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24. Stetigkeit in metrischen Riumen

Wie im eindimensionalen Fall kommen wir nach unserem Studium von Grenzwerten von Folgen
im letzten Kapitel jetzt zur Stetigkeit, also zu Grenzwerten von Funktionen. Auch diese kdnnen wir
wieder in allgemeinen metrischen Rdumen betrachten.

24.A Stetige Abbildungen

Zur Definition stetiger Abbildungen erinnern wir uns noch einmal an die entsprechende Definition
8.3 in K: Ist f: D — K eine Funktion auf einer Teilmenge D von K und a ein Punkt im Abschluss
D von D, so sagen wir, dass f(x) fiir x — a gegen ein ¢ € K konvergiert, wenn

VeeR. 6 €ER o VxED: [x—a|<8=|f(x)—c|<Ee.

Wie im Fall von Grenzwerten von Folgen konnen wir dies unmittelbar auf metrische Raume iiber-
tragen, indem wir den Abstand zweier Punkte nun mit der Metrik messen:

Definition 24.1 (Grenzwerte von Funktionen und Stetigkeit). Es seien M und N metrische Rédume,
D C M eine beliebige Teilmenge und f: D — N eine Abbildung.

(a) Ista € D, so heiBt ein Punkt ¢ € N Grenzwert von f in a, wenn
VeeRsg I8 €Ryg Vx e D: d(x,a) < 8§ =d(f(x),c) <e,
also mit anderen Worten wenn
Ve eRsg I8 €Ro: f(DNUs(a)) C Ug(c)

(beachte dabei, dass d(x,a) die Metrik in M, d(f(x),c) dagegen die in N ist). Wie im eindi-
mensionalen Fall werden wir wieder in Bemerkung 24.5 (a) sehen, dass ein solcher Grenz-
wert eindeutig ist, falls er existiert, so dass wir dann von dem Grenzwert von f in a sprechen
konnen. Wir schreiben dies dann als

limf(x)=c  bzw. lim f(x) =c¢

x—a xX—a
xeD

oder auch als ,,f(x) — ¢ fiir x — a*, und sagen, dass f(x) fiir x — a gegen ¢ konvergiert.
Existiert ein solcher Grenzwert nicht, so heifit f divergent in a.

(b) Liegt der Punkt a sogar in D, so kommt als Grenzwert von f in a analog zu Bemerkung 8.4
nur f(a) in Frage, da wir in der Grenzwertbedingung in (a) dann immer x = a setzen kénnen
und somit d(f(a),c) < € fiir alle € > 0 gelten muss — es ist also d(f(a),c) = 0 und damit
¢ = f(a). Wenn f(x) dann fiir x — a gegen f(a) konvergiert, d. h. wenn

VeeRy9 I8 €Ryp VxeD: d(x,a) <6 =d(f(x),f(a) <e

bzw.
VeeRsy 36 €R-g: f(DNUs(a)) C Ue(f(a))
gilt, so heifit f stetig in a. Liegt a nicht in D, so heif3it f stetig fortsetzbar nach a, wenn der
Grenzwert ¢ = lim f(x) existiert.
x—a

(c) Die Funktion f heif3t stetig, wenn sie in jedem Punkt a € D stetig ist.

Im Fall M = K stimmt dies offensichtlich mit Definition 8.3 bzw. 8.5 iiberein, und auch fiir allge-
meine metrische Raume ist die anschauliche Interpretation dieser Begriffe natiirlich noch dieselbe:
So ist eine Abbildung f z. B. stetig, wenn ,.kleine Anderungen in der Variable x auch nur kleine An-
derungen der Funktionswerte f(x) zur Folge haben* (siche Bemerkung 8.6). Wir werden in diesem
Abschnitt sehen, dass auch die Sitze iiber stetige Funktionen sowie ihre Beweise noch sehr dhnlich
zu denen aus Kapitel 8 sind.
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Bemerkung 24.2. Nach Bemerkung 23.11 ist jede Teilmenge D eines metrischen Raumes M mit
der eingeschriankten Metrik selbst wieder ein metrischer Raum. Da wir die Metrik auf M fiir die
Definition 24.1 (b) der Stetigkeit (also im Fall a € D) auch nur fiir Punkte in D benotigen, konnen
wir fiir Stetigkeitsbetrachtungen in metrischen Rdumen in Zukunft also ohne Einschrinkung M = D
setzen und so die Notationen etwas vereinfachen: In diesem Fall ist eine Funktion f: M — N nach
Definition 24.1 (b) genau dann in einem Punkt a € M stetig, wenn es zu jedem € > 0 ein § > 0 gibt

mit f(Us(a)) C Ue(f(a)).
Bei der stetigen Fortsetzbarkeit ist eine solche Vereinfachung dagegen nicht moglich.
Beispiel 24.3 (Stetigkeit der Metrik bzw. Norm).
(a) In jedem metrischen Raum M ist die Abstandsfunktion
fiM—R, x—d(x,b)

zu einem fest gewihlten Punkt b € M stetig: Es seien a € M und € € R~ gegeben; wir
wihlen 6 = €. Dann gilt fiir alle x € M mit d(x,a) < € nach der Dreiecksungleichung

d(x,b)—d(a,b) <d(x,a) <& sowie d(a,b) —d(x,b) <d(x,a) <&,

und damit auch |f(x) — f(a)| = |d(x,b) —d(a,b)| < €, da |d(x,b) —d(a,b)| in jedem Fall
eine der beiden Zahlen d(x,b) —d(a,b) und d(a,b) — d(x,b) ist. Also ist f stetig in jedem
Punkta € M.

(b) IstV ein normierter Raum, so ist nach (a) auch die Normfunktion
f: V=R, x—|x|]| =d(x,0)
stetig.

Wie in K gibt es auch fiir metrische Rdume wieder die Moglichkeit, Grenzwerte von Funktionen auf
solche von Folgen zuriickzufiihren:

Satz 24.4 (Folgenkriterium). Es seien M, N metrische Ridume, D C M und f: D — N eine Funktion.
(a) (Folgenkriterium fiir Funktionsgrenzwerte) Fiir a € D und c € N gilt

lim f(x) =c < Fiir jede Folge (x,), in D mit x, — a gilt f(x,) — c.
X—a

(b) (Folgenkriterium fiir Stetigkeit) Fiir a € D gilt
fist stetigina <  Fiir jede Folge (x,), in D mit x, — a gilt f(x,) — f(a).

Beweis. Der Beweis ist (bis auf die Ersetzung der Betragsstriche durch die Metrik) wortlich genauso
wie der von Satz 8.12. O

Bemerkung 24.5.

(a) Da es zu jedem Punkt a € D eine Folge (x;,), in D mit x, — a gibt und die Folge (f(x,))x
nach Lemma 23.15 hochstens einen Grenzwert besitzen kann, folgt aus Satz 24.4 unmittel-
bar, dass auch der Grenzwert lim f(x) von Funktionen im Fall der Existenz eindeutig ist.

X—a

(b) Da wir aus Bemerkung 23.18 schon wissen, dass Grenzwerte von Folgen eine topologische
Eigenschaft sind, gilt dies nach Satz 24.4 nun auch fiir Grenzwerte bzw. die Stetigkeit von
Funktionen.

Beispiel 24.6 (Stetigkeit von Koordinatenabbildungen). Firn € Nygundi=1,... nist die Abbil-
dung

K" =K, x> x;,
die jedem Vektor seine i-te Koordinate zuordnet, stetig: Nach Bemerkung 24.5 (b) konnen wir dies
in der zur euklidischen Norm dquivalenten Maximumsnorm iiberpriifen. Dann gilt fiir alle € > 0 und
x,a € K" mit ||x—all. < § := €, dass

If) = fla)] = xi—ai| < [lx—all- <&
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Wir wollen nun untersuchen, wie man die Stetigkeit konkret gegebener Abbildungen einfach iiber-
priifen kann. Am wichtigsten ist dabei der Fall, in dem der Start- bzw. Zielraum eine Teilmenge von
K" ist. Als erstes Resultat hierzu besagt das folgende Lemma, dass wir die Stetigkeit in diesem Fall
koordinatenweise im Zielraum tiberpriifen konnen.

Lemma 24.7 (Koordinatenweise Stetigkeit im Zielraum). Es seien D eine Teilmenge eines metri-
schen Raumes M und

fi(x)
fiD=>K" x— f(x)=
Jin(x)
eine Abbildung mit Komponentenfunktionen f1,..., fn: D — K. Ist nun a € D und ¢ € K™, so gilt
genau dann liin f(x)=c, wenn lgnﬁ(x) =¢; fiirallei=1,...,mist, wobei ¢; die Koordinaten von
X—a X—a

¢ bezeichnet.

