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25. Differenzierbarkeit im Mehrdimensionalen

Wie im eindimensionalen Fall in Kapitel 10 wollen wir uns nach der Stetigkeit von Abbildungen jetzt
mit der Differenzierbarkeit beschäftigen. Wir erinnern uns dazu zunächst einmal daran, wie wir dif-
ferenzierbare Funktionen damals definiert hatten: Hat D keine isolierten Punkte, ist f : D→K eine
Funktion und a ∈ D, so heißt f differenzierbar in a, wenn der Grenzwert des Differenzenquotienten

f ′(a) := lim
x→a

f (x)− f (a)
x−a

∈K (∗)

(der dann die Ableitung von f in a genannt wird) existiert. Die anschauliche Idee hinter dieser
Definition war, dass dann für x in der Nähe von a die Approximation

f ′(a)≈ f (x)− f (a)
x−a

, und damit f (x)≈ f (a)+ f ′(a) · (x−a)

gilt, dass wir f also in der Nähe von a durch eine Gerade x 7→ f (a)+ f ′(a) · (x− a) mit Steigung
f ′(a) annähern. Wollen wir diese Idee der linearen Approximierbarkeit nun auf andere Start- und
Zielbereiche verallgemeinern, stellen wir zunächst fest:

• Um lineare Approximierbarkeit formulieren zu können, müssen wir offensichtlich wissen,
was lineare Abbildungen zwischen den betrachteten Räumen überhaupt sind. In metrischen
Räumen wäre dies z. B. nicht der Fall, da dort im Allgemeinen ja nicht einmal eine Addition
bzw. Multiplikation definiert ist. Wir werden uns daher für die Untersuchung der Differen-
zierbarkeit auf normierte Räume (bzw. Teilmengen davon) beschränken müssen.

• Betrachten wir als Beispiel einmal als Start- und Zielraum die normierten Räume Kn bzw.
Km, so ist nun die Idee der linearen Approximierbarkeit f (x) ≈ f (a)+ f ′(a) · (x− a) für
x ∈Kn in der Nähe eines gegebenen Punktes a∈Kn sinnvoll formulierbar, wenn wir dies als
Gleichung im Zielraum Km auffassen, f ′(a) ∈Km×n eine Matrix ist und „ ·“ das Matrixpro-
dukt mit dem Vektor x−a ∈ Kn darstellt. Ableitungen werden im Mehrdimensionalen also
zu Matrizen werden.

• Die Ableitungsmatrix f ′(a) wird uns dann von a aus für jeden kleinen Schritt x−a in einer
beliebigen Richtung angeben, um welchen Wert f ′(a) · (x− a) sich f dabei ändert. Damit
dies eindeutig bestimmt ist, muss man sich dem Punkt a aber offensichtlich innerhalb des
Definitionsbereichs überhaupt erst einmal aus jeder Richtung nähern können. Im Gegensatz
zum Eindimensionalen werden wir im Folgenden daher nur offene Definitionsbereiche be-
trachten, also nicht über Differenzierbarkeit in Randpunkten sprechen.

Mit diesen Vorüberlegungen werden wir im folgenden Abschnitt nun die Ableitung im Mehrdimen-
sionalen definieren und angeben, wie man sie berechnen kann.

25.A Differenzierbare Abbildungen

Wollen wir die Definition der Ableitung ins Mehrdimensionale übertragen, haben wir zunächst ein
weiteres Problem: Wir können keinen Differenzenquotienten wie in (∗) in der Einleitung oben bil-
den, da wir hierzu durch den Vektor x− a teilen müssten – was natürlich nicht möglich ist. Daher
werden wir als Erstes nun die eindimensionale Definition so umschreiben, dass sie sich besser auf
die neue Situation übertragen lässt.

Lemma 25.1 (Differenzierbarkeit als lineare Approximierbarkeit). Es seien D⊂K offen, f : D→K
eine Abbildung und a ∈ D. Dann ist f genau dann in a differenzierbar mit Ableitung c = f ′(a) ∈K,
wenn es eine Funktion r : D→K gibt mit

(a) f (x) = f (a)+ c(x−a)+ r(x) für alle x ∈ D, und
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(b) lim
x→a

r(x)
x−a

= 0.

Beweis. Die Bedingung (a) besagt offensichtlich, dass r die Funktion r(x) = f (x)− f (a)−c(x−a)
ist. Damit gelten die beiden Bedingungen (a) und (b) genau dann, wenn

lim
x→a

f (x)− f (a)− c(x−a)
x−a

= 0, also lim
x→a

(
f (x)− f (a)

x−a
− c
)
= 0

ist, d. h. wenn f differenzierbar in a mit Ableitung c ist. □

Bemerkung 25.2. Man kann sich die Funktion r in Lemma 25.1 als „Restfunktion“ vorstellen, also
als Differenz zwischen der eigentlichen Funktion f und ihrer Näherung x 7→ f (a)+ c(x−a) bei a.
Natürlich erhalten wir aus (a) am gegebenen Punkt x = a in jedem Fall schon einmal r(a) = 0. Die
Bedingung (b) besagt nun gerade, dass dieser Rest auch „in der Nähe des Punktes a sehr klein“, die
Näherung also dort sehr gut ist: Der Quotient r(x)

x−a ist ja bei a von der Form „ 0
0 “, und die gegebene

Bedingung besagt nun gerade, dass sich hier für x→ a der Zähler r(x) gegen den Nenner x− a
durchsetzt. Man sagt dafür auch, dass „die Restfunktion r für x→ a schneller als linear gegen 0
konvergiert“.

Auf den ersten Blick sieht es nun vielleicht so aus, als ob wir mit Lemma 25.1 im Hinblick auf eine
Verallgemeinerung auf das Mehrdimensionale noch nicht viel erreicht haben, weil wir in (b) ja im-
mer noch durch x−a dividieren. Dies ist aber nicht so: Die gegebene Bedingung ist ja offensichtlich
äquivalent zu lim

x→a
r(x)
|x−a| = 0, und dort können wir nun einfach die Betragsstriche durch die Norm

ersetzen. Wir erhalten so die folgende Definition der Differenzierbarkeit, die sich von der obigen
Bedingung nur dadurch unterscheidet, dass c nun eine m×n-Matrix und x−a 7→ c(x−a) damit eine
allgemeine lineare Abbildung vom Startraum Kn in den Zielraum Km (statt wie bisher von K nach
K) ist.

Definition 25.3 (Differenzierbarkeit in Kn). Es seien D ⊂ Kn offen und a ∈ D. Eine Abbildung
f : D→Km heißt (total) differenzierbar in a, wenn es eine Matrix A ∈Km×n und eine Abbildung
r : D→Km gibt, so dass

(a) f (x) = f (a)+A(x−a)+ r(x) für alle x ∈ D, und

(b) lim
x→a
x ̸=a

r(x)
∥x−a∥

= 0.

