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3. Erste Eigenschaften der reellen Zahlen

In Notation 1.14 haben wir bereits die reellen Zahlen R als „Menge der Punkte auf einer Geraden“
eingeführt. Man kann aber natürlich noch viel mehr Dinge mit den reellen Zahlen tun als sie als
eine einfache Punktmenge zu betrachten: Man kann sie addieren, multiplizieren, die Größe von zwei
Zahlen miteinander vergleichen, und noch einiges mehr. Wir wollen die Eigenschaften der reellen
Zahlen in diesem und dem nächsten Kapitel exakt formalisieren, damit wir danach genau wissen,
welche Eigenschaften von R wir in dieser Vorlesung axiomatisch voraussetzen. In der Tat werden
diese Eigenschaften letztlich sogar ausreichen, um die reellen Zahlen eindeutig zu charakterisieren.
Wir beginnen in diesem Kapitel aber zunächst einmal nur mit den „Grundrechenarten“, also mit der
Addition und der Multiplikation sowie ihren Umkehrungen, der Subtraktion und Division.

3.A Gruppen und Körper

Die Eigenschaften von Verknüpfungen wie der Addition oder Multiplikation reeller Zahlen werden
mathematisch durch die Begriffe einer Gruppe bzw. eines Körpers beschrieben, die wir jetzt einfüh-
ren wollen.

Definition 3.1 (Gruppen). Eine Gruppe ist eine Menge G zusammen mit einer „Verknüpfung“, d. h.
einer Abbildung

∗ : G×G→ G, (x,y) 7→ x∗ y,
so dass die folgenden Eigenschaften (auch Gruppenaxiome genannt) gelten:

(a) (Assoziativität) Für alle x,y,z ∈G gilt (x∗y)∗ z = x∗ (y∗ z). Man schreibt diesen Ausdruck
dann in der Regel auch einfach als x∗y∗ z, weil die Reihenfolge der Klammerung ja egal ist.

(b) (Existenz eines neutralen Elements) Es gibt ein e ∈ G, für das e∗ x = x∗ e = x für alle x ∈ G
gilt. Man nennt ein solches e ein neutrales Element, und verlangt davon zusätzlich:

(c) (Existenz von inversen Elementen) Für alle x ∈ G gibt es ein x′ ∈ G mit x′ ∗ x = x ∗ x′ = e.
Man nennt x′ dann ein inverses Element zu x.

Wir bezeichnen eine solche Gruppe mit (G,∗). Wenn aus dem Zusammenhang klar ist, welche Ver-
knüpfung gemeint ist, schreiben wir oft auch einfach nur G für die Gruppe.

Gilt zusätzlich zu den obigen Eigenschaften noch

(d) (Kommutativität) x∗ y = y∗ x für alle x,y ∈ G,

so heißt (G,∗) eine kommutative oder abelsche Gruppe.

Bemerkung 3.2. Manchmal wird in der Definition einer Gruppe in Teil (b) lediglich e ∗ x = x und
in Teil (c) lediglich x′ ∗ x = e gefordert (man spricht dann auch von einem linksneutralen bzw.
linksinversen Element). Man kann jedoch unter Verwendung der übrigen Gruppenaxiome zeigen,
dass in diesem Fall automatisch auch x ∗ e = x und x ∗ x′ = e gelten muss, also dass linksneutrale
Elemente bereits immer neutrale und linksinverse Elemente immer inverse Elemente sind [G, Satz
1.7]. Die beiden Varianten der Definition einer Gruppe stimmen also letztlich überein.

Beispiel 3.3.
(a) (R,+) ist eine abelsche Gruppe, denn die Addition ist (wie wir axiomatisch voraussetzen

werden) eine Verknüpfung auf R mit den Eigenschaften:

• (x+ y)+ z = x+(y+ z) für alle x,y,z ∈ R;

• 0 ∈ R ist ein neutrales Element, denn 0+ x = x+0 = x für alle x ∈ R;

• zu jedem x ∈ R ist −x ∈ R ein inverses Element, denn (−x)+ x = x+(−x) = 0;
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• x+ y = y+ x für alle x,y ∈ R.

Auf die gleiche Art sind auch (Q,+) und (Z,+) abelsche Gruppen, jedoch nicht (N,+):
Hier existiert zwar noch ein neutrales Element 0, aber die Zahl 1∈N hat kein Inverses mehr,
denn es gibt kein x ∈ N mit x+1 = 0.

(b) (R, ·) ist keine Gruppe: Die Multiplikation ist zwar assoziativ und kommutativ und hat das
neutrale Element 1, aber die Zahl 0 hat kein Inverses – denn dies müsste ja eine Zahl x ∈ R
sein mit x ·0 = 1.

Nimmt man jedoch die 0 aus R heraus, so erhält man mit (R\{0}, ·) wieder eine abelsche
Gruppe, bei der das neutrale Element 1 und das zu einem x inverse Element 1

x ist. Genauso
funktioniert dies für (Q\{0}, ·), aber z. B. nicht für (Z\{0}, ·): Hier gibt es zwar noch ein
neutrales Element 1, aber die Zahl 2 ∈ Z\{0} hat kein Inverses mehr, denn es gibt kein
x ∈ Z\{0} mit 2 · x = 1.

