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26. Hohere Ableitungen

Im letzten Kapitel haben wir gesehen, wie man fiir Abbildungen zwischen mehrdimensionalen Réu-
men das Konzept der Differenzierbarkeit definieren und fiir differenzierbare Abbildungen die Ab-
leitung berechnen kann. Analog zum eindimensionalen Fall ist eine der wichtigsten Anwendungen
dieser Theorie, (lokale) Extremwerte von Funktionen zu bestimmen. Wir wollen in diesem Kapi-
tel untersuchen, wie dies im Mehrdimensionalen funktioniert. Wie in Satz 11.18 werden wir dazu
hohere Ableitungen und die Taylor-Formel benotigen, die wir daher zuerst behandeln miissen.

Um von Extremwerten iiberhaupt sprechen zu koénnen, miissen wir natiirlich Funktionswerte mit-
einander vergleichen konnen — was nur geht, wenn der Zielraum der betrachteten Funktionen die
Menge R der reellen Zahlen ist. ,,Mehrdimensional*“ bedeutet im Zusammenhang mit Extremwerten
also nur, dass die Definitionsmenge unserer Abbildungen eine Teilmenge von R” ist.

Hier ist zunéchst einmal die exakte Definition von Extrema, die im Prinzip genauso ist wie im Ein-
dimensionalen in Definition 10.18.

Definition 26.1 (Extrema). Es seien D C R”, f: D — R eine Funktion und a € D. Man sagt, ...
(a) f habe in a ein (globales) Maximum, wenn f(a) > f(x) fiir alle x € D.

(b) f habe in a ein lokales Maximum, wenn es eine Umgebung U von a gibt mit f(a) > f(x)
fiir alle x € U. Gilt sogar f(a) > f(x) fiir alle x € U mit x # a, so nennt man das lokale
Maximum isoliert.

Analog definiert man globale und lokale (isolierte) Minima. Hat f in a ein (globales, lokales, iso-
liertes) Maximum oder Minimum, so sagt man auch, dass f dort ein (globales, lokales, isoliertes)
Extremum hat.

Einfach zu sehen ist genau wie im Eindimensionalen (siehe Lemma 10.20), dass die (erste) Ableitung
einer Funktion ein einfaches notwendiges Kriterium fiir ein lokales Extremum liefert, das nicht auf
dem Rand der Definitionsmenge liegt:

Lemma 26.2 (Notwendige Bedingung fiir Extrema). Es seien D C R" und f: D — R eine Abbil-
dung. Hat f dann in einem Punkt a € D im Inneren der Definitionsmenge ein lokales Extremum und
ist f dort differenzierbar, so gilt f'(a) = 0.

Wie im Eindimensionalen in Bemerkung 10.21 (a) werden Punkte a € D mit f'(a) = 0 als kritische
Punkte bezeichnet.

Beweis. Es seii € {1,...,n}. Wegen a € D ist die reellwertige Funktion g: 7 +— f(a +te;) einer
reellen Variablen ¢ in einer Umgebung von 0 definiert, und hat dort natiirlich ebenfalls ein lokales
Extremum. Nach Lemma 10.20 ist also

fla+te;)) — f(a)

0=¢/(0) =lim : — 3if(a),
und damit wie behauptet f'(a) = (d1f(a)| -+ |duf(a)) =0. O

Beispiel 26.3. Wir wollen die (lokalen) Extrema der Funktion
FR SR, f@) = (x+0) +et
finden. Nach Bemerkung 25.18 (a) ist f differenzierbar mit
F(x) = (2(x1 +x2) +2xpe 2(x1 +x2)).
Ein notwendiges Kriterium fiir ein lokales Extremum am Punkt x € R? ist also

2(x1 +x2) +2xlex% =0 und 2(x;+x)=0,
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was offensichtlich nur fiir x; = x, = 0, also im Nullpunkt erfiillt ist. In der Tat kann man in diesem
Fall einfach sehen, dass im Nullpunkt ein (sogar globales) Minimum vorliegt, denn fiir alle x € R?

ist ja

F(x) = (1 +x2)>+eT>041=1=£(0).

Bemerkung 26.4. Bis hierher funktioniert die Extremwertberechnung also genau wie im Eindimen-
sionalen. Es stellen sich nun natiirlich sofort die folgenden Fragen:

()

(b)

26.A

Wie kann man von einem Punkt a € D mit f'(a) = 0 moglichst einfach iiberpriifen, ob
dort wirklich ein lokales Extremum vorliegt, d. h. welche hinreichenden Kriterien fiir lokale
Extrema gibt es? Wie bereits angekiindigt werden wir hierfiir hohere Ableitungen und eine
mehrdimensionale Taylor-Entwicklung benétigen, die wir in diesem Kapitel untersuchen
werden.

