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25. Differenzierbarkeit im Mehrdimensionalen

Wie im eindimensionalen Fall in Kapitel 10 wollen wir uns nach der Stetigkeit von Abbildungen jetzt
mit der Differenzierbarkeit beschiftigen. Wir erinnern uns dazu zunichst einmal daran, wie wir dif-
ferenzierbare Funktionen damals definiert hatten: Hat D keine isolierten Punkte, ist f: D — K eine
Funktion und a € D, so heilit f differenzierbar in a, wenn der Grenzwert des Differenzenquotienten
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x—a X—a
(der dann die Ableitung von f in a genannt wird) existiert. Die anschauliche Idee hinter dieser
Definition war, dass dann fiir x in der Ndhe von a die Approximation
f(a)~ M, und damit  f(x) ~ f(a) + f'(a) - (x — a)

X—a

€K ()

gilt, dass wir f also in der Nihe von a durch eine Gerade x — f(a)+ f’(a) - (x — a) mit Steigung
f'(a) anndhern. Wollen wir diese Idee der linearen Approximierbarkeit nun auf andere Start- und
Zielbereiche verallgemeinern, stellen wir zunichst fest:

e Um lineare Approximierbarkeit formulieren zu konnen, miissen wir offensichtlich wissen,
was lineare Abbildungen zwischen den betrachteten Rdumen iiberhaupt sind. In metrischen
Rédumen wiire dies z. B. nicht der Fall, da dort im Allgemeinen ja nicht einmal eine Addition
bzw. Multiplikation definiert ist. Wir werden uns daher fiir die Untersuchung der Differen-
zierbarkeit auf normierte Rdume (bzw. Teilmengen davon) beschrinken miissen.

e Betrachten wir als Beispiel einmal als Start- und Zielraum die normierten Raume K" bzw.
K™, so ist nun die Idee der linearen Approximierbarkeit f(x) = f(a) + f'(a) - (x — a) fiir
x € K" in der Nihe eines gegebenen Punktes a € K" sinnvoll formulierbar, wenn wir dies als
Gleichung im Zielraum K™ auffassen, f’(a) € K™*" eine Matrix ist und ,,-“ das Matrixpro-
dukt mit dem Vektor x —a € K" darstellt. Ableitungen werden im Mehrdimensionalen also
zu Matrizen werden.

e Die Ableitungsmatrix f’(a) wird uns dann von a aus fiir jeden kleinen Schritt x — a in einer
beliebigen Richtung angeben, um welchen Wert f'(a) - (x —a) sich f dabei dndert. Damit
dies eindeutig bestimmt ist, muss man sich dem Punkt a aber offensichtlich innerhalb des
Definitionsbereichs iiberhaupt erst einmal aus jeder Richtung nihern kdnnen. Im Gegensatz
zum Eindimensionalen werden wir im Folgenden daher nur offene Definitionsbereiche be-
trachten, also nicht tiber Differenzierbarkeit in Randpunkten sprechen.

Mit diesen Voriiberlegungen werden wir im folgenden Abschnitt nun die Ableitung im Mehrdimen-
sionalen definieren und angeben, wie man sie berechnen kann.

25.A Differenzierbare Abbildungen

Wollen wir die Definition der Ableitung ins Mehrdimensionale {ibertragen, haben wir zunichst ein
weiteres Problem: Wir konnen keinen Differenzenquotienten wie in (x) in der Einleitung oben bil-
den, da wir hierzu durch den Vektor x — a teilen miissten — was natiirlich nicht moglich ist. Daher
werden wir als Erstes nun die eindimensionale Definition so umschreiben, dass sie sich besser auf
die neue Situation {ibertragen lésst.

Lemma 25.1 (Differenzierbarkeit als lineare Approximierbarkeit). Es seien D C K offen, f: D — K
eine Abbildung und a € D. Dann ist f genau dann in a differenzierbar mit Ableitung c = f'(a) € K,
wenn es eine Funktion r: D — K gibt mit

(@ f(x)=f(a)+c(x—a)+r(x) fiir alle x € D, und
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=0.

Beweis. Die Bedingung (a) besagt offensichtlich, dass r die Funktion r(x) = f(x) — f(a) —c(x —a)
ist. Damit gelten die beiden Bedingungen (a) und (b) genau dann, wenn

lim {® = S@=ctx=a) _ 0 o 1im(f(x)_f(“)—c)=o

xX—a X—da X—a X—da

ist, d. h. wenn f differenzierbar in a mit Ableitung c ist. O

Bemerkung 25.2. Man kann sich die Funktion r in Lemma 25.1 als ,,Restfunktion* vorstellen, also
als Differenz zwischen der eigentlichen Funktion f und ihrer Niherung x — f(a) + ¢ (x — a) bei a.
Natiirlich erhalten wir aus (a) am gegebenen Punkt x = a in jedem Fall schon einmal r(a) = 0. Die
Bedingung (b) besagt nun gerade, dass dieser Rest auch ,,in der Nédhe des Punktes a sehr klein®, die
Niherung also dort sehr gut ist: Der Quotient % ist ja bei a von der Form ,,%“, und die gegebene
Bedingung besagt nun gerade, dass sich hier fiir x — @ der Zihler r(x) gegen den Nenner x — a
durchsetzt. Man sagt dafiir auch, dass ,,die Restfunktion r fiir x — a schneller als linear gegen 0

konvergiert*.

Auf den ersten Blick sieht es nun vielleicht so aus, als ob wir mit Lemma 25.1 im Hinblick auf eine
Verallgemeinerung auf das Mehrdimensionale noch nicht viel erreicht haben, weil wir in (b) ja im-
mer noch durch x — a dividieren. Dies ist aber nicht so: Die gegebene Bedingung ist ja offensichtlich
r(x)

dquivalent zu lim a = 0, und dort konnen wir nun einfach die Betragsstriche durch die Norm

X—a
ersetzen. Wir erhalten so die folgende Definition der Differenzierbarkeit, die sich von der obigen

Bedingung nur dadurch unterscheidet, dass ¢ nun eine m X n-Matrix und x — a — ¢ (x —a) damit eine
allgemeine lineare Abbildung vom Startraum K" in den Zielraum K" (statt wie bisher von K nach
K) ist.