(c) Hier ist noch ein Beispiel von einem ganz anderen Typ: Es sei M eine beliebige Menge und

G = { f : f ist eine bijektive Abbildung von M nach M}.
Da die Verkettung bijektiver Abbildungen nach Aufgabe 2.25 wieder bijektiv ist, definiert
sie eine Verknüpfung auf G. In der Tat wird G damit zu einer Gruppe, denn die Verkettung
ist assoziativ nach Lemma 2.19, die Identität idM ist ein neutrales Element, und zu einem
f ∈ G ist die Umkehrabbildung f−1 aus Definition 2.20 ein inverses Element: Sie ist nach
Aufgabe 2.25 selbst wieder bijektiv (also in G) und erfüllt f−1 ◦ f = f ◦ f−1 = idM nach
Bemerkung 2.21. Im Allgemeinen ist diese Gruppe jedoch nicht kommutativ.

Wir wollen nun ein paar einfache Eigenschaften von Gruppen beweisen, u. a. dass die in Definition
3.1 geforderten neutralen und inversen Elemente eindeutig sind und wir daher in Zukunft auch von
dem neutralen und dem zu einem gegebenen Element inversen Element sprechen können.

Lemma 3.4 (Eigenschaften von Gruppen). Es seien (G,∗) eine Gruppe und x,y ∈ G.

(a) Es gibt genau ein neutrales Element (wie in Definition 3.1 (b)).

(b) Es gibt genau ein inverses Element zu x (wie in Definition 3.1 (c)).

(c) Sind x′ und y′ die inversen Elemente zu x bzw. y, so ist y′ ∗ x′ das inverse Element zu x∗ y.

(d) Ist x′ das inverse Element zu x, so ist x das inverse Element zu x′ („das Inverse des Inversen
ist wieder das Ausgangselement“).

Beweis.

(a) Sind e und ẽ neutrale Elemente, so folgt

e = ẽ∗ e (denn ẽ ist ein neutrales Element)
= ẽ (denn e ist ein neutrales Element).

(b) Sind x′ und x̃′ inverse Elemente zu x, so gilt

x′ = e∗ x′ (e neutrales Element)

= (x̃′ ∗ x)∗ x′ (x̃′ ist ein inverses Element zu x)

= x̃′ ∗ (x∗ x′) (Assoziativität)

= x̃′ ∗ e (x′ ist ein inverses Element zu x)

= x̃′ (e neutrales Element).

(c) Es gilt

(y′ ∗ x′)∗ (x∗ y) = y′ ∗ (x′ ∗ x)∗ y = y′ ∗ e∗ y = y′ ∗ y = e

und analog auch (x∗ y)∗ (y′ ∗ x′) = e. Damit ist y′ ∗ x′ das inverse Element zu x∗ y.

(d) Die Gleichung x′ ∗ x = x∗ x′ = e besagt direkt, dass x das inverse Element zu x′ ist. □
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Wie wir in Beispiel 3.3 (a) und (b) gesehen haben, erlauben die reellen Zahlen zwei grundle-
gende Gruppenstrukturen: die Addition und (nach Herausnahme der 0) die Multiplikation. Diese
beiden Strukturen sind jedoch nicht unabhängig voneinander, da sie durch das Distributivgesetz
(x+y) ·z = xz+yz für alle x,y,z ∈R miteinander verbunden sind. Eine derartige Kombination zwei-
er Gruppenstrukturen bezeichnet man als einen Körper.

Definition 3.5 (Körper). Ein Körper ist eine Menge K zusammen mit zwei Verknüpfungen

+ : K×K→ K (genannt Addition) und · : K×K→ K (genannt Multiplikation),

so dass die folgenden Eigenschaften (auch Körperaxiome genannt) gelten:

(a) (K,+) ist eine abelsche Gruppe. Wir bezeichnen ihr neutrales Element mit 0 und das zu
einem x ∈ K inverse Element mit −x.

(b) (K\{0}, ·) ist ebenfalls eine abelsche Gruppe. Wir bezeichnen ihr neutrales Element mit 1
und das zu einem x ∈ K\{0} inverse Element mit x−1.

(c) (Distributivität) Für alle x,y,z ∈ K gilt (x+ y) · z = (x · z)+(y · z).

Mit dieser Definition wollen wir nun also axiomatisch voraussetzen:

R ist ein Körper.

Um Verwirrungen zu vermeiden, werden wir die beiden Verknüpfungen in einem Körper immer mit
den Symbolen „+“ und „ ·“ bezeichnen. Ebenso werden wir (wie ihr es natürlich gewohnt seid) ver-
einbaren, dass man den Punkt bei der Multiplikation auch weglassen darf und bei ungeklammerten
Ausdrücken zuerst die Multiplikationen und dann die Additionen ausgeführt werden, so dass man
also z. B. die Distributivität aus Definition 3.5 (c) auch als (x+ y)z = xz+ yz schreiben kann.

Es ist jedoch wichtig zu verstehen, dass wir ab jetzt nicht mehr voraussetzen werden, dass Addition
und Multiplikation in einem Körper wie z. B. R genau die Verknüpfungen sind, „an die man als
Erstes denken würde“ – was auch immer das heißen mag. Stattdessen sind es einfach irgendwelche
zwei Verknüpfungen, die die Eigenschaften aus Definition 3.5 haben. Unsere zukünftigen Beweise
über Körper wie z. B. R müssen wir also ausschließlich auf diesen Eigenschaften aufbauen.

