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22. Endomorphismen euklidischer und unitirer Riume

Im letzten Kapitel haben wir ausfiihrlich Vektorrdume studiert, auf denen die Zusatzstruktur ei-
nes Skalarprodukts gegeben ist. Wir wollen nun sehen, welche Vorteile und Vereinfachungen uns
diese Zusatzstruktur bei der Untersuchung von Endomorphismen gibt, wenn diese in gewissem Sin-
ne mit dem gegebenen Skalarprodukt vertriglich sind. Das zentrale Resultat dieses Kapitels wird
schlieBlich der sogenannte Spektralsatz in Abschnitt 22.C sein, der die Diagonalisierbarkeit solcher
Endomorphismen garantiert und — wie wir sehen werden — so universell ist, dass er bei geschickter
Anwendung auch Aussagen iiber Bilinearformen bzw. Sesquilinearformen und in Abschnitt 22.D
sogar {iber lineare Abbildungen mit unterschiedlichem Start- und Zielraum machen kann.

22.A Orthogonale und unitiire Abbildungen

Die natiirlichste Vertriglichkeitsbedingung zwischen Morphismen und Skalarprodukten ist vermut-
lich die folgende.
Definition 22.1 (Orthogonale und unitire Abbildungen und Matrizen).

(a) Ein Endomorphismus f: V — V eines Vektorraums V mit Skalarprodukt heif3t orthogonal
(im Fall K = R) bzw. unitir (im Fall K = C), wenn

(f(x), f(n)) = (x,)
fiir alle x,y € V gilt.
(b) Eine Matrix A € R"*" heif}t orthogonal, wenn ATA=E gilt, also wenn A invertierbar ist mit
A~" = AT. Wir bezeichnen die Menge aller orthogonalen n x n-Matrizen mit O(n) C R**".
Eine Matrix A € C"™*" heif3t unitidr, wenn ZTA = E gilt, also wenn A invertierbar ist mit

A-'=4".Die Menge aller unitéren n x n-Matrizen wird mit U(n) C C"*" bezeichnet.
Wie iiblich schreiben wir diese Bedingung im Folgenden oft in beiden Fillen als AA=E .

Bemerkung 22.2.

(a) Ist (xi,...,x,) eine Basis von V, so geniigt es, die Bedingung eines orthogonalen bzw. uni-
tdren Morphismus f: V — V fiir alle Paare von Basisvektoren zu iiberpriifen: Ist ndmlich
<f(x,-),f(xj)> = <x,~,xj> fiir alle i, j = 1,...,n, so gilt wegen der Linearitit von f und der
Bilinearitit bzw. Sesquilinearitit des Skalarprodukts auch fiir alle x = A;x; + - - - + A,.x;,, und
Y= WXy + -+ UnXy

GOS0 = Y Tty (G fa)) = Y Topty (i) = {y)

ij=1 i,j=1

(b) Eine Matrix A = (a; j); ; € K"*" ist genau dann orthogonal bzw. unitéir, wenn die Spalten
von A eine Orthonormalbasis beziiglich des Standardskalarprodukts bilden: Nach Definition

des Matrixprodukts ist ndmlich
-T 1
A A= (Zajﬂ-aj‘k) .
j=1 ik

Der Ausdruck Z;le aj;ajy ist aber genau das Standardskalarprodukt der i-ten mit der k-ten
Spalte von A. Daher bilden diese Spalten genau dann eine Orthonormalbasis beziiglich des
Standardskalarprodukts, wenn dieser Ausdruck gleich 1 fiir i = k und O fiir i # k ist, also

wennA'A = E ist.
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Es wire also vermutlich konsequenter, eine reelle Matrix A mit ATA = E orthonormal statt
orthogonal zu nennen. Die Bezeichnung ,,orthogonale Matrix* ist in der Literatur aber so
iiblich, dass wir hier nicht davon abweichen wollen.

Wir wollen nun als Erstes zeigen, dass die oben eingefiihrten Bedingungen fiir orthogonale und
unitire Matrizen wie erwartet denen der zugehdrigen Endomorphismen entsprechen, sofern es sich
um Abbildungsmatrizen beziiglich einer Orthonormalbasis handelt.