Definition 25.3 (Differenzierbarkeit in K”). Es seien D C K" offen und a € D. Eine Abbildung
f: D — K" heift (total) differenzierbar in a, wenn es eine Matrix A € K”™*" und eine Abbildung
r: D — K™ gibt, so dass

(@ f(x)=f(a)+A(x—a)+r(x) fir alle x € D, und

(x)
®) ] ~
x#a

Wir werden in Folgerung 25.12 noch sehen, dass die Matrix A (und damit auch r) in diesem Fall
eindeutig bestimmt ist. Wir nennen sie dann die (totale) Ableitung von f in a und bezeichnen sie
wie iiblich mit f'(a) € K™*" (in der Literatur ist hierfiir auch die Bezeichnung D (a) iiblich, da
Matrizen oftmals mit groen Buchstaben bezeichnet werden). Ebenfalls wie im Eindimensionalen
werden wir im Grenzwert (b) die Bedingung x # a in der Regel nicht hinschreiben, da sie wegen der
Division durch ||x — a|| offensichtlich ist.

Die Abbildung f heif3it differenzierbar, wenn sie in jedem Punkt a € D differenzierbar ist.

Bemerkung 25.4.

(a) Mit dem gleichen Argument wie z. B. bei der Beschrinktheit in Bemerkung 23.21 (b) sieht
man auch hier, dass Definition 25.3 nicht von der verwendeten Norm abhéngt.
(b) Im eindimensionalen Fall m = n = 1 stimmt Definition 25.3 aufgrund von Lemma 25.1
offensichtlich mit der alten Definition 10.3 der Differenzierbarkeit iiberein, wenn wir die
1 x 1-Matrix f’(a) als Element von K auffassen.
(c) Ist f: D — K™ differenzierbar, so konnen wir die Ableitung ihrerseits wieder als Funktion
fiD—=K™" x f(x)

auffassen. Beachte allerdings, dass diese Ableitungsfunktion im Gegensatz zum Eindimen-
sionalen zwar die gleiche Startmenge D, aber nicht die gleiche Zielmenge wie die urspriing-
liche Funktion f: D — K™ hat!
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Beispiel 25.5 (Differenzierbarkeit linearer Abbildungen). Ist f: R” — R" selbst bereits eine lineare
Abbildung, also f(x) = Ax fiir eine Matrix A € R™*", so gilt f(x) = f(a) + A(x — a) fiir alle x € R".
Die Bedingungen aus Definition 25.3 sind dann also mit der Nullfunktion als Restfunktion r erfiillt.
Also ist f in diesem Fall differenzierbar mit (von x unabhéngiger) Ableitung f’(x) = A.

Bemerkung 25.6 (Differenzierbarkeit in normierten Rdumen). Genau wie bei unserer Untersuchung
linearer Abbildungen in Abschnitt 16.C haben wir den Begriff der Differenzierbarkeit hier zunédchst
einmal nur fiir Abbildungen zwischen (Teilmengen von) K" und K™ definiert. Wie ihr euch vielleicht
schon denken konnt, ist eine analoge Definition aber genauso in beliebigen normierten Rdumen mog-
lich, wobei die Ableitung dann statt einer Matrix eine lineare Abbildung zwischen den gegebenen
Réumen ist: Sind V und W normierte Rdume und f: D — W eine Abbildung auf einer offenen Teil-
menge D C V, so nennt man f in einem Punkt a € D differenzierbar, wenn es eine stetige lineare
Abbildung ® € Hom(V, W) und eine Abbildung r: D — W gibt mit

(@) f(x)=f(a)+D(x—a)+r(x) fir alle x € D, und

®) tim ¥ _¢

wa [lx—al
Auch in diesem Fall heift ® dann die Ableitung f'(a) € Hom(V,W) von f in a.

Fiir V =K" und W = K™ ist dies aufgrund des Isomorphismus K”*" =2 Hom (K", K™) aus Folgerung
16.24 (a) offensichtlich dquivalent zu Definition 25.3. Auch fiir beliebige endlich erzeugte normierte
Réiume konnen wir diese neue Definition nach Wahl von Basen von V und W noch auf Definition
25.3 zuriickfiihren, da diese Basen ja Identifikationen von V und W mit K" und K" erzeugen. Be-
achte aber, dass dieser verallgemeinerte Begriff der Differenzierbarkeit in nicht endlich erzeugten
normierten Rdumen in der Regel von den gewihlten Normen abhidngen wird, und dass die Stetig-
keit der linearen Abbildung f’(a) € Hom(V, W) dann auch eine echte Bedingung ist (siche Aufgabe
24.12).

Fiir den Rest dieser Vorlesung werden wir der Einfachheit halber aber fast ausschlieflich mit Abbil-
dungen zwischen Teilmengen von K" und K™ arbeiten, und kénnen die Ableitung solcher Funktio-
nen daher wie in Definition 25.3 als Matrizen schreiben.

Als Erstes wollen wir nun wie im Eindimensionalen (siehe Folgerung 10.7) als einfache Folgerung
aus Definition 25.3 sehen, dass jede differenzierbare Funktion auch stetig ist.

Lemma 25.7. Sind D C K" offen und f: D — K™ eine in einem Punkt a € D differenzierbare
Funktion, so ist f auch stetig in a.

Beweis. Erfiillt f die Differenzierbarkeitsbedingung aus Definition 25.3, so gilt

: . r(x
im0 =l () @) x5 el ) =@
x#a x#a
—0 —0 —0
und damit auch lgllf(x) = f(a), d.h. f ist stetig in a. 0
X—a

Um Beispiele von differenzierbaren Funktionen und Ableitungen angeben zu konnen, miissen wir
uns nun als Nichstes fragen, wie man Ableitungen tiberhaupt berechnen kann. Beachte, dass dies
nicht offensichtlich ist, da Definition 25.3 die Ableitung im Gegensatz zum Eindimensionalen ja
nicht iiber eine konkrete Formel, sondern als eine Matrix mit einer bestimmten Eigenschaft defi-
niert — aber nichts dariiber aussagt, wie man eine solche Matrix finden kann. Uber das folgende
Konzept der Richtungsableitungen konnen wir dieses Problem auf den uns bekannten eindimensio-
nalen Fall zuriickfiihren.