Fiir a € D ergibt sich also insbesondere, dass f genau dann in a stetig ist, wenn alle Koordinaten-
funktionen f;: D — K es sind.

Beweis. Es sei (x,), eine beliebige Folge in D, die gegen a konvergiert. Nach dem Folgenkriterium

aus Satz 24.4 (angewendet sowohl auf f als auch auf f,..., f,,) geniigt es zu zeigen, dass f(x,)
genau dann gegen ¢ konvergiert, wenn f;(x,) fiir alle i = 1,...,m gegen c¢; konvergiert. Dies ergibt
sich aber sofort aus Lemma 23.19. O

Wir konnen die Stetigkeit einer Abbildung nach K™ also sofort auf die Stetigkeit einer Abbildung
nach K zuriickfithren. Konnen wir die Situation noch weiter vereinfachen und die Stetigkeit auch
noch koordinatenweise im Startraum iiberpriifen, falls dieser eine Teilmenge von K" ist? Das fol-
gende Beispiel zeigt, dass dies leider nicht der Fall ist.

Beispiel 24.8. Wir betrachten die im Bild unten rechts dargestellte Funktion
200 fijr x £ 0,

FIRZ SR, xe {3
0 firx=0.

Man kann sie sich leicht in Polarkoordinaten (xj,x;) = (rcos @,rsin ) vorstellen, denn der gege-
bene Ausdruck ist dann nach Satz 9.14 gleich f;jjc% =2cos ¢sin @ = sin2¢. Die Funktion f ist also

1772
abgesehen vom Nullpunkt auf jeder Ursprungsgeraden konstant, z. B. auf den Koordinatenachsen
gleich 0 und auf der durch x; = x; gegebenen Diagonalen (mit ¢ = %) gleich 1.

Daran sehen wir auch schon, dass f z. B. nach dem Folgen-
kriterium aus Satz 24.4 (b) im Nullpunkt unstetig ist: Die
Folge ((%, %)T)n Ny konvergiert zwar (entlang der Dia-
gonale) gegen den Ursprung, aber es ist natiirlich

0)-35mr0()

In der Tat ist das Folgenkriterium oft niitzlich, um die Un-
stetigkeit einer Funktion zu zeigen, da es hierfiir ja geniigt,
eine einzige Folge anzugeben, die die Bedingung des Kri-
teriums verletzt.

S= 3=

Andererseits ist aber fiir jedes fest gewihlte xp € R die Funktion x — f (il > in einer Variablen x;
2

stetig: Fiir x, = 0 ergibt sich einfach die Nullfunktion, und fiir alle anderen x, bendtigen wir nur die
erste Zeile in der Definition von f, die dann natiirlich eine stetige Funktion in x; ist. Genauso gilt
dies, wenn wir x; fest halten und x, als variabel betrachten.

Die Funktion f auf R? ist also im Nullpunkt nicht stetig, obwohl beide Funktionen in einer Va-
riablen, die man durch Festhalten der jeweils anderen daraus erhilt, dort stetig sind. Anschaulich
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liegt das daran, dass man beim Festhalten jeweils einer Variablen nur untersucht, wie sich die Funk-
tion verhilt, wenn man sich auf einer der Koordinatenachsen dem Nullpunkt nihert, wihrend man
sich ihm fiir die Uberpriifung der Stetigkeit auf einem beliebigen Weg niihern muss. Zusammen mit
Lemma 24.7 sehen wir also:

Die Stetigkeit einer Abbildung von K” nach K™ kann zwar koordinatenweise im Ziel-
raum, aber nicht koordinatenweise im Startraum iiberpriift werden.

Dennoch wollen wir jetzt aber sehen, dass die ,,gewohnten Rechenregeln* aus Kapitel 8 fiir Sum-
men, Differenzen, Produkte, Quotienten und Verkettungen stetiger Funktionen auch in unserem hier
betrachteten allgemeineren Fall gelten.

Lemma 24.9 (Grenzwertsétze fiir Funktionen). Es seien D C M eine Teilmenge eines metrischen
Raumes M und f,g: D — K zwei Funktionen. Weiterhin sei a € D ein Punkt, so dass die Grenzwerte
von f und g in a existieren. Dann gilt

lim(f(x) + g(x) = lim f(x) + lim g(x).

und eine entsprechende Aussage auch fiir f(x) —g(x), f(x)-g(x) und ﬁ) 8 (letzteres natiirlich nur

falls lim g(x) # 0). Insbesondere sind fiir a € D also mit f und g auch f+g, f —g, f-gund Ji ina
X—a
stetig (letzteres wiederum nur falls g(a) # 0).

Beweis. Der Beweis lduft wortlich genauso wie der von Satz 8.14 — ndimlich indem man die Aussage
mit Hilfe des Folgenkriteriums aus Satz 24.4 auf die entsprechenden Aussagen iiber Grenzwerte von
Folgen in K (siehe Satz 5.13) zuriickfiihrt. O

Lemma 24.10 (Verkettung stetiger Abbildungen). Es seien f: M — N und g: N — P zwei Abbil-
dungen zwischen metrischen Riumen M,N,P. Ist dann a € M, so dass f in a und g in f(a) stetig
sind, so ist auch go f stetig in a.

Beweis. Der Beweis ist derselbe wie in Satz 8.16: Ist (x,), eine Folge in M mit x, — a, so gilt
f(xn) — f(a) nach dem Folgenkriterium aus Satz 24.4 (b) wegen der Stetigkeit von f in a, und
dann genauso g(f(x,)) — g(f(a)) wegen der Stetigkeit von g in f(a). Also ist go f nach dem
Folgenkriterium in a stetig. O

Beispiel 24.11.

(a) Die in Beispiel 24.8 betrachtete Funktion ist nach Lemma 24.9 in jedem Punkt a € R?\ {0}
stetig, da sie in einer Umgebung eines jeden solchen Punktes durch Addition, Multiplikation
und Division aus den nach Beispiel 24.6 stetigen Koordinatenfunktionen x; und x, zusam-
mengesetzt ist.

(b) Nach Lemma 24.7 und Lemma 24.9 ist jede lineare Abbildung f: K" — K" x — Ax mit
A = (a;j)i;j € K™ stetig, da ihre Koordinatenfunktionen x — a; 1x1 + - - - + a; o, fiir alle
i=1,...,mes sind. Diese Aussage erscheint zwar selbstverstdndlich, ist aber fiir beliebige
normierte Raume falsch: Fiir unendlich-dimensionale Vektorrdume miissen lineare Abbil-
dungen im Sinne von Definition 16.1 nicht notwendig stetig sein, wie das folgende Beispiel
zeigt.

Aufgabe 24.12 (Stetigkeit linearer Abbildungen). Es sei V = C°([0,1]) der Vektorraum der stetigen
reellwertigen Funktionen auf [0, 1]. Zeige, dass die lineare Abbildung f: V — R, ¢ — ¢(0) zwar
beziiglich der Norm || - || auf V, aber nicht beziiglich der Norm || - ||; auf V stetig ist.

Aufgabe 24.13. Sind die folgenden Funktionen stetig in den Nullpunkt fortsetzbar?

(x1 4x2)*

:R2\{0} = R, x>
S RO} Ry S

, g Rog xR =R, x—x}%

61
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Aufgabe 24.14. Zeige, dass die Funktion

2
T2 fiirx #0
g RZ SR, xs { 4+ 70
0 firx=0

zwar unstetig ist, ihre Einschriankung auf jede Gerade durch den Nullpunkt jedoch stetig ist.

Aufgabe 24.15.

(a) Es seien M ein metrischer Raum und f,g: M — R zwei stetige Abbildungen. Zeige, dass
dann auch die Abbildung max(f,g): M — R, x — max(f(x),g(x)) stetig ist.

(b) Zeige, dass die Abbildung GL(n,K) — GL(n,K), A+ A~ stetig ist.

24.B Eigenschaften stetiger Abbildungen

Nachdem wir jetzt wissen, wie wir von Abbildungen ihre Stetigkeit iiberpriifen konnen, kommen wir
nun zu den Eigenschaften stetiger Funktionen. Als Erstes schauen wir uns dazu an, wie sich Um-
gebungen sowie offene und abgeschlossene Mengen unter stetigen Abbildungen verhalten. Unser
erstes Ergebnis zeigt dabei noch einmal deutlich, dass die Stetigkeit von Funktionen eine topologi-
sche Eigenschaft ist (siche Bemerkung 24.5 (b)).

