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3. Erste Eigenschaften der reellen Zahlen

In Notation 1.14 haben wir bereits die reellen Zahlen R als ,,Menge der Punkte auf einer Geraden*
eingefiihrt. Man kann aber natiirlich noch viel mehr Dinge mit den reellen Zahlen tun als sie als
eine einfache Punktmenge zu betrachten: Man kann sie addieren, multiplizieren, die Grée von zwei
Zahlen miteinander vergleichen, und noch einiges mehr. Wir wollen die Eigenschaften der reellen
Zahlen in diesem und dem néchsten Kapitel exakt formalisieren, damit wir danach genau wissen,
welche Eigenschaften von R wir in dieser Vorlesung axiomatisch voraussetzen. In der Tat werden
diese Eigenschaften letztlich sogar ausreichen, um die reellen Zahlen eindeutig zu charakterisieren.
Wir beginnen in diesem Kapitel aber zunichst einmal nur mit den ,,Grundrechenarten®, also mit der
Addition und der Multiplikation sowie ihren Umkehrungen, der Subtraktion und Division.

3.A Gruppen und Korper

Die Eigenschaften von Verkniipfungen wie der Addition oder Multiplikation reeller Zahlen werden
mathematisch durch die Begriffe einer Gruppe bzw. eines Korpers beschrieben, die wir jetzt einfiih-
ren wollen.

Definition 3.1 (Gruppen). Eine Gruppe ist eine Menge G zusammen mit einer ,, Verkniipfung®, d. h.
einer Abbildung
x: GXG— G, (x,y) = x*Y,

so dass die folgenden Eigenschaften (auch Gruppenaxiome genannt) gelten:
(a) (Assoziativitit) Fiir alle x,y,z € G gilt (x*y) *z = x* (y*z). Man schreibt diesen Ausdruck
dann in der Regel auch einfach als x *y x z, weil die Reihenfolge der Klammerung ja egal ist.

(b) (Existenz eines neutralen Elements) Es gibt ein e € G, fiir das exx =xxe =xfirallex € G
gilt. Man nennt ein solches e ein neutrales Element, und verlangt davon zusitzlich:

(c) (Existenz von inversen Elementen) Fiir alle x € G gibtes ein X’ € G mit X’ xx = xxx’' = e.
Man nennt x’ dann ein inverses Element zu x.

Wir bezeichnen eine solche Gruppe mit (G, *). Wenn aus dem Zusammenhang klar ist, welche Ver-
kniipfung gemeint ist, schreiben wir oft auch einfach nur G fiir die Gruppe.

Gilt zusétzlich zu den obigen Eigenschaften noch
(d) (Kommutativitit) x«y = y«x fiir alle x,y € G,
so heiBit (G, *) eine kommutative oder abelsche Gruppe.

Bemerkung 3.2. Manchmal wird in der Definition einer Gruppe in Teil (b) lediglich e *x x = x und
in Teil (c) lediglich x’ x x = e gefordert (man spricht dann auch von einem linksneutralen bzw.
linksinversen Element). Man kann jedoch unter Verwendung der iibrigen Gruppenaxiome zeigen,
dass in diesem Fall automatisch auch x* e = x und x *x’ = e gelten muss, also dass linksneutrale
Elemente bereits immer neutrale und linksinverse Elemente immer inverse Elemente sind [G, Satz
1.7]. Die beiden Varianten der Definition einer Gruppe stimmen also letztlich {iberein.

Beispiel 3.3.

(a) (R,+) ist eine abelsche Gruppe, denn die Addition ist (wie wir axiomatisch voraussetzen
werden) eine Verkniipfung auf R mit den Eigenschaften:

o (x+y)+z=x+(y+z) firalle x,y,z € R;
e 0 € R ist ein neutrales Element, denn 0 +x = x + 0 = x fiir alle x € R;

e zujedem x € R ist —x € R ein inverses Element, denn (—x) +x =x+ (—x) =0;
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(b)
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o x+y=y+xfirallex,yeR.

Auf die gleiche Art sind auch (Q,+) und (Z,+) abelsche Gruppen, jedoch nicht (N, +):
Hier existiert zwar noch ein neutrales Element O, aber die Zahl 1 € N hat kein Inverses mehr,
denn es gibt keinx € Nmitx+1=0.

(R, -) ist keine Gruppe: Die Multiplikation ist zwar assoziativ und kommutativ und hat das
neutrale Element 1, aber die Zahl 0 hat kein Inverses — denn dies miisste ja eine Zahl x € R
sein mitx-0 = 1.

Nimmt man jedoch die 0 aus R heraus, so erhilt man mit (R\{0}, -) wieder eine abelsche
Gruppe, bei der das neutrale Element 1 und das zu einem x inverse Element % ist. Genauso
funktioniert dies fiir (Q\{0}, -), aber z. B. nicht fiir (Z\{0}, -): Hier gibt es zwar noch ein
neutrales Element 1, aber die Zahl 2 € Z\{0} hat kein Inverses mehr, denn es gibt kein
x€Z\{0} mit2-x=1.

Hier ist noch ein Beispiel von einem ganz anderen Typ: Es sei M eine beliebige Menge und

G ={f : f ist eine bijektive Abbildung von M nach M}.

