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Grundlagen der Mathematik 2: Analysis

23. Topologische Grundbegriffe

Wir haben nun unser Studium der linearen Algebra beendet und wenden uns wieder der Analysis zu.
Unser Ziel für den Rest dieser Vorlesung wird es sein, die in den Kapiteln 5 bis 12 entwickelte Theo-
rie für Funktionen in einer reellen Variablen – insbesondere die Differential- und Integralrechnung –
auf den mehrdimensionalen Fall zu übertragen, also analoge Resultate z. B. auch für Abbildungen
von Rn nach Rm zu finden. Da es bekanntlich die grundlegende Idee der Differentialrechnung ist,
beliebige Funktionen durch lineare zu approximieren, werden unsere Ergebnisse zu linearen Ab-
bildungen, die wir in den vorangegangenen Kapiteln zur linearen Algebra erzielt haben, dabei sehr
nützlich sein.

23.A Normierte und metrische Räume

Erinnern wir uns an die eindimensionale Analysis zurück: Der zentrale Begriff, mit dem wir damals
in Kapitel 5 begonnen haben, war der des Grenzwerts einer Folge. Wir haben dabei eine (reelle oder
komplexe) Zahlenfolge (an)n∈N konvergent gegen ein a ∈K genannt, wenn in jeder ε-Umgebung

Uε(a) = {x ∈K : |x−a|< ε} (∗)
von a fast alle Folgenglieder an liegen (siehe Definition 5.1 und Bemerkung 5.2). Wenn wir diese De-
finition auf den höherdimensionalen Fall übertragen wollen, brauchen wir dazu offensichtlich eine
Verallgemeinerung der Betragsfunktion, mit der wir in (∗) den Abstand von x zu a messen konnten.
In der Tat haben wir so etwas in Definition 21.13 bereits kennengelernt: die Norm bzw. Länge eines
Vektors in einem Vektorraum mit Skalarprodukt. Wir wollen daher zuerst diesen Normbegriff genau-
er untersuchen. Wie schon in Bemerkung 21.21 erwähnt ist in der Analysis das Konzept einer Norm
auf einem K-Vektorraum sehr allgemein und erlaubt nicht nur die Normen von Skalarprodukten, die
wir in Abschnitt 21.B kennengelernt haben. Vielmehr ist eine allgemeine Norm definiert als eine
Abbildung, die jedem Vektor eine reelle Zahl zuordnet und die erwarteten Eigenschaften erfüllt –
nämlich genau diejenigen, die wir in Satz 21.20 für Normen zu Skalarprodukten bereits bewiesen
haben.

Definition 23.1 (Normen und normierte Räume). Es sei V ein K-Vektorraum. Wir nennen eine
Abbildung ∥ · ∥ : V → R≥0, x 7→ ∥x∥ eine Norm auf V , wenn für alle x,y ∈V und λ ∈K gilt:

(a) ∥λx∥= |λ | · ∥x∥;
(b) ∥x∥> 0 für alle x ̸= 0;

(c) ∥x+ y∥ ≤ ∥x∥+∥y∥ (Dreiecksungleichung).

Ein K-Vektorraum V zusammen mit einer Norm ∥ · ∥ wird als normierter Raum bezeichnet. Wir
schreiben ihn als (V,∥ ·∥), oder auch einfach nur als V , wenn die betrachtete Norm aus dem Zusam-
menhang klar ist.

Bemerkung 23.2.
(a) In jedem normierten Raum ist die Norm des Nullvektors nach Definition 23.1 (a) gleich
∥0V∥ = ∥0K · 0V∥ = 0K · ∥0V∥ = 0. Eine Norm nimmt also nur reelle nicht-negative Werte
an, und ist genau dann gleich 0, wenn der Vektor der Nullvektor ist.

(b) Genau wie bei Skalarprodukten in Bemerkung 21.14 (b) kann man offensichtlich auch eine
Norm auf einem K-Vektorraum V immer auf einen Unterraum U ≤V einschränken, um auch
U zu einem normierten Raum zu machen.
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Beispiel 23.3.

(a) Jeder K-Vektorraum V mit Skalarprodukt, also jeder euklidische oder unitäre Raum, ist mit
der Vorschrift ∥x∥ :=

√
⟨x,x⟩ ein normierter Raum – dies haben wir in Satz 21.20 bewie-

sen. Wenn wir nichts anderes angeben, werden wir in Zukunft jeden Vektorraum mit Ska-
larprodukt (und nach Bemerkung 23.2 (b) auch jeden Unterraum davon) auf diese Art als
normierten Raum ansehen.

Um Normen anschaulich darzustellen, zeichnet man in der Regel die sogenannte Einheitsku-
gel {x ∈V : ∥x∥ ≤ 1}, also die Menge aller Vektoren, die bezüglich dieser Norm die Länge
höchstens 1 haben. Wir haben bei der Hauptachsentransformation in Konstruktion 22.37 ge-
sehen, dass diese Einheitskugel im Fall einer von einem Skalarprodukt bestimmten Norm
ein gedrehtes Ellipsoid mit Mittelpunkt im Ursprung ist. Im Fall eines reellen zweidimen-
sionalen Vektorraums ist dies im Bild unten dargestellt.

Der wichtigste Fall ist dabei natürlich V = Kn mit dem Standardskalarprodukt. Wenn wir
nichts Gegenteiliges angeben, wollen wir Kn in Zukunft immer mit der hieraus resultieren-
den Norm

∥x∥=
√
|x1|2 + · · ·+ |xn|2

als normierten Raum betrachten. Man nennt dies die euklidische Norm. Im Fall K = R ist
die Einheitskugel {x ∈ Rn : x2

1 + · · ·+ x2
n ≤ 1} dann natürlich die „gewöhnliche“ Kugel.

(b) Für V =Kn ist die Maximumsnorm definiert als

∥x∥ := max(|x1|, . . . , |xn|).

In der Tat ist dies eine Norm: Die Eigenschaften (a) und (b) aus Definition 23.1 sind offen-
sichtlich, und die Dreiecksungleichung folgt sofort aus der in K, denn es ist

∥x+ y∥= |xi + yi| ≤ |xi|+ |yi| ≤ ∥x∥+∥y∥,

wobei i∈ {1, . . . ,n} einen Index bezeichnet, für den in ∥x+y∥=max(|x1+y1|, . . . , |xn+yn|)
das Maximum angenommen wird. Die zugehörige Einheitskugel

{x ∈Kn : max(|x1|, . . . , |xn|)≤ 1}= {x ∈Kn : |xi| ≤ 1 für alle i = 1, . . . ,n}

ist in diesem Fall ein achsenparalleler Würfel; er ist wieder im Bild unten eingezeichnet.
Da wir hier kein Ellipsoid erhalten, sehen wir also auch schon, dass die Maximumsnorm
keine Norm sein kann, die von einem Skalarprodukt kommt (siehe auch Aufgabe 23.5). Das
Konzept eines normierten Raumes lässt also allgemeinere Normen zu als die, die wir in
Abschnitt 21.B kennengelernt haben.

(c) Für V =Kn definieren wir die Summennorm durch

∥x∥ := |x1|+ · · ·+ |xn|.

Auch hier sind die Bedingungen (a) und (b) in Definition 23.1 wieder offensichtlich, und die
Dreiecksungleichung ergibt sich aus

∥x+ y∥= |x1 + y1|+ · · ·+ |xn + yn| ≤ |x1|+ |y1|+ · · ·+ |xn|+ |yn|= ∥x∥+∥y∥.

Die zugehörige Einheitskugel ist für n = 2 wieder im folgenden Bild dargestellt. Man kann
sich ihre Form leicht dadurch überlegen, dass sie wegen der Beträge in der Definition der
Norm symmetrisch zu beiden Achsen sein muss und im positiven Quadranten R2

≥0 durch die
Ungleichung x1 + x2 ≤ 1 gegeben ist.
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Die Einheitskugel in R2 bezüglich der . . .

euklidischen Normgemeinen Skalarprodukt
Norm zu einem all- Maximumsnorm Summennorm
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(d) Es sei wieder V =Kn. Für eine reelle Zahl p≥ 1 kann man zeigen, dass durch

∥x∥p := p
√
|x1|p + · · ·+ |xn|p

eine Norm definiert wird, die sogenannte p-Norm. In der Tat sind die ersten beiden Ei-
genschaften von Definition 23.1 auch hier wieder klar, die Dreiecksungleichung ist jedoch
etwas aufwendiger als für unsere bisher betrachteten Normen nachzurechnen (und benötigt
die Bedingung p≥ 1). Da wir diese allgemeinen p-Normen in unserer Vorlesung nicht wei-
ter benötigen, verzichten wir hier auf den Beweis. Ihr könnt ihn z. B. in [Fo1, Kapitel 16,
Satz 8] finden.

Wir erwähnen die p-Norm hier nur deshalb, weil sie eine Verallgemeinerung unserer oben
betrachteten Normen ist und sich daraus auch deren übliche Bezeichnungsweise ableitet: Of-
fensichtlich ist die 1-Norm gerade die Summennorm und die 2-Norm die euklidische Norm.
Für p→∞ hingegen ergibt sich die Maximumsnorm: Ist nämlich x ∈Kn\{0} ein Vektor, für
den ohne Einschränkung das Maximum in ∥x∥ = max(|x1|, . . . , |xn|) für |x1| angenommen
wird, so ist

lim
p→∞
∥x∥p = |x1| · lim

p→∞

p
√

1+
|x2|p
|x1|p

+ · · ·+ |xn|p
|x1|p

= |x1|= ∥x∥,

da der Ausdruck unter der Wurzel zwischen 1 und n liegt und der Grenzwert für p→∞ somit
durch p

√
1→ 1 und p

√
n→ 1 eingeschachtelt wird. Für x ∈Kn bezeichnet man daher . . .

• die Summennorm mit ∥x∥1 := |x1|+ · · ·+ |xn|,
• die euklidische Norm mit ∥x∥2 :=

√
|x1|2 + · · ·+ |xn|2,

• die Maximumsnorm mit ∥x∥∞ := max(|x1|, . . . , |xn|).
(e) Alle oben betrachteten Normen gibt es analog auch auf dem Vektorraum C0([a,b]) aller

stetigen reellen Funktionen auf einem abgeschlossenen Intervall [a,b]: So ist z. B. für eine
solche Funktion f

∥ f∥1 :=
∫ b

a
| f (x)|dx, ∥ f∥2 :=

√∫ b

a
f (x)2 dx, ∥ f∥∞ := max{| f (x)| : x ∈ [a,b]}

(das Maximum existiert nach Satz 8.25, und die Normeigenschaften beweist man analog zu
den Fällen oben bzw. zu Konstruktion 21.16). Die 2-Norm ∥ f∥2 ist dabei genau die Norm
zum Standardskalarprodukt aus Konstruktion 21.16, und die Maximumsnorm ∥ f∥∞ haben
wir in Aufgabe 8.41 (a) bereits in einem etwas allgemeineren Fall als Supremumsnorm ken-
nengelernt.