Lemma 24.16 (Charakterisierung stetiger Funktionen durch Umgebungen). Es seien f: M — N
eine Abbildung zwischen metrischen Ridumen und a € M. Dann sind dquivalent:

(a) f ist stetig in a.
(b) Fiir jede Umgebung U C N von f(a) ist f~1(U) C M eine Umgebung von a (man sagt auch:
,, Urbilder von Umgebungen sind Umgebungen ).

Beweis. Es gilt:
fiststetigin a
< Fiir alle € gibt es ein 0 mit f(Ug(a)) C Ug(f(a)) (Bemerkung 24.2)
< Zu jeder Umgebung U von f(a) gibt es ein 0 mit f(Us(a)) C U (*)
(a) gibt es ein & mit Us(a) C f~1(U)
& Zu jeder Umgebung U von f(a) ist f~'(U) eine Umgebung von a  (Definition 23.13 (b)),

& Zu jeder Umgebung U von f

wobei in () die Folgerung “<=" gilt, da jede e-Umgebung eine Umgebung ist, und “=>-" gilt, da jede
Umgebung von f(a) eine e-Umgebung von f(a) enthilt. O

Fiir die Stetigkeit einer gesamten Abbildung (also nicht nur in einem einzelnen Punkt) gibt es er-
staunlicherweise das folgende sehr einfache Kriterium.

Satz 24.17 (Charakterisierung stetiger Funktionen durch offene bzw. abgeschlossene Mengen). Fiir
eine Abbildung f: M — N zwischen metrischen Rdumen sind dquivalent:

(a) f ist stetig (in jedem Punkt von M).

(b) Fiir jede offene Menge U C N ist f~'(U) C M offen (man sagt: ,, Urbilder offener Mengen
sind offen ).

(c) Fiir jede abgeschlossene Menge A C N ist f~'(A) C M abgeschlossen (man sagt: ,,Urbilder
abgeschlossener Mengen sind abgeschlossen ).

Beweis. Wir zeigen zuniichst die Aquivalenz (a) < (b):

f ist stetig L Fiir alle a € M und alle Umgebungen U von f(a) ist f~'(U) Umgebung von a

Y Fiir alle a € M und alle U offen mit f(a) € Uist f~!(U) Umgebung von a

& Firalle U offen und alle a € f~1(U) ist ! (U) Umgebung von a

“&9 Pir alle U offen ist f1(U) offen,
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wobei in (x) die Folgerung ,,= gilt, weil jede offene Menge U mit f(a) € U eine Umgebung von
f(a) ist, und ,,<=* gilt, da jede Umgebung von f(a) eine offene Menge U mit f(a) € U enthilt.

Die Aquivalenz (b) < (c) folgt direkt durch Ubergang zum Komplement: Setzen wir A = N\U, so
ist A genau dann abgeschlossen, wenn U offen ist, und analog f~!'(A) = f~'(N\U) = M\ f~'(U)
genau dann abgeschlossen, wenn f~!(U) offen ist. Dies zeigt unmittelbar die Aquivalenz der beiden
Aussagen. U

Beispiel 24.18 (Offene und abgeschlossene Bedingungen). Sind M ein metrischer Raum und
f: M — R eine stetige Funktion, so ist die Menge

{reM: f(x) >0} = f~'(R>o)
als Urbild der offenen Menge R~y C R unter einer stetigen Abbildung nach Satz 24.17 offen in M.
Ebenso gilt dies natiirlich fiir die Mengen

{xeM: f(x) <0} und {xeM: f(x) #0}
als Urbilder von Ry bzw. R\{0}. Dagegen ist die Menge

{xeM: f(x) >0} = f(Rso)
als Urbild der abgeschlossenen Menge R>o C R unter einer stetigen Abbildung abgeschlossen in M,
genauso wie die Mengen

{xeM: f(x) <0} und {xeM: f(x) =0}.

Mit dieser Beobachtung kann man in vielen Fillen sehr einfach herausfinden, ob eine gegebene
Menge offen bzw. abgeschlossen ist: So sieht man z. B. sofort, dass die Menge

{(xeR?*:x} >cosxy} CR?

offen sein muss, da sie das Urbild von R~ unter der stetigen Abbildung R2 R, x+— x? —Cosxp ist.

Man sagt in diesem Sinne oft auch, dass ,,>*, ,,<*“ und ,,£* (jeweils mit reellwertigen stetigen Aus-
driicken auf beiden Seiten) offene Bedingungen sind, wihrend ,,>*, ,,<* und ,,="‘ abgeschlossene
Bedingungen darstellen.

Bemerkung 24.19 (Relativ offene bzw. abgeschlossene Mengen). Es seien M und N metrische
Riume, D C M und f: D — N eine Abbildung. Nach Satz 24.17 ist f genau dann stetig, wenn zu
jeder offenen Menge U C N das Urbild f~!(U) offen im Startraum D ist.

Beachte jedoch, dass dies nicht heiBen muss, dass f~!(U) auch offen in M ist! In der Tatist f~'(U)
nach Aufgabe 23.36 (b) genau dann offen in D, wenn es eine in M offene Teilmenge V' gibt mit
f~Y(U) =V ND - man sagt in diesem Fall auch manchmal, dass f~!(U) relativ offen in D ist. Eine
analoge Aussage gilt auch fiir (relativ) abgeschlossene Mengen.

Als anschauliches Beispiel hierfiir konnen wir die stetige Abbildung K1(0)
) X1
1 Ki(0) = R, ()Cz) = X1

auf dem abgeschlossenen Einheitskreis Ki(0) = {x € R?: ||x|» < 1}
betrachten. Das Urbild der offenen Menge R.o C R unter f ist in
diesem Fall (wie im Bild dunkel eingezeichnet) der rechte Halbkreis,
wobei vom Rand dieses Halbkreises der Bogen mit enthalten ist, der
Durchmesser jedoch nicht. Diese Menge ist wegen der enthaltenen f
Randpunkte auf dem Halbkreisbogen natiirlich nicht offen in R? — sie
ist aber (relativ) offen in K (0), denn sie ist der Durchschnitt von K; (0)
mit der nach Beispiel 24.18 offenen Menge {x € R? : x; > 0}.

R

S v

Als Nichstes wollen wir untersuchen, ob wir eine Verallgemeinerung des Zwischenwertsatzes 8.21
fiir beliebige metrische Rdume finden konnen, d. h. ob wir fiir gewisse Klassen von reellwertigen
Funktionen sagen konnen, dass sie mit zwei Werten auch jede Zahl dazwischen annehmen miissen.
Die entscheidende Frage ist hierbei, ob die Definitionsmenge ,,nur aus einem zusammenhéngenden
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Teil besteht” — denn wenn sie wie z. B. die Menge M = [0,1]U[2,3] C R ,,aus zwei unverbundenen
Teilen besteht*, konnen wir natiirlich leicht eine stetige Abbildung f: M — R konstruieren, die die
Zwischenwertbedingung nicht erfiillt (in unserem Beispiel konnten wir dafiir schon die Abbildung
f: M — R, x — x wihlen, da hierfiir zwar 1 und 2, aber keine der Zahlen dazwischen im Bild von
f liegen). Die mathematisch korrekte Formulierung dieser Bedingung ist die folgende:

Definition 24.20 (Wegzusammenhingende Rdume). Ein metrischer Raum M heifit wegzusammen-
hingend, wenn es zu je zwei Punkten x,y € M eine stetige Abbildung v: [a,b] — M eines reellen
Intervalls [a,b] nach M gibt mit y(a) = x und y(b) = y. Man nennt ¥ in diesem Fall einen Weg von x
nach y — der Raum M heil3t also wegzusammenhingend, wenn sich je zwei Punkte in M durch einen
Weg verbinden lassen.

Y X\_/'y

a b M

Die wichtigsten Beispiele wegzusammenhingender Raume sind durch die folgende Definition ge-
geben.

Definition 24.21 (Konvexe Mengen). Eine Teilmenge M eines K-Vektorraums heifit konvex, wenn
fiir alle x,y € M die Verbindungsstrecke

Wi={x+t(y—x):t€[0,1]}
von x nach y ganz in M liegt.
Beispiel 24.22.

(a) Jede konvexe Teilmenge M eines normierten Raumes V ist wegzusammenhéngend, da in
diesem Fall ja fiir alle x,y € M die Verbindungsstrecke [0,1] — M, ¢ — x+¢ (y —x) ein Weg
in M von x nach y ist. Wie im Bild unten fiir V = R? ist jedoch nicht jede wegzusammenhin-
gende Teilmenge eines normierten Raumes konvex (die gestrichelten Linien zeigen jeweils
Verbindungsstrecken, die nicht in M liegen).