Wir werden in Folgerung 25.12 noch sehen, dass die Matrix A (und damit auch r) in diesem Fall
eindeutig bestimmt ist. Wir nennen sie dann die (totale) Ableitung von f in a und bezeichnen sie
wie üblich mit f ′(a) ∈ Km×n (in der Literatur ist hierfür auch die Bezeichnung D f (a) üblich, da
Matrizen oftmals mit großen Buchstaben bezeichnet werden). Ebenfalls wie im Eindimensionalen
werden wir im Grenzwert (b) die Bedingung x ̸= a in der Regel nicht hinschreiben, da sie wegen der
Division durch ∥x−a∥ offensichtlich ist.

Die Abbildung f heißt differenzierbar, wenn sie in jedem Punkt a ∈ D differenzierbar ist.

Bemerkung 25.4.
(a) Mit dem gleichen Argument wie z. B. bei der Beschränktheit in Bemerkung 23.21 (b) sieht

man auch hier, dass Definition 25.3 nicht von der verwendeten Norm abhängt.

(b) Im eindimensionalen Fall m = n = 1 stimmt Definition 25.3 aufgrund von Lemma 25.1
offensichtlich mit der alten Definition 10.3 der Differenzierbarkeit überein, wenn wir die
1×1-Matrix f ′(a) als Element von K auffassen.

(c) Ist f : D→Km differenzierbar, so können wir die Ableitung ihrerseits wieder als Funktion

f ′ : D→Km×n, x 7→ f ′(x)

auffassen. Beachte allerdings, dass diese Ableitungsfunktion im Gegensatz zum Eindimen-
sionalen zwar die gleiche Startmenge D, aber nicht die gleiche Zielmenge wie die ursprüng-
liche Funktion f : D→Km hat!
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Beispiel 25.5 (Differenzierbarkeit linearer Abbildungen). Ist f : Rn→Rm selbst bereits eine lineare
Abbildung, also f (x) = Ax für eine Matrix A ∈Rm×n, so gilt f (x) = f (a)+A(x−a) für alle x ∈Rn.
Die Bedingungen aus Definition 25.3 sind dann also mit der Nullfunktion als Restfunktion r erfüllt.
Also ist f in diesem Fall differenzierbar mit (von x unabhängiger) Ableitung f ′(x) = A.

Bemerkung 25.6 (Differenzierbarkeit in normierten Räumen). Genau wie bei unserer Untersuchung
linearer Abbildungen in Abschnitt 16.C haben wir den Begriff der Differenzierbarkeit hier zunächst
einmal nur für Abbildungen zwischen (Teilmengen von) Kn und Km definiert. Wie ihr euch vielleicht
schon denken könnt, ist eine analoge Definition aber genauso in beliebigen normierten Räumen mög-
lich, wobei die Ableitung dann statt einer Matrix eine lineare Abbildung zwischen den gegebenen
Räumen ist: Sind V und W normierte Räume und f : D→W eine Abbildung auf einer offenen Teil-
menge D ⊂ V , so nennt man f in einem Punkt a ∈ D differenzierbar, wenn es eine stetige lineare
Abbildung Φ ∈ Hom(V,W ) und eine Abbildung r : D→W gibt mit

(a) f (x) = f (a)+Φ(x−a)+ r(x) für alle x ∈ D, und

(b) lim
x→a

r(x)
∥x−a∥

= 0.

Auch in diesem Fall heißt Φ dann die Ableitung f ′(a) ∈ Hom(V,W ) von f in a.

Für V =Kn und W =Km ist dies aufgrund des Isomorphismus Km×n∼=Hom(Kn,Km) aus Folgerung
16.24 (a) offensichtlich äquivalent zu Definition 25.3. Auch für beliebige endlich erzeugte normierte
Räume können wir diese neue Definition nach Wahl von Basen von V und W noch auf Definition
25.3 zurückführen, da diese Basen ja Identifikationen von V und W mit Kn und Km erzeugen. Be-
achte aber, dass dieser verallgemeinerte Begriff der Differenzierbarkeit in nicht endlich erzeugten
normierten Räumen in der Regel von den gewählten Normen abhängen wird, und dass die Stetig-
keit der linearen Abbildung f ′(a) ∈ Hom(V,W ) dann auch eine echte Bedingung ist (siehe Aufgabe
24.12).

Für den Rest dieser Vorlesung werden wir der Einfachheit halber aber fast ausschließlich mit Abbil-
dungen zwischen Teilmengen von Kn und Km arbeiten, und können die Ableitung solcher Funktio-
nen daher wie in Definition 25.3 als Matrizen schreiben.

Als Erstes wollen wir nun wie im Eindimensionalen (siehe Folgerung 10.7) als einfache Folgerung
aus Definition 25.3 sehen, dass jede differenzierbare Funktion auch stetig ist.

Lemma 25.7. Sind D ⊂ Kn offen und f : D → Km eine in einem Punkt a ∈ D differenzierbare
Funktion, so ist f auch stetig in a.

Beweis. Erfüllt f die Differenzierbarkeitsbedingung aus Definition 25.3, so gilt

lim
x→a
x ̸=a

f (x) = lim
x→a
x ̸=a

(
f (a)+ f ′(a) (x−a)︸ ︷︷ ︸

→0

+
r(x)
∥x−a∥︸ ︷︷ ︸
→0

∥x−a∥︸ ︷︷ ︸
→0

)
= f (a)

und damit auch lim
x→a

f (x) = f (a), d. h. f ist stetig in a. □

Um Beispiele von differenzierbaren Funktionen und Ableitungen angeben zu können, müssen wir
uns nun als Nächstes fragen, wie man Ableitungen überhaupt berechnen kann. Beachte, dass dies
nicht offensichtlich ist, da Definition 25.3 die Ableitung im Gegensatz zum Eindimensionalen ja
nicht über eine konkrete Formel, sondern als eine Matrix mit einer bestimmten Eigenschaft defi-
niert – aber nichts darüber aussagt, wie man eine solche Matrix finden kann. Über das folgende
Konzept der Richtungsableitungen können wir dieses Problem auf den uns bekannten eindimensio-
nalen Fall zurückführen.

Definition 25.8 (Richtungsableitungen und partielle Ableitungen). Es seien D ⊂ Kn offen, a ∈ D
und f : D→Km eine Abbildung. Ferner wählen wir einen Vektor v ∈Kn\{0}.
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(a) Existiert der Grenzwert

∂v f (a) := lim
t→0

f (a+ t v)− f (a)
t

∈Km,

so nennen wir ihn die Richtungsableitung von f in a in Richtung v. In der Literatur schreibt
man hierfür manchmal auch ∂ f

∂v (a).

(b) Ist speziell v = ei der i-te Einheitsvektor für ein i ∈ {1, . . . ,n}, so heißt die entsprechende
Richtungsableitung

∂i f (a) := ∂ei f (a) = lim
t→0

f (a+ t ei)− f (a)
t

∈Km

die i-te partielle Ableitung von f in a; hierfür ist auch die Schreibweise ∂ f
∂xi

(a) üblich. Exis-
tieren alle diese partiellen Ableitungen (aber nicht notwendig alle Richtungsableitungen) von
f in a, so nennt man f in a partiell differenzierbar.