Wie kann man Extrema am Rand der Definitionsmenge D finden, wenn D nicht offen ist?
Betrachten wir z. B. die Funktion f aus Beispiel 26.3 auf dem abgeschlossenen Einheitskreis
Ki = {x € R?:||x||2 < 1}, so muss f dort nach Folgerung 24.35 irgendwo ein Maximum an-
nehmen — und da wir auler dem Minimum bei O keine weiteren Stellen gefunden haben,
an denen die Ableitung von f verschwindet, muss dieses Maximum auf dem Rand des Ein-
heitskreises liegen. Im Gegensatz zum Eindimensionalen besteht dieser Rand jetzt aber nicht
mehr nur aus zwei Punkten, sondern aus einem in diesem Fall selbst eindimensionalen Ob-
jekt, ndmlich der Einheitskreislinie. Wir konnen also nicht mehr einfach alle Randpunkte in
f einsetzen, um das Maximum zu finden, sondern brauchen ein geschickteres Verfahren, um
Randextrema zu finden. Dies wird der Inhalt von Abschnitt ?? sein.

Die mehrdimensionale Taylor-Entwicklung

Zur Einfithrung hoherer Ableitungen, die wir fiir die Taylor-Entwicklung bendtigen werden, gibt es
zwei ganz unterschiedliche Herangehensweisen:

Bemerkung 26.5 (Hohere Ableitungen). Es seien D C R" offen und f: D — R eine Funktion.

(a)

Ist f differenzierbar, so ist die Ableitung von f nach den Bemerkungen 25.4 (c) und 25.6
eine Funktion f’: D — Hom(R",R™) = R"™*"_also selbst wieder eine Funktion zwischen
(offenen Teilmengen von) normierten Rdumen — fiir die wir ja definiert haben, was Diffe-
renzierbarkeit bedeutet. Es liegt also eigentlich nichts nédher als zu sagen, dass f zweimal
differenzierbar heiBt, wenn f’ selbst wieder differenzierbar ist, und f” dann als die Ablei-
tung von f’ zu definieren. Da f’ eine Abbildung von D C R"” nach Hom(R",R™) ist, ist f”
nach Bemerkung 25.6 dann eine Abbildung

"+ D — Hom(R",Hom(R",R™)).

Dies kann man natiirlich fortsetzen, und erhilt (im Fall der Existenz) z. B. als dritte Ableitung
von f eine Abbildung

f": D — Hom(R", Hom(R",Hom(R" , R™))).

Alternativ konnte man hierfiir die Tensorprodukte aus Abschnitt 21.E verwenden: Analog
zu Beispiel 21.59 (b) kann man zeigen, dass Hom(R",V) fiir jeden reellen Vektorraum V
auf natiirliche Art isomorph zu V ® (R")* ist, und dementsprechend konnte man fiir einen
Punkt a € D z.B. f”(a) als Element von R” @ (R")* @ (R")* und f"(a) als Element von
R"® (R")*® (R")* @ (R")* auffassen.

So oder so — auch wenn dies eigentlich die natiirlichste Art der Definition hoherer Ableitun-
gen im mehrdimensionalen Fall ist, sollte hieraus schon ersichtlich sein, dass es sich dabei
allein schon von der Notation her nicht unbedingt um die bequemste Art handelt. Wir werden
im Folgenden daher einen anderen Ansatz verfolgen:
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(b) Da die Spalten der Ableitungsmatrix von f gerade die partiellen Ableitungen sind, konnen
wir zur Betrachtung k-facher Ableitungen auch einfach mehrfache partielle Ableitungen der
Form d;, - - - d;, f betrachten. Diese haben im Gegensatz zum Ansatz aus (a) den grofen Vor-
teil, im Fall ihrer Existenz selbst wieder Funktionen von D nach R™ zu sein — ihr Nachteil
besteht lediglich darin, dass es nicht nur eine, sondern n* solcher k-fachen partiellen Ablei-
tungen gibt, da wir bei jeder der k Differentiationen wieder eine der n Variablen auswihlen
miissen.

Man kann allerdings zumindest hoffen, dass es bei derartigen mehrfachen partiellen Ablei-
tungen nicht auf die Reihenfolge der Ableitungen ankommt. Der folgende Satz besagt, dass
dies in den meisten Féllen auch wirklich so ist.

Satz 26.6 (Satz von Schwarz: Vertauschbarkeit partieller Ableitungen). Es seien D C R" offen
und f: D — R™ eine Abbildung, fiir die die zweifachen partiellen Ableitungen 0;0;f fiir gewisse
i,j€{l,...,n} auf D existieren und in einem Punkt a € D stetig sind. Dann gilt 9,0, f (a) = 9;0; f(a).

Beweis. Wir konnen ohne Einschrinkung m = 1 annehmen, da man sonst jede Komponentenfunk-
tion von f einzeln betrachten kann. Weiterhin konnen wir natiirlich i # j voraussetzen und alle
Variablen aufer x; und x; als konstante Parameter betrachten. Nach Umbenennung der Variablen
konnen wir uns daher auf den Fall n =2, i =1 und j = 2 beschrénken.