Dieser axiomatische Zugang hat zwei Vorteile:

• Zum einen wissen wir dadurch genau, welche Eigenschaften der Grundrechenarten auf den
reellen Zahlen wir eigentlich voraussetzen. Es sollte schließlich klar sein, dass wir eine ex-
akte Mathematik nicht auf einer anschaulichen Vorstellung von R aufbauen können. Solltet
ihr euch also z. B. später einmal dafür interessieren, wie man die Existenz der reellen Zah-
len beweisen kann, so wüsstet ihr dann genau, was eigentlich zu beweisen ist: nämlich die
Existenz einer Menge mit genau den Eigenschaften, die wir jetzt axiomatisch voraussetzen.

• Zum anderen werdet ihr im Laufe eures Studiums noch viele weitere Körper kennenlernen,
z. B. in Kapitel 6 den sehr wichtigen Körper der komplexen Zahlen. Alle Resultate, die nur
auf den Körperaxiomen aufbauen, übertragen sich dann also sofort auf diese neuen Fälle,
ohne dass man sich darüber noch einmal neu Gedanken machen muss.

Beispiel 3.6.
(a) Neben R ist auch Q (mit den gleichen Verknüpfungen wie auf R) ein Körper. Die ganzen

Zahlen Z bilden mit diesen Verknüpfungen jedoch keinen Körper, da (Z\{0}, ·) nach Bei-
spiel 3.3 (b) keine Gruppe ist. Ebenso ist N mit diesen Verknüpfungen kein Körper, da hier
nach Beispiel 3.3 (a) bereits die Addition keine Gruppenstruktur liefert.

(b) Hier ist ein Beispiel für einen Körper, der sich ganz anders verhält als R und Q: Wir definie-
ren auf der Menge K = {g,u} zwei Verknüpfungen durch die folgenden Tabellen.

+ g u
g g u
u u g

und
· g u
g g g
u g u
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Dabei sind g und u einfach nur Namen für die beiden Elemente von K, die für „gerade“ und
„ungerade“ stehen sollen und damit auch die Verknüpfungstafeln erklären: Wir haben z. B.
g+u als u definiert, weil die Addition einer geraden und einer ungeraden Zahl eine ungerade
Zahl ergibt.

Man kann zeigen, dass K mit diesen beiden Verknüpfungen einen Körper bildet. Er wird
in der Literatur mit Z2 bezeichnet, da seine Elemente die Reste ganzer Zahlen bei Division
durch 2 beschreiben. Um zu beweisen, dass Z2 ein Körper ist, könnte man z. B. einfach die
geforderten Eigenschaften für alle Elemente – es gibt ja nur zwei – explizit nachprüfen. In
der Vorlesung „Algebraische Strukturen“ zeigt man allerdings, dass man die Körperaxiome
hier auch viel eleganter direkt aus den Eigenschaften von Z folgern kann [G, Satz 7.10]. Wir
wollen uns hier damit begnügen, die neutralen und inversen Elemente anzugeben:

• Das additive neutrale Element ist g, wie man leicht aus der Tabelle abliest. Im Sinne
der Notationen von Definition 3.5 ist also 0 = g. Wegen g+ g = u+ u = g = 0 sind
die additiven inversen Elemente −g = g und −u = u. Dies stimmt natürlich auch mit
der Interpretation als gerade und ungerade Zahlen überein, da das Negative von einer
geraden bzw. ungeraden Zahl ebenfalls wieder gerade bzw. ungerade ist.

• Das multiplikative neutrale Element in Z2\{0} ist u – in der Tat ist es ja auch das
einzige Element in Z2\{0}. Gemäß der Notation von Definition 3.5 ist also 1 = u.

Beachte, dass in diesem Körper Z2 die Gleichung 1+ 1 = u+ u = g = 0 gilt. Die Körper-
axiome lassen es also zu, dass man bei fortgesetzter Addition der 1 irgendwann wieder zur 0
zurück kommt. Wir werden in dieser Vorlesung nicht viel mit dem Körper Z2 zu tun haben –
wir haben ihn hier nur als Beispiel dafür angegeben, dass die Körperaxiome noch weit davon
entfernt sind, die rationalen oder reellen Zahlen eindeutig zu charakterisieren.

Anschaulich kann man die Körperaxiome so interpretieren, dass ein Körper eine Menge ist, auf der
„die vier Grundrechenarten existieren und die erwarteten Eigenschaften haben“. Wir wollen nun
noch ein paar weitere dieser erwarteten Eigenschaften zeigen, die bereits aus den Körperaxiomen
folgen und die wir dann beim Rechnen z. B. in R natürlich ständig benutzen werden.

Bemerkung 3.7. Es seien K ein Körper und x,y ∈ K.

(a) Wenden wir Lemma 3.4 (c) und (d) auf die (kommutative) Addition und Multiplikation an,
so sehen wir sofort, dass

−(x+ y) = (−x)+(−y) und − (−x) = x

sowie für x,y ̸= 0

(xy)−1 = x−1 · y−1 und (x−1)−1 = x.

(b) Etwas versteckt in Definition 3.5 steht in Teil (b) u. a. die Aussage, dass die Multiplikation
überhaupt eine Verknüpfung auf K\{0} ist, also dass für x,y ∈ K\{0} auch xy ∈ K\{0} gilt.
Äquivalent dazu bedeutet das:

Ist xy = 0, so gilt x = 0 oder y = 0.

Lemma 3.8 (Eigenschaften von Körpern). In jedem Körper K gilt für alle x,y ∈ K:

(a) 0 · x = 0.

