4.18 (c) schitzt den Betrag |x+ y| einer Summe nach oben ab. Offensichtlich gilt im Allgemeinen
keine Gleichheit, wie das Beispiel x =1, y = —1 zeigt: Hier ist [x+y| =0 < 2 = |x| + |y].

Eine Abschitzung nach unten kann man erhalten, indem man Lemma 4.18 (c) auf die Zahlen x +y
und —y anwendet: Man erhilt dann nédmlich |x| = |(x+y) —y| < [x+y|+|—y| = [x+y| +]y| und
damit |x+y| > |x| — |y|- Insgesamt haben wir also fiir alle x,y € K

x| = Iyl < [y < e+ Dyl

Eine weitere Anwendung der Eigenschaften eines geordneten Korpers ist die folgende Ungleichung,
die oftmals dann niitzlich ist, wenn die Groe von Potenzen x" mit der von Produkten # - x verglichen
werden soll.

Satz 4.20 (Bernoullische Ungleichung). Es seien K ein geordneter Korper, x € K mit x > —1, und
n € N. Dann gilt (1+x)" > 1+ nx.

Beweis. Wir zeigen die Aussage mit Induktion iiber n. Das Bild rechts unten veranschaulicht die
Ungleichung im Fall K =R und n = 2.

Der Induktionsanfang fiir n = 0 ist klar: dann sind beide Seiten gleich 1, die

1 2
Ungleichung ist also erfiillt. (1+x)

Fiir den Induktionsschritt nehmen wir nun an, dass
(I1+x)">1+nx I+2x

fiir alle x > —1 und ein gegebenes n € N gilt. Mit Lemma 4.16 (b) kénnen
wir diese Ungleichung mit der nach Voraussetzung nicht-negativen Zahl 1+ x

multiplizieren und erhalten 1{
(142" > (1+nx)(1+x) = 1+ (n4 1)x+nx’. 1 .

Nach Lemma 4.16 (c) ist nun nx? > 0 und damit (1 +x)"*! > 1+ (n+ 1)x, was zu zeigen war. [

Aufgabe 4.21. Fiir welche x,y € R bzw. n € N gelten die folgenden Ungleichungen?

2xy _ x+y 4n 2n ny\”"
< — n ! —
@ x+y~— 2 ®) 2n+1<<n><4 (c)n<(2)

4.C Supremum und Infimum

Wie bereits angekiindigt wollen wir in diesem Abschnitt nun endlich eine eindeutige axiomatische
Charakterisierung der reellen Zahlen angeben. Bisher haben wir nur gesehen, dass R ein geordneter
Korper ist. Aber auch Q ist ein geordneter Korper, und daher miissen wir noch untersuchen, wie
sich R von Q unterscheidet. Anschaulich wiirden wir dies wohl so formulieren, dass die Menge Q
der rationalen Zahlen ,,Locher* auf der Zahlengeraden hat, also dass es Punkte wie z. B. \/2 auf der
Zahlengeraden gibt, die keiner rationalen Zahl entsprechen (siche Lemma 4.36). Aber wie formuliert
man so etwas exakt?
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Um dies zu sehen, miissen wir genauer untersuchen, wann Teilmengen eines geordneten Korpers K
grofite bzw. kleinste Elemente haben. Dazu konnen wir natiirlich zunéchst auf die offensichtliche
Art das Maximum und Minimum zweier Elemente von K definieren.

Definition 4.22 (Maximum und Minimum endlich vieler Zahlen). Fiir zwei Elemente x und y eines
geordneten Korpers K definieren wir das Maximum und Minimum durch

max(x,y) 1= {

x fallsx >y, x fallsx <y,

und min(x,y) = {

y fallsy>x y fallsy <ux.

Analog kann man auch das Maximum und Minimum von mehr als zwei Zahlen definieren, sofern es
nur endlich viele sind. Betrachten wir dagegen eine (unendliche) Teilmenge M C K, so kénnen wir
in der Regel nicht mehr erwarten, dass M ein kleinstes bzw. grofites Element hat, allein schon weil
die Menge dann in folgendem Sinne unbeschrinkt sein kann:

Definition 4.23 (Beschriankte Mengen). Es sei M eine Teilmenge eines geordneten Korpers K.

(a) Ein Element s € K heifit obere Schranke fiir M, wenn x < s fiir alle x € M. Existiert eine
solche obere Schranke fiir M, so nennt man M nach oben beschrinkt. Analog definiert man
den Begriff einer unteren Schranke bzw. einer nach unten beschrinkten Menge.