Da die Verkettung bijektiver Abbildungen nach Aufgabe 2.25 wieder bijektiv ist, definiert
sie eine Verkniipfung auf G. In der Tat wird G damit zu einer Gruppe, denn die Verkettung
ist assoziativ nach Lemma 2.19, die Identitit id, ist ein neutrales Element, und zu einem
f € G ist die Umkehrabbildung f~! aus Definition 2.20 ein inverses Element: Sie ist nach
Aufgabe 2.25 selbst wieder bijektiv (also in G) und erfiillt f~' o f = fo f~! = idy nach
Bemerkung 2.21. Im Allgemeinen ist diese Gruppe jedoch nicht kommutativ.

Wir wollen nun ein paar einfache Eigenschaften von Gruppen beweisen, u. a. dass die in Definition
3.1 geforderten neutralen und inversen Elemente eindeutig sind und wir daher in Zukunft auch von
dem neutralen und dem zu einem gegebenen Element inversen Element sprechen konnen.

Lemma 3.4 (Eigenschaften von Gruppen). Es seien (G,x*) eine Gruppe und x,y € G.

Beweis.

(@)
(b)
()
(d)

(a)

(b)

(©)

Es gibt genau ein neutrales Element (wie in Definition 3.1 (b)).
Es gibt genau ein inverses Element zu x (wie in Definition 3.1 (c)).
Sind x' und y' die inversen Elemente zu x bzw. y, so ist y' X' das inverse Element zu x * y.

Ist X' das inverse Element zu x, so ist x das inverse Element zu X' (,,das Inverse des Inversen
ist wieder das Ausgangselement ).

Sind e und ¢é neutrale Elemente, so folgt
e=2¢&xe (denn ¢ ist ein neutrales Element)

=é (denn e ist ein neutrales Element).

Sind ¥’ und & inverse Elemente zu x, so gilt
X =exx (e neutrales Element)
= (¥ *x)xx’ (¥ ist ein inverses Element zu x)
=% x(xxx') (Assoziativitit)
=% xe («’ ist ein inverses Element zu x)

=7 (e neutrales Element).

Es gilt
(V) x(xxy) =y x (X xx)xy =y xexy=yxy=e

und analog auch (x#y) x (¥ *x’) = e. Damit ist y' xx” das inverse Element zu x * y.

(d) Die Gleichung x’ % x = x* x’ = e besagt direkt, dass x das inverse Element zu x’ ist. O
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Wie wir in Beispiel 3.3 (a) und (b) gesehen haben, erlauben die reellen Zahlen zwei grundle-
gende Gruppenstrukturen: die Addition und (nach Herausnahme der 0) die Multiplikation. Diese
beiden Strukturen sind jedoch nicht unabhingig voneinander, da sie durch das Distributivgesetz
(x+y)-z=xz+yz fiir alle x, y,z € R miteinander verbunden sind. Eine derartige Kombination zwei-
er Gruppenstrukturen bezeichnet man als einen Korper.

Definition 3.5 (Korper). Ein Korper ist eine Menge K zusammen mit zwei Verkniipfungen
+: KxK— K (genannt Addition) und -: KxK — K (genannt Multiplikation),
so dass die folgenden Eigenschaften (auch Korperaxiome genannt) gelten:

(a) (K,+) ist eine abelsche Gruppe. Wir bezeichnen ihr neutrales Element mit O und das zu
einem x € K inverse Element mit —x.

(b) (K\{0}, -) ist ebenfalls eine abelsche Gruppe. Wir bezeichnen ihr neutrales Element mit 1
1

und das zu einem x € K\{0} inverse Element mit x~'.
(c) (Distributivitit) Fiir alle x,y,z € K gilt (x+y)-z= (x-2) + (y-2).

Mit dieser Definition wollen wir nun also axiomatisch voraussetzen:

\ R ist ein Korper. \

Um Verwirrungen zu vermeiden, werden wir die beiden Verkniipfungen in einem Korper immer mit
den Symbolen ,,+“ und ,,- “ bezeichnen. Ebenso werden wir (wie ihr es natiirlich gewohnt seid) ver-
einbaren, dass man den Punkt bei der Multiplikation auch weglassen darf und bei ungeklammerten
Ausdriicken zuerst die Multiplikationen und dann die Additionen ausgefiihrt werden, so dass man
also z. B. die Distributivitit aus Definition 3.5 (c) auch als (x+y) z = xz+ yz schreiben kann.

Es ist jedoch wichtig zu verstehen, dass wir ab jetzt nicht mehr voraussetzen werden, dass Addition
und Multiplikation in einem Korper wie z. B. R genau die Verkniipfungen sind, ,,an die man als
Erstes denken wiirde* — was auch immer das heilen mag. Stattdessen sind es einfach irgendwelche
zwei Verkniipfungen, die die Eigenschaften aus Definition 3.5 haben. Unsere zukiinftigen Beweise
tiber Korper wie z. B. R miissen wir also ausschlieBlich auf diesen Eigenschaften aufbauen.