(f) Auf den Matrizenräumen Km×n heißt die zum Standardskalarprodukt aus Beispiel 21.15 (c)
gehörige Norm

∥A∥=
√

Spur
(
ATA

)
=

√
m

∑
i=1

n

∑
j=1
|ai, j|2 für A = (ai, j)i, j ∈Km×n
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die Frobenius-Norm. Wir werden Km×n im Folgenden standardmäßig mit dieser Norm ver-
sehen, sofern wir nichts Gegenteiliges angeben. Beachte aber, dass diese Norm nicht mit
∥A∥2 bezeichnet wird, weil dieser Name bereits für eine andere Matrixnorm reserviert ist,
die wir auch später in Definition 24.38 und Beispiel 24.40 (a) noch kennenlernen werden.

Aufgabe 23.4. Welche der folgenden Bilder können Einheitskugeln einer Norm auf R2 sein?

(a) (b) (c)

Aufgabe 23.5. Man zeige:

(a) In jedem Vektorraum V mit Skalarprodukt gilt die Parallelogrammgleichung

∥x+ y∥2 +∥x− y∥2 = 2(∥x∥2 +∥y∥2) für alle x,y ∈V.

(b) Die Maximumsnorm auf Kn für n ≥ 2 erfüllt die Parallelogrammgleichung nicht, und kann
damit nach (a) also nicht die Norm zu einem Skalarprodukt sein.

Bemerkung 23.6 (Vergleich von Normen). In Beispiel 23.3 haben wir viele verschiedene Normen
gesehen. Wie hängen diese miteinander zusammen? Oft ist es so, dass man Normen gegeneinander
abschätzen kann: So gelten z. B. für die Maximumsnorm und die euklidische Norm auf Kn die
Ungleichungen

∥x∥∞ = max(|x1|, . . . , |xn|) = |xi| ≤
√
|x1|2 + · · ·+ |xn|2 = ∥x∥2

und ∥x∥2 =
√
|x1|2 + · · ·+ |xn|2 ≤

√
|xi|2 + · · ·+ |xi|2 =

√
n · |xi|=

√
n · ∥x∥∞,

wobei i ∈ {1, . . . ,n} ein Index mit maximalem Wert von |xi| ist. Es gilt also für alle x ∈Kn

∥x∥∞ ≤ ∥x∥2 ≤
√

n · ∥x∥∞,

d. h. wir haben die Folgerungen:

(a) Wenn ∥x∥2 ≤ 1 gilt, so ist ∥x∥∞ ≤ 1.

(b) Wenn ∥x∥∞ ≤ 1 gilt, so ist ∥x∥2 ≤
√

n.

Dies kann man sich auch gut anschaulich vorstellen: Betrachten wir
zu einer Norm ∥ · ∥ Kugeln {x ∈ Kn : ∥x∥ ≤ r} mit einem anderen
Radius als 1, so sind diese wegen der Linearitätseigenschaft aus De-
finition 23.1 (a) einfach nur skalierte Versionen der Einheitskugel,
und die Ergebnisse (a) und (b) oben besagen genau, dass solche Ku-
geln wie im Bild rechts ineinander liegen: In jedem Kreis liegt noch
ein Quadrat, und in jedem Quadrat liegt noch ein Kreis (mit geeig-
neten Radien).

1

1

∥x∥2 ≤ 1 ∥x∥∞ ≤ 1

∥x∥2 ≤
√

2

Wir werden später (z. B. in Lemma 23.17 und Bemerkung 23.18) noch sehen, dass dies dazu führt,
dass sich die beiden betrachteten Normen in vielerlei Hinsicht gleich verhalten. Man definiert daher:

Definition 23.7 (Äquivalente Normen). Zwei Normen ∥ · ∥ und ∥ · ∥′ auf einem K-Vektorraum V
heißen äquivalent, wenn es Konstanten a,b ∈ R>0 gibt mit

a∥x∥ ≤ ∥x∥′ ≤ b∥x∥ für alle x ∈V .

Man prüft leicht nach, dass dies in der Tat eine Äquivalenzrelation auf der Menge aller Normen auf
V ist.
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Beispiel 23.8.
(a) Ist ∥ ·∥ eine beliebige Norm auf einem K-Vektorraum V , so können wir daraus für ein gege-

benes λ ∈ R>0 eine skalierte Variante ∥ · ∥′ mit

∥x∥′ := λ · ∥x∥ für alle x ∈V

konstruieren, die ebenfalls eine Norm ist. Diese neue Norm ∥ · ∥′ ist natürlich zur ursprüng-
lichen äquivalent (wobei in Definition 23.7 mit a := b := λ sogar die Gleichheit gilt).

(b) Wie wir in Bemerkung 23.6 gesehen haben, ist die Maximumsnorm auf Kn zur euklidischen
Norm äquivalent.

In der Tat werden wir in Satz 24.37 noch sehen, dass sogar alle Normen auf Kn zueinander
äquivalent sind (was sehr praktisch ist, weil wir ab dann für die meisten Anwendungen die
uns jeweils am einfachsten erscheinende Norm benutzen können, ohne etwas am Ergebnis zu
ändern). Für den Moment bedeutet dies aber erst einmal nur, dass wir für ein Beispiel nicht-
äquivalenter Normen zwangsläufig einen unendlich-dimensionalen Vektorraum betrachten
müssen:

(c) Im Vektorraum V =C0([0,1]) der stetigen Funktionen auf [0,1] mit den beiden Normen

∥ f∥1 =
∫ 1

0
| f (x)|dx und ∥ f∥∞ = max{| f (x)| : x ∈ [0,1]}

aus Beispiel 23.3 (e) betrachten wir für alle ε ∈ (0,1) die Funktion
fε wie im Bild rechts. Dann gilt

∥ fε∥1 =
ε

2
und ∥ fε∥∞ = 1,

und damit ∥ fε∥∞ = 2
ε
∥ fε∥1. Für ε → 0 sehen wir also, dass es kein

b ∈R>0 geben kann mit ∥ fε∥∞ ≤ b∥ fε∥1, d. h. dass die beiden Nor-
men ∥ · ∥1 und ∥ · ∥∞ auf C0([0,1]) nicht äquivalent sind.

1

1ε
x

fε(x)

Bevor wir zur angekündigten Anwendung des Längen- bzw. Abstandsbegriffs in der Analysis kom-
men, wollen wir das Konzept eines normierten Raumes aber erst noch etwas verallgemeinern. Eine
recht große Einschränkung ist es in der Praxis nämlich, dass normierte Räume nach Definition stets
Vektorräume (über R oder C) sein müssen. Um nur Abstände zwischen Punkten sinnvoll definieren
zu können, benötigt man aber keine Vektorraumstruktur. Diese Idee führt zum folgenden Begriff ei-
nes metrischen Raumes, der lediglich den Abstand zweier Punkte, aber nicht die Länge eines Vektors
definiert.

Definition 23.9 (Metriken und metrische Räume). Es sei M eine Menge. Man nennt eine Abbildung
d : M×M→ R≥0, (x,y) 7→ d(x,y) (die man sich als Abstandsfunktion zwischen zwei Punkten vor-
stellen sollte; der hierfür übliche Buchstabe d steht dabei für Distanz) eine Metrik auf M, wenn für
alle x,y,z ∈M gilt:

(a) d(x,y) = d(y,x) (Symmetrie);

(b) d(x,y) = 0 genau dann, wenn x = y;

(c) d(x,z)≤ d(x,y)+d(y,z) (Dreiecksungleichung).

Eine Menge M zusammen mit einer Metrik d heißt metrischer Raum und wird manchmal auch als
(M,d) geschrieben.

Lemma 23.10. Jeder normierte Raum (V,∥ · ∥) ist mit der Abstandsfunktion d(x,y) := ∥x− y∥ ein
metrischer Raum.

Wenn wir nichts anderes spezifizieren, werden wir in Zukunft daher jeden normierten Raum auf diese
Art als metrischen Raum auf fassen.

Beweis. Wir überprüfen die Eigenschaften aus Definition 23.9: Für alle x,y,z ∈V folgt nach Defini-
tion 23.1



23. Topologische Grundbegriffe 317

• aus Teil (a): d(x,y) = ∥x− y∥= ∥(−1)(y− x)∥= |−1| · ∥y− x∥= d(y,x);

• aus Teil (b): d(x,y) = ∥x− y∥= 0 genau dann, wenn x− y = 0, also x = y;

• aus Teil (c): d(x,z) = ∥x− z∥= ∥x− y+ y− z∥ ≤ ∥x− y∥+∥y− z∥= d(x,y)+d(y,z). □

Bemerkung 23.11. Analog zu Skalarprodukten und Normen (siehe Bemerkung 21.14 (b) und Be-
merkung 23.2 (b)) lassen sich auch Metriken auf beliebige Teilmengen einschränken. Wir werden
daher jede Teilmenge eines metrischen Raumes in Zukunft standardmäßig auf diese Art wieder als
metrischen Raum betrachten. Fassen wir alle unsere Konventionen zusammen, so werden wir also
insbesondere jede Teilmenge von Kn als metrischen Raum mit der euklidischen Metrik

d(x,y) = ∥x− y∥2 =
√
|x1− y1|2 + · · ·+ |xn− yn|2

auffassen, sofern wir nichts Gegenteiliges angeben.

Beispiel 23.12.
(a) Wir betrachten die „Landkarte“ mit 5 Städten A,B,C,D,E und

Verbindungsstraßen wie im Bild rechts, wobei die (positiven)
Zahlen an den Straßen deren Längen angeben sollen – man nennt
ein solches Diagramm auch einen (zusammenhängenden) gewich-
teten Graphen. Für die Menge M = {A,B,C,D,E} und x,y∈M sei
nun d(x,y) die Länge eines kürzesten Weges von x nach y. So ist
z. B. d(D,E) = 4, da von D nach E der Weg über B der kürzeste
ist und eine Gesamtlänge von 4 hat.

1

2

A B 3

2

5 2

E

C

D

6

Man sieht leicht ein, dass diese Abstandsfunktion d dann eine Metrik auf M definiert: Die
Eigenschaften (a) und (b) aus Definition 23.9 sind offensichtlich, und (c) folgt aus der ein-
fachen Tatsache, dass d(x,y)+d(y,z) ja die Länge eines kürzesten Weges von x über y nach
z ist und diese natürlich mindestens gleich der Länge d(x,z) eines kürzesten Weges von x
nach z ist, bei dem man nicht notwendig über y laufen muss.

Metrische Räume dieser Art spielen z. B. in der Optimierung eine große Rolle. In unserer
Vorlesung werden sie nicht weiter vorkommen, sondern sollen hier nur als Beispiel dafür
dienen, dass metrische Räume sehr allgemeine Objekte sind und auch „ganz anders ausse-
hen“ können als normierte Vektorräume.

(b) Auf jeder Menge M ist

d(x,y) :=

{
0 für x = y,
1 für x ̸= y

offensichtlich eine Metrik, die sogenannte diskrete Metrik.

