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24. Stetigkeit in metrischen Räumen

Wie im eindimensionalen Fall kommen wir nach unserem Studium von Grenzwerten von Folgen
im letzten Kapitel jetzt zur Stetigkeit, also zu Grenzwerten von Funktionen. Auch diese können wir
wieder in allgemeinen metrischen Räumen betrachten.

24.A Stetige Abbildungen
Zur Definition stetiger Abbildungen erinnern wir uns noch einmal an die entsprechende Definition
8.3 in K: Ist f : D→ K eine Funktion auf einer Teilmenge D von K und a ein Punkt im Abschluss
D von D, so sagen wir, dass f (x) für x→ a gegen ein c ∈K konvergiert, wenn

∀ε ∈ R>0 ∃δ ∈ R>0 ∀x ∈ D : |x−a|< δ ⇒ | f (x)− c|< ε.

Wie im Fall von Grenzwerten von Folgen können wir dies unmittelbar auf metrische Räume über-
tragen, indem wir den Abstand zweier Punkte nun mit der Metrik messen:

Definition 24.1 (Grenzwerte von Funktionen und Stetigkeit). Es seien M und N metrische Räume,
D⊂M eine beliebige Teilmenge und f : D→ N eine Abbildung.

(a) Ist a ∈ D, so heißt ein Punkt c ∈ N Grenzwert von f in a, wenn

∀ε ∈ R>0 ∃δ ∈ R>0 ∀x ∈ D : d(x,a)< δ ⇒ d( f (x),c)< ε,

also mit anderen Worten wenn

∀ε ∈ R>0 ∃δ ∈ R>0 : f (D∩Uδ (a))⊂Uε(c)

(beachte dabei, dass d(x,a) die Metrik in M, d( f (x),c) dagegen die in N ist). Wie im eindi-
mensionalen Fall werden wir wieder in Bemerkung 24.5 (a) sehen, dass ein solcher Grenz-
wert eindeutig ist, falls er existiert, so dass wir dann von dem Grenzwert von f in a sprechen
können. Wir schreiben dies dann als

lim
x→a

f (x) = c bzw. lim
x→a
x∈D

f (x) = c

oder auch als „ f (x)→ c für x→ a“, und sagen, dass f (x) für x→ a gegen c konvergiert.
Existiert ein solcher Grenzwert nicht, so heißt f divergent in a.

(b) Liegt der Punkt a sogar in D, so kommt als Grenzwert von f in a analog zu Bemerkung 8.4
nur f (a) in Frage, da wir in der Grenzwertbedingung in (a) dann immer x = a setzen können
und somit d( f (a),c) < ε für alle ε > 0 gelten muss – es ist also d( f (a),c) = 0 und damit
c = f (a). Wenn f (x) dann für x→ a gegen f (a) konvergiert, d. h. wenn

∀ε ∈ R>0 ∃δ ∈ R>0 ∀x ∈ D : d(x,a)< δ ⇒ d( f (x), f (a))< ε

bzw.
∀ε ∈ R>0 ∃δ ∈ R>0 : f (D∩Uδ (a))⊂Uε( f (a))

gilt, so heißt f stetig in a. Liegt a nicht in D, so heißt f stetig fortsetzbar nach a, wenn der
Grenzwert c = lim

x→a
f (x) existiert.

(c) Die Funktion f heißt stetig, wenn sie in jedem Punkt a ∈ D stetig ist.

Im Fall M = K stimmt dies offensichtlich mit Definition 8.3 bzw. 8.5 überein, und auch für allge-
meine metrische Räume ist die anschauliche Interpretation dieser Begriffe natürlich noch dieselbe:
So ist eine Abbildung f z. B. stetig, wenn „kleine Änderungen in der Variable x auch nur kleine Än-
derungen der Funktionswerte f (x) zur Folge haben“ (siehe Bemerkung 8.6). Wir werden in diesem
Abschnitt sehen, dass auch die Sätze über stetige Funktionen sowie ihre Beweise noch sehr ähnlich
zu denen aus Kapitel 8 sind.
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Bemerkung 24.2. Nach Bemerkung 23.11 ist jede Teilmenge D eines metrischen Raumes M mit
der eingeschränkten Metrik selbst wieder ein metrischer Raum. Da wir die Metrik auf M für die
Definition 24.1 (b) der Stetigkeit (also im Fall a ∈ D) auch nur für Punkte in D benötigen, können
wir für Stetigkeitsbetrachtungen in metrischen Räumen in Zukunft also ohne Einschränkung M = D
setzen und so die Notationen etwas vereinfachen: In diesem Fall ist eine Funktion f : M→ N nach
Definition 24.1 (b) genau dann in einem Punkt a ∈M stetig, wenn es zu jedem ε > 0 ein δ > 0 gibt
mit f (Uδ (a))⊂Uε( f (a)).

Bei der stetigen Fortsetzbarkeit ist eine solche Vereinfachung dagegen nicht möglich.

Beispiel 24.3 (Stetigkeit der Metrik bzw. Norm).
(a) In jedem metrischen Raum M ist die Abstandsfunktion

f : M→ R, x 7→ d(x,b)

zu einem fest gewählten Punkt b ∈ M stetig: Es seien a ∈ M und ε ∈ R>0 gegeben; wir
wählen δ = ε . Dann gilt für alle x ∈M mit d(x,a)< ε nach der Dreiecksungleichung

d(x,b)−d(a,b)≤ d(x,a)< ε sowie d(a,b)−d(x,b)≤ d(x,a)< ε,

und damit auch | f (x)− f (a)| = |d(x,b)− d(a,b)| < ε , da |d(x,b)− d(a,b)| in jedem Fall
eine der beiden Zahlen d(x,b)− d(a,b) und d(a,b)− d(x,b) ist. Also ist f stetig in jedem
Punkt a ∈M.

(b) Ist V ein normierter Raum, so ist nach (a) auch die Normfunktion

f : V → R, x 7→ ∥x∥= d(x,0)

stetig.

Wie in K gibt es auch für metrische Räume wieder die Möglichkeit, Grenzwerte von Funktionen auf
solche von Folgen zurückzuführen:

Satz 24.4 (Folgenkriterium). Es seien M,N metrische Räume, D⊂M und f : D→N eine Funktion.

(a) (Folgenkriterium für Funktionsgrenzwerte) Für a ∈ D und c ∈ N gilt

lim
x→a

f (x) = c ⇔ Für jede Folge (xn)n in D mit xn→ a gilt f (xn)→ c.

(b) (Folgenkriterium für Stetigkeit) Für a ∈ D gilt

f ist stetig in a ⇔ Für jede Folge (xn)n in D mit xn→ a gilt f (xn)→ f (a).

Beweis. Der Beweis ist (bis auf die Ersetzung der Betragsstriche durch die Metrik) wörtlich genauso
wie der von Satz 8.12. □

Bemerkung 24.5.
(a) Da es zu jedem Punkt a ∈ D eine Folge (xn)n in D mit xn→ a gibt und die Folge ( f (xn))n

nach Lemma 23.15 höchstens einen Grenzwert besitzen kann, folgt aus Satz 24.4 unmittel-
bar, dass auch der Grenzwert lim

x→a
f (x) von Funktionen im Fall der Existenz eindeutig ist.

(b) Da wir aus Bemerkung 23.18 schon wissen, dass Grenzwerte von Folgen eine topologische
Eigenschaft sind, gilt dies nach Satz 24.4 nun auch für Grenzwerte bzw. die Stetigkeit von
Funktionen.

Beispiel 24.6 (Stetigkeit von Koordinatenabbildungen). Für n ∈ N>0 und i = 1, . . . ,n ist die Abbil-
dung

f : Kn→K, x 7→ xi,

die jedem Vektor seine i-te Koordinate zuordnet, stetig: Nach Bemerkung 24.5 (b) können wir dies
in der zur euklidischen Norm äquivalenten Maximumsnorm überprüfen. Dann gilt für alle ε > 0 und
x,a ∈Kn mit ∥x−a∥∞ < δ := ε , dass

| f (x)− f (a)|= |xi−ai| ≤ ∥x−a∥∞ < ε.
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Wir wollen nun untersuchen, wie man die Stetigkeit konkret gegebener Abbildungen einfach über-
prüfen kann. Am wichtigsten ist dabei der Fall, in dem der Start- bzw. Zielraum eine Teilmenge von
Kn ist. Als erstes Resultat hierzu besagt das folgende Lemma, dass wir die Stetigkeit in diesem Fall
koordinatenweise im Zielraum überprüfen können.

Lemma 24.7 (Koordinatenweise Stetigkeit im Zielraum). Es seien D eine Teilmenge eines metri-
schen Raumes M und

f : D→Km, x 7→ f (x) =

 f1(x)
...

fm(x)


eine Abbildung mit Komponentenfunktionen f1, . . . , fm : D→ K. Ist nun a ∈ D und c ∈ Km, so gilt
genau dann lim

x→a
f (x) = c, wenn lim

x→a
fi(x) = ci für alle i = 1, . . . ,m ist, wobei ci die Koordinaten von

c bezeichnet.

Für a ∈ D ergibt sich also insbesondere, dass f genau dann in a stetig ist, wenn alle Koordinaten-
funktionen fi : D→K es sind.

