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26. Höhere Ableitungen

Im letzten Kapitel haben wir gesehen, wie man für Abbildungen zwischen mehrdimensionalen Räu-
men das Konzept der Differenzierbarkeit definieren und für differenzierbare Abbildungen die Ab-
leitung berechnen kann. Analog zum eindimensionalen Fall ist eine der wichtigsten Anwendungen
dieser Theorie, (lokale) Extremwerte von Funktionen zu bestimmen. Wir wollen in diesem Kapi-
tel untersuchen, wie dies im Mehrdimensionalen funktioniert. Wie in Satz 11.18 werden wir dazu
höhere Ableitungen und die Taylor-Formel benötigen, die wir daher zuerst behandeln müssen.

Um von Extremwerten überhaupt sprechen zu können, müssen wir natürlich Funktionswerte mit-
einander vergleichen können – was nur geht, wenn der Zielraum der betrachteten Funktionen die
Menge R der reellen Zahlen ist. „Mehrdimensional“ bedeutet im Zusammenhang mit Extremwerten
also nur, dass die Definitionsmenge unserer Abbildungen eine Teilmenge von Rn ist.

Hier ist zunächst einmal die exakte Definition von Extrema, die im Prinzip genauso ist wie im Ein-
dimensionalen in Definition 10.18.

Definition 26.1 (Extrema). Es seien D⊂ Rn, f : D→ R eine Funktion und a ∈ D. Man sagt, . . .

(a) f habe in a ein (globales) Maximum, wenn f (a)≥ f (x) für alle x ∈ D.

(b) f habe in a ein lokales Maximum, wenn es eine Umgebung U von a gibt mit f (a) ≥ f (x)
für alle x ∈ U . Gilt sogar f (a) > f (x) für alle x ∈ U mit x ̸= a, so nennt man das lokale
Maximum isoliert.

Analog definiert man globale und lokale (isolierte) Minima. Hat f in a ein (globales, lokales, iso-
liertes) Maximum oder Minimum, so sagt man auch, dass f dort ein (globales, lokales, isoliertes)
Extremum hat.

Einfach zu sehen ist genau wie im Eindimensionalen (siehe Lemma 10.20), dass die (erste) Ableitung
einer Funktion ein einfaches notwendiges Kriterium für ein lokales Extremum liefert, das nicht auf
dem Rand der Definitionsmenge liegt:

Lemma 26.2 (Notwendige Bedingung für Extrema). Es seien D ⊂ Rn und f : D→ R eine Abbil-
dung. Hat f dann in einem Punkt a ∈ D̊ im Inneren der Definitionsmenge ein lokales Extremum und
ist f dort differenzierbar, so gilt f ′(a) = 0.

Wie im Eindimensionalen in Bemerkung 10.21 (a) werden Punkte a ∈ D̊ mit f ′(a) = 0 als kritische
Punkte bezeichnet.

Beweis. Es sei i ∈ {1, . . . ,n}. Wegen a ∈ D̊ ist die reellwertige Funktion g : t 7→ f (a+ tei) einer
reellen Variablen t in einer Umgebung von 0 definiert, und hat dort natürlich ebenfalls ein lokales
Extremum. Nach Lemma 10.20 ist also

0 = g′(0) = lim
t→0

f (a+ tei)− f (a)
t

= ∂i f (a),

und damit wie behauptet f ′(a) = (∂1 f (a) | · · · |∂n f (a)) = 0. □

Beispiel 26.3. Wir wollen die (lokalen) Extrema der Funktion

f : R2→ R, f (x) = (x1 + x2)
2 + ex2

1

finden. Nach Bemerkung 25.18 (a) ist f differenzierbar mit

f ′(x) = (2(x1 + x2)+2x1ex2
1 2(x1 + x2)).

Ein notwendiges Kriterium für ein lokales Extremum am Punkt x ∈ R2 ist also

2(x1 + x2)+2x1ex2
1 = 0 und 2(x1 + x2) = 0,
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was offensichtlich nur für x1 = x2 = 0, also im Nullpunkt erfüllt ist. In der Tat kann man in diesem
Fall einfach sehen, dass im Nullpunkt ein (sogar globales) Minimum vorliegt, denn für alle x ∈ R2

ist ja

f (x) = (x1 + x2)
2 + ex2

1 ≥ 0+1 = 1 = f (0).

Bemerkung 26.4. Bis hierher funktioniert die Extremwertberechnung also genau wie im Eindimen-
sionalen. Es stellen sich nun natürlich sofort die folgenden Fragen:

(a) Wie kann man von einem Punkt a ∈ D̊ mit f ′(a) = 0 möglichst einfach überprüfen, ob
dort wirklich ein lokales Extremum vorliegt, d. h. welche hinreichenden Kriterien für lokale
Extrema gibt es? Wie bereits angekündigt werden wir hierfür höhere Ableitungen und eine
mehrdimensionale Taylor-Entwicklung benötigen, die wir in diesem Kapitel untersuchen
werden.

(b) Wie kann man Extrema am Rand der Definitionsmenge D finden, wenn D nicht offen ist?
Betrachten wir z. B. die Funktion f aus Beispiel 26.3 auf dem abgeschlossenen Einheitskreis
K1 = {x ∈R2 : ∥x∥2 ≤ 1}, so muss f dort nach Folgerung 24.35 irgendwo ein Maximum an-
nehmen – und da wir außer dem Minimum bei 0 keine weiteren Stellen gefunden haben,
an denen die Ableitung von f verschwindet, muss dieses Maximum auf dem Rand des Ein-
heitskreises liegen. Im Gegensatz zum Eindimensionalen besteht dieser Rand jetzt aber nicht
mehr nur aus zwei Punkten, sondern aus einem in diesem Fall selbst eindimensionalen Ob-
jekt, nämlich der Einheitskreislinie. Wir können also nicht mehr einfach alle Randpunkte in
f einsetzen, um das Maximum zu finden, sondern brauchen ein geschickteres Verfahren, um
Randextrema zu finden. Dies wird der Inhalt von Abschnitt ?? sein.