Definition 25.8 (Richtungsableitungen und partielle Ableitungen). Es seien D C K" offen, a € D
und f: D — K" eine Abbildung. Ferner wihlen wir einen Vektor v € K"\ {0}.
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Existiert der Grenzwert

d,f(a) :=lim M eK™,

t—0 t
so nennen wir ihn die Richtungsableitung von f in a in Richtung v. In der Literatur schreibt
man hierfiir manchmal auch % (a).
Ist speziell v = ¢; der i-te Einheitsvektor fiir ein i € {1,...,n}, so heift die entsprechende
Richtungsableitung

dif (a) := 0, f(a) = lim flatte:)—fla)

t—0 t

eK"

die i-te partielle Ableitung von f in a; hierfiir ist auch die Schreibweise % (a) iiblich. Exis-
tieren alle diese partiellen Ableitungen (aber nicht notwendig alle Richtungsableitungen) von
fin a, so nennt man f in a partiell differenzierbar.

Die Funktion f heilit partiell differenzierbar, wenn sie in jedem Punkt a € D partiell diffe-
renzierbar ist.

Bemerkung 25.9.

(a)

(b)

(©)

Im Fall m = 1 und K = R ist die Richtungsablei-
tung leicht geometrisch zu interpretieren: Nach
Definition 25.8 (a) ist sie einfach die gewdhnli-
che Ableitung der Funktion ¢ — f(a+tv) in einer
Variablen ¢ im Punkt O, also wie im Bild rechts die
Steigung der Funktion f im Punkt a, wenn man sie
auf die Gerade a 4R v durch a mit Richtungsvek-
tor v einschriankt (und ¢ als Koordinate auf dieser
Geraden wihlt). Die Richtungsableitung 9, f(a)
gibt also an, wie stark sich f dndert, wenn man
sich von a aus ein kleines Stiick in Richtung v be-
wegt.

Im Gegensatz zur (totalen) Ableitung haben die Richtungsableitungen (und damit auch die
partiellen Ableitungen) einer Funktion f: D — K™ den Vorteil, dass sie im Fall ihrer Exis-
tenz in jedem Punkt selbst wieder Funktionen o, f: D — K™ mit der gleichen Start- und
Zielmenge wie f sind (vergleiche Bemerkung 25.4 (c)).

Im Fall m = 1 einer Abbildung mit Zielraum K lassen sich die partiellen Ableitungen von f
leicht mit unseren Rechenregeln aus Kapitel 10 berechnen: Es ist dann ndmlich

ai ai

a,-f(a):}g%%- flase | =1l a

an an

genau die gewohnliche Ableitung von f nach der Variable x; im Punkt @;, wenn man die
iibrigen Variablen als konstant ansieht. Aber auch im allgemeinen Fall m > 1 ist die Berech-
nung der partiellen Ableitungen einfach: Da sich der Grenzwert aus Definition 25.8 dann
nach Lemma 24.7 koordinatenweise berechnen lisst, ist d; f (a) einfach der Vektor mit Koor-
dinaten 0;fj(a) fir j=1,...,m, wenn fi,..., fi: D — K die Komponentenfunktionen von
f: D — K" sind.

Beispiel 25.10. Um die partiellen Ableitungen der Funktion

X1X
f:R2—>R2,x»—>< 142 )
X1 Sinxp
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zu berechnen, miissen wir nach Bemerkung 25.9 (c) einfach nur die Komponentenfunktionen von
f nach x; bzw. x; differenzieren und dabei jeweils die andere Variable als Konstante ansehen. Wir
erhalten also mit den iiblichen Rechenregeln aus Kapitel 10

alf(x) - (Siiclzxz> und azf(x) - <X1 (jCOIS)Q) ’

Insbesondere ist f also partiell differenzierbar.

Die partiellen Ableitungen einer Funktion konnen in der Regel also sehr einfach berechnet werden.
Um zu sehen, wie sie uns bei der Bestimmung der totalen Differenzierbarkeit bzw. der Ableitungs-
matrix helfen, benétigen wir das folgende einfache Lemma.

Lemma 25.11 (Richtungsableitungen differenzierbarer Funktionen). Es seien D C K" offen,
f+ D — K™ eine Funktion, und a € D. Ist f in a differenzierbar, so existiert fiir jedes v € K"\{0}
die Richtungsableitung o, f(a), und es gilt

avf(a) = f/(a) v
(wobei f'(a)-v das Matrixprodukt von f'(a) € K"™*" mit v € K" ist).

Beweis. Setzen wir die Darstellung f(x) = f(a) + f’(a) (x — a) + r(x) aus Definition 25.3 an der
Stelle x = a+¢v in die Formel fiir die Richtungsableitung aus Definition 25.8 (a) ein, so erhalten wir

o f(a) :lin(l) f(a)+f/(a)(a+tv—ta)+r(a+tv)—f(a) :f/(a)-erlin(l)M,
t— L/_/

()

Es bleibt also nur noch zu zeigen, dass der Grenzwert () gleich 0 ist. Dies konnen wir z. B. mit dem
Folgenkriterium tun: Es sei dazu (1), eine beliebige Nullfolge in K\{0}, so dass x, := a + 1, v fiir

HX"F“H haben wir

alle n in D liegt. Dann gilt natiirlich x, — a fiir n — oo, und wegen [1,,| = il

=||v|| - im ) =0
n—reo |t ] n—e ||x, —all

nach (dem Folgenkriterium aus Satz 24.4 angewendet auf) Bedingung (b) aus Definition 25.3. Wie-

derum mit dem Folgenkriterium bedeutet dies nun aber lim0 W = 0 und damit auch (x) = 0, was
—

7u zeigen war. U

Folgerung 25.12 (Differenzierbare Funktionen sind partiell differenzierbar). Es sei D C K" offen.
Ist eine Funktion f: D — K" in einem Punkt a € D (total) differenzierbar, so ist f dort auch partiell
differenzierbar, und es gilt

fl(@)=(9if(@)] - |dnf(a)),

d. h. die Spalten der Ableitungsmatrix f'(a) sind gerade die partiellen Ableitungen von f. Insbeson-
dere ist die Ableitung f’(a) also eindeutig bestimmt.