Da D offen ist, konnen wir eine offene Kugel U um a in der

Maximumsnorm wihlen, die noch ganz in D liegt. Fiir einen

Punkt x € U mit x| # a; und x; # a; betrachten wir nun den a X
»doppelten Differenzenquotienten* < Xy @ ° < X > =X

X1 aj X1 aj NG
)o@ @) (@) Ly
O(x) := ;

(x1 —a1)(x —az)
der sich aus den Funktionswerten von f an den vier Eckpunk-
ten des Rechtecks wie im Bild rechts ergibt. Wir wollen zei-

gen, dass Q(x) fiir x — a sowohl gegen d;0, f(a) als auch ge-
gen d,d f(a) konvergiert, woraus dann die Behauptung folgt.

Dazu wenden wir zundchst den Mittelwertsatz 10.23 (a) auf die zwischen a, und x; definierte reell-
wertige Funktion

g tHf(?) f(“tl) mit g: tr—>82f<xtl) 82f(at1)

an und erhalten ein ¢, zwischen a; und xp mit

gl —gla) _ glc) _ > (&) -2 (2).

(xl—(ll)()Q—az) _xl—al X1 —aj

O(x) =

Nun wenden wir den Mittelwertsatz erneut auf die zwischen a; und x| definierte Funktion

t . t
hll‘l—>82f< ) mit h’:tn—>8182f< )
[} 2
an und erhalten so ein ¢; zwischen a; und x; mit

o) = "D ZM@) _ ey — 0,3, 5(0)

X1 —ay

fiir ein ¢ € U wie im Bild oben rechts, dessen Koordinaten zwischen a; und x; bzw. a und x, liegen.
Mit x — a gilt nun auch ¢ — a, und damit erhalten wir wie behauptet wegen der vorausgesetzten
Stetigkeit von 010, f

lim Q(x) = lim d; 01 f(¢) = d1 A f(a).

xX—a c—a
Der Ausdruck Q(x) ist aber symmetrisch in den beiden Koordinaten des Startraums, und daher ergibt
sich mit genau dem gleichen Argument (nur indem man den Mittelwertsatz zuerst auf die erste und
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dann auf die zweite Koordinate anwendet) auch lim Q(x) = d»d f(a). Die Behauptung folgt damit
xX—a
aus der Eindeutigkeit des Grenzwerts. O

Die Vertauschbarkeit partieller Ableitungen ist also gewéhrleistet, wenn die partiellen Ableitungen
existieren und stetig sind. Dass man auf diese Zusatzforderung der Stetigkeit leider nicht verzichten
kann, zeigt die folgende Aufgabe:

Aufgabe 26.7 (Partielle Ableitungen miissen nicht miteinander vertauschen). Zeige, dass die parti-
ellen Ableitungen 010, f und 0,0, f der Funktion

2 2
lexz s
X1X fiir (x1,x2) # (0,0),
RS R, x— e (1, 32) 7 (0,0)

0 fiir (x1,x2) = (0,0)

zwar existieren, aber nicht iibereinstimmen.

Um die Probleme solcher nicht miteinander vertauschbaren Ableitungen zu umgehen, wollen wir
uns daher ab jetzt auf Abbildungen beschrinken, deren partielle Ableitungen nicht nur existieren,
sondern auch stetig sind.

Definition 26.8 (Mehrfach stetig differenzierbare Funktionen). Es sei f: D — R eine Abbildung
auf einer offenen Teilmenge D C R”. Fir r > 0 sagt man, f sei r-mal stetig differenzierbar
oder r-mal stetig partiell differenzierbar, wenn alle r-fachen partiellen Ableitungen d;, ---d;, f

fiir iy,...,i, € {1,...,n} auf D existieren und stetig sind. Man schreibt diese Ableitungen auch als
a'f
8)6,'1 tee 8x,~,
bzw. bei mehrfachen Ableitungen nach derselben Variablen in ,,Potenzschreibweise®, d. h. z. B. als
9% f
02f oder —=
if ox?

fiir die zweifache partielle Ableitung nach x;. Im Fall m = 1 eines eindimensionalen Zielraums
schreibt man die Menge aller r-mal stetig differenzierbaren Funktionen auf D wie in Definition 11.7
als C"(D).

Bemerkung 26.9.

(a) In Bemerkung 25.20 hatten wir bereits gesehen, dass im Fall » = 1 die Begriffe ,,(einmal)
stetig differenzierbar* und ,,(einmal) stetig partiell differenzierbar* zusammenfallen, wenn
man sie auf die natiirliche Art definiert. Man kann zeigen, dass dieselbe Aussage auch fiir
hohere Ableitungen gilt, wenn man ,,r-mal stetig differenzierbar* als Stetigkeit der r-ten
Ableitung wie in Bemerkung 26.5 (a) und ,,r-mal stetig partiell differenzierbar” wie in De-
finition 26.8 interpretiert. Da wir mit den hoheren Ableitungen wie in Bemerkung 26.5 (a)
hier nicht arbeiten werden, wollen wir dies hier allerdings nicht beweisen, und erwidhnen
diese Tatsache nur als Motivation dafiir, dass wir die Begriffe ,,r-mal stetig differenzierbar*
und ,,r-mal stetig partiell differenzierbar* oben als gleichwertig definiert haben.