26.A Die mehrdimensionale Taylor-Entwicklung

Zur Einführung höherer Ableitungen, die wir für die Taylor-Entwicklung benötigen werden, gibt es
zwei ganz unterschiedliche Herangehensweisen:

Bemerkung 26.5 (Höhere Ableitungen). Es seien D⊂ Rn offen und f : D→ Rm eine Funktion.

(a) Ist f differenzierbar, so ist die Ableitung von f nach den Bemerkungen 25.4 (c) und 25.6
eine Funktion f ′ : D→ Hom(Rn,Rm) ∼= Rm×n, also selbst wieder eine Funktion zwischen
(offenen Teilmengen von) normierten Räumen – für die wir ja definiert haben, was Diffe-
renzierbarkeit bedeutet. Es liegt also eigentlich nichts näher als zu sagen, dass f zweimal
differenzierbar heißt, wenn f ′ selbst wieder differenzierbar ist, und f ′′ dann als die Ablei-
tung von f ′ zu definieren. Da f ′ eine Abbildung von D ⊂ Rn nach Hom(Rn,Rm) ist, ist f ′′

nach Bemerkung 25.6 dann eine Abbildung

f ′′ : D→ Hom(Rn,Hom(Rn,Rm)).

Dies kann man natürlich fortsetzen, und erhält (im Fall der Existenz) z. B. als dritte Ableitung
von f eine Abbildung

f ′′′ : D→ Hom(Rn,Hom(Rn,Hom(Rn,Rm))).

Alternativ könnte man hierfür die Tensorprodukte aus Abschnitt 21.E verwenden: Analog
zu Beispiel 21.59 (b) kann man zeigen, dass Hom(Rn,V ) für jeden reellen Vektorraum V
auf natürliche Art isomorph zu V ⊗ (Rn)∗ ist, und dementsprechend könnte man für einen
Punkt a ∈ D z. B. f ′′(a) als Element von Rm⊗ (Rn)∗⊗ (Rn)∗ und f ′′′(a) als Element von
Rm⊗ (Rn)∗⊗ (Rn)∗⊗ (Rn)∗ auffassen.

So oder so – auch wenn dies eigentlich die natürlichste Art der Definition höherer Ableitun-
gen im mehrdimensionalen Fall ist, sollte hieraus schon ersichtlich sein, dass es sich dabei
allein schon von der Notation her nicht unbedingt um die bequemste Art handelt. Wir werden
im Folgenden daher einen anderen Ansatz verfolgen:
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(b) Da die Spalten der Ableitungsmatrix von f gerade die partiellen Ableitungen sind, können
wir zur Betrachtung k-facher Ableitungen auch einfach mehrfache partielle Ableitungen der
Form ∂i1 · · ·∂ik f betrachten. Diese haben im Gegensatz zum Ansatz aus (a) den großen Vor-
teil, im Fall ihrer Existenz selbst wieder Funktionen von D nach Rm zu sein – ihr Nachteil
besteht lediglich darin, dass es nicht nur eine, sondern nk solcher k-fachen partiellen Ablei-
tungen gibt, da wir bei jeder der k Differentiationen wieder eine der n Variablen auswählen
müssen.67

Man kann allerdings zumindest hoffen, dass es bei derartigen mehrfachen partiellen Ablei-
tungen nicht auf die Reihenfolge der Ableitungen ankommt. Der folgende Satz besagt, dass
dies in den meisten Fällen auch wirklich so ist.

Satz 26.6 (Satz von Schwarz: Vertauschbarkeit partieller Ableitungen). Es seien D ⊂ Rn offen
und f : D→ Rm eine Abbildung, für die die zweifachen partiellen Ableitungen ∂i∂ j f für gewisse
i, j ∈ {1, . . . ,n} auf D existieren und in einem Punkt a∈D stetig sind. Dann gilt ∂i∂ j f (a) = ∂ j∂i f (a).

Beweis. Wir können ohne Einschränkung m = 1 annehmen, da man sonst jede Komponentenfunk-
tion von f einzeln betrachten kann. Weiterhin können wir natürlich i ̸= j voraussetzen und alle
Variablen außer xi und x j als konstante Parameter betrachten. Nach Umbenennung der Variablen
können wir uns daher auf den Fall n = 2, i = 1 und j = 2 beschränken.

Da D offen ist, können wir eine offene Kugel U um a in der
Maximumsnorm wählen, die noch ganz in D liegt. Für einen
Punkt x ∈U mit x1 ̸= a1 und x2 ̸= a2 betrachten wir nun den
„doppelten Differenzenquotienten“

Q(x) :=
f
(

x1
x2

)
− f

(
a1
x2

)
− f

(
x1
a2

)
+ f

(
a1
a2

)
(x1−a1)(x2−a2)

,

der sich aus den Funktionswerten von f an den vier Eckpunk-
ten des Rechtecks wie im Bild rechts ergibt. Wir wollen zei-
gen, dass Q(x) für x→ a sowohl gegen ∂1∂2 f (a) als auch ge-
gen ∂2∂1 f (a) konvergiert, woraus dann die Behauptung folgt.