Die Funktion f heißt partiell differenzierbar, wenn sie in jedem Punkt a ∈ D partiell diffe-
renzierbar ist.

Bemerkung 25.9.
(a) Im Fall m = 1 und K = R ist die Richtungsablei-

tung leicht geometrisch zu interpretieren: Nach
Definition 25.8 (a) ist sie einfach die gewöhnli-
che Ableitung der Funktion t 7→ f (a+ tv) in einer
Variablen t im Punkt 0, also wie im Bild rechts die
Steigung der Funktion f im Punkt a, wenn man sie
auf die Gerade a+Rv durch a mit Richtungsvek-
tor v einschränkt (und t als Koordinate auf dieser
Geraden wählt). Die Richtungsableitung ∂v f (a)
gibt also an, wie stark sich f ändert, wenn man
sich von a aus ein kleines Stück in Richtung v be-
wegt.

f

x1
v

f (a)

x2

a

f |a+Rv

(b) Im Gegensatz zur (totalen) Ableitung haben die Richtungsableitungen (und damit auch die
partiellen Ableitungen) einer Funktion f : D→ Km den Vorteil, dass sie im Fall ihrer Exis-
tenz in jedem Punkt selbst wieder Funktionen ∂v f : D→ Km mit der gleichen Start- und
Zielmenge wie f sind (vergleiche Bemerkung 25.4 (c)).

(c) Im Fall m = 1 einer Abbildung mit Zielraum K lassen sich die partiellen Ableitungen von f
leicht mit unseren Rechenregeln aus Kapitel 10 berechnen: Es ist dann nämlich

∂i f (a) = lim
t→0

1
t
·

 f


a1
...

ai + t
...

an

− f


a1
...

ai
...

an




genau die gewöhnliche Ableitung von f nach der Variable xi im Punkt ai, wenn man die
übrigen Variablen als konstant ansieht. Aber auch im allgemeinen Fall m > 1 ist die Berech-
nung der partiellen Ableitungen einfach: Da sich der Grenzwert aus Definition 25.8 dann
nach Lemma 24.7 koordinatenweise berechnen lässt, ist ∂i f (a) einfach der Vektor mit Koor-
dinaten ∂i f j(a) für j = 1, . . . ,m, wenn f1, . . . , fm : D→ K die Komponentenfunktionen von
f : D→Km sind.

Beispiel 25.10. Um die partiellen Ableitungen der Funktion

f : R2→ R2, x 7→
(

x1x2
x1 sinx2

)
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zu berechnen, müssen wir nach Bemerkung 25.9 (c) einfach nur die Komponentenfunktionen von
f nach x1 bzw. x2 differenzieren und dabei jeweils die andere Variable als Konstante ansehen. Wir
erhalten also mit den üblichen Rechenregeln aus Kapitel 10

∂1 f (x) =
(

x2
sinx2

)
und ∂2 f (x) =

(
x1

x1 cosx2

)
.

Insbesondere ist f also partiell differenzierbar.

Die partiellen Ableitungen einer Funktion können in der Regel also sehr einfach berechnet werden.
Um zu sehen, wie sie uns bei der Bestimmung der totalen Differenzierbarkeit bzw. der Ableitungs-
matrix helfen, benötigen wir das folgende einfache Lemma.

Lemma 25.11 (Richtungsableitungen differenzierbarer Funktionen). Es seien D ⊂ Kn offen,
f : D→ Km eine Funktion, und a ∈ D. Ist f in a differenzierbar, so existiert für jedes v ∈ Kn\{0}
die Richtungsableitung ∂v f (a), und es gilt

∂v f (a) = f ′(a) · v

(wobei f ′(a) · v das Matrixprodukt von f ′(a) ∈Km×n mit v ∈Kn ist).

Beweis. Setzen wir die Darstellung f (x) = f (a)+ f ′(a)(x− a)+ r(x) aus Definition 25.3 an der
Stelle x = a+ t v in die Formel für die Richtungsableitung aus Definition 25.8 (a) ein, so erhalten wir

∂v f (a) = lim
t→0

f (a)+ f ′(a)(a+ t v−a)+ r(a+ t v)− f (a)
t

= f ′(a) · v+ lim
t→0

r(a+ t v)
t︸ ︷︷ ︸

(∗)

.

Es bleibt also nur noch zu zeigen, dass der Grenzwert (∗) gleich 0 ist. Dies können wir z. B. mit dem
Folgenkriterium tun: Es sei dazu (tn)n eine beliebige Nullfolge in K\{0}, so dass xn := a+ tn v für
alle n in D liegt. Dann gilt natürlich xn→ a für n→ ∞, und wegen |tn|= ∥xn−a∥

∥v∥ haben wir

lim
n→∞

r(a+ tn v)
|tn|

= ∥v∥ · lim
n→∞

r(xn)

∥xn−a∥
= 0

nach (dem Folgenkriterium aus Satz 24.4 angewendet auf) Bedingung (b) aus Definition 25.3. Wie-
derum mit dem Folgenkriterium bedeutet dies nun aber lim

t→0

r(a+t v)
|t| = 0 und damit auch (∗) = 0, was

zu zeigen war. □

Folgerung 25.12 (Differenzierbare Funktionen sind partiell differenzierbar). Es sei D ⊂ Kn offen.
Ist eine Funktion f : D→Km in einem Punkt a ∈D (total) differenzierbar, so ist f dort auch partiell
differenzierbar, und es gilt

f ′(a) = (∂1 f (a) | · · · |∂n f (a)),

d. h. die Spalten der Ableitungsmatrix f ′(a) sind gerade die partiellen Ableitungen von f . Insbeson-
dere ist die Ableitung f ′(a) also eindeutig bestimmt.

Beweis. Da die partiellen Ableitungen Spezialfälle der Richtungsableitungen sind, folgt die partielle
Differenzierbarkeit sofort aus Lemma 25.11. Darüber hinaus ist die i-te Spalte der Matrix f ′(a)
gerade f ′(a) · ei für alle i = 1, . . . ,n, nach Lemma 25.11 also gleich ∂ei f (a) = ∂i f (a). □

Definition 25.13 (Jacobi-Matrix). Ist die Funktion f : D → Km mit Komponentenfunktionen
f1, . . . , fm : D→K in einem Punkt a ∈ D partiell differenzierbar, so nennt man die Matrix

J f (a) := (∂1 f (a) | · · · |∂n f (a)) = (∂ j fi(a))i, j ∈Km×n

aus Folgerung 25.12 die Jacobi-Matrix von f im Punkt a. Folgerung 25.12 besagt also gerade, dass
die Ableitung einer differenzierbaren Funktion gleich ihrer Jacobi-Matrix sein muss.
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Beispiel 25.14.
(a) Die Jacobi-Matrix der Funktion

f : R2→ R2, x 7→
(

x1x2
x1 sinx2

)
aus Beispiel 25.10 existiert in jedem Punkt und ist gleich

J f (x) = (∂1 f (x) |∂2 f (x)) =
(

x2 x1
sinx2 x1 cosx2

)
.