Beweis. Es sei (xn)n eine beliebige Folge in D, die gegen a konvergiert. Nach dem Folgenkriterium
aus Satz 24.4 (angewendet sowohl auf f als auch auf f1, . . . , fm) genügt es zu zeigen, dass f (xn)
genau dann gegen c konvergiert, wenn fi(xn) für alle i = 1, . . . ,m gegen ci konvergiert. Dies ergibt
sich aber sofort aus Lemma 23.19. □

Wir können die Stetigkeit einer Abbildung nach Km also sofort auf die Stetigkeit einer Abbildung
nach K zurückführen. Können wir die Situation noch weiter vereinfachen und die Stetigkeit auch
noch koordinatenweise im Startraum überprüfen, falls dieser eine Teilmenge von Kn ist? Das fol-
gende Beispiel zeigt, dass dies leider nicht der Fall ist.

Beispiel 24.8. Wir betrachten die im Bild unten rechts dargestellte Funktion

f : R2→ R, x 7→

{ 2x1x2
x2

1+x2
2

für x ̸= 0,

0 für x = 0.

Man kann sie sich leicht in Polarkoordinaten (x1,x2) = (r cosϕ,r sinϕ) vorstellen, denn der gege-
bene Ausdruck ist dann nach Satz 9.14 gleich 2x1x2

x2
1+x2

2
= 2cosϕ sinϕ = sin2ϕ . Die Funktion f ist also

abgesehen vom Nullpunkt auf jeder Ursprungsgeraden konstant, z. B. auf den Koordinatenachsen
gleich 0 und auf der durch x2 = x1 gegebenen Diagonalen (mit ϕ = π

4 ) gleich 1.

Daran sehen wir auch schon, dass f z. B. nach dem Folgen-
kriterium aus Satz 24.4 (b) im Nullpunkt unstetig ist: Die
Folge

(
( 1

n ,
1
n )

T)
n∈N>0

konvergiert zwar (entlang der Dia-
gonale) gegen den Ursprung, aber es ist natürlich

f

(
1
n
1
n

)
=

2/n2

2/n2 = 1 ̸→ 0 = f
(

0
0

)
.

In der Tat ist das Folgenkriterium oft nützlich, um die Un-
stetigkeit einer Funktion zu zeigen, da es hierfür ja genügt,
eine einzige Folge anzugeben, die die Bedingung des Kri-
teriums verletzt.

f

x1

f = 0

f = 1

f = 0 f =−1

x2

Andererseits ist aber für jedes fest gewählte x2 ∈R die Funktion x1 7→ f
(

x1
x2

)
in einer Variablen x1

stetig: Für x2 = 0 ergibt sich einfach die Nullfunktion, und für alle anderen x2 benötigen wir nur die
erste Zeile in der Definition von f , die dann natürlich eine stetige Funktion in x1 ist. Genauso gilt
dies, wenn wir x1 fest halten und x2 als variabel betrachten.

Die Funktion f auf R2 ist also im Nullpunkt nicht stetig, obwohl beide Funktionen in einer Va-
riablen, die man durch Festhalten der jeweils anderen daraus erhält, dort stetig sind. Anschaulich
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liegt das daran, dass man beim Festhalten jeweils einer Variablen nur untersucht, wie sich die Funk-
tion verhält, wenn man sich auf einer der Koordinatenachsen dem Nullpunkt nähert, während man
sich ihm für die Überprüfung der Stetigkeit auf einem beliebigen Weg nähern muss. Zusammen mit
Lemma 24.7 sehen wir also:

Die Stetigkeit einer Abbildung von Kn nach Km kann zwar koordinatenweise im Ziel-
raum, aber nicht koordinatenweise im Startraum überprüft werden.

Dennoch wollen wir jetzt aber sehen, dass die „gewohnten Rechenregeln“ aus Kapitel 8 für Sum-
men, Differenzen, Produkte, Quotienten und Verkettungen stetiger Funktionen auch in unserem hier
betrachteten allgemeineren Fall gelten.

Lemma 24.9 (Grenzwertsätze für Funktionen). Es seien D ⊂M eine Teilmenge eines metrischen
Raumes M und f ,g : D→K zwei Funktionen. Weiterhin sei a∈D ein Punkt, so dass die Grenzwerte
von f und g in a existieren. Dann gilt

lim
x→a

( f (x)+g(x)) = lim
x→a

f (x)+ lim
x→a

g(x),

und eine entsprechende Aussage auch für f (x)− g(x), f (x) · g(x) und f (x)
g(x) (letzteres natürlich nur

falls lim
x→a

g(x) ̸= 0). Insbesondere sind für a ∈ D also mit f und g auch f +g, f −g, f ·g und f
g in a

stetig (letzteres wiederum nur falls g(a) ̸= 0).

Beweis. Der Beweis läuft wörtlich genauso wie der von Satz 8.14 – nämlich indem man die Aussage
mit Hilfe des Folgenkriteriums aus Satz 24.4 auf die entsprechenden Aussagen über Grenzwerte von
Folgen in K (siehe Satz 5.13) zurückführt. □ 61

Lemma 24.10 (Verkettung stetiger Abbildungen). Es seien f : M→ N und g : N → P zwei Abbil-
dungen zwischen metrischen Räumen M,N,P. Ist dann a ∈ M, so dass f in a und g in f (a) stetig
sind, so ist auch g◦ f stetig in a.

Beweis. Der Beweis ist derselbe wie in Satz 8.16: Ist (xn)n eine Folge in M mit xn → a, so gilt
f (xn)→ f (a) nach dem Folgenkriterium aus Satz 24.4 (b) wegen der Stetigkeit von f in a, und
dann genauso g( f (xn))→ g( f (a)) wegen der Stetigkeit von g in f (a). Also ist g ◦ f nach dem
Folgenkriterium in a stetig. □

Beispiel 24.11.
(a) Die in Beispiel 24.8 betrachtete Funktion ist nach Lemma 24.9 in jedem Punkt a ∈ R2\{0}

stetig, da sie in einer Umgebung eines jeden solchen Punktes durch Addition, Multiplikation
und Division aus den nach Beispiel 24.6 stetigen Koordinatenfunktionen x1 und x2 zusam-
mengesetzt ist.

(b) Nach Lemma 24.7 und Lemma 24.9 ist jede lineare Abbildung f : Kn → Km, x 7→ Ax mit
A = (ai, j)i, j ∈ Km×n stetig, da ihre Koordinatenfunktionen x 7→ ai,1x1 + · · ·+ ai,nxn für alle
i = 1, . . . ,m es sind. Diese Aussage erscheint zwar selbstverständlich, ist aber für beliebige
normierte Räume falsch: Für unendlich-dimensionale Vektorräume müssen lineare Abbil-
dungen im Sinne von Definition 16.1 nicht notwendig stetig sein, wie das folgende Beispiel
zeigt.

Aufgabe 24.12 (Stetigkeit linearer Abbildungen). Es sei V =C0([0,1]) der Vektorraum der stetigen
reellwertigen Funktionen auf [0,1]. Zeige, dass die lineare Abbildung f : V → R, ϕ 7→ ϕ(0) zwar
bezüglich der Norm ∥ · ∥∞ auf V , aber nicht bezüglich der Norm ∥ · ∥1 auf V stetig ist.

Aufgabe 24.13. Sind die folgenden Funktionen stetig in den Nullpunkt fortsetzbar?

f : R2\{0}→ R, x 7→ (x1 + x2)
3

x2
1 + x2

2
, g : R>0×R→ R, x 7→ xx2

1 .
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Aufgabe 24.14. Zeige, dass die Funktion

g : R2→ R, x 7→


x1x2

2
x2

1+x4
2

für x ̸= 0,

0 für x = 0

zwar unstetig ist, ihre Einschränkung auf jede Gerade durch den Nullpunkt jedoch stetig ist.

Aufgabe 24.15.
(a) Es seien M ein metrischer Raum und f ,g : M → R zwei stetige Abbildungen. Zeige, dass

dann auch die Abbildung max( f ,g) : M→ R, x 7→max( f (x),g(x)) stetig ist.
(b) Zeige, dass die Abbildung GL(n,K)→ GL(n,K), A 7→ A−1 stetig ist.

24.B Eigenschaften stetiger Abbildungen
Nachdem wir jetzt wissen, wie wir von Abbildungen ihre Stetigkeit überprüfen können, kommen wir
nun zu den Eigenschaften stetiger Funktionen. Als Erstes schauen wir uns dazu an, wie sich Um-
gebungen sowie offene und abgeschlossene Mengen unter stetigen Abbildungen verhalten. Unser
erstes Ergebnis zeigt dabei noch einmal deutlich, dass die Stetigkeit von Funktionen eine topologi-
sche Eigenschaft ist (siehe Bemerkung 24.5 (b)).

Lemma 24.16 (Charakterisierung stetiger Funktionen durch Umgebungen). Es seien f : M → N
eine Abbildung zwischen metrischen Räumen und a ∈M. Dann sind äquivalent:

(a) f ist stetig in a.
(b) Für jede Umgebung U ⊂N von f (a) ist f−1(U)⊂M eine Umgebung von a (man sagt auch:

„Urbilder von Umgebungen sind Umgebungen“).