Dieser axiomatische Zugang hat zwei Vorteile:

e Zum einen wissen wir dadurch genau, welche Eigenschaften der Grundrechenarten auf den
reellen Zahlen wir eigentlich voraussetzen. Es sollte schlielich klar sein, dass wir eine ex-
akte Mathematik nicht auf einer anschaulichen Vorstellung von R aufbauen konnen. Solltet
ihr euch also z. B. spiter einmal dafiir interessieren, wie man die Existenz der reellen Zah-
len beweisen kann, so wiisstet ihr dann genau, was eigentlich zu beweisen ist: namlich die
Existenz einer Menge mit genau den Eigenschaften, die wir jetzt axiomatisch voraussetzen.

e Zum anderen werdet ihr im Laufe eures Studiums noch viele weitere Korper kennenlernen,
z.B. in Kapitel 6 den sehr wichtigen Korper der komplexen Zahlen. Alle Resultate, die nur
auf den Korperaxiomen aufbauen, iibertragen sich dann also sofort auf diese neuen Fille,
ohne dass man sich dariiber noch einmal neu Gedanken machen muss.

Beispiel 3.6.

(a) Neben R ist auch Q (mit den gleichen Verkniipfungen wie auf R) ein Korper. Die ganzen
Zahlen Z bilden mit diesen Verkniipfungen jedoch keinen Korper, da (Z\{0}, -) nach Bei-
spiel 3.3 (b) keine Gruppe ist. Ebenso ist N mit diesen Verkniipfungen kein Korper, da hier
nach Beispiel 3.3 (a) bereits die Addition keine Gruppenstruktur liefert.

(b) Hier ist ein Beispiel fiir einen Korper, der sich ganz anders verhilt als R und Q: Wir definie-
ren auf der Menge K = {g,u} zwei Verkniipfungen durch die folgenden Tabellen.

+ 1|18 u -l g u
glg u und glg 8
ulu g ul|g u
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Dabei sind g und u einfach nur Namen fiir die beiden Elemente von K, die fiir ,,gerade* und
,ungerade* stehen sollen und damit auch die Verkniipfungstafeln erkldren: Wir haben z. B.
g+ u als u definiert, weil die Addition einer geraden und einer ungeraden Zahl eine ungerade
Zahl ergibt.

Man kann zeigen, dass K mit diesen beiden Verkniipfungen einen Korper bildet. Er wird
in der Literatur mit Z; bezeichnet, da seine Elemente die Reste ganzer Zahlen bei Division
durch 2 beschreiben. Um zu beweisen, dass Z, ein Korper ist, konnte man z. B. einfach die
geforderten Eigenschaften fiir alle Elemente — es gibt ja nur zwei — explizit nachpriifen. In
der Vorlesung ,,Algebraische Strukturen® zeigt man allerdings, dass man die Korperaxiome
hier auch viel eleganter direkt aus den Eigenschaften von Z folgern kann [G, Satz 7.10]. Wir
wollen uns hier damit begniigen, die neutralen und inversen Elemente anzugeben:

e Das additive neutrale Element ist g, wie man leicht aus der Tabelle abliest. Im Sinne
der Notationen von Definition 3.5 ist also 0 = g. Wegen g+ g =u+u = g = 0 sind
die additiven inversen Elemente —g = g und —u = u. Dies stimmt natiirlich auch mit
der Interpretation als gerade und ungerade Zahlen iiberein, da das Negative von einer
geraden bzw. ungeraden Zahl ebenfalls wieder gerade bzw. ungerade ist.

e Das multiplikative neutrale Element in Z,\{0} ist u — in der Tat ist es ja auch das
einzige Element in Z;\{0}. GemiB der Notation von Definition 3.5 ist also 1 = u.

Beachte, dass in diesem Korper Z; die Gleichung 1+ 1 = u+u = g = 0 gilt. Die Korper-
axiome lassen es also zu, dass man bei fortgesetzter Addition der 1 irgendwann wieder zur 0
zuriick kommt. Wir werden in dieser Vorlesung nicht viel mit dem Korper Z, zu tun haben —
wir haben ihn hier nur als Beispiel dafiir angegeben, dass die Korperaxiome noch weit davon
entfernt sind, die rationalen oder reellen Zahlen eindeutig zu charakterisieren.

Anschaulich kann man die Korperaxiome so interpretieren, dass ein Korper eine Menge ist, auf der
»die vier Grundrechenarten existieren und die erwarteten Eigenschaften haben“. Wir wollen nun
noch ein paar weitere dieser erwarteten Eigenschaften zeigen, die bereits aus den Korperaxiomen
folgen und die wir dann beim Rechnen z. B. in R natiirlich stéindig benutzen werden.

Bemerkung 3.7. Es seien K ein Korper und x,y € K.

(a)

(b)

Wenden wir Lemma 3.4 (c) und (d) auf die (kommutative) Addition und Multiplikation an,
so sehen wir sofort, dass

—(x+y)=(=x)+(-y) und —(-x)=x

sowie fiir x,y # 0

() P=x1y ! und (xH'=x

Etwas versteckt in Definition 3.5 steht in Teil (b) u. a. die Aussage, dass die Multiplikation
iiberhaupt eine Verkniipfung auf K\ {0} ist, also dass fiir x,y € K\ {0} auch xy € K\{0} gilt.
Aquivalent dazu bedeutet das:

Ist xy =0, so gilt x =0 oder y = 0.