(b) x · (−y) =−(xy).

(c) Für x ̸= 0 ist −(x−1) = (−x)−1.

Beweis.

(a) Es gilt

0 · x = (0+0) · x (0 ist additives neutrales Element)
= 0 · x+0 · x, (Distributivität)
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woraus durch Addition des additiven Inversen von 0 · x auf beiden Seiten die gewünschte
Gleichung 0 = 0 · x folgt.

(b) Es ist

x · (−y)+ xy = x · (−y+ y) (Distributivität)
= x ·0 (−y ist additives Inverses zu y)
= 0 (nach (a)),

daher ist x · (−y) das additive Inverse zu xy, d. h. es gilt x · (−y) =−(xy).

(c) Doppeltes Anwenden von (b), einmal für den linken und einmal für den rechten Faktor,
ergibt

(−(x−1)) · (−x) =−(x−1 · (−x)) =−(−(x−1 · x)) =−(−1)
3.7 (a)
= 1.

Also ist −(x−1) das multiplikative Inverse zu −x, d. h. es ist −(x−1) = (−x)−1. □

Notation 3.9. In einem Körper K verwendet man üblicherweise die folgenden Notationen, von
denen euch die meisten sicher bekannt sein werden:

(a) Für x,y ∈ K setzt man x− y := x+(−y). Ist y ̸= 0, so setzt man x
y := x · y−1.

(b) Für x ∈ K und n ∈ N definiert man die n-te Potenz von x als

xn := x · · · · · x︸ ︷︷ ︸
n-mal

,

wobei dieser Ausdruck für n = 0 als x0 := 1 zu verstehen ist. Insbesondere legen wir also
auch 00 := 1 fest. Beachte, dass aus dieser Definition (und der Kommutativität der Multipli-
kation) unmittelbar die Potenzrechenregeln

xm · xn = xm+n und (xy)n = xn · yn

für alle x,y ∈ K folgen. Ist x ̸= 0, so definiert man zusätzlich Potenzen mit negativen ganz-
zahligen Exponenten durch x−n := (x−1)n.

Beachte, dass auch in einem beliebigen Körper K die Exponenten einer Potenz stets ganze
Zahlen sind und keine Elemente aus K. Eine Potenz xy für x,y∈K lässt sich im Allgemeinen
nicht definieren (auch wenn dies für K =R in vielen Fällen möglich ist, siehe Definition 9.7).

(c) Manchmal möchte man mehrere Elemente xm,xm+1,xm+2, . . . ,xn in einem Körper (oder all-
gemeiner in einer additiv geschriebenen abelschen Gruppe) aufsummieren, die durch eine
ganzzahlige Laufvariable indiziert werden, die von einem m ∈ Z bis zu einem n ∈ Z (mit
n≥ m) läuft. Man schreibt dies dann als

n

∑
i=m

xi := xm + xm+1 + xm+2 + · · ·+ xn

(also mit einem großen griechischen Sigma, das an das Wort „Summe“ erinnern soll). So
steht z. B.

n

∑
i=1

i2 = 12 +22 +32 + · · ·+n2 (∗)

für die Summe aller Quadratzahlen bis n2. Natürlich ist der Name der Laufvariablen dabei
egal, und der Ausdruck (∗) hängt nicht von einem i ab (wie man auf der rechten Seite ja auch
sieht). Außerdem kann man die Laufvariable verschieben, ohne den eigentlichen Ausdruck
zu ändern: Setzt man z. B. i = j+1, also j = i−1, in der obigen Summe (∗), so läuft j dort
von 0 bis n−1, wenn i von 1 bis n läuft, und wir können dieselbe Summe auch schreiben als

n−1

∑
j=0

( j+1)2 = 12 +22 +32 + · · ·+n2.
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Natürlich kann man diesen Ausdruck nun auch wieder genauso gut mit dem Buchstaben i
statt j als ∑

n−1
i=0 (i+ 1)2 schreiben, oder den Index um mehr als 1 in die eine oder andere

Richtung verschieben. Also:

Der Wert einer Summe ändert sich nicht, wenn man zur Laufvariablen im zu summie-
renden Ausdruck eine Konstante addiert, und dafür von der Ober- und Untergrenze
der Summe diese Konstante abzieht.

Wir sagen in diesem Fall, dass die neue Darstellung der Summe durch eine Indexverschie-
bung (im Beispiel oben i 7→ i+1) aus der alten hervorgeht.04

Analog schreibt man
n

∏
i=m

xi := xm · xm+1 · xm+2 · · · · · xn

(mit einem großen griechischen Pi für das Produkt), wenn man die Körperelemente mul-
tiplizieren statt addieren möchte. Ist schließlich die Obergrenze einer Summe oder eines
Produkts kleiner als die Untergrenze (man spricht dann von der leeren Summe bzw. dem
leeren Produkt), so definiert man dies als

n

∑
i=m

xi := 0 und
n

∏
i=m

xi := 1 für n < m,

also als das additive bzw. multiplikative neutrale Element.

(d) Ist n eine natürliche Zahl, so fasst man diese oft auch als das Element
n

∑
i=1

1 = 1+ · · ·+1︸ ︷︷ ︸
n-mal

von K auf. Im Fall K = R ist dies dann einfach die natürliche Zahl n ∈ N ⊂ R und liefert
somit keine neue Notation, aber z. B. in K = Z2 aus Beispiel 3.6 (b) ist 2 = 1+1 = 0.