(b) Die Menge M heifit beschrinkt, wenn sie nach oben und unten beschrénkt ist, oder — dqui-

valent dazu — wenn die Menge ihrer Betrige beschrinkt ist, also wenn es ein s € K gibt mit
|x| <'s fiir alle x € M.

Beispiel 4.24. Es sei M = R im geordneten Korper R.

(a) Die Menge M ist nach oben (aber nicht nach unten) beschrinkt, denn s = 1 ist eine obere
Schranke fiir M. Genauso ist auch s = 2 eine obere Schranke fiir M, auch wenn man an-
schaulich vielleicht sagen wiirde, dass diese Schranke ,,nicht so gut® ist, weil x < 2 fiir alle
Xx € M eine schwichere Aussage ist als x < 1 fiir alle x € M.

(b) Ists € M, also s < 1, so gilt fiir den Mittelpunkt x := % ZWi-

schen s und 1 wie im Bild rechts natiirlich M ,1 R
s+1  s+s s+1 1+1 N
X > > > S un X > < 5 S/‘ EC

Hieraus ergeben sich sofort zwei einfache Folgerungen:

e Es gibt keine grofite Zahl in M (denn zu s € M liegt die groflere Zahl x wegen x < 1
ebenfalls noch in M).

e Die Menge M ist aber nach (a) nach oben beschrinkt, und die kleinste mogliche obere
Schranke fiir M ist 1 (denn s < 1 kann keine obere Schranke mehr sein, da x > s
ebenfalls noch in M liegt).

Die Zahl 1 kann damit als ,,Obergrenze der Zahlen in M* angesehen werden, auch wenn sie
kein Element von M und daher keine grofite Zahl in M ist. Dieses Konzept wollen wir jetzt
exakt definieren.

Definition 4.25 (Supremum und Infimum). Es sei M eine Teilmenge eines geordneten Korpers K.

(a) Eine Zahl s € K heif3t ein Supremum von M, wenn s eine ,,kleinste obere Schranke fiir M*
ist, d. h. wenn gilt:

e s ist eine obere Schranke fiir M; und
o fiir jede obere Schranke s’ fiir M gilt s < 5.

(b) Eine Zahl s € K heifit ein Maximum von M, wenn s eine ,,obere Schranke fiir M in M* ist,
d. h. wenn gilt:

e s ist eine obere Schranke fiir M; und

e scM.
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Analog heifit s € K ein Infimum von M, wenn s eine grofite untere Schranke fiir M ist, und ein
Minimum, wenn s eine untere Schranke fiir M in M ist.

Bemerkung und Notation 4.26 (sup M, max M, inf M, min M).

(a) Jedes Maximum s einer Menge M ist auch ein Supremum von M: Ist dann nidmlich s’ € K
eine weitere obere Schranke, so folgt wegen s € M natiirlich sofort s < s'.

(b) Wenn die Menge M ein Supremum besitzt, dann ist es eindeutig bestimmt: Sind ndmlich s;
und s, zwei kleinste obere Schranken, so folgt nach Definition 4.25 (a) sofort s; < s, (weil
s1 eine kleinste obere Schranke und s, auch eine obere Schranke ist) und s, < 51 (weil s
Supremum und s; auch eine obere Schranke ist), also s; = s2. Nach (a) ist damit auch ein
Maximum von M eindeutig bestimmit, falls es existiert.

Wenn ein Supremum oder Maximum von M existiert, konnen wir also von dem Supremum
bzw. dem Maximum von M reden. Wir bezeichnen es dann mit sup M bzw. max M.

(c) Analog sind natiirlich auch Infimum und Minimum von M eindeutig bestimmt, sofern sie
existieren; wir bezeichnen sie dann mit inf M bzw. min M.

Beispiel 4.27.

(a) Die Menge M = R<; hat offensichtlich das Maximum 1. Nach Bemerkung 4.26 (a) ist 1
damit auch das Supremum von M, d. h. es ist supM = maxM = 1.

(b) Das uneigentliche Intervall M = R hat nach Beispiel 4.24 (b) kein Maximum, aber es gilt
supM = 1.

(c) Das uneigentliche Intervall M = R+ besitzt kein Supremum (und damit auch kein Maxi-
mum), da M nach oben unbeschrinkt ist, also nicht einmal irgendeine obere Schranke fiir M
existiert — insbesondere also keine kleinste.