Lemma 3.8 (Eigenschaften von Korpern). In jedem Korper K gilt fiir alle x,y € K:

(a)

(b)

()
Beweis.

(a)

0-x=0.

x-(=y) = —(xy).

Fiir x # 0 ist —(x~') = (—x) 7.
Es gilt

0-x=(040)-x (O ist additives neutrales Element)
=0-x+0-x, (Distributivitit)
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woraus durch Addition des additiven Inversen von O - x auf beiden Seiten die gewiinschte
Gleichung 0 = 0 - x folgt.

(b) Esist
x-(=y)+xy=x-(—y+y) (Distributivitit)
=x-0 (—y ist additives Inverses zu y)
=0 (nach (a)),

daher ist x- (—y) das additive Inverse zu xy, d. h. es gilt x- (—y) = —(xy).

(c) Doppeltes Anwenden von (b), einmal fiir den linken und einmal fiir den rechten Faktor,
ergibt

() () == () =~ () = = (1) TEY L
Also ist —(x~!) das multiplikative Inverse zu —x, d. h. es ist —(x~!) = (—x) . O

Notation 3.9. In einem Korper K verwendet man iiblicherweise die folgenden Notationen, von
denen euch die meisten sicher bekannt sein werden:

(a) Fiirx,y € K setzt man x —y :=x+ (—y). Ist y # 0, so setzt man i—‘ =x-y L

(b) Fiir x € K und n € N definiert man die n-te Potenz von x als

X =X e . x’
——
n-mal
wobei dieser Ausdruck fiir n = 0 als x := 1 zu verstehen ist. Insbesondere legen wir also
auch 00 := 1 fest. Beachte, dass aus dieser Definition (und der Kommutativitdt der Multipli-
kation) unmittelbar die Potenzrechenregeln

K=" und  (xy)" ="y

fiir alle x,y € K folgen. Ist x # 0, so definiert man zusitzlich Potenzen mit negativen ganz-
zahligen Exponenten durch x~" := (x )"

Beachte, dass auch in einem beliebigen Korper K die Exponenten einer Potenz stets ganze
Zahlen sind und keine Elemente aus K. Eine Potenz x” fiir x,y € K lédsst sich im Allgemeinen
nicht definieren (auch wenn dies fiir K = R in vielen Féllen moglich ist, siehe Definition 9.7).

(c) Manchmal méchte man mehrere Elemente x;,,, X+1,Xm+2, - - - , X, in einem Korper (oder all-
gemeiner in einer additiv geschriebenen abelschen Gruppe) aufsummieren, die durch eine
ganzzahlige Laufvariable indiziert werden, die von einem m € Z bis zu einem n € Z (mit
n > m) lauft. Man schreibt dies dann als

n
Z Xi ‘= Xm + X1 X2+ -+ Xp
i=m
(also mit einem groflen griechischen Sigma, das an das Wort ,,Summe* erinnern soll). So
steht z. B.

n
Y iP=12422 432+ (%)
i=1
fiir die Summe aller Quadratzahlen bis n2. Natiirlich ist der Name der Laufvariablen dabei
egal, und der Ausdruck () hdngt nicht von einem 7 ab (wie man auf der rechten Seite ja auch
sieht). AuBerdem kann man die Laufvariable verschieben, ohne den eigentlichen Ausdruck
zu dndern: Setzt man z. B. i = j+ 1, also j =i — 1, in der obigen Summe (x), so lduft j dort
von 0 bis n — 1, wenn i von 1 bis z liuft, und wir konnen dieselbe Summe auch schreiben als
n—1
Y (i+1)?=12+22+32 4 4.
j=0
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Natiirlich kann man diesen Ausdruck nun auch wieder genauso gut mit dem Buchstaben i
statt j als Y7~ (i + 1)? schreiben, oder den Index um mehr als 1 in die eine oder andere
Richtung verschieben. Also:

Der Wert einer Summe dndert sich nicht, wenn man zur Laufvariablen im zu summie-
renden Ausdruck eine Konstante addiert, und dafiir von der Ober- und Untergrenze
der Summe diese Konstante abzieht.

Wir sagen in diesem Fall, dass die neue Darstellung der Summe durch eine Indexverschie-
bung (im Beispiel oben i — i+ 1) aus der alten hervorgeht.

Analog schreibt man

n
[Tx = xm Xmet - Xmi2 - 3
i=m

(mit einem grofen griechischen Pi fiir das Produkt), wenn man die Korperelemente mul-
tiplizieren statt addieren mochte. Ist schlieflich die Obergrenze einer Summe oder eines
Produkts kleiner als die Untergrenze (man spricht dann von der leeren Summe bzw. dem
leeren Produkt), so definiert man dies als

n n
Y xi:=0 und JJxi:=1 firn<m,
i=m

i=m
also als das additive bzw. multiplikative neutrale Element.

(d) Ist n eine natiirliche Zahl, so fasst man diese oft auch als das Element

Yi=14-+1
= N——
n-mal
von K auf. Im Fall K = R ist dies dann einfach die natiirliche Zahl n € N C R und liefert
somit keine neue Notation, aber z. B. in K = Z; aus Beispiel 3.6 (b)ist2=1+1=0.

