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Grundlagen der Mathematik 2: Analysis

23. Topologische Grundbegriffe

Wir haben nun unser Studium der linearen Algebra beendet und wenden uns wieder der Analysis zu.
Unser Ziel fiir den Rest dieser Vorlesung wird es sein, die in den Kapiteln 5 bis 12 entwickelte Theo-
rie fiir Funktionen in einer reellen Variablen — insbesondere die Differential- und Integralrechnung —
auf den mehrdimensionalen Fall zu libertragen, also analoge Resultate z. B. auch fiir Abbildungen
von R” nach R™ zu finden. Da es bekanntlich die grundlegende Idee der Differentialrechnung ist,
beliebige Funktionen durch lineare zu approximieren, werden unsere Ergebnisse zu linearen Ab-
bildungen, die wir in den vorangegangenen Kapiteln zur linearen Algebra erzielt haben, dabei sehr
niitzlich sein.

23.A Normierte und metrische Riume

Erinnern wir uns an die eindimensionale Analysis zuriick: Der zentrale Begriff, mit dem wir damals
in Kapitel 5 begonnen haben, war der des Grenzwerts einer Folge. Wir haben dabei eine (reelle oder
komplexe) Zahlenfolge (a,),cn konvergent gegen ein a € K genannt, wenn in jeder e-Umgebung

Ue(a) = {x € K: [x—d| < &} ()

von a fast alle Folgenglieder a,, liegen (siehe Definition 5.1 und Bemerkung 5.2). Wenn wir diese De-
finition auf den hoherdimensionalen Fall iibertragen wollen, brauchen wir dazu offensichtlich eine
Verallgemeinerung der Betragsfunktion, mit der wir in (*) den Abstand von x zu a messen konnten.
In der Tat haben wir so etwas in Definition 21.13 bereits kennengelernt: die Norm bzw. Léinge eines
Vektors in einem Vektorraum mit Skalarprodukt. Wir wollen daher zuerst diesen Normbegriff genau-
er untersuchen. Wie schon in Bemerkung 21.21 erwiéhnt ist in der Analysis das Konzept einer Norm
auf einem K-Vektorraum sehr allgemein und erlaubt nicht nur die Normen von Skalarprodukten, die
wir in Abschnitt 21.B kennengelernt haben. Vielmehr ist eine allgemeine Norm definiert als eine
Abbildung, die jedem Vektor eine reelle Zahl zuordnet und die erwarteten Eigenschaften erfiillt —
niamlich genau diejenigen, die wir in Satz 21.20 fiir Normen zu Skalarprodukten bereits bewiesen
haben.

Definition 23.1 (Normen und normierte Rdume). Es sei V ein K-Vektorraum. Wir nennen eine
Abbildung || - ||: V — Rx>g, x — ||x|| eine Norm auf V, wenn fiir alle x,y € V und 4 € K gilt:

@) [|Ax]| = |A[-[|x];
(b) ||x|| > O fiir alle x # 0;
© [x+y| < x|+ |yl (Dreiecksungleichung).

Ein K-Vektorraum V zusammen mit einer Norm || - || wird als normierter Raum bezeichnet. Wir
schreiben ihn als (V|| - ||), oder auch einfach nur als V, wenn die betrachtete Norm aus dem Zusam-
menhang klar ist.

Bemerkung 23.2.

(a) In jedem normierten Raum ist die Norm des Nullvektors nach Definition 23.1 (a) gleich
I0v]| = ||0k - Oy || = Ok - ||Ov|| = 0. Eine Norm nimmt also nur reelle nicht-negative Werte
an, und ist genau dann gleich 0, wenn der Vektor der Nullvektor ist.

(b) Genau wie bei Skalarprodukten in Bemerkung 21.14 (b) kann man offensichtlich auch eine
Norm auf einem K-Vektorraum V immer auf einen Unterraum U <V einschrinken, um auch
U zu einem normierten Raum zu machen.
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Beispiel 23.3.

(a)

(b)

(©)

Jeder K-Vektorraum V mit Skalarprodukt, also jeder euklidische oder unitdre Raum, ist mit
der Vorschrift ||x|| := 4/(x,x) ein normierter Raum — dies haben wir in Satz 21.20 bewie-
sen. Wenn wir nichts anderes angeben, werden wir in Zukunft jeden Vektorraum mit Ska-
larprodukt (und nach Bemerkung 23.2 (b) auch jeden Unterraum davon) auf diese Art als
normierten Raum ansehen.

Um Normen anschaulich darzustellen, zeichnet man in der Regel die sogenannte Einheitsku-
gel {x € V : ||x|| < 1}, also die Menge aller Vektoren, die beziiglich dieser Norm die Linge
hochstens 1 haben. Wir haben bei der Hauptachsentransformation in Konstruktion 22.37 ge-
sehen, dass diese Einheitskugel im Fall einer von einem Skalarprodukt bestimmten Norm
ein gedrehtes Ellipsoid mit Mittelpunkt im Ursprung ist. Im Fall eines reellen zweidimen-
sionalen Vektorraums ist dies im Bild unten dargestellt.

Der wichtigste Fall ist dabei natiirlich V = K" mit dem Standardskalarprodukt. Wenn wir
nichts Gegenteiliges angeben, wollen wir K" in Zukunft immer mit der hieraus resultieren-

den Norm
X[ = A/ P [2 4

als normierten Raum betrachten. Man nennt dies die euklidische Norm. Im Fall K = R ist
die Einheitskugel {x € R" : x% + - +x3 < 1} dann natiirlich die ,,gewohnliche” Kugel.

Fiir V = K" ist die Maximumsnorm definiert als
||| := max(|xq],...,|xn])-

In der Tat ist dies eine Norm: Die Eigenschaften (a) und (b) aus Definition 23.1 sind offen-
sichtlich, und die Dreiecksungleichung folgt sofort aus der in K, denn es ist

eyl = i Ayl < il [yl < el 41y

wobeii € {1,...,n} einen Index bezeichnet, fiir den in ||x+y|| = max(|x; +y1], ..., %y +yn|)
das Maximum angenommen wird. Die zugehorige Einheitskugel

{x e K" :max(|xi|,...,|x]) <1} ={x e K": |x;| < lfirallei=1,...,n}

ist in diesem Fall ein achsenparalleler Wiirfel; er ist wieder im Bild unten eingezeichnet.
Da wir hier kein Ellipsoid erhalten, sehen wir also auch schon, dass die Maximumsnorm
keine Norm sein kann, die von einem Skalarprodukt kommt (siehe auch Aufgabe 23.5). Das
Konzept eines normierten Raumes lédsst also allgemeinere Normen zu als die, die wir in
Abschnitt 21.B kennengelernt haben.

Fiir V = K" definieren wir die Summennorm durch
[l == Per| 4+ -+ [xa].

Auch hier sind die Bedingungen (a) und (b) in Definition 23.1 wieder offensichtlich, und die
Dreiecksungleichung ergibt sich aus

Hx'i_y” = |x1 +y1|+"'+‘xn+)’n‘ < |x1|+‘yl|+"'+‘xn|+|)’n| = HXH"'HYH

Die zugehorige Einheitskugel ist fiir n = 2 wieder im folgenden Bild dargestellt. Man kann
sich ihre Form leicht dadurch iiberlegen, dass sie wegen der Betrdge in der Definition der
Norm symmetrisch zu beiden Achsen sein muss und im positiven Quadranten R2>0 durch die
Ungleichung x; +x; < 1 gegeben ist. -
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(d) Es sei wieder V = K". Fiir eine reelle Zahl p > 1 kann man zeigen, dass durch

xllp == &/ IxrlP + -+ [xal?
eine Norm definiert wird, die sogenannte p-Norm. In der Tat sind die ersten beiden Ei-
genschaften von Definition 23.1 auch hier wieder klar, die Dreiecksungleichung ist jedoch
etwas aufwendiger als fiir unsere bisher betrachteten Normen nachzurechnen (und benotigt
die Bedingung p > 1). Da wir diese allgemeinen p-Normen in unserer Vorlesung nicht wei-
ter bendtigen, verzichten wir hier auf den Beweis. Thr konnt ihn z. B. in [Fol, Kapitel 16,
Satz 8] finden.

Wir erwihnen die p-Norm hier nur deshalb, weil sie eine Verallgemeinerung unserer oben
betrachteten Normen ist und sich daraus auch deren iibliche Bezeichnungsweise ableitet: Of-
fensichtlich ist die 1-Norm gerade die Summennorm und die 2-Norm die euklidische Norm.
Fiir p — oo hingegen ergibt sich die Maximumsnorm: Ist namlich x € K"\ {0} ein Vektor, fiir
den ohne Einschrinkung das Maximum in ||x|| = max(|x1],...,|x,|) fiir |x;| angenommen
wird, so ist

-
\_

—

14 | |7
1' — . 1 p 1 |x2| n = =
pE)I}QH‘x”P ‘.X1| pgll) \/ + |xl|p + + ‘X1|p |)C1| ||.X||,

da der Ausdruck unter der Wurzel zwischen 1 und » liegt und der Grenzwert fiir p — oo somit
durch ¢/1 — 1 und {/n — 1 eingeschachtelt wird. Fiir x € K" bezeichnet man daher ...

e die Summennorm mit ||x||; := |x;| 4 + %],

e die euklidische Norm mit ||x||2 := +/|x1 |2+ -+ + |xa|%,

o die Maximumsnorm mit ||x||e 1= max(|xi|,...,[xn]).

(e) Alle oben betrachteten Normen gibt es analog auch auf dem Vektorraum C%([a,b]) aller
stetigen reellen Funktionen auf einem abgeschlossenen Intervall [a,b]: So ist z. B. fiir eine
solche Funktion f

b b
||f||11:/a |f (x)] dx, ||fH21:\//a fx)?dx, ||flleo := max{|f(x)| : x € [a, D]}

(das Maximum existiert nach Satz 8.25, und die Normeigenschaften beweist man analog zu
den Fillen oben bzw. zu Konstruktion 21.16). Die 2-Norm || f||» ist dabei genau die Norm
zum Standardskalarprodukt aus Konstruktion 21.16, und die Maximumsnorm ||f|| haben
wir in Aufgabe 8.41 (a) bereits in einem etwas allgemeineren Fall als Supremumsnorm ken-
nengelernt.