Beweis. Es gilt:

f ist stetig in a

⇔ Für alle ε gibt es ein δ mit f (Uδ (a))⊂Uε( f (a)) (Bemerkung 24.2)

⇔ Zu jeder Umgebung U von f (a) gibt es ein δ mit f (Uδ (a))⊂U (∗)

⇔ Zu jeder Umgebung U von f (a) gibt es ein δ mit Uδ (a)⊂ f−1(U)

⇔ Zu jeder Umgebung U von f (a) ist f−1(U) eine Umgebung von a (Definition 23.13 (b)),

wobei in (∗) die Folgerung “⇐” gilt, da jede ε-Umgebung eine Umgebung ist, und “⇒” gilt, da jede
Umgebung von f (a) eine ε-Umgebung von f (a) enthält. □

Für die Stetigkeit einer gesamten Abbildung (also nicht nur in einem einzelnen Punkt) gibt es er-
staunlicherweise das folgende sehr einfache Kriterium.

Satz 24.17 (Charakterisierung stetiger Funktionen durch offene bzw. abgeschlossene Mengen). Für
eine Abbildung f : M→ N zwischen metrischen Räumen sind äquivalent:

(a) f ist stetig (in jedem Punkt von M).
(b) Für jede offene Menge U ⊂ N ist f−1(U) ⊂M offen (man sagt: „Urbilder offener Mengen

sind offen“).
(c) Für jede abgeschlossene Menge A⊂ N ist f−1(A)⊂M abgeschlossen (man sagt: „Urbilder

abgeschlossener Mengen sind abgeschlossen“).

Beweis. Wir zeigen zunächst die Äquivalenz (a)⇔ (b):

f ist stetig 24.16⇔ Für alle a ∈M und alle Umgebungen U von f (a) ist f−1(U) Umgebung von a
(∗)⇔ Für alle a ∈M und alle U offen mit f (a) ∈U ist f−1(U) Umgebung von a

⇔ Für alle U offen und alle a ∈ f−1(U) ist f−1(U) Umgebung von a
23.32 (a)⇔ Für alle U offen ist f−1(U) offen,
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wobei in (∗) die Folgerung „⇒“ gilt, weil jede offene Menge U mit f (a) ∈U eine Umgebung von
f (a) ist, und „⇐“ gilt, da jede Umgebung von f (a) eine offene Menge U mit f (a) ∈U enthält.

Die Äquivalenz (b)⇔ (c) folgt direkt durch Übergang zum Komplement: Setzen wir A = N\U , so
ist A genau dann abgeschlossen, wenn U offen ist, und analog f−1(A) = f−1(N\U) = M\ f−1(U)
genau dann abgeschlossen, wenn f−1(U) offen ist. Dies zeigt unmittelbar die Äquivalenz der beiden
Aussagen. □

Beispiel 24.18 (Offene und abgeschlossene Bedingungen). Sind M ein metrischer Raum und
f : M→ R eine stetige Funktion, so ist die Menge

{x ∈M : f (x)> 0}= f−1(R>0)

als Urbild der offenen Menge R>0 ⊂ R unter einer stetigen Abbildung nach Satz 24.17 offen in M.
Ebenso gilt dies natürlich für die Mengen

{x ∈M : f (x)< 0} und {x ∈M : f (x) ̸= 0}
als Urbilder von R<0 bzw. R\{0}. Dagegen ist die Menge

{x ∈M : f (x)≥ 0}= f−1(R≥0)

als Urbild der abgeschlossenen Menge R≥0 ⊂R unter einer stetigen Abbildung abgeschlossen in M,
genauso wie die Mengen

{x ∈M : f (x)≤ 0} und {x ∈M : f (x) = 0}.
Mit dieser Beobachtung kann man in vielen Fällen sehr einfach herausfinden, ob eine gegebene
Menge offen bzw. abgeschlossen ist: So sieht man z. B. sofort, dass die Menge

{x ∈ R2 : x3
1 > cosx2} ⊂ R2

offen sein muss, da sie das Urbild von R>0 unter der stetigen Abbildung R2→R, x 7→ x3
1−cosx2 ist.

Man sagt in diesem Sinne oft auch, dass „>“, „<“ und „̸=“ (jeweils mit reellwertigen stetigen Aus-
drücken auf beiden Seiten) offene Bedingungen sind, während „≥“, „≤“ und „=“ abgeschlossene
Bedingungen darstellen.

Bemerkung 24.19 (Relativ offene bzw. abgeschlossene Mengen). Es seien M und N metrische
Räume, D ⊂M und f : D→ N eine Abbildung. Nach Satz 24.17 ist f genau dann stetig, wenn zu
jeder offenen Menge U ⊂ N das Urbild f−1(U) offen im Startraum D ist.

Beachte jedoch, dass dies nicht heißen muss, dass f−1(U) auch offen in M ist! In der Tat ist f−1(U)
nach Aufgabe 23.36 (b) genau dann offen in D, wenn es eine in M offene Teilmenge V gibt mit
f−1(U) =V ∩D – man sagt in diesem Fall auch manchmal, dass f−1(U) relativ offen in D ist. Eine
analoge Aussage gilt auch für (relativ) abgeschlossene Mengen.

Als anschauliches Beispiel hierfür können wir die stetige Abbildung

f : K1(0)→ R,
(

x1
x2

)
7→ x1

auf dem abgeschlossenen Einheitskreis K1(0) = {x ∈ R2 : ∥x∥2 ≤ 1}
betrachten. Das Urbild der offenen Menge R>0 ⊂ R unter f ist in
diesem Fall (wie im Bild dunkel eingezeichnet) der rechte Halbkreis,
wobei vom Rand dieses Halbkreises der Bogen mit enthalten ist, der
Durchmesser jedoch nicht. Diese Menge ist wegen der enthaltenen
Randpunkte auf dem Halbkreisbogen natürlich nicht offen in R2 – sie
ist aber (relativ) offen in K1(0), denn sie ist der Durchschnitt von K1(0)
mit der nach Beispiel 24.18 offenen Menge {x ∈ R2 : x1 > 0}.

K1(0)

f

0
R

Als Nächstes wollen wir untersuchen, ob wir eine Verallgemeinerung des Zwischenwertsatzes 8.21
für beliebige metrische Räume finden können, d. h. ob wir für gewisse Klassen von reellwertigen
Funktionen sagen können, dass sie mit zwei Werten auch jede Zahl dazwischen annehmen müssen.
Die entscheidende Frage ist hierbei, ob die Definitionsmenge „nur aus einem zusammenhängenden
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Teil besteht“ – denn wenn sie wie z. B. die Menge M = [0,1]∪ [2,3]⊂ R „aus zwei unverbundenen
Teilen besteht“, können wir natürlich leicht eine stetige Abbildung f : M→ R konstruieren, die die
Zwischenwertbedingung nicht erfüllt (in unserem Beispiel könnten wir dafür schon die Abbildung
f : M→ R, x 7→ x wählen, da hierfür zwar 1 und 2, aber keine der Zahlen dazwischen im Bild von
f liegen). Die mathematisch korrekte Formulierung dieser Bedingung ist die folgende:

Definition 24.20 (Wegzusammenhängende Räume). Ein metrischer Raum M heißt wegzusammen-
hängend, wenn es zu je zwei Punkten x,y ∈M eine stetige Abbildung γ : [a,b]→M eines reellen
Intervalls [a,b] nach M gibt mit γ(a) = x und γ(b) = y. Man nennt γ in diesem Fall einen Weg von x
nach y – der Raum M heißt also wegzusammenhängend, wenn sich je zwei Punkte in M durch einen
Weg verbinden lassen.

γ

M

x y

a b

Die wichtigsten Beispiele wegzusammenhängender Räume sind durch die folgende Definition ge-
geben.

Definition 24.21 (Konvexe Mengen). Eine Teilmenge M eines K-Vektorraums heißt konvex, wenn
für alle x,y ∈M die Verbindungsstrecke

xy := {x+ t (y− x) : t ∈ [0,1]}
von x nach y ganz in M liegt.

Beispiel 24.22.
(a) Jede konvexe Teilmenge M eines normierten Raumes V ist wegzusammenhängend, da in

diesem Fall ja für alle x,y ∈M die Verbindungsstrecke [0,1]→M, t 7→ x+ t (y−x) ein Weg
in M von x nach y ist. Wie im Bild unten für V =R2 ist jedoch nicht jede wegzusammenhän-
gende Teilmenge eines normierten Raumes konvex (die gestrichelten Linien zeigen jeweils
Verbindungsstrecken, die nicht in M liegen).

konvex, also
wegzusammenhängend

wegzusammenhängend,
aber nicht konvex

nicht wegzusammenhängend,
also nicht konvex

x
y

x

x y y
M

MM

(b) Jedes Intervall M ⊂R aus Notation 4.17 (a) (offen, abgeschlossen, halboffen oder uneigent-
lich) ist konvex, und damit nach (a) wegzusammenhängend.