M M
konvex, also wegzusammenhingend, nicht wegzusammenhéngend,
wegzusammenhédngend aber nicht konvex also nicht konvex

(b) Jedes Intervall M C R aus Notation 4.17 (a) (offen, abgeschlossen, halboffen oder uneigent-
lich) ist konvex, und damit nach (a) wegzusammenhingend.

(c) Jede abgeschlossene Kugel K, (a) in einem normierten Raum ist konvex und damit wegzu-
sammenhingend, denn fiir alle x,y € K,(a) und 7 € [0, 1] gilt
x+1(y—x)—al = [|(1 —1)(x—a) +t(y—a)l
<=t x—al+le-ly—al <(M=t)-r+t-r=r,
und damit Xy C K,(a). Analog folgt dies auch fiir offene Kugeln.
(d) Die Menge M = [0,1]U[2,3] C R ist nicht wegzusammenhingend: Wire y: [a,b] - M CR
eine stetige Abbildung mit y(a) = 1 und y(b) = 2, so miisste ¥ nach dem Zwischenwertsatz

8.21 auch jeden Wert zwischen 1 und 2 annehmen — was aber nicht moglich ist, da diese
Zahlen nicht in M liegen.

Fiir wegzusammenhéngende Raume erhalten wir nun wie erwartet eine Verallgemeinerung des Zwi-
schenwertsatzes 8.21 in R:



24. Stetigkeit in metrischen Raumen 341

Satz 24.23 (Zwischenwertsatz). Es sei f: M — N eine stetige Abbildung zwischen metrischen
Rdaumen. Ferner sei M wegzusammenhdngend. Dann gilt:

(a) Das Bild f(M) C N ist ebenfalls wegzusammenhdingend.

(b) Im Fall N = R nimmt f mit je zwei Funktionswerten auch jeden Wert dazwischen an.
Beweis. Es seien x,y € f(M) beliebig. Wir konnen dann u,v € M wihlen mit x = f(u) undy = f(v).
Da M wegzusammenhéngend ist, gibt es nun einen Weg ¥: [a,b] — M von u nach v. Die Abbildung
fov:[a,b] = N ist dann ein Weg in f(M) von x nach y, woraus sich bereits die Behauptung (a)
ergibt. Im Fall N = R folgt zusitzlich mit dem eindimensionalen Zwischenwertsatz 8.21, dass die

Abbildung fov: [a,b] — R und damit auch f mit x und y auch jede reelle Zahl dazwischen als Wert
annehmen miissen. g

Aufgabe 24.24. Es sei M ein metrischer Raum. Man zeige:
(a) Sinda,b € Mund A C M mita € A und b ¢ A, so enthilt jeder Weg in M von a nach b einen
Punkt in JA.

(b) Ist M wegzusammenhingend, so sind @ und M die einzigen Teilmengen von M, die sowohl
offen als auch abgeschlossen sind.

Die Konzepte der gleichmifBigen Konvergenz und Stetigkeit aus Abschnitt 8.C {ibertragen sich wie
erwartet auf den Fall metrischer Rdaume. Mit dem gleichen Argument wie z. B. bei der Beschrinktheit
in Bemerkung 23.21 (b) stimmen auch sie in normierten Rdumen zu dquivalenten Normen iiberein,
obwohl sie keine topologischen Eigenschaften sind.

Definition 24.25 (Gleichmifige Konvergenz und Stetigkeit). Es sei f: M — N eine Abbildung
zwischen metrischen Rdumen.
(a) Fiir jedes n € N sei eine Funktion f,,: M — N gegeben. Ist dann r}grolo Jfa(x) = f(x) fiir alle
x€M,d. h. gilt
VxeMVe>03IngeNVn>no: d(fulx), f(x)) <€,

so nennt man die Funktionenfolge (f,), punktweise konvergent gegen f. Beachte, dass ng
dabei nicht nur von €, sondern auch vom betrachteten Punkt x abhéngen darf. Kann man ng
jedoch auch unabhingig von x wihlen, d. h. gilt sogar

Ve>03ngeNVn>ng VxeM: d(fy(x), f(x) <€,
so heif3t die Funktionenfolge (f,), gleichméBig konvergent gegen f.
(b) Die Abbildung f heiflit gleichmiBig stetig, wenn gilt
Ve>030>0Va,xeM:d(x,a)<d=d(f(x),f(a)) <&

(der entscheidende Punkt gegeniiber der ,,normalen® Stetigkeit ist also wie in Definition 8.44
auch hier, dass 6 nur von €, aber nicht vom betrachteten Punkt a abhingen darf).

Bemerkung 24.26. Da Definition 24.25 vo6llig analog zum eindimensionalen Fall ist, {ibertragen
sich auch unsere damals dazu erzielten Ergebnisse und ihre Beweise unmittelbar auf die neue Situa-
tion:
(a) Eine Folge von Funktionen f,: M — K auf einem metrischen Raum M konvergiert genau
dann gleichmiBig gegen f: M — K, wenn || f, — fl|sup := sup{|fu(x) — f(x)| : x € M} fiir
n — oo gegen 0 konvergiert (siche Aufgabe 8.41 (a)).
(b) Konvergiert eine Folge stetiger Funktionen f,: M — N auf einem metrischen Raum M
gleichmifig gegen f: M — N, so ist die Grenzfunktion f ebenfalls stetig (sieche Satz 8.38).
(c) Ist eine Funktion f: M — N zwischen metrischen Raumen Lipschitz-stetig, d.h. gibt es
eine Lipschitz-Konstante L € R.( mit

d(f(x),f(y)) < Ld(x,y)
fiir alle x,y € M, so ist f gleichmiBig stetig (siche Lemma 8.48).
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(d) Ist f: M — N eine stetige Funktion zwischen metrischen Rdumen und ist M kompakt, so ist
f sogar gleichmiBig stetig (siehe Satz 8.50). Dabei bedeutet die Kompaktheit des metrischen
Raumes M, dass M als Teilmenge von sich selbst im Sinne von Definition 23.50 kompakt
ist.

Zum Abschluss dieses Abschnitts wollen wir schlieBlich noch einen oft niitzlichen Satz zeigen, mit
dem man die Existenz von Fixpunkten gewisser (stetiger) Abbildungen nachweisen kann. Da er im
eindimensionalen Fall noch nicht besonders interessant ist, haben wir ihn damals in Kapitel 8 nicht
in dieser Form bewiesen; am ehesten entspricht er vermutlich der Aussage von Aufgabe 8.30 (a).

Satz 24.27 (Banachscher Fixpunktsatz). Es seien M ein nicht-leerer vollstindiger metrischer
Raum und f: M — M eine Abbildung mit der Eigenschaft, dass es ein q € [0, 1) gibt mit

fiir alle x,y € M (eine solche Abbildung bezeichnet man auch als Kontraktion).

Dann hat f genau einen Fixpunkt, d. h. es gibt genau ein a € M mit f(a) = a.

Beweis. Um die Existenz eines Fixpunktes zu zeigen, konstruieren wir zu einem beliebigen Start-
punkt xo € M rekursiv die Folge (x,),en in M mit x,+1 = f(x,) fir alle n € N, und zeigen, dass dies

eine Cauchyfolge ist. Zu gegebenem € € R~ wihlen wir dazu ein ng € N mit lqlfloq d(x1,x0) < € (was
wegen g < 1 moglich ist). Dann gilt fiir alle » € N induktiv

d(xn+1>xn) = d(f(xn)af(xn—l)) < qd(xmxn—l) << qnd(x17x0)7 (%)
und damit fiir alle m > n > ny

d (s xn) <d(myxm—1) +d(Xm—1,Xm—2) + - +d(xp+1,X:,) (Dreiecksungleichung)

< ("' +q" P 4+ g")d(x,x0) (nach (+))
1

<q"- — d(x1,x0) (geometrische Reihe)
—q

<€ (Wahl von nyg).

Wegen der Vollstéindigkeit von M konvergiert (x,),cn also gegen ein a € M.
Beachte, dass f nach Voraussetzung wie in Bemerkung 24.26 (c) Lipschitz-stetig (mit Lipschitz-

Konstante g) ist. Gehen wir in der Rekursionsgleichung x,,+1 = f(x,) zum Grenzwert n — oo iiber,
so erhalten wir mit dem Folgenkriterium aus Satz 24.4 (b) also

a=lim x,41 = lim f(x,) = f(a),
n—roo Nn—yoo
d.h. a ist ein Fixpunkt von f.
Es bleibt damit nur noch die Eindeutigkeit des Fixpunkts zu zeigen: Wire b € M noch ein anderer

Fixpunkt, so wire d(a,b) = d(f(a), f(b)) < qd(a,b), wegen d(a,b) > 0 erhalten wir dann also
sofort den Widerspruch 1 < g. g

Beispiel 24.28.