23.B Folgenkonvergenz in metrischen Räumen

Wie bereits angekündigt können wir nun analog zu Definition 5.1 Grenzwerte von Folgen in me-
trischen Räumen (und damit auch in normierten Räumen bzw. Vektorräumen mit Skalarprodukt)
definieren.

Definition 23.13 (Kugeln, Umgebungen und Grenzwerte von Folgen). Es seien M ein metrischer
Raum und a ∈M.

(a) Zu r ∈ R≥0 heißt

Ur(a) := {x ∈M : d(x,a)< r} die offene Kugel, und

Kr(a) := {x ∈M : d(x,a)≤ r} die abgeschlossene Kugel

um a mit Radius r.
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(b) Eine Teilmenge U ⊂M heißt Umgebung von a, wenn es wie
im Bild rechts ein ε > 0 gibt mit Uε(a) ⊂U (insbesondere ist
dann natürlich auch a ∈U). Damit ist auch Uε(a) selbst eine
Umgebung von a; man nennt sie die ε-Umgebung von a.

U a

Uε(a)

(c) Es sei (an)n∈N eine Folge in M. Dann heißt a Grenzwert von (an)n, wenn

∀ε ∈ R>0 ∃n0 ∈ N ∀n≥ n0 : d(an,a)< ε

(wobei wir die Bedingung d(an,a) < ε natürlich auch als an ∈ Uε(a) schreiben können).
Wie im Fall von Folgen in K werden wir gleich in Lemma 23.15 sehen, dass ein solcher
Grenzwert a eindeutig ist, sofern er existiert. Wir können ihn dann also den Grenzwert der
Folge nennen und schreiben wie gewohnt lim

n→∞
an = a oder „an → a für n→ ∞“. Existiert

dieser Grenzwert, so heißt die Folge (an)n konvergent, andernfalls divergent.
57

Bemerkung 23.14.
(a) Es gibt mehrere äquivalente Umformulierungen der obigen Grenzwertdefinition. Am nütz-

lichsten ist vermutlich das Kriterium

lim
n→∞

an = a ⇔ lim
n→∞

d(an,a) = 0,

das wegen der Positivität der Metrik unmittelbar durch Vergleich mit Definition 5.1 (b)
folgt und den Grenzwert lim

n→∞
an im metrischen Raum M damit direkt auf einen Grenz-

wert lim
n→∞

d(an,a) in R zurückführt. Eine andere äquivalente Formulierung von Definition
23.13 (c) mit Hilfe des Umgebungsbegriffs und der Notation „fast alle“ für „alle bis auf
endlich viele“ ist offensichtlich genau wie in Bemerkung 5.2

lim
n→∞

an = a ⇔ In jeder ε-Umgebung von a liegen fast alle Folgenglieder an.

Dies kann man schließlich noch umformulieren als

lim
n→∞

an = a ⇔ In jeder Umgebung von a liegen fast alle Folgenglieder an.

Liegen nämlich in jeder Umgebung fast alle an, so natürlich insbesondere auch in jeder ε-
Umgebung. Enthält umgekehrt jede ε-Umgebung von a fast alle an, so auch jede Umgebung
von a, da eine solche ja nach Definition noch eine ε-Umgebung von a enthält.

(b) Wendet man Definition 23.13 auf einen normierten Raum V an, so ist nach Lemma 23.10
also d(x,y) = ∥x− y∥. In diesem Fall ist demnach z. B. Ur(a) = {x ∈ V : ∥x−a∥ < r}, und
eine Folge (an)n in V konvergiert genau dann gegen a ∈V , wenn lim

n→∞
∥an−a∥= 0.

Lemma 23.15 (Eindeutigkeit des Grenzwerts). In einem metrischen Raum hat jede Folge höchstens
einen Grenzwert.

Beweis. Es sei (an)n eine Folge in einem metrischen Raum M, die gegen zwei Punkte a,b ∈ M
konvergiert. Dann gilt nach der Dreiecksungleichung d(a,b) ≤ d(a,an)+ d(an,b) für alle n ∈ N,
und daher folgt durch Grenzübergang n→ ∞

d(a,b)≤ lim
n→∞

d(a,an)+ lim
n→∞

d(an,b)
23.14 (a)
= 0+0 = 0.

Also ist d(a,b) = 0, und damit nach Definition 23.9 (b) wie behauptet a = b. □

Beispiel 23.16. Wir betrachten die Folge (an)n∈N>0 in R2 mit an =

(
1
n
1
n2

)
für alle n.

(a) Versehen wir R2 standardmäßig mit der euklidischen Norm, so konvergiert die Folge nach
Bemerkung 23.14 (b) gegen 0 ∈ R2, denn es ist

lim
n→∞
∥an−0∥2 = lim

n→∞

√
1
n2 +

1
n4 = 0.
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(b) Auch mit der Maximumsnorm aus Beispiel 23.3 (b) konvergiert die Folge gegen 0, denn

lim
n→∞
∥an−0∥∞ = lim

n→∞
max

(
1
n
,

1
n2

)
= lim

n→∞

1
n
= 0.

(c) In der diskreten Metrik aus Beispiel 23.12 (b) konvergiert die Folge jedoch nicht gegen 0:
Hier ist

lim
n→∞

d(an,0) = lim
n→∞

1 = 1 ̸= 0,

da ja an ̸= 0 für alle n gilt. In der Tat konvergiert eine Folge in dieser Metrik genau dann
gegen a, wenn fast alle Folgenglieder gleich a sind. Da dies für die in diesem Beispiel be-
trachtete Folge für kein a der Fall ist, ist diese Folge in der diskreten Metrik also divergent.

Die Konvergenz einer Folge in einem metrischen Raum hängt also im Allgemeinen von der gewähl-
ten Metrik ab. Wir wollen nun aber zeigen, dass dies bei äquivalenten Normen nicht der Fall ist.
So hatten wir ja z. B. in Beispiel 23.8 (b) gesehen, dass die Maximumsnorm auf R2 zur euklidi-
schen Norm äquivalent ist, und dementsprechend haben wir oben in den Beispielen 23.16 (a) und
(b) dasselbe Ergebnis erhalten. Diese Tatsache beruht auf der folgenden wichtigen Aussage.

Lemma 23.17. Es seien ∥ · ∥ und ∥ · ∥′ zwei äquivalente Normen auf einem K-Vektorraum V . Dann
gilt für alle a ∈V und U ⊂V :

U ist eine Umgebung von a bezüglich ∥ · ∥′ ⇔ U ist eine Umgebung von a bezüglich ∥ · ∥,
d. h. „die beiden Normen erzeugen den gleichen Umgebungsbegriff“.

Beweis. Nach Voraussetzung gibt es eine Konstante b ∈ R>0 mit ∥x∥′ ≤ b∥x∥ für alle x ∈ V . Im
Folgenden bezeichnen wir die ε-Umgebungen eines Punktes a ∈ V bezüglich ∥ · ∥ und ∥ · ∥′ mit
Uε(a) bzw. U ′ε(a).

Es sei nun U eine Umgebung von a bezüglich ∥·∥′, d. h. es gilt U ′ε(a)⊂U für ein ε > 0. Dann ist aber
auch Uε/b(a)⊂U , denn für alle x∈Uε/b(a) gilt ∥x−a∥′ ≤ b∥x−a∥< b · ε

b = ε , also x∈U ′ε(a)⊂U .
Damit ist U auch eine Umgebung von a bezüglich ∥ · ∥.
Die andere Richtung ergibt sich analog durch Vertauschen der Rollen der beiden Normen. □

Bemerkung 23.18 (Topologie). Wir hatten in Abschnitt 23.A bereits erwähnt, dass sich äquivalente
Normen in vielerlei Hinsicht gleich verhalten. In Lemma 23.17 haben wir nun ein erstes und sehr
wichtiges Beispiel dafür gesehen: Der von ihnen erzeugte Umgebungsbegriff ist der gleiche.

Damit stimmen bei äquivalenten Normen natürlich auch alle Eigenschaften von Objekten überein,
die sich allein mit Hilfe des Umgebungsbegriffs definieren lassen. Derartige Eigenschaften, von
denen wir im Folgenden noch viele kennenlernen werden, bezeichnet man als topologische Eigen-
schaften. Ein erstes Beispiel dafür ist die Folgenkonvergenz, denn nach Bemerkung 23.14 (a) kon-
vergiert eine Folge ja genau dann gegen einen Punkt, wenn in jeder Umgebung dieses Punktes fast
alle Folgenglieder liegen. So können wir nach Beispiel 23.8 (b) also z. B. für Fragen zur Folgenkon-
vergenz in Kn statt der euklidischen Norm auch die oft einfachere Maximumsnorm verwenden, da
diese beiden Normen dort äquivalent sind.

In der Tat gibt es eine weitere Verallgemeinerung metrischer Räume: die sogenannten topologischen
Räume, die ihr in der Vorlesung „Einführung in die Topologie“ des zweiten Studienjahres kennenler-
nen könnt. In ihnen gibt es keine Metrik mehr, aber noch einen Umgebungsbegriff. Demnach kann
man dort dann zwar keine Abstände mehr messen, aber dennoch alle topologischen Eigenschaften
wie z. B. die Folgenkonvergenz definieren und untersuchen.

Im konkreten Fall des normierten Raumes Kn ist die Untersuchung der Konvergenz von Folgen
allerdings noch etwas einfacher: Wie man vielleicht schon vermutet, wollen wir jetzt kurz zeigen,
dass man diese Konvergenz dort einfach koordinatenweise überprüfen kann.

Lemma 23.19. Eine Folge (a(k))k∈N in Kn konvergiert (in der Standardnorm) genau dann gegen
a ∈Kn, wenn jede Koordinatenfolge (a(k)i )k∈N mit i = 1, . . . ,n in K gegen die i-te Koordinate ai von
a konvergiert.
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Beweis. Es gilt

lim
k→∞

a(k) = a ⇔ lim
k→∞
∥a(k)−a∥2 = 0 (Bemerkung 23.14 (b))

⇔ lim
k→∞

√
|a(k)1 −a1|2 + · · ·+ |a(k)n −an|2 = 0

(∗)⇔ lim
k→∞
|a(k)i −ai|= 0 für alle i = 1, . . . ,n

⇔ lim
k→∞

a(k)i = ai für alle i = 1, . . . ,n,

wobei in (∗) die Richtung „⇐“ die üblichen Grenzwertsätze in R sind, und die Richtung „⇒“ aus

der Ungleichung |a(k)i −ai| ≤
√
|a(k)1 −a1|2 + · · ·+ |a(k)n −an|2 folgt. □

Als Nächstes wollen wir die in K aus Lemma 5.8 bekannte Aussage, dass konvergente Folgen be-
schränkt sind, auf metrische Räume übertragen. Dazu müssen wir aber natürlich den Begriff der
Beschränktheit einer Menge oder Folge in einem metrischen Raum erst einmal definieren.

Definition 23.20 (Beschränkte Mengen und Folgen). Es sei M ein nicht-leerer metrischer Raum.