Beweis. Da die partiellen Ableitungen Spezialfille der Richtungsableitungen sind, folgt die partielle
Differenzierbarkeit sofort aus Lemma 25.11. Dariiber hinaus ist die i-te Spalte der Matrix f’(a)
gerade f'(a) -¢; firalle i = 1,...,n, nach Lemma 25.11 also gleich d,, f(a) = d;f(a). O

Definition 25.13 (Jacobi-Matrix). Ist die Funktion f: D — K™ mit Komponentenfunktionen
fi,---, fm: D — Kin einem Punkt a € D partiell differenzierbar, so nennt man die Matrix

If(a):=(dif(a)|--nf(a)) = (9jfila))i; €K™

aus Folgerung 25.12 die Jacobi-Matrix von f im Punkt a. Folgerung 25.12 besagt also gerade, dass
die Ableitung einer differenzierbaren Funktion gleich ihrer Jacobi-Matrix sein muss.
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Beispiel 25.14.
(a) Die Jacobi-Matrix der Funktion
fiR2 5 R? xi ( 1 )
X1 sinx;
aus Beispiel 25.10 existiert in jedem Punkt und ist gleich
— _ [ * X1
170 = @5 19270 = (2 oms)-

Beachte jedoch, dass dies noch nicht zeigt, dass f auch differenzierbar ist! In der Tat zeigt
das folgende Beispiel, dass aus der partiellen Differenzierbarkeit im Allgemeinen noch nicht
die totale Differenzierbarkeit folgt, da die partiellen Ableitungen nur das Verhalten von f bei
Anniherung entlang der Koordinatenrichtungen an den betrachteten Punkt beriicksichtigt.

(b) Wir betrachten noch einmal die Funktion
2.X1X2 . s
f:R? SR, (xl> s Ate fur (x1,x2) # (0,0),
X2 0 fiir (x1,x2) = (0,0)
aus Beispiel 24.8. Wir haben dort gesehen, dass f im Nullpunkt nicht stetig, nach Lemma
25.7 also insbesondere auch nicht differenzierbar ist. Dennoch ist f dort partiell differenzier-
bar: Da f auf den Koordinatenachsen gleich 0 ist, ist natiirlich
ter)— f(0
alf(O):limf( e1) — f(0)
t—0 t

und genauso 3 f(0) = 0. Obwohl also die Jacobi-Matrix J£(0) = (0 0) € R'*? existiert,
existiert die Ableitung f(0) in diesem Fall nicht.

:07

Algorithmus 25.15 (Differenzierbarkeit einer Abbildung). Mit Folgerung 25.12 kénnen wir nun ein
explizites Verfahren angeben, um zu bestimmen, ob eine gegebene Funktion f: D — K™ in einem
Punkt a € D differenzierbar ist, und in diesem Fall die Ableitung zu berechnen:

(a) Berechne mit den eindimensionalen Methoden aus Abschnitt 10.A die partiellen Ableitun-
gen von f in a, und damit die Jacobi-Matrix Jf(a) = (d1f(a)|--- |duf(a)). Existiert eine
dieser partiellen Ableitungen nicht, so sind wir fertig: Dann ist f nach Folgerung 25.12 nicht
differenzierbar in a.

(b) Existiert die Jacobi-Matrix Jf(a), so kommt nach Folgerung 25.12 nur sie als Ablei-
tungsmatrix f’(a) in Frage. Damit muss die Restfunktion in Definition 25.3 (a) gleich
r(x) = f(x) = f(a) = Jf(a) - (x — a) sein, und gemiR Definition 25.3 (b) ist f genau dann in
a differenzierbar, wenn

i 0= fl@) = If(@) (=)

=0.
xa [lx —all

Diesen Grenzwert konnen wir genau wie in Abschnitt 24.A bestimmen.

Bemerkung 25.16 (Koordinatenweise Differenzierbarkeit im Zielraum). Ist f: D — K™ eine in ei-
nem Punkt a € D partiell differenzierbare Funktion mit Jacobi-Matrix J f () und Komponentenfunk-
tionen fi,..., fim: D — K, so kann die Differenzierbarkeit von f in a in diesen Komponenten separat
iberpriift werden: Nach Algorithmus 25.15 ist f ndmlich genau dann in a differenzierbar, wenn die
dort in (b) angegebene Grenzwertbedingung gilt. Dieser Grenzwert kann nach Lemma 24.7 nun aber
koordinatenweise in K™ tiberpriift werden — d. h. wir erhalten die dquivalenten Bedingungen

lim filx) — fila) —Jfi(a) - (x—a)

e =]

=0

firallei = 1,...,m, die genau besagen, dass alle Komponentenfunktionen in a differenzierbar sind.
Wie im Fall der Stetigkeit kann die Differenzierbarkeit jedoch nicht koordinatenweise im Startraum
tiberpriift werden.

65
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Auch wenn wir mit Algorithmus 25.15 jetzt eine Moglichkeit haben, eine Abbildung in mehreren
Variablen auf Differenzierbarkeit zu priifen, konnen die dafiir nétigen Rechnungen in der Grenz-
wertbetrachtung (b) schnell sehr aufwendig werden. Wiinschenswert wére es daher, wenn wir genau
wie im Eindimensionalen ein allgemeines Kriterium hitten, das uns auch ohne Rechnung sagt, dass
,-aus schonen Funktionen zusammengesetzte Abbildungen® immer differenzierbar sind. Ein solches
Kriterium wollen wir jetzt beweisen. Da wir hierfiir den nur im Reellen giiltigen Mittelwertsatz 10.23
brauchen, beschrianken wir uns ab jetzt auf den Fall K = R.

Satz 25.17 (Stetig partiell differenzierbare Funktionen sind differenzierbar). Es seien D C R" of-
fen, f: D — R™ eine Abbildung, und a € D. Wir setzen voraus, dass alle partiellen Ableitungen
o1 f,...,0uf in einer Umgebung von a existieren und in a stetig sind — man sagt dann auch, dass f
in a stetig partiell differenzierbar ist.

Dann ist f in a auch differenzierbar (mit Ableitung f'(a) = Jf(a)).
Beweis. Da sowohl die Stetigkeit als auch die Differenzierbarkeit nach Lemma 24.7 bzw. Bemer-

kung 25.16 koordinatenweise im Zielraum iiberpriift werden konnen, geniigt es, den Fall m = 1 zu
betrachten. Nach Algorithmus 25.15 miissen wir dann die Restfunktion

r(x) == f(x) = f(a) = I f(a) - (x—a) = f(x) = f(a) = Y dif(a) - (xi —a:) )
i=1
bilden und beweisen, dass )lCILI(Il ﬁ =0 ist.