(
x1
a2

)
(

a1
x2

)
c

a =

(
a1
a2

)
(

x1
x2

)
= x

U

Dazu wenden wir zunächst den Mittelwertsatz 10.23 (a) auf die zwischen a2 und x2 definierte reell-
wertige Funktion

g : t 7→ f
(

x1
t

)
− f

(
a1
t

)
mit g′ : t 7→ ∂2 f

(
x1
t

)
−∂2 f

(
a1
t

)
an und erhalten ein c2 zwischen a2 und x2 mit

Q(x) =
g(x2)−g(a2)

(x1−a1)(x2−a2)
=

g′(c2)

x1−a1
=

∂2 f
(

x1
c2

)
−∂2 f

(
a1
c2

)
x1−a1

.

Nun wenden wir den Mittelwertsatz erneut auf die zwischen a1 und x1 definierte Funktion

h : t 7→ ∂2 f
(

t
c2

)
mit h′ : t 7→ ∂1∂2 f

(
t
c2

)
an und erhalten so ein c1 zwischen a1 und x1 mit

Q(x) =
h(x1)−h(a1)

x1−a1
= h′(c1) = ∂1∂2 f (c)

für ein c∈U wie im Bild oben rechts, dessen Koordinaten zwischen a1 und x1 bzw. a2 und x2 liegen.

Mit x→ a gilt nun auch c→ a, und damit erhalten wir wie behauptet wegen der vorausgesetzten
Stetigkeit von ∂1∂2 f

lim
x→a

Q(x) = lim
c→a

∂1∂2 f (c) = ∂1∂2 f (a).

Der Ausdruck Q(x) ist aber symmetrisch in den beiden Koordinaten des Startraums, und daher ergibt
sich mit genau dem gleichen Argument (nur indem man den Mittelwertsatz zuerst auf die erste und
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dann auf die zweite Koordinate anwendet) auch lim
x→a

Q(x) = ∂2∂1 f (a). Die Behauptung folgt damit
aus der Eindeutigkeit des Grenzwerts. □

Die Vertauschbarkeit partieller Ableitungen ist also gewährleistet, wenn die partiellen Ableitungen
existieren und stetig sind. Dass man auf diese Zusatzforderung der Stetigkeit leider nicht verzichten
kann, zeigt die folgende Aufgabe:

Aufgabe 26.7 (Partielle Ableitungen müssen nicht miteinander vertauschen). Zeige, dass die parti-
ellen Ableitungen ∂1∂2 f und ∂2∂1 f der Funktion

f : R2→ R, x 7→

x1x2
x2

1−x2
2

x2
1+x2

2
für (x1,x2) ̸= (0,0),

0 für (x1,x2) = (0,0)

zwar existieren, aber nicht übereinstimmen.

Um die Probleme solcher nicht miteinander vertauschbaren Ableitungen zu umgehen, wollen wir
uns daher ab jetzt auf Abbildungen beschränken, deren partielle Ableitungen nicht nur existieren,
sondern auch stetig sind.

Definition 26.8 (Mehrfach stetig differenzierbare Funktionen). Es sei f : D→ Rm eine Abbildung
auf einer offenen Teilmenge D ⊂ Rn. Für r ≥ 0 sagt man, f sei r-mal stetig differenzierbar
oder r-mal stetig partiell differenzierbar, wenn alle r-fachen partiellen Ableitungen ∂i1 · · ·∂ir f
für i1, . . . , ir ∈ {1, . . . ,n} auf D existieren und stetig sind. Man schreibt diese Ableitungen auch als

∂ r f
∂xi1 · · ·∂xir

bzw. bei mehrfachen Ableitungen nach derselben Variablen in „Potenzschreibweise“, d. h. z. B. als

∂
2
1 f oder

∂ 2 f
∂x2

1

für die zweifache partielle Ableitung nach x1. Im Fall m = 1 eines eindimensionalen Zielraums
schreibt man die Menge aller r-mal stetig differenzierbaren Funktionen auf D wie in Definition 11.7
als Cr(D).

Bemerkung 26.9.
(a) In Bemerkung 25.20 hatten wir bereits gesehen, dass im Fall r = 1 die Begriffe „(einmal)

stetig differenzierbar“ und „(einmal) stetig partiell differenzierbar“ zusammenfallen, wenn
man sie auf die natürliche Art definiert. Man kann zeigen, dass dieselbe Aussage auch für
höhere Ableitungen gilt, wenn man „r-mal stetig differenzierbar“ als Stetigkeit der r-ten
Ableitung wie in Bemerkung 26.5 (a) und „r-mal stetig partiell differenzierbar“ wie in De-
finition 26.8 interpretiert. Da wir mit den höheren Ableitungen wie in Bemerkung 26.5 (a)
hier nicht arbeiten werden, wollen wir dies hier allerdings nicht beweisen, und erwähnen
diese Tatsache nur als Motivation dafür, dass wir die Begriffe „r-mal stetig differenzierbar“
und „r-mal stetig partiell differenzierbar“ oben als gleichwertig definiert haben.

(b) Ist f eine r-mal stetig differenzierbare Funktion wie in Definition 26.8, so sind nicht nur
die partiellen Ableitungen der Stufe r, sondern auch die aller Stufen k ≤ r stetig: Da die
partiellen Ableitungen ∂i1 · · ·∂ir f nach Voraussetzung stetig sind, sind die (r− 1)-fachen
partiellen Ableitungen ∂i2 · · ·∂ir f stetig partiell differenzierbar, nach Satz 25.17 und Lemma
25.7 also auch total differenzierbar und damit stetig. Mit Induktion sind demnach dann auch
alle niedrigeren partiellen Ableitungen stetig.