(a) Essei f: R — R eine differenzierbare Funktion mit
|f/(x)] < ¢ fiir ein g € [0,1) und alle x € R, so dass
der Graph von f wie im Bild rechts also iiberall fla-
cher als der der (gestrichelt eingezeichneten) Identi-
tidt verlduft. Nach dem Mittelwertsatz 10.23 (a) gibt
es dann fiir alle x,y € R ein z zwischen x und y mit
f(x) = f(y) = f(z) - (x—y), und damit ist

f@) = fO) = If @] x =yl < qlx—yl.
Also ist f eine Kontraktion. Da R vollstéindig ist, hat
f damit nach Satz 24.27 genau einen Fixpunkt.




(b)

(©)
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Das Bild zeigt auch sehr anschaulich die Konstruktion des Fixpunkts wie im Beweis des
Satzes: Ausgehend von einem beliebigen Punkt xo € R bilden wir f(xo), nennen diesen
Punkt x;, bilden dann wieder f(x;) und nennen diesen Punkt x; usw., gehen also im Bild
immer abwechselnd vertikal zum Graphen von f und horizontal zum Graphen der Identitit.
Auf diese Art erhalten wir eine Folge, die gegen den Fixpunkt konvergiert.

Die Konvergenz solcher rekursiv definierten Folgen hatten wir bereits in Abschnitt 5.B un-
tersucht und dabei in der Regel das Monotoniekriterium verwendet. So konvergiert z. B. die

reelle Folge (x,), mitxo =1 und x,,+; = %(xn + x%) fiir alle n € N nach dem Heron-Verfahren

aus Lemma 5.29 gegen /2 (siche auch Beispiel 5.32). Der Banachsche Fixpunktsatz liefert
hier wie in (a) einen alternativen Konvergenzbeweis, da man leicht zeigen kann, dass die
Funktion x — 1 (x+ %) das abgeschlossene Intervall [1,2] in sich abbildet und ihre Ablei-

tung dort betragsmiflig hochstens % ist.

Oft kann man den Banachschen Fixpunktsatz auch auf Funktionenrdume anwenden, um die
Existenz von Funktionen mit bestimmten Eigenschaften zu zeigen. Als Beispiel dafiir wollen
wir untersuchen, ob es eine differenzierbare Funktion ¢: [0,1] — R gibt mit

o' (x) = % sin@(x) +sinx fiir alle x € [0, 1].

Solche Gleichungen, die die Ableitung einer gesuchten Funktion durch die Funktion selbst
ausdriicken, nennt man Differentialgleichungen, sie kommen in der Praxis an vielen Stellen
vor (siehe auch Aufgabe 20.20). Sie zu 16sen ist in der Regel schwierig, und in der Tat kann
man fiir die oben angegebene Differentialgleichung mit uns bekannten Funktionen keine
exakte Losung angeben. Mit dem Banachschen Fixpunktsatz konnen wir jedoch die Existenz
einer Losung beweisen, indem wir die Abbildung

£:%0,1]) = C°([0,1]),  f(@)(x) = /Ox (%sin(p(t) +sint) dt

betrachten: Gibt es ndmlich einen Fixpunkt von f, also eine stetige Funktion

©:[0,1] >R mit (p(x):/ (%sin(p(t)Jrsint) dr furalle x € [0,1],
0

so folgt daraus durch Differenzieren dieser Gleichung nach dem Hauptsatz 12.21 der
Differential- und Integralrechnung sofort die gewiinschte Differentialgleichung fiir ¢. Da
€°([0,1]) mit der Maximumsnorm nach Aufgabe 23.31 (a) vollstindig ist, miissen wir also
nur zeigen, dass f beziiglich dieser Norm eine Kontraktion ist: Fiir alle ¢, y € C°([0,1]) und
x €[0,1] gilt

) =101 = | [ (sinc) simyic)

. l /-x ‘ sin(p(t) —sin W(lﬂd[ (Satz 12.13 (d))
2 Jo

1 X
< 3 / lo(t) —w(t)|dt (Mittelwertsatz fiir sin wie in (a))
0

l X
<= — .
< 2/0 ¢ — ylldt

1
<sle— v, x<1)

und damit wie bendtigt || £(@) — f(W¥)|| < 3[/@ — W|l. Also ist f ist eine Kontraktion mit
q= %, und damit hat die gegebene Differentialgleichung nach Satz 24.27 eine Losung.

In der Vorlesung ,Einfithrung in die gewohnlichen Differentialgleichungen® des zweiten
Studienjahres wird dieses Beispiel zu einem der zentralen Sétze ausgebaut, der in nahezu
allen praktisch relevanten Fillen die Existenz von Losungen von Differentialgleichungen
sichert.
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Aufgabe 24.29. Es seien M ein nicht-leerer vollstindiger metrischer Raum und f: M — M eine
Abbildung. Zeige, dass f einen eindeutigen Fixpunkt besitzt, wenn eine der folgenden Bedingungen
erfiillt ist:

(a) f ist surjektiv, und es gibt ein g > 1 mit d(f(x), f(y)) > gd(x,y) fiir alle x,y € M.
(b) M ist kompakt, und es gilt d(f(x), f(y)) < d(x,y) fir alle x,y € M mitx # y.

Zeige ferner anhand je eines Beispiels, dass auf die Surjektivitit von f bzw. die Kompaktheit von M
im Allgemeinen nicht verzichtet werden kann.

24.C Stetige Bilder kompakter Mengen

Am Anfang des letzten Abschnitts hatten wir gesehen, wie sich offene und abgeschlossene Mengen
unter stetigen Abbildungen verhalten. Wir wollen dies nun auch fiir kompakte Mengen untersuchen.
Auch sie haben eine Kompatibilititseigenschaft mit stetigen Abbildungen — tiberraschenderweise
allerdings nicht beziiglich Urbildern, sondern beziiglich Bildern. Der folgende Satz ist dabei die
wahrscheinlich wichtigste Aussage zu kompakten Mengen iiberhaupt. Wir werden in diesem ge-
samten Abschnitt nichts weiter tun als einige der wichtigsten unmittelbaren Folgerungen daraus zu
untersuchen.

Satz 24.30 (Kompakte Mengen unter stetigen Abbildungen). Es sei f: M — N eine stetige Abbil-
dung zwischen metrischen Réiumen. Ist dann A C M kompakt, so auch f(A) C N (man sagt: ,, Bilder
kompakter Mengen sind kompakt ).

Beweis. Wir miissen das Kriterium aus Definition 23.50 fiir die Menge f(A) nachpriifen. Es sei also

(yn)n eine Folge in f(A). Fir alle n gibt es dann Punkte x, € A mit y, = f(x,). Weil A kompakt ist,

gibt es nun eine Teilfolge (x,, ), die gegen einen Punkt a € A konvergiert. Nach dem Folgenkriterium

fur Stetigkeit aus Satz 24.4 (b) konvergiert dann aber auch (y, ) = (f(x4,))r gegen f(a) € f(A).

Also besitzt die urspriingliche Folge (y,), eine konvergente Teilfolge mit Grenzwert in f(A), d.h.

f(A) ist kompakt. O
Bemerkung 24.31.

(a) In Gegensatz zu Lemma 24.16 und Satz 24.17 gilt in Satz 24.30 nicht die Umkehrung: Auch

fiir die offensichtlich unstetige Abbildung

1 firx>0

fFTR=R, x> urx ="

0 firx<O

sind sogar Bilder beliebiger Teilmengen von R immer kompakt (nédmlich immer @, {0}, {1}
oder {0,1}).

(b) Ist f: M — N eine stetige Abbildung zwischen metrischen Raumen, so haben wir in Lemma
24.16, Satz 24.17 und Satz 24.30 jetzt also gesehen:

Urbilder von Umgebungen unter f sind Umgebungen.
Urbilder offener Mengen unter f sind offen.

Urbilder abgeschlossener Mengen unter f sind abgeschlossen.
Bilder kompakter Mengen unter f sind kompakt.

In der Tat gelten die jeweils anderen Aussagen (also mit ,,Bild* und ,,Urbild* vertauscht) im
Allgemeinen nicht: Betrachten wir die Funktionen

fiTR=>R, x—0 und g R—=R x—e,
so gilt in R offensichtlich:

e Das Intervall U = (—1, 1) ist eine offene Umgebung von 0, aber das Bild f(U) = {0}
ist weder offen noch eine Umgebung von 0.
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e Die Menge A = R ist abgeschlossen in R, aber das Bild g(A) = R~ ist nicht abge-
schlossen in R.

e Die Menge A = {0} C R ist kompakt, aber das Urbild f~!(A) = R ist nicht kompakt
in R.
Wir werden diese Unterschiede nun als Erstes geschickt ausnutzen, um einen Satz iiber die
Existenz stetiger Umkehrabbildungen zu stetigen bijektiven Abbildungen zu beweisen.