(c) Jede abgeschlossene Kugel Kr(a) in einem normierten Raum ist konvex und damit wegzu-
sammenhängend, denn für alle x,y ∈ Kr(a) und t ∈ [0,1] gilt

∥x+ t (y− x)−a∥= ∥(1− t)(x−a)+ t(y−a)∥
≤ |1− t| · ∥x−a∥+ |t| · ∥y−a∥ ≤ (1− t) · r+ t · r = r,

und damit xy⊂ Kr(a). Analog folgt dies auch für offene Kugeln.

(d) Die Menge M = [0,1]∪ [2,3]⊂R ist nicht wegzusammenhängend: Wäre γ : [a,b]→M ⊂R
eine stetige Abbildung mit γ(a) = 1 und γ(b) = 2, so müsste γ nach dem Zwischenwertsatz
8.21 auch jeden Wert zwischen 1 und 2 annehmen – was aber nicht möglich ist, da diese
Zahlen nicht in M liegen.

Für wegzusammenhängende Räume erhalten wir nun wie erwartet eine Verallgemeinerung des Zwi-
schenwertsatzes 8.21 in R:
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Satz 24.23 (Zwischenwertsatz). Es sei f : M → N eine stetige Abbildung zwischen metrischen
Räumen. Ferner sei M wegzusammenhängend. Dann gilt:

(a) Das Bild f (M)⊂ N ist ebenfalls wegzusammenhängend.

(b) Im Fall N = R nimmt f mit je zwei Funktionswerten auch jeden Wert dazwischen an.

Beweis. Es seien x,y∈ f (M) beliebig. Wir können dann u,v∈M wählen mit x = f (u) und y = f (v).
Da M wegzusammenhängend ist, gibt es nun einen Weg γ : [a,b]→M von u nach v. Die Abbildung
f ◦ γ : [a,b]→ N ist dann ein Weg in f (M) von x nach y, woraus sich bereits die Behauptung (a)
ergibt. Im Fall N = R folgt zusätzlich mit dem eindimensionalen Zwischenwertsatz 8.21, dass die
Abbildung f ◦γ : [a,b]→R und damit auch f mit x und y auch jede reelle Zahl dazwischen als Wert
annehmen müssen. □

Aufgabe 24.24. Es sei M ein metrischer Raum. Man zeige:

(a) Sind a,b ∈M und A⊂M mit a ∈ A und b /∈ A, so enthält jeder Weg in M von a nach b einen
Punkt in ∂A.

(b) Ist M wegzusammenhängend, so sind /0 und M die einzigen Teilmengen von M, die sowohl
offen als auch abgeschlossen sind.

Die Konzepte der gleichmäßigen Konvergenz und Stetigkeit aus Abschnitt 8.C übertragen sich wie
erwartet auf den Fall metrischer Räume. Mit dem gleichen Argument wie z. B. bei der Beschränktheit
in Bemerkung 23.21 (b) stimmen auch sie in normierten Räumen zu äquivalenten Normen überein,
obwohl sie keine topologischen Eigenschaften sind.

Definition 24.25 (Gleichmäßige Konvergenz und Stetigkeit). Es sei f : M → N eine Abbildung
zwischen metrischen Räumen.

(a) Für jedes n ∈ N sei eine Funktion fn : M→ N gegeben. Ist dann lim
n→∞

fn(x) = f (x) für alle
x ∈M, d. h. gilt

∀x ∈M ∀ε > 0 ∃n0 ∈ N ∀n≥ n0 : d( fn(x), f (x))< ε,

so nennt man die Funktionenfolge ( fn)n punktweise konvergent gegen f . Beachte, dass n0
dabei nicht nur von ε , sondern auch vom betrachteten Punkt x abhängen darf. Kann man n0
jedoch auch unabhängig von x wählen, d. h. gilt sogar

∀ε > 0 ∃n0 ∈ N ∀n≥ n0 ∀x ∈M : d( fn(x), f (x))< ε,

so heißt die Funktionenfolge ( fn)n gleichmäßig konvergent gegen f .

(b) Die Abbildung f heißt gleichmäßig stetig, wenn gilt

∀ε > 0 ∃δ > 0 ∀a,x ∈M : d(x,a)< δ ⇒ d( f (x), f (a))< ε

(der entscheidende Punkt gegenüber der „normalen“ Stetigkeit ist also wie in Definition 8.44
auch hier, dass δ nur von ε , aber nicht vom betrachteten Punkt a abhängen darf).

Bemerkung 24.26. Da Definition 24.25 völlig analog zum eindimensionalen Fall ist, übertragen
sich auch unsere damals dazu erzielten Ergebnisse und ihre Beweise unmittelbar auf die neue Situa-
tion:

(a) Eine Folge von Funktionen fn : M→ K auf einem metrischen Raum M konvergiert genau
dann gleichmäßig gegen f : M→ K, wenn ∥ fn− f∥sup := sup{| fn(x)− f (x)| : x ∈ M} für
n→ ∞ gegen 0 konvergiert (siehe Aufgabe 8.41 (a)).

(b) Konvergiert eine Folge stetiger Funktionen fn : M → N auf einem metrischen Raum M
gleichmäßig gegen f : M→ N, so ist die Grenzfunktion f ebenfalls stetig (siehe Satz 8.38).

(c) Ist eine Funktion f : M → N zwischen metrischen Räumen Lipschitz-stetig, d. h. gibt es
eine Lipschitz-Konstante L ∈ R>0 mit

d( f (x), f (y))≤ Ld(x,y)

für alle x,y ∈M, so ist f gleichmäßig stetig (siehe Lemma 8.48).
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(d) Ist f : M→ N eine stetige Funktion zwischen metrischen Räumen und ist M kompakt, so ist
f sogar gleichmäßig stetig (siehe Satz 8.50). Dabei bedeutet die Kompaktheit des metrischen
Raumes M, dass M als Teilmenge von sich selbst im Sinne von Definition 23.50 kompakt
ist.
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Zum Abschluss dieses Abschnitts wollen wir schließlich noch einen oft nützlichen Satz zeigen, mit
dem man die Existenz von Fixpunkten gewisser (stetiger) Abbildungen nachweisen kann. Da er im
eindimensionalen Fall noch nicht besonders interessant ist, haben wir ihn damals in Kapitel 8 nicht
in dieser Form bewiesen; am ehesten entspricht er vermutlich der Aussage von Aufgabe 8.30 (a).

Satz 24.27 (Banachscher Fixpunktsatz). Es seien M ein nicht-leerer vollständiger metrischer
Raum und f : M→M eine Abbildung mit der Eigenschaft, dass es ein q ∈ [0,1) gibt mit

d( f (x), f (y))≤ q ·d(x,y)

für alle x,y ∈M (eine solche Abbildung bezeichnet man auch als Kontraktion).

Dann hat f genau einen Fixpunkt, d. h. es gibt genau ein a ∈M mit f (a) = a.

Beweis. Um die Existenz eines Fixpunktes zu zeigen, konstruieren wir zu einem beliebigen Start-
punkt x0 ∈M rekursiv die Folge (xn)n∈N in M mit xn+1 = f (xn) für alle n ∈N, und zeigen, dass dies
eine Cauchyfolge ist. Zu gegebenem ε ∈R>0 wählen wir dazu ein n0 ∈N mit qn0

1−q d(x1,x0)< ε (was
wegen q < 1 möglich ist). Dann gilt für alle n ∈ N induktiv

d(xn+1,xn) = d( f (xn), f (xn−1))≤ qd(xn,xn−1)≤ ·· · ≤ qn d(x1,x0), (∗)

und damit für alle m≥ n≥ n0

d(xm,xn)≤ d(xm,xm−1)+d(xm−1,xm−2)+ · · ·+d(xn+1,xn) (Dreiecksungleichung)

≤ (qm−1 +qm−2 + · · ·+qn)d(x1,x0) (nach (∗))

≤ qn · 1
1−q

·d(x1,x0) (geometrische Reihe)

< ε (Wahl von n0).

Wegen der Vollständigkeit von M konvergiert (xn)n∈N also gegen ein a ∈M.

Beachte, dass f nach Voraussetzung wie in Bemerkung 24.26 (c) Lipschitz-stetig (mit Lipschitz-
Konstante q) ist. Gehen wir in der Rekursionsgleichung xn+1 = f (xn) zum Grenzwert n→ ∞ über,
so erhalten wir mit dem Folgenkriterium aus Satz 24.4 (b) also

a = lim
n→∞

xn+1 = lim
n→∞

f (xn) = f (a),

d. h. a ist ein Fixpunkt von f .

Es bleibt damit nur noch die Eindeutigkeit des Fixpunkts zu zeigen: Wäre b ∈M noch ein anderer
Fixpunkt, so wäre d(a,b) = d( f (a), f (b)) ≤ qd(a,b), wegen d(a,b) > 0 erhalten wir dann also
sofort den Widerspruch 1≤ q. □

Beispiel 24.28.
(a) Es sei f : R→ R eine differenzierbare Funktion mit
| f ′(x)| ≤ q für ein q ∈ [0,1) und alle x ∈ R, so dass
der Graph von f wie im Bild rechts also überall fla-
cher als der der (gestrichelt eingezeichneten) Identi-
tät verläuft. Nach dem Mittelwertsatz 10.23 (a) gibt
es dann für alle x,y ∈ R ein z zwischen x und y mit
f (x)− f (y) = f ′(z) · (x− y), und damit ist

| f (x)− f (y)|= | f ′(z)| · |x− y| ≤ q |x− y|.
Also ist f eine Kontraktion. Da R vollständig ist, hat
f damit nach Satz 24.27 genau einen Fixpunkt. ax0 x1 x2

f (x0)

f (x1)
f (a) f (x)

x
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Das Bild zeigt auch sehr anschaulich die Konstruktion des Fixpunkts wie im Beweis des
Satzes: Ausgehend von einem beliebigen Punkt x0 ∈ R bilden wir f (x0), nennen diesen
Punkt x1, bilden dann wieder f (x1) und nennen diesen Punkt x2 usw., gehen also im Bild
immer abwechselnd vertikal zum Graphen von f und horizontal zum Graphen der Identität.
Auf diese Art erhalten wir eine Folge, die gegen den Fixpunkt konvergiert.

