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27. Implizite Funktionen

Bevor wir uns ab dem néchsten Kapitel der Integration widmen, wollen wir zum Abschluss unseres
Studiums differenzierbarer Abbildungen noch auf das in der Praxis sehr wichtige Thema der so-
genannten impliziten Funktionen eingehen, bei dem es um die Aufldsbarkeit von Gleichungen nach
bestimmten Variablen geht. Die Idee dieser Situation lésst sich am besten an einem Beispiel erkléren.

Beispiel 27.1. Fiir x,y € R wollen wir die Losungsmenge der Gleichung x* = y* untersuchen.

Wenn wir alle Losungen einer solchen Gleichung in zwei Variablen bestimmen wollen, wiirden wir
sie normalerweise vermutlich nach einer der Variablen — z. B. y — auflésen wollen, um dann daraus
fiir jeden Wert von x die zugehorigen Werte von y berechnen zu konnen. Allerdings ldsst sich diese
Gleichung mit den uns bekannten speziellen Funktionen aus Kapitel 9 leider nicht nach y (und auch
nicht nach x) auflosen, da beide Variablen sowohl in der Basis als auch im Exponenten auftreten.
Um diese Gleichung zu untersuchen, brauchen wir also andere Methoden.

Als Erstes fillt uns vermutlich auf, dass wir schon ein paar Losungen sehen konnen:
e x =y fiir beliebige x,y > 0, sowie
e (x,y) = (2,4) und (x,y) = (4,2) (denn 2* = 4> = 16),

also insgesamt die im folgenden Bild links eingezeichnete Punktmenge.
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Dieses Bild sieht natiirlich sehr merkwiirdig aus: Ist z. B. der Punkt (2,4) wirklich ein isolierter
Punkt der Losungsmenge, oder gibt es in einer Umgebung davon noch weitere Losungen? Um dies
zunidchst einmal numerisch herauszufinden, kdnnten wir die Losungsmenge der betrachteten Glei-
chung von einem Computer berechnen lassen, der einfach alle Punkte der Ebene abtastet und dieje-
nigen Paare (x,y) zeichnet, bei denen x* gleich bzw. sehr nahe bei y* ist. Das Ergebnis, das wir so
erhalten wiirden, ist im Bild oben rechts dargestellt.

Danach sieht es so aus, als ob die Losungsmenge der gegebenen Gleichung aus zwei Zweigen be-
steht: den Punkten mit y = x, und einer weiteren Kurve, die sich als Graph einer (stetig differen-
zierbaren) Funktion schreiben ldsst. In einer (im Bild oben grau eingezeichneten) Umgebung des
Punktes (2,4) kann man die gegebene Gleichung ¥ = y* also z. B. anscheinend nach y auflésen und
als Funktionsgleichung y = ¢(x) schreiben — auch wenn wir diese Funktion nicht explizit angeben
konnen. Man sagt, dass diese Funktion ¢ implizit durch die Gleichung ¥’ = y* definiert ist. Am
Kreuzungspunkt der beiden Zweige oben lésst sich die gegebene Gleichung jedoch nicht nach einer
der beiden Variablen auflosen und z.B. y als Funktion von x schreiben, weil in einer Umgebung
dieses Punktes ja fiir jeden Wert von x zwei mogliche Werte y mit x’ = y* existieren.

Ziel dieses Kapitels ist es, derartige Aussagen exakt zu beweisen. Dabei werden wir auch sehen, dass
man mit solchen nicht nach einer Variablen aufgelosten Funktionsdefinitionen durchaus arbeiten
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kann. So werden wir z. B. im obigen Bild den Schnittpunkt der beiden Zweige und die Ableitung der
Funktion ¢ im Punkt (2,4) bestimmen konnen, auch ohne diese Funktion explizit zu kennen (sieche
Beispiel ?? 2?).

27.A Lokale Umkehrfunktionen

Wir beginnen unser Studium impliziter Funktionen mit einem wichtigen Spezialfall: Sind D C R”"
offen und f: D — R" eine gegebene Funktion, so wollen wir untersuchen, ob wir die Gleichung
y = f(x) (mit x € D und y € R") nach x auflosen, also eine Umkehrfunktion x = f~!(y) finden
konnen. Im eindimensionalen Fall wissen wir dies bereits:

Beispiel 27.2 (Umkehrbarkeit im Eindimensionalen). Sind D = (a,b) ein offenes Intervall und
f: D — R eine stetig differenzierbare Funktion mit f’(x) # O fiir alle x € D, so ist f’ zunéchst ein-
mal entweder iiberall positiv oder iiberall negativ, da f’ sonst nach dem Zwischenwertsatz 8.21 auch
irgendwo den Wert 0 annehmen miisste. Also ist f nach Folgerung 10.24 dann streng monoton und
damit injektiv. Auf dem Bildbereich f(D), der nach dem Zwischenwertsatz ebenfalls ein Intervall
ist, existiert also eine Umkehrfunktion f ~1 yon f, und diese ist nach Satz 10.11 ebenfalls differen-
zierbar mit Ableitung (f~!)(f(x)) = % Mit anderen Worten ist die Gleichung y = f(x) somit

auf dem betrachteten Intervall nach x auflosbar, namlich durch die Umkehrfunktion x = £~ (y).