Satz 24.32 (Stetigkeit von Umkehrabbildungen). Es sei f: M — N eine stetige und bijektive Abbil-
dung zwischen metrischen Riumen. Ist M kompakt, so ist auch die Umkehrabbildung f~': N — M
stetig.

Beweis. Nach Satz 24.17 (c) geniigt es zu zeigen, dass Urbilder abgeschlossener Mengen unter
1, also Bilder abgeschlossener Mengen unter f wieder abgeschlossen sind. Es sei also A C M
abgeschlossen. Nach Aufgabe 23.61 (a) ist A als abgeschlossene Teilmenge des kompakten Raumes
M dann ebenfalls kompakt. Damit ist nach Satz 24.30 aber auch f(A) kompakt, insbesondere also
abgeschlossen nach Satz 23.51 (a). O

Beispiel 24.33. Ohne die Zusatzvoraussetzung der Kompaktheit des Definitionsbereichs ist die Aus-
sage von Satz 24.32 im Allgemeinen falsch: Es seien M = [0,27), N = {z € C : |z] = 1} der Rand
des komplexen Einheitskreises, und f die offensichtlich stetige und bijektive Abbildung

fi:M—N, x— e

mit nicht kompakter Definitionsmenge M. In diesem Fall ist die Umkehrabbildung f~': N — M im
Punkt 1 € N nicht stetig: Wie im Bild unten dick eingezeichnet ist das halboffene Intervall [0, 1)
eine Umgebung von f~!'(1) = 0 in M, aber sein Urbild unter f~!, also {ei’“ 10 <x < 1}, ist keine
Umgebung von 1 in N, da hierfiir Punkte in N unterhalb von 1 fehlen.

S ! e
0 27 0 2n

|

M N M

Mit kompakter Definitionsmenge [0, 27] hitte dieses Beispiel natiirlich nicht funktioniert, da f dann
nicht mehr injektiv gewesen wire.

Aufgabe 24.34. Es sei f: R> - R, x — x; die Projektion auf die erste Koordinate. Man beweise
oder widerlege:

(a) Bilder offener Mengen unter f sind offen.
(b) Bilder abgeschlossener Mengen unter f sind abgeschlossen.

(c) Urbilder kompakter Mengen unter f sind kompakt.

Dass stetige Abbildungen gemif3 Satz 24.30 kompakte Mengen wieder auf kompakte Mengen ab-
bilden, hat wie schon erwihnt viele weitreichende Konsequenzen. So erhalten wir z. B. die folgende
wichtige Verallgemeinerung von Satz 8.25 zur Existenz von Maxima und Minima stetiger Funktio-
nen.

Folgerung 24.35 (Satz vom Maximum und Minimum). Es sei f: M — R eine stetige Funktion
auf einem nicht-leeren kompakten metrischen Raum M. Dann ,,nimmt f auf M ein Maximum und
Minimum an*, d. h. die Menge f(M) C R hat ein Maximum und Minimum. Insbesondere ist f damit
also auf M beschrdnkt.

Beweis. Die Menge f(M) C R ist nicht leer und nach Satz 24.30 kompakt, besitzt nach Lemma
23.53 also ein Maximum und Minimum. O
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Eine weitere einfache, aber iiberaus wichtige Folgerung hieraus ist die bereits in Beispiel 23.8 ange-
kiindigte Aquivalenz aller Normen auf K”. Nach dem Beweis dieser Aussage konnen wir dann also
auf K" fiir alle topologischen Konzepte (und ein paar weitere wie z. B. die Beschrinktheit, siehe
Bemerkung 23.21 (b)) jeweils eine beliebige Norm verwenden, ohne das Ergebnis zu verdndern.

Lemma 24.36 (Stetigkeit von Normen auf K"). Fiir eine beliebige Norm || - || auf K" ist die Abbil-
dung

o (®S [ 2) = R, x|

stetig. (Beachte, dass wir K" dabei wie iiblich mit der euklidischen Norm als normierten Raum
auffassen, und nicht mit der gegebenen Norm || - ||!)

Beweis. Zunachst gilt fiir alle x € K"
Il = [berer+---+xnenl] < lxa|-fler]| +--- + [l - eal] <Dllxll2 - mith:=[ler]|+---+ e,

und damit ||x — y|| < b||x —y||, fiir alle x,y € K". Die Abbildung (K", || - ||) — (K, || -||), x > x ist
also wie in Bemerkung 24.26 (c) Lipschitz-stetig. Verkettung mit der nach Beispiel 24.3 (b) stetigen
Abbildung (K| - ||) = R, x — ||x|| liefert damit sofort die Behauptung. O

Satz 24.37 (Aquivalenz von Normen auf K"). Alle Normen auf K" sind zueinander dquivalent.

Beweis. Weil die Aquivalenz von Normen eine Aquivalenzrelation ist, geniigt es zu zeigen, dass
jede Norm || - || auf K" zur euklidischen Norm #quivalent ist, also dass es zu einer solchen Norm
a,b € Ry gibt mit

allxl|2 < |lx|| < b|lx|]2 fiir alle x € K". (*)

Da man auflerdem Skalare nach Definition 23.1 (a) aus beiden Normen herausziechen kann, reicht
es dafiir sogar schon, die Ungleichung a < ||x|| < b fiir alle (euklidisch normierten) Vektoren in der
Menge A := {x € K" : ||x||o = 1} zu zeigen.

Beziiglich der euklidischen Norm ist A aber nach Beispiel 23.52 (b) kompakt. Die nach Lemma
24.36 stetige Normabbildung || - || nimmt damit auf A nach Folgerung 24.35 ein Minimum a und ein
Maximum b an — was sofort die behauptete Ungleichung (x) zeigt. Dabei muss auch wirklich a > 0
sein, weil ||x|| = 0 nach Definition 23.1 (b) nur fiir x = 0 ¢ A gilt. O

Natiirlich gilt die Aquivalenz aller Normen mit Satz 24.37 sogar auf beliebigen endlich-dimensiona-
len Vektorrdumen, da diese stets zu einem K” isomorph sind. Ein wichtiges Beispiel hierfiir sind die
Matrizenraume K"*" 22 K"". M6chte man mit Normen von Vektoren und Matrizen gleichzeitig ar-
beiten, ist es zur Vereinfachung der Rechnungen allerdings in der Regel geschickt, die dafiir gewihl-
ten Normen aufeinander abzustimmen. In der Tat zeigen der folgende Satz und die anschlieBende
Folgerung, dass es zu gewihlten Vektornormen auf K™ und K" immer eine besonders natiirlich de-
finierte passende Matrixnorm gibt, die neben den reinen Normeigenschaften noch weitere niitzliche
Rechenregeln erfiillt.

Satz und Definition 24.38 (Matrixnormen). Es seien m,n € N~. Fiir gewdhlte Normen auf K™ und
K" und eine Matrix A € K"™*" existiert dann das Maximum
_ S5 p—— _ e T i ]
|A]| := max T :x € K"\{0} ¢ = max {[|Ax|| : x € K" mit ||x]| = 1}. (%)
Dies definiert eine Norm auf K™ ", Man nennt sie die von den gegebenen (Vektor-)Normen auf K™
und K" induzierte Matrixnorm. In der Regel wdhlt man fiir die beiden Vektornormen den gleichen
Typ und verwendet dann fiir die induzierte Matrixnorm die gleiche Bezeichnung, es ist also z. B.

[|All2 := max { ||Ax||2 : x € K" mit ||x||, =1} und ||A]je := max {||Ax]| : x € K" mit ||x[|e = 1}.
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Beweis. Zunichst einmal stimmen die beiden in (x) genannten Mengen iiberein: Da wir jeden Vektor
x € K"\{0} als x = Ay mit A € K\{0} und y € K" mit ||y|| = 1 schreiben konnen, ist

.1 (a) .
=" {llAy] -y € K" mit [lyl| = 1}.

23

An der hinteren Darstellung dieser Menge sehen wir auch, dass sie das Bild der (nach Beispiel
23.52 (b)) kompakten Menge {x € K" : ||x|| = 1} unter der (nach Beispiel 24.3 (b) und 24.11 (b))
stetigen Abbildung x — ||Ax|| ist. Nach Folgerung 24.35 besitzt sie also ein Maximum, so dass der
im Satz angegebene Ausdruck fiir ||A|| existiert.