(a) Eine Teilmenge X ⊂M heißt beschränkt, wenn sie in einer abgeschlossenen Kugel enthalten
ist, also wenn es ein a ∈ M und r ∈ R>0 gibt mit X ⊂ Kr(a), d. h. mit d(x,a) ≤ r für alle
x ∈ X .

(b) Eine Folge in M heißt beschränkt, wenn die Menge ihrer Folgenglieder in M beschränkt ist.

Konventionsgemäß werden wir in M = /0 die einzig mögliche Teilmenge /0 auch als beschränkt defi-
nieren.

Bemerkung 23.21.
(a) Ist X ⊂M beschränkt, so gilt die Bedingung aus Definition 23.20 (a) sogar für alle a ∈M:

Ist nämlich d(x,a)≤ r für alle x ∈ X , so gilt für einen beliebigen anderen Punkt a′ ∈M auch

d(x,a′)≤ d(x,a)+d(a,a′)≤ r+d(a,a′) = R für alle x ∈ X ,

wobei wir R := r+d(a,a′) gesetzt haben.

Insbesondere können wir in einem normierten Raum V also stets a = 0 wählen, und erhalten
so die Aussage, dass eine Teilmenge X ⊂V genau dann beschränkt ist, wenn es ein r ∈ R>0
gibt mit ∥x∥ ≤ r für alle x ∈ X . Für den Fall V =K mit der gewöhnlichen Metrik stimmt dies
dann offensichtlich mit unserer alten Definition 4.23 (b) der Beschränktheit überein.

(b) Wie wir in Aufgabe 23.25 sehen werden, ist die Beschränktheit einer Menge in einem me-
trischen Raum keine topologische Eigenschaft im Sinne von 23.18. Dennoch stimmt sie für
zwei äquivalente Normen ∥ · ∥ und ∥ · ∥′ auf einem Vektorraum V überein: Ist ∥x∥′ ≤ b∥x∥
für eine Konstante b ∈ R>0 und alle x ∈ V , und ist X ⊂ V beschränkt bezüglich ∥ · ∥, d. h.
gibt es ein r ∈ R>0 mit ∥x∥ ≤ r für alle x ∈ X , so ist dann auch ∥x∥′ ≤ b∥x∥ ≤ br für alle
x ∈ X , d. h. X ist auch beschränkt bezüglich ∥ · ∥′.

Lemma 23.22. In einem metrischen Raum ist jede konvergente Folge beschränkt.

Beweis. Es sei (an)n eine konvergente Folge mit Grenzwert a. Nach Bemerkung 23.14 (a) gilt dann
d(an,a) → 0 für n → ∞. Nach Lemma 5.8 ist die konvergente reelle Folge (d(an,a))n also be-
schränkt, d. h. es gibt ein r∈R>0 mit d(an,a)≤ r für alle n∈N. Damit ist auch (an)n beschränkt. □

Als einfache Folgerung können wir nun die aus Satz 5.13 bekannten Grenzwertsätze verallgemei-
nern – also die Aussage, dass Grenzwerte mit den üblichen Rechenoperationen vertauschen. Da es
nach Definition aber in metrischen Räumen überhaupt keine Rechenoperationen und in normierten
Vektorräumen nur Vektoraddition und Skalarmultiplikation gibt, müssen wir uns dabei natürlich auf
diese Fälle beschränken.
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Satz 23.23 (Grenzwertsätze in normierten Räumen). Es seien (an)n und (bn)n zwei konvergente
Folgen in einem normierten K-Vektorraum V mit an→ a und bn→ b. Ferner sei (λn)n eine konver-
gente Folge in K mit λn→ λ . Dann gilt:

(a) an +bn→ a+b und an−bn→ a−b;

(b) λnan→ λa.

Beweis.

(a) Der Beweis ist (bis auf das Ersetzen der Betragsstriche durch die Norm) wörtlich derselbe
wie in Satz 5.13.

(b) Auch hier ist der Beweis analog zum eindimensionalen Fall: Es gilt

∥λnan−λa∥= ∥λnan−λan +λan−λa∥
≤ ∥(λn−λ )an∥+∥λ (an−a)∥ (Dreiecksungleichung)

= |λn−λ |︸ ︷︷ ︸
(∗)

·∥an∥+ |λ | · ∥an−a∥︸ ︷︷ ︸
(∗)

. (Definition 23.1 (a))

Dabei sind die mit (∗) bezeichneten Terme nach Voraussetzung (reelle) Nullfolgen, und
wegen der Konvergenz von (an)n sind die Normen ∥an∥ nach Lemma 23.22 beschränkt.
Wie im Beweis von Satz 5.13 (b) ergibt sich nun also wieder ∥λnan−λa∥ → 0, und damit
λnan→ λa. □

Aufgabe 23.24. Es sei V = Abb(N,R) der Vektorraum aller reellen Zahlenfolgen. Man zeige:

(a) Die Abbildung d : R×R→ R, (x,y) 7→min(|x− y|,1) ist eine Metrik auf R.

(b) Die Abbildung

e : V ×V → R,
(
(ak)k,(bk)k

)
7→

∞

∑
k=0

d(ak,bk)

2k

(mit d wie in (a)) ist eine Metrik auf V .

(c) Eine Folge reeller Folgen (a(n)k )k ∈V mit n ∈ N konvergiert für n→ ∞ bezüglich der Metrik
e wie in (b) genau dann gegen (ak)k ∈ V , wenn sie „punktweise konvergiert“, also wenn
lim
n→∞

a(n)k = ak für alle k ∈ N gilt.

Aufgabe 23.25. Für x,y ∈ R2 sind

d1(x,y) :=

{
∥x∥2 +∥y∥2 für x ̸= y,
0 für x = y

und d2(x,y) := min(∥x− y∥2,1)

Metriken auf R2 (das braucht ihr nicht zu zeigen).

(a) Skizziere die qualitativ verschiedenen Fälle, wie abgeschlossene Kugeln bezüglich dieser
beiden Metriken aussehen können.

(b) Man zeige: Eine Menge A ⊂ R2 ist bezüglich d1 genau dann beschränkt, wenn A bezüglich
der euklidischen Metrik beschränkt ist. Für d2 gilt dies jedoch nicht.

(c) Man zeige: Eine Menge A⊂ R2 ist bezüglich d2 genau dann eine Umgebung eines Punktes
a ∈R2, wenn A bezüglich der euklidischen Metrik eine Umgebung von a ist. Für d1 gilt dies
jedoch nicht.

Insbesondere zeigt d2 also, dass Beschränktheit kein topologischer Begriff ist: Diese Metrik liefert
die gleichen Umgebungen wie die euklidische Metrik, aber nicht die gleichen beschränkten Mengen.

Zum Abschluss dieses Abschnitts wollen wir noch kurz das Cauchy-Kriterium aus Satz 6.25 verall-
gemeinern, das immer dann für den Nachweis der Konvergenz einer Folge benötigt wird, wenn ihr
Grenzwert vorher noch nicht bekannt ist. Die Definition einer Cauchyfolge kann dabei unmittelbar
aus Definition 6.22 übertragen werden.
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Definition 23.26 (Cauchyfolgen). Eine Folge (an)n in einem metrischen Raum M heißt Cauchy-
folge, wenn

∀ε > 0 ∃n0 ∈ N ∀m,n≥ n0 : d(am,an)< ε.

Bemerkung 23.27.
(a) Genau wie die Beschränktheit von Mengen bzw. Folgen ist auch das Konzept von Cauchy-

folgen keine topologische Eigenschaft. Mit dem gleichen Argument wie in Bemerkung
23.21 (b) stimmt es für äquivalente Normen aber dennoch überein.

(b) Wie in Bemerkung 6.23 folgt auch in beliebigen metrischen Räumen sofort aus der Drei-
ecksungleichung, dass jede konvergente Folge eine Cauchyfolge ist. Im Gegensatz zu Satz
6.25 gilt die Umkehrung in allgemeinen metrischen Räumen aber nicht: In M =R>0 (mit der
euklidischen Metrik) ist die Folge

( 1
n

)
n eine Cauchyfolge, da sie in R gegen 0 konvergiert;

ihr Grenzwert 0 liegt jedoch nicht in M, so dass sie in M divergiert.

Da es in der Regel sehr wichtig ist zu wissen, ob Cauchyfolgen stets konvergieren und man somit
die Konvergenz von Folgen mit dem Cauchy-Kriterium überprüfen kann, haben derartige metrische
Räume einen besonderen Namen.

Definition 23.28 (Vollständige Räume).
(a) Ein metrischer Raum heißt vollständig, wenn in ihm jede Cauchyfolge konvergiert (und die

Cauchyfolgen nach Bemerkung 23.27 (b) damit genau die konvergenten Folgen sind).

(b) Ein vollständiger normierter Raum heißt Banachraum.

Satz 23.29. Kn ist (bezüglich der euklidischen Norm) ein Banachraum.

Beweis. Nach Bemerkung 23.18 und 23.27 (a) dürfen wir auf Kn statt der euklidischen Norm die
dazu äquivalente Maximumsnorm verwenden.

Es sei nun (a(k))k∈N eine Cauchyfolge in Kn, d. h. zu jedem ε > 0 gibt es ein k0 ∈ N, so dass
∥a(k)−a(l)∥∞ < ε , und damit auch |a(k)i −a(l)i | < ε für alle k, l ≥ k0 und i = 1, . . . ,n gilt. Also sind
die Koordinatenfolgen (a(k)i )k∈N für alle i Cauchyfolgen in K und damit nach Satz 6.25 konvergent
gegen gewisse ai ∈ K. Nach Lemma 23.19 konvergiert dann aber auch die ursprüngliche Folge
(a(k))k∈N gegen den Vektor a mit Koordinaten a1, . . . ,an. □

Aufgabe 23.30. Zeige die folgenden Eigenschaften der Frobenius-Norm:

(a) Für alle A ∈Km×n und B ∈Kn×p gilt ∥AB∥ ≤ ∥A∥ · ∥B∥.

(b) Für alle A ∈Kn×n existiert eA :=
∞

∑
k=0

Ak

k!
in Kn×n.

(c) Ist A ∈Kn×n mit ∥A∥< 1, so ist E−A invertierbar, und es gilt
∞

∑
k=0

Ak = (E−A)−1.

Aufgabe 23.31 (Beispiel für einen nicht-vollständigen normierten Raum). Es sei V =C0([0,1]) der
Vektorraum der stetigen reellen Funktionen auf [0,1]. Man zeige:

(a) (V,∥ · ∥∞) ist ein Banachraum.

(b) (V,∥ · ∥2) ist kein Banachraum.