(b) Die Konvergenz solcher rekursiv definierten Folgen hatten wir bereits in Abschnitt 5.B un-
tersucht und dabei in der Regel das Monotoniekriterium verwendet. So konvergiert z. B. die
reelle Folge (xn)n mit x0 = 1 und xn+1 =

1
2 (xn+

2
xn
) für alle n∈N nach dem Heron-Verfahren

aus Lemma 5.29 gegen
√

2 (siehe auch Beispiel 5.32). Der Banachsche Fixpunktsatz liefert
hier wie in (a) einen alternativen Konvergenzbeweis, da man leicht zeigen kann, dass die
Funktion x 7→ 1

2 (x+
2
x ) das abgeschlossene Intervall [1,2] in sich abbildet und ihre Ablei-

tung dort betragsmäßig höchstens 1
2 ist.

(c) Oft kann man den Banachschen Fixpunktsatz auch auf Funktionenräume anwenden, um die
Existenz von Funktionen mit bestimmten Eigenschaften zu zeigen. Als Beispiel dafür wollen
wir untersuchen, ob es eine differenzierbare Funktion ϕ : [0,1]→ R gibt mit

ϕ
′(x) =

1
2

sinϕ(x)+ sinx für alle x ∈ [0,1].

Solche Gleichungen, die die Ableitung einer gesuchten Funktion durch die Funktion selbst
ausdrücken, nennt man Differentialgleichungen, sie kommen in der Praxis an vielen Stellen
vor (siehe auch Aufgabe 20.20). Sie zu lösen ist in der Regel schwierig, und in der Tat kann
man für die oben angegebene Differentialgleichung mit uns bekannten Funktionen keine
exakte Lösung angeben. Mit dem Banachschen Fixpunktsatz können wir jedoch die Existenz
einer Lösung beweisen, indem wir die Abbildung

f : C0([0,1])→C0([0,1]), f (ϕ)(x) =
∫ x

0

(1
2

sinϕ(t)+ sin t
)

dt

betrachten: Gibt es nämlich einen Fixpunkt von f , also eine stetige Funktion

ϕ : [0,1]→ R mit ϕ(x) =
∫ x

0

(1
2

sinϕ(t)+ sin t
)

dt für alle x ∈ [0,1],

so folgt daraus durch Differenzieren dieser Gleichung nach dem Hauptsatz 12.21 der
Differential- und Integralrechnung sofort die gewünschte Differentialgleichung für ϕ . Da
C0([0,1]) mit der Maximumsnorm nach Aufgabe 23.31 (a) vollständig ist, müssen wir also
nur zeigen, dass f bezüglich dieser Norm eine Kontraktion ist: Für alle ϕ,ψ ∈C0([0,1]) und
x ∈ [0,1] gilt

| f (ϕ)(x)− f (ψ)(x)|=
∣∣∣∣∫ x

0

1
2
(

sinϕ(t)− sinψ(t)
)

dt
∣∣∣∣

≤ 1
2

∫ x

0
|sinϕ(t)− sinψ(t)|dt (Satz 12.13 (d))

≤ 1
2

∫ x

0
|ϕ(t)−ψ(t)|dt (Mittelwertsatz für sin wie in (a))

≤ 1
2

∫ x

0
∥ϕ−ψ∥∞ dt

≤ 1
2
∥ϕ−ψ∥∞, (x≤ 1)

und damit wie benötigt ∥ f (ϕ)− f (ψ)∥∞ ≤ 1
2∥ϕ−ψ∥∞. Also ist f ist eine Kontraktion mit

q = 1
2 , und damit hat die gegebene Differentialgleichung nach Satz 24.27 eine Lösung.

In der Vorlesung „Einführung in die gewöhnlichen Differentialgleichungen“ des zweiten
Studienjahres wird dieses Beispiel zu einem der zentralen Sätze ausgebaut, der in nahezu
allen praktisch relevanten Fällen die Existenz von Lösungen von Differentialgleichungen
sichert.
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Aufgabe 24.29. Es seien M ein nicht-leerer vollständiger metrischer Raum und f : M → M eine
Abbildung. Zeige, dass f einen eindeutigen Fixpunkt besitzt, wenn eine der folgenden Bedingungen
erfüllt ist:

(a) f ist surjektiv, und es gibt ein q > 1 mit d( f (x), f (y))≥ qd(x,y) für alle x,y ∈M.

(b) M ist kompakt, und es gilt d( f (x), f (y))< d(x,y) für alle x,y ∈M mit x ̸= y.

Zeige ferner anhand je eines Beispiels, dass auf die Surjektivität von f bzw. die Kompaktheit von M
im Allgemeinen nicht verzichtet werden kann.

24.C Stetige Bilder kompakter Mengen

Am Anfang des letzten Abschnitts hatten wir gesehen, wie sich offene und abgeschlossene Mengen
unter stetigen Abbildungen verhalten. Wir wollen dies nun auch für kompakte Mengen untersuchen.
Auch sie haben eine Kompatibilitätseigenschaft mit stetigen Abbildungen – überraschenderweise
allerdings nicht bezüglich Urbildern, sondern bezüglich Bildern. Der folgende Satz ist dabei die
wahrscheinlich wichtigste Aussage zu kompakten Mengen überhaupt. Wir werden in diesem ge-
samten Abschnitt nichts weiter tun als einige der wichtigsten unmittelbaren Folgerungen daraus zu
untersuchen.

Satz 24.30 (Kompakte Mengen unter stetigen Abbildungen). Es sei f : M→ N eine stetige Abbil-
dung zwischen metrischen Räumen. Ist dann A⊂M kompakt, so auch f (A)⊂ N (man sagt: „Bilder
kompakter Mengen sind kompakt“).

Beweis. Wir müssen das Kriterium aus Definition 23.50 für die Menge f (A) nachprüfen. Es sei also
(yn)n eine Folge in f (A). Für alle n gibt es dann Punkte xn ∈ A mit yn = f (xn). Weil A kompakt ist,
gibt es nun eine Teilfolge (xnk)k, die gegen einen Punkt a∈A konvergiert. Nach dem Folgenkriterium
für Stetigkeit aus Satz 24.4 (b) konvergiert dann aber auch (ynk)k = ( f (xnk))k gegen f (a) ∈ f (A).
Also besitzt die ursprüngliche Folge (yn)n eine konvergente Teilfolge mit Grenzwert in f (A), d. h.
f (A) ist kompakt. □

Bemerkung 24.31.
(a) In Gegensatz zu Lemma 24.16 und Satz 24.17 gilt in Satz 24.30 nicht die Umkehrung: Auch

für die offensichtlich unstetige Abbildung

f : R→ R, x 7→

{
1 für x≥ 0,
0 für x < 0

sind sogar Bilder beliebiger Teilmengen von R immer kompakt (nämlich immer /0, {0}, {1}
oder {0,1}).

(b) Ist f : M→N eine stetige Abbildung zwischen metrischen Räumen, so haben wir in Lemma
24.16, Satz 24.17 und Satz 24.30 jetzt also gesehen:

Urbilder von Umgebungen unter f sind Umgebungen.
Urbilder offener Mengen unter f sind offen.
Urbilder abgeschlossener Mengen unter f sind abgeschlossen.
Bilder kompakter Mengen unter f sind kompakt.

In der Tat gelten die jeweils anderen Aussagen (also mit „Bild“ und „Urbild“ vertauscht) im
Allgemeinen nicht: Betrachten wir die Funktionen

f : R→ R, x 7→ 0 und g : R→ R, x 7→ ex,

so gilt in R offensichtlich:

• Das Intervall U = (−1,1) ist eine offene Umgebung von 0, aber das Bild f (U) = {0}
ist weder offen noch eine Umgebung von 0.
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• Die Menge A = R ist abgeschlossen in R, aber das Bild g(A) = R>0 ist nicht abge-
schlossen in R.

• Die Menge A = {0} ⊂ R ist kompakt, aber das Urbild f−1(A) = R ist nicht kompakt
in R.

Wir werden diese Unterschiede nun als Erstes geschickt ausnutzen, um einen Satz über die
Existenz stetiger Umkehrabbildungen zu stetigen bijektiven Abbildungen zu beweisen.

Satz 24.32 (Stetigkeit von Umkehrabbildungen). Es sei f : M→ N eine stetige und bijektive Abbil-
dung zwischen metrischen Räumen. Ist M kompakt, so ist auch die Umkehrabbildung f−1 : N→M
stetig.