(b) Ist f eine r-mal stetig differenzierbare Funktion wie in Definition 26.8, so sind nicht nur
die partiellen Ableitungen der Stufe r, sondern auch die aller Stufen k < r stetig: Da die
partiellen Ableitungen d;, ---dj, f nach Voraussetzung stetig sind, sind die (r — 1)-fachen
partiellen Ableitungen d;, - - - d;, f stetig partiell differenzierbar, nach Satz 25.17 und Lemma
25.7 also auch total differenzierbar und damit stetig. Mit Induktion sind demnach dann auch
alle niedrigeren partiellen Ableitungen stetig.

(c) Nach (b) und dem Satz 26.6 von Schwarz kommt es bei bis zu r-fachen partiellen Ablei-
tungen einer r-fach stetig differenzierbaren Funktion nicht auf die Reihenfolge dieser Ablei-
tungen an, da man in einem Ausdruck der Form ail ~~~8,-k f (mit k < r) durch fortgesetztes
Vertauschen zweier benachbarter partieller Ableitungen jede andere Reihenfolge erzeugen
kann.
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Aufgabe 26.10. Es sei f die in einer Umgebung des Ursprungs von R? definierte reellwertige Funk-
tion mit
_cos(x] +x3)
flx) = 1 —x% —x% '
Berechne mit einer geeigneten Potenzreihenentwicklung (und ohne Computer) die partielle Ablei-

tung 9195 £(0).

Mit Hilfe dieser hoheren Ableitungen konnen wir nun zur Verallgemeinerung der Taylor-Formel
aus Satz 11.13 auf den mehrdimensionalen Fall kommen. Damit das darin auftretende Taylor-
Polynom formal analog zum eindimensionalen Fall aussieht, fithren wir dazu zunichst einige niitz-
liche Schreibweisen ein, die die Vertauschbarkeit partieller Ableitungen ausnutzen.

Notation 26.11 (Multi-Indizes). Ein Element I = (ij,...,i,) in N” nennt man einen Multi-Index.
Fiir derartige Multi-Indizes definieren wir die suggestiven Notationen

| =i+ +in,
1=l iy,
I._ i i
' =099y,
X! ::xil1 oxin fiir x € R”
Zusitzlich wird im Folgenden die Konstruktion I +¢; = (i,...,ij—1,ij+ 1,ij+1,...,i,) auftreten,
wobei e; mit j € {1,...,n} wie iiblich fiir den j-ten Einheitsvektor steht.

Beachte, dass die Indizes iy,is,... hier eine andere Bedeutung haben als vorher: Wihrend sie in
Definition 26.8 die Variablen waren, nach denen differenziert wird, geben sie hier an, wie oft nach
einer bestimmten Variablen differenziert wird.

Definition 26.12 (Taylor-Polynom). Es seien D C R" offen, r € N, f: D — R™ eine r-mal stetig
differenzierbare Funktion, und a € D. Dann heif3t

r m ' f(a)
Tf,:D—R" x— ) ‘
| <r

(x—a)!
das r-te Taylor-Polynom von f mit Entwicklungspunkt a.

Wir werden dieses Taylor-Polynom nahezu ausschlieBlich im Fall m = 1 eines eindimensionalen
Zielraums betrachten — dies ist natiirlich auch der fiir die Untersuchung von Extremwerten relevante
Fall. Zunichst einmal konnen wir dann feststellen, dass es mit unserer alten Definition des eindimen-
sionalen Taylor-Polynoms aus Definition 11.10 (a) tibereinstimmt, wenn n = 1 ist (und / damit aus
nur einem Index besteht). Auch fiir allgemeine n gibt die Zahl || in den Summanden offensichtlich
an, wie oft f differenziert wird. Die Terme mit kleinem || lassen sich auf die folgende Art mit Hilfe
von Matrixprodukten auch anders schreiben:

Definition 26.13 (Hesse-Matrix). Es seien D C R” offen und f: D — R eine zweimal stetig dif-
ferenzierbare Funktion, also f € C?(D). Dann heiBt fiir a € D die (nach Satz 26.6 symmetrische)
Matrix der zweiten partiellen Ableitungen

Hf(a) :=(90;f(a));; €R""
die Hesse-Matrix von f in a.

Bemerkung 26.14 (Alternative Schreibweise der Taylor-Polynome vom Grad hochstens 2). Fiir die
ersten Terme in den Taylor-Polynomen einer Funktion f € C?(D) kénnen die zugehdrigen Multi-
Indizes explizit angegeben werden:

(a) Fir |I|=0istnur I =(0,...,0) moglich; der zugehérige Term im Taylor-Polynom ist einfach
der Funktionswert f(a) am Entwicklungspunkt.
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(b) Fiir || = 1 ist notwendigerweise [ = ¢; = (0,...,0,1,0,...,0) mit der Eins an einer beliebi-
gen Position i € {1,...,n}. Die entsprechenden Summanden im Taylor-Polynom lassen sich
also schreiben als

" 8,f a
¥ Y () = @) (x-a)
=1 L
(¢) Fiir |I| = 2 haben die Multi-Indizes die Form / =¢; +¢; = (0,...,0,1,0,...,0,1,0,...,0)

mit Einsen an Positionen i < j sowie I = 2¢; = (0,...,0,2,0,...,0) mit einer 2 an Position
i. Im Taylor-Polynom fiihrt dies zu den Termen

d;0:f(a " 9% f(a L
) 1',-f1(‘ ) (xi —ai)(xj —a;) + o /ta) ;( ) (xi—ai)® = % Y. 99;f(a)- (xi—ai)- (xj—a;)
i<y b i=1 : ij—=1
1
- 5(x_a)T Hf(a)- (x—a).