23.C Offene und abgeschlossene Mengen

Im Rest dieses Kapitels wollen wir nun noch einige wichtige topologische Eigenschaften einführen
(die also nur vom Umgebungsbegriff in einem metrischen Raum abhängen). Die ersten von ihnen
sind die einer offenen bzw. abgeschlossenen Menge, die eine direkte Verallgemeinerung der offenen
und abgeschlossenen Intervalle bzw. Kugeln aus Notation 4.17 und Definition 23.13 (a) sind und
anschaulich ausdrücken, ob eine Menge ihre Randpunkte mit enthält (siehe auch Bemerkung 23.41).
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Definition 23.32 (Offene und abgeschlossene Mengen). Es sei M ein metrischer Raum.

(a) Eine Teilmenge U ⊂ M heißt offen, wenn sie eine Umgebung von jedem ihrer Punkte ist,
also wenn es zu jedem a ∈U ein ε > 0 gibt mit Uε(a)⊂U .

(b) Eine Teilmenge A ⊂ M heißt abgeschlossen, wenn M\A offen ist, also wenn es zu jedem
a ∈ M\A ein ε > 0 gibt mit Uε(a) ⊂ M\A. Man bezeichnet die Menge M\A oft als das
Komplement von A in M – muss dabei aber aufpassen, dass dies natürlich nicht mit der
Definition 17.8 eines Komplements von Unterräumen übereinstimmt.

Beispiel 23.33.
(a) In R (mit der gewöhnlichen Metrik) sind offene Intervalle

(a,b) offen im Sinne von Definition 23.32: Um jeden Punkt
x eines solchen Intervalls finden wir eine ε-Umgebung
(nämlich für ein beliebiges ε ≤min(x−a,b−x)), die ganz
in (a,b) liegt. Ebenso sind die uneigentlichen Intervalle
(−∞,b) und (a,∞) offen – in der Literatur werden sie daher
im Gegensatz zu unserer Konvention in Notation 4.17 (a)
manchmal auch zu den offenen Intervallen gezählt. Ver-
einigungen solcher Intervalle wie z. B. (0,1)∪ (2,∞) sind
aus dem gleichen Grund ebenfalls offen. Dagegen sind die
Intervalle [a,b), (a,b] und [a,b] aufgrund der enthaltenen
Randpunkte nicht offen, da es hier um die Punkte x = a
bzw. x = b, die innerhalb des Intervalls liegen, keine solche
ε-Umgebung innerhalb des Intervalls mehr gibt.

a bx

a b

Uε(x) ⊂ (a,b)

Uε(a) ̸⊂ [a,b)

(a,b) ist offen

[a,b) ist nicht offen

58

(b) Wiederum in R sind abgeschlossene Intervalle [a,b] abgeschlossen, da ihre Komplemente
R\[a,b] = (−∞,a)∪ (b,∞) nach (a) offen sind. Ebenso sind die uneigentlichen Intervalle
(−∞,b] und [a,∞) abgeschlossen, nicht aber die anderen Intervalltypen wie z. B. (a,b), (a,b]
oder (a,∞). Wie bei den offenen Intervallen werden die uneigentlichen Intervalle (−∞,b]
und [a,∞) in manchen Büchern daher auch zu den abgeschlossenen Intervallen gezählt – für
die beschränkten abgeschlossenen Intervalle [a,b] ist dann der Name „kompaktes Intervall“
üblich (siehe Beispiel 23.52).

Insbesondere sehen wir an diesem Beispiel schon, dass „abgeschlossen“ nicht das Gegenteil
von „offen“ ist: Das Intervall [a,b) ist z. B. weder offen noch abgeschlossen, da es einen
Randpunkt a enthält und den anderen b nicht.

(c) In jedem metrischen Raum M sind die leere Menge /0 und der ganze Raum M trivialerweise
offen, und damit gleichzeitig auch abgeschlossen.

(d) In jedem metrischen Raum sind die offenen Kugeln Ur(a) aus Defi-
nition 23.13 (a) offen: Ist x ∈Ur(a) beliebig, also d(x,a) < r, so ist
wie im Bild rechts Uε(x)⊂Ur(a) mit ε := r−d(x,a), denn für alle
y ∈Uε(x) gilt nach der Dreiecksungleichung

d(y,a)≤ d(y,x)+d(x,a)< ε +d(x,a) = r.

Also ist Ur(a) offen. Analog sieht man, dass jede abgeschlossene
Kugel Kr(a) abgeschlossen ist: Ist x ∈M\Kr(a), also d(x,a)> r, so
ist Uε(x)⊂M\Kr(a) mit ε := d(x,a)−r > 0, denn für alle y∈Uε(x)
gilt nun

d(y,a)≥ d(x,a)−d(x,y)> d(x,a)− ε = r,

d. h. Kr(a) ist abgeschlossen. Insbesondere sind also einpunktige
Mengen {a}= K0(a) als abgeschlossene Kugeln vom Radius 0 stets
abgeschlossen.

ε
x

ε
x

a

Ur(a)

a

Kr(a)

r

r
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(e) Da in jeder ε-Umgebung eines beliebigen Punktes von R sowohl rationale als auch irrationa-
le Zahlen liegen, ist weder die Menge der rationalen noch die der irrationalen Zahlen offen
in R. Mit anderen Worten ist Q in R weder offen noch abgeschlossen.

Die wichtigsten Eigenschaften offener und abgeschlossener Mengen sind die folgenden:

Lemma 23.34 (Durchschnitte und Vereinigungen offener und abgeschlossener Mengen). In jedem
metrischen Raum gilt:

(a) Durchschnitte endlich vieler offener Mengen sind offen.

(b) Vereinigungen beliebig vieler (also auch unendlich vieler) offener Mengen sind offen.

(c) Vereinigungen endlich vieler abgeschlossener Mengen sind abgeschlossen.

(d) Durchschnitte beliebig vieler abgeschlossener Mengen sind abgeschlossen.

Beweis. Es sei M ein metrischer Raum.

(a) Es seien U1, . . . ,Un ⊂M offen und a ∈U1∩·· ·∩Un. Dann ist a ∈Ui für alle i = 1, . . . ,n. Da
Ui offen ist, gibt es zu jedem i ein εi > 0 mit Uεi(a) ⊂Ui. Mit ε := min(ε1, . . . ,εn) ist dann
also Uε(a) ⊂U1 ∩ ·· · ∩Un eine Umgebung von a, die ganz in U1 ∩ ·· · ∩Un liegt. Also ist
U1∩·· ·∩Un offen.

(b) Es seien I eine beliebige Indexmenge und Ui ⊂M für alle i ∈ I offen. Ist nun a ∈
⋃

i∈I Ui, so
ist also a ∈U j für ein j ∈ I. Da U j offen ist, gibt es ein ε > 0 mit Uε(a)⊂U j ⊂

⋃
i∈I Ui. Also

ist
⋃

i∈I Ui offen.

(c) Dies folgt nun durch Komplementbildung aus (a): sind A1, . . . ,An ⊂M abgeschlossen, also
M\A1, . . . ,M\An offen, so ist nach (a) auch

(M\A1)∩·· ·∩ (M\An) = M\(A1∪·· ·∪An)

offen, und A1∪·· ·∪An damit abgeschlossen.

(d) ergibt sich analog aus (b): Sind Ai ⊂M abgeschlossen für alle i in einer Indexmenge I, also
M\Ai offen, so ist nach (b) auch ⋃

i∈I

(M\Ai) = M\
⋂
i∈I

Ai

offen, d. h.
⋂

i∈I Ai ist abgeschlossen. □

Bemerkung 23.35. Die Beschränkung auf endlich viele Mengen in Lemma 23.34 (a) und (c) ist
wesentlich: Nach Beispiel 23.33 (d) ist in einem metrischen Raum M ja jede einpunktige Menge
{a} mit a ∈M abgeschlossen. Wären nun beliebige Vereinigungen abgeschlossener Mengen wieder
abgeschlossen, so müsste dann ja jede Teilmenge A⊂M (die ja immer Vereinigung aller ihrer Punkte
ist) abgeschlossen sein – was im Allgemeinen offensichtlich falsch ist.

Aufgabe 23.36.
(a) Es sei M = {0}∪{ 1

n : n ∈ N>0} ⊂ R, aufgefasst als metrischer Raum mit der euklidischen
Metrik. Gib alle offenen und alle abgeschlossenen Teilmengen dieses metrischen Raumes M
an.

(b) Es sei X ⊂M eine Teilmenge eines metrischen Raumes M. Nach Bemerkung 23.11 ist dann
auch X ein metrischer Raum mit der eingeschränkten Metrik.

Zeige, dass eine Menge U ⊂ X genau dann offen in diesem metrischen Raum X ist, wenn es
eine im metrischen Raum M offene Teilmenge V ⊂M gibt mit U =V ∩X .

Zum besseren Verständnis offener und abgeschlossener Mengen wollen wir jetzt noch das Konzept
von Randpunkten exakt einführen, das wir oben ja schon zur Veranschaulichung dieser Begriffe ver-
wendet haben. Auch andere verwandte Notationen haben wir bereits in Spezialfällen kennengelernt,
wie z. B. dichte Teilmengen in Folgerung 4.35, den Abschluss einer Menge in Definition 8.1 und iso-
lierte Punkte in Definition 10.1. Häufungspunkte haben wir bereits von Folgen in Definition 5.18 (c)
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gesehen; ihren Zusammenhang mit den nun betrachteten Häufungspunkten von Mengen werden wir
in Aufgabe 23.47 untersuchen.

Definition 23.37 (Besondere Punkte in metrischen Räumen). Es seien M ein metrischer Raum,
a ∈M ein Punkt und X ⊂M eine Teilmenge von M.

(a) Der Punkt a heißt innerer Punkt von X , wenn X wie in Definition 23.13 (b) eine Umgebung
von a ist. Die Menge aller inneren Punkte von X wird mit X̊ bezeichnet und das Innere von
X genannt.

(b) Der Punkt a heißt Berührpunkt von X , wenn jede Umgebung von a einen Punkt aus X
enthält. Die Menge X aller Berührpunkte von X wird der Abschluss von X genannt.

Ist X = M, so heißt X dicht in M.

(c) Der Punkt a heißt Randpunkt von X , wenn jede Umgebung von a sowohl einen Punkt aus
X als auch einen aus dem Komplement M\X enthält. Die Menge aller Randpunkte von X
wird mit ∂X bezeichnet und der Rand von X genannt.

(d) Der Punkt a heißt Häufungspunkt von X , wenn jede Umgebung von a einen Punkt aus
X\{a} enthält. Man nennt a einen isolierten Punkt von X , wenn es eine Umgebung von a
gibt, die a als einzigen Punkt von X enthält.

Bemerkung 23.38. Nach der Definition 23.16 (b) einer Umgebung bedeutet Definition 23.37 (a),
dass ein Punkt a ∈ M genau dann ein innerer Punkt einer Teilmenge X eines metrischen Raumes
M ist, wenn es ein ε ∈ R>0 gibt mit Uε(a) ⊂ X . Mit der Definition 23.32 (a) einer offenen Menge
ist dies auch äquivalent dazu, dass es eine offene Menge U gibt mit a ∈ U ⊂ X (also eine offene
Umgebung von a).