Beachte jedoch, dass dies noch nicht zeigt, dass f auch differenzierbar ist! In der Tat zeigt
das folgende Beispiel, dass aus der partiellen Differenzierbarkeit im Allgemeinen noch nicht
die totale Differenzierbarkeit folgt, da die partiellen Ableitungen nur das Verhalten von f bei
Annäherung entlang der Koordinatenrichtungen an den betrachteten Punkt berücksichtigt.

(b) Wir betrachten noch einmal die Funktion

f : R2→ R,
(

x1
x2

)
7→

{ 2x1x2
x2

1+x2
2

für (x1,x2) ̸= (0,0),

0 für (x1,x2) = (0,0)

aus Beispiel 24.8. Wir haben dort gesehen, dass f im Nullpunkt nicht stetig, nach Lemma
25.7 also insbesondere auch nicht differenzierbar ist. Dennoch ist f dort partiell differenzier-
bar: Da f auf den Koordinatenachsen gleich 0 ist, ist natürlich

∂1 f (0) = lim
t→0

f (t e1)− f (0)
t

= 0,

und genauso ∂2 f (0) = 0. Obwohl also die Jacobi-Matrix J f (0) = (0 0) ∈ R1×2 existiert,
existiert die Ableitung f ′(0) in diesem Fall nicht.

Algorithmus 25.15 (Differenzierbarkeit einer Abbildung). Mit Folgerung 25.12 können wir nun ein
explizites Verfahren angeben, um zu bestimmen, ob eine gegebene Funktion f : D→ Km in einem
Punkt a ∈ D differenzierbar ist, und in diesem Fall die Ableitung zu berechnen:

(a) Berechne mit den eindimensionalen Methoden aus Abschnitt 10.A die partiellen Ableitun-
gen von f in a, und damit die Jacobi-Matrix J f (a) = (∂1 f (a) | · · · |∂n f (a)). Existiert eine
dieser partiellen Ableitungen nicht, so sind wir fertig: Dann ist f nach Folgerung 25.12 nicht
differenzierbar in a.

(b) Existiert die Jacobi-Matrix J f (a), so kommt nach Folgerung 25.12 nur sie als Ablei-
tungsmatrix f ′(a) in Frage. Damit muss die Restfunktion in Definition 25.3 (a) gleich
r(x) = f (x)− f (a)− J f (a) · (x−a) sein, und gemäß Definition 25.3 (b) ist f genau dann in
a differenzierbar, wenn

lim
x→a

f (x)− f (a)− J f (a) · (x−a)
∥x−a∥

= 0.

Diesen Grenzwert können wir genau wie in Abschnitt 24.A bestimmen.
65

Bemerkung 25.16 (Koordinatenweise Differenzierbarkeit im Zielraum). Ist f : D→Km eine in ei-
nem Punkt a∈D partiell differenzierbare Funktion mit Jacobi-Matrix J f (a) und Komponentenfunk-
tionen f1, . . . , fm : D→K, so kann die Differenzierbarkeit von f in a in diesen Komponenten separat
überprüft werden: Nach Algorithmus 25.15 ist f nämlich genau dann in a differenzierbar, wenn die
dort in (b) angegebene Grenzwertbedingung gilt. Dieser Grenzwert kann nach Lemma 24.7 nun aber
koordinatenweise in Km überprüft werden – d. h. wir erhalten die äquivalenten Bedingungen

lim
x→a

fi(x)− fi(a)− J fi(a) · (x−a)
∥x−a∥

= 0

für alle i = 1, . . . ,m, die genau besagen, dass alle Komponentenfunktionen in a differenzierbar sind.
Wie im Fall der Stetigkeit kann die Differenzierbarkeit jedoch nicht koordinatenweise im Startraum
überprüft werden.
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Auch wenn wir mit Algorithmus 25.15 jetzt eine Möglichkeit haben, eine Abbildung in mehreren
Variablen auf Differenzierbarkeit zu prüfen, können die dafür nötigen Rechnungen in der Grenz-
wertbetrachtung (b) schnell sehr aufwendig werden. Wünschenswert wäre es daher, wenn wir genau
wie im Eindimensionalen ein allgemeines Kriterium hätten, das uns auch ohne Rechnung sagt, dass
„aus schönen Funktionen zusammengesetzte Abbildungen“ immer differenzierbar sind. Ein solches
Kriterium wollen wir jetzt beweisen. Da wir hierfür den nur im Reellen gültigen Mittelwertsatz 10.23
brauchen, beschränken wir uns ab jetzt auf den Fall K= R.

Satz 25.17 (Stetig partiell differenzierbare Funktionen sind differenzierbar). Es seien D ⊂ Rn of-
fen, f : D→ Rm eine Abbildung, und a ∈ D. Wir setzen voraus, dass alle partiellen Ableitungen
∂1 f , . . . ,∂n f in einer Umgebung von a existieren und in a stetig sind – man sagt dann auch, dass f
in a stetig partiell differenzierbar ist.
Dann ist f in a auch differenzierbar (mit Ableitung f ′(a) = J f (a)).

Beweis. Da sowohl die Stetigkeit als auch die Differenzierbarkeit nach Lemma 24.7 bzw. Bemer-
kung 25.16 koordinatenweise im Zielraum überprüft werden können, genügt es, den Fall m = 1 zu
betrachten. Nach Algorithmus 25.15 müssen wir dann die Restfunktion

r(x) := f (x)− f (a)− J f (a) · (x−a) = f (x)− f (a)−
n

∑
i=1

∂i f (a) · (xi−ai) (1)

bilden und beweisen, dass lim
x→a

r(x)
∥x−a∥ = 0 ist.

Wir zeigen dies direkt mit der Definition des Grenzwerts und verwenden dabei die Maximumsnorm
auf Rn. Es sei also ε > 0 gegeben. Da D offen und die partiellen Ableitungen nach Voraussetzung
stetig sind, gibt es dann ein δ > 0, so dass Uδ (a)⊂ D gilt und

|∂i f (x)−∂i f (a)|< ε

n
für alle x ∈Uδ (a) und i = 1, . . . ,n. (2)

Es sei nun x ∈ Uδ (a)\{a} beliebig. Wie im Bild
rechts definieren wir für i = 0, . . . ,n dann die
Punkte

x(i) :=



x1
...
xi

ai+1
...

an


∈Uδ (a),

c(2)

x(1) =
(

x1
a2

)
c(1)

x = x(2) =
(

x1
x2

)
(

a1
a2

)
= x(0) = a

Uδ (a)

so dass also x(0) = a und x(n) = x gilt, und jedes x(i) aus x(i−1) entsteht, indem die i-te Koordinate
von ai auf xi abgeändert wird.