Das zweite Taylor-Polynom einer zweimal stetig differenzierbaren Funktion f: D — R an einem
Entwicklungspunkt a € D ist also

1
TFal) = f(@)+ f(a) (x—a) + 5 (x—a)" - Hf (a) - (x — a).
Beispiel 26.15. Wir betrachten die Funktion
f: R? — R, x+— x| sinx

und wollen dazu das zweite Taylor-Polynom um a = 0 berechnen. Dazu benétigen wir die ersten
und zweiten partiellen Ableitungen

01 f(x) =sinxy, drf(x)=x| cosx,
und  92f(x) =0, 9102f(x) =cosxy, d7f(x) = —x; sinxy,
im Nullpunkt also
F(0)=01£(0) = 2f(0) = 97 £(0) =93 f(0) =0 und 99,/ (0) =1.

Das gesuchte Taylor-Polynom ist damit

IR F(0) ;.
T2 x) = l. 2. i I
70(x) LT M
Af(0) | AFO) 4 FRfO) » 21AF(O d2£(0
=0 2 SR R g AR 2T
=0 =0 -0 —0 e 5
= X1X2.

Alternativ ist wie in Bemerkung 26.14

ro=00 wa a0 (7 g).

und damit wieder

T20(x) = 0+ (0 0)- <2> —|—%(x1 %) (‘1) (1)) : (2) -~

Das entscheidende Resultat iiber Taylor-Polynome ist nun, dass Tf’7 ., Wie im Eindimensionalen als
,beste Niherung der Funktion f im Punkt a durch ein Polynom vom Grad r angesehen werden
kann. Prizise ausgedriickt ist die Differenz f(x) — 77 ,(x) wie in Satz 11.13 ein (in der Regel kleines)
Restglied, das genauso aussieht wie der nidchste Term der Ordnung r + 1 der Taylor-Entwicklung,
allerdings mit der Ableitung an einer Zwischenstelle berechnet statt am Entwicklungspunkt.
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Satz 26.16 (Taylor-Formel). Es seien D C R" offen, r € N und f € C"*1(D). Ferner seien a,x € D
zwei Punkte, deren Verbindungsstrecke ax ganz in D liegt (dies ist z. B. fiir konvexes D immer der
Fall). Dann gibt es ein ¢ € ax mit
, 3 (c)
f0-Trw= Y “w-a)
L|l|=r+1 :

Wie in Satz 11.13 bezeichnet man diesen Ausdruck auch als das Restglied der Taylor-Entwicklung.

Beweis. Da ax ganz in D liegt, konnen wir die Funktion g: [0,1] = R, ¢t — f(a+1¢(x—a)) be-
trachten, die die Einschrinkung von f auf diese Verbindungsstrecke beschreibt. Wir werden nun
zeigen, dass die eindimensionale Taylor-Formel aus Satz 11.13 angewendet auf g an der Stelle 1 mit
Entwicklungspunkt 0 exakt die Behauptung unseres Satzes ist.

Dazu miissen wir die hoheren Ableitungen von g berechnen: Wir zeigen fiir alle ¢ € [0, 1] mit Induk-
tion iiber k =0,...,r+ 1, dass
3 f(a+1(x—a))

gy =k Y o

L|I|=k

(x—a). (%)

Der Induktionsanfang fiir k = 0, also g(® (r) = g(t) = f(a+1(x —a)), ist dabei trivial. Wir nehmen
nun an, dass diese Formel fiir ein k € {0,...,r} gilt, und miissen diesen Ausdruck erneut nach ¢ dif-
ferenzieren, um g(k“) zu berechnen. Dazu bemerken wir zunichst, dass die Ableitung der Funktion
t +— 9 f(a+1(x—a)) nach der Kettenregel aus Satz 25.30 das Matrixprodukt der Ableitungen von
d'fundt + a+1(x—a) ist, also gleich

Y 0i0' fla+t(x—a))-(xj—aj) =Y 9" fla+1(x—a))- (xj—ay).