(f) Auf den Matrizenrdumen K"*" heifit die zum Standardskalarprodukt aus Beispiel 21.15 (c)
gehorige Norm

1Al = \/Spur (A"A) =

m n
Z Z |ai,j|2 firA = (ai,j)i,j c Kmxn
i=1 j=1
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die Frobenius-Norm. Wir werden K™*" im Folgenden standardméBig mit dieser Norm ver-
sehen, sofern wir nichts Gegenteiliges angeben. Beachte aber, dass diese Norm nicht mit
lA|l2 bezeichnet wird, weil dieser Name bereits fiir eine andere Matrixnorm reserviert ist,
die wir auch spéter in Definition 24.38 und Beispiel 24.40 (a) noch kennenlernen werden.

Aufgabe 23.4. Welche der folgenden Bilder konnen Einheitskugeln einer Norm auf R? sein?

() (b) (©)

AR A
Y

Aufgabe 23.5. Man zeige:
(a) Injedem Vektorraum V mit Skalarprodukt gilt die Parallelogrammgleichung

ey flx = yl1? = 2(|lxl> + [lyl1?) - fir alle x,y € V.

(b) Die Maximumsnorm auf K” fiir n > 2 erfiillt die Parallelogrammgleichung nicht, und kann
damit nach (a) also nicht die Norm zu einem Skalarprodukt sein.

Bemerkung 23.6 (Vergleich von Normen). In Beispiel 23.3 haben wir viele verschiedene Normen
gesehen. Wie hiingen diese miteinander zusammen? Oft ist es so, dass man Normen gegeneinander
abschitzen kann: So gelten z.B. fiir die Maximumsnorm und die euklidische Norm auf K" die
Ungleichungen

oo = max(bea ., i) = bl < /b 2 a2 = [l
und [xlla = /b bl < (Pl = VA = Vi e,

wobei i € {1,...,n} ein Index mit maximalem Wert von |x;| ist. Es gilt also fiir alle x € K"

[Ixlleo < [lxll2 < v/ [|x]leo,

d. h. wir haben die Folgerungen:

(a) Wenn |jx||2 < 1 gilt, so ist |Jx]| < 1. [lx[l2 < v/2
(b) Wenn ||x||e < 1 gilt, soist ||x|]2 < /7. 1

Dies kann man sich auch gut anschaulich vorstellen: Betrachten wir

zu einer Norm || - || Kugeln {x € K" : ||x|| < r} mit einem anderen

Radius als 1, so sind diese wegen der Linearititseigenschaft aus De- 1

finition 23.1 (a) einfach nur skalierte Versionen der Einheitskugel,
und die Ergebnisse (a) und (b) oben besagen genau, dass solche Ku-
geln wie im Bild rechts ineinander liegen: In jedem Kreis liegt noch
ein Quadrat, und in jedem Quadrat liegt noch ein Kreis (mit geeig-
neten Radien).

¥l <1 Xl < 1

Wir werden spiter (z. B. in Lemma 23.17 und Bemerkung 23.18) noch sehen, dass dies dazu fiihrt,
dass sich die beiden betrachteten Normen in vielerlei Hinsicht gleich verhalten. Man definiert daher:

Definition 23.7 (Aquivalente Normen). Zwei Normen || - || und || - ||" auf einem K-Vektorraum V
heiflen dquivalent, wenn es Konstanten a,b € R+ gibt mit

allx]| < |lx| <b|x| firallexeV.

Man priift leicht nach, dass dies in der Tat eine Aquivalenzrelation auf der Menge aller Normen auf
V ist.
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Beispiel 23.8.

(a) Ist ||| eine beliebige Norm auf einem K-Vektorraum V, so kénnen wir daraus fiir ein gege-
benes A € R~ eine skalierte Variante | - ||" mit

x| :==A-|jx|| firallexeV
konstruieren, die ebenfalls eine Norm ist. Diese neue Norm || - ||” ist natiirlich zur urspriing-
lichen dquivalent (wobei in Definition 23.7 mit a := b := A sogar die Gleichheit gilt).

(b) Wie wir in Bemerkung 23.6 gesehen haben, ist die Maximumsnorm auf K” zur euklidischen
Norm &dquivalent.

In der Tat werden wir in Satz 24.37 noch sehen, dass sogar alle Normen auf K" zueinander
dquivalent sind (was sehr praktisch ist, weil wir ab dann fiir die meisten Anwendungen die
uns jeweils am einfachsten erscheinende Norm benutzen konnen, ohne etwas am Ergebnis zu
dndern). Fiir den Moment bedeutet dies aber erst einmal nur, dass wir fiir ein Beispiel nicht-
dquivalenter Normen zwangsldufig einen unendlich-dimensionalen Vektorraum betrachten
miissen:

(¢) Im Vektorraum V = C°([0,1]) der stetigen Funktionen auf [0, 1] mit den beiden Normen

1
||f|\1:/0 [f(x)[dxund | f]leo = max{[f(x)]:x € [0,1]}

aus Beispiel 23.3 (e) betrachten wir fiir alle € € (0,1) die Funktion
fe wie im Bild rechts. Dann gilt
€ Je(x)
el =5 wnd el =1,
und damit || fe || = 2|| fe 1. Fiir € — 0 sehen wir also, dass es kein
b € R+ geben kann mit || f¢ || < &]| fe]l1, d. h. dass die beiden Nor- X
men || - ||; und || - || auf C°([0, 1]) nicht dquivalent sind. € 1

Bevor wir zur angekiindigten Anwendung des Lingen- bzw. Abstandsbegriffs in der Analysis kom-
men, wollen wir das Konzept eines normierten Raumes aber erst noch etwas verallgemeinern. Eine
recht grofie Einschrinkung ist es in der Praxis ndmlich, dass normierte Rdéume nach Definition stets
Vektorrdume (iiber R oder C) sein miissen. Um nur Abstinde zwischen Punkten sinnvoll definieren
zu konnen, benotigt man aber keine Vektorraumstruktur. Diese Idee fiithrt zum folgenden Begriff ei-
nes metrischen Raumes, der lediglich den Abstand zweier Punkte, aber nicht die Lange eines Vektors
definiert.

Definition 23.9 (Metriken und metrische Riume). Es sei M eine Menge. Man nennt eine Abbildung
d: M xM — R, (x,y) — d(x,y) (die man sich als Abstandsfunktion zwischen zwei Punkten vor-
stellen sollte; der hierfiir iibliche Buchstabe d steht dabei fiir Distanz) eine Metrik auf M, wenn fiir
alle x,y,z € M gilt:

(@ d(x,y) = d(y,x) (Symmetrie);

(b) d(x,y) =0 genau dann, wenn x = y;

(¢) d(x,z) <d(x,y)+d(y,z) (Dreiecksungleichung).

Eine Menge M zusammen mit einer Metrik d heifit metrischer Raum und wird manchmal auch als
(M,d) geschrieben.

Lemma 23.10. Jeder normierte Raum (V|| - ||) ist mit der Abstandsfunktion d(x,y) := ||x — y|| ein
metrischer Raum.

Wenn wir nichts anderes spezifizieren, werden wir in Zukunft daher jeden normierten Raum auf diese
Art als metrischen Raum auffassen.

Beweis. Wir tiberpriifen die Eigenschaften aus Definition 23.9: Fiir alle x,y,z € V folgt nach Defini-
tion 23.1
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o aus Teil (2): d(x,y) = |x—y[ = [(=D =)l = [ = 1] - [ly —xl| = d(y.x);
e aus Teil (b): d(x,y) = |[x—y|| = 0 genau dann, wenn x —y = 0, also x = y;

e aus Teil (¢): d(x,2) =[x —z|| =[x —y+y—z|| < [x =yl + |y —zl| = d(x,y) +d(y,z). O

Bemerkung 23.11. Analog zu Skalarprodukten und Normen (siche Bemerkung 21.14 (b) und Be-
merkung 23.2 (b)) lassen sich auch Metriken auf beliebige Teilmengen einschrinken. Wir werden
daher jede Teilmenge eines metrischen Raumes in Zukunft standardméBig auf diese Art wieder als
metrischen Raum betrachten. Fassen wir alle unsere Konventionen zusammen, so werden wir also
insbesondere jede Teilmenge von K" als metrischen Raum mit der euklidischen Metrik

d(x.y) = =yl = /b =3P+ b= 3
auffassen, sofern wir nichts Gegenteiliges angeben.

Beispiel 23.12.
(a) Wir betrachten die ,,Landkarte” mit 5 Stiddten A,B,C,D,E und

VerbindungsstraBen wie im Bild rechts, wobei die (positiven) Ag 1 p 3
Zahlen an den Strafen deren Lingen angeben sollen — man nennt C
ein solches Diagramm auch einen (zusammenhéngenden) gewich- ,
teten Graphen. Fiir die Menge M = {A,B,C,D,E} und x,y € M sei
nun d(x,y) die Ldnge eines kiirzesten Weges von x nach y. So ist D
z.B. d(D,E) = 4, da von D nach E der Weg iiber B der kiirzeste E
ist und eine Gesamtlinge von 4 hat.

Man sieht leicht ein, dass diese Abstandsfunktion d dann eine Metrik auf M definiert: Die
Eigenschaften (a) und (b) aus Definition 23.9 sind offensichtlich, und (c) folgt aus der ein-
fachen Tatsache, dass d(x,y) +d(y,z) ja die Linge eines kiirzesten Weges von x iiber y nach
z ist und diese natiirlich mindestens gleich der Linge d(x,z) eines kiirzesten Weges von x
nach z ist, bei dem man nicht notwendig iiber y laufen muss.

Metrische Ridume dieser Art spielen z. B. in der Optimierung eine gro3e Rolle. In unserer
Vorlesung werden sie nicht weiter vorkommen, sondern sollen hier nur als Beispiel dafiir
dienen, dass metrische Rédume sehr allgemeine Objekte sind und auch ,,ganz anders ausse-
hen‘ konnen als normierte Vektorraume.

(b) Auf jeder Menge M ist
0 firx=y,
d(x,y) := iy
1 firx#y

offensichtlich eine Metrik, die sogenannte diskrete Metrik.

23.B Folgenkonvergenz in metrischen Riumen

Wie bereits angekiindigt kdnnen wir nun analog zu Definition 5.1 Grenzwerte von Folgen in me-
trischen Rdumen (und damit auch in normierten Raumen bzw. Vektorrdumen mit Skalarprodukt)
definieren.

Definition 23.13 (Kugeln, Umgebungen und Grenzwerte von Folgen). Es seien M ein metrischer
Raum und a € M.