Wir zeigen dies direkt mit der Definition des Grenzwerts und verwenden dabei die Maximumsnorm
auf R”. Es sei also € > 0 gegeben. Da D offen und die partiellen Ableitungen nach Voraussetzung
stetig sind, gibt es dann ein § > 0, so dass Ug(a) C D gilt und

10if(x) — dif (@) < £ fiirallex € Us(a) und i = 1,...,n. 2)
n
Es sei nun x € Us(a)\{a} beliebig. Wie im Bild
rechts definieren wir fiir i = 0,...,n dann die
Punkte X = x(z) = X1
N 2
M a) Lo, ©°
: =x% =a x|
. ay o (.1) .x(l) = ( )
() . Xi cU c aj
x 4 5(a),
: Us(a)
an

so dass also x(© = ¢ und x") = x gilt, und jedes x) aus x(~1) entsteht, indem die i-te Koordinate
von a; auf x; abgedndert wird.

Damit kénnen wir die Restfunktion (1) nun als
n
r@) = Y (f60) = f(6) = af (@) - (xi - i) ) )
i=1
umschreiben, da sich in der Summe der ersten beiden Terme alle Funktionswerte aufler f(x) und
f(a) wegheben. Wenden wir nun den Mittelwertsatz 10.23 (a) fiir i = 1,...,n auf die zwischen q;
und x; definierten reellwertigen Funktionen einer reellen Variablen

X1 X1
Xio1 Xio1

giit—f| t mit Ableitung gi: ¢+ dif | t
ait1 aj+1

dan dan
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an, so erhalten wir ¢; zwischen a; und x; und damit wie im Bild oben rechts ¢\ auf den Verbindungs-
strecken von a; nach x; mit

SO = D) = i) — gilai) = &i(0) (i — ai) = if () - (xi — a).

Setzen wir dies in (3) ein und beachten dabei, dass die Punkte ¢(!),... ¢ in Us(a) liegen, so folgt
daraus nun

M:

(0l = | L (0 () = aif (a)) - i dif ()] - |xi — ail

i=1

2 &
<Z, lx—alle=¢€"|jx—alle

und damit H H < €, woraus der behauptete Grenzwert lim T—ale L alm = = 0 folgt. g
xX—a

Bemerkung 25.18.

(a) Insbesondere folgt aus Satz 25.17 also, dass alle Abbildungen differenzierbar sind, deren
Komponentenfunktionen mit Hilfe der vier Grundrechenarten und Verkettungen aus stetig
differenzierbaren Funktionen der Koordinaten des Startraums zusammengesetzt sind — denn
fiir solche Abbildungen existieren ja nach den Rechenregeln aus Kapitel 10 dann alle par-
tiellen Ableitungen und sind stetig. So ist z. B. die Funktion aus den Beispielen 25.10 und
25.14 (a) in jedem Punkt differenzierbar, und genauso die Abbildung aus den Beispielen
24.8 und 25.14 (b) in jedem Punkt mit Ausnahme des Nullpunkts.

(b) Die Umkehrung von Satz 25.17 gilt natiirlich nicht — sie ist ja schon im Eindimensionalen
falsch, da wir in Aufgabe 10.33 bereits gesehen haben, dass eine differenzierbare Funktion
auf R nicht stetig differenzierbar sein muss. Dieses Beispiel lésst sich auch problemlos auf
den hoherdimensionalen Fall iibertragen:

Aufgabe 25.19 (Differenzierbare Funktionen miissen nicht stetig partiell differenzierbar sein). Zei-
ge, dass die Funktion

2 2\ i 1o
PR R, xes 4 TSI g LA O,
0 fiirx=0
(total) differenzierbar ist, die partiellen Ableitungen von f aber nicht stetig sind. Berechne auch die
Ableitung f”!

Bemerkung 25.20 (Stetig differenzierbar = stetig partiell differenzierbar). In Satz 25.17 haben wir
eine Funktion f: D — R™ auf einer offenen Teilmenge D C R” aus naheliegenden Griinden stetig
partiell differenzierbar genannt, wenn ihre partiellen Ableitungen existieren und stetig sind.

Genauso natiirlich ist allerdings der schon aus Definition 11.7 (b) bekannte Begriff einer stetig
differenzierbaren Funktion, der besagt, dass f (total) differenzierbar und die Ableitungsfunktion
f': D — R™ " gtetig ist. Erfreulicherweise sind diese beiden Begriffe aufgrund unserer bisherigen
Resultate dquivalent zueinander: Sind f,..., f;,: D — R die Komponentenfunktionen von f, so gilt

f ist stetig differenzierbar <> f ist differenzierbar und f': D — R™"" ist stetig
& f ist differenzierbar und alle d; f;: D — R sind stetig

) f ist partiell differenzierbar und alle d; f;: D — R sind stetig
& fist stetig partiell differenzierbar,
wobei in (x) die Richtung ,,=‘ Folgerung 25.12 und die Richtung ,,<=* unser gerade bewiesener

Satz 25.17 ist. In der Regel verwendet man daher nur die einfachere der beiden Formulierungen und
spricht von stetig differenzierbaren Funktionen.

Zusammenfassend haben wir damit nun also die folgenden Aquivalenzen bzw. Implikationen gezeigt
(und gesehen, dass andere Implikationen zwischen diesen Begriffen nicht gelten):
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stetig differenzierbar 257 stetig
2520 25.17 (total) differenzierbar S
stetig partiell differenzierbar 25.12 partiell differenzierbar

Aufgabe 25.21. Es sei

X2 .
FIRESR, x <1fcosi> /X3 +x3 fiirx, £0,

0 fir x, = 0.

Zeige, dass alle Richtungsableitungen 9, f(0) von f im Nullpunkt (mit v € R?\{0}) existieren und
gleich 0 sind, aber dass f dort trotzdem nicht differenzierbar ist.

Aufgabe 25.22.
(a) Essei A € R"™" eine quadratische Matrix. Zeige, dass die Abbildung

fiR" R, x—x Ax
differenzierbar ist, und berechne ihre Ableitung.

(b) Zeige, dass die Abbildung f: R" — R, x — ||x|| fiir keine Norm || - || auf R” mit n > 0
differenzierbar ist.

(c) Zeige, dass die Abbildung f: R"*" — R A — A? differenzierbar ist, und berechne ihre
Ableitung im Sinne von Bemerkung 25.6.

Aufgabe 25.23. Essei g: R? — R eine stetige Abbildung. Zeige, dass f: R*> = R, x > x; g(x) dann
im Nullpunkt differenzierbar ist.