Aufgabe 3.10. Zeige, dass in jedem Korper K die iiblichen Rechenregeln
X z xw—+yz X z Xz
-+ == und --—=—
y w yw y woyw

fiir Briiche gelten, wobei x,y,z,w € K mit y,w # 0.

Aufgabe 3.11. Es sei a € R fest gegeben. Wir definieren auf R2 eine ,,Addition” und -Multiplika-
tion* durch
(x1,%2) + (y1,32) 1= (x1 +y1,%2 +y2) und  (x1,%2) - (y1,¥2) = (X1y1 +@x2y2,X1y2 +x2)1).-
Man priift leicht durch explizite Rechnung nach, dass R? mit dieser Addition eine kommutative
Gruppe mit neutralem Element (0,0) ist, dass auch die Multiplikation kommutativ ist, und dass
diese beiden Operationen das Distributivgesetz erfiillen — ihr solltet euch kurz iiberlegen, warum das
so ist, braucht das aber nicht aufzuschreiben. Man zeige stattdessen:
(a) Die Multiplikation ist assoziativ und besitzt ein neutrales Element.
(b) Im Fall a = —1 ist (R?,+, -) ein Korper, im Fall @ = 1 jedoch nicht.
(Fiir @ = —1 ist (R?, +, -) der sogenannte Korper der komplexen Zahlen, den wir in Kapitel
6 noch genau untersuchen werden.)
Aufgabe 3.12. Zu einem Korper K und einer Menge D mit |[D| > 2 sei
V ={f: f ist eine Abbildung von D nach K}

die Menge aller reellwertigen Funktionen auf D. Fiir f, g € V definieren wir die Addition f + g und
Multiplikation f - g dieser Funktionen punktweise durch

f+e:D—=K, x— f(x)+gx) und f-g:D—K, x— f(x)-g(x).
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(a) Zeige, dass V mit dieser Addition eine abelsche Gruppe ist.
(b) Ist V mit dieser Addition und Multiplikation ein Korper?

3.B Vollstindige Induktion

Héufig mochte man in der Mathematik Aussagen beweisen, die von einer natiirlichen Zahl abhin-
gen — z. B. bei Formeln, die Summen oder Produkte wie in Notation 3.9 mit variablen Unter- oder
Obergrenzen beinhalten. Die einfachste und bekannteste solcher Aussagen ist vermutlich die folgen-
de Formel fiir die Summe aller natiirlichen Zahlen bis zu einer gegebenen Obergrenze.

Satz 3.13 (Summenformel von GauB3). Fiir alle n € N gilt

Z n+1)

Beispiel 3.14. Fiirn =5 istz.B.

5-6

5
Z k=14+243+4+5=15= -

Um derartige Aussagen zu beweisen, ist oft das Beweisverfahren der (vollstindigen) Induktion
niitzlich, das wir jetzt einfithren wollen.

Angenommen, wir wollen (wie z. B. in Satz 3.13) eine Aussage A(n) fiir alle n € N beweisen. Dann
konnen wir dies tun, indem wir die folgenden beiden Dinge zeigen:
(a) (Induktionsanfang) Die Aussage A(0) ist wahr.

(b) (Induktionsschritt) Fiir alle n € N gilt A(n) = A(n+ 1), d.h. wenn die Aussage A(n) fiir
ein gegebenes n € N gilt (die ,,Induktionsannahme* bzw. ,,Induktionsvoraussetzung*), dann
gilt auch die Aussage A(n+ 1) (der ,Induktionsschluss®).

Haben wir diese beiden Dinge gezeigt, so folgt daraus nimlich die Giiltigkeit von A(n) fiir alle n € N:
Die Aussage A(0) haben wir mit dem Induktionsanfang gezeigt, und durch fortgesetztes Anwenden
des Induktionsschritts A(n) = A(n+ 1) fir n=0,1,2,... erhalten wir dann auch

A(0)=A(1)=AQ2)=AQB)= -,
also die Giiltigkeit von A(n) fir allen € N={0,1,2,3,...}.

Derartige Induktionsbeweise sind immer dann sinnvoll, wenn die Aussagen A(n) und A(n+1) ,,ihn-
lich genug® sind, so dass es beim Beweis von A(n + 1) hilft, die Giiltigkeit von A(n) voraussetzen
zu diirfen.

Mit diesem Verfahren konnen wir nun die Summenformel aus Satz 3.13 beweisen:

Beweis von Satz 3.13. Wir zeigen die Formel mit Induktion iiber .

