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27. Implizite Funktionen

Bevor wir uns ab dem nächsten Kapitel der Integration widmen, wollen wir zum Abschluss unseres
Studiums differenzierbarer Abbildungen noch auf das in der Praxis sehr wichtige Thema der so-
genannten impliziten Funktionen eingehen, bei dem es um die Auflösbarkeit von Gleichungen nach
bestimmten Variablen geht. Die Idee dieser Situation lässt sich am besten an einem Beispiel erklären.

Beispiel 27.1. Für x,y ∈ R>0 wollen wir die Lösungsmenge der Gleichung xy = yx untersuchen.

Wenn wir alle Lösungen einer solchen Gleichung in zwei Variablen bestimmen wollen, würden wir
sie normalerweise vermutlich nach einer der Variablen – z. B. y – auflösen wollen, um dann daraus
für jeden Wert von x die zugehörigen Werte von y berechnen zu können. Allerdings lässt sich diese
Gleichung mit den uns bekannten speziellen Funktionen aus Kapitel 9 leider nicht nach y (und auch
nicht nach x) auflösen, da beide Variablen sowohl in der Basis als auch im Exponenten auftreten.
Um diese Gleichung zu untersuchen, brauchen wir also andere Methoden.

Als Erstes fällt uns vermutlich auf, dass wir schon ein paar Lösungen sehen können:

• x = y für beliebige x,y > 0, sowie

• (x,y) = (2,4) und (x,y) = (4,2) (denn 24 = 42 = 16),

also insgesamt die im folgenden Bild links eingezeichnete Punktmenge.
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Dieses Bild sieht natürlich sehr merkwürdig aus: Ist z. B. der Punkt (2,4) wirklich ein isolierter
Punkt der Lösungsmenge, oder gibt es in einer Umgebung davon noch weitere Lösungen? Um dies
zunächst einmal numerisch herauszufinden, könnten wir die Lösungsmenge der betrachteten Glei-
chung von einem Computer berechnen lassen, der einfach alle Punkte der Ebene abtastet und dieje-
nigen Paare (x,y) zeichnet, bei denen xy gleich bzw. sehr nahe bei yx ist. Das Ergebnis, das wir so
erhalten würden, ist im Bild oben rechts dargestellt.

Danach sieht es so aus, als ob die Lösungsmenge der gegebenen Gleichung aus zwei Zweigen be-
steht: den Punkten mit y = x, und einer weiteren Kurve, die sich als Graph einer (stetig differen-
zierbaren) Funktion schreiben lässt. In einer (im Bild oben grau eingezeichneten) Umgebung des
Punktes (2,4) kann man die gegebene Gleichung xy = yx also z. B. anscheinend nach y auflösen und
als Funktionsgleichung y = ϕ(x) schreiben – auch wenn wir diese Funktion nicht explizit angeben
können. Man sagt, dass diese Funktion ϕ implizit durch die Gleichung xy = yx definiert ist. Am
Kreuzungspunkt der beiden Zweige oben lässt sich die gegebene Gleichung jedoch nicht nach einer
der beiden Variablen auflösen und z. B. y als Funktion von x schreiben, weil in einer Umgebung
dieses Punktes ja für jeden Wert von x zwei mögliche Werte y mit xy = yx existieren.

Ziel dieses Kapitels ist es, derartige Aussagen exakt zu beweisen. Dabei werden wir auch sehen, dass
man mit solchen nicht nach einer Variablen aufgelösten Funktionsdefinitionen durchaus arbeiten
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kann. So werden wir z. B. im obigen Bild den Schnittpunkt der beiden Zweige und die Ableitung der
Funktion ϕ im Punkt (2,4) bestimmen können, auch ohne diese Funktion explizit zu kennen (siehe
Beispiel ?? ??).