(d) Auch die leere Menge hat kein Supremum, weil fiir sie jede reelle Zahl eine obere Schranke
ist und damit keine kleinste obere Schranke existiert.

Aufgabe 4.28. Es seien A und B zwei Teilmengen eines geordneten Korpers K, die ein Supremum
supA bzw. sup B besitzen. Setzen wir A+ B :={x+y:x€A,y€ B} und —A :={—x:x € A}, so zeige
man, dass auch die folgenden Suprema und Infima existieren und die behaupteten Werte haben:

(a) sup(AUB) = max(supA,supB).
(b) inf(—A) = —supA.
(c) sup(A+B) =supA+supB.

Unsere bisher betrachteten Beispiele von Mengen ohne Supremum in Beispiel 4.27 (¢) und (d) waren
letztlich trivial — also Mengen, die iiberhaupt keine obere Schranke besitzen, und die leere Menge.
Ist es auch moglich, dass eine Menge (die natiirlich nicht unbedingt ein Intervall sein muss) zwar
nicht leer und nach oben beschrinkt ist, aber trotzdem keine kleinste obere Schranke hat? In der
Tat ist dies in R im Gegensatz zu Q nicht moglich, und wie wir sehen werden, ist genau dies der
wesentliche Unterschied zwischen diesen beiden Korpern. Wir definieren daher zunichst:

Definition 4.29 (Supremumsaxiom). Wir sagen, dass ein geordneter Korper das Supremumsaxiom
erfiillt, wenn in ihm jede nicht leere, nach oben beschrinkte Teilmenge ein Supremum besitzt. (Na-
tiirlich besitzt dann nach Aufgabe 4.28 (b) auch jede nicht leere, nach unten beschrinkte Teilmenge
ein Infimum.)

Die reellen Zahlen erfiillen also dieses Supremumsaxiom — das werden wir in dieser Vorlesung
axiomatisch voraussetzen, und das ist nun auch endlich die letzte Eigenschaft der reellen Zahlen, die
wir benotigen. Wenn wir dieses und das vorangegangene Kapitel zusammenfassen, setzen wir nun
also insgesamt iiber die reellen Zahlen voraus:

R ist ein geordneter Korper, der das Supremumsaxiom erfiillt.
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Wie schon in Notation 1.14 gesagt, kann man die Existenz der reellen Zahlen auch aus den Axiomen
der Logik und Mengenlehre herleiten — und dann ist es natiirlich ein beweisbarer Satz, dass R ein
geordneter Korper ist, der das Supremumsaxiom erfiillt. Man kann sogar noch mehr zeigen, ndmlich
dass diese Eigenschaften die reellen Zahlen auch vollstindig charakterisieren: R ist in der Tat der
einzige geordnete Korper, der das Supremumsaxiom erfiillt. Der Beweis dieser Aussage ist jedoch
sehr schwierig und soll hier nicht gegeben werden, zumal wir diese Aussage auch nicht benotigen
werden. Wir werden lediglich in Bemerkung 4.37 noch sehen, dass Q das Supremumsaxiom in der
Tat nicht erfiillt.

Fiir uns bedeutet diese Tatsache letztlich nur, dass wir ab jetzt alles, was wir mit den reellen Zahlen
tun mochten, ausschlieBlich auf den Axiomen eines geordneten Korpers und dem Supremumsaxiom
aufbauen konnen und werden.

Wir wollen nun ein paar erste elementare Folgerungen aus dem Supremumsaxiom ziehen. Seine
wahre Stirke wird dieses Axiom jedoch erst im néchsten Kapitel bei der Untersuchung von Grenz-
werten von Folgen zeigen.

Satz 4.30 (R ist archimedisch geordnet). Die Teilmenge N = {0,1,2,...} C R ist nach oben un-
beschrdnkt.

Beweis. Angenommen, N wire nach oben beschrinkt. Dann wiirde nach dem Supremumsaxiom
s :=supN € R existieren. Da s die kleinste obere Schranke ist, ist s — 1 keine obere Schranke; es
gibt also einn € Nmitn > s— 1. Dann ist aber n+ 1 € N mit n+ 1 > s, im Widerspruch dazu, dass
s eine obere Schranke fiir N ist. O

Bemerkung 4.31.

(a) Eine einfache, aber oft verwendete Folgerung aus Satz 4.30 ist, dass es zu jeder positiven
Zahl x € Ry ein n € N5 gibt mit % < x: Da N nach oben unbeschrinkt ist, ist insbesondere
% keine obere Schranke fiir N. Also gibt es ein n € N mit n > %, und damit nach Lemma
4.16 (d) mit 1 < x.