Beweis. Nach Satz 24.17 (c) genügt es zu zeigen, dass Urbilder abgeschlossener Mengen unter
f−1, also Bilder abgeschlossener Mengen unter f wieder abgeschlossen sind. Es sei also A ⊂ M
abgeschlossen. Nach Aufgabe 23.61 (a) ist A als abgeschlossene Teilmenge des kompakten Raumes
M dann ebenfalls kompakt. Damit ist nach Satz 24.30 aber auch f (A) kompakt, insbesondere also
abgeschlossen nach Satz 23.51 (a). □

Beispiel 24.33. Ohne die Zusatzvoraussetzung der Kompaktheit des Definitionsbereichs ist die Aus-
sage von Satz 24.32 im Allgemeinen falsch: Es seien M = [0,2π), N = {z ∈ C : |z| = 1} der Rand
des komplexen Einheitskreises, und f die offensichtlich stetige und bijektive Abbildung

f : M→ N, x 7→ eix

mit nicht kompakter Definitionsmenge M. In diesem Fall ist die Umkehrabbildung f−1 : N→M im
Punkt 1 ∈ N nicht stetig: Wie im Bild unten dick eingezeichnet ist das halboffene Intervall [0,1)
eine Umgebung von f−1(1) = 0 in M, aber sein Urbild unter f−1, also {eix : 0 ≤ x < 1}, ist keine
Umgebung von 1 in N, da hierfür Punkte in N unterhalb von 1 fehlen.

0 2π 0 2π

f f−1

M N M

1

Mit kompakter Definitionsmenge [0,2π] hätte dieses Beispiel natürlich nicht funktioniert, da f dann
nicht mehr injektiv gewesen wäre.

Aufgabe 24.34. Es sei f : R2 → R, x 7→ x1 die Projektion auf die erste Koordinate. Man beweise
oder widerlege:

(a) Bilder offener Mengen unter f sind offen.

(b) Bilder abgeschlossener Mengen unter f sind abgeschlossen.

(c) Urbilder kompakter Mengen unter f sind kompakt.

Dass stetige Abbildungen gemäß Satz 24.30 kompakte Mengen wieder auf kompakte Mengen ab-
bilden, hat wie schon erwähnt viele weitreichende Konsequenzen. So erhalten wir z. B. die folgende
wichtige Verallgemeinerung von Satz 8.25 zur Existenz von Maxima und Minima stetiger Funktio-
nen.

Folgerung 24.35 (Satz vom Maximum und Minimum). Es sei f : M→ R eine stetige Funktion
auf einem nicht-leeren kompakten metrischen Raum M. Dann „nimmt f auf M ein Maximum und
Minimum an“, d. h. die Menge f (M)⊂R hat ein Maximum und Minimum. Insbesondere ist f damit
also auf M beschränkt.

Beweis. Die Menge f (M) ⊂ R ist nicht leer und nach Satz 24.30 kompakt, besitzt nach Lemma
23.53 also ein Maximum und Minimum. □
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Eine weitere einfache, aber überaus wichtige Folgerung hieraus ist die bereits in Beispiel 23.8 ange-
kündigte Äquivalenz aller Normen auf Kn. Nach dem Beweis dieser Aussage können wir dann also
auf Kn für alle topologischen Konzepte (und ein paar weitere wie z. B. die Beschränktheit, siehe
Bemerkung 23.21 (b)) jeweils eine beliebige Norm verwenden, ohne das Ergebnis zu verändern.

Lemma 24.36 (Stetigkeit von Normen auf Kn). Für eine beliebige Norm ∥ · ∥ auf Kn ist die Abbil-
dung

f : (Kn,∥ · ∥2)→ R, x 7→ ∥x∥

stetig. (Beachte, dass wir Kn dabei wie üblich mit der euklidischen Norm als normierten Raum
auf fassen, und nicht mit der gegebenen Norm ∥ · ∥!)

Beweis. Zunächst gilt für alle x ∈Kn

∥x∥= ∥x1e1 + · · ·+ xnen∥ ≤ |x1| · ∥e1∥+ · · ·+ |xn| · ∥en∥ ≤ b∥x∥2 mit b := ∥e1∥+ · · ·+∥en∥,

und damit ∥x− y∥ ≤ b∥x− y∥2 für alle x,y ∈Kn. Die Abbildung (Kn,∥ · ∥2)→ (Kn,∥ · ∥), x 7→ x ist
also wie in Bemerkung 24.26 (c) Lipschitz-stetig. Verkettung mit der nach Beispiel 24.3 (b) stetigen
Abbildung (Kn,∥ · ∥)→ R, x 7→ ∥x∥ liefert damit sofort die Behauptung. □
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Satz 24.37 (Äquivalenz von Normen auf Kn). Alle Normen auf Kn sind zueinander äquivalent.

Beweis. Weil die Äquivalenz von Normen eine Äquivalenzrelation ist, genügt es zu zeigen, dass
jede Norm ∥ · ∥ auf Kn zur euklidischen Norm äquivalent ist, also dass es zu einer solchen Norm
a,b ∈ R>0 gibt mit

a∥x∥2 ≤ ∥x∥ ≤ b∥x∥2 für alle x ∈Kn. (∗)

Da man außerdem Skalare nach Definition 23.1 (a) aus beiden Normen herausziehen kann, reicht
es dafür sogar schon, die Ungleichung a≤ ∥x∥ ≤ b für alle (euklidisch normierten) Vektoren in der
Menge A := {x ∈Kn : ∥x∥2 = 1} zu zeigen.

Bezüglich der euklidischen Norm ist A aber nach Beispiel 23.52 (b) kompakt. Die nach Lemma
24.36 stetige Normabbildung ∥ ·∥ nimmt damit auf A nach Folgerung 24.35 ein Minimum a und ein
Maximum b an – was sofort die behauptete Ungleichung (∗) zeigt. Dabei muss auch wirklich a > 0
sein, weil ∥x∥= 0 nach Definition 23.1 (b) nur für x = 0 /∈ A gilt. □

Natürlich gilt die Äquivalenz aller Normen mit Satz 24.37 sogar auf beliebigen endlich-dimensiona-
len Vektorräumen, da diese stets zu einem Kn isomorph sind. Ein wichtiges Beispiel hierfür sind die
Matrizenräume Km×n ∼=Kmn. Möchte man mit Normen von Vektoren und Matrizen gleichzeitig ar-
beiten, ist es zur Vereinfachung der Rechnungen allerdings in der Regel geschickt, die dafür gewähl-
ten Normen aufeinander abzustimmen. In der Tat zeigen der folgende Satz und die anschließende
Folgerung, dass es zu gewählten Vektornormen auf Km und Kn immer eine besonders natürlich de-
finierte passende Matrixnorm gibt, die neben den reinen Normeigenschaften noch weitere nützliche
Rechenregeln erfüllt.

Satz und Definition 24.38 (Matrixnormen). Es seien m,n∈N>0. Für gewählte Normen auf Km und
Kn und eine Matrix A ∈Km×n existiert dann das Maximum

∥A∥ := max
{
∥Ax∥
∥x∥

: x ∈Kn\{0}
}
= max

{
∥Ax∥ : x ∈Kn mit ∥x∥= 1

}
. (∗)

Dies definiert eine Norm auf Km×n. Man nennt sie die von den gegebenen (Vektor-)Normen auf Km

und Kn induzierte Matrixnorm. In der Regel wählt man für die beiden Vektornormen den gleichen
Typ und verwendet dann für die induzierte Matrixnorm die gleiche Bezeichnung, es ist also z. B.

∥A∥2 := max
{
∥Ax∥2 : x ∈Kn mit ∥x∥2 = 1

}
und ∥A∥∞ := max

{
∥Ax∥∞ : x ∈Kn mit ∥x∥∞ = 1

}
.
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Beweis. Zunächst einmal stimmen die beiden in (∗) genannten Mengen überein: Da wir jeden Vektor
x ∈Kn\{0} als x = λy mit λ ∈K\{0} und y ∈Kn mit ∥y∥= 1 schreiben können, ist{

∥Ax∥
∥x∥

: x ∈Kn\{0}
}

=

{
∥λAy∥
∥λy∥

: λ ∈K\{0},y ∈Kn mit ∥y∥= 1
}

23.1 (a)
=

{
∥Ay∥ : y ∈Kn mit ∥y∥= 1

}
.

An der hinteren Darstellung dieser Menge sehen wir auch, dass sie das Bild der (nach Beispiel
23.52 (b)) kompakten Menge {x ∈ Kn : ∥x∥ = 1} unter der (nach Beispiel 24.3 (b) und 24.11 (b))
stetigen Abbildung x 7→ ∥Ax∥ ist. Nach Folgerung 24.35 besitzt sie also ein Maximum, so dass der
im Satz angegebene Ausdruck für ∥A∥ existiert.

Die Normeigenschaften aus Definition 23.1 folgen direkt aus denen der gegebenen Vektornorm:

(a) Für alle λ ∈K ist

∥λA∥= max{∥λAx∥ : ∥x∥= 1}= |λ | ·max{∥Ax∥ : ∥x∥= 1}= |λ | · ∥A∥.