(c) Nach (b) und dem Satz 26.6 von Schwarz kommt es bei bis zu r-fachen partiellen Ablei-
tungen einer r-fach stetig differenzierbaren Funktion nicht auf die Reihenfolge dieser Ablei-
tungen an, da man in einem Ausdruck der Form ∂i1 · · ·∂ik f (mit k ≤ r) durch fortgesetztes
Vertauschen zweier benachbarter partieller Ableitungen jede andere Reihenfolge erzeugen
kann.
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Aufgabe 26.10. Es sei f die in einer Umgebung des Ursprungs von R2 definierte reellwertige Funk-
tion mit

f (x) =
cos(x5

1 + x5
2)

1− x3
1− x3

2
.

Berechne mit einer geeigneten Potenzreihenentwicklung (und ohne Computer) die partielle Ablei-
tung ∂ 11

1 ∂ 8
2 f (0).

Mit Hilfe dieser höheren Ableitungen können wir nun zur Verallgemeinerung der Taylor-Formel
aus Satz 11.13 auf den mehrdimensionalen Fall kommen. Damit das darin auftretende Taylor-
Polynom formal analog zum eindimensionalen Fall aussieht, führen wir dazu zunächst einige nütz-
liche Schreibweisen ein, die die Vertauschbarkeit partieller Ableitungen ausnutzen.

Notation 26.11 (Multi-Indizes). Ein Element I = (i1, . . . , in) in Nn nennt man einen Multi-Index.
Für derartige Multi-Indizes definieren wir die suggestiven Notationen

|I| := i1 + · · ·+ in,

I! := i1! · · · in!,

∂
I := ∂

i1
1 · · ·∂

in
n ,

xI := xi1
1 · · ·x

in
n für x ∈ Rn.

Zusätzlich wird im Folgenden die Konstruktion I + e j = (i1, . . . , i j−1, i j + 1, i j+1, . . . , in) auftreten,
wobei e j mit j ∈ {1, . . . ,n} wie üblich für den j-ten Einheitsvektor steht.

Beachte, dass die Indizes i1, i2, . . . hier eine andere Bedeutung haben als vorher: Während sie in
Definition 26.8 die Variablen waren, nach denen differenziert wird, geben sie hier an, wie oft nach
einer bestimmten Variablen differenziert wird.

Definition 26.12 (Taylor-Polynom). Es seien D ⊂ Rn offen, r ∈ N, f : D→ Rm eine r-mal stetig
differenzierbare Funktion, und a ∈ D. Dann heißt

T r
f ,a : D→ Rm, x 7→ ∑

I:|I|≤r

∂ I f (a)
I!

(x−a)I

das r-te Taylor-Polynom von f mit Entwicklungspunkt a.

Wir werden dieses Taylor-Polynom nahezu ausschließlich im Fall m = 1 eines eindimensionalen
Zielraums betrachten – dies ist natürlich auch der für die Untersuchung von Extremwerten relevante
Fall. Zunächst einmal können wir dann feststellen, dass es mit unserer alten Definition des eindimen-
sionalen Taylor-Polynoms aus Definition 11.10 (a) übereinstimmt, wenn n = 1 ist (und I damit aus
nur einem Index besteht). Auch für allgemeine n gibt die Zahl |I| in den Summanden offensichtlich
an, wie oft f differenziert wird. Die Terme mit kleinem |I| lassen sich auf die folgende Art mit Hilfe
von Matrixprodukten auch anders schreiben:

Definition 26.13 (Hesse-Matrix). Es seien D ⊂ Rn offen und f : D→ R eine zweimal stetig dif-
ferenzierbare Funktion, also f ∈ C2(D). Dann heißt für a ∈ D die (nach Satz 26.6 symmetrische)
Matrix der zweiten partiellen Ableitungen

Hf (a) := (∂i∂ j f (a))i, j ∈ Rn×n

die Hesse-Matrix von f in a.

Bemerkung 26.14 (Alternative Schreibweise der Taylor-Polynome vom Grad höchstens 2). Für die
ersten Terme in den Taylor-Polynomen einer Funktion f ∈ C2(D) können die zugehörigen Multi-
Indizes explizit angegeben werden:

(a) Für |I|= 0 ist nur I = (0, . . . ,0) möglich; der zugehörige Term im Taylor-Polynom ist einfach
der Funktionswert f (a) am Entwicklungspunkt.



26. Höhere Ableitungen 371

(b) Für |I|= 1 ist notwendigerweise I = ei = (0, . . . ,0,1,0, . . . ,0) mit der Eins an einer beliebi-
gen Position i ∈ {1, . . . ,n}. Die entsprechenden Summanden im Taylor-Polynom lassen sich
also schreiben als

n

∑
i=1

∂i f (a)
1!

(xi−ai) = f ′(a) · (x−a).

(c) Für |I| = 2 haben die Multi-Indizes die Form I = ei + e j = (0, . . . ,0,1,0, . . . ,0,1,0, . . . ,0)
mit Einsen an Positionen i < j sowie I = 2ei = (0, . . . ,0,2,0, . . . ,0) mit einer 2 an Position
i. Im Taylor-Polynom führt dies zu den Termen

∑
i< j

∂i∂ j f (a)
1! ·1!

(xi−ai)(x j−a j)+
n

∑
i=1

∂ 2
i f (a)

2!
(xi−ai)

2 =
1
2
·

n

∑
i, j=1

∂i∂ j f (a) · (xi−ai) · (x j−a j)

=
1
2
(x−a)T ·Hf (a) · (x−a).