(b) Satz 4.30 mag zwar selbstverstindlich erscheinen — man kann allerdings in der Tat geordnete
Korper konstruieren, in denen diese Aussage falsch ist, in denen es also ,,unendlich grofie*
Elemente gibt, die groBer sind als jede Zahl, die man durch fortlaufende Addition der 1
erreichen kann [E, Kapitel 11].

Aufgabe 4.32. Bestimme Supremum, Infimum, Maximum und Minimum (sofern sie existieren) der
Menge
M{ern :m,n€N>0} CR.
mn

Folgerung 4.33. Jede nicht-leere, nach oben beschrinkte Teilmenge von 7, hat ein Maximum. Ent-
sprechend hat jede nicht-leere, nach unten beschrinkte Teilmenge von 7. ein Minimum.

Insbesondere hat also jede nicht-leere Teilmenge von N ein Minimum. (Man sagt dafiir auch: N ist
wohlgeordnet.)

Beweis. Es sei M C Z nicht-leer und nach oben beschriinkt, mit oberer Schranke s. Nach Satz 4.30
gibt es weiterhin eine natiirliche Zahl b > s, die dann natiirlich auch eine obere Schranke fiir M ist.

Ist @ € M nun ein beliebiges Element, so ist M>, = M N{a,a+ 1,...,b} eine nicht-leere endliche
Menge, die demzufolge natiirlich ein Maximum besitzt. Alle anderen Zahlen von M sind aber noch
kleiner als a, so dass dieses Maximum also auch das Maximum von M ist. O

Bemerkung 4.34 (GauBklammer). Nach Folgerung 4.33 kann man fiir alle x € R die Zahl
|x] :=max{k € Z: k <x}

definieren, da die Menge aller k € Z mit k < x nach Satz 4.30 nicht leer ist (es gibt jaein n € N
mit n > —x, wir konnen dann k = —n setzen), und natiirlich durch x nach oben beschrinkt. Als die

07
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grofite ganze Zahl kleiner oder gleich x kann man sie sich als ,,Abrundung* von x vorstellen; es ist

also z.B.
7 7
LJ =3 und {—2J =—4.

Folgerung 4.35 (Q liegt dicht in R). Jedes nicht-leere offene Intervall (a,b) in R enthilt eine
rationale Zahl.

Beweis. Nach Bemerkung 4.31 (a) gibt es ein n € N5 mit % < b — a. Weiterhin ist die Menge
k
M= {kEZ:>a}:{k€Z:k>na}
n

nach Satz 4.30 nicht-leer und durch na nach unten beschrinkt, und besitzt damit nach Folgerung
4.33 ein Minimum k. Fiir dieses Minimum gilt also:

(a) k € M und damit % > a;
(b) k—1¢ M und damit =1 < g, d.h.

k 1
—-<a+-<a+(b—a)=b.
n n

Also ist % eine rationale Zahl im offenen Intervall (a,b). O

Als eine Konsequenz aus dieser Folgerung wollen wir wie bereits angekiindigt nun sehen, dass die
rationalen Zahlen das Supremumsaxiom nicht erfiillen, dass hier also der entscheidende Unterschied
zwischen Q und R liegt. Wir untersuchen dazu zunichst, ob es eine Quadratwurzel aus 2 gibt, also
eine positive Zahl x mit x> = 2 (die wir dann als v/2 schreiben).

Lemma 4.36 (Irrationalitit von \/2). Es gibt keine rationale Zahl x € Q mit x> = 2.

Beweis. Angenommen, es gibe eine rationale Zahl x € Q mit x> = 2. Wir konnen x als gekiirzten
Bruch x = 5 (mit p,q € Z und g # 0) schreiben und erhalten

also  p? =24". (%)

Also muss p? und damit auch p selbst eine gerade Zahl, d. h. durch 2 teilbar sein. Wir kénnen daher
p = 2r fiir eine ganze Zahl r € Z setzen. Einsetzen in (x) liefert

(2r)2 =24%, also ¢* =217

Aber dann muss auch ¢* und damit ¢ eine gerade Zahl sein — was ein Widerspruch dazu ist, dass die
Darstellung von x als Bruch 5 als gekiirzt vorausgesetzt worden ist. g