(b) Ist A ̸= 0, so gibt es einen Vektor x ∈ Kn mit Ax ̸= 0 (z. B. einen Einheitsvektor zu einer
Nichtnullspalte von A), also mit ∥Ax∥> 0, und dementsprechend ist auch ∥A∥> 0.

(c) Für eine weitere Matrix B ∈Km×n gilt

∥A+B∥= max{∥(A+B)x∥ : ∥x∥= 1}
≤max{∥Ax∥+∥Bx∥ : ∥x∥= 1}
≤max{∥Ax∥ : ∥x∥= 1}+max{∥Bx∥ : ∥x∥= 1}
= ∥A∥+∥B∥. □

Folgerung 24.39 (Eigenschaften induzierter Matrixnormen). Für die von Vektornormen induzierte
Matrixnorm aus Definition 24.38 gilt für alle A ∈Km×n:

(a) (Verträglichkeit mit der Vektornorm) Für alle x ∈Kn ist ∥Ax∥ ≤ ∥A∥ · ∥x∥;
(b) (Submultiplikativität) Für alle B ∈Kn×p ist ∥AB∥ ≤ ∥A∥ · ∥B∥.

Beweis.

(a) Für x = 0 ist diese Aussage trivial; für x ̸= 0 folgt sie direkt aus der Definition der induzierten
Matrixnorm, da dann ja stets ∥A∥ ≥ ∥Ax∥

∥x∥ gilt.

(b) Nach Definition der induzierten Matrixnorm ∥AB∥ gibt es ein x ∈Kp mit ∥x∥= 1 und

∥AB∥= ∥ABx∥
(a)
≤ ∥A∥ · ∥Bx∥

(a)
≤ ∥A∥ · ∥B∥ · ∥x∥= ∥A∥ · ∥B∥. □

Beispiel 24.40.

(a) Nach Aufgabe 22.49 (a) ist die von der euklidischen Norm induzierte Matrixnorm ∥A∥2 einer
Matrix A ̸= 0 gegeben durch den größten Singulärwert von A. Im Fall einer quadratischen,
symmetrischen bzw. hermiteschen und positiv semidefiniten Matrix ist dies nach Beispiel
22.45 (a) also genau der größte Eigenwert von A. Da die Menge der Eigenwerte oft als das
Spektrum der Matrix bezeichnet wird, nennt man ∥A∥2 auch die Spektralnorm von A.

Beachte, dass ∥A∥2 (trotz dieser Notation) damit also nicht die Frobenius-Norm aus Beispiel
23.3 (f) ist, also nicht die euklidische Norm, wenn man Km×n mit Kmn identifiziert!

(b) Wir wollen zeigen, dass die von der Maximumsnorm induzierte Matrixnorm einer gegebenen
Matrix A = (ai, j)i, j ∈Km×n die sogenannte Zeilensummennorm

∥A∥∞ = max
{ n

∑
j=1
|ai, j| : i = 1, . . . ,m

}
(∗)



348 Andreas Gathmann

ist: Für alle x ∈Kn mit ∥x∥∞ = 1 gilt zunächst

∥Ax∥∞ = max
{∣∣∣∣ n

∑
j=1

ai, jx j

∣∣∣∣ : i = 1, . . . ,m
}

(1)
≤ max

{ n

∑
j=1
|ai, j| · |x j| : i = 1, . . . ,m

}
(Dreiecksungleichung)

(2)
≤ max

{ n

∑
j=1
|ai, j| : i = 1, . . . ,m

}
. (|x j| ≤ 1 für alle j)

Außerdem können wir für ein geeignetes x bei (1) und (2) die Gleichheit erhalten:

• bei (1), indem wir für ein i mit maximalem Wert von ∑
n
j=1 |ai, j| · |x j| bei allen x j das

Vorzeichen (für K= R) bzw. den Winkel in Polarkoordinaten (für K= C) so wählen,
dass alle ai, jx j reell nicht-negativ sind;

• bei (2), indem wir alle x j vom Betrag 1 wählen.

Dies zeigt den behaupteten Ausdruck (∗) für ∥A∥∞ = max
{
∥Ax∥∞ : x ∈Kn mit ∥x∥∞ = 1

}
.

(c) Für jede Matrixnorm gilt nach Definition 24.38 (bei gleicher zugrundeliegender Vektornorm
im Start- und Zielraum)

∥E∥= max{∥x∥ : x ∈Kn mit ∥x∥= 1}= 1.

Da für die Frobenius-Norm offensichtlich ∥En∥=
√

n gilt, ist sie für n≥ 2 also insbesondere
keine induzierte Matrixnorm zu einer Vektornorm – obwohl sie nach Aufgabe 23.30 die
zusätzlichen Eigenschaften aus Folgerung 24.39 erfüllt.

Aufgabe 24.41. Es sei n ∈ N>0. Man zeige:

(a) Die Menge M :=
{(

x2
1

x2− x1

)
: 0≤ x1 ≤ 1,0≤ x2 ≤ 1

}
ist kompakt in R2.

(b) Die Menge O(n) aller orthogonalen Matrizen ist kompakt in Rn×n.

(c) Die Menge aller indefiniten Matrizen ist offen im Raum aller symmetrischen n×n-Matrizen
über R.

Aufgabe 24.42 (Abstände von Mengen). Wir definieren den Abstand zweier nicht-leerer abge-
schlossener Teilmengen A und B eines metrischen Raumes M als

d(A,B) := inf{d(a,b) : a ∈ A,b ∈ B} ∈ R≥0.

Man zeige:

(a) Sind A und B kompakt, so ist dieses Infimum ein Minimum.

(b) Ist nur A kompakt, aber M vollständig, so ist dieses Infimum ebenfalls ein Minimum.

(c) Im Allgemeinen ist dieses Infimum kein Minimum, selbst wenn A kompakt oder M vollstän-
dig ist.

Aufgabe 24.43 (Konvergenz von Mengen). Zu einem gegebenen metrischen Raum M sei K (M)
die Menge aller nicht-leeren kompakten Teilmengen von M. Wir definieren die folgenden Abstands-
funktionen:

für a ∈M und B ∈K (M) sei d(a,B) := min{d(a,b) : b ∈ B} wie in Aufgabe 24.42 (a);

für A,B ∈K (M) sei h(A,B) := max(max{d(a,B) : a ∈ A},max{d(b,A) : b ∈ B}).
Man zeige:

(a) Die Maxima in der Definition von h existieren.

(b) Die Abbildung h ist eine Metrik auf K (M). (Man nennt sie die Hausdorff-Metrik ; sie misst,
wie verschieden zwei Mengen voneinander sind.)

(c) Für M = R2 mit der euklidischen Metrik gilt lim
n→∞

K1+ 1
n
(0) = K1(0) in K (M).
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24.D Peano-Kurven

Zum Abschluss dieses Kapitels wollen wir eine interessante Anwendung betrachten, in der viele
wichtige Sätze dieses und des vorangegangenen Kapitels geschickt miteinander kombiniert werden,
um ein sehr erstaunliches Resultat zu beweisen. Es handelt sich dabei nicht so sehr um ein Resultat,
das für unser weiteres Studium der Analysis von großer Bedeutung wäre, sondern einfach nur um
ein sehr „schönes“ Stück Mathematik, das so verblüffend ist, dass man es fast schon als Paradoxon
bezeichnen könnte: Wir werden zeigen, dass es eine stetige Abbildung vom Einheitsintervall [0,1]⊂
R nach R2 (also einen Weg in der Ebene im Sinne von Definition 24.20) gibt, deren Bild das gesamte
„Einheitsquadrat“ [0,1]× [0,1] ⊂ R2 ist. Wir können also mit einem „eindimensionalen Objekt“
(nämlich dem Einheitsintervall) durch eine stetige Abbildung ein „zweidimensionales Objekt“ (das
Einheitsquadrat) komplett ausfüllen. Spätestens hier sehen wir also, dass man mit der oft gehörten
Interpretation einer stetigen Abbildung in einer Variablen als etwas, das man zeichnen kann, ohne
den Stift abzusetzen, etwas vorsichtig sein muss.

In diesem Abschnitt bezeichne stets I := [0,1]⊂ R das
Einheitsintervall und Q := I× I = [0,1]× [0,1] das Ein-
heitsquadrat.

Satz 24.44 (Peano-Kurve). Es gibt eine stetige surjek-
tive Abbildung f : I→ Q. (Eine solche Abbildung wird
als Peano-Kurve bezeichnet.)

10

I
surjektiv

f
Q

Beweis. Der Beweis dieses Satzes ist konstruktiv, gibt also eine mögliche Peano-Kurve explizit an.
Sie wird als Grenzwert einer rekursiv definierten Folge von Funktionen fn : I→ Q konstruiert.