Induktionsantang (n = 0): Fiir n = 0 stimmen die beiden Seiten der zu zeigenden Gleichung iiberein,
denn es ist
20: _0-(0+1)
2
Induktionsschritt (n — n+1): Als Induktlonsvoraussetzung nehmen wir an, dass die zu beweisende
Formel fiir ein gegebenes n € N richtig ist, d. h. dass

= n(n+1)
k =
kgl

2

gilt. (Beachte, dass wir diese Gleichung nicht fiir alle n € N voraussetzen — dies wire ja schon die
gesamte zu zeigende Aussage!) Wir miissen zeigen, dass die entsprechende Gleichung dann auch
fiir n+ 1 gilt, also dass

ntl _ (n4+1)(n+2)
;k i —
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Dies ergibt sich nun leicht aus der folgenden Rechnung:

n+1 n
Z k= Z k+(n+1) (Abspalten des letzten Summanden fiir k =n+ 1)
k=1 k=1
1
= @ +(n+1) (nach Induktionsvoraussetzung)
n
_ (n+1)(n+2)
D T—
Damit ist der Satz mit vollstdndiger Induktion bewiesen. O

Bemerkung 3.15. Offensichtlich erlaubt das Beweisverfahren der vollstindigen Induktion die fol-
genden Abwandlungen:

(a) Im Induktionsschritt kann man, wenn es hilfreich ist, beim Beweis der Aussage A(n+ 1)
nicht nur die direkt vorangegangene Aussage A(n), sondern alle bereits gezeigten Aussagen
A(0),A(1),...,A(n) voraussetzen.

(b) Mochte man die Aussage A(n) nicht fiir alle n € N, sondern fiir alle n € Z ab einem gewissen
Startwert ng € Z zeigen, so kann man als Induktionsanfang die Aussage A(ng) zeigen, und
im Induktionsschritt dann die Folgerung A(n) = A(n+ 1) fiir alle n > ny.

Aufgabe 3.16. Zeige fiir allen € N:

! 1 n L 1 1
_ = b l+— ) =2—- .
@ L@ ()kHl<+n+k) nt 1

Aufgabe 3.17. Zeige mit vollstindiger Induktion: Ist a € R\{0} mita+ % € Z,sogilt fiirallen € N
auch a" + a% cZ.

3.C Polynomfunktionen

Als erste Anwendung der Korpereigenschaften wollen wir zum Abschluss dieses Kapitels die euch
sicher schon aus der Schule bekannten Polynomfunktionen behandeln — also die Funktionen, die
sich aus den grundlegenden Korperoperationen Addition und Multiplikation bilden lassen.

Definition 3.18 (Polynomfunktionen und Nullstellen). Es seien D eine Teilmenge eines Korpers K
und f: D — K eine Funktion.

(a) Ist f von der Form

n
flx) = Zakxkzanxn+---+a1x+ao fur alle x € D

k=0
mit gewissen ag, . ..,a, € K, so sagt man, dass f eine Polynomfunktion mit Koeffizienten
ao, - ..,ay ist. Ist n dabei so gewdhlt, dass der erste Koeffizient a, ungleich Null ist, so heifit

f eine Polynomfunktion vom Grad n und mit Leitkoeffizient a,. Ist der Leitkoeffizient 1,
so heift f eine normierte Polynomfunktion.

Sind in der obigen Darstellung alle Koeffizienten ay,...,a, gleich O (und ist f damit die
Nullfunktion), so nennen wir f formal eine Polynomfunktion vom Grad —ee. In diesem Fall
hat f keinen Leitkoeffizienten.

(b) Ist xp € D mit f(xo) = 0, so nennt man x( eine Nullstelle von f.
Das Besondere an Nullstellen von Polynomfunktionen ist, dass man sie wie im folgenden Satz als

Linearfaktoren abspalten kann.

Satz 3.19 (Abspalten von Nullstellen in Polynomfunktionen). Es seien K ein Korper, D C K und
f: D — K eine Polynomfunktion vom Grad n € N.
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(a) Ist xg € D eine Nullstelle von f, so gibt es eine Polynomfunktion g: D — K vom Grad n — 1
mit f(x) = (x—xo) g(x) fiir alle x € D (d. h. man kann ,,den Linearfaktor x — xo abspalten*).

(b) Die Funktion f hat hochstens n Nullstellen.

Beweis. Wir zeigen die beiden Aussagen mit Induktion iiber n. Der Beweis von (a) ist dabei kon-
struktiv, d. h. er gibt auch ein Verfahren an, wie g berechnet werden kann (siehe Beispiel 3.20).

Der Induktionsanfang fiir n = O ist trivial, denn f ist dann eine Konstante ungleich 0 und hat somit
keine Nullstellen. Fiir den Induktionsschluss nehmen wir an, dass die Aussagen des Satzes bis zu
einem gegebenen n gelten, und betrachten f: D — K, x+— an+1x”“ +---+ajx+ayvom Gradn+1,
also mit a1 # 0.

(a) Wir definieren eine Polynomfunktion f: D — K durch
F) = f(x) = apg1x" (x = xo)
= dpp1%0X" + anX" +ap 1 X"+ arx+ap

fiir alle x. Ist f die Nullfunktion, so sind wir fertig, da dann ja f(x) = @, 1x" (x — xo) fiir alle
x € D gilt. Andernfalls ist f nach Konstruktion eine Polynomfunktion vom Grad héchstens n
(der x"*1-Term hebt sich ja gerade heraus), die immer noch die Nullstelle xy hat. Nach Induk-
tionsvoraussetzung gibt es dann also eine Polynomfunktion g: D — K vom Grad hochstens
n—1mit f(x) = (x—xo) g(x) fiir alle x € D, und somit ist

f(x) = an1x" (x = x0) + F(x) = (x—x0)  (an+1x" + §(x))
——o—

=:g(x)
fiir alle x € D, wobei g offensichtlich vom Grad # ist.