Bemerkung 27.3 (Ableitung einer Umkehrfunktion). Die Formel fiir die Ableitung der Umkehr-
funktion lésst sich sofort auf den mehrdimensionalen Fall verallgemeinern: Ist f: D — D' eine dif-
ferenzierbare Funktion zwischen offenen Teilmengen D und D’ von R”, und wissen wir bereits, dass
f bijektiv ist und eine ebenfalls differenzierbare Umkehrfunktion f~': D’ — D besitzt, so erhilt man
durch Differenzieren der Gleichung f~!(f(x)) = x fiir alle x € D mit der Kettenregel aus Satz 25.30
sofort (f~1)(f(x))- f'(x) = E, da die Ableitung von x  x = E x nach Beispiel 25.5 die Einheits-
matrix ist. Also muss die Matrix f/(x) € R"*" invertierbar sein, d. h. es muss det f’(x) # 0 gelten,
und fiir die Ableitung von f~! ist analog zum Eindimensionalen die inverse Matrix

) =
Wo wir im Eindimensionalen f’(x) # O fiir alle x € D vorausgesetzt haben, miissen wir nun also
verlangen, dass die Matrix f’(x) iiberall invertierbar ist. Uberraschend ist dabei allerdings, dass die
Invertierbarkeit von f’(x) fiir n > 1 im Gegensatz zum eindimensionalen Fall in Beispiel 27.2 nicht
mehr hinreichend fiir die Existenz einer Umkehrfunktion ist, wie das folgende einfache Beispiel
zeigt.

Beispiel 27.4 (Umkehrbarkeit der Polarkoordinaten). Wir betrachten noch
einmal die Polarkoordinatenabbildung in C = R?

. 2 r rcosQ I
emaxmo, (1) (78) < ()

(siehe Satz 9.27 und Definition 9.12), die dem Betrag und Winkel einer kom-
plexen Zahl ihren Real- und Imaginérteil zuordnet. Dann ist die Ableitungs-

matrix von f
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ar
und damit nach Satz 9.14 (b)

det ' = r(cos® @ +sin® @) = r > 0.

Die Ableitungsmatrix f ist also iiberall invertierbar. Trotzdem ist f aber nicht injektiv, da die Addi-
tion von Vielfachen von 27 zum Winkel ¢ nichts am Funktionswert &dndert. Um eine bijektive Abbil-
dung zu erhalten, miissen wir f einschrinken: Betrachten wir z. B. wie im Bild unten nur die Werte
von rund @ mit 1 <r <2und 0 < @ < 7, soist f auf dieser offenen Teilmenge U des Defini-
tionsbereichs injektiv. Das Bild dieser Teilmenge unter f ist der unten rechts im Bild dargestellte
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Viertelkreisring V, so dass die Einschrinkung f|y: U — V nun bijektiv ist und damit eine Umkehr-
abbildung f~!: V — U besitzt. In der Tat konnen wir diese Umkehrabbildung auch sofort aus dem
geometrischen Bild oben rechts ablesen: Man kann » und ¢ in diesem Winkelbereich offensichtlich
mit den (stetig differenzierbaren) Formeln

r=+vx*+y> und o¢= arctan?
X
aus x und y zuriickgewinnen, so dass also

v, (;c) N (s/x2+y2> o
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dort die Umkehrfunktion ist.
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GemiB Bemerkung 27.3 kdnnen wir die Ableitung dieser Umkehrfunktion g nun als die zu f” inverse
Matrix berechnen: Mit (1) und Beispiel 18.22 erhalten wir

. _x y
(fl)/zl‘(rcqs(p rsm(p>:<\/m xzﬂz)
_ )7 9
r sin@ cos@ -5 xziyz
wie man durch Differenzieren der expliziten Formel (2) fiir f~! natiirlich auch direkt bestitigen
konnte.

Auch bei iiberall invertierbarer Ableitungsmatrix kdnnen wir also nur lokal (d. h. nach geeigneter
Einschrinkung des Definitionsbereichs auf eine offene Umgebung eines Punktes) erwarten, eine bi-
jektive Abbildung zu erhalten. Dass dieses Phdnomen erst bei einer Raumdimension n > 1 sichtbar
wird, hat letztlich topologische Griinde: Wihlen wir in unserem Beispiel einen zu grolen Defini-
tionsbereich wie z.B. U = (1,2) x (0,37), so wiirde das Bild von f|y den Kreisring mit innerem
Radius 1 und dulerem Radius 2 eineinhalbmal durchlaufen, so dass f dort dann nicht mehr injektiv
wire — fiir solche ,,Schleifen* um den Nullpunkt herum ist auf der eindimensionalen reellen Zahlen-
geraden aber ,,nicht genug Platz*.