Die Funktionenfolge ( fn)n wird dabei wie folgt gebildet: Die erste Funktion f0 ist einfach die Gerade

f0 : I→ Q, f0(x) =
(

x
x

)
,

die das Einheitsquadrat auf der Diagonale von links unten nach rechts oben durchläuft. Für die
nächste Funktion f1 teilen wir Q in 9 gleich große Teilquadrate entlang der horizontalen und ver-
tikalen Linien bei 1

3 und 2
3 , und durchlaufen nun diese 9 Teilquadrate der Reihe nach entlang ihrer

Diagonalen wie im Bild unten dargestellt. Der Weg f1 besteht also aus 9 Geradenstücken, die alle
„mit gleicher Geschwindigkeit“ durchlaufen werden – er ist im Bild an den Ecken nur deswegen
abgerundet eingezeichnet, damit man seinen Verlauf besser erkennen kann.

f1f0

f0(1)

f1(
2
9 )

1

0
0 1

f0(0)

1

0
0 11

3
2
3

2
3

1
3

f1(
1
9 )

Der nächste Weg f2 entsteht nun aus f1, indem wir jedes der 9 Geradenstücke von f1 (wie etwa das
in dem oben dunkel eingezeichneten Teilquadrat) durch einen Weg ersetzen, der selbst wieder wie
f1 aussieht. Entsprechend ersetzen wir dann jedes der Geradenstücke von f2 durch einen Weg wie
f1, um f3 zu erhalten. Setzen wir dieses Verfahren fort, so erhalten wir eine Folge ( fn)n von Wegen
fn : I→ Q. Die Wege f2 und f3 sind im folgenden Bild eingezeichnet.



350 Andreas Gathmann

f2(
2
9 )

1

f2(
1
9 )

1
9
0

10 1
9

1

0
10

f3f2

Wir wollen nun f (x) := lim
n→∞

fn(x) für alle x ∈ I setzen und müssen uns dazu natürlich als Erstes
davon überzeugen, dass dieser Grenzwert überhaupt existiert.

Es sei dazu ε > 0 beliebig. Wir wählen ein n0 ∈ N mit 1
3n0 < ε .

Für ein beliebiges x ∈ I liegt fn0(x) nun wie im Bild rechts auf
einem der Geradenstücke, die diagonal durch eines der Teilqua-
drate von fn0 laufen. Dieses Teilquadrat hat nach Konstruktion die
Seitenlänge 1

3n0 und ist von der Form

A =
[ a

3n0
,

a+1
3n0

]
×
[ b

3n0
,

b+1
3n0

]
⊂ Q

für gewisse natürliche Zahlen 0 ≤ a,b < 3n0 . Beachte, dass dann
aber auch alle fn(x) mit n ≥ n0 in A liegen, denn wir ändern den
Teil des Weges fn0 in A für n≥ n0 ja nur noch innerhalb von A ab.

b
3n0

b+1
3n0

a
3n0

a+1
3n0

A

fn0(x)

Für alle n,m≥ n0 liegen fn(x) und fm(x) also in einem Quadrat mit Seitenlänge 1
3n0 , d. h. es ist

∥ fn(x)− fm(x)∥∞ ≤
1

3n0
< ε (∗)

für alle n,m ≥ n0. Dies bedeutet genau, dass die Folge ( fn(x))n für festes x eine Cauchyfolge in
Q ist. Als abgeschlossene Teilmenge von R2 ist Q nach Satz 23.29 und Folgerung 23.43 nun aber
vollständig – d. h. diese Cauchyfolge konvergiert für alle x gegen einen Punkt in Q, und wir können
unsere Funktion f : I → Q damit in der Tat wie gewünscht durch f (x) := lim

n→∞
fn(x) definieren. Es

bleibt jetzt nur noch zu zeigen, dass f auch stetig und surjektiv ist.

Für die Stetigkeit nehmen wir den Grenzwert von (∗) für m→ ∞ und erhalten für alle x ∈ I

∥ fn(x)− f (x)∥∞ ≤
1

3n0
< ε

(beachte, dass die Norm nach Beispiel 24.3 (b) stetig ist und wir den Grenzwert damit nach Satz
24.4 (b) in die Norm hineinziehen dürfen). Dies sagt uns noch einmal, dass fn(x) für n→ ∞ gegen
f (x) konvergiert – der entscheidende Punkt ist nun aber, dass unser oben gewähltes n0 nur von ε und
nicht vom Punkt x abhängt. Die Folge ( fn)n ist also sogar gleichmäßig konvergent. Nach Bemerkung
24.26 (b) ist die Grenzfunktion f als gleichmäßiger Grenzwert stetiger Funktionen damit stetig.

Für die Surjektivität erinnern wir uns daran, dass nach Satz
24.30 mit I auch das Bild f (I) unter der stetigen Abbildung
f kompakt ist. Nach Satz 23.51 (a) ist f (I) also insbesondere
abgeschlossen, d. h. das Komplement R2\ f (I) ist offen. Ange-
nommen, f würde nun nicht surjektiv auf das Einheitsquadrat
Q abbilden, d. h. es gäbe einen Punkt y ∈ Q\ f (I). Da R2\ f (I)
offen ist, gäbe es dann eine Umgebung Uε(y) von y, die ganz
in R2\ f (I) liegt. Wir verwenden dabei wieder die Maximums-
norm, so dass diese Umgebung wie im Bild rechts ein (offenes)
Quadrat mit Seitenlänge 2ε ist.

b+1
3n0

b
3n0

a+1
3n0

a
3n0

ε

A y

Uε(y)
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Wählen wir nun wieder unser n0 ∈ N mit 1
3n0 < ε , so muss dann mindestens ein Quadrat

A =
[ a

3n0
,

a+1
3n0

]
×
[ b

3n0
,

b+1
3n0

]
⊂ R2

der zu fn0 gehörigen Unterteilung von Q ganz in Uε(y) liegen, enthält also ebenfalls keinen Punkt
des Weges f . Dies ist aber ein Widerspruch, da f nach unserer Konstruktion natürlich durch jedes
solche Quadrat irgendwie hindurch läuft, also insbesondere einen Punkt in A enthalten muss. Also
war unsere Annahme falsch, und f ist in der Tat surjektiv. □

Nachdem wir nun gezeigt haben, dass es eine stetige surjektive Abbildung I→ Q gibt, würde man
vielleicht vermuten, dass es umgekehrt auch eine stetige injektive Abbildung Q→ I gibt. Wie wir
jetzt sehen wollen, ist dies jedoch erstaunlicherweise falsch. Das gleiche Argument zeigt dann auch,
dass keine bijektive Peano-Kurve existiert.

Satz 24.45.
(a) Es gibt keine stetige injektive Abbildung Q→ I.

(b) Es gibt keine stetige bijektive Abbildung I→ Q (also keine bijektive Peano-Kurve).

Beweis.

(a) Angenommen, f : Q→ I wäre stetig und injektiv. Mit Q wäre dann nach Satz 24.30 und
24.23 (a) auch das Bild f (Q)⊂ I kompakt und wegzusammenhängend, also ein abgeschlos-
senes Intervall [a,b]. Damit ist die Einschränkung f : Q→ [a,b] stetig und bijektiv.

Wir nehmen nun aus dem Intervall [a,b] den Mittelpunkt c := a+b
2 heraus, und dementspre-

chend aus dem Quadrat Q den Urbildpunkt f−1(c). Die dadurch entstehende Einschränkung
f |Q\ f−1(c) : Q\ f−1(c)→ [a,b]\{c} ist dann natürlich immer noch stetig (und bijektiv). Dies
ist aber ein Widerspruch zum Zwischenwertsatz 24.23 (a), da Q\{ f−1(c)} immer noch weg-
zusammenhängend ist, [a,b]\{c} aufgrund des fehlenden Mittelpunkts jedoch nicht.

(b) Da I kompakt ist, wäre nach Satz 24.32 mit einer stetigen bijektiven Abbildung I→ Q auch
ihre Umkehrung Q→ I stetig und bijektiv, im Widerspruch zu (a). □

Bemerkung 24.46. In beiden Teilen von Satz 24.45 ist die Forderung der Stetigkeit wichtig:

(a) Da es nach Satz 24.44 eine surjektive Abbildung f : I → Q gibt, gibt es natürlich auch ei-
ne (unstetige) injektive Abbildung Q→ I: Wir können einfach jeden Punkt x ∈ Q auf ein
beliebiges Urbild von x unter f abbilden.

(b) Natürlich gibt es neben der surjektiven Peano-Kurve I→ Q aus Satz 24.44 auch eine injek-
tive Abbildung I → Q (z. B. die Abbildung f0 aus dem Beweis dieses Satzes). Man kann
zeigen, dass daraus folgt, dass es auch eine bijektive Abbildung I → Q gibt, also dass das
Einheitsintervall und das Einheitsquadrat im Sinne von Definition 5.54 (a) gleichmächtig
sind. Da es keine stetige bijektive Abbildung I→ Q gibt, sind diese beiden Räume aus to-
pologischer Sicht jedoch verschieden.

Aufgabe 24.47. Es sei I = [0,1]⊂ R. Gibt es eine stetige, surjektive Abbildung . . .

(a) von I nach I× I× I ⊂ R3;

(b) von I nach R2;

(c) von [0,1) nach R2;

(d) von I in den abgeschlossenen Einheitskreis K1(0) = {x ∈ R2 : ∥x∥2 ≤ 1}?

(Hinweis: In allen Fällen oben, in denen eine solche Abbildung existiert, lässt sie sich explizit durch
die Peano-Kurve f : I→ I× I aus Satz 24.44 ausdrücken, ohne diese aufwendige Konstruktion noch
einmal zu wiederholen.)
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