Aufgabe 3.10. Zeige, dass in jedem Körper K die üblichen Rechenregeln
x
y
+

z
w

=
xw+ yz

yw
und

x
y
· z

w
=

xz
yw

für Brüche gelten, wobei x,y,z,w ∈ K mit y,w ̸= 0.

Aufgabe 3.11. Es sei a ∈ R fest gegeben. Wir definieren auf R2 eine „Addition“ und „Multiplika-
tion“ durch

(x1,x2)+(y1,y2) := (x1 + y1,x2 + y2) und (x1,x2) · (y1,y2) := (x1y1 +ax2y2,x1y2 + x2y1).

Man prüft leicht durch explizite Rechnung nach, dass R2 mit dieser Addition eine kommutative
Gruppe mit neutralem Element (0,0) ist, dass auch die Multiplikation kommutativ ist, und dass
diese beiden Operationen das Distributivgesetz erfüllen – ihr solltet euch kurz überlegen, warum das
so ist, braucht das aber nicht aufzuschreiben. Man zeige stattdessen:

(a) Die Multiplikation ist assoziativ und besitzt ein neutrales Element.

(b) Im Fall a =−1 ist (R2,+, ·) ein Körper, im Fall a = 1 jedoch nicht.

(Für a =−1 ist (R2,+, ·) der sogenannte Körper der komplexen Zahlen, den wir in Kapitel
6 noch genau untersuchen werden.)

Aufgabe 3.12. Zu einem Körper K und einer Menge D mit |D| ≥ 2 sei

V = { f : f ist eine Abbildung von D nach K}
die Menge aller reellwertigen Funktionen auf D. Für f ,g ∈V definieren wir die Addition f +g und
Multiplikation f ·g dieser Funktionen punktweise durch

f +g : D→ K, x 7→ f (x)+g(x) und f ·g : D→ K, x 7→ f (x) ·g(x).
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(a) Zeige, dass V mit dieser Addition eine abelsche Gruppe ist.
(b) Ist V mit dieser Addition und Multiplikation ein Körper?

3.B Vollständige Induktion

Häufig möchte man in der Mathematik Aussagen beweisen, die von einer natürlichen Zahl abhän-
gen – z. B. bei Formeln, die Summen oder Produkte wie in Notation 3.9 mit variablen Unter- oder
Obergrenzen beinhalten. Die einfachste und bekannteste solcher Aussagen ist vermutlich die folgen-
de Formel für die Summe aller natürlichen Zahlen bis zu einer gegebenen Obergrenze.

Satz 3.13 (Summenformel von Gauß). Für alle n ∈ N gilt
n

∑
k=1

k =
n(n+1)

2
.

Beispiel 3.14. Für n = 5 ist z. B.
5

∑
k=1

k = 1+2+3+4+5 = 15 =
5 ·6

2
.

Um derartige Aussagen zu beweisen, ist oft das Beweisverfahren der (vollständigen) Induktion
nützlich, das wir jetzt einführen wollen.
Angenommen, wir wollen (wie z. B. in Satz 3.13) eine Aussage A(n) für alle n ∈ N beweisen. Dann
können wir dies tun, indem wir die folgenden beiden Dinge zeigen:

(a) (Induktionsanfang) Die Aussage A(0) ist wahr.
(b) (Induktionsschritt) Für alle n ∈ N gilt A(n)⇒ A(n+ 1), d. h. wenn die Aussage A(n) für

ein gegebenes n ∈ N gilt (die „Induktionsannahme“ bzw. „Induktionsvoraussetzung“), dann
gilt auch die Aussage A(n+1) (der „Induktionsschluss“).

Haben wir diese beiden Dinge gezeigt, so folgt daraus nämlich die Gültigkeit von A(n) für alle n∈N:
Die Aussage A(0) haben wir mit dem Induktionsanfang gezeigt, und durch fortgesetztes Anwenden
des Induktionsschritts A(n)⇒ A(n+1) für n = 0,1,2, . . . erhalten wir dann auch

A(0)⇒ A(1)⇒ A(2)⇒ A(3)⇒ ·· · ,
also die Gültigkeit von A(n) für alle n ∈ N= {0,1,2,3, . . .}.
Derartige Induktionsbeweise sind immer dann sinnvoll, wenn die Aussagen A(n) und A(n+1) „ähn-
lich genug“ sind, so dass es beim Beweis von A(n+ 1) hilft, die Gültigkeit von A(n) voraussetzen
zu dürfen.
Mit diesem Verfahren können wir nun die Summenformel aus Satz 3.13 beweisen:

Beweis von Satz 3.13. Wir zeigen die Formel mit Induktion über n.
Induktionsanfang (n = 0): Für n = 0 stimmen die beiden Seiten der zu zeigenden Gleichung überein,
denn es ist

0

∑
k=1

k = 0 =
0 · (0+1)

2
.

Induktionsschritt (n→ n+1): Als Induktionsvoraussetzung nehmen wir an, dass die zu beweisende
Formel für ein gegebenes n ∈ N richtig ist, d. h. dass

n

∑
k=1

k =
n(n+1)

2

gilt. (Beachte, dass wir diese Gleichung nicht für alle n ∈ N voraussetzen – dies wäre ja schon die
gesamte zu zeigende Aussage!) Wir müssen zeigen, dass die entsprechende Gleichung dann auch
für n+1 gilt, also dass

n+1

∑
k=1

k =
(n+1)(n+2)

2
.
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Dies ergibt sich nun leicht aus der folgenden Rechnung:
n+1

∑
k=1

k =
n

∑
k=1

k+(n+1) (Abspalten des letzten Summanden für k = n+1)

=
n(n+1)

2
+(n+1) (nach Induktionsvoraussetzung)

= (n+1) ·
(n

2
+1
)

=
(n+1)(n+2)

2
.