Nach diesen Vorbemerkungen wollen wir nun den technisch etwas aufwendigen, aber sicher nicht
mehr unerwarteten Satz beweisen, dass eine stetig differenzierbare Abbildung mit invertierbarer Ab-
leitungsmatrix stets lokal umkehrbar ist. Wir beginnen dazu mit dem folgenden Lemma, in dem wir
einige spezielle Koordinatenwahlen getroffen haben, um den Beweis einfacher zu halten. Es enthilt
die eigentliche technische Arbeit, die fiir die Sétze in diesem Kapitel erforderlich ist — die weiteren
Aussagen werden sich daraus dann durch geeignete Koordinatentransformationen als Anwendungen
ergeben.

Lemma 27.5 (Lemma iiber lokale Umkehrfunktionen). Es seien D C R”" offen mit 0 € D, und
f: D — R" eine stetig differenzierbare Abbildung mit f(0) =0 und f'(0) = E,.

Dann ist die Funktion f lokal um den Ursprung umkehrbar, d. h. es gibt offene Umgebungen U und
Vvon 0 € R" mit U C D, so dass die Einschriankung f|y: U — V bijektiv ist. Dariiber hinaus ist
die dann existierende Umkehrfunktion f~': V. — U ebenfalls differenzierbar in O mit Ableitung E,,.
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Beweis. Die Beweisidee dieses Lemmas besteht darin, Urbilder unter f als Fixpunkte einer geeig-
neten Hilfsfunktion umzuschreiben, und diese Fixpunkte dann mit Hilfe des Banachschen Fixpunkt-
satzes 24.27 zu untersuchen. Wir verwenden im Beweis durchgehend die Maximumsnorm auf R”
und die davon induzierte Zeilensummennorm auf R"*" (siehe Beispiel 24.40 (b)).

Da D nach Voraussetzung eine offene Umgebung von 0 ist und f* stetig mit f(0) = E, gibt es ein
€ > 0 mit Ug(0) C D, so dass

1
lE- Wl <5 )

fiir alle x € Ug(0) gilt. Es sei nuny € U e (0) zunichst fest. Um Urbilder von y unter f zu suchen,
betrachten wir die (von y abhingige) Hilfsfunktion

0:D—-R" x—x—f(x)+y,

so dass f(x) =y genau dann gilt wenn @(x) = x, die Urbilder von y unter f also genau die Fixpunkte
von ¢ sind. Um den Banachschen Fixpunktsatz anwenden zu konnen, zeigen wir nun, dass ¢ auf
der abgeschlossenen Kugel K% (0) C D eine Kontraktion ist:

(a) Da Ke (0) in der offenen und nach Beispiel 24.22 (c) konvexen Menge U, (0) C D liegt, gilt
fiir alle x,¥ € K¢ (0)

3 ROR 3
=5 = 1E = £l - =5 < 5 e =

2609
lo(x) =@ < ¢l

(b) Firallex € Ke (0) gilt

@ 1 E € €
le@l < le() = 9Ol +11@(O)] < Il + sl < 5 +5 = 5.

und damit auch ¢(x) € K¢ (0).

Weil K% (0) als abgeschlossene Teilmenge von R” nach Satz 23.29 und Folgerung 23.43 vollstindig
ist, hat @ nach Satz 24.27 dort also genau einen Fixpunkt, d. h. y besitzt in K% (0) genau ein Urbild

unter f. Da fiir ¢(x) = x aus (b) auerdem ||x|| < § folgt, liegt dieses Urbild sogar in der offenen
Kugel Ug (0). Insgesamt ist damit die eingeschridnkte Abbildung

[ U0)n £ (U (0)) = U (0)

——
=:U =V

bijektiv. Da U und V nach Lemma 23.34 (a) und Satz 24.17 (b) offen sind, zeigt dies die behauptete
Existenz einer lokalen Umkehrabbildung.

Es bleibt also nur noch zu zeigen, dass £~! im Nullpunkt mit Ableitung E differenzierbar ist. Wir
priifen dies wie in Algorithmus 25.15 nach: Ist y = f(x), also ¢ (x) = x, so folgt [|x|| < {|x[| + [|y||
und damit ||x|| < 2||y|| aus (b), und damit wie gewiinscht

OO -Ey  x—f) _ f)—f0)—Ex x|

1y I [l ¥
<~

—0 <2

—0

fiir y — 0, da mit y — 0 wegen ||x|| < 2||y|| auch x — 0 folgt und f in O differenzierbar mit Ableitung
E ist. -