Damit können wir die Restfunktion (1) nun als

r(x) =
n

∑
i=1

(
f (x(i))− f (x(i−1))−∂i f (a) · (xi−ai)

)
(3)

umschreiben, da sich in der Summe der ersten beiden Terme alle Funktionswerte außer f (x) und
f (a) wegheben. Wenden wir nun den Mittelwertsatz 10.23 (a) für i = 1, . . . ,n auf die zwischen ai
und xi definierten reellwertigen Funktionen einer reellen Variablen

gi : t 7→ f



x1
...

xi−1
t

ai+1
...

an


mit Ableitung g′i : t 7→ ∂i f



x1
...

xi−1
t

ai+1
...

an





25. Differenzierbarkeit im Mehrdimensionalen 359

an, so erhalten wir ti zwischen ai und xi und damit wie im Bild oben rechts c(i) auf den Verbindungs-
strecken von ai nach xi mit

f (x(i))− f (x(i−1)) = gi(xi)−gi(ai) = g′i(ti)(xi−ai) = ∂i f (c(i)) · (xi−ai).

Setzen wir dies in (3) ein und beachten dabei, dass die Punkte c(1), . . . ,c(n) in Uδ (a) liegen, so folgt
daraus nun

|r(x)|=
∣∣∣∣ n

∑
i=1

(∂i f (c(i))−∂i f (a)) · (xi−ai)

∣∣∣∣≤ n

∑
i=1
|∂i f (c(i))−∂i f (a)| · |xi−ai|

(2)
<

n

∑
i=1

ε

n
· ∥x−a∥∞ = ε · ∥x−a∥∞

und damit |r(x)|
∥x−a∥∞ < ε , woraus der behauptete Grenzwert lim

x→a
r(x)
∥x−a∥∞ = 0 folgt. □

Bemerkung 25.18.
(a) Insbesondere folgt aus Satz 25.17 also, dass alle Abbildungen differenzierbar sind, deren

Komponentenfunktionen mit Hilfe der vier Grundrechenarten und Verkettungen aus stetig
differenzierbaren Funktionen der Koordinaten des Startraums zusammengesetzt sind – denn
für solche Abbildungen existieren ja nach den Rechenregeln aus Kapitel 10 dann alle par-
tiellen Ableitungen und sind stetig. So ist z. B. die Funktion aus den Beispielen 25.10 und
25.14 (a) in jedem Punkt differenzierbar, und genauso die Abbildung aus den Beispielen
24.8 und 25.14 (b) in jedem Punkt mit Ausnahme des Nullpunkts.

(b) Die Umkehrung von Satz 25.17 gilt natürlich nicht – sie ist ja schon im Eindimensionalen
falsch, da wir in Aufgabe 10.33 bereits gesehen haben, dass eine differenzierbare Funktion
auf R nicht stetig differenzierbar sein muss. Dieses Beispiel lässt sich auch problemlos auf
den höherdimensionalen Fall übertragen:

Aufgabe 25.19 (Differenzierbare Funktionen müssen nicht stetig partiell differenzierbar sein). Zei-
ge, dass die Funktion

f : R2→ R, x 7→

{
(x2

1 + x2
2) sin 1√

x2
1+x2

2
für x ̸= 0,

0 für x = 0

(total) differenzierbar ist, die partiellen Ableitungen von f aber nicht stetig sind. Berechne auch die
Ableitung f ′!

Bemerkung 25.20 (Stetig differenzierbar = stetig partiell differenzierbar). In Satz 25.17 haben wir
eine Funktion f : D→ Rm auf einer offenen Teilmenge D ⊂ Rn aus naheliegenden Gründen stetig
partiell differenzierbar genannt, wenn ihre partiellen Ableitungen existieren und stetig sind.

Genauso natürlich ist allerdings der schon aus Definition 11.7 (b) bekannte Begriff einer stetig
differenzierbaren Funktion, der besagt, dass f (total) differenzierbar und die Ableitungsfunktion
f ′ : D→ Rm×n stetig ist. Erfreulicherweise sind diese beiden Begriffe aufgrund unserer bisherigen
Resultate äquivalent zueinander: Sind f1, . . . , fm : D→R die Komponentenfunktionen von f , so gilt

f ist stetig differenzierbar ⇔ f ist differenzierbar und f ′ : D→ Rm×n ist stetig
24.7⇔ f ist differenzierbar und alle ∂ j fi : D→ R sind stetig
(∗)⇔ f ist partiell differenzierbar und alle ∂ j fi : D→ R sind stetig
⇔ f ist stetig partiell differenzierbar,

wobei in (∗) die Richtung „⇒“ Folgerung 25.12 und die Richtung „⇐“ unser gerade bewiesener
Satz 25.17 ist. In der Regel verwendet man daher nur die einfachere der beiden Formulierungen und
spricht von stetig differenzierbaren Funktionen.

Zusammenfassend haben wir damit nun also die folgenden Äquivalenzen bzw. Implikationen gezeigt
(und gesehen, dass andere Implikationen zwischen diesen Begriffen nicht gelten):
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=⇒
(total) differenzierbar =⇒

partiell differenzierbar

stetig

stetig partiell differenzierbar

stetig differenzierbar⇔

25.20

=⇒
25.17 =⇒

25.12

25.7

Aufgabe 25.21. Es sei

f : R2→ R, x 7→


(

1− cos x2
1

x2

)
·
√

x2
1 + x2

2 für x2 ̸= 0,

0 für x2 = 0.

Zeige, dass alle Richtungsableitungen ∂v f (0) von f im Nullpunkt (mit v ∈ R2\{0}) existieren und
gleich 0 sind, aber dass f dort trotzdem nicht differenzierbar ist.

Aufgabe 25.22.

(a) Es sei A ∈ Rn×n eine quadratische Matrix. Zeige, dass die Abbildung

f : Rn→ R, x 7→ xTAx

differenzierbar ist, und berechne ihre Ableitung.

(b) Zeige, dass die Abbildung f : Rn → R, x 7→ ∥x∥ für keine Norm ∥ · ∥ auf Rn mit n > 0
differenzierbar ist.

(c) Zeige, dass die Abbildung f : Rn×n 7→ Rn×n, A 7→ A2 differenzierbar ist, und berechne ihre
Ableitung im Sinne von Bemerkung 25.6.

Aufgabe 25.23. Es sei g : R2→R eine stetige Abbildung. Zeige, dass f : R2→R, x 7→ x1 g(x) dann
im Nullpunkt differenzierbar ist.

Aufgabe 25.24. Es sei f : Rn→ Rm eine Abbildung, die im Nullpunkt differenzierbar ist.

Man zeige: Gilt f (λx) = λ f (x) für alle λ ∈ R und x ∈ Rn, so ist f bereits eine lineare Abbildung.