27.A Lokale Umkehrfunktionen

Wir beginnen unser Studium impliziter Funktionen mit einem wichtigen Spezialfall: Sind D ⊂ Rn

offen und f : D→ Rn eine gegebene Funktion, so wollen wir untersuchen, ob wir die Gleichung
y = f (x) (mit x ∈ D und y ∈ Rn) nach x auflösen, also eine Umkehrfunktion x = f−1(y) finden
können. Im eindimensionalen Fall wissen wir dies bereits:

Beispiel 27.2 (Umkehrbarkeit im Eindimensionalen). Sind D = (a,b) ein offenes Intervall und
f : D→ R eine stetig differenzierbare Funktion mit f ′(x) ̸= 0 für alle x ∈ D, so ist f ′ zunächst ein-
mal entweder überall positiv oder überall negativ, da f ′ sonst nach dem Zwischenwertsatz 8.21 auch
irgendwo den Wert 0 annehmen müsste. Also ist f nach Folgerung 10.24 dann streng monoton und
damit injektiv. Auf dem Bildbereich f (D), der nach dem Zwischenwertsatz ebenfalls ein Intervall
ist, existiert also eine Umkehrfunktion f−1 von f , und diese ist nach Satz 10.11 ebenfalls differen-
zierbar mit Ableitung ( f−1)′( f (x)) = 1

f ′(x) . Mit anderen Worten ist die Gleichung y = f (x) somit

auf dem betrachteten Intervall nach x auflösbar, nämlich durch die Umkehrfunktion x = f−1(y).

Bemerkung 27.3 (Ableitung einer Umkehrfunktion). Die Formel für die Ableitung der Umkehr-
funktion lässt sich sofort auf den mehrdimensionalen Fall verallgemeinern: Ist f : D→ D′ eine dif-
ferenzierbare Funktion zwischen offenen Teilmengen D und D′ von Rn, und wissen wir bereits, dass
f bijektiv ist und eine ebenfalls differenzierbare Umkehrfunktion f−1 : D′→D besitzt, so erhält man
durch Differenzieren der Gleichung f−1( f (x)) = x für alle x ∈D mit der Kettenregel aus Satz 25.30
sofort ( f−1)′( f (x)) · f ′(x) = E, da die Ableitung von x 7→ x = E x nach Beispiel 25.5 die Einheits-
matrix ist. Also muss die Matrix f ′(x) ∈ Rn×n invertierbar sein, d. h. es muss det f ′(x) ̸= 0 gelten,
und für die Ableitung von f−1 ist analog zum Eindimensionalen die inverse Matrix

( f−1)′( f (x)) = ( f ′(x))−1.

Wo wir im Eindimensionalen f ′(x) ̸= 0 für alle x ∈ D vorausgesetzt haben, müssen wir nun also
verlangen, dass die Matrix f ′(x) überall invertierbar ist. Überraschend ist dabei allerdings, dass die
Invertierbarkeit von f ′(x) für n > 1 im Gegensatz zum eindimensionalen Fall in Beispiel 27.2 nicht
mehr hinreichend für die Existenz einer Umkehrfunktion ist, wie das folgende einfache Beispiel
zeigt.

Beispiel 27.4 (Umkehrbarkeit der Polarkoordinaten). Wir betrachten noch
einmal die Polarkoordinatenabbildung in C= R2

f : R>0×R→ R2,

(
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)
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)
(siehe Satz 9.27 und Definition 9.12), die dem Betrag und Winkel einer kom-
plexen Zahl ihren Real- und Imaginärteil zuordnet. Dann ist die Ableitungs-
matrix von f
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und damit nach Satz 9.14 (b)

det f ′ = r (cos2
ϕ + sin2

ϕ) = r > 0.