Analog können wir auch in den Teilen (b), (c) und (d) von Definition 23.37 den Begriff „Umgebung
von a“ durch „ε-Umgebung von a“ oder „offene Umgebung von a“ ersetzen, da jede Umgebung von
a eine offene ε-Umgebung von a enthält.

Beispiel 23.39. Wir betrachten den metrischen Raum M = R (mit der gewöhnlichen Metrik).

(a) Für ein halboffenes Intervall X = [a,b) mit a < b ist wie erwartet das Innere X̊ = (a,b), der
Abschluss X = [a,b] und der Rand ∂X = {a,b}. Jeder Punkt in [a,b] ist ein Häufungspunkt
von X ; es gibt keine isolierten Punkte in X .

(b) Für die Menge Z der ganzen Zahlen gilt Z̊= /0 und Z= Z. Der Rand ist ∂Z= Z, und jeder
dieser Randpunkte ist auch ein isolierter Punkt von Z. Es gibt keine Häufungspunkte von Z.

(c) Mit der gleichen Begründung wie in Beispiel 23.33 (e) ist Q̊= /0 und Q=R, sowie ∂Q=R.
Also liegt Q dicht in R (wie wir auch schon in Folgerung 4.35 gesagt hatten), und jede reelle
Zahl ist ein Häufungspunkt von Q.

Die gerade definierten Mengen X̊ , X und ∂X erfüllen einige einfache anschauliche Eigenschaften,
die mehr oder weniger direkt aus den Definitionen folgen und oft zu ihrer Berechnung benutzt wer-
den können:

Lemma 23.40. Für jede Teilmenge X eines metrischen Raumes M gilt:

(a) X̊ ist die Vereinigung aller offenen Mengen, die in X enthalten sind, also

X̊ =
⋃

U⊂X offen

U.

Insbesondere ist X̊ also die größte offene Menge, die in X enthalten ist; und X ist genau dann
offen, wenn X̊ = X.

(b) X ist der Durchschnitt aller abgeschlossenen Mengen, die X enthalten, also

X =
⋂

A⊃X abgeschlossen

A.
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Insbesondere ist X also die kleinste abgeschlossene Menge, die X enthält; und X ist genau
dann abgeschlossen, wenn X = X.

(c) X̊ = X\∂X.
(d) X = X ∪∂X.
(e) ∂X = X\X̊ . Insbesondere ist ∂X abgeschlossen.

Beweis.
(a) Nach Definition 23.37 (a) bzw. Bemerkung 23.38 folgt für alle a ∈M sofort

a ∈ X̊ ⇔ es gibt ein U offen mit a ∈U ⊂ X ⇔ a ∈
⋃

U⊂X offen

U.

Insbesondere ist X̊ als Vereinigung offener Mengen nach Lemma 23.34 (b) also offen, und
damit als Vereinigung aller offenen Teilmengen von X auch die größte offene Teilmenge von
X . Ist weiterhin X offen, so ist X selbst eine der Mengen, über die wir hier die Vereinigung
bilden, und damit ist die Vereinigung X̊ dieser Mengen dann gleich X .

(b) zeigt man analog zu (a) durch Übergang zum Komplement: Für alle a ∈M gilt

a ∈ X ⇔ es gibt kein U offen mit a ∈U ⊂M\X

⇔ a /∈
⋃

U⊂M\X offen

U

⇔ a ∈
⋂

U⊂M\X offen

(M\U)

⇔ a ∈
⋂

A⊃X abgeschlossen

A (mit A = M\U).

Insbesondere ist X damit nach Lemma 23.34 (d) die kleinste abgeschlossene Teilmenge, die
X enthält. Ist weiterhin X selbst abgeschlossen, so ist X eine der Mengen, über die hier der
Durchschnitt gebildet wird, und somit ist dieser Durchschnitt (also X) gleich X .

(c) Die Bedingung a /∈ ∂X bedeutet genau, dass es eine offene Menge U mit a ∈U gibt, für die
entweder U ⊂ X oder U ⊂M\X ist. Falls a ∈ X gilt, kann hierbei wegen a ∈U natürlich nur
die Alternative U ⊂ X auftreten. Also ist a ∈ X\∂X genau dann, wenn es eine offene Menge
U mit a ∈U ⊂ X gibt, also wenn a ∈ X̊ gilt.

(d) „⊂“: Ist a ∈ X und a /∈ X , so enthält jede offene Menge U mit a ∈U nicht nur einen Punkt
aus X , sondern auch den Punkt a ∈M\X . Also ist dann a ∈ ∂X .
Die Inklusionen X ⊂ X und ∂X ⊂ X für die Rückrichtung „⊃“ folgen sofort aus den Defini-
tionen.

(e) Die Gleichung folgt sofort aus (c) und (d); der Rand ∂X ist dann als Durchschnitt der nach
(a) und (b) abgeschlossenen Mengen X und M\X̊ abgeschlossen. □

Bemerkung 23.41. Insbesondere besagen die Teile (a) und (c) des Lemmas, dass eine Menge X
genau dann offen ist (also X̊ = X gilt), wenn X = X\∂X ist, also sie keinen ihrer Randpunkt enthält –
was am Anfang dieses Abschnitts ja gerade unsere anschauliche Vorstellung von offenen Mengen
war. Analog besagen (b) und (d), dass die Menge X genau dann abgeschlossen ist (also X = X gilt),
wenn sie alle ihre Randpunkte enthält.
Diese Charakterisierung abgeschlossener Mengen durch ihre Rand-
punkte lässt sich auch gut mit Hilfe von Grenzwerten von Folgen inter-
pretieren. Haben wir nämlich eine konvergente Folge (an)n, deren Glie-
der in einer Teilmenge A eines metrischen Raumes liegen, so kann der
Grenzwert dieser Folge anschaulich nur in A oder wie im Bild rechts
auf dem Rand von A, also letztlich in A liegen. Damit sollte A also
genau dann abgeschlossen sein, wenn dieser Grenzwert in jedem Fall
wieder in A liegt. Dies besagt der folgende Satz.

. .
.

a1

a2

a

A
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Satz 23.42 (Folgenkriterium für Abgeschlossenheit). Eine Teilmenge A eines metrischen Raumes
M ist genau dann abgeschlossen, wenn zu jeder konvergenten Folge (an)n mit an ∈ A für (fast) alle
n ihr Grenzwert lim

n→∞
an ebenfalls in A liegt. (Man sagt in diesem Fall auch, dass A „abgeschlossen

unter Grenzwertbildung“ ist.)
59

Beweis.

„⇒“: Es seien A ⊂ M abgeschlossen und (an)n eine konvergente Folge, deren Glieder fast alle
in A liegen. Angenommen, der Grenzwert a := lim

n→∞
an läge in der offenen Menge M\A.

Dann wäre M\A nach Definition 23.32 (a) eine Umgebung von a, und damit müssten nach
Bemerkung 23.14 fast alle an in M\A liegen – im Widerspruch dazu, dass bereits fast alle an
in A liegen. Also war unsere Annahme falsch, und es gilt a ∈ A.

„⇐“: Die Menge A sei nun abgeschlossen unter Grenzwertbildung. Angenommen, A wäre nicht
abgeschlossen, also M\A nicht offen. Dann gäbe es einen Punkt a ∈ M\A, um den keine
ε-Umgebung vollständig in M\A liegt. Wir können also für alle n ∈ N>0 einen Punkt an in
der 1

n -Umgebung von a wählen, der in A liegt. Wegen

d(an,a)<
1
n
→ 0 für n→ ∞

ist (an)n dann im Widerspruch zur Annahme aber nach Bemerkung 23.14 eine konvergente
Folge in A mit Grenzwert a /∈ A. Also ist A abgeschlossen. □

Folgerung 23.43 (Vollständigkeit von Teilmengen). Eine Teilmenge eines vollständigen metrischen
Raumes ist genau dann selbst wieder vollständig, wenn sie abgeschlossen ist.

Beweis. Es sei A eine Teilmenge eines vollständigen metrischen Raumes M. Nach Definition
23.28 (a) ist A genau dann vollständig, wenn jede Cauchyfolge in A einen Grenzwert in A hat. Da M
vollständig ist, konvergiert jede solche Cauchyfolge aber in jedem Fall mit einem Grenzwert in M.
Also ist A genau dann vollständig, wenn der Grenzwert jeder konvergenten Folge mit Folgengliedern
in A ebenfalls in A liegt, nach Satz 23.42 also genau dann, wenn A abgeschlossen ist. □

Aufgabe 23.44. Man zeige:

(a) Die Menge U = {x ∈ R2 : x2 > x1 +1} ist offen in R2.

(b) Sind A1, . . . ,An ⊂ R abgeschlossen, so ist A1×A2×·· ·×An abgeschlossen in Rn.

(c) In Rn×n ist die Menge aller diagonalisierbaren Matrizen für n ≥ 2 weder offen noch abge-
schlossen.

Aufgabe 23.45. Es seien A und B zwei Teilmengen eines metrischen Raumes. Man zeige:

(a) Ist A⊂ B, so auch Å⊂ B̊ und A⊂ B.

(b) Es ist stets A∩B⊂ A∩B. Gilt hier im Allgemeinen auch die Gleichheit?

Aufgabe 23.46. In einem metrischen Raum M betrachten wir zu einem Punkt a ∈ M und einem
Radius r ∈ R>0 die offene Kugel Ur(a) = {x ∈M : d(x,a)< r}. Man zeige:

(a) Für den Rand dieser Kugel gilt ∂Ur(a)⊂ {x ∈M : d(x,a) = r}.
(b) In einem normierten Raum gilt in (a) wie erwartet sogar die Gleichheit, in einem beliebigen

metrischen Raum jedoch im Allgemeinen nicht.

Aufgabe 23.47 (Häufungspunkte von Folgen und Mengen). Es seien M ein metrischer Raum, a∈M
und X ⊂ M. Wie in Definition 5.18 (c) nennt man a einen Häufungspunkt einer Folge (an)n in
M, wenn eine Teilfolge von (an)n gegen a konvergiert. Zeige, dass dann die folgenden Aussagen
äquivalent sind:

(a) a ist ein Häufungspunkt von X .

(b) Es gibt eine Folge in X , die nirgends den Wert a annimmt, und die a als Häufungspunkt hat.
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(c) Es gibt eine Folge in X , die nirgends den Wert a annimmt, und die gegen a konvergiert.

(d) a ∈ X\{a}.

Die Äquivalenz „(a) ⇔ (b)“ stellt also insbesondere eine Beziehung zwischen den Begriffen des
Häufungspunktes einer Folge und einer Menge her.

Aufgabe 23.48 (Ein topologisches Spiel). Wir starten mit einer gegebenen Teilmenge X eines me-
trischen Raumes M. Ausgehend von dieser einen Teilmenge dürfen wir jetzt neue Teilmengen von
M bilden, indem wir von X oder bereits vorher konstruierten Mengen entweder den Abschluss oder
das Innere bilden. Starten wir z. B. im metrischen Raum M =R mit der Teilmenge X = {0}∪ (1,2],
so ist deren Inneres gleich (1,2), und davon wieder der Abschluss gleich [1,2]. Außerdem ist der
Abschluss von X gleich {0}∪ [1,2]. Man überprüft schnell, dass die Abschluss- oder Innerenbil-
dung bei keiner dieser Mengen zu neuen Mengen führt. Ausgehend von der einen gewählten Menge
X konnten wir hier also insgesamt vier verschiedene Mengen erzeugen.