Aufgabe 25.25 (Parameterintegrale). Es seien f : D→ R eine stetige Abbildung auf einer offenen
Teilmenge D⊂ R2 sowie [a,b]× [c,d] ein in D enthaltenes Rechteck. Man zeige:

(a) Die Integralfunktion F : [a,b]→ R, x1 7→
∫ d

c
f (x1,x2)dx2 ist stetig.

(b) Ist f stetig partiell nach x1 differenzierbar, so ist F auf (a,b) differenzierbar mit Ableitung

F ′(x1) =
∫ d

c
∂1 f (x1,x2)dx2 (d. h. Differentiation und Integration nach verschiedenen Varia-

blen können vertauscht werden).

(c)
∫ b

a

(∫ d

c
f (x1,x2)dx2

)
dx1 =

∫ d

c

(∫ b

a
f (x1,x2)dx1

)
dx2 (siehe auch Folgerung ??).

Aufgabe 25.26 (Exponentialfunktion für Matrizen). Es seien A ∈Kn×n und v ∈Kn. Man zeige:

(a) Der Grenzwert eA :=
∞

∑
k=0

Ak

k!
existiert in Kn×n.

(b) Die Funktion f : K→Kn, t 7→ eAtv ist differenzierbar mit Ableitung f ′(t) = AeAtv.

Insbesondere ist f damit also eine Lösung der Differentialgleichung f ′ = A f mit der An-
fangsbedingung f (0) = v (siehe auch Aufgabe 20.20).

(Hinweis: Ihr dürft ohne Beweis benutzen, dass diese Exponentialfunktion für kommutieren-
de Matrizen die übliche Funktionalgleichung erfüllt, also insbesondere dass eAt = eA(t−t0)eAt0

gilt. Dies zeigt man genauso wie im eindimensionalen Fall in Folgerung 7.36, indem man das
Cauchy-Produkt aus Satz 7.35 von Reihen in K auf Reihen von Matrizen verallgemeinert.)
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25.B Eigenschaften differenzierbarer Abbildungen

In diesem Abschnitt wollen wir differenzierbare Abbildungen im Mehrdimensionalen etwas genauer
untersuchen und beginnen dazu mit einer geometrischen Deutung für den Fall, dass der Start- oder
Zielraum eindimensional ist.

Bemerkung 25.27 (Geometrische Interpretation der Ableitung bei eindimensionalem Startraum).
Ist f : D→ Rm mit D⊂ R offen, so können wir f als „Kurve in Rm“ ansehen, da f dann durch nur
eine reelle Variable parametrisiert wird. Ist f nun differenzierbar in einem Punkt a ∈ D, so ist

f (x)≈ h(x) := f (a)+ f ′(a)(x−a)

für x in der Nähe von a. Offensichtlich ist h die Parameterdarstellung einer Geraden in Rm mit
Aufpunkt f (a) und Richtungsvektor f ′(a) ∈ Rm×1 = Rm, und wir können uns diese Gerade als
diejenige vorstellen, die die Kurve f beim Parameterwert a am besten approximiert. Mit anderen
Worten ist h gerade die Tangente an die Kurve f im Punkt a. Ihr Richtungsvektor f ′(a), also die
Ableitung von f in a, wird daher als Tangentialvektor von f in a bezeichnet.

Als konkretes Beispiel können wir wie im Bild unten den Halbkreisbogen

f : (0,π)→ R2, x 7→
(

cosx
sinx

)
mit Ableitung f ′ : (0,π)→ R2, x 7→

(
−sinx
cosx

)
betrachten: Hier ist die Tangente an f im Punkt a ∈ (0,π) wie im folgenden Bild gleich

h(x) =
(

cosa
sina

)
+

(
−sina
cosa

)
· (x−a).

π0
−1 1

f (x)

h(x)

f ′(a)

f

Bemerkung 25.28 (Geometrische Interpretation der Ableitung bei eindimensionalem Zielraum).
Auch für eine differenzierbare Abbildung f : D→ R mit offenem D ⊂ Rn können wir wieder mit
unserer linearen Näherungsgleichung

f (x)≈ h(x) := f (a)+ f ′(a)(x−a)

starten. In diesem Fall ist f ′(a)(x−a) jedoch ein Matrixprodukt einer 1×n-Matrix mit einer n×1-
Matrix, und der Graph {(x,h(x)) : x ∈Rn} von h ist ein n-dimensionaler verschobener Unterraum in
Rn×R, der den Funktionsgraphen von f im Punkt a möglichst gut annähert.

Im Bild rechts ist dies für die Abbildung

f : D→ R, x 7→
√

1− x2
1− x2

2

mit Ableitung

f ′(x) =

− x1√
1− x2

1− x2
2

− x2√
1− x2

1− x2
2


a

f (x)

x1

f (a)

h(x)

x2

auf dem offenen Einheitskreis D = {x ∈ R2 : ∥x∥2 < 1} dargestellt, die offensichtlich eine Halbku-
geloberfläche beschreibt. Wir können die Näherungsfunktion h hier als die Tangentialebene an den
Graphen von f auffassen; in höheren Dimensionen n > 2 nennt man den durch h parametrisierten
verschobenen Unterraum von Rn den Tangentialraum an den Graphen von f im Punkt a.
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Beachte, dass die Ableitung in diesem Fall ein Zeilenvektor f ′(a) ∈ R1×n ist, der damit zunächst
einmal nicht wieder im Startraum Rn liegt. Man definiert daher im Fall eines eindimensionalen
Zielraums in der Regel den Gradienten von f als den transponierten Vektor

grad f (a) := f ′(a)T ∈ Rn,

so dass sich die obige Näherungsgleichung mit Hilfe des Standardskalarprodukts auf Rn auch als

f (x)≈ f (a)+ ⟨grad f (a),x−a⟩

schreiben lässt.

In der Tat ermöglicht dies auch noch eine weitere geometrische Interpretation der Ableitung bzw.
des Gradienten bei eindimensionalem Zielraum: Mit der Konstruktion 21.22 des Winkels zwischen
zwei Vektoren können wir auch

f (x)≈ f (a)+∥grad f (a)∥2 · ∥x−a∥2 · cosϕ

schreiben, wobei ϕ den Winkel zwischen den Vektoren x−a und grad f (a) bezeichnet. Bewegt man
sich also von a einen kleinen Schritt der (euklidischen) Länge ε weg, d. h. geht man zu einem x ∈ D
mit ∥x−a∥2 = ε , so erzeugt dies in f näherungsweise eine Änderung von

∥grad f (a)∥2 · ε · cosϕ,

was (für festes ε) maximal wird für cosϕ = 1, d. h. für ϕ = 0, also wenn der gemachte Schritt x−a
und grad f (a) in dieselbe Richtung zeigen. Da die Änderung von f in diesem Fall in etwa gleich
∥grad f (a)∥2 · ε ist, können wir den Gradienten also wie folgt geometrisch interpretieren:

Die Richtung von grad f (a) ist die Richtung des stärksten Anstiegs von f im Punkt a.
Der Betrag von grad f (a) ist die Stärke des Anstiegs von f in dieser Richtung.