(a) Zur € Rxg heilit
U(a):={xeM:d(x,a) <r} die offene Kugel, und
Ky(a) :={x€M:d(x,a) <r} die abgeschlossene Kugel

um a mit Radius r.
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(b) Eine Teilmenge U C M heilit Umgebung von a, wenn es wie Ue(a)
im Bild rechts ein € > 0 gibt mit Ug(a) C U (insbesondere ist
dann natiirlich auch a € U). Damit ist auch Ug(a) selbst eine U
Umgebung von a; man nennt sie die £-Umgebung von a.

(c) Es sei (ap)nen eine Folge in M. Dann heifit a Grenzwert von (ay),, wenn

VeeRso Ing e NVn>ng: dlay,a) <€
(wobei wir die Bedingung d(ay,,a) < € natiirlich auch als a, € Ug(a) schreiben kénnen).
Wie im Fall von Folgen in K werden wir gleich in Lemma 23.15 sehen, dass ein solcher
Grenzwert a eindeutig ist, sofern er existiert. Wir konnen ihn dann also den Grenzwert der
Folge nennen und schreiben wie gewohnt lim a, = a oder ,,a, — a fiir n — . Existiert
n—yo0
dieser Grenzwert, so heifit die Folge (a,), konvergent, andernfalls divergent.
Bemerkung 23.14.

(a) Es gibt mehrere dquivalente Umformulierungen der obigen Grenzwertdefinition. Am niitz-

lichsten ist vermutlich das Kriterium
lima, =a < limd(a,,a)=0,
n—yoo Nn—yo0
das wegen der Positivitdt der Metrik unmittelbar durch Vergleich mit Definition 5.1 (b)
folgt und den Grenzwert lim a, im metrischen Raum M damit direkt auf einen Grenz-
n—yoo
wert lim d(a,,a) in R zuriickfiihrt. Eine andere idquivalente Formulierung von Definition
n—yoo
23.13 (c) mit Hilfe des Umgebungsbegriffs und der Notation ,.fast alle* fiir ,,alle bis auf
endlich viele* ist offensichtlich genau wie in Bemerkung 5.2
lima, =a < Injeder e-Umgebung von a liegen fast alle Folgenglieder a,,.
n—soo
Dies kann man schlielich noch umformulieren als
lim a, =a < Injeder Umgebung von a liegen fast alle Folgenglieder a,,.
n—soo

Liegen nédmlich in jeder Umgebung fast alle a,,, so natiirlich insbesondere auch in jeder &-
Umgebung. Enthélt umgekehrt jede e-Umgebung von a fast alle a,, so auch jede Umgebung
von a, da eine solche ja nach Definition noch eine e-Umgebung von a enthiilt.

(b) Wendet man Definition 23.13 auf einen normierten Raum V an, so ist nach Lemma 23.10

also d(x,y) = ||x — y||. In diesem Fall ist demnach z.B. U,(a) = {x € V : |x—al| < r}, und
eine Folge (a,), in V konvergiert genau dann gegen a € V, wenn lim ||a, —al| = 0.
n—soo

Lemma 23.15 (Eindeutigkeit des Grenzwerts). In einem metrischen Raum hat jede Folge hochstens
einen Grenzwert.

Beweis. Es sei (ay), eine Folge in einem metrischen Raum M, die gegen zwei Punkte a,b € M
konvergiert. Dann gilt nach der Dreiecksungleichung d(a,b) < d(a,ay,) + d(an,b) fiir alle n € N,
und daher folgt durch Grenziibergang n — oo

23.14 (a)

d(a,b) < lim d(a,a,)+ lim d(ay,,b) 0+0=0.
n—yoo n—yoo
Also ist d(a,b) = 0, und damit nach Definition 23.9 (b) wie behauptet a = b. O

- 3=

Beispiel 23.16. Wir betrachten die Folge (a,)nen., in R? mit a, = ( > fiir alle n.
n?

(a)

Versehen wir R? standardmiBig mit der euklidischen Norm, so konvergiert die Folge nach
Bemerkung 23.14 (b) gegen 0 € R?, denn es ist

; . 1 1
lim ||a, — 0|2 = lim \/i: 0.
n—yo0 N—soo0 n n



23. Topologische Grundbegriffe 319

(b) Auch mit der Maximumsnorm aus Beispiel 23.3 (b) konvergiert die Folge gegen 0, denn

lim ||a, —0|e = lim max (1, 12> = lim Ly 0.
n—yo0 n—o0 n n n—oo N
(c) In der diskreten Metrik aus Beispiel 23.12 (b) konvergiert die Folge jedoch nicht gegen 0:
Hier ist
lim d(a,,0) = lim 1 =1 #0,
n—o0 n—o0
da ja a, # O fiir alle n gilt. In der Tat konvergiert eine Folge in dieser Metrik genau dann
gegen a, wenn fast alle Folgenglieder gleich a sind. Da dies fiir die in diesem Beispiel be-
trachtete Folge fiir kein a der Fall ist, ist diese Folge in der diskreten Metrik also divergent.

Die Konvergenz einer Folge in einem metrischen Raum héngt also im Allgemeinen von der gewihl-
ten Metrik ab. Wir wollen nun aber zeigen, dass dies bei dquivalenten Normen nicht der Fall ist.
So hatten wir ja z. B. in Beispiel 23.8 (b) gesehen, dass die Maximumsnorm auf R? zur euklidi-
schen Norm #quivalent ist, und dementsprechend haben wir oben in den Beispielen 23.16 (a) und
(b) dasselbe Ergebnis erhalten. Diese Tatsache beruht auf der folgenden wichtigen Aussage.

Lemma 23.17. Es seien || - || und || - ||" zwei dquivalente Normen auf einem K-Vektorraum V. Dann
gilt fiirallea €V und U C V:

U ist eine Umgebung von a beziiglich || - || < U ist eine Umgebung von a beziiglich || - ||,
d. h. ,,die beiden Normen erzeugen den gleichen Umgebungsbegriff*.

Beweis. Nach Voraussetzung gibt es eine Konstante b € R~ mit ||x||" < b||x|| fiir alle x € V. Im
Folgenden bezeichnen wir die e-Umgebungen eines Punktes a € V beziiglich || - || und || - ||" mit
Ug(a) bzw. UL(a).

Es sei nun U eine Umgebung von a beziiglich || - ||', d. h. es gilt U} (a) C U fiir ein € > 0. Dann ist aber
auch Ug /,(a) C U, denn fiir alle x € U 5 (a) gilt [x—al|' < b|lx—al| <b-§ =€, alsox € Ui(a) CU.
Damit ist U auch eine Umgebung von a beziiglich || - ||.

Die andere Richtung ergibt sich analog durch Vertauschen der Rollen der beiden Normen. U

Bemerkung 23.18 (Topologie). Wir hatten in Abschnitt 23.A bereits erwéhnt, dass sich dquivalente
Normen in vielerlei Hinsicht gleich verhalten. In Lemma 23.17 haben wir nun ein erstes und sehr
wichtiges Beispiel dafiir gesehen: Der von ihnen erzeugte Umgebungsbegriff ist der gleiche.

Damit stimmen bei dquivalenten Normen natiirlich auch alle Eigenschaften von Objekten iiberein,
die sich allein mit Hilfe des Umgebungsbegriffs definieren lassen. Derartige Eigenschaften, von
denen wir im Folgenden noch viele kennenlernen werden, bezeichnet man als topologische Eigen-
schaften. Ein erstes Beispiel dafiir ist die Folgenkonvergenz, denn nach Bemerkung 23.14 (a) kon-
vergiert eine Folge ja genau dann gegen einen Punkt, wenn in jeder Umgebung dieses Punktes fast
alle Folgenglieder liegen. So konnen wir nach Beispiel 23.8 (b) also z. B. fiir Fragen zur Folgenkon-
vergenz in K" statt der euklidischen Norm auch die oft einfachere Maximumsnorm verwenden, da
diese beiden Normen dort dquivalent sind.

In der Tat gibt es eine weitere Verallgemeinerung metrischer Riume: die sogenannten topologischen
Raume, die ihr in der Vorlesung ,Einfiihrung in die Topologie* des zweiten Studienjahres kennenler-
nen konnt. In ihnen gibt es keine Metrik mehr, aber noch einen Umgebungsbegriff. Demnach kann
man dort dann zwar keine Abstinde mehr messen, aber dennoch alle topologischen Eigenschaften
wie z. B. die Folgenkonvergenz definieren und untersuchen.

Im konkreten Fall des normierten Raumes K" ist die Untersuchung der Konvergenz von Folgen
allerdings noch etwas einfacher: Wie man vielleicht schon vermutet, wollen wir jetzt kurz zeigen,
dass man diese Konvergenz dort einfach koordinatenweise iiberpriifen kann.

Lemma 23.19. Eine Folge (a(k))keN in K" konvergiert (in der Standardnorm) genau dann gegen
(k)

a € K", wenn jede Koordinatenfolge (a;

S kenmiti=1,...,nin K gegen die i-te Koordinate a; von
a konvergiert.
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Beweis. Es gilt

lim a®)
k—yo0

=a & gim la® —all, =0 (Bemerkung 23.14 (b))
—yo0

< lim \/|a(]k) —a1|2+...+‘a£lk)_an|2 =0
k—>oo

Y im0 — g =0 firallei=1,....n
k—yoo

& lima"

=gq; firallei=1,...,n,
k—yo0

wobei in (x) die Richtung ,,<=* die tiblichen Grenzwertsitze in R sind, und die Richtung ,,=* aus

der Ungleichung |a£k> —a;| < \/\a(lk) —ai)?+--+ |a£,k> — ap|? folgt. O

Als Nichstes wollen wir die in K aus Lemma 5.8 bekannte Aussage, dass konvergente Folgen be-
schrinkt sind, auf metrische Rdume iibertragen. Dazu miissen wir aber natiirlich den Begriff der
Beschrinktheit einer Menge oder Folge in einem metrischen Raum erst einmal definieren.

Definition 23.20 (Beschrinkte Mengen und Folgen). Es sei M ein nicht-leerer metrischer Raum.

(a) Eine Teilmenge X C M heifit beschrinkt, wenn sie in einer abgeschlossenen Kugel enthalten
ist, also wenn es ein a € M und r € R gibt mit X C K,(a), d. h. mit d(x,a) < r fiir alle
xeX.

(b) Eine Folge in M heifit beschrinkt, wenn die Menge ihrer Folgenglieder in M beschrinkt ist.

Konventionsgemifl werden wir in M = 0 die einzig mogliche Teilmenge @ auch als beschrinkt defi-
nieren.