Das zweite Taylor-Polynom einer zweimal stetig differenzierbaren Funktion f : D→ R an einem
Entwicklungspunkt a ∈ D ist also

T 2
f ,a(x) = f (a)+ f ′(a) · (x−a)+

1
2
(x−a)T ·Hf (a) · (x−a).

Beispiel 26.15. Wir betrachten die Funktion

f : R2→ R, x 7→ x1 sinx2

und wollen dazu das zweite Taylor-Polynom um a = 0 berechnen. Dazu benötigen wir die ersten
und zweiten partiellen Ableitungen

∂1 f (x) = sinx2, ∂2 f (x) = x1 cosx2

und ∂
2
1 f (x) = 0, ∂1∂2 f (x) = cosx2, ∂

2
2 f (x) =−x1 sinx2,

im Nullpunkt also

f (0) = ∂1 f (0) = ∂2 f (0) = ∂
2
1 f (0) = ∂

2
2 f (0) = 0 und ∂1∂2 f (0) = 1.

Das gesuchte Taylor-Polynom ist damit

T 2
f ,0(x) = ∑

i1+i2≤2

∂
i1
1 ∂

i2
2 f (0)

i1! i2!
xi1

1 xi2
2

= f (0)︸︷︷︸
=0

+
∂ 1

1 f (0)
1!︸ ︷︷ ︸
=0

x1
1 +

∂ 1
2 f (0)

1!︸ ︷︷ ︸
=0

x1
2 +

∂ 2
1 f (0)

2!︸ ︷︷ ︸
=0

x2
1 +

∂ 1
1 ∂ 1

2 f (0)
1!1!︸ ︷︷ ︸
=1

x1
1x1

2 +
∂ 2

2 f (0)
2!︸ ︷︷ ︸
=0

x2
2

= x1x2.

Alternativ ist wie in Bemerkung 26.14

f ′(0) = (0 0) und Hf (0) =
(

0 1
1 0

)
,

und damit wieder

T 2
f ,0(x) = 0+(0 0) ·

(
x1
x2

)
+

1
2
(x1 x2) ·

(
0 1
1 0

)
·
(

x1
x2

)
= x1x2.

Das entscheidende Resultat über Taylor-Polynome ist nun, dass T r
f ,a wie im Eindimensionalen als

„beste Näherung“ der Funktion f im Punkt a durch ein Polynom vom Grad r angesehen werden
kann. Präzise ausgedrückt ist die Differenz f (x)−T r

f ,a(x) wie in Satz 11.13 ein (in der Regel kleines)
Restglied, das genauso aussieht wie der nächste Term der Ordnung r+ 1 der Taylor-Entwicklung,
allerdings mit der Ableitung an einer Zwischenstelle berechnet statt am Entwicklungspunkt.
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Satz 26.16 (Taylor-Formel). Es seien D⊂ Rn offen, r ∈ N und f ∈Cr+1(D). Ferner seien a,x ∈ D
zwei Punkte, deren Verbindungsstrecke ax ganz in D liegt (dies ist z. B. für konvexes D immer der
Fall). Dann gibt es ein c ∈ ax mit

f (x)−T r
f ,a(x) = ∑

I:|I|=r+1

∂ I f (c)
I!

(x−a)I .

Wie in Satz 11.13 bezeichnet man diesen Ausdruck auch als das Restglied der Taylor-Entwicklung.68

Beweis. Da ax ganz in D liegt, können wir die Funktion g : [0,1]→ R, t 7→ f (a+ t (x− a)) be-
trachten, die die Einschränkung von f auf diese Verbindungsstrecke beschreibt. Wir werden nun
zeigen, dass die eindimensionale Taylor-Formel aus Satz 11.13 angewendet auf g an der Stelle 1 mit
Entwicklungspunkt 0 exakt die Behauptung unseres Satzes ist.
Dazu müssen wir die höheren Ableitungen von g berechnen: Wir zeigen für alle t ∈ [0,1] mit Induk-
tion über k = 0, . . . ,r+1, dass

g(k)(t) = k! · ∑
I:|I|=k

∂ I f (a+ t (x−a))
I!

(x−a)I . (∗)

Der Induktionsanfang für k = 0, also g(0)(t) = g(t) = f (a+ t (x−a)), ist dabei trivial. Wir nehmen
nun an, dass diese Formel für ein k ∈ {0, . . . ,r} gilt, und müssen diesen Ausdruck erneut nach t dif-
ferenzieren, um g(k+1) zu berechnen. Dazu bemerken wir zunächst, dass die Ableitung der Funktion
t 7→ ∂ I f (a+ t (x−a)) nach der Kettenregel aus Satz 25.30 das Matrixprodukt der Ableitungen von
∂ I f und t 7→ a+ t (x−a) ist, also gleich

n

∑
j=1

∂ j∂
I f (a+ t (x−a)) · (x j−a j) =

n

∑
j=1

∂
I+e j f (a+ t (x−a)) · (x j−a j).

Damit erhalten wir als Ableitung von (∗), wobei wir wieder I = (i1, . . . , in) schreiben,

g(k+1)(t) = k! ·
n

∑
j=1

∑
I:|I|=k

∂ I+e j f (a+ t (x−a))
I!

(x−a)I+e j

= k! ·
n

∑
j=1

∑
I:|I|=k+1

i j>0

∂ I f (a+ t (x−a))
(I− e j)!