Wie viele verschiedene Mengen kann man so bei geschickter Wahl von M und X maximal erzeugen?

(Hinweis: Zeige zuerst, dass

(a) AIAX ⊂ AX und IAIX ⊃ IX ,

(b) AIAIX = AIX und IAIAX = IAX ,

wobei wir zur Übersichtlichkeit der Notation AX für den Abschluss und IX für das Innere von X
geschrieben haben. Die gesuchte Maximalzahl von Mengen lässt sich bereits in M = R mit der
gewöhnlichen Metrik für ein geeignetes X ⊂ R erreichen.)

Falls ihr noch weiter über diese Aufgabe nachdenken wollt: Wie viele Mengen kann man maximal
aus einer gegebenen Menge X durch Abschluss- und Komplementbildung erzeugen?

23.D Kompaktheit

In Kapitel 8 haben wir einige wichtige Eigenschaften reeller stetiger Funktionen kennengelernt, die
auf einem beschränkten abgeschlossenen Intervall [a,b] ⊂ R definiert sind: Sie sind z. B. nach Satz
8.23 beschränkt, nehmen nach Satz 8.25 sogar ein Maximum und Minimum an, und sind nach Satz
8.50 auch gleichmäßig stetig. Alle diese Aussagen wären falsch, wenn wir den Definitionsbereich
nur als beschränkt oder nur als abgeschlossen voraussetzen würden – wie die Beispiele der Funktio-
nen (0,1)→ R, x 7→ 1

x bzw. R≥1→ R, x 7→ x2 zeigen, die keine der drei genannten Eigenschaften
erfüllen.

Für eine Teilmenge D von R ist diese Kombination von Beschränktheit und Abgeschlossenheit in der
Praxis also sehr wichtig. Der Grund dafür ist aus den Beweisen der obigen Sätze ersichtlich: Sie alle
benötigen zu einer gegebenen Folge in D die Existenz einer konvergenten Teilfolge mit Grenzwert
in D. Ist nun D beschränkt, so existiert nach dem Satz 6.21 von Bolzano-Weierstraß zunächst einmal
eine konvergente Teilfolge, und ist D abgeschlossen, so liegt der Grenzwert dieser Teilfolge nach
Satz 23.42 dann auch in D.

Für die Verallgemeinerung dieser Aussagen auf normierte bzw. metrische Räume müssen wir da-
her die Existenz konvergenter Teilfolgen untersuchen. Wir übertragen dazu zunächst den Satz von
Bolzano-Weierstraß ins Mehrdimensionale.

Satz 23.49 (Satz von Bolzano-Weierstraß). In Kn (mit der Standardnorm) besitzt jede beschränkte
Folge eine konvergente Teilfolge.

Beweis. Nach Bemerkung 23.18 können wir die Maximumsnorm verwenden. Ist dann eine Folge
(a(k))k beschränkt, gilt also ∥a(k)∥∞ ≤ r für ein r ∈ R>0 und alle k ∈ N, so ist damit auch |a(k)i | ≤ r
für alle i = 1, . . . ,n und k ∈ N, d. h. es sind auch alle Koordinatenfolgen (a(k)i )k beschränkt.

Nach dem Satz 6.21 von Bolzano-Weierstraß in K können wir also nach evtl. Auswählen einer Teil-
folge annehmen, dass die erste Koordinatenfolge (a(k)1 )k von (a(k))k konvergiert. Aus dieser Teilfolge
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wählen wir nun eine weitere Teilfolge aus, so dass auch die zweite Koordinatenfolge konvergiert.
Setzen wir dieses Verfahren fort, so haben wir nach n Schritten eine Teilfolge von (a(k))k gefunden,
von der jede Koordinatenfolge konvergiert, die also nach Lemma 23.19 in Kn konvergent ist. □

Mit dieser Vorarbeit können wir jetzt den zentralen Begriff dieses Abschnitts untersuchen:

Definition 23.50 (Folgenkompaktheit). Eine Teilmenge A eines metrischen Raumes M heißt kom-
pakt bzw. folgenkompakt, wenn jede Folge in A eine konvergente Teilfolge mit Grenzwert in A
hat.

Satz 23.51. Es sei A eine Teilmenge eines metrischen Raumes M.

(a) Ist A kompakt, so ist A beschränkt und abgeschlossen.

(b) Im Fall M = Kn (mit der Standardnorm) gilt auch die Umkehrung, d. h. A ist genau dann
kompakt, wenn A beschränkt und abgeschlossen ist.

Beweis.

(a) Wäre A nicht beschränkt, dann gäbe es ein a ∈ A und eine Folge (ak)k in A mit d(ak,a)≥ k
für alle k. Dann ist aber jede Teilfolge von (ak)k unbeschränkt, also divergent nach Lemma
23.22. Damit kann A nicht kompakt sein.

Wäre A hingegen nicht abgeschlossen, so gäbe es nach Satz 23.42 eine konvergente Folge
(ak)k in A, deren Grenzwert a in M\A liegt. Dann konvergiert aber auch jede Teilfolge von
(ak)k gegen a, und damit also nicht gegen einen Punkt in A. Auch hier kann A also nicht
kompakt sein.

(b) Die Menge A ⊂ Kn sei beschränkt und abgeschlossen. Jede Folge in A ist also zunächst
beschränkt und besitzt damit nach dem Satz 23.49 von Bolzano-Weierstraß eine konvergente
Teilfolge in Kn. Der Grenzwert dieser Teilfolge liegt nun wegen der Abgeschlossenheit von
A nach Satz 23.42 ebenfalls in A. Also ist A kompakt. □

Beispiel 23.52.
(a) Von den Intervallen in R wie in Notation 4.17 (a) sind nach Satz 23.51 (b) genau die Inter-

valle der Form [a,b] kompakt. In der Literatur werden sie daher auch oft wie in Notation
4.17 (a) als kompakte Intervalle statt als abgeschlossene Intervalle bezeichnet.

(b) Abgeschlossene Kugeln Kr(a)⊂Kn mit a∈Kn und r ∈R≥0 sind nach Definition beschränkt
und nach Beispiel 23.33 (d) abgeschlossen, also kompakt. Genauso gilt dies nach Lemma
23.40 (e) auch für die Ränder ∂Kr(a) dieser Kugeln.

(c) In unendlich-dimensionalen normierten Räumen (und damit erst recht in allgemeinen metri-
schen Räumen) ist die Aussage aus Satz 23.51 (b) falsch: In V = C0([0,1]) mit der Maxi-
mumsnorm sei A = K1(0) = { f ∈C0([0,1]) : ∥ f∥∞ ≤ 1} die abgeschlossene Einheitskugel,
die wie in (b) natürlich auch beschränkt ist.

Sie ist aber nicht kompakt: Dazu betrachten wir für n ∈ N>0 die
„Dreiecksfunktionen“ fn wie im Bild rechts; wegen ∥ fn∥∞ = 1
für alle n ist ( fn)n eine Folge in A. Da sich die Dreiecke von fm
und fn für m ̸= n nicht überlappen, besteht fm− fn dann immer
aus einem Dreieck nach oben und einem nach unten mit Höhe
jeweils 1, d. h. es ist auch ∥ fm− fn∥∞ = 1. Damit kann eine Teil-
folge von ( fn)n aber niemals eine Cauchyfolge, und damit auch
nicht konvergent sein. Also ist A nicht kompakt.

x
1

1
2n

1
2n−1

1
2n+1

1
fn(x)

In der Tat kann man zeigen, dass die (beschränkte) abgeschlossene Einheitskugel im Ge-
gensatz zum Fall von Kn in keinem unendlich-dimensionalen normierten Raum kompakt
ist. Das Studium von solchen unendlich-dimensionalen normierten Räumen ist der Inhalt
der Vorlesung „Einführung in die Funktionalanalysis“ des zweiten Studienjahres. Wir haben
jetzt in den letzten Kapiteln mehrfach gesehen, dass in solchen allgemeinen Räumen zwar
viele Sätze noch genauso gelten wie im endlich-dimensionalen Fall, andererseits aber an
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entscheidenden Stellen auch große Unterschiede bestehen (siehe z. B. auch Beispiel 21.41
und Beispiel 21.50).

Wie bereits angekündigt werden wir später für stetige Funktionen auf kompakten Mengen ähnliche
Eigenschaften zeigen, wie wir sie in Kapitel 8 für stetige Funktionen auf beschränkten abgeschlos-
senen Intervallen in R bewiesen haben (siehe Abschnitt 24.B), z. B. dass solche Funktionen ein
Maximum und Minimum annehmen. Das folgende Lemma ist eine kleine Vorbereitung dafür.

Lemma 23.53. Jede kompakte, nicht-leere Menge in R besitzt ein Maximum und Minimum.

Beweis. Aus Symmetriegründen genügt es offensichtlich, den Fall des Maximums zu betrachten.
Ist A ⊂ R kompakt, so ist A nach Satz 23.51 (a) beschränkt und besitzt damit wegen A ̸= /0 nach
dem Supremumsaxiom (siehe Definition 4.29) ein Supremum s := supA. Angenommen, es wäre
s /∈ A. Da A kompakt und damit nach Satz 23.51 (a) abgeschlossen ist, gäbe es dann ein ε > 0 mit
(s−ε,s+ε)⊂R\A, d. h. (s−ε,s+ε)∩A = /0. Dann wäre aber nicht nur s, sondern auch s−ε eine
obere Schranke für A – im Widerspruch zu s = supA.

Also war unsere Annahme falsch, und es ist s ∈ A, also s = maxA. □

Zum Abschluss dieses Kapitels wollen wir nun noch eine oft benötigte alternative Charakterisierung
der Kompaktheit untersuchen. Da sie sich sehr von unserer ursprünglichen Definition 23.50 unter-
scheidet, geben wir ihr zunächst einen anderen Namen – wir werden aber in Satz 23.58 sehen, dass
es sich zumindest für Teilmengen von Kn um eine zur Folgenkompaktheit äquivalente Eigenschaft
handelt.

Definition 23.54 (Überdeckungskompaktheit). Eine Teilmenge A eines metrischen Raumes M heißt
überdeckungskompakt, wenn gilt: Sind I eine beliebige Indexmenge und Ui ⊂M offene Teilmen-
gen mit A⊂

⋃
i∈I Ui, so gibt es bereits endlich viele i1, . . . , ik ∈ I mit A⊂Ui1 ∪·· ·∪Uik .