Aufgabe 25.24. Essei f: R” — R™ eine Abbildung, die im Nullpunkt differenzierbar ist.
Man zeige: Gilt f(Ax) = A f(x) fiir alle A € R und x € R”, so ist f bereits eine lineare Abbildung.

Aufgabe 25.25 (Parameterintegrale). Es seien f: D — R eine stetige Abbildung auf einer offenen
Teilmenge D C R? sowie [a,b] x [c,d] ein in D enthaltenes Rechteck. Man zeige:

d
(a) Die Integralfunktion F': [a,b] — R, x| — / S (x1,x2) dx, ist stetig.
c
(b) Ist f stetig partiell nach x; differenzierbar, so ist F' auf (a,b) differenzierbar mit Ableitung

d
Fl(x)) = / d1 f(x1,x2) dx; (d. h. Differentiation und Integration nach verschiedenen Varia-

blen kﬁnneLn vertauscht werden).
b d d b
(c) / (/ f(xl,xz)dx2> dx; = / (/ f(xl,xz)d)q) dx (siehe auch Folgerung ??).
a C C a

Aufgabe 25.26 (Exponentialfunktion fiir Matrizen). Es seien A € K"*" und v € K". Man zeige:

o Ak
(a) Der Grenzwert e := Z — existiert in K"*",

= k!
(b) Die Funktion f: K — K", ¢+ e’y ist differenzierbar mit Ableitung f'(1) = Ae*'.

Insbesondere ist f damit also eine Losung der Differentialgleichung f' = Af mit der An-
fangsbedingung f(0) = v (siche auch Aufgabe 20.20).

(Hinweis: Thr diirft ohne Beweis benutzen, dass diese Exponentialfunktion fiir kommutieren-
de Matrizen die iibliche Funktionalgleichung erfiillt, also insbesondere dass e’ = eA('—%0) eAto
gilt. Dies zeigt man genauso wie im eindimensionalen Fall in Folgerung 7.36, indem man das
Cauchy-Produkt aus Satz 7.35 von Reihen in K auf Reihen von Matrizen verallgemeinert.)
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25.B Eigenschaften differenzierbarer Abbildungen

In diesem Abschnitt wollen wir differenzierbare Abbildungen im Mehrdimensionalen etwas genauer
untersuchen und beginnen dazu mit einer geometrischen Deutung fiir den Fall, dass der Start- oder
Zielraum eindimensional ist.

Bemerkung 25.27 (Geometrische Interpretation der Ableitung bei eindimensionalem Startraum).
Ist f: D — R™ mit D C R offen, so konnen wir f als ,,Kurve in R™* ansehen, da f dann durch nur
eine reelle Variable parametrisiert wird. Ist f nun differenzierbar in einem Punkt a € D, so ist

f(x) ~ h(x) = f(a)+ f'(a) (x—a)

fiir x in der Nédhe von a. Offensichtlich ist 4 die Parameterdarstellung einer Geraden in R mit
Aufpunkt f(a) und Richtungsvektor f’(a) € R™*! = R™, und wir konnen uns diese Gerade als
diejenige vorstellen, die die Kurve f beim Parameterwert a am besten approximiert. Mit anderen
Worten ist h gerade die Tangente an die Kurve f im Punkt a. Ihr Richtungsvektor f”(a), also die
Ableitung von f in a, wird daher als Tangentialvektor von f in a bezeichnet.

Als konkretes Beispiel konnen wir wie im Bild unten den Halbkreisbogen

. 2 cosx . . /. 2 —sinx
f:(0,m) >R, x— (sinx) mit Ableitung f': (0,7) —» R, x+— < cosx )

betrachten: Hier ist die Tangente an f im Punkt a € (0, ) wie im folgenden Bild gleich

o= () (im0

N e f
0 T

Bemerkung 25.28 (Geometrische Interpretation der Ableitung bei eindimensionalem Zielraum).
Auch fiir eine differenzierbare Abbildung f: D — R mit offenem D C R” konnen wir wieder mit
unserer linearen Naherungsgleichung

f(x) ~ h(x) := f(a) + f'(a) (x—a)

starten. In diesem Fall ist f'(a) (x — a) jedoch ein Matrixprodukt einer 1 x n-Matrix mit einer n x 1-
Matrix, und der Graph {(x,s(x)) : x € R"} von h ist ein n-dimensionaler verschobener Unterraum in
R" x R, der den Funktionsgraphen von f im Punkt @ moglichst gut annihert.

Im Bild rechts ist dies fiir die Abbildung

fiD—=R x— 1—x%—x%

mit Ableitung

flx) =

X1 X2
1—x%—x% y/l—x%—x%
auf dem offenen Einheitskreis D = {x € R? : ||x|» < 1} dargestellt, die offensichtlich eine Halbku-
geloberfldche beschreibt. Wir kdnnen die Ndherungsfunktion % hier als die Tangentialebene an den

Graphen von f auffassen; in hoheren Dimensionen » > 2 nennt man den durch / parametrisierten
verschobenen Unterraum von R” den Tangentialraum an den Graphen von f im Punkt a.
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Beachte, dass die Ableitung in diesem Fall ein Zeilenvektor f/ (a) € R™" ist, der damit zundchst
einmal nicht wieder im Startraum R” liegt. Man definiert daher im Fall eines eindimensionalen
Zielraums in der Regel den Gradienten von f als den transponierten Vektor

grad f(a) := f'(a)7  €R",
so dass sich die obige Naherungsgleichung mit Hilfe des Standardskalarprodukts auf R" auch als
()~ fla)+ (grad f(a).x — a)
schreiben l4sst.

In der Tat ermoglicht dies auch noch eine weitere geometrische Interpretation der Ableitung bzw.
des Gradienten bei eindimensionalem Zielraum: Mit der Konstruktion 21.22 des Winkels zwischen
zwei Vektoren konnen wir auch

fx) = f(a)+ | grad f(a)}2-[|x—all2- cos @

schreiben, wobei ¢ den Winkel zwischen den Vektoren x — a und grad f(a) bezeichnet. Bewegt man
sich also von a einen kleinen Schritt der (euklidischen) Linge € weg, d. h. geht man zu einem x € D
mit ||x —a||» = €, so erzeugt dies in f ndherungsweise eine Anderung von

| grad f(a)]|2-&-cos @,

was (fiir festes €) maximal wird fiir cos ¢ = 1, d. h. fiir ¢ = 0, also wenn der gemachte Schritt x —a
und grad f(a) in dieselbe Richtung zeigen. Da die Anderung von f in diesem Fall in etwa gleich
|| grad f(a)||2 - € ist, konnen wir den Gradienten also wie folgt geometrisch interpretieren:

Die Richtung von grad f(a) ist die Richtung des stirksten Anstiegs von f im Punkt a.
Der Betrag von grad f(a) ist die Stirke des Anstiegs von f in dieser Richtung.