Das Bild unten zeigt diesen Sachverhalt für die eben als Beispiel betrachtete Funktion. Sowohl im
dreidimensionalen Bild links als auch im zweidimensionalen Bild rechts sind wie auf einer Land-
karte die sogenannten Höhenlinien von f eingezeichnet – also die Kurven, auf denen f konstant ist.
Der dort eingezeichnete Gradient ist ein Vektor, der in unserem Fall mit

grad f (x) =− 1√
1− x2

1− x2
2

· x

direkt zum Nullpunkt hin zeigt – also in die Richtung, in der f an dieser Stelle am stärksten ansteigt.

x1

a

x2

grad f (a)f = 0,8
f = 0,6

f = 0,4
f = 0,2

x1

f (x)

Wir wollen nun noch die Rechenregeln für Ableitungen aus Kapitel 10 so weit wie möglich auf den
mehrdimensionalen Fall übertragen. Auch wenn wir unsere Berechnungen durch koordinatenweise
Betrachtungen mit Hilfe der partiellen Ableitungen in den meisten Fällen bereits auf den eindimen-
sionalen Fall zurückführen können, sind in der Praxis auch Rechenregeln nützlich, die direkt mit den
Ableitungsmatrizen arbeiten und die koordinatenweise Berechnung der Ableitungen damit umgehen
können.
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Die folgende Aussage entspricht nahezu wörtlich der von Satz 10.8. Beachte aber, dass die Ablei-
tungen jetzt Matrizen sind und keine einfachen Zahlen mehr. Wegen der neuen Definition der Diffe-
renzierbarkeit können die Beweise aus dem eindimensionalen Fall auch nicht einfach übernommen
werden.

Satz 25.29 (Rechenregeln für Ableitungen). Es seien D ⊂ Rn offen und f ,g : D→ Rm zwei Abbil-
dungen, die in einem Punkt a ∈ D differenzierbar sind. Dann gilt:

(a) f ±g ist differenzierbar in a mit ( f ±g)′(a) = f ′(a)±g′(a).

(b) Für λ ∈ R ist λ f differenzierbar in a mit (λ f )′(a) = λ f ′(a).

Im Fall m = 1, wenn Multiplikation und Division der Funktionen ebenfalls möglich sind, gilt zusätz-
lich:

(c) (Produktregel) f g ist differenzierbar in a mit ( f g)′(a) = f ′(a)g(a)+ f (a)g′(a).

(d) (Quotientenregel) Ist g(a) ̸= 0, so ist f
g differenzierbar in a mit ( f

g )
′(a) = f ′(a)g(a)− f (a)g′(a)

g(a)2 .

Beweis. Nach Definition 25.3 der Differenzierbarkeit können wir f (x) = f (a)+ f ′(a)(x−a)+ r(x)
und g(x) = g(a)+g′(a)(x−a)+ s(x) mit r(x)

∥x−a∥ → 0 und s(x)
∥x−a∥ → 0 für x→ a schreiben.

(a) Addition der beiden Ausdrücke für f (x) und g(x) liefert

( f +g)(x) = ( f +g)(a)+( f ′(a)+g′(a))(x−a)+ r(x)+ s(x).

Wegen

lim
x→a

r(x)+ s(x)
∥x−a∥

= lim
x→a

r(x)
∥x−a∥

+ lim
x→a

s(x)
∥x−a∥

= 0

ergibt sich also wiederum mit Definition 25.3, dass f ′(a)+g′(a) die Ableitung von f +g in
a ist. Die Aussagen für die Differenz f −g sowie für λ f in (b) zeigt man natürlich genauso. 66

(c) Hier ergibt die Multiplikation

( f g)(x) = ( f g)(a)+( f ′(a)g(a)+ f (a)g′(a))(x−a)

+ ( f ′(a)(x−a))(g′(a)(x−a))︸ ︷︷ ︸
(A)

+ (Terme mit r(x) und / oder s(x))︸ ︷︷ ︸
(B)

.

Beachte, dass der Ausdruck f ′(a)(x−a) in (A) die Multiplikation einer (1×n)-Matrix mit
einer (n×1)-Matrix ist, die wir daher auch mit Hilfe des Gradienten und des Standardskalar-
produkts als ⟨grad f (a),x−a⟩ schreiben können (siehe Bemerkung 25.28). Analog gilt dies
für g′(a)(x−a), und damit folgt nach der Cauchy-Schwarz-Ungleichung aus Satz 21.19

|(A)| ≤ ∥grad f (a)∥2 · ∥gradg(a)∥2 · ∥x−a∥2
2, d. h.

(A)

∥x−a∥2
→ 0 für x→ a.

Genauso gilt wegen der enthaltenen Faktoren r(x) bzw. s(x) natürlich (B)
∥x−a∥ → 0 für x→ a.

Also können wir hier (A)+ (B) als Restterm auffassen, so dass mit Definition 25.3 folgt,
dass f ′(a)g(a)+ f (a)g′(a) die Ableitung von f g in a ist.

Der Beweis von (d) verläuft ganz analog und soll daher hier nicht gegeben werden. □

Auch die Kettenregel (siehe Satz 10.10) überträgt sich wie erwartet ins Mehrdimensionale.

Satz 25.30 (Kettenregel). Es seien D ⊂ Rn und D′ ⊂ Rm offen. Ferner seien f : D → Rm und
g : D′→ Rp Abbildungen mit f (D) ⊂ D′. Ist dann f differenzierbar in a ∈ D und g differenzierbar
in f (a), so ist auch die Verkettung g◦ f differenzierbar in a, und es gilt

(g◦ f )′(a) = g′( f (a)) · f ′(a),

d. h. „die Ableitung einer Verkettung ist das Produkt der beiden Ableitungen“. (Beachte, dass es
sich hierbei um ein Matrixprodukt einer p×m-Matrix mit einer m× n-Matrix handelt, das wie
gewünscht eine p× n-Matrix als Ableitung von g ◦ f liefert – insbesondere ist die Reihenfolge der
beiden Faktoren hier also wichtig!)
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Beweis. Wegen der Differenzierbarkeit von f in a und g in f (a) gibt es nach Definition 25.3 Funk-
tionen r : D→ Rm und s : D′→ Rp mit

f (x) = f (a)+ f ′(a)(x−a)+ r(x) (1)

und g(y) = g( f (a))+g′( f (a))(y− f (a))+ s(y) (2)

sowie lim
x→a

r(x)
∥x−a∥ = 0 und lim

y→ f (a)

s(y)
∥y− f (a)∥ = 0. Insbesondere können wir also die Funktion

s̃ : D′\{ f (a)}→ Rp, y 7→ s(y)
∥y− f (a)∥

durch s̃( f (a)) := 0 zu einer stetigen Funktion auf ganz D′ fortsetzen und damit statt (2) auch

g(y) = g( f (a))+g′( f (a))(y− f (a))+ s̃(y) · ∥y− f (a)∥
für alle y ∈ D′ schreiben. Setzen wir hier nun y = f (x) ein, so ergibt sich mit (1)

g( f (x)) = g( f (a))+g′( f (a))( f (x)− f (a))+ s̃( f (x)) · ∥ f (x)− f (a)∥
= g( f (a))+g′( f (a)) f ′(a)(x−a)+g′( f (a))r(x)+ s̃( f (x)) · ∥ f ′(a)(x−a)+ r(x)∥︸ ︷︷ ︸