Bemerkung 23.55.
(a) Man sagt auch, dass eine solche Familie offener Mengen, die in ihrer Vereinigung die Menge

A enthalten, eine offene Überdeckung von A ist. Dementsprechend wird die Bedingung der
Überdeckungskompaktheit oft auch so formuliert: Jede offene Überdeckung von A besitzt
eine endliche Teilüberdeckung (also eine Überdeckung aus endlich vielen der gegebenen
Mengen).

Natürlich ist dies nur für Überdeckungen aus unendlich vielen offenen Mengen eine nicht-
triviale Bedingung.

(b) Sowohl die Folgenkompaktheit aus Definition 23.50 als auch die Überdeckungskompaktheit
aus Definition 23.54 sind offensichtlich topologische Eigenschaften im Sinne von Bemer-
kung 23.18.

Beispiel 23.56. Es sei M = R.

(a) Betrachten wir das halboffene Intervall A = (0,1], so bilden die unendlich vielen Intervalle
Uε = (ε,2) für alle 0 < ε < 1, von denen wir im Bild unten links exemplarisch vier einge-
zeichnet haben, eine offene Überdeckung von A: Alle Uε sind offen, und ihre Vereinigung
umfasst die gesamte Menge A, da es zu jedem x ∈ A = (0,1] noch ein ε gibt mit 0 < ε < x,
also mit x ∈Uε .

Treffen wir aus diesen offenen Mengen jedoch eine beliebige endliche Auswahl Uε1 , . . . ,Uεk ,
so überdecken diese endlich vielen Mengen sicher nicht mehr die ganze Menge A, denn es
ist ja Uε1 ∪ ·· ·∪Uεk =Uε mit ε = min(ε1, . . . ,εk), und diese Vereinigung enthält z. B. nicht
mehr die Zahl ε

2 ∈ A. (Im Bild unten links enthalten die vier dort ausgewählten Intervalle
z. B. nicht mehr die Zahl 1

40 ∈ A).

Wir finden in diesem Fall also keine endliche Teilüberdeckung zu der gegebenen offenen
Überdeckung von A. Damit ist A nicht überdeckungskompakt.
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(b) Betrachten wir nun stattdessen das abgeschlossene Intervall A = [0,1], so stellen wir zu-
mindest fest, dass wir die Bedingung der Überdeckungskompaktheit dann nicht mehr so
einfach widerlegen können: Die oben gewählten offenen Intervalle Uε für 0 < ε < 1 bilden
nun keine Überdeckung von A mehr, da sie den Punkt 0 ∈ A nicht enthalten. Um daraus ei-
ne Überdeckung von A zu machen, müssten wir noch eine offene Menge U mit 0 ∈U mit
hinzunehmen – z. B. U = (− 1

10 ,
1
10 ) wie im Bild oben rechts, so dass wir die offene Überde-

ckung U ∪
⋃

0<ε<1 Uε von A erhalten. In diesem Fall ist es aber einfach, daraus eine endliche
Teilüberdeckung von A auszuwählen, nämlich z. B. A⊂U ∪U1/20 = (− 1

10 ,
1
10 )∪ (

1
20 ,2).

Beachte jedoch, dass wir mit diesem Argument noch nicht gezeigt haben, dass A überde-
ckungskompakt ist! Dazu hätten wir nämlich zu einer beliebigen offenen Überdeckung die
Existenz einer endlichen Teilüberdeckung beweisen müssen – während wir eben ja nur eine
ganz spezielle offene Überdeckung betrachtet haben. In der Tat ist A aber überdeckungskom-
pakt, wie wir gleich in Satz 23.58 sehen werden.

Analog zu Satz 23.51 (a) zeigen wir zunächst:

Lemma 23.57. Jede überdeckungskompakte Teilmenge eines metrischen Raumes ist beschränkt und
abgeschlossen.

Beweis. Es sei A eine überdeckungskompakte Teilmenge eines metrischen Raumes M. Natürlich
können wir M ̸= /0 annehmen, da die zu zeigende Aussage sonst trivial ist.

A ist beschränkt: Da mit einem fest gewählten Punkt a∈M die offenen Kugeln Ur(a) für alle r ∈R>0
offensichtlich den ganzen Raum M und damit auch A überdecken, können wir wegen der Überde-
ckungskompaktheit von A endlich viele r1, . . . ,rk ∈ R>0 wählen mit

A⊂Ur1(a)∪·· ·∪Urk(a) =Ur(a),

wobei r = max(r1, . . . ,rk). Nach Definition 23.20 (a) ist A also beschränkt. 60

A ist abgeschlossen, d. h. M\A ist offen: Es sei a∈M\A. Diesmal betrachten wir die offenen Mengen

Vr(a) := M\Kr(a) = {x ∈M : d(x,a)> r}
für alle r ∈ R>0, die natürlich M\{a} und damit auch A überdecken. Da A überdeckungskompakt
ist, gibt es also wieder endlich viele r1, . . . ,rk ∈ R>0 mit

A⊂Vr1(a)∪·· ·∪Vrk(a) =Vr(a),

wobei r = min(r1, . . . ,rk). Durch Komplementbildung erhalten wir daraus Ur(a) ⊂ Kr(a) ⊂ M\A.
Also ist M\A offen. □

Satz 23.58 (Satz von Heine-Borel). Eine Teilmenge von Kn ist genau dann überdeckungskompakt,
wenn sie beschränkt und abgeschlossen ist.

Beweis. Wir können wieder die zur euklidischen Norm äquivalente Maximumsnorm auf Kn ver-
wenden. Außerdem können wir ohne Einschränkung K = R annehmen, da wir im Fall K = C den
Raum Cn einfach als R2n auffassen können.

Wir haben in Lemma 23.57 schon gesehen, dass eine überdeckungskompakte Teilmenge von Rn

beschränkt und abgeschlossen sein muss. Es sei nun also umgekehrt A ⊂ Rn beschränkt und abge-
schlossen. Wir zeigen mit einem Widerspruchsbeweis, dass A dann überdeckungskompakt ist.

Es sei also
⋃

i∈I Ui eine offene Überdeckung von A ohne endliche Teilüberdeckung. Im Bild unten
in der Mitte ist dies dadurch angedeutet, dass die offenen Mengen der Überdeckung an einer Stelle
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sehr klein werden und damit evtl. sehr viele (bzw. unendlich viele) von ihnen benötigt werden, um
A dort zu überdecken.
Als beschränkte Menge ist A in einer abgeschlossenen Kugel (in der Maximumsnorm), also in einem
Würfel

Q0 := Kr(0) = [−r,r]n

enthalten. Ausgehend von Q0 konstruieren wir nun rekursiv wie im Bild unten rechts eine Folge
(Qk)k∈N von ineinander liegenden Würfeln mit Kantenlängen 2r · 2−k, so dass auch A∩Qk nicht
durch endlich viele Ui überdeckt werden kann: Ist Qk für ein k ∈ N bereits konstruiert, teilen wir
diesen Würfel wie im Bild dargestellt an den Seitenmitten in 2n Teilwürfel mit halber Kantenlänge.
Von diesen gibt es nun mindestens einen Teilwürfel, den wir Qk+1 nennen, für den der Schnitt mit A
nicht durch endlich viele Ui überdeckt werden kann – denn ansonsten könnte ja auch A∩Qk durch
endlich viele Ui überdeckt werden.

Q1

Q2

Q3

und die Würfel Qk

Q0 = Kr(0)

A

Die Menge A, . . . eine offene Überdeckung von A . . .

Da die konstruierten Würfel in jeder Koordinate eine Intervallschachtelung bilden, gibt es nun nach
Satz 5.39 genau einen Punkt a ∈

⋂
k∈N Qk.

Beachte, dass jede offene Umgebung U von a einen der Würfel
Qk enthält: Als offene Umgebung enthält sie nämlich wie im Bild
rechts zunächst eine ε-Umgebung Uε(a) (in der Maximumsnorm),
und diese dann wiederum für 2r · 2−k < ε den Würfel Qk. Damit
erhalten wir aber in jedem Fall einen Widerspruch, wenn wir nun
überprüfen, ob a in A liegt oder nicht:

Uε(a)

Qk
a

U

• Gilt a ∈ A, so liegt a in einer der offenen Mengen Ui der gegebenen Überdeckung von A.
Wie wir gerade gesehen haben, enthält dann schon diese eine Menge Ui einen der Würfel
Qk, ist also insbesondere eine Überdeckung von A∩Qk – im Widerspruch zur Annahme,
dass A∩Qk keine endliche Teilüberdeckung durch die gegebenen Mengen besitzt.

• Gilt a /∈ A, so liegt a in der offenen Menge Rn\A, die nun also einen der Würfel Qk enthalten
muss. Damit ist A∩Qk = /0 – ebenfalls im Widerspruch dazu, dass A∩Qk keine endliche
Teilüberdeckung durch die gegebenen Mengen hat.

Dieser Widerspruch zeigt, dass A überdeckungskompakt sein muss. □

Bemerkung 23.59 (Folgen- und Überdeckungskompaktheit). Nach Satz 23.51 (b) und 23.58 stim-
men die Begriffe der Folgenkompaktheit und Überdeckungskompaktheit für Teilmengen von Kn also
überein. In der Tat kann man zeigen, dass diese Äquivalenz sogar in beliebigen metrischen Räumen
gilt [M, Satz 39.30] – für alle in dieser Vorlesung betrachteten Räume sind diese beiden Begriffe
also völlig gleichwertig. Wir werden diese allgemeinere Aussage im Folgenden aber nicht benötigen
und daher auch nicht beweisen.
In der Tat wird der Begriff der Kompaktheit in der Literatur meistens über die Überdeckungskom-
paktheit definiert. Wir haben uns hier für die Definition über die Folgenkompaktheit entschieden, da
dies wohl das deutlich anschaulichere Konzept ist.
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Aufgabe 23.60. Man zeige: Sind K und L zwei kompakte Teilmengen eines normierten Raumes, so
ist auch deren Summe K +L = {a+b : a ∈ K,b ∈ L} kompakt.

Aufgabe 23.61. Es seien A und K zwei Teilmengen eines metrischen Raumes M. Man zeige:

(a) Ist A abgeschlossen und K folgenkompakt, so ist auch K∩A folgenkompakt.

(b) Ist A abgeschlossen und K überdeckungskompakt, so ist auch K∩A überdeckungskompakt.

Die in Bemerkung 23.59 erwähnte, aber nicht bewiesene Äquivalenz zwischen Folgen- und Überde-
ckungskompaktheit in allgemeinen metrischen Räumen soll hierbei natürlich nicht benutzt werden.

Aufgabe 23.62.
(a) Es seien K eine überdeckungskompakte Teilmenge eines metrischen Raumes M und (Ui)i∈I

eine offene Überdeckung von K in M. Man zeige:

Es gibt ein ε ∈ R>0, so dass zu jedem a ∈ K ein i ∈ I existiert mit Uε(a)⊂Ui. (∗)

(b) Finde ein Beispiel einer endlichen offenen Überdeckung (Ui)i∈I von K = M = Rn für eine
Zahl n ∈ N>0, so dass die Aussage (∗) falsch ist.