(x−a)I (Indexverschiebung i j→ i j−1)

= k! · ∑
I:|I|=k+1

(
∑

j:i j>0
i j︸ ︷︷ ︸

=|I|=k+1

)
· ∂

I f (a+ t (x−a))
I!

(x−a)I (Erweitern mit i j)

= (k+1)! · ∑
I:|I|=k+1

∂ I f (a+ t (x−a))
I!

(x−a)I ,

was die behauptete Formel (∗) mit Induktion zeigt. Damit folgt nun mit der eindimensionalen Taylor-
Formel für g

f (x)−T r
f ,a(x) = g(1)−

r

∑
k=0

g(k)(0)
k!

·1k = g(1)−T r
g,0(1)

11.13
=

g(r+1)(t)
(r+1)!

·1r+1 für ein t ∈ (0,1),

was wegen (∗) für c := a+ t (x−a) genau die Aussage des Satzes ist. □

Die wichtigsten Fälle in Satz 26.16 sind sicher r = 0 und r = 1. Während r = 1 zur im nächsten Ab-
schnitt betrachteten Extremwertberechnung führt, ergibt sich für r = 0 einfach die mehrdimensionale
Entsprechung des Mittelwertsatzes 10.23 (a):

Folgerung 26.17 (Mittelwertsatz). Es seien D⊂Rn offen und f : D→R eine stetig differenzierbare
Funktion. Dann gibt es für alle a,x ∈ D, so dass die Verbindungsstrecke ax ganz in D liegt, eine
Zwischenstelle c ∈ ax mit

f (x)− f (a) = f ′(c) · (x−a).
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Beweis. Mit der Schreibweise aus Bemerkung 26.14 (a) und (b) ist die behauptete Gleichung genau
die Taylor-Formel aus Satz 26.16 für r = 0. □

Bemerkung 26.18. Bereits am Mittelwertsatz sieht man gut, dass die Voraussetzung einer Funktion
mit nur eindimensionalem Zielraum in Satz 26.16 wesentlich ist: Ist f : D→ Rm mit D ⊂ Rn eine
stetig differenzierbare Abbildung mit Komponentenfunktionen f1, . . . , fm und sind a,x∈D wie oben,
so können wir zwar durch Anwendung des gerade gezeigten Mittelwertsatzes auf f1, . . . , fm Punkte
c1, . . . ,cm ∈ ax mit

fi(x)− fi(a) = f ′i (ci) · (x−a)
finden – da die Komponentenfunktionen f1, . . . , fm nichts miteinander zu tun haben müssen, wer-
den diese Punkte aber im Allgemeinen verschieden sein, so dass wir nicht erwarten können, ein
gemeinsames c ∈ ax mit

f (x)− f (a) = f ′(c) · (x−a)
zu finden. Ganz explizit kann man dies z. B. an der Abbildung

f : R→ R2, x 7→
(

cosx
sinx

)
mit Ableitung f ′(x) =

(
−sinx
cosx

)
sehen: Für a = 0 und x = 2π ist f (x)− f (a) = 0, aber es gibt offensichtlich kein c ∈ [0,2π] mit
0 = f ′(c) · (2π−0).
Der Mittelwertsatz (und allgemeiner die Taylor-Formel aus Satz 26.16) gilt also nur für Funktionen
nach R – bzw. bei Funktionen nach Rm nur für die Komponentenfunktionen einzeln. Für mehrdimen-
sionale Wertebereiche können wir lediglich wie folgt eine dem Mittelwertsatz ähnliche Abschätzung
angeben, die wir später noch mehrfach benötigen werden.

Folgerung 26.19. Es seien D⊂ Rn offen und f : D→ Rm eine stetig differenzierbare Funktion mit
Komponentenfunktionen f1, . . . , fm. Dann gilt für alle a,x ∈ D mit ax⊂ D

∥ f (x)− f (a)∥∞ ≤ ∥ f ′|ax∥∞ · ∥x−a∥∞,

wobei mit ∥ f ′|ax∥∞ analog zu Beispiel 24.40 (b) „das Maximum der Zeilensummennorm von f ′ auf
der Strecke ax“ gemeint ist, also

∥ f ′|ax∥∞ := max{∥ f ′(c)∥∞ : c ∈ ax}= max

{
n

∑
j=1
|∂ j fi(c)| : i ∈ {1, . . . ,m},c ∈ ax

}
.

Beweis. Beachte zunächst, dass das angegebene Maximum existiert, da die nach Voraussetzung ste-
tigen Funktionen ∑

n
j=1 |∂ j fi| auf der kompakten Menge ax ⊂ D gemäß Folgerung 24.35 ein Maxi-

mum annehmen.
Nach dem Mittelwertsatz aus Folgerung 26.17 gibt es nun für alle i = 1, . . . ,m einen Punkt ci ∈ ax
mit fi(x)− fi(a) = f ′i (ci) · (x−a), also insbesondere mit

| fi(x)− fi(a)|=
∣∣∣∣ n

∑
j=1

∂ j fi(ci) · (x j−a j)

∣∣∣∣≤ n

∑
j=1
|∂ j fi(ci)| · |x j−a j| ≤

n

∑
j=1
|∂ j fi(ci)| · ∥x−a∥∞

≤ ∥ f ′|ax∥∞ · ∥x−a∥∞.