Die Ableitungsmatrix f ′ ist also überall invertierbar. Trotzdem ist f aber nicht injektiv, da die Addi-
tion von Vielfachen von 2π zum Winkel ϕ nichts am Funktionswert ändert. Um eine bijektive Abbil-
dung zu erhalten, müssen wir f einschränken: Betrachten wir z. B. wie im Bild unten nur die Werte
von r und ϕ mit 1 < r < 2 und 0 < ϕ < π

2 , so ist f auf dieser offenen Teilmenge U des Defini-
tionsbereichs injektiv. Das Bild dieser Teilmenge unter f ist der unten rechts im Bild dargestellte
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Viertelkreisring V , so dass die Einschränkung f |U : U →V nun bijektiv ist und damit eine Umkehr-
abbildung f−1 : V →U besitzt. In der Tat können wir diese Umkehrabbildung auch sofort aus dem
geometrischen Bild oben rechts ablesen: Man kann r und ϕ in diesem Winkelbereich offensichtlich
mit den (stetig differenzierbaren) Formeln

r =
√

x2 + y2 und ϕ = arctan
y
x

aus x und y zurückgewinnen, so dass also

f−1 : V →U,

(
x
y

)
7→

(√
x2 + y2

arctan y
x

)
(2)

dort die Umkehrfunktion ist.
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Gemäß Bemerkung 27.3 können wir die Ableitung dieser Umkehrfunktion g nun als die zu f ′ inverse
Matrix berechnen: Mit (1) und Beispiel 18.22 erhalten wir

( f−1)′ =
1
r
·
(

r cosϕ r sinϕ

−sinϕ cosϕ

)
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( x√
x2+y2
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− y
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x
x2+y2

)
,

wie man durch Differenzieren der expliziten Formel (2) für f−1 natürlich auch direkt bestätigen
könnte.

Auch bei überall invertierbarer Ableitungsmatrix können wir also nur lokal (d. h. nach geeigneter
Einschränkung des Definitionsbereichs auf eine offene Umgebung eines Punktes) erwarten, eine bi-
jektive Abbildung zu erhalten. Dass dieses Phänomen erst bei einer Raumdimension n > 1 sichtbar
wird, hat letztlich topologische Gründe: Wählen wir in unserem Beispiel einen zu großen Defini-
tionsbereich wie z. B. U = (1,2)× (0,3π), so würde das Bild von f |U den Kreisring mit innerem
Radius 1 und äußerem Radius 2 eineinhalbmal durchlaufen, so dass f dort dann nicht mehr injektiv
wäre – für solche „Schleifen“ um den Nullpunkt herum ist auf der eindimensionalen reellen Zahlen-
geraden aber „nicht genug Platz“.

Nach diesen Vorbemerkungen wollen wir nun den technisch etwas aufwendigen, aber sicher nicht
mehr unerwarteten Satz beweisen, dass eine stetig differenzierbare Abbildung mit invertierbarer Ab-
leitungsmatrix stets lokal umkehrbar ist. Wir beginnen dazu mit dem folgenden Lemma, in dem wir
einige spezielle Koordinatenwahlen getroffen haben, um den Beweis einfacher zu halten. Es enthält
die eigentliche technische Arbeit, die für die Sätze in diesem Kapitel erforderlich ist – die weiteren
Aussagen werden sich daraus dann durch geeignete Koordinatentransformationen als Anwendungen
ergeben.

Lemma 27.5 (Lemma über lokale Umkehrfunktionen). Es seien D ⊂ Rn offen mit 0 ∈ D, und
f : D→ Rn eine stetig differenzierbare Abbildung mit f (0) = 0 und f ′(0) = En.

Dann ist die Funktion f lokal um den Ursprung umkehrbar, d. h. es gibt offene Umgebungen U und
V von 0 ∈ Rn mit U ⊂ D, so dass die Einschränkung f |U : U → V bijektiv ist. Darüber hinaus ist
die dann existierende Umkehrfunktion f−1 : V →U ebenfalls differenzierbar in 0 mit Ableitung En.
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Beweis. Die Beweisidee dieses Lemmas besteht darin, Urbilder unter f als Fixpunkte einer geeig-
neten Hilfsfunktion umzuschreiben, und diese Fixpunkte dann mit Hilfe des Banachschen Fixpunkt-
satzes 24.27 zu untersuchen. Wir verwenden im Beweis durchgehend die Maximumsnorm auf Rn

und die davon induzierte Zeilensummennorm auf Rn×n (siehe Beispiel 24.40 (b)).