Bemerkung 23.21.

(a) Ist X C M beschrinkt, so gilt die Bedingung aus Definition 23.20 (a) sogar fiir alle a € M:
Ist ndmlich d(x,a) < r fiir alle x € X, so gilt fiir einen beliebigen anderen Punkt ¢’ € M auch

d(x,d') <d(x,a)+d(a,d) <r+d(a,d) =R fiir alle x € X,
wobei wir R :=r+d(a,d’) gesetzt haben.

Insbesondere konnen wir in einem normierten Raum V also stets a = 0 wihlen, und erhalten
so die Aussage, dass eine Teilmenge X C V genau dann beschrinkt ist, wenn es ein r € R
gibt mit ||x|| < r fiir alle x € X. Fiir den Fall V = K mit der gewohnlichen Metrik stimmt dies
dann offensichtlich mit unserer alten Definition 4.23 (b) der Beschrinktheit iiberein.

(b) Wie wir in Aufgabe 23.25 sehen werden, ist die Beschrinktheit einer Menge in einem me-
trischen Raum keine topologische Eigenschaft im Sinne von 23.18. Dennoch stimmt sie fiir
zwei dquivalente Normen | - || und || - || auf einem Vektorraum V iiberein: Ist ||x||" < b ||x||
fiir eine Konstante » € R~ und alle x € V, und ist X C V beschriinkt beziiglich || - ||, d. h.
gibt es ein r € R mit ||x|| < r fiir alle x € X, so ist dann auch ||x||" < b||x|| < br fiir alle
x € X, d.h. X ist auch beschrinkt beziiglich || - ||".

Lemma 23.22. In einem metrischen Raum ist jede konvergente Folge beschrdnkt.

Beweis. Es sei (ay,), eine konvergente Folge mit Grenzwert a. Nach Bemerkung 23.14 (a) gilt dann
d(ay,a) — 0 fiir n — co. Nach Lemma 5.8 ist die konvergente reelle Folge (d(ay,,a)), also be-
schrinkt, d. h. es gibtein r € Ry mit d(a,,a) < rfir alle n € N. Damit ist auch (a,), beschrinkt. [

Als einfache Folgerung konnen wir nun die aus Satz 5.13 bekannten Grenzwertsitze verallgemei-
nern — also die Aussage, dass Grenzwerte mit den iiblichen Rechenoperationen vertauschen. Da es
nach Definition aber in metrischen Rdumen tiberhaupt keine Rechenoperationen und in normierten
Vektorrdumen nur Vektoraddition und Skalarmultiplikation gibt, miissen wir uns dabei natiirlich auf
diese Fille beschrinken.
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Satz 23.23 (Grenzwertséitze in normierten Riumen). Es seien (ay), und (b,), zwei konvergente
Folgen in einem normierten K-Vektorraum V mit a, — a und b, — b. Ferner sei (A,), eine konver-
gente Folge in K mit A, — A. Dann gilt:

(@) a,+b, —~a+bunda,—b, —a—D>b;
(b) Aya, — Aa.
Beweis.

(a) Der Beweis ist (bis auf das Ersetzen der Betragsstriche durch die Norm) wortlich derselbe
wie in Satz 5.13.

(b) Auch hier ist der Beweis analog zum eindimensionalen Fall: Es gilt
[Anan — Aa|| = || Anan — Aay, + Aa, — Aal||

< || (An = A)an|| + || A (an —a)|| (Dreiecksungleichung)
= Ay — Al |lan|| + 2] |an —all - (Definition 23.1 (a))
—— —_———

(%) ()
Dabei sind die mit (x) bezeichneten Terme nach Voraussetzung (reelle) Nullfolgen, und
wegen der Konvergenz von (a,), sind die Normen ||a,|| nach Lemma 23.22 beschriinkt.
Wie im Beweis von Satz 5.13 (b) ergibt sich nun also wieder ||A,a, — Aa|| — 0, und damit
Anay — Aa. O

Aufgabe 23.24. Es sei V = Abb(N,R) der Vektorraum aller reellen Zahlenfolgen. Man zeige:

(a) Die Abbildung d: R xR — R, (x,y) — min(|x — y|, 1) ist eine Metrik auf R.
(b) Die Abbildung

e:VxV =R, ((a)k (br)k) — i %
k=0

(mit d wie in (a)) ist eine Metrik auf V.

(c) Eine Folge reeller Folgen (a,(:l) )k € V mit n € N konvergiert fiir n — oo beziiglich der Metrik

e wie in (b) genau dann gegen (ai)x € V, wenn sie ,,punktweise konvergiert”, also wenn
lim a") = q fiir alle k € N gilt.

n—oo

Aufgabe 23.25. Fiir x,y € R? sind

x|[2 + o fiirx ,
diny) = {n l2+Ibvl #y

} und  da(x,y) :=min(|x—yl2,1)
0 firx=y

Metriken auf R? (das braucht ihr nicht zu zeigen).

(a) Skizziere die qualitativ verschiedenen Fille, wie abgeschlossene Kugeln beziiglich dieser
beiden Metriken aussehen konnen.

(b) Man zeige: Eine Menge A C R? ist beziiglich d; genau dann beschrinkt, wenn A beziiglich
der euklidischen Metrik beschrénkt ist. Fiir d» gilt dies jedoch nicht.

(c) Man zeige: Eine Menge A C R? ist beziiglich d, genau dann eine Umgebung eines Punktes
a € R?, wenn A beziiglich der euklidischen Metrik eine Umgebung von a ist. Fiir d; gilt dies
jedoch nicht.

Insbesondere zeigt d also, dass Beschrinktheit kein topologischer Begriff ist: Diese Metrik liefert
die gleichen Umgebungen wie die euklidische Metrik, aber nicht die gleichen beschriankten Mengen.

Zum Abschluss dieses Abschnitts wollen wir noch kurz das Cauchy-Kriterium aus Satz 6.25 verall-
gemeinern, das immer dann fiir den Nachweis der Konvergenz einer Folge benétigt wird, wenn ihr
Grenzwert vorher noch nicht bekannt ist. Die Definition einer Cauchyfolge kann dabei unmittelbar
aus Definition 6.22 iibertragen werden.
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Definition 23.26 (Cauchyfolgen). Eine Folge (a,), in einem metrischen Raum M heifit Cauchy-
folge, wenn
Ve>03ny e NVm,n>no: d(am,a,) < €.

Bemerkung 23.27.

(a) Genau wie die Beschrinktheit von Mengen bzw. Folgen ist auch das Konzept von Cauchy-
folgen keine topologische Eigenschaft. Mit dem gleichen Argument wie in Bemerkung
23.21 (b) stimmt es fiir dquivalente Normen aber dennoch iiberein.

(b) Wie in Bemerkung 6.23 folgt auch in beliebigen metrischen Rdumen sofort aus der Drei-
ecksungleichung, dass jede konvergente Folge eine Cauchyfolge ist. Im Gegensatz zu Satz
6.25 gilt die Umkehrung in allgemeinen metrischen Rdumen aber nicht: In M = R~ (mit der
euklidischen Metrik) ist die Folge (%)n eine Cauchyfolge, da sie in R gegen O konvergiert;
ihr Grenzwert O liegt jedoch nicht in M, so dass sie in M divergiert.
Da es in der Regel sehr wichtig ist zu wissen, ob Cauchyfolgen stets konvergieren und man somit
die Konvergenz von Folgen mit dem Cauchy-Kriterium iiberpriifen kann, haben derartige metrische
Riume einen besonderen Namen.

Definition 23.28 (Vollstindige Rdume).

(a) Ein metrischer Raum heif3t vollstiindig, wenn in ihm jede Cauchyfolge konvergiert (und die
Cauchyfolgen nach Bemerkung 23.27 (b) damit genau die konvergenten Folgen sind).

(b) Ein vollstidndiger normierter Raum heif3t Banachraum.
Satz 23.29. K" ist (beziiglich der euklidischen Norm) ein Banachraum.

Beweis. Nach Bemerkung 23.18 und 23.27 (a) diirfen wir auf K” statt der euklidischen Norm die
dazu dquivalente Maximumsnorm verwenden.

Es sei nun (@) eine Cauchyfolge in K”, d.h. zu jedem & > 0 gibt es ein kg € N, so dass
|a® —a)||., < &, und damit auch |a§k) —agl)| < efiralle k,/ > kpund i =1,...,n gilt. Also sind
die Koordinatenfolgen (a§k>)keN fiir alle i Cauchyfolgen in K und damit nach Satz 6.25 konvergent
gegen gewisse a; € K. Nach Lemma 23.19 konvergiert dann aber auch die urspriingliche Folge
(a(k))keN gegen den Vektor a mit Koordinaten ay, ..., a,. ]

Aufgabe 23.30. Zeige die folgenden Eigenschaften der Frobenius-Norm:

(a) Firalle A e K™ und B € K™ gilt ||AB|| < ||A]| - ||B||-
o Ak

A
(b) Fiir alle A € K™ existiert e* := ) a in K7,
k=0 "

(c) IstA € K™ mit ||A|| < 1, so ist E — A invertierbar, und es gilt ZA" =(E-A)"L
k=0
Aufgabe 23.31 (Beispiel fiir einen nicht-vollstindigen normierten Raum). Es sei V = C?([0, 1]) der
Vektorraum der stetigen reellen Funktionen auf [0, 1]. Man zeige:

(@ (V,] - |l) ist ein Banachraum.
(d) (V,]-||2) ist kein Banachraum.

23.C Offene und abgeschlossene Mengen

Im Rest dieses Kapitels wollen wir nun noch einige wichtige topologische Eigenschaften einfiihren
(die also nur vom Umgebungsbegriff in einem metrischen Raum abhingen). Die ersten von ihnen
sind die einer offenen bzw. abgeschlossenen Menge, die eine direkte Verallgemeinerung der offenen
und abgeschlossenen Intervalle bzw. Kugeln aus Notation 4.17 und Definition 23.13 (a) sind und
anschaulich ausdriicken, ob eine Menge ihre Randpunkte mit enthélt (siehe auch Bemerkung 23.41).



23. Topologische Grundbegriffe 323

Definition 23.32 (Offene und abgeschlossene Mengen). Es sei M ein metrischer Raum.

(a)

(b)

Eine Teilmenge U C M heifit offen, wenn sie eine Umgebung von jedem ihrer Punkte ist,
also wenn es zu jedem a € U ein € > 0 gibt mit Ug(a) C U.