Mit der Definition der Maximumsnorm auf Rm folgt daraus die behauptete Aussage. □

26.B Extremwerte
Als Nächstes betrachten wir nun den für Extremwertberechnungen wichtigen Fall r = 1 in der
Taylor-Formel aus Satz 26.16, in dem das Restglied also aus den zweiten Ableitungen der betrachte-
ten Funktion besteht. Wir hatten in Lemma 26.2 ja schon gesehen, dass an einem lokalen Extremum
die Ableitung der betrachteten Funktion notwendigerweise gleich Null sein muss. Wie im eindimen-
sionalen Fall in Satz 11.18 geben die zweiten Ableitungen auch hier nun an einer solchen Stelle oft
Auskunft darüber, ob wirklich ein Extremum vorliegt und ob es sich dabei um ein Maximum oder
Minimum handelt – und zwar abhängig davon, ob die Hesse-Matrix gemäß Definition 21.9 (b) und
Bemerkung 21.10 (c) positiv definit, negativ definit oder indefinit ist.
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Satz 26.20 (Extremwertkriterium). Es seien D ⊂ Rn offen und f : D→ R eine zweimal stetig
differenzierbare Funktion. Ferner sei a ∈ D ein kritischer Punkt von f , also f ′(a) = 0. Ist dann die
Hesse-Matrix Hf (a) . . .

(a) positiv definit, so hat f in a ein isoliertes lokales Minimum.

(b) negativ definit, so hat f in a ein isoliertes lokales Maximum.

(c) indefinit, so hat f in a kein lokales Extremum.

Beweis. Nach eventuellem Verkleinern von D auf eine Kugel mit Mittelpunkt a können wir nach
Beispiel 24.22 (c) annehmen, dass D konvex ist. Die Taylor-Formel aus Satz 26.16 für r = 1 in der
Notation von Bemerkung 26.14 liefert dann zu jedem x ∈ D ein c ∈ ax⊂ D mit

f (x) = f (a)+ f ′(a) · (x−a)+
1
2
(x−a)T ·Hf (c) · (x−a).

Da nach Voraussetzung f ′(a) = 0 gilt, müssen wir also untersuchen, ob der Ausdruck

f (x)− f (a) =
1
2
(x−a)T ·Hf (c) · (x−a) (∗)

für x in einer Umgebung von a immer positiv ist, immer negativ ist, oder wechselndes Vorzeichen
hat.

(a) Nach dem Hurwitz-Kriterium aus Satz 21.42 ist die Hesse-Matrix Hf (c) für ein c∈D genau
dann positiv definit, wenn

det((∂i∂ j f (c))i, j=1,...,k)> 0 für alle k = 1, . . . ,n.

Da f nach Voraussetzung zweimal stetig differenzierbar ist, sind diese Determinanten nun
stetige Funktionen in c, und damit ist die Menge

U := {c ∈ D : Hf (c) ist positiv definit}=
n⋂

k=1

{
c ∈ D : det((∂i∂ j f (c))i, j=1,...,k)> 0

}
nach Lemma 23.34 (a) und Beispiel 24.18 als endlicher Durchschnitt offener Mengen offen
und enthält nach Voraussetzung den Punkt a. Nach evtl. erneutem Verkleinern von D können
wir daher D⊂U annehmen.

Dann ist Hf (c) in (∗) aber stets positiv definit, und damit f (x)− f (a)> 0, d. h. f (x)> f (a)
für alle x ̸= a. Also hat f in a ein isoliertes lokales Minimum.

(b) folgt genauso wie (a), indem wir die Bedingungen an U gemäß Satz 22.32 (b) so abändern,
dass sie der negativen Definitheit entsprechen.

(c) Wir zeigen zunächst, dass f in a kein lokales Maximum hat.

Da Hf (a) indefinit ist, gibt es einen Vektor v ∈ Rn mit vT ·Hf (a) · v > 0. Wie in (a) sind die
Einträge der Hesse-Matrix Hf (c) stetige Funktionen in c, und damit ist die Menge

U := {c ∈ D : vT ·Hf (c) · v > 0}

nach Beispiel 24.18 eine offene Umgebung von a. Wie oben können wir nach evtl. Ver-
kleinern von D also wieder D ⊂ U annehmen. Dann ist in (∗) aber für alle t > 0, so dass
x := a+ tv (und damit auch c) noch in D liegt,

f (x)− f (a) =
1
2

t2 vT ·Hf (c) · v > 0,

und damit f (x)> f (a). Also hat f in a kein lokales Maximum.

Natürlich zeigt man mit Hilfe eines Vektors w ∈ Rn mit wT ·Hf (a) ·w < 0 analog, dass f in
a auch kein lokales Minimum hat. □69
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Bemerkung 26.21. Beachte, dass das Kriterium aus Satz 26.20 nicht in jedem Fall entscheiden
kann, ob an einem kritischen Punkt wirklich ein Extremum vorliegt: Ist die Hesse-Matrix zwar nicht
positiv oder negativ definit, aber semidefinit, so trifft keiner der drei Fälle von Satz 26.20 zu. In
diesem Fall könnte man nun (analog zum Eindimensionalen in Satz 11.18) höhere als zweite Ablei-
tungen von f betrachten und dafür ähnliche Kriterien beweisen. Da diese höheren Ableitungen im
Mehrdimensionalen aufgrund der Vielzahl der partiellen Ableitungen recht kompliziert zu untersu-
chen sind, werden wir dies hier aber nicht weiter ausführen.

Bemerkung 26.22 (Geometrische Interpretation des Extremwertkriteriums). Die Aussage von Satz
26.20 ist auch leicht anschaulich zu verstehen: Nach Bemerkung 26.14 erhalten wir aus der Taylor-
Formel für r = 2 um einen Punkt a mit f ′(a) = 0 ja die Näherung

f (x)≈ f (a)+
1
2
(x−a)T ·Hf (a) · (x−a).