Das Bild unten zeigt diesen Sachverhalt fiir die eben als Beispiel betrachtete Funktion. Sowohl im
dreidimensionalen Bild links als auch im zweidimensionalen Bild rechts sind wie auf einer Land-
karte die sogenannten Hohenlinien von f eingezeichnet — also die Kurven, auf denen f konstant ist.
Der dort eingezeichnete Gradient ist ein Vektor, der in unserem Fall mit

1

22
I —x;

o

grad f(x) =

I
=
[\S]

direkt zum Nullpunkt hin zeigt — also in die Richtung, in der f an dieser Stelle am stérksten ansteigt.

X1

x
f=0,8 H ‘ grad f(a)
f=0,6 /
f=0,4 X
f= 072_ &J

Wir wollen nun noch die Rechenregeln fiir Ableitungen aus Kapitel 10 so weit wie moglich auf den
mehrdimensionalen Fall iibertragen. Auch wenn wir unsere Berechnungen durch koordinatenweise
Betrachtungen mit Hilfe der partiellen Ableitungen in den meisten Fillen bereits auf den eindimen-
sionalen Fall zuriickfiihren kdnnen, sind in der Praxis auch Rechenregeln niitzlich, die direkt mit den
Ableitungsmatrizen arbeiten und die koordinatenweise Berechnung der Ableitungen damit umgehen
konnen.
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Die folgende Aussage entspricht nahezu wortlich der von Satz 10.8. Beachte aber, dass die Ablei-
tungen jetzt Matrizen sind und keine einfachen Zahlen mehr. Wegen der neuen Definition der Diffe-
renzierbarkeit konnen die Beweise aus dem eindimensionalen Fall auch nicht einfach tibernommen
werden.

Satz 25.29 (Rechenregeln fiir Ableitungen). Es seien D C R” offen und f,g: D — R™ zwei Abbil-
dungen, die in einem Punkt a € D differenzierbar sind. Dann gilt:

(a) f =+ g istdifferenzierbar in a mit (f +g)'(a) = f'(a) £ ¢'(a).

(b) Fiir A € Rist Af differenzierbar in a mit (Af)'(a) = A f'(a).
Im Fall m = 1, wenn Multiplikation und Division der Funktionen ebenfalls moglich sind, gilt zusdtz-
lich:

(¢) (Produktregel) fg ist differenzierbar in a mit (fg) (a) = f'(a)g(a) + f(a)g'(a).

(d) (Quotientenregel) Ist g(a) # 0, so ist g differenzierbar in a mit (g)’ (a) = MLW

Beweis. Nach Definition 25.3 der Differenzierbarkeit konnen wir f(x) = f(a) + f'(a)(x —a) + r(x)
und g(x) = g(a) + g'(a)(x —a) + s(x) mit % — 0 und % — 0 fiir x — a schreiben.

Il al

(a) Addition der beiden Ausdriicke fiir f(x) und g(x) liefert

(f+8)(x) = (f+8)(a) +(f'(a) +&'(a)) (x—a) +r(x) + s(x).
Wegen
fim TS ) S0
wax—all - amalx—all ey —af
ergibt sich also wiederum mit Definition 25.3, dass f’(a) + g'(a) die Ableitung von f + g in
a ist. Die Aussagen fiir die Differenz f — g sowie fiir A f in (b) zeigt man natiirlich genauso.

(c) Hier ergibt die Multiplikation
(f8)(x) = (f8)(a) + (f'(a)g(a) + f(a)g'(a)) (x —a)
+ (f'(a)(x—a))(g'(a)(x—a)) + (Terme mit r(x) und / oder s(x)).
(A) B)

Beachte, dass der Ausdruck f'(a)(x — a) in (A) die Multiplikation einer (1 x n)-Matrix mit
einer (n x 1)-Matrix ist, die wir daher auch mit Hilfe des Gradienten und des Standardskalar-
produkts als (grad f(a),x — a) schreiben konnen (siehe Bemerkung 25.28). Analog gilt dies
fiir g’(a)(x — a), und damit folgt nach der Cauchy-Schwarz-Ungleichung aus Satz 21.19

(A)

lx—all2

|(A)] < || grad f(a)2 - [| gradg(a)2 - [lx — a3, d.h. — 0 fir x — a.

Genauso gilt wegen der enthaltenen Faktoren r(x) bzw. s(x) natiirlich ”;2 — 0 fiirx — a.
Also konnen wir hier (A)+ (B) als Restterm auffassen, so dass mit Definition 25.3 folgt,

dass f'(a)g(a) + f(a)g'(a) die Ableitung von fg in a ist.

Der Beweis von (d) verlauft ganz analog und soll daher hier nicht gegeben werden. U
Auch die Kettenregel (siche Satz 10.10) tibertrdgt sich wie erwartet ins Mehrdimensionale.

Satz 25.30 (Kettenregel). Es seien D C R" und D' C R™ offen. Ferner seien f: D — R™ und
g: D' — R? Abbildungen mit f(D) C D'. Ist dann f differenzierbar in a € D und g differenzierbar
in f(a), so ist auch die Verkettung g o f differenzierbar in a, und es gilt

(gof) (a) =g'(f(a))-f'(a),
d. h. . die Ableitung einer Verkettung ist das Produkt der beiden Ableitungen®. (Beachte, dass es
sich hierbei um ein Matrixprodukt einer p X m-Matrix mit einer m X n-Matrix handelt, das wie
gewiinscht eine p x n-Matrix als Ableitung von g o f liefert — insbesondere ist die Reihenfolge der
beiden Faktoren hier also wichtig!)