Eine Teilmenge A C M heiBt abgeschlossen, wenn M\A offen ist, also wenn es zu jedem
a € M\A ein € > 0 gibt mit Ug(a) C M\A. Man bezeichnet die Menge M\A oft als das
Komplement von A in M — muss dabei aber aufpassen, dass dies natiirlich nicht mit der
Definition 17.8 eines Komplements von Unterrdumen iibereinstimmt.

Beispiel 23.33.

(a)

(b)

(©

(d)

In R (mit der gewohnlichen Metrik) sind offene Intervalle
(a,b) offen im Sinne von Definition 23.32: Um jeden Punkt

x eines solchen Intervalls finden wir eine &-Umgebung Ue(x) C (a,b)
(n@mlich fiir ein beliebiges € < min(x —a,b —x)), die ganz >

in (a,b) liegt. Ebenso sind die uneigentlichen Intervalle a: . 2
(—oo,b) und (a,0) offen — in der Literatur werden sie daher .

im Gegensatz zu unserer Konvention in Notation 4.17 (a) (a,b) ist offen
manchmal auch zu den offenen Intervallen gezihlt. Ver-

einigungen solcher Intervalle wie z.B. (0,1) U (2,0) sind Ue(a) ¢ [a,b)

aus dem gleichen Grund ebenfalls offen. Dagegen sind die p e

Intervalle [a,b), (a,b] und [a,b] aufgrund der enthaltenen :a 5)

Randpunkte nicht offen, da es hier um die Punkte x = a o
bzw. x = b, die innerhalb des Intervalls liegen, keine solche [a, D) ist nicht offen
€-Umgebung innerhalb des Intervalls mehr gibt.

Wiederum in R sind abgeschlossene Intervalle [a,b] abgeschlossen, da ihre Komplemente
R\[a,b] = (—o0,a) U (b,) nach (a) offen sind. Ebenso sind die uneigentlichen Intervalle
(—o0,b] und [a, o0) abgeschlossen, nicht aber die anderen Intervalltypen wie z. B. (a,b), (a,b]
oder (a,e). Wie bei den offenen Intervallen werden die uneigentlichen Intervalle (—co,b]
und [a, ) in manchen Biichern daher auch zu den abgeschlossenen Intervallen gezéhlt — fiir
die beschrinkten abgeschlossenen Intervalle [a,b] ist dann der Name ,.kompaktes Intervall
iiblich (siehe Beispiel 23.52).

Insbesondere sehen wir an diesem Beispiel schon, dass ,,abgeschlossen® nicht das Gegenteil
von ,,offen” ist: Das Intervall [a,b) ist z. B. weder offen noch abgeschlossen, da es einen
Randpunkt a enthélt und den anderen b nicht.

In jedem metrischen Raum M sind die leere Menge @ und der ganze Raum M trivialerweise
offen, und damit gleichzeitig auch abgeschlossen.

In jedem metrischen Raum sind die offenen Kugeln U,(a) aus Defi-
nition 23.13 (a) offen: Ist x € U,(a) beliebig, also d(x,a) < r, so ist

T
wie im Bild rechts U (x) C U,(a) mit € := r —d(x,a), denn fiir alle €
y € Ug(x) gilt nach der Dreiecksungleichung r a
d(y,a) <d(y,x)+d(x,a) < e+d(x,a) =r.
Also ist U,(a) offen. Analog sieht man, dass jede abgeschlossene U, (a)
Kugel K, (a) abgeschlossen ist: Ist x € M\K,(a), also d(x,a) > r, so
ist Ug (x) C M\K,(a) mit € :=d(x,a) — r > 0, denn fiir alle y € Ug(x) Yoo

gilt nun
d(y,a) > d(x,a) —d(x,y) > d(x,a) —e =r,

d.h. K,(a) ist abgeschlossen. Insbesondere sind also einpunktige
Mengen {a} = Ko(a) als abgeschlossene Kugeln vom Radius O stets
abgeschlossen. K. (a)
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(e) Dain jeder e-Umgebung eines beliebigen Punktes von R sowohl rationale als auch irrationa-
le Zahlen liegen, ist weder die Menge der rationalen noch die der irrationalen Zahlen offen
in R. Mit anderen Worten ist Q in R weder offen noch abgeschlossen.

Die wichtigsten Eigenschaften offener und abgeschlossener Mengen sind die folgenden:

Lemma 23.34 (Durchschnitte und Vereinigungen offener und abgeschlossener Mengen). In jedem
metrischen Raum gilt:

(a) Durchschnitte endlich vieler offener Mengen sind offen.
(b) Vereinigungen beliebig vieler (also auch unendlich vieler) offener Mengen sind offen.
(c) Vereinigungen endlich vieler abgeschlossener Mengen sind abgeschlossen.

(d) Durchschnitte beliebig vieler abgeschlossener Mengen sind abgeschlossen.
Beweis. Es sei M ein metrischer Raum.

(a) EsseienUy,...,U, C M offenunda € UyN---NU,. Dannista € U, firallei=1,...,n. Da
U; offen ist, gibt es zu jedem i ein & > 0 mit Uy, (a) C U;. Mit € := min(gy,...,&,) ist dann
also Ug(a) C Uy N---NU, eine Umgebung von a, die ganz in U; N ---NU, liegt. Also ist
UiN---NU, offen.

(b) Es seien / eine beliebige Indexmenge und U; C M fiir alle i € I offen. Ist nun a € |J;; Ui, so
ist also a € U fiir ein j € I. Da U; offen ist, gibt es ein € > 0 mit Ug(a) C U; C U,¢; U;. Also
ist Uy U; offen.

(c) Dies folgt nun durch Komplementbildung aus (a): sind Ay, ...,A,, C M abgeschlossen, also
M\Ay,...,M\A, offen, so ist nach (a) auch

(M\A))N---N(M\A,) =M\(A;U---UA,)
offen, und A; U- - - UA,, damit abgeschlossen.

(d) ergibt sich analog aus (b): Sind A; C M abgeschlossen fiir alle i in einer Indexmenge 1, also
M\A; offen, so ist nach (b) auch

Jan\a) =m\[4;

iel iel
offen, d. h. ;c;A; ist abgeschlossen. O

Bemerkung 23.35. Die Beschrinkung auf endlich viele Mengen in Lemma 23.34 (a) und (c) ist
wesentlich: Nach Beispiel 23.33 (d) ist in einem metrischen Raum M ja jede einpunktige Menge
{a} mit a € M abgeschlossen. Wiren nun beliebige Vereinigungen abgeschlossener Mengen wieder
abgeschlossen, so miisste dann ja jede Teilmenge A C M (die ja immer Vereinigung aller ihrer Punkte
ist) abgeschlossen sein — was im Allgemeinen offensichtlich falsch ist.

Aufgabe 23.36.

(a) Essei M = {0} U{L :n € N.o} C R, aufgefasst als metrischer Raum mit der euklidischen
Metrik. Gib alle offenen und alle abgeschlossenen Teilmengen dieses metrischen Raumes M
an.

(b) Essei X C M eine Teilmenge eines metrischen Raumes M. Nach Bemerkung 23.11 ist dann
auch X ein metrischer Raum mit der eingeschriankten Metrik.

Zeige, dass eine Menge U C X genau dann offen in diesem metrischen Raum X ist, wenn es
eine im metrischen Raum M offene Teilmenge V C M gibt mit U =V NX.

Zum besseren Verstiandnis offener und abgeschlossener Mengen wollen wir jetzt noch das Konzept
von Randpunkten exakt einfiihren, das wir oben ja schon zur Veranschaulichung dieser Begriffe ver-
wendet haben. Auch andere verwandte Notationen haben wir bereits in Spezialfillen kennengelernt,
wie z. B. dichte Teilmengen in Folgerung 4.35, den Abschluss einer Menge in Definition 8.1 und iso-
lierte Punkte in Definition 10.1. Hiaufungspunkte haben wir bereits von Folgen in Definition 5.18 (c)
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gesehen; ihren Zusammenhang mit den nun betrachteten Haufungspunkten von Mengen werden wir
in Aufgabe 23.47 untersuchen.

Definition 23.37 (Besondere Punkte in metrischen Rdumen). Es seien M ein metrischer Raum,
a € M ein Punkt und X C M eine Teilmenge von M.

(a) Der Punkt a heifit innerer Punkt von X, wenn X wie in Definition 23.13 (b) eine Umgebung
von a ist. Die Menge aller inneren Punkte von X wird mit X bezeichnet und das Innere von
X genannt.

(b) Der Punkt a heifit Berithrpunkt von X, wenn jede Umgebung von a einen Punkt aus X
enthilt. Die Menge X aller Beriihrpunkte von X wird der Abschluss von X genannt.

Ist X = M, so heiBt X dicht in M.

(c) Der Punkt a heilt Randpunkt von X, wenn jede Umgebung von a sowohl einen Punkt aus
X als auch einen aus dem Komplement M\X enthilt. Die Menge aller Randpunkte von X
wird mit dX bezeichnet und der Rand von X genannt.

(d) Der Punkt a heiflit Hiufungspunkt von X, wenn jede Umgebung von a einen Punkt aus
X\{a} enthilt. Man nennt a einen isolierten Punkt von X, wenn es eine Umgebung von a
gibt, die a als einzigen Punkt von X enthiilt.

Bemerkung 23.38. Nach der Definition 23.16 (b) einer Umgebung bedeutet Definition 23.37 (a),
dass ein Punkt @ € M genau dann ein innerer Punkt einer Teilmenge X eines metrischen Raumes
M ist, wenn es ein € € R+ gibt mit Ug(a) C X. Mit der Definition 23.32 (a) einer offenen Menge
ist dies auch dquivalent dazu, dass es eine offene Menge U gibt mit a € U C X (also eine offene
Umgebung von a).

Analog konnen wir auch in den Teilen (b), (c) und (d) von Definition 23.37 den Begriff ,,Umgebung
von a* durch ,,-Umgebung von a* oder ,,offene Umgebung von a* ersetzen, da jede Umgebung von
a eine offene e-Umgebung von a enthiilt.

Beispiel 23.39. Wir betrachten den metrischen Raum M = R (mit der gewohnlichen Metrik).

(a) Fiir ein halboffenes Intervall X = [a,b) mit a < b ist wie erwartet das Innere X = (a,b), der
Abschluss X = [a,b] und der Rand 0X = {a,b}. Jeder Punkt in [a, b] ist ein Hdufungspunkt
von X; es gibt keine isolierten Punkte in X.