j=1 j=1
Damit erhalten wir als Ableitung von (x), wobei wir wieder I = (i, ..., i,) schreiben,

g<k+1>(t) — k. i Z a]+ejf(a+t(x_a)) (xia)l-&-e_/

J=1 LI:|I|=k n
! t(x—
=k Z M (x—a)l (Indexverschiebung i; — i; — 1)
& e (I—ej)!
j=1 L|l|=k+1 7
ij>0
! —
=k!- Z ( Z i ) ~M(xfa)l (Erweitern mit i;)
LI|=k+1 \ ji;>0 ’
——
=|l|=k+1
! t(x—
=(k+1)!- M(xfa)[’
I:|I|=k+1 n

was die behauptete Formel (x) mit Induktion zeigt. Damit folgt nun mit der eindimensionalen Taylor-
Formel fiir g

r (k) (r+1)
r 8 (O> k r ”;13 8 (t) r+1 o .
f(x)_Tfa(x):g(l)_k;O k! -1 :g(l)_ gO(l) - (r+1>| -1 furemlE(O,l),
was wegen (x) fiir ¢ :== a+1 (x — a) genau die Aussage des Satzes ist. O

Die wichtigsten Fille in Satz 26.16 sind sicher » = 0 und r = 1. Wihrend » = 1 zur im néchsten Ab-
schnitt betrachteten Extremwertberechnung fiihrt, ergibt sich fiir = 0 einfach die mehrdimensionale
Entsprechung des Mittelwertsatzes 10.23 (a):

Folgerung 26.17 (Mittelwertsatz). Es seien D C R" offen und f: D — R eine stetig differenzierbare

Funktion. Dann gibt es fiir alle a,x € D, so dass die Verbindungsstrecke ax ganz in D liegt, eine
Zwischenstelle ¢ € ax mit

f) = fla)=f(c) (x—a).
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Beweis. Mit der Schreibweise aus Bemerkung 26.14 (a) und (b) ist die behauptete Gleichung genau
die Taylor-Formel aus Satz 26.16 fiir » = 0. g

Bemerkung 26.18. Bereits am Mittelwertsatz siecht man gut, dass die Voraussetzung einer Funktion
mit nur eindimensionalem Zielraum in Satz 26.16 wesentlich ist: Ist f: D — R mit D C R” eine

stetig differenzierbare Abbildung mit Komponentenfunktionen fi,..., f;; und sind a,x € D wie oben,
so konnen wir zwar durch Anwendung des gerade gezeigten Mittelwertsatzes auf f,..., f,, Punkte
Cly...,Cpy € ax mit

fix) = fila) = fi(ci) - (x—a)
finden — da die Komponentenfunktionen fi,..., f;; nichts miteinander zu tun haben miissen, wer-
den diese Punkte aber im Allgemeinen verschieden sein, so dass wir nicht erwarten kdnnen, ein
gemeinsames ¢ € ax mit

£0) — fl@) = (¢)- (x—a)
zu finden. Ganz explizit kann man dies z. B. an der Abbildung

. 2 cosx . . yooy_  —sinx
[T R—=R x— (sinx) mit Ableitung ' (x) = ( cosx >

sehen: Fiir @ = 0 und x = 27 ist f(x) — f(a) = 0, aber es gibt offensichtlich kein ¢ € [0,27] mit
0=7"(c)-(2x—0).
Der Mittelwertsatz (und allgemeiner die Taylor-Formel aus Satz 26.16) gilt also nur fiir Funktionen
nach R — bzw. bei Funktionen nach R™ nur fiir die Komponentenfunktionen einzeln. Fiir mehrdimen-
sionale Wertebereiche konnen wir lediglich wie folgt eine dem Mittelwertsatz dhnliche Abschédtzung
angeben, die wir spiter noch mehrfach benétigen werden.

Folgerung 26.19. Es seien D C R" offen und f: D — R™ eine stetig differenzierbare Funktion mit
Komponentenfunktionen fi,..., fm. Dann gilt fiir alle a,x € D mitax C D

1£ ) = f(@)lleo < 1f Tazllo - [1x — allo,
wobei mit || f ||| analog zu Beispiel 24.40 (b) ,,das Maximum der Zeilensummennorm von f' auf
der Strecke ax“ gemeint ist, also

1 lazelloo = max{[|f"(c)[l- : ¢ € @x} = max { Y 10jfi(o)] i€ {l,....m},c€ clx} :
j=1

Beweis. Beachte zunichst, dass das angegebene Maximum existiert, da die nach Voraussetzung ste-
tigen Funktionen Y.7_, |0;f;| auf der kompakten Menge ax C D gemiB Folgerung 24.35 ein Maxi-
mum annehmen.

Nach dem Mittelwertsatz aus Folgerung 26.17 gibt es nun fiir alle i = 1,...,m einen Punkt ¢; € ax
mit fj(x) — fi(a) = f!(ci) - (x—a), also insbesondere mit

i) = fi@) = | Y ifilen) - (xj—ap)| < L 1035i(en)l- e —asl < 103 i(ei)| - e —allo
j=1 j=1 =1

J
< |1f lalleo - lx — |-

Mit der Definition der Maximumsnorm auf R™ folgt daraus die behauptete Aussage. U