Damit ist der Satz mit vollständiger Induktion bewiesen. □

Bemerkung 3.15. Offensichtlich erlaubt das Beweisverfahren der vollständigen Induktion die fol-
genden Abwandlungen:

(a) Im Induktionsschritt kann man, wenn es hilfreich ist, beim Beweis der Aussage A(n+ 1)
nicht nur die direkt vorangegangene Aussage A(n), sondern alle bereits gezeigten Aussagen
A(0),A(1), . . . ,A(n) voraussetzen.

(b) Möchte man die Aussage A(n) nicht für alle n∈N, sondern für alle n∈Z ab einem gewissen
Startwert n0 ∈ Z zeigen, so kann man als Induktionsanfang die Aussage A(n0) zeigen, und
im Induktionsschritt dann die Folgerung A(n)⇒ A(n+1) für alle n≥ n0.

Aufgabe 3.16. Zeige für alle n ∈ N:

(a)
n

∑
k=1

1
k(k+1)

=
n

n+1
, (b)

n

∏
k=1

(
1+

1
n+ k

)
= 2− 1

n+1
.

Aufgabe 3.17. Zeige mit vollständiger Induktion: Ist a ∈R\{0}mit a+ 1
a ∈ Z, so gilt für alle n ∈N

auch an + 1
an ∈ Z.

3.C Polynomfunktionen

Als erste Anwendung der Körpereigenschaften wollen wir zum Abschluss dieses Kapitels die euch
sicher schon aus der Schule bekannten Polynomfunktionen behandeln – also die Funktionen, die
sich aus den grundlegenden Körperoperationen Addition und Multiplikation bilden lassen.

Definition 3.18 (Polynomfunktionen und Nullstellen). Es seien D eine Teilmenge eines Körpers K
und f : D→ K eine Funktion.

(a) Ist f von der Form

f (x) =
n

∑
k=0

akxk = anxn + · · ·+a1x+a0 für alle x ∈ D

mit gewissen a0, . . . ,an ∈ K, so sagt man, dass f eine Polynomfunktion mit Koeffizienten
a0, . . . ,an ist. Ist n dabei so gewählt, dass der erste Koeffizient an ungleich Null ist, so heißt
f eine Polynomfunktion vom Grad n und mit Leitkoeffizient an. Ist der Leitkoeffizient 1,
so heißt f eine normierte Polynomfunktion.

Sind in der obigen Darstellung alle Koeffizienten a0, . . . ,an gleich 0 (und ist f damit die
Nullfunktion), so nennen wir f formal eine Polynomfunktion vom Grad −∞. In diesem Fall
hat f keinen Leitkoeffizienten.

(b) Ist x0 ∈ D mit f (x0) = 0, so nennt man x0 eine Nullstelle von f .

Das Besondere an Nullstellen von Polynomfunktionen ist, dass man sie wie im folgenden Satz als
Linearfaktoren abspalten kann.

Satz 3.19 (Abspalten von Nullstellen in Polynomfunktionen). Es seien K ein Körper, D ⊂ K und
f : D→ K eine Polynomfunktion vom Grad n ∈ N.
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(a) Ist x0 ∈ D eine Nullstelle von f , so gibt es eine Polynomfunktion g : D→ K vom Grad n−1
mit f (x) = (x−x0)g(x) für alle x ∈D (d. h. man kann „den Linearfaktor x−x0 abspalten“).

(b) Die Funktion f hat höchstens n Nullstellen.

Beweis. Wir zeigen die beiden Aussagen mit Induktion über n. Der Beweis von (a) ist dabei kon-
struktiv, d. h. er gibt auch ein Verfahren an, wie g berechnet werden kann (siehe Beispiel 3.20).

Der Induktionsanfang für n = 0 ist trivial, denn f ist dann eine Konstante ungleich 0 und hat somit
keine Nullstellen. Für den Induktionsschluss nehmen wir an, dass die Aussagen des Satzes bis zu
einem gegebenen n gelten, und betrachten f : D→K, x 7→ an+1xn+1+ · · ·+a1x+a0 vom Grad n+1,
also mit an+1 ̸= 0.

(a) Wir definieren eine Polynomfunktion f̃ : D→ K durch

f̃ (x) := f (x)−an+1xn(x− x0)

= an+1x0xn +anxn +an−1xn−1 + · · ·+a1x+a0

für alle x. Ist f̃ die Nullfunktion, so sind wir fertig, da dann ja f (x) = an+1xn(x−x0) für alle
x∈D gilt. Andernfalls ist f̃ nach Konstruktion eine Polynomfunktion vom Grad höchstens n
(der xn+1-Term hebt sich ja gerade heraus), die immer noch die Nullstelle x0 hat. Nach Induk-
tionsvoraussetzung gibt es dann also eine Polynomfunktion g̃ : D→ K vom Grad höchstens
n−1 mit f̃ (x) = (x− x0) g̃(x) für alle x ∈ D, und somit ist

f (x) = an+1xn(x− x0)+ f̃ (x) = (x− x0) · (an+1xn + g̃(x)︸ ︷︷ ︸
=:g(x)

)

für alle x ∈ D, wobei g offensichtlich vom Grad n ist.