Wie ihr aus der Schule wisst, gibt es aber in den reellen Zahlen R eine Wurzel aus 2. Da unsere
Axiome, dass R ein geordneter Korper ist, der das Supremumsaxiom erfiillt, die reellen Zahlen ja
vollstindig beschreiben, konnten wir die Existenz dieser Wurzel jetzt sogar aus unseren Axiomen
beweisen: Die Menge {x € R : x> < 2} ist offensichtlich eine nicht-leere, nach oben beschrinkte
Menge, die demzufolge ein Supremum s besitzt — und fiir dieses Supremum kann man zeigen, dass
5% =2 gilt, also dass s eine Wurzel aus 2 ist. Dieser Beweis ist jedoch recht technisch, und da wir in
Folgerung 5.30 ohnehin die Existenz reeller Quadratwurzeln aus beliebigen nicht-negativen Zahlen
aus unseren Axiomen beweisen werden, wollen wir hier darauf verzichten und fiir die folgende
Bemerkung der Einfachheit halber annehmen, dass V2in R existiert, zumal wir diese Bemerkung
im Folgenden nicht verwenden werden.

Bemerkung 4.37 (Q erfiillt das Supremumsaxiom nicht). Es sei M :={x € Q: x < \@} Diese
Menge ist offensichtlich nicht leer (denn 0 € M) und nach oben beschrinkt (z. B. mit oberer Schranke
2). Wiirde QQ das Supremumsaxiom erfiillen, miisste sie also ein Supremum s := supM € Q besitzen.
Allerdings ist fiir dieses Supremum sowohl s < /2 als auch s > /2 ausgeschlossen:
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e 5 < /2 kann keine obere Schranke fiir M sein, denn nach Folgerung 4.35 giibe es dann eine
rationale Zahl x € (s, \/2) also mit x € M, aber x > s.

e s> /2 kann keine kleinste obere Schranke fiir M sein, denn wieder nach Folgerung 4.35
giibe es nun eine rationale Zahl s’ € (ﬁ, s), die kleiner ist als s, aber immer noch eine obere
Schranke fiir M (da aus x € M, also x < V2, ja sofort auch x < s’ folgt).

Also bleibt nur die Moglichkeit s = v/2, was aber nach Lemma 4.36 ein Widerspruch zu s € Q ist.
Damit erfiillt Q das Supremumsaxiom nicht. Anschaulich hat M zwar ein Supremum in R, ndmlich
/2, aber genau an dieser Stelle hat QQ ein ,,Loch* auf der Zahlengeraden — und daher existiert kein
Supremum von M in Q.

Bemerkung 4.38 (Uneigentliche Suprema). Nach dem Supremumsaxiom existiert das Supremum
supM fiir jede nicht leere, nach oben beschrinkte Teilmenge M C R. Oft ist es praktisch, diese
Notation wie folgt auf beliebige Teilmengen von R zu erweitern:

(a) Ist M =0, so schreiben wir formal sup M = —co. (Anschaulich: Jede reelle Zahl ist eine obere
Schranke der leeren Menge, daher ist ,,die kleinste* davon —eo.)

(b) Ist M # @ nach oben unbeschrinkt, so schreiben wir formal supM = oo. (Anschaulich: Ist M
nach oben unbeschrinkt, so ist keine reelle Zahl eine obere Schranke fiir M, die einzige und
damit kleinste ,,obere Schranke* fiir M ist also oo.)

Man spricht in diesem Fall von uneigentlichen Suprema. Analog setzt man natiirlich inf( = e und
inf M = —co fiir jede nach unten unbeschrinkte Menge M C R.

Mit ,,wir schreiben formal“ ist dabei oben gemeint, dass —oo und oo natiirlich keine Zahlen sind,
mit denen man uneingeschrinkt wie gewohnt rechnen kann. Manche Rechenoperationen wie z. B.
oo+ x := oo fiir alle x € R lassen sich zwar noch intuitiv sinnvoll definieren (siche Bemerkung 5.42),
aber andere wie z. B. oo — oo nicht. Mit anderen Worten ist R U {4} kein Korper. Trotzdem hat die
Einfiihrung uneigentlicher Suprema und Infima den Vorteil, dass sup M und inf M fiir jede Teilmenge
M von R definiert sind, und Aussagen dariiber oft auch in den neuen Fillen giiltig bleiben. So gelten
z.B. die Aussagen aus Aufgabe 4.28 sogar fiir beliebige Teilmengen von R (sofern in (c) rechts
nicht der unbestimmte Ausdruck co — co auftritt) — allerdings brauchen wir dafiir natiirlich einen
neuen Beweis, da ja schon die Definition eines uneigentlichen Supremums eine andere als iiblich ist.