Da D nach Voraussetzung eine offene Umgebung von 0 ist und f ′ stetig mit f ′(0) = E, gibt es ein
ε > 0 mit Uε(0)⊂ D, so dass

∥E− f ′(x)∥< 1
2

(∗)

für alle x ∈Uε(0) gilt. Es sei nun y ∈U ε
4
(0) zunächst fest. Um Urbilder von y unter f zu suchen,

betrachten wir die (von y abhängige) Hilfsfunktion

ϕ : D→ Rn, x 7→ x− f (x)+ y,

so dass f (x) = y genau dann gilt wenn ϕ(x) = x, die Urbilder von y unter f also genau die Fixpunkte
von ϕ sind. Um den Banachschen Fixpunktsatz anwenden zu können, zeigen wir nun, dass ϕ auf
der abgeschlossenen Kugel K ε

2
(0)⊂ D eine Kontraktion ist:

(a) Da K ε
2
(0) in der offenen und nach Beispiel 24.22 (c) konvexen Menge Uε(0)⊂ D liegt, gilt

für alle x, x̃ ∈ K ε
2
(0)

∥ϕ(x)−ϕ(x̃)∥
26.19
≤ ∥ϕ ′|xx̃∥ · ∥x− x̃∥= ∥(E− f ′)|xx̃∥ · ∥x− x̃∥

(∗)
≤ 1

2
∥x− x̃∥.

(b) Für alle x ∈ K ε
2
(0) gilt

∥ϕ(x)∥ ≤ ∥ϕ(x)−ϕ(0)∥+∥ϕ(0)∥
(a)
≤ 1

2
∥x∥+∥y∥< ε

4
+

ε

4
=

ε

2
,

und damit auch ϕ(x) ∈ K ε
2
(0).

Weil K ε
2
(0) als abgeschlossene Teilmenge von Rn nach Satz 23.29 und Folgerung 23.43 vollständig

ist, hat ϕ nach Satz 24.27 dort also genau einen Fixpunkt, d. h. y besitzt in K ε
2
(0) genau ein Urbild

unter f . Da für ϕ(x) = x aus (b) außerdem ∥x∥ < ε

2 folgt, liegt dieses Urbild sogar in der offenen
Kugel U ε

2
(0). Insgesamt ist damit die eingeschränkte Abbildung

f : U ε
2
(0)∩ f−1(U ε

4
(0))︸ ︷︷ ︸

=:U

→U ε
4
(0)︸ ︷︷ ︸

=:V

bijektiv. Da U und V nach Lemma 23.34 (a) und Satz 24.17 (b) offen sind, zeigt dies die behauptete
Existenz einer lokalen Umkehrabbildung.

Es bleibt also nur noch zu zeigen, dass f−1 im Nullpunkt mit Ableitung E differenzierbar ist. Wir
prüfen dies wie in Algorithmus 25.15 nach: Ist y = f (x), also ϕ(x) = x, so folgt ∥x∥ ≤ 1

2∥x∥+∥y∥
und damit ∥x∥ ≤ 2∥y∥ aus (b), und damit wie gewünscht

f−1(y)− f−1(0)−E y
∥y∥

=
x− f (x)
∥y∥

=− f (x)− f (0)−E x
∥x∥︸ ︷︷ ︸
→0

· ∥x∥
∥y∥︸︷︷︸
≤2

→ 0

für y→ 0, da mit y→ 0 wegen ∥x∥ ≤ 2∥y∥ auch x→ 0 folgt und f in 0 differenzierbar mit Ableitung
E ist. □70