(b) Hat f keine Nullstelle, so sind wir fertig. Andernfalls wählen wir eine Nullstelle x0 von f
und schreiben f (x) = (x−x0)g(x) für alle x∈D wie in (a) mit einer Polynomfunktion g vom
Grad n. Nach Induktionsvoraussetzung hat g höchstens n Nullstellen, und nach Bemerkung
3.7 (b) sind die Nullstellen von f genau x0 zusammen mit den Nullstellen von g. Also hat f
höchstens n+1 Nullstellen. Damit ist die Behauptung mit Induktion bewiesen. □

Beispiel 3.20 (Polynomdivision). Das Verfahren aus dem Beweis von Satz 3.19 (a) wird als Poly-
nomdivision [G, Satz 10.19] bezeichnet: Man subtrahiert fortlaufend geeignete Vielfache von x−x0
von f , so dass sich der jeweils höchste Term von f weghebt, und sammelt die dabei verwendeten
Faktoren in g. Das folgende Schema, das genauso aussieht wie eine normale schriftliche Division,
verdeutlicht dieses Verfahren am Beispiel der Funktion f : R→ R, x 7→ x2 + 3x− 4 mit Nullstelle
x0 = 1, die wir als f (x) = (x− 1)g(x) für alle x ∈ R schreiben wollen. Das Ergebnis ist in diesem
Fall g : R→ R, x 7→ x+4.

+3x− 4

− 4
− 4

−
4x

0

(x2 x)

(4x−

−

)

)(x2 : (x−1) 4+x=

f̃ (x)

f (x)

·4

·x

g(x)

Bemerkung 3.21. Satz 3.19 liefert uns zwar die neue Funktion nach dem Abspalten des Linearfak-
tors, er sagt uns hingegen nicht, wie wir überhaupt erst einmal eine Nullstelle von f finden können,
oder ob es überhaupt Nullstellen gibt (die reelle Polynomfunktion f (x) = x2 + 1 hat ja z. B. keine
Nullstellen). In der Tat gibt es im Allgemeinen kein Verfahren, wie man Nullstellen von Polynom-
funktionen exakt berechnen kann! Genauer gesagt gilt:

• Für Polynomfunktionen vom Grad höchstens 4 gibt es explizite Verfahren zur exakten Be-
stimmung der Nullstellen (für Grad 1 ist das klar, für Grad 2 gibt es die bekannte „p-q-
Formel“ bzw. die quadratische Ergänzung, und für Grad 3 bzw. 4 sind die Formeln so lang,
dass man im Allgemeinen nicht mehr mit ihnen arbeiten möchte).
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• Für Polynomfunktionen vom Grad größer als 4 kann man beweisen(!), dass es keine derar-
tigen Verfahren zur exakten Bestimmung der Nullstellen geben kann (das beweist man z. B.
in der Vorlesung „Einführung in die Algebra“, die ihr im nächsten Studienjahr hören könnt).
Aber:

• Für reelle Polynomfunktionen beliebigen Grades gibt es zumindest numerische Verfahren,
die die Nullstellen (mit beliebiger Genauigkeit) näherungsweise bestimmen können.

Zum Schluss wollen wir nun noch zwei wichtige Konzepte für Polynomfunktionen untersuchen, die
ihr beide im reellen Fall vielleicht schon aus der Schule kennt: den sogenannten Koeffizientenver-
gleich (also dass eine Polynomfunktion eindeutig ihre Koeffizienten bestimmt) und die Vielfachheit
von Nullstellen. Es stellt sich jedoch heraus, dass man hierfür im allgemeinen Fall die Voraussetzung
benötigt, dass die Definitionsmenge der betrachteten Funktionen unendlich viele Elemente besitzt.

Lemma 3.22 (Koeffizientenvergleich). Es seien K ein Körper, D⊂ K mit |D|= ∞, und f : D→ K
eine Polynomfunktion mit zwei Darstellungen

f (x) = anxn + · · ·+a1x+a0 = bnxn + · · ·+b1x+b0 für alle x ∈ D

für gewisse a0, . . . ,an,b0, . . . ,bn ∈ K. (Beachte, dass wir dabei in beiden Darstellungen den gleichen
höchsten Exponenten n wählen können, da wir nicht an ̸= 0 und bn ̸= 0 vorausgesetzt haben.)

Dann gilt bereits ai = bi für alle i = 0, . . . ,n. Es ist also nicht möglich, „eine Polynomfunktion auf
zwei verschiedene Arten hinzuschreiben“.

Beweis. Nach Voraussetzung ist die Polynomfunktion

D→ K, x 7→ (an−bn)xn + · · ·+(a1−b1)x+(a0−b0) = f (x)− f (x) = 0

die Nullfunktion auf D. Da sie damit wegen |D| = ∞ unendlich viele Nullstellen besitzt, muss sie
nach Satz 3.19 (b) vom Grad −∞ sein. Also sind alle Koeffizienten dieser Polynomfunktion gleich
0, d. h. es ist ai = bi für alle i = 0, . . . ,n. □

Bemerkung und Notation 3.23 (Polynome). Die Voraussetzung |D|=∞ in Lemma 3.22 ist wirklich
notwendig: So sind für D = K =Z2 wie in Beispiel 3.6 (b) z. B. x 7→ x und x 7→ x2 dieselbe Funktion,
da sie beide 0 auf 0 und 1 auf 1 abbilden und in Z2 keine weiteren Elemente existieren.