(b) Fiir die Menge Z der ganzen Zahlen gilt 7.=0und Z = Z. Der Rand ist 0Z = Z, und jeder
dieser Randpunkte ist auch ein isolierter Punkt von Z. Es gibt keine Haufungspunkte von Z.

(c) Mit der gleichen Begriindung wie in Beispiel 23.33 (e) ist Q =0und Q =R, sowie IQ =R.
Also liegt Q dicht in R (wie wir auch schon in Folgerung 4.35 gesagt hatten), und jede reelle
Zahl ist ein Haufungspunkt von Q.

Die gerade definierten Mengen X, X und dX erfiillen einige einfache anschauliche Eigenschaften,
die mehr oder weniger direkt aus den Definitionen folgen und oft zu ihrer Berechnung benutzt wer-
den kénnen:

Lemma 23.40. Fiir jede Teilmenge X eines metrischen Raumes M gilt:

(a) X ist die Vereinigung aller offenen Mengen, die in X enthalten sind, also
x= | v
UCX offen

Insbesondere ist X also die grofste offene Menge, die in X enthalten ist; und X ist genau dann
offen, wenn X = X.

(b) X ist der Durchschnitt aller abgeschlossenen Mengen, die X enthalten, also
X= N A.
ADX abgeschlossen
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Insbesondere ist X also die kleinste abgeschlossene Menge, die X enthdilt; und X ist genau
dann abgeschlossen, wenn X = X.

X =X\0X.
X =XUoX.
0X = X\X. Insbesondere ist X abgeschlossen.

Nach Definition 23.37 (a) bzw. Bemerkung 23.38 folgt fiir alle a € M sofort

acX & esgibteinUoffenmitacUCX & ac U U.
UCX offen

Insbesondere ist X als Vereinigung offener Mengen nach Lemma 23.34 (b) also offen, und
damit als Vereinigung aller offenen Teilmengen von X auch die grofite offene Teilmenge von
X. Ist weiterhin X offen, so ist X selbst eine der Mengen, iiber die wir hier die Vereinigung
bilden, und damit ist die Vereinigung X dieser Mengen dann gleich X.

zeigt man analog zu (a) durch Ubergang zum Komplement: Fiir alle a € M gilt

a€eX & esgibtkein U offen mita € U C M\X

& aé¢ U U

UcCM\X offen
& ac () (M\U)
UCM\X offen
& ac N A (mit A = M\U).

ADX abgeschlossen

Insbesondere ist X damit nach Lemma 23.34 (d) die kleinste abgeschlossene Teilmenge, die
X enthilt. Ist weiterhin X selbst abgeschlossen, so ist X eine der Mengen, tiber die hier der
Durchschnitt gebildet wird, und somit ist dieser Durchschnitt (also X) gleich X.

Die Bedingung a ¢ dX bedeutet genau, dass es eine offene Menge U mit a € U gibt, fiir die
entweder U C X oder U C M\X ist. Falls a € X gilt, kann hierbei wegen a € U natiirlich nur
die Alternative U C X auftreten. Also ist a € X\ dX genau dann, wenn es eine offene Menge
U mita € U C X gibt, also wenn a € X gilt.

,C“Istace X und a ¢ X, so enthilt jede offene Menge U mit a € U nicht nur einen Punkt
aus X, sondern auch den Punkt a € M\X. Also ist dann a € JX.

Die Inklusionen X C X und 90X C X fiir die Riickrichtung ,,O* folgen sofort aus den Defini-
tionen.

Die Gleichung folgt sofort aus (c) und (d); der Rand dX ist dann als Durchschnitt der nach
(a) und (b) abgeschlossenen Mengen X und M \X abgeschlossen. O

Bemerkung 23.41. Insbesondere besagen die Teile (a) und (c) des Lemmas, dass eine Menge X
genau dann offen ist (also X=X gilt), wenn X = X\ dX ist, also sie keinen ihrer Randpunkt enthilt —
was am Anfang dieses Abschnitts ja gerade unsere anschauliche Vorstellung von offenen Mengen
war. Analog besagen (b) und (d), dass die Menge X genau dann abgeschlossen ist (also X = X gilt),
wenn sie alle ihre Randpunkte enthilt.

Diese Charakterisierung abgeschlossener Mengen durch ihre Rand-

punkte ldsst sich auch gut mit Hilfe von Grenzwerten von Folgen inter-

S

pretieren. Haben wir namlich eine konvergente Folge (ay,),, deren Glie-
der in einer Teilmenge A eines metrischen Raumes liegen, so kann der
Grenzwert dieser Folge anschaulich nur in A oder wie im Bild rechts
auf dem Rand von A, also letztlich in A liegen. Damit sollte A also
genau dann abgeschlossen sein, wenn dieser Grenzwert in jedem Fall
wieder in A liegt. Dies besagt der folgende Satz.



23. Topologische Grundbegriffe 327

Satz 23.42 (Folgenkriterium fiir Abgeschlossenheit). Eine Teilmenge A eines metrischen Raumes

M ist genau dann abgeschlossen, wenn zu jeder konvergenten Folge (ay), mit a, € A fiir (fast) alle

n ihr Grenzwert lim a, ebenfalls in A liegt. (Man sagt in diesem Fall auch, dass A ,,abgeschlossen
n—yoo

unter Grenzwertbildung “ ist.)

Beweis.

»=: Es seien A C M abgeschlossen und (a,), eine konvergente Folge, deren Glieder fast alle
in A liegen. Angenommen, der Grenzwert a := lim a, ldge in der offenen Menge M\A.
n—soo

Dann wire M\A nach Definition 23.32 (a) eine Umgebung von a, und damit miissten nach
Bemerkung 23.14 fast alle a,, in M\A liegen — im Widerspruch dazu, dass bereits fast alle a,
in A liegen. Also war unsere Annahme falsch, und es gilt a € A.

: Die Menge A sei nun abgeschlossen unter Grenzwertbildung. Angenommen, A wire nicht
abgeschlossen, also M\A nicht offen. Dann gibe es einen Punkt a € M\A, um den keine
£-Umgebung vollstindig in M\A liegt. Wir konnen also fiir alle n € N5 einen Punkt aj, in
der %-Umgebung von a wihlen, der in A liegt. Wegen

1
d(ag,a) < ——0 fiir n — oo
n

ist (a,), dann im Widerspruch zur Annahme aber nach Bemerkung 23.14 eine konvergente
Folge in A mit Grenzwert a ¢ A. Also ist A abgeschlossen. g

Folgerung 23.43 (Vollstandigkeit von Teilmengen). Eine Teilmenge eines vollstindigen metrischen
Raumes ist genau dann selbst wieder vollstindig, wenn sie abgeschlossen ist.

Beweis. Es sei A eine Teilmenge eines vollstindigen metrischen Raumes M. Nach Definition
23.28 (a) ist A genau dann vollstindig, wenn jede Cauchyfolge in A einen Grenzwert in A hat. Da M
vollstdndig ist, konvergiert jede solche Cauchyfolge aber in jedem Fall mit einem Grenzwert in M.
Also ist A genau dann vollstindig, wenn der Grenzwert jeder konvergenten Folge mit Folgengliedern
in A ebenfalls in A liegt, nach Satz 23.42 also genau dann, wenn A abgeschlossen ist. O

Aufgabe 23.44. Man zeige:
(a) Die Menge U = {x € R? : x > x| + 1} ist offen in R?,
(b) SindAy,...,A, C R abgeschlossen, soist A| X Ay X --- X A, abgeschlossen in R”.

(c) In R™*" ist die Menge aller diagonalisierbaren Matrizen fiir n > 2 weder offen noch abge-
schlossen.

Aufgabe 23.45. Es seien A und B zwei Teilmengen eines metrischen Raumes. Man zeige:

(a) IstA C B, soauchA C Bund A C B.

(b) Esist stets ANB C ANB. Gilt hier im Allgemeinen auch die Gleichheit?
Aufgabe 23.46. In einem metrischen Raum M betrachten wir zu einem Punkt a € M und einem
Radius r € Ry die offene Kugel U,(a) = {x € M : d(x,a) < r}. Man zeige:

(a) Fiir den Rand dieser Kugel gilt dU,(a) C {x e M : d(x,a) =r}.

(b) In einem normierten Raum gilt in (a) wie erwartet sogar die Gleichheit, in einem beliebigen

metrischen Raum jedoch im Allgemeinen nicht.

Aufgabe 23.47 (Hdufungspunkte von Folgen und Mengen). Es seien M ein metrischer Raum, a € M
und X C M. Wie in Definition 5.18 (c) nennt man «a einen Hiufungspunkt einer Folge (a,), in
M, wenn eine Teilfolge von (a,), gegen a konvergiert. Zeige, dass dann die folgenden Aussagen
dquivalent sind:

(a) a ist ein Haufungspunkt von X.

(b) Es gibt eine Folge in X, die nirgends den Wert a annimmt, und die a als Hiufungspunkt hat.
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(c) Es gibt eine Folge in X, die nirgends den Wert a annimmt, und die gegen a konvergiert.
(d) aeX\{a}.

Die Aquivalenz ,,(a) < (b)* stellt also insbesondere eine Beziehung zwischen den Begriffen des
Haufungspunktes einer Folge und einer Menge her.

Aufgabe 23.48 (Ein topologisches Spiel). Wir starten mit einer gegebenen Teilmenge X eines me-
trischen Raumes M. Ausgehend von dieser einen Teilmenge diirfen wir jetzt neue Teilmengen von
M bilden, indem wir von X oder bereits vorher konstruierten Mengen entweder den Abschluss oder
das Innere bilden. Starten wir z. B. im metrischen Raum M = R mit der Teilmenge X = {0} U (1,2],
so ist deren Inneres gleich (1,2), und davon wieder der Abschluss gleich [1,2]. AuBerdem ist der
Abschluss von X gleich {0} U[1,2]. Man iiberpriift schnell, dass die Abschluss- oder Innerenbil-
dung bei keiner dieser Mengen zu neuen Mengen fiihrt. Ausgehend von der einen gewihlten Menge
X konnten wir hier also insgesamt vier verschiedene Mengen erzeugen.

Wie viele verschiedene Mengen kann man so bei geschickter Wahl von M und X maximal erzeugen?

(Hinweis: Zeige zuerst, dass

(a) AIAX C AX und JAIX O IX,
(b) AIAIX = AIX und IAIAX = IAX,

wobei wir zur Ubersichtlichkeit der Notation AX fiir den Abschluss und IX fiir das Innere von X
geschrieben haben. Die gesuchte Maximalzahl von Mengen lésst sich bereits in M = R mit der
gewohnlichen Metrik fiir ein geeignetes X C R erreichen.)