Die Normeigenschaften aus Definition 23.1 folgen direkt aus denen der gegebenen Vektornorm:

(a) Fiir alle A € Kist
[AA[| = max{[|AAx]| : ||x]| = 1} = |A]- max{[|Ax]| : [|x]| = 1} = |A[-[|A].
(b) Ist A # 0, so gibt es einen Vektor x € K" mit Ax # O (z.B. einen Einheitsvektor zu einer
Nichtnullspalte von A), also mit ||Ax|| > 0, und dementsprechend ist auch ||A|| > 0.
(c) Fiir eine weitere Matrix B € K"™*" gilt
A+ B|| = max{[|(A+B)x| : [|x]| = 1}
< max{{|Ax([ + | Bx]| - [lxf| = 1}
< max{{|Ax] : []x]| = 1} 4 max{{|Bx| : []x]| = 1}
= [lAll+[B]]. O
Folgerung 24.39 (Eigenschaften induzierter Matrixnormen). Fiir die von Vektornormen induzierte
Matrixnorm aus Definition 24.38 gilt fiir alle A € K"™*":
(a) (Vertrdglichkeit mit der Vektornorm) Fiir alle x € K" ist ||Ax|| < ||A] - ||x
(b) (Submultiplikativitit) Fiir alle B € K"*? ist ||AB|| < ||A|| - || B]|.

»

Beweis.

(a) Fir x =0 ist diese Aussage trivial; fiir x # 0 folgt sie direkt aus der Definition der induzierten

Matrixnorm, da dann ja stets ||A|| > Hﬁc )ICIH gilt.

(b) Nach Definition der induzierten Matrixnorm ||AB|| gibt es ein x € K” mit ||x|| = 1 und

(a) (a)
|AB|| = [[ABx]|| < [[A][- || Bx[| < [IA]l - [|B]| - [|x]| = [[A[l - |BI]- O
Beispiel 24.40.

(a) Nach Aufgabe 22.49 (a) ist die von der euklidischen Norm induzierte Matrixnorm ||A||, einer
Matrix A # 0 gegeben durch den groften Singuldrwert von A. Im Fall einer quadratischen,
symmetrischen bzw. hermiteschen und positiv semidefiniten Matrix ist dies nach Beispiel
22.45 (a) also genau der grofite Eigenwert von A. Da die Menge der Eigenwerte oft als das
Spektrum der Matrix bezeichnet wird, nennt man ||A||; auch die Spektralnorm von A.

Beachte, dass ||A||, (trotz dieser Notation) damit also nicht die Frobenius-Norm aus Beispiel
23.3 (f) ist, also nicht die euklidische Norm, wenn man K”*" mit K" identifiziert!

(b) Wir wollen zeigen, dass die von der Maximumsnorm induzierte Matrixnorm einer gegebenen
Matrix A = (a; j);,; € K™*" die sogenannte Zeilensummennorm

n
||A|m—max{2|ai7j|:i—1,...,m} (%)

J=1
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ist: Fiir alle x € K" mit ||x|l = 1 gilt zunéchst

n

Zaiﬁjxj = 1,...,m}
j=1

(1) n
< max{ Z laij|-|xj|:i=1,... ,m} (Dreiecksungleichung)

[|Ax[[cc = max {

j=1

() !

§max{2|ai7j|:i_1,...,m}. (|x;] < 1 fiir alle j)
j=1

AuBerdem konnen wir fiir ein geeignetes x bei (1) und (2) die Gleichheit erhalten:

e bei (1), indem wir fiir ein / mit maximalem Wert von Y%, |a; ;| - | ;| bei allen x; das
Vorzeichen (fiir K = R) bzw. den Winkel in Polarkoordinaten (fiir K = C) so wihlen,
dass alle a; jx; reell nicht-negativ sind;

e bei (2), indem wir alle x; vom Betrag 1 wihlen.
Dies zeigt den behaupteten Ausdruck () fiir [|A||.. = max {||Ax|| : x € K" mit [[x]|.. = 1}.

(c) Fiir jede Matrixnorm gilt nach Definition 24.38 (bei gleicher zugrundeliegender Vektornorm
im Start- und Zielraum)

|E|| = max{||x|| : x € K" mit ||x]| =1} = 1.
Da fiir die Frobenius-Norm offensichtlich || E, || = /n gilt, ist sie fiir n > 2 also insbesondere

keine induzierte Matrixnorm zu einer Vektornorm — obwohl sie nach Aufgabe 23.30 die
zusétzlichen Eigenschaften aus Folgerung 24.39 erfiillt.

Aufgabe 24.41. Es sei n € N5 . Man zeige:

2
X1

X2 — X1

(a) Die Menge M := {( ) 0<x <1,0< < 1} istkompaktinRz.

(b) Die Menge O(n) aller orthogonalen Matrizen ist kompakt in R"*".
(c) Die Menge aller indefiniten Matrizen ist offen im Raum aller symmetrischen n x n-Matrizen
tiber R.
Aufgabe 24.42 (Abstinde von Mengen). Wir definieren den Abstand zweier nicht-leerer abge-
schlossener Teilmengen A und B eines metrischen Raumes M als
d(A,B) :=inf{d(a,b) :a € A,be B} € Rxo.
Man zeige:
(a) Sind A und B kompakt, so ist dieses Infimum ein Minimum.
(b) Ist nur A kompakt, aber M vollstindig, so ist dieses Infimum ebenfalls ein Minimum.
(c) Im Allgemeinen ist dieses Infimum kein Minimum, selbst wenn A kompakt oder M vollstin-
dig ist.

Aufgabe 24.43 (Konvergenz von Mengen). Zu einem gegebenen metrischen Raum M sei % (M)
die Menge aller nicht-leeren kompakten Teilmengen von M. Wir definieren die folgenden Abstands-
funktionen:

firae Mund B€ 2 (M) sei d(a,B):=min{d(a,b) : b € B} wie in Aufgabe 24.42 (a);
fir A,B € % (M) sei h(A,B) := max (max{d(a,B) : a € A},max{d(b,A) : b € B}).
Man zeige:

(a) Die Maxima in der Definition von / existieren.

(b) Die Abbildung £ ist eine Metrik auf J# (M). (Man nennt sie die Hausdorff-Metrik ; sie misst,
wie verschieden zwei Mengen voneinander sind.)

(¢) Fiir M = R? mit der euklidischen Metrik gilt lim K 1+1(0) =K1 (0) in £ (M).
n—oo n
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24.D Peano-Kurven

Zum Abschluss dieses Kapitels wollen wir eine interessante Anwendung betrachten, in der viele
wichtige Sitze dieses und des vorangegangenen Kapitels geschickt miteinander kombiniert werden,
um ein sehr erstaunliches Resultat zu beweisen. Es handelt sich dabei nicht so sehr um ein Resultat,
das fiir unser weiteres Studium der Analysis von groler Bedeutung wire, sondern einfach nur um
ein sehr ,,schones® Stiick Mathematik, das so verbliiffend ist, dass man es fast schon als Paradoxon
bezeichnen kdnnte: Wir werden zeigen, dass es eine stetige Abbildung vom Einheitsintervall [0, 1] C
R nach R? (also einen Weg in der Ebene im Sinne von Definition 24.20) gibt, deren Bild das gesamte
,Einheitsquadrat® [0, 1] x [0,1] C R? ist. Wir konnen also mit einem ,eindimensionalen Objekt
(ndmlich dem Einheitsintervall) durch eine stetige Abbildung ein ,,zweidimensionales Objekt* (das
Einheitsquadrat) komplett ausfiillen. Spitestens hier sehen wir also, dass man mit der oft gehorten
Interpretation einer stetigen Abbildung in einer Variablen als etwas, das man zeichnen kann, ohne
den Stift abzusetzen, etwas vorsichtig sein muss.

In diesem Abschnitt bezeichne stets I := [0, 1] C R das
Einheitsintervall und Q :=1x 1 =0, 1] x [0, 1] das Ein-

heitsquadrat. I f
ﬁ —_
Satz 24.44 (Peano-Kurve). Es gibt eine stetige surjek- 0 1 surjektiv

tive Abbildung f: I — Q. (Eine solche Abbildung wird
als Peano-Kurve bezeichnet.)

Beweis. Der Beweis dieses Satzes ist konstruktiv, gibt also eine mogliche Peano-Kurve explizit an.
Sie wird als Grenzwert einer rekursiv definierten Folge von Funktionen f,: I — Q konstruiert.