In der Literatur bezeichnet man einen formalen Ausdruck der Form anxn + · · ·+ a1x + a0 mit
a0, . . . ,an ∈ K als ein Polynom über K [G, Kapitel 9]. Jedes solche Polynom bestimmt natürlich
eine Polynomfunktion von jeder Teilmenge D von K nach K, allerdings können verschiedene Poly-
nome wie im eben angegebenen Beispiel durchaus dieselbe Polynomfunktion definieren: Über Z2
sind x und x2 verschiedene Polynome, sie bestimmen aber dieselbe Polynomfunktion.

Mit dieser Notation ist die Aussage von Lemma 3.22 also, dass Polynome und Polynomfunktionen
im Fall von unendlichen Definitionsmengen dasselbe sind. Da wir Polynomfunktionen im Folgenden
in der Regel nur in diesem Fall unendlicher Definitionsmengen benötigen, werden wir die Begriffe
Polynom und Polynomfunktion oft synonym verwenden. Wegen der Eindeutigkeit der Koeffizienten
sind dann auch der Grad (und der Leitkoeffizient) einer Polynomfunktion f wie in Definition 3.18 (a)
eindeutig bestimmt. Wir können daher eine Bezeichnung dafür einführen:

Definition 3.24 (Grad eines Polynoms). Wir bezeichnen den Grad einer Polynomfunktion f (mit
unendlicher Definitionsmenge) mit deg f ∈ N∪{−∞} (vom englischen Wort „degree“).

In den Fällen deg f = 1 bzw. deg f = 2 nennt man f ein lineares bzw. quadratisches Polynom.

Satz und Definition 3.25 (Vielfachheit von Nullstellen). Es seien K ein Körper, D⊂ K mit |D|= ∞

und f : D→ K eine Polynomfunktion, die nicht die Nullfunktion ist. Dann lässt sich f (bis auf die
Reihenfolge der Faktoren) eindeutig als

f (x) = g(x) · (x− x1)
a1 · · · · · (x− xk)

ak für alle x ∈ D

schreiben, wobei x1, . . . ,xk ∈ D die verschiedenen Nullstellen von f sind, a1, . . . ,ak ∈ N>0 gilt, und
g ein Polynom ohne Nullstellen in D ist. In dieser Darstellung nennt man ai für i = 1, . . . ,k die
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Vielfachheit der Nullstelle xi von f (in der Literatur sind auch die Bezeichnungen Ordnung und
Multiplizität der Nullstelle üblich).

Beweis. Die Existenz einer solchen Darstellung ergibt sich sofort durch fortgesetztes Abspalten von
Nullstellen gemäß Satz 3.19 (a). Wir zeigen nun die Eindeutigkeit mit Induktion über den Grad
n := deg f des Polynoms. Dabei ist der Induktionsanfang für n = 0 trivial, denn dann hat f keine
Nullstellen, und es ist zwangsläufig k = 0 und g = f .

Für den Induktionsschritt n→ n+1 bemerken wir zuerst, dass x1, . . . ,xk natürlich in jedem Fall als
die Nullstellen von f eindeutig bestimmt sind. Wir nehmen also an, dass wir zwei Darstellungen

f (x) = g(x) · (x− x1)
a1 · · · · · (x− xk)

ak = h(x) · (x− x1)
b1 · · · · · (x− xk)

bk

eines Polynoms vom Grad n+1 wie in der Behauptung des Satzes haben. Im nullstellenfreien Fall
k = 0 sind wir natürlich bereits fertig. Andernfalls liefert Division durch x− x1 für alle x ∈ D\{x1}
(wir müssen x1 hier herausnehmen, da wir sonst durch 0 teilen würden!)

g(x) · (x− x1)
a1−1 · (x− x2)

a2 · · · · · (x− xk)
ak

= h(x) · (x− x1)
b1−1 · (x− x2)

b2 · · · · · (x− xk)
bk . (∗)

Wir haben also wieder zwei Darstellungen eines Polynoms auf der immer noch unendlichen Menge
D\{x1}. Da der Grad dieses Polynoms n ist, müssen diese Darstellungen aber nach der Induktions-
voraussetzung bereits übereinstimmen. Also gilt g = h, a1− 1 = b1− 1, a2 = b2, . . . , ak = bk, und
damit stimmen auch die beiden ursprünglichen Darstellungen von f überein. □

Aufgabe 3.26. Bestimme die Nullstellen des reellen Polynoms x4+3x3−4x und ihre Vielfachheiten.

Aufgabe 3.27. Es sei f ein reelles Polynom mit f (x) = x3 für alle x ∈ {1,2,3, . . . ,8}. Welchen Grad
kann f haben?

Aufgabe 3.28. Es sei f das reelle Polynom mit f (x) = (x2− x+1)2025 für alle x ∈ R.

(a) Bestimme die Summe aller Koeffizienten von f .

(b) Bestimme die Summe aller Koeffizienten von geraden Potenzen von x in f .

Aufgabe 3.29.
(a) Bestimme alle reellen Polynome f mit x f (x+1) = (x−1) f (x) für alle x ∈ R.

(b) Bestimme alle reellen Polynome f mit x f (x−1) = (x−1) f (x) für alle x ∈ R.
05