66
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Beweis. Wegen der Differenzierbarkeit von f in a und g in f(a) gibt es nach Definition 25.3 Funk-
tionen r: D — R™ und s: D' — R” mit

fx)=f(a)+ f'(a) (x—a) +r(x) ()
und  g(y) =g(f(a)) +&'(f(a)) (y— f(a)) +s(y) )
sowie lim IE rx )H =0und lim H_LY) = 0. Insbesondere konnen wir also die Funktion
x—a y—f(a) y—f(a)ll
- D RP sy
O} = B

durch §(f(a)) := 0 zu einer stetigen Funktion auf ganz D’ fortsetzen und damit statt (2) auch

8() =g(f (@) +&'(f(a) v —fla) +350) - ly— f(a)l
fiir alle y € D’ schreiben. Setzen wir hier nun y = f(x) ein, so ergibt sich mit (1)
8(f(x) = g(f(a) +&'(f(a)) (f(x) = f(a) +5(f(x)) - | f(x) = f(a)l]
=8(f(a)) +&'(f(a) f'(a) (x—a) +&'(f(a)) r(x) +5(f () - | f(a) (x —a) + r(x)
=:R(x)

fiir alle x € D. Verwenden wir fiir die auftretenden Matrizen die von der gewihlten Vektornorm
induzierte Matrixnorm, so kénnen wir den Restterm R mit Folgerung 24.39 nun abschitzen durch

PO < e L2 s st @) L2+ o 122
—0 —0 —0 —0

wobei die markierten Terme fiir x — a gegen 0 konvergieren (beachte dabei fiir den Term §(f(x)),
dass f stetig in @ und § stetig in f(a) ist, so dass §(f(x)) mit x — a gegen §(f(a)) = 0 konvergiert).

Also gilt hm ‘|‘|f(¢3” = 0 und damit auch lim Hf()ZH = 0. Die Aussage des Satzes folgt damit aus
x—a

Deﬁmtlon 25 3. 0

Bemerkung 25.31. Auch ohne sich den genauen Beweis von Satz 25.30 anzusehen, ist einfach zu
verstehen, warum bei der Formel fiir die Ableitung einer Verkettung Matrixprodukte auftreten: Die
Ableitungen konnen wir ja gerade als lineare Niaherungen der gegebenen Funktionen betrachten —
und lineare Funktionen werden nach Folgerung 16.24 (b) verkettet, indem man die zugehdrigen
Matrizen miteinander multipliziert. In Formeln bedeutet dies unter Vernachlidssigung der Restterme
folgendes: Konnen wir als lineare Niherungen

f)~ fla)+f(a)(x—a) und g(f(x))=g(f(a))+& (f(a))(f(x)—f(a))

schreiben, so ergibt sich daraus durch Einsetzen

8(f(x) ~g(f(a)) +8&'(f(a))f'(a)(x—a),
d.h. g'(f(a))f (a) ist die Ableitung von go f in a. (Die genaue Behandlung der Restterme, also die
Prizisierung des Zeichens ,,~%, ist dann natiirlich die eigentliche Arbeit beim Beweis.)

Beispiel 25.32.

(a) Wir betrachten noch einmal die geometrische Deutung der Ableitung bei eindimensiona-
lem Zielraum aus Bemerkung 25.28. Es seien dazu D C R” offen, f: D — R eine differen-
zierbare Funktion, und y: (a,b) — D eine differenzierbare Hohenlinie von f, d.h. so dass
fov: (a,b) — R konstant ist. Dann ist die Ableitung dieser Verkettung natiirlich in jedem
Punkt ¢ € (a,b) gleich 0, und wir erhalten somit nach Satz 25.30

0=(foy)(t)=r(v() V() = (grad f(¥(1)),Y (1))
mit dem Standardskalarprodukt. Also ist grad f(y(r)) L ¥ (¢), d. h. der Gradient von f steht

in jedem Punkt senkrecht auf (dem Tangentialvektor) der Hohenlinie durch diesen Punkt.
Diese Tatsache, die wir im Beispiel von Bemerkung 25.28 auch sofort im Hohenlinienbild
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erkennen konnen, ist natiirlich jedem bekannt, der schon einmal eine Landkarte mit Ho-
henlinien benutzt hat: Um moglichst schnell nach oben zu kommen, also in Richtung des
Gradienten zu laufen, geht man am besten senkrecht zu den Hohenlinien.

(b) Essei f die Funktion
.
F:Rog =R, Xi—>/ Smtﬂdt.
1

Offensichtlich handelt es sich hierbei um eine Funktion mit eindimensionaler Start- und
Zielmenge, wie wir sie schon vor langer Zeit betrachtet haben. Man kann zeigen, dass dieses
Integral nicht mit den uns bekannten speziellen Funktionen aus Kapitel 9 berechenbar ist, so
dass wir f nicht auf einfachere Art hinschreiben kénnen. Dennoch koénnen wir aber die Ab-
leitung von f mit der mehrdimensionalen Kettenregel konkret bestimmen: Dazu schreiben
wir f = goh mit

g R, >R, Cl)

X1 Q1 t
|—>/ S‘m(tﬂd; und h:R>0—>R2,xH(;€>.
2

1

Dann lésst sich g (und natiirlich auch %) problemlos differenzieren: Nach dem Hauptsatz
12.21 der Differential- und Integralrechnung liefert die Ableitung des Integrals nach seiner

Obergrenze gerade
X sin(xpxq
e ( ) _sin(en)
2 X1

Die partielle Ableitung drg dagegen lisst sich nach Aufgabe 25.25 unter dem Integral be-
rechnen, so dass wir dafiir

1 in(xo? X1 1
ohg = / o (sm(xz )> dt = / cos(xyt)dt = — (sin(xpx)) — sinx;)
1 t 1 X2
erhalten. Beide partiellen Ableitungen sind offensichtlich stetig, so dass g nach Satz 25.17
differenzierbar ist. Damit ergibt die Kettenregel aus Satz 25.30

£ = ¢ (h(x) ' (x) = (Sin(xz) sin(x?) —sinx> . (i)

x x
2sin(x?) — sinx
S —

Aufgabe 25.33. Es sei f: R"\{0} — R mit n > 2 eine differenzierbare Funktion. Man zeige:

(a) Hingt f nur von ||x||2 ab, ist also f(x) = g(||x||2) fir eine differenzierbare Funktion
g: Ry — R (man sagt auch: f ist kugelsymmetrisch), so ist

grad f(x) = g (Ixll2) -x fiir alle x € R"\{0}.

(415
(b) Gibt es umgekehrt eine Funktion 2: R"\{0} — R mit grad f(x) = h(x) - x fiir alle x, so
ist f kugelsymmetrisch. (Hinweis: Zeige, dass f entlang eines beliebigen Weges auf einer
Kugeloberfliche konstant ist.)