(b) Hat f keine Nullstelle, so sind wir fertig. Andernfalls wéihlen wir eine Nullstelle xo von f
und schreiben f(x) = (x —x¢) g(x) fiir alle x € D wie in (a) mit einer Polynomfunktion g vom
Grad n. Nach Induktionsvoraussetzung hat g hochstens n Nullstellen, und nach Bemerkung
3.7 (b) sind die Nullstellen von f genau xy zusammen mit den Nullstellen von g. Also hat f
hochstens 7 + 1 Nullstellen. Damit ist die Behauptung mit Induktion bewiesen. U

Beispiel 3.20 (Polynomdivision). Das Verfahren aus dem Beweis von Satz 3.19 (a) wird als Poly-
nomdivision [G, Satz 10.19] bezeichnet: Man subtrahiert fortlaufend geeignete Vielfache von x — xg
von f, so dass sich der jeweils hochste Term von f weghebt, und sammelt die dabei verwendeten
Faktoren in g. Das folgende Schema, das genauso aussieht wie eine normale schriftliche Division,
verdeutlicht dieses Verfahren am Beispiel der Funktion f: R — R, x — x> + 3x — 4 mit Nullstelle
xo = 1, die wir als f(x) = (x — 1) g(x) fiir alle x € R schreiben wollen. Das Ergebnis ist in diesem
Fallg: R >R, x—x+4.

f(x) (x2—|—3x—4) tx—1) = x+4 ~—gx)
flx) — 4x — 4

- (4x — 4)
0

Bemerkung 3.21. Satz 3.19 liefert uns zwar die neue Funktion nach dem Abspalten des Linearfak-
tors, er sagt uns hingegen nicht, wie wir iiberhaupt erst einmal eine Nullstelle von f finden kénnen,
oder ob es iiberhaupt Nullstellen gibt (die reelle Polynomfunktion f(x) = x>+ 1 hat ja z. B. keine
Nullstellen). In der Tat gibt es im Allgemeinen kein Verfahren, wie man Nullstellen von Polynom-
funktionen exakt berechnen kann! Genauer gesagt gilt:

e Fiir Polynomfunktionen vom Grad hochstens 4 gibt es explizite Verfahren zur exakten Be-
stimmung der Nullstellen (fiir Grad 1 ist das klar, fiir Grad 2 gibt es die bekannte ,,p-g-
Formel* bzw. die quadratische Ergénzung, und fiir Grad 3 bzw. 4 sind die Formeln so lang,
dass man im Allgemeinen nicht mehr mit ihnen arbeiten mochte).
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e Fiir Polynomfunktionen vom Grad groBer als 4 kann man beweisen(!), dass es keine derar-
tigen Verfahren zur exakten Bestimmung der Nullstellen geben kann (das beweist man z. B.
in der Vorlesung ,,Einfithrung in die Algebra®, die ihr im nédchsten Studienjahr héren konnt).
Aber:

o Fiir reelle Polynomfunktionen beliebigen Grades gibt es zumindest numerische Verfahren,
die die Nullstellen (mit beliebiger Genauigkeit) niherungsweise bestimmen konnen.

Zum Schluss wollen wir nun noch zwei wichtige Konzepte fiir Polynomfunktionen untersuchen, die
ihr beide im reellen Fall vielleicht schon aus der Schule kennt: den sogenannten Koeffizientenver-
gleich (also dass eine Polynomfunktion eindeutig ihre Koeffizienten bestimmt) und die Vielfachheit
von Nullstellen. Es stellt sich jedoch heraus, dass man hierfiir im allgemeinen Fall die Voraussetzung
benotigt, dass die Definitionsmenge der betrachteten Funktionen unendlich viele Elemente besitzt.

Lemma 3.22 (Koeffizientenvergleich). Es seien K ein Korper, D C K mit |D| = oo, und f: D — K
eine Polynomfunktion mit zwei Darstellungen

fx)=axX"+---+aix+ay=bx"+---+bix+by fiirallexeD

fiir gewisse aq, . ..,an,bo,...,b, € K. (Beachte, dass wir dabei in beiden Darstellungen den gleichen
hdchsten Exponenten n wéihlen konnen, da wir nicht a,, # 0 und b, # 0 vorausgesetzt haben.)

Dann gilt bereits a; = b; fiir alle i = 0,...,n. Es ist also nicht moglich, ,,eine Polynomfunktion auf
zwei verschiedene Arten hinzuschreiben .

Beweis. Nach Voraussetzung ist die Polynomfunktion
D — K, x> (an —bn) X"+ -+ (a1 —b1)x+ (a0 — bo) = f(x) — f(x) =0

die Nullfunktion auf D. Da sie damit wegen |D| = oo unendlich viele Nullstellen besitzt, muss sie
nach Satz 3.19 (b) vom Grad —eo sein. Also sind alle Koeffizienten dieser Polynomfunktion gleich
0,d.h.esista; = b, firallei =0,...,n. ]

Bemerkung und Notation 3.23 (Polynome). Die Voraussetzung |D| = oo in Lemma 3.22 ist wirklich
notwendig: So sind fiir D = K = Z, wie in Beispiel 3.6 (b) z. B. x — x und x — x? dieselbe Funktion,
da sie beide 0 auf O und 1 auf 1 abbilden und in Z, keine weiteren Elemente existieren.