Zu der symmetrischen Hesse-Matrix Hf (a) können wir nun nach dem Trägheitssatz von Sylvester
aus Satz 22.35 bzw. Bemerkung 22.36 eine invertierbare Matrix T ∈ GL(n,R) finden, so dass

T T ·Hf (a) ·T = diag(1, . . . ,1︸ ︷︷ ︸
k

,−1, . . . ,−1︸ ︷︷ ︸
l

,0, . . . ,0) =: D

gilt, wobei k und l die Anzahl der positiven bzw. negativen Eigenwerte von Hf (a) ist. Mit der
linearen Koordinatentransformation x = a+Ty wird die obige Näherungsformel dann zu

f (x)≈ f (a)+
1
2

yT ·D · y = f (a)+
1
2
(y2

1 + · · ·+ y2
k− y2

k+1−·· ·− y2
k+l).

Wie in den Bildern unten im zweidimensionalen Fall dargestellt, kann man hieraus leicht das lokale
Verhalten von f um a ablesen: Im positiv definiten Fall k = n ist die Differenz f (x)− f (a) als Summe
von Quadraten für x ̸= a positiv, und damit liegt dort dann ein lokales Minimum vor. Der Schnitt des
Graphen von f mit der y1- oder y2-Koordinatenachse ist in diesem Fall näherungsweise eine nach
oben geöffnete quadratische Parabel. Für eine negativ definite Hesse-Matrix mit l = n haben wir
analog ein Maximum.

f (x)− f (a)

y2
y1

Hf (a) negativ definit

Maximum
f (x)− f (a)≈ 1

2 (−y2
1− y2

2)

f (x)− f (a)

y1

Hf (a) positiv definit
f (x)− f (a)≈ 1

2 (y
2
1 + y2

2)

Minimum

f (x)− f (a)

y2
y1

Hf (a) indefinit

Sattelpunkt
f (x)− f (a)≈ 1

2 (y
2
1− y2

2)

Im indefiniten Fall hat f auf den verschiedenen Geraden durch a manchmal ein Maximum und
manchmal ein Minimum – man sagt auch, dass in diesem Fall ein Sattelpunkt vorliegt. Ist die
Hesse-Matrix schließlich weder positiv definit, negativ definit noch indefinit, ist sie also z. B. einfach
die Nullmatrix, so sagt die obige Näherung einfach f (x) ≈ f (a) für manche oder sogar alle x, und
in diesem Fall müsste man sich diese „näherungsweise Gleichheit“ noch genauer anschauen, um
entscheiden zu können, ob f (x) nun etwas größer oder etwas kleiner ist als f (a).
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Beispiel 26.23. Wir wollen die (lokalen) Extrema der Funktion

f : R2→ R, x 7→ x3
1 +3x2

1 + x2
2

(siehe Bild rechts) berechnen. Dazu bestimmen wir zunächst ge-
mäß Lemma 26.2 die kritischen Punkte als mögliche Kandidaten
für Extrema, also die Stellen mit Ableitung Null: Es ist

f ′(x) = (3x2
1 +6x1 2x2),

und damit f ′(x) = 0 genau dann, wenn

3x1(x1 +2) = 0 und 2x2 = 0,

f (x)

−2 0
x1

woraus sich die kritischen Punkte
(

0
0

)
und

(
−2
0

)
ergeben.

Für unser Extremwertkriterium müssen wir jetzt die Hesse-Matrix berechnen: Es ist

Hf (x) =
(

∂1∂1 f (x) ∂1∂2 f (x)
∂2∂1 f (x) ∂2∂2 f (x)

)
=

(
6x1 +6 0

0 2

)
.

Im Ursprung ist also

Hf
(

0
0

)
=

(
6 0
0 2

)
,

womit Hf dort nach Beispiel 21.15 (a) positiv definit ist. Damit hat f im Ursprung nach Satz
26.20 (a) ein isoliertes lokales Minimum (wie auch im Bild ersichtlich ist). Am anderen kritischen
Punkt ist dagegen

Hf
(
−2
0

)
=

(
−6 0
0 2

)
,

und damit ist Hf dort nach Beispiel 21.15 (a) indefinit. Es liegt an dieser Stelle nach Satz 26.20 (c)
also kein lokales Extremum, sondern ein Sattelpunkt vor.

Aufgabe 26.24. Bestimme alle lokalen Minima und Maxima der Funktionen

(a) f : R2→ R, x 7→ x3
1 + x3

2 +3x1x2;

(b) g : R2→ R, x 7→ x2(x2− cosx1−1)+ cosx1.

Gib zusätzlich von der Funktion g das zweite Taylor-Polynom mit Entwicklungspunkt
(

π/2
0

)
an.

Aufgabe 26.25. Zeige, dass die Funktion f : R2→R, x 7→ (x2−x2
1)(x2−2x2

1) keine lokalen Extrema
hat, dass die Einschränkung von f auf jede Gerade durch den Ursprung aber ein lokales Minimum
in 0 besitzt.

Aufgabe 26.26. Für gegebene Punkte a1, . . . ,ak ∈ Rn betrachten wir die Summe der Abstandsqua-
drate

f : Rn→ R, x 7→
k

∑
i=1
∥x−ai∥2

2.

Bestimme alle lokalen und globalen Extrema von f .

Aufgabe 26.27. Es sei f : Rn→R eine zweimal stetig differenzierbare Funktion, für die die Hesse-
Matrix an jedem Punkt positiv definit ist. Zeige, dass f höchstens ein lokales Extremum besitzt.