26.B Extremwerte

Als Nichstes betrachten wir nun den fiir Extremwertberechnungen wichtigen Fall » = 1 in der
Taylor-Formel aus Satz 26.16, in dem das Restglied also aus den zweiten Ableitungen der betrachte-
ten Funktion besteht. Wir hatten in Lemma 26.2 ja schon gesehen, dass an einem lokalen Extremum
die Ableitung der betrachteten Funktion notwendigerweise gleich Null sein muss. Wie im eindimen-
sionalen Fall in Satz 11.18 geben die zweiten Ableitungen auch hier nun an einer solchen Stelle oft
Auskunft dariiber, ob wirklich ein Extremum vorliegt und ob es sich dabei um ein Maximum oder
Minimum handelt — und zwar abhéngig davon, ob die Hesse-Matrix gemif} Definition 21.9 (b) und
Bemerkung 21.10 (c) positiv definit, negativ definit oder indefinit ist.
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Satz 26.20 (Extremwertkriterium). Es seien D C R" offen und f: D — R eine zweimal stetig
differenzierbare Funktion. Ferner sei a € D ein kritischer Punkt von f, also f'(a) = 0. Ist dann die
Hesse-Matrix Hf (a) . ..

(a) positiv definit, so hat f in a ein isoliertes lokales Minimum.

(b) negativ definit, so hat f in a ein isoliertes lokales Maximum.

(¢c) indefinit, so hat f in a kein lokales Extremum.

Beweis. Nach eventuellem Verkleinern von D auf eine Kugel mit Mittelpunkt @ kénnen wir nach
Beispiel 24.22 (c¢) annehmen, dass D konvex ist. Die Taylor-Formel aus Satz 26.16 fiir »r = 1 in der
Notation von Bemerkung 26.14 liefert dann zu jedem x € D ein ¢ € ax C D mit

£ = @)+ 7/ (@) (r—a) + 5 (v —a)T - HF () (x—a).

Da nach Voraussetzung f’ (a) = 0 gilt, miissen wir also untersuchen, ob der Ausdruck
1
f(X)*f(a):E(X*a)THf(C)'(X*a) ()

fiir x in einer Umgebung von a immer positiv ist, immer negativ ist, oder wechselndes Vorzeichen
hat.

(a) Nach dem Hurwitz-Kriterium aus Satz 21.42 ist die Hesse-Matrix Hf (c) fiir ein ¢ € D genau
dann positiv definit, wenn

det((9;0,f(c))ij=1,.k) >0 firallek=1,...,n.
Da f nach Voraussetzung zweimal stetig differenzierbar ist, sind diese Determinanten nun

stetige Funktionen in ¢, und damit ist die Menge
n
U :={c € D: Hf(c) ist positiv definit} = ﬂ {c € D :det((did;f(c))ij=1,..k) > 0}
k=1
nach Lemma 23.34 (a) und Beispiel 24.18 als endlicher Durchschnitt offener Mengen offen
und enthélt nach Voraussetzung den Punkt a. Nach evtl. erneutem Verkleinern von D kénnen
wir daher D C U annehmen.
Dann ist Hf (c¢) in (x) aber stets positiv definit, und damit f(x) — f(a) > 0, d.h. f(x) > f(a)
fiir alle x # a. Also hat f in a ein isoliertes lokales Minimum.
(b) folgt genauso wie (a), indem wir die Bedingungen an U gemél Satz 22.32 (b) so abdndern,
dass sie der negativen Definitheit entsprechen.

(c) Wir zeigen zunichst, dass f in a kein lokales Maximum hat.
Da Hf (a) indefinit ist, gibt es einen Vektor v € R” mit v' - Hf (a) - v > 0. Wie in (a) sind die
Eintréige der Hesse-Matrix Hf (c) stetige Funktionen in ¢, und damit ist die Menge
U:={ceD:v' -Hf(c)-v>0}

nach Beispiel 24.18 eine offene Umgebung von a. Wie oben konnen wir nach evtl. Ver-
kleinern von D also wieder D C U annehmen. Dann ist in (x) aber fiir alle r > 0, so dass
x :=a+tv (und damit auch c¢) noch in D liegt,

1
f@) = fla) = 52T -Hf () v >0,
und damit f(x) > f(a). Also hat f in a kein lokales Maximum.

Natiirlich zeigt man mit Hilfe eines Vektors w € R” mit w' - Hf (a) - w < 0 analog, dass f in
a auch kein lokales Minimum hat. O
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Bemerkung 26.21. Beachte, dass das Kriterium aus Satz 26.20 nicht in jedem Fall entscheiden
kann, ob an einem kritischen Punkt wirklich ein Extremum vorliegt: Ist die Hesse-Matrix zwar nicht
positiv oder negativ definit, aber semidefinit, so trifft keiner der drei Fille von Satz 26.20 zu. In
diesem Fall kdnnte man nun (analog zum Eindimensionalen in Satz 11.18) hohere als zweite Ablei-
tungen von f betrachten und dafiir dhnliche Kriterien beweisen. Da diese htheren Ableitungen im
Mehrdimensionalen aufgrund der Vielzahl der partiellen Ableitungen recht kompliziert zu untersu-
chen sind, werden wir dies hier aber nicht weiter ausfiihren.