Die Funktionenfolge (f,,), wird dabei wie folgt gebildet: Die erste Funktion fj ist einfach die Gerade

fo: I —Q, fo(x) = (i) ;
die das Einheitsquadrat auf der Diagonale von links unten nach rechts oben durchlauft. Fiir die
nichste Funktion f; teilen wir Q in 9 gleich groBe Teilquadrate entlang der horizontalen und ver-
tikalen Linien bei % und %, und durchlaufen nun diese 9 Teilquadrate der Reihe nach entlang ihrer
Diagonalen wie im Bild unten dargestellt. Der Weg fi besteht also aus 9 Geradenstiicken, die alle
,-mit gleicher Geschwindigkeit* durchlaufen werden — er ist im Bild an den Ecken nur deswegen
abgerundet eingezeichnet, damit man seinen Verlauf besser erkennen kann.

1- fo(l)/ 1-

1
1
3

S

Der néchste Weg f> entsteht nun aus fi, indem wir jedes der 9 Geradenstiicke von f; (wie etwa das
in dem oben dunkel eingezeichneten Teilquadrat) durch einen Weg ersetzen, der selbst wieder wie
J1 aussieht. Entsprechend ersetzen wir dann jedes der Geradenstiicke von f> durch einen Weg wie
/1, um f3 zu erhalten. Setzen wir dieses Verfahren fort, so erhalten wir eine Folge (f,,), von Wegen
fn: I — Q. Die Wege f» und f3 sind im folgenden Bild eingezeichnet.
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&

XD

0 1
f3

Wir wollen nun f(x) := lim f,(x) fiir alle x € I setzen und miissen uns dazu natiirlich als Erstes
n—oo
davon iiberzeugen, dass dieser Grenzwert iiberhaupt existiert.

Es sei dazu € > 0 beliebig. Wir wihlen ein ng € N mit 3%0 <E. v
Fiir ein beliebiges x € I liegt f,,(x) nun wie im Bild rechts auf 2+1 ‘
einem der Geradenstiicke, die diagonal durch eines der Teilqua-

drate von f;, laufen. Dieses Teilquadrat hat nach Konstruktion die
Seitenlidnge 3%0 und ist von der Form

_1a a+l1 b b+1 J

=[50 50 | %3030 ] <2 b
fiir gewisse natiirliche Zahlen 0 < a,b < 3"0. Beachte, dass dann 30
aber auch alle f;,(x) mit n > ng in A liegen, denn wir &ndern den - P
Teil des Weges f,, in A fiir n > ng ja nur noch innerhalb von A ab. 30 30

Fiir alle n,m > ng liegen f;,(x) und f;,(x) also in einem Quadrat mit Seitenlinge 3%0, d.h. es ist

3) ~ e < 5 < 2 8

fiir alle n,m > ng. Dies bedeutet genau, dass die Folge (f;,(x)), fiir festes x eine Cauchyfolge in
Q ist. Als abgeschlossene Teilmenge von R? ist Q nach Satz 23.29 und Folgerung 23.43 nun aber
vollstindig — d. h. diese Cauchyfolge konvergiert fiir alle x gegen einen Punkt in Q, und wir konnen
unsere Funktion f: I — Q damit in der Tat wie gewiinscht durch f(x) := y}gl; fn(x) definieren. Es

bleibt jetzt nur noch zu zeigen, dass f auch stetig und surjektiv ist.

Fiir die Stetigkeit nehmen wir den Grenzwert von (x) fiir m — oo und erhalten fiir alle x € 1

1
1) = f)lleo < 55 < €

(beachte, dass die Norm nach Beispiel 24.3 (b) stetig ist und wir den Grenzwert damit nach Satz
24.4 (b) in die Norm hineinziehen diirfen). Dies sagt uns noch einmal, dass f;(x) fiir n — o gegen
f(x) konvergiert — der entscheidende Punkt ist nun aber, dass unser oben gewihltes ng nur von € und
nicht vom Punkt x abhiingt. Die Folge (f,,), ist also sogar gleichmiBig konvergent. Nach Bemerkung
24.26 (b) ist die Grenzfunktion f als gleichmiBiger Grenzwert stetiger Funktionen damit stetig.

Fiir die Surjektivitdt erinnern wir uns daran, dass nach Satz €
24.30 mit I auch das Bild f(/) unter der stetigen Abbildung ) —
f kompakt ist. Nach Satz 23.51 (a) ist f(I) also insbesondere ~ 3% |77
abgeschlossen, d. h. das Komplement R?\ f(I) ist offen. Ange- b | .
nommen, f wiirde nun nicht surjektiv auf das Einheitsquadrat 30 LU (y)
Q abbilden, d.h. es giibe einen Punkt y € Q\ f(I). Da R*\ f(I) .
offen ist, gibe es dann eine Umgebung Ug(y) von y, die ganz
in R?\ (I) liegt. Wir verwenden dabei wieder die Maximums-
norm, so dass diese Umgebung wie im Bild rechts ein (offenes)

Quadrat mit Seitenléinge 2¢€ ist. & afl
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Wihlen wir nun wieder unser ny € N mit 3,#0 < €, so muss dann mindestens ein Quadrat

a a+1 b b+1

- [37370} x [37 3%

der zu f,,, gehorigen Unterteilung von Q ganz in Ug(y) liegen, enthilt also ebenfalls keinen Punkt
des Weges f. Dies ist aber ein Widerspruch, da f nach unserer Konstruktion natiirlich durch jedes
solche Quadrat irgendwie hindurch lauft, also insbesondere einen Punkt in A enthalten muss. Also
war unsere Annahme falsch, und f ist in der Tat surjektiv. O

}CRz

Nachdem wir nun gezeigt haben, dass es eine stetige surjektive Abbildung / — Q gibt, wiirde man
vielleicht vermuten, dass es umgekehrt auch eine stetige injektive Abbildung Q — I gibt. Wie wir
jetzt sehen wollen, ist dies jedoch erstaunlicherweise falsch. Das gleiche Argument zeigt dann auch,
dass keine bijektive Peano-Kurve existiert.

Satz 24.45.

(a) Es gibt keine stetige injektive Abbildung Q — 1.
(b) Es gibt keine stetige bijektive Abbildung I — Q (also keine bijektive Peano-Kurve).

Beweis.
(a) Angenommen, f: Q — [ wire stetig und injektiv. Mit Q wire dann nach Satz 24.30 und

24.23 (a) auch das Bild f(Q) C I kompakt und wegzusammenhingend, also ein abgeschlos-
senes Intervall [a,b]. Damit ist die Einschrinkung f: Q — [a,b] stetig und bijektiv.

Wir nehmen nun aus dem Intervall [a,b] den Mittelpunkt ¢ := # heraus, und dementspre-
chend aus dem Quadrat Q den Urbildpunkt f~!(c). Die dadurch entstehende Einschrinkung
Flov1): O\f ~!(¢) — [a,b]\{c} ist dann natiirlich immer noch stetig (und bijektiv). Dies
ist aber ein Widerspruch zum Zwischenwertsatz 24.23 (a), da Q\{f~'(c)} immer noch weg-
zusammenhingend ist, [a,b]\{c} aufgrund des fehlenden Mittelpunkts jedoch nicht.

(b) Da I kompakt ist, wére nach Satz 24.32 mit einer stetigen bijektiven Abbildung I — Q auch
ihre Umkehrung Q — I stetig und bijektiv, im Widerspruch zu (a). g

Bemerkung 24.46. In beiden Teilen von Satz 24.45 ist die Forderung der Stetigkeit wichtig:

(a) Da es nach Satz 24.44 eine surjektive Abbildung f: I — Q gibt, gibt es natiirlich auch ei-
ne (unstetige) injektive Abbildung Q — I: Wir kénnen einfach jeden Punkt x € Q auf ein
beliebiges Urbild von x unter f abbilden.

(b) Natiirlich gibt es neben der surjektiven Peano-Kurve I — Q aus Satz 24.44 auch eine injek-
tive Abbildung I — Q (z.B. die Abbildung fy aus dem Beweis dieses Satzes). Man kann
zeigen, dass daraus folgt, dass es auch eine bijektive Abbildung I — Q gibt, also dass das
Einheitsintervall und das Einheitsquadrat im Sinne von Definition 5.54 (a) gleichmichtig
sind. Da es keine stetige bijektive Abbildung I — Q gibt, sind diese beiden Riume aus to-
pologischer Sicht jedoch verschieden.

Aufgabe 24.47. Es sei I = [0,1] C R. Gibt es eine stetige, surjektive Abbildung ...

(a) vonInachlxIxICR3;

(b) von I nach R?;

(¢) von [0,1) nach R?;

(d) von I in den abgeschlossenen Einheitskreis K1 (0) = {x € R?: ||x|, < 1}?

(Hinweis: In allen Féllen oben, in denen eine solche Abbildung existiert, l4sst sie sich explizit durch
die Peano-Kurve f: I — I x I aus Satz 24.44 ausdriicken, ohne diese aufwendige Konstruktion noch
einmal zu wiederholen.)
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