In der Literatur bezeichnet man einen formalen Ausdruck der Form a,x" + --- + ajx + ap mit
ap,...,a, € K als ein Polynom iiber K [G, Kapitel 9]. Jedes solche Polynom bestimmt natiirlich
eine Polynomfunktion von jeder Teilmenge D von K nach K, allerdings konnen verschiedene Poly-
nome wie im eben angegebenen Beispiel durchaus dieselbe Polynomfunktion definieren: Uber Z,
sind x und x? verschiedene Polynome, sie bestimmen aber dieselbe Polynomfunktion.

Mit dieser Notation ist die Aussage von Lemma 3.22 also, dass Polynome und Polynomfunktionen
im Fall von unendlichen Definitionsmengen dasselbe sind. Da wir Polynomfunktionen im Folgenden
in der Regel nur in diesem Fall unendlicher Definitionsmengen benétigen, werden wir die Begriffe
Polynom und Polynomfunktion oft synonym verwenden. Wegen der Eindeutigkeit der Koeffizienten
sind dann auch der Grad (und der Leitkoeffizient) einer Polynomfunktion f wie in Definition 3.18 (a)
eindeutig bestimmt. Wir konnen daher eine Bezeichnung dafiir einfiihren:

Definition 3.24 (Grad eines Polynoms). Wir bezeichnen den Grad einer Polynomfunktion f (mit
unendlicher Definitionsmenge) mit deg f € NU{—e} (vom englischen Wort ,,degree*).

In den Fillen deg f = 1 bzw. deg f = 2 nennt man f ein lineares bzw. quadratisches Polynom.
Satz und Definition 3.25 (Vielfachheit von Nullstellen). Es seien K ein Korper, D C K mit |D| = o0

und f: D — K eine Polynomfunktion, die nicht die Nullfunktion ist. Dann ldsst sich f (bis auf die
Reihenfolge der Faktoren) eindeutig als

flx)=g(x)-(x—x1) - - - (x—x3)% fiir alle x € D

schreiben, wobei x1, ... ,x; € D die verschiedenen Nullstellen von f sind, ay,...,a; € N-q gilt, und
g ein Polynom ohne Nullstellen in D ist. In dieser Darstellung nennt man a; fiir i = 1,....k die
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Vielfachheit der Nullstelle x; von f (in der Literatur sind auch die Bezeichnungen Ordnung und
Multiplizitiit der Nullstelle iiblich).

Beweis. Die Existenz einer solchen Darstellung ergibt sich sofort durch fortgesetztes Abspalten von
Nullstellen geméal Satz 3.19 (a). Wir zeigen nun die Eindeutigkeit mit Induktion tiber den Grad
n := deg f des Polynoms. Dabei ist der Induktionsanfang fiir n = O trivial, denn dann hat f keine
Nullstellen, und es ist zwangsldufigk =0und g = f.

Fiir den Induktionsschritt n — n+ 1 bemerken wir zuerst, dass xi, . ..,x; natiirlich in jedem Fall als
die Nullstellen von f eindeutig bestimmt sind. Wir nehmen also an, dass wir zwei Darstellungen

F) = ) rxa )+ (r— )% = R e ()
eines Polynoms vom Grad n + 1 wie in der Behauptung des Satzes haben. Im nullstellenfreien Fall

k = 0 sind wir natiirlich bereits fertig. Andernfalls liefert Division durch x — x; fiir alle x € D\ {x;}
(wir miissen x; hier herausnehmen, da wir sonst durch O teilen wiirden!)

80 (=) () ()
=h(x) - (x—x)" 71 (x—x0)P2 o (= )% (%)

Wir haben also wieder zwei Darstellungen eines Polynoms auf der immer noch unendlichen Menge
D\{x,}. Da der Grad dieses Polynoms # ist, miissen diese Darstellungen aber nach der Induktions-
voraussetzung bereits iibereinstimmen. Also gilt g =h, a1 — 1 =b1—1,a, = by, ..., ax = by, und
damit stimmen auch die beiden urspriinglichen Darstellungen von f liberein. 0

Aufgabe 3.26. Bestimme die Nullstellen des reellen Polynoms x* 4-3x> — 4x und ihre Vielfachheiten.

Aufgabe 3.27. Es sei f ein reelles Polynom mit f(x) = x° fiir alle x € {1,2,3,...,8}. Welchen Grad
kann f haben?

Aufgabe 3.28. Es sei f das reelle Polynom mit f(x) = (x> — x -+ 1)2°? fiir alle x € R.
(a) Bestimme die Summe aller Koeffizienten von f.

(b) Bestimme die Summe aller Koeffizienten von geraden Potenzen von x in f.

Aufgabe 3.29.
(a) Bestimme alle reellen Polynome f mitx f(x+ 1) = (x— 1) f(x) fiir alle x € R.
(b) Bestimme alle reellen Polynome f mit x f(x — 1) = (x — 1) f(x) fiir allex € R.