=:R(x)

für alle x ∈ D. Verwenden wir für die auftretenden Matrizen die von der gewählten Vektornorm
induzierte Matrixnorm, so können wir den Restterm R mit Folgerung 24.39 nun abschätzen durch

∥R(x)∥
∥x−a∥

≤ ∥g′( f (a))∥ · ∥r(x)∥
∥x−a∥︸ ︷︷ ︸
→0

+∥s̃( f (x))∥︸ ︷︷ ︸
→0

·∥ f ′(a)∥ · ∥x−a∥
∥x−a∥

+∥s̃( f (x))∥︸ ︷︷ ︸
→0

· ∥r(x)∥
∥x−a∥︸ ︷︷ ︸
→0

,

wobei die markierten Terme für x→ a gegen 0 konvergieren (beachte dabei für den Term s̃( f (x)),
dass f stetig in a und s̃ stetig in f (a) ist, so dass s̃( f (x)) mit x→ a gegen s̃( f (a)) = 0 konvergiert).
Also gilt lim

x→a
∥R(x)∥
∥x−a∥ = 0 und damit auch lim

x→a
R(x)
∥x−a∥ = 0. Die Aussage des Satzes folgt damit aus

Definition 25.3. □

Bemerkung 25.31. Auch ohne sich den genauen Beweis von Satz 25.30 anzusehen, ist einfach zu
verstehen, warum bei der Formel für die Ableitung einer Verkettung Matrixprodukte auftreten: Die
Ableitungen können wir ja gerade als lineare Näherungen der gegebenen Funktionen betrachten –
und lineare Funktionen werden nach Folgerung 16.24 (b) verkettet, indem man die zugehörigen
Matrizen miteinander multipliziert. In Formeln bedeutet dies unter Vernachlässigung der Restterme
folgendes: Können wir als lineare Näherungen

f (x)≈ f (a)+ f ′(a)(x−a) und g( f (x))≈ g( f (a))+g′( f (a))( f (x)− f (a))

schreiben, so ergibt sich daraus durch Einsetzen

g( f (x))≈ g( f (a))+g′( f (a)) f ′(a)(x−a),

d. h. g′( f (a)) f ′(a) ist die Ableitung von g◦ f in a. (Die genaue Behandlung der Restterme, also die
Präzisierung des Zeichens „≈“, ist dann natürlich die eigentliche Arbeit beim Beweis.)

Beispiel 25.32.
(a) Wir betrachten noch einmal die geometrische Deutung der Ableitung bei eindimensiona-

lem Zielraum aus Bemerkung 25.28. Es seien dazu D ⊂ Rn offen, f : D→ R eine differen-
zierbare Funktion, und γ : (a,b)→ D eine differenzierbare Höhenlinie von f , d. h. so dass
f ◦ γ : (a,b)→ R konstant ist. Dann ist die Ableitung dieser Verkettung natürlich in jedem
Punkt t ∈ (a,b) gleich 0, und wir erhalten somit nach Satz 25.30

0 = ( f ◦ γ)′(t) = f ′(γ(t)) · γ ′(t) =
〈
grad f (γ(t)),γ ′(t)

〉
mit dem Standardskalarprodukt. Also ist grad f (γ(t))⊥ γ ′(t), d. h. der Gradient von f steht
in jedem Punkt senkrecht auf (dem Tangentialvektor) der Höhenlinie durch diesen Punkt.
Diese Tatsache, die wir im Beispiel von Bemerkung 25.28 auch sofort im Höhenlinienbild
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erkennen können, ist natürlich jedem bekannt, der schon einmal eine Landkarte mit Hö-
henlinien benutzt hat: Um möglichst schnell nach oben zu kommen, also in Richtung des
Gradienten zu laufen, geht man am besten senkrecht zu den Höhenlinien.

(b) Es sei f die Funktion

f : R>0→ R, x 7→
∫ x

1

sin(xt)
t

dt.

Offensichtlich handelt es sich hierbei um eine Funktion mit eindimensionaler Start- und
Zielmenge, wie wir sie schon vor langer Zeit betrachtet haben. Man kann zeigen, dass dieses
Integral nicht mit den uns bekannten speziellen Funktionen aus Kapitel 9 berechenbar ist, so
dass wir f nicht auf einfachere Art hinschreiben können. Dennoch können wir aber die Ab-
leitung von f mit der mehrdimensionalen Kettenregel konkret bestimmen: Dazu schreiben
wir f = g◦h mit

g : R2
>0→ R,

(
x1
x2

)
7→
∫ x1

1

sin(x2t)
t

dt und h : R>0→ R2, x 7→
(

x
x

)
.

Dann lässt sich g (und natürlich auch h) problemlos differenzieren: Nach dem Hauptsatz
12.21 der Differential- und Integralrechnung liefert die Ableitung des Integrals nach seiner
Obergrenze gerade

∂1g
(

x1
x2

)
=

sin(x2x1)

x1
.

Die partielle Ableitung ∂2g dagegen lässt sich nach Aufgabe 25.25 unter dem Integral be-
rechnen, so dass wir dafür

∂2g =
∫ x1

1
∂2

(
sin(x2t)

t

)
dt =

∫ x1

1
cos(x2t)dt =

1
x2

(sin(x2x1)− sinx2)

erhalten. Beide partiellen Ableitungen sind offensichtlich stetig, so dass g nach Satz 25.17
differenzierbar ist. Damit ergibt die Kettenregel aus Satz 25.30

f ′(x) = g′(h(x))h′(x) =
(

sin(x2)

x
sin(x2)− sinx

x

)
·
(

1
1

)
=

2sin(x2)− sinx
x

.

Aufgabe 25.33. Es sei f : Rn\{0}→ R mit n≥ 2 eine differenzierbare Funktion. Man zeige:

(a) Hängt f nur von ∥x∥2 ab, ist also f (x) = g(∥x∥2) für eine differenzierbare Funktion
g : R>0→ R (man sagt auch: f ist kugelsymmetrisch ), so ist

grad f (x) =
g′(∥x∥2)

∥x∥2
· x für alle x ∈ Rn\{0}.

(b) Gibt es umgekehrt eine Funktion h : Rn\{0} → R mit grad f (x) = h(x) · x für alle x, so
ist f kugelsymmetrisch. (Hinweis: Zeige, dass f entlang eines beliebigen Weges auf einer
Kugeloberfläche konstant ist.)