Falls ihr noch weiter iiber diese Aufgabe nachdenken wollt: Wie viele Mengen kann man maximal
aus einer gegebenen Menge X durch Abschluss- und Komplementbildung erzeugen?

23.D Kompaktheit

In Kapitel 8 haben wir einige wichtige Eigenschaften reeller stetiger Funktionen kennengelernt, die
auf einem beschrénkten abgeschlossenen Intervall [a,b] C R definiert sind: Sie sind z. B. nach Satz
8.23 beschrinkt, nehmen nach Satz 8.25 sogar ein Maximum und Minimum an, und sind nach Satz
8.50 auch gleichmiBig stetig. Alle diese Aussagen wiren falsch, wenn wir den Definitionsbereich
nur als beschrinkt oder nur als abgeschlossen voraussetzen wiirden — wie die Beispiele der Funktio-
nen (0,1) - R, x+— % bzw. R~ — R, x ~— x? zeigen, die keine der drei genannten Eigenschaften
erfiillen.

Fiir eine Teilmenge D von R ist diese Kombination von Beschrénktheit und Abgeschlossenheit in der
Praxis also sehr wichtig. Der Grund dafiir ist aus den Beweisen der obigen Sitze ersichtlich: Sie alle
benotigen zu einer gegebenen Folge in D die Existenz einer konvergenten Teilfolge mit Grenzwert
in D. Ist nun D beschrinkt, so existiert nach dem Satz 6.21 von Bolzano-Weierstral} zunichst einmal
eine konvergente Teilfolge, und ist D abgeschlossen, so liegt der Grenzwert dieser Teilfolge nach
Satz 23.42 dann auch in D.

Fiir die Verallgemeinerung dieser Aussagen auf normierte bzw. metrische Rdume miissen wir da-
her die Existenz konvergenter Teilfolgen untersuchen. Wir iibertragen dazu zunichst den Satz von
Bolzano-Weierstral} ins Mehrdimensionale.

Satz 23.49 (Satz von Bolzano-WeierstraBl). In K" (mit der Standardnorm) besitzt jede beschrinkte
Folge eine konvergente Teilfolge.

Beweis. Nach Bemerkung 23.18 konnen wir die Maximumsnorm verwenden. Ist dann eine Folge

(™) beschriinkt, gilt also ||a®)||.. < r fiir ein r € R+ und alle k € N, so ist damit auch |a§k)| <r
(k))

firallei=1,...,nund k € N, d. h. es sind auch alle Koordinatenfolgen (g; ' ) beschrénkt.

Nach dem Satz 6.21 von Bolzano-Weierstraf} in K konnen wir also nach evtl. Auswéhlen einer Teil-
folge annehmen, dass die erste Koordinatenfolge (agk) )« von (a®)); konvergiert. Aus dieser Teilfolge
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wihlen wir nun eine weitere Teilfolge aus, so dass auch die zweite Koordinatenfolge konvergiert.
Setzen wir dieses Verfahren fort, so haben wir nach n Schritten eine Teilfolge von (a(k)) x gefunden,
von der jede Koordinatenfolge konvergiert, die also nach Lemma 23.19 in K" konvergent ist. g

Mit dieser Vorarbeit konnen wir jetzt den zentralen Begriff dieses Abschnitts untersuchen:

Definition 23.50 (Folgenkompaktheit). Eine Teilmenge A eines metrischen Raumes M heifit kom-
pakt bzw. folgenkompakt, wenn jede Folge in A eine konvergente Teilfolge mit Grenzwert in A
hat.

Satz 23.51. Es sei A eine Teilmenge eines metrischen Raumes M.

(a) Ist A kompakt, so ist A beschrinkt und abgeschlossen.

(b) Im Fall M = K" (mit der Standardnorm) gilt auch die Umkehrung, d. h. A ist genau dann
kompakt, wenn A beschrdnkt und abgeschlossen ist.

Beweis.

(a) Wiire A nicht beschrinkt, dann giibe es ein a € A und eine Folge (ay); in A mit d(ag,a) > k
fiir alle k. Dann ist aber jede Teilfolge von (ay ), unbeschriinkt, also divergent nach Lemma
23.22. Damit kann A nicht kompakt sein.

Wire A hingegen nicht abgeschlossen, so gibe es nach Satz 23.42 eine konvergente Folge
(ag)r in A, deren Grenzwert a in M\A liegt. Dann konvergiert aber auch jede Teilfolge von
(ax)x gegen a, und damit also nicht gegen einen Punkt in A. Auch hier kann A also nicht
kompakt sein.

(b) Die Menge A C K" sei beschrinkt und abgeschlossen. Jede Folge in A ist also zunichst
beschrinkt und besitzt damit nach dem Satz 23.49 von Bolzano-Weierstraf} eine konvergente
Teilfolge in K”. Der Grenzwert dieser Teilfolge liegt nun wegen der Abgeschlossenheit von
A nach Satz 23.42 ebenfalls in A. Also ist A kompakt. 0

Beispiel 23.52.

(a) Von den Intervallen in R wie in Notation 4.17 (a) sind nach Satz 23.51 (b) genau die Inter-
valle der Form [a,b] kompakt. In der Literatur werden sie daher auch oft wie in Notation
4.17 (a) als kompakte Intervalle statt als abgeschlossene Intervalle bezeichnet.

(b) Abgeschlossene Kugeln K, (a) C K" mit a € K” und » € R> sind nach Definition beschrinkt
und nach Beispiel 23.33 (d) abgeschlossen, also kompakt. Genauso gilt dies nach Lemma
23.40 (e) auch fiir die Riander dK,(a) dieser Kugeln.

(¢) In unendlich-dimensionalen normierten Rdumen (und damit erst recht in allgemeinen metri-
schen Riumen) ist die Aussage aus Satz 23.51 (b) falsch: In V = C°([0,1]) mit der Maxi-
mumsnorm sei A = K;(0) = {f € C°([0,1]) : || ||~ < 1} die abgeschlossene Einheitskugel,
die wie in (b) natiirlich auch beschrinkt ist.

Sie ist aber nicht kompakt: Dazu betrachten wir fiir n € N5 die
,»Dreiecksfunktionen® f, wie im Bild rechts; wegen ||fylle =1 1
fiir alle n ist (f,), eine Folge in A. Da sich die Dreiecke von f,,
und f, fiir m # n nicht tiberlappen, besteht f,,, — f, dann immer
aus einem Dreieck nach oben und einem nach unten mit Hohe X
jeweils 1, d. h. es ist auch || f;, — fu ||~ = 1. Damit kann eine Teil- | 7 T X |
folge von (f;), aber niemals eine Cauchyfolge, und damit auch 1L
nicht konvergent sein. Also ist A nicht kompakt.

fu(x)

i1 2 2pd

In der Tat kann man zeigen, dass die (beschrinkte) abgeschlossene Einheitskugel im Ge-
gensatz zum Fall von K" in keinem unendlich-dimensionalen normierten Raum kompakt
ist. Das Studium von solchen unendlich-dimensionalen normierten Riumen ist der Inhalt
der Vorlesung ,,Einfiihrung in die Funktionalanalysis* des zweiten Studienjahres. Wir haben
jetzt in den letzten Kapiteln mehrfach gesehen, dass in solchen allgemeinen Rdumen zwar
viele Sitze noch genauso gelten wie im endlich-dimensionalen Fall, andererseits aber an
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entscheidenden Stellen auch grofle Unterschiede bestehen (siehe z. B. auch Beispiel 21.41
und Beispiel 21.50).

Wie bereits angekiindigt werden wir spiter fiir stetige Funktionen auf kompakten Mengen dhnliche
Eigenschaften zeigen, wie wir sie in Kapitel 8 fiir stetige Funktionen auf beschrinkten abgeschlos-
senen Intervallen in R bewiesen haben (siehe Abschnitt 24.B), z. B. dass solche Funktionen ein
Maximum und Minimum annehmen. Das folgende Lemma ist eine kleine Vorbereitung dafiir.

Lemma 23.53. Jede kompakte, nicht-leere Menge in R besitzt ein Maximum und Minimum.

Beweis. Aus Symmetriegriinden geniigt es offensichtlich, den Fall des Maximums zu betrachten.
Ist A C R kompakt, so ist A nach Satz 23.51 (a) beschridnkt und besitzt damit wegen A ## @ nach
dem Supremumsaxiom (siehe Definition 4.29) ein Supremum s := supA. Angenommen, es wire
s ¢ A. Da A kompakt und damit nach Satz 23.51 (a) abgeschlossen ist, giibe es dann ein € > 0 mit
(s—e,s+¢€) CR\A,d.h. (s—¢&,5+¢€)NA = 0. Dann wire aber nicht nur s, sondern auch s — € eine
obere Schranke fiir A — im Widerspruch zu s = supA.

Also war unsere Annahme falsch, und es ist s € A, also s = maxA. O

Zum Abschluss dieses Kapitels wollen wir nun noch eine oft benétigte alternative Charakterisierung
der Kompaktheit untersuchen. Da sie sich sehr von unserer urspriinglichen Definition 23.50 unter-
scheidet, geben wir ihr zunichst einen anderen Namen — wir werden aber in Satz 23.58 sehen, dass
es sich zumindest fiir Teilmengen von K” um eine zur Folgenkompaktheit dquivalente Eigenschaft
handelt.

Definition 23.54 (Uberdeckungskompaktheit). Eine Teilmenge A eines metrischen Raumes M heifit
iiberdeckungskompakt, wenn gilt: Sind 7 eine beliebige Indexmenge und U; C M offene Teilmen-
gen mit A C J;¢; Ui, so gibt es bereits endlich viele iy, ...,y € I mitA C U;, U---U Ui,.

Bemerkung 23.55.

(a) Man sagt auch, dass eine solche Familie offener Mengen, die in ihrer Vereinigung die Menge
A enthalten, eine offene Uberdeckung von A ist. Dementsprechend wird die Bedingung der
Uberdeckungskompaktheit oft auch so formuliert: Jede offene Uberdeckung von A besitzt
eine endliche Teilitberdeckung (also eine Uberdeckung aus endlich vielen der gegebenen
Mengen).

Natiirlich ist dies nur fiir Uberdeckungen aus unendlich vielen offenen Mengen eine nicht-
triviale Bedingung.