Bemerkung 26.22 (Geometrische Interpretation des Extremwertkriteriums). Die Aussage von Satz
26.20 ist auch leicht anschaulich zu verstehen: Nach Bemerkung 26.14 erhalten wir aus der Taylor-
Formel fiir » = 2 um einen Punkt a mit f’(a) = 0 ja die Niherung

1
f@) = fla)+ 5 (x—a)T-Hf(a) (x—a).
Zu der symmetrischen Hesse-Matrix Hf (a) konnen wir nun nach dem Trigheitssatz von Sylvester
aus Satz 22.35 bzw. Bemerkung 22.36 eine invertierbare Matrix T € GL(n,R) finden, so dass

TT.Hf(a)-T = diag(1,...,1,—1,...,—1,0,...,0) =: D
——— N——
k 1

gilt, wobei k und [ die Anzahl der positiven bzw. negativen Eigenwerte von Hf (a) ist. Mit der
linearen Koordinatentransformation x = a + Ty wird die obige Ndherungsformel dann zu

F0) % F@) 4 537Dy = fl@) 4 5 034+t ).
Wie in den Bildern unten im zweidimensionalen Fall dargestellt, kann man hieraus leicht das lokale
Verhalten von f um a ablesen: Im positiv definiten Fall k = n ist die Differenz f(x) — f(a) als Summe
von Quadraten fiir x # a positiv, und damit liegt dort dann ein lokales Minimum vor. Der Schnitt des
Graphen von f mit der y;- oder y,-Koordinatenachse ist in diesem Fall niherungsweise eine nach
oben geoffnete quadratische Parabel. Fiir eine negativ definite Hesse-Matrix mit / = n haben wir
analog ein Maximum.

f(x) = f(a)
V1
Hf(a) positiv definit Hf (a) negativ definit Hf (a) indefinit
O -flam301+)  fO-fl@=z(01-3) )= fla);01-3)
Minimum Maximum Sattelpunkt

Im indefiniten Fall hat f auf den verschiedenen Geraden durch a manchmal ein Maximum und
manchmal ein Minimum — man sagt auch, dass in diesem Fall ein Sattelpunkt vorliegt. Ist die
Hesse-Matrix schlieBlich weder positiv definit, negativ definit noch indefinit, ist sie also z. B. einfach
die Nullmatrix, so sagt die obige Néherung einfach f(x) ~ f(a) fiir manche oder sogar alle x, und
in diesem Fall miisste man sich diese ,,ndherungsweise Gleichheit” noch genauer anschauen, um
entscheiden zu konnen, ob f(x) nun etwas groBer oder etwas kleiner ist als f(a).
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Beispiel 26.23. Wir wollen die (lokalen) Extrema der Funktion
f:R* SR, xr—>x?+3x%+x%

(siehe Bild rechts) berechnen. Dazu bestimmen wir zunéchst ge-
mifl Lemma 26.2 die kritischen Punkte als mogliche Kandidaten
fir Extrema, also die Stellen mit Ableitung Null: Es ist

S(x)=(Bxi+6x1 2x),
und damit f’(x) = 0 genau dann, wenn
3x1(x;+2)=0 und 2x, =0,

woraus sich die kritischen Punkte (8) und ( 02> ergeben.

Fiir unser Extremwertkriterium miissen wir jetzt die Hesse-Matrix berechnen: Es ist

o 8181f(x) 8182f(x) _[(6x;+6 O
Hﬂ”(@&ﬂ@ &&ﬂ@)( 0 J'

0 6 0
w(5)-(0 2)
womit Hf dort nach Beispiel 21.15 (a) positiv definit ist. Damit hat f im Ursprung nach Satz
26.20 (a) ein isoliertes lokales Minimum (wie auch im Bild ersichtlich ist). Am anderen kritischen

Punkt ist dagegen
-2 -6 0
w(5)= (o 3)

und damit ist Hf dort nach Beispiel 21.15 (a) indefinit. Es liegt an dieser Stelle nach Satz 26.20 (c¢)
also kein lokales Extremum, sondern ein Sattelpunkt vor.

Im Ursprung ist also

Aufgabe 26.24. Bestimme alle lokalen Minima und Maxima der Funktionen
(@) f: R R, x5 x5+ +3x1x2;

(b) g: RZ > R, X+ xp(xy —cosx; — 1) +cosx;.

Gib zusitzlich von der Funktion g das zweite Taylor-Polynom mit Entwicklungspunkt <ﬂ62> an.

Aufgabe 26.25. Zeige, dass die Funktion f: R? — R, x+ (x2 —x7)(x2 — 2x?) keine lokalen Extrema
hat, dass die Einschrinkung von f auf jede Gerade durch den Ursprung aber ein lokales Minimum
in 0 besitzt.

Aufgabe 26.26. Fiir gegebene Punkte ay,...,q; € R" betrachten wir die Summe der Abstandsqua-
drate

k
fTR'=S R x— Z [lx — a3
i=1
Bestimme alle lokalen und globalen Extrema von f.

Aufgabe 26.27. Essei f: R” — R eine zweimal stetig differenzierbare Funktion, fiir die die Hesse-
Matrix an jedem Punkt positiv definit ist. Zeige, dass f hochstens ein lokales Extremum besitzt.