(b) Sowohl die Folgenkompaktheit aus Definition 23.50 als auch die Uberdeckungskompaktheit
aus Definition 23.54 sind offensichtlich topologische Eigenschaften im Sinne von Bemer-
kung 23.18.

Beispiel 23.56. Es sei M = R.

(a) Betrachten wir das halboffene Intervall A = (0, 1], so bilden die unendlich vielen Intervalle
U: = (&,2) fiir alle 0 < € < 1, von denen wir im Bild unten links exemplarisch vier einge-
zeichnet haben, eine offene Uberdeckung von A: Alle Ue sind offen, und ihre Vereinigung
umfasst die gesamte Menge A, da es zu jedem x € A = (0, 1] noch ein € gibt mit 0 < € < x,
also mit x € Us.

Treffen wir aus diesen offenen Mengen jedoch eine beliebige endliche Auswahl U, , ..., Ug,
so iiberdecken diese endlich vielen Mengen sicher nicht mehr die ganze Menge A, denn es
ist ja Ug, U---UUg, = Ug mit € = min(gy,...,&), und diese Vereinigung enthilt z. B. nicht
mehr die Zahl § € A. (Im Bild unten links enthalten die vier dort ausgewihlten Intervalle
z. B. nicht mehr die Zahl ﬁ €A).

Wir finden in diesem Fall also keine endliche Teiliiberdeckung zu der gegebenen offenen
Uberdeckung von A. Damit ist A nicht iiberdeckungskompakt.
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A 1 2 R 0 4 1 2 R
Uy g ——< Uy p——m—---<
UU1/3)—( UU1/3)—(
1/5 1/5
Ui/20 Ui
U >—<
(@) (b)

(b) Betrachten wir nun stattdessen das abgeschlossene Intervall A = [0, 1], so stellen wir zu-
mindest fest, dass wir die Bedingung der Uberdeckungskompaktheit dann nicht mehr so
einfach widerlegen konnen: Die oben gewihlten offenen Intervalle U, fiir 0 < € < 1 bilden
nun keine Uberdeckung von A mehr, da sie den Punkt O € A nicht enthalten. Um daraus ei-
ne Uberdeckung von A zu machen, miissten wir noch eine offene Menge U mit 0 € U mit
hinzunehmen - z.B. U = (— 11—0, %) wie im Bild oben rechts, so dass wir die offene Uberde-
ckung U UJgce<1 Ue von A erhalten. In diesem Fall ist es aber einfach, daraus eine endliche
Teiliiberdeckung von A auszuwiihlen, ndmlich z.B. A C U UUj 50 = (— 15> 15) U (35:2)-

Beachte jedoch, dass wir mit diesem Argument noch nicht gezeigt haben, dass A iiberde-
ckungskompakt ist! Dazu hitten wir nimlich zu einer beliebigen offenen Uberdeckung die
Existenz einer endlichen Teiliiberdeckung beweisen miissen — wihrend wir eben ja nur eine
ganz spezielle offene Uberdeckung betrachtet haben. In der Tat ist A aber iiberdeckungskom-
pakt, wie wir gleich in Satz 23.58 sehen werden.

Analog zu Satz 23.51 (a) zeigen wir zunichst:

Lemma 23.57. Jede iiberdeckungskompakte Teilmenge eines metrischen Raumes ist beschrinkt und
abgeschlossen.

Beweis. Es sei A eine iiberdeckungskompakte Teilmenge eines metrischen Raumes M. Natiirlich
konnen wir M # 0 annehmen, da die zu zeigende Aussage sonst trivial ist.

A ist beschrinkt: Da mit einem fest gewihlten Punkt a € M die offenen Kugeln U, (a) fiir alle r € R~
offensichtlich den ganzen Raum M und damit auch A iiberdecken, konnen wir wegen der Uberde-

ckungskompaktheit von A endlich viele rq,...,r; € Ry wihlen mit
ACU,(a)U---UU,(a) = U(a),
wobei r = max(ry,...,r;). Nach Definition 23.20 (a) ist A also beschrinkt.

A ist abgeschlossen, d. h. M\A ist offen: Es sei a € M\A. Diesmal betrachten wir die offenen Mengen
Vi(a) :=M\K,(a) ={x e M :d(x,a) > r}
fiir alle » € Ry, die natiirlich M\{a} und damit auch A iiberdecken. Da A iiberdeckungskompakt
ist, gibt es also wieder endlich viele rq,...,r; € R5g mit
ACV,(a)U---UV, (a) =V,(a),
wobei r = min(ry,...,r;). Durch Komplementbildung erhalten wir daraus U,(a) C K,(a) C M\A.
Also ist M\A offen. U

Satz 23.58 (Satz von Heine-Borel). Eine Teilmenge von K" ist genau dann iiberdeckungskompakt,
wenn sie beschrdnkt und abgeschlossen ist.

Beweis. Wir konnen wieder die zur euklidischen Norm 4dquivalente Maximumsnorm auf K" ver-
wenden. AuBlerdem konnen wir ohne Einschrinkung K = R annehmen, da wir im Fall K = C den
Raum C” einfach als R" auffassen kénnen.

Wir haben in Lemma 23.57 schon gesehen, dass eine iiberdeckungskompakte Teilmenge von R”
beschrinkt und abgeschlossen sein muss. Es sei nun also umgekehrt A C R” beschrinkt und abge-
schlossen. Wir zeigen mit einem Widerspruchsbeweis, dass A dann iiberdeckungskompakt ist.

Es sei also |J;c; U; eine offene Uberdeckung von A ohne endliche Teiliiberdeckung. Im Bild unten
in der Mitte ist dies dadurch angedeutet, dass die offenen Mengen der Uberdeckung an einer Stelle
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sehr klein werden und damit evtl. sehr viele (bzw. unendlich viele) von ihnen benétigt werden, um
A dort zu iiberdecken.

Als beschrinkte Menge ist A in einer abgeschlossenen Kugel (in der Maximumsnorm), also in einem
Wiirfel
Qo =K, (0) = [—nr]"

enthalten. Ausgehend von Qp konstruieren wir nun rekursiv wie im Bild unten rechts eine Folge
(Ok)ken von ineinander liegenden Wiirfeln mit Kantenldngen 2r - 27k so dass auch A N Qy nicht
durch endlich viele U; iiberdeckt werden kann: Ist Oy fiir ein k € N bereits konstruiert, teilen wir
diesen Wiirfel wie im Bild dargestellt an den Seitenmitten in 2" Teilwiirfel mit halber Kantenlinge.
Von diesen gibt es nun mindestens einen Teilwiirfel, den wir Q| nennen, fiir den der Schnitt mit A
nicht durch endlich viele U; iiberdeckt werden kann — denn ansonsten konnte ja auch A N Qy durch
endlich viele U; iiberdeckt werden.

Die Menge A, ... eine offene Uberdeckung von A . .. und die Wiirfel Oy

Da die konstruierten Wiirfel in jeder Koordinate eine Intervallschachtelung bilden, gibt es nun nach
Satz 5.39 genau einen Punkt a € (e Ok.

Beachte, dass jede offene Umgebung U von a einen der Wiirfel

Oy enthilt: Als offene Umgebung enthilt sie ndmlich wie im Bild Ue(a)
rechts zunichst eine e-Umgebung U, (a) (in der Maximumsnorm), U
und diese dann wiederum fiir 2r- 2% < & den Wiirfel Q;. Damit 0 a

k

erhalten wir aber in jedem Fall einen Widerspruch, wenn wir nun
iberpriifen, ob a in A liegt oder nicht:

e Gilt a € A, so liegt a in einer der offenen Mengen U; der gegebenen Uberdeckung von A.
Wie wir gerade gesehen haben, enthilt dann schon diese eine Menge U; einen der Wiirfel
Q. ist also insbesondere eine Uberdeckung von A N Qy — im Widerspruch zur Annahme,
dass AN Q keine endliche Teiliiberdeckung durch die gegebenen Mengen besitzt.

e Gilta ¢ A, so liegt a in der offenen Menge R"\A, die nun also einen der Wiirfel Q; enthalten
muss. Damit ist AN Q = 0 — ebenfalls im Widerspruch dazu, dass A N Qy keine endliche
Teiliiberdeckung durch die gegebenen Mengen hat.

Dieser Widerspruch zeigt, dass A tiberdeckungskompakt sein muss. 0

Bemerkung 23.59 (Folgen- und Uberdeckungskompaktheit). Nach Satz 23.51 (b) und 23.58 stim-
men die Begriffe der Folgenkompaktheit und Uberdeckungskompaktheit fiir Teilmengen von K” also
iiberein. In der Tat kann man zeigen, dass diese Aquivalenz sogar in beliebigen metrischen Riumen
gilt [M, Satz 39.30] — fiir alle in dieser Vorlesung betrachteten Rdume sind diese beiden Begrifte
also vollig gleichwertig. Wir werden diese allgemeinere Aussage im Folgenden aber nicht benétigen
und daher auch nicht beweisen.

In der Tat wird der Begriff der Kompaktheit in der Literatur meistens iiber die Uberdeckungskom-
paktheit definiert. Wir haben uns hier fiir die Definition tiber die Folgenkompaktheit entschieden, da
dies wohl das deutlich anschaulichere Konzept ist.
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Aufgabe 23.60. Man zeige: Sind K und L zwei kompakte Teilmengen eines normierten Raumes, so
ist auch deren Summe K+L = {a+b:a € K,b € L} kompakt.

Aufgabe 23.61. Es seien A und K zwei Teilmengen eines metrischen Raumes M. Man zeige:
(a) Ist A abgeschlossen und K folgenkompakt, so ist auch K N A folgenkompakt.
(b) Ist A abgeschlossen und K iiberdeckungskompakt, so ist auch K N A tiberdeckungskompakt.

Die in Bemerkung 23.59 erwihnte, aber nicht bewiesene Aquivalenz zwischen Folgen- und Uberde-
ckungskompaktheit in allgemeinen metrischen Raumen soll hierbei natiirlich nicht benutzt werden.

Aufgabe 23.62.

(a) Es seien K eine iiberdeckungskompakte Teilmenge eines metrischen Raumes M und (U;);e;
eine offene Uberdeckung von K in M. Man zeige:

Es gibt ein € € R, so dass zu jedem a € K ein i € [ existiert mit Ug(a) C U;. (%)

(b) Finde ein Beispiel einer endlichen offenen Uberdeckung (Uy)ier von K = M = R" fiir eine
Zahl n € N+, so dass die Aussage (x) falsch ist.