Lemma 22.3. Es sei V ein endlich-dimensionaler K-Vektorraum mit Skalarprodukt und B eine Or-
thonormalbasis von V. Dann gilt:

(a) Ein Endomorphismus f:V — 'V ist genau dann orthogonal bzw. unitdr, wenn A? orthogonal
bzw. unitdr ist.

(b) Eine weitere Basis B von 'V ist genau dann auch eine Orthonormalbasis, wenn AB'B ortho-
gonal bzw. unitdr ist.

Beweis. Esseien B= (x1,...,x,) und A = (<x,~,yj>)l.j fiir Vektoren yp,...,y, € K" Dann gilt

n
AA= ( ey (x5, yk>> (Definition 15.5)
j=1 ik

<< Y (xjyiyx j7yk>> (Sesquilinearitit des Skalarprodukts)
j=1 ik
= (<yi’yk>)i,k' (Satz 21.37 (a))

(a) Setzen wir y; = f(x;) fiir alle i und eine lineare Abbildung f: V — V, so ist A = A? nach
Satz 21.37 (b). Damit ist diese Abbildungsmatrix genau dann orthogonal bzw. unitér, wenn
((fa), f))), = E = ({xi ;) )l.‘k ist, also nach Bemerkung 22.2 (a) wenn f orthogonal
bzw. unitir ist. '

(b) Setzen wir B' = (y1,...,yn), so ist A = AB"B nach Satz 21.37 (c). Damit ist diese Basiswech-
selmatrix genau dann orthogonal bzw. unitir, wenn ((yi,yk> )i_ « = E ist, also wenn B’ eine
Orthonormalbasis ist. / 0

Bemerkung 22.4.

(a) Gemal Definition 22.1 (b) sind orthogonale bzw. unitire Matrizen invertierbar. Mit Lemma
22.3 (a) bedeutet dies also, dass orthogonale bzw. unitire Endomorphismen eines endlich
erzeugten Vektorraums mit Skalarprodukt stets Isomorphismen sind.

(b) Nach Definition 22.1 (a) erhalten orthogonale und unitdre Abbildungen Skalarprodukte, und
damit auch Lingen, Orthogonalitéit und (im reellen Fall) Winkel zwischen zwei Vektoren.
Uber R kann man sie sich daher als Drehungen und Spiegelungen (bzw. Kombinationen
davon) vorstellen. Dieselbe Interpretation gilt dann nach Lemma 22.3 (a) natiirlich auch fiir
orthogonale Matrizen.

Das folgende Beispiel zeigt dies deutlich im zweidimensionalen Fall (fiir h6here Dimensio-
nen siehe auch Aufgabe 22.10).

Beispiel 22.5 (O(2)). Nach Bemerkung 22.2 (b) ist eine Matrix A = (a1 |a) € R**? mit ay,a, € R?
genau dann orthogonal, wenn beziiglich des Standardskalarprodukts

larl =1, Jlazl=1 und a La

gilt. Also liegt a; auf dem Einheitskreis und lisst sich nach der Polarkoordinatendarstellung aus Satz

9.27 damit als
< cos o )
ay = .
Sin &

fiir ein o € R schreiben, und a; entsteht aus a; durch eine positive oder negative Drehung um 7.
Wir erhalten also die folgenden beiden Moglichkeiten:
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[4] -7
sin o
a) =
—cosa
coso —sino cosx  sino
a) A= . b) A= .
@) (sma cosa) (b) (sma —cosa)

In beiden Fillen werden die Einheitsvektoren e; und e, durch A (wie durch die grauen Pfeile ange-
deutet) auf a; und a; abgebildet. In (a) haben wir damit geometrisch eine Drehung um den Winkel
a wie in Beispiel 19.13, in (b) eine Spiegelung an der gestrichelt eingezeichneten Winkelhalbieren-
den zwischen e; und a;. Damit lassen sich alle Elemente von O(2) in der Tat wie erwartet durch
Drehungen und Spiegelungen beschreiben.

Zum Ende dieses Abschnitts wollen wir noch kurz die wichtigsten Eigenschaften orthogonaler und
unitirer Matrizen untersuchen.

Lemma 22.6 (O(n) und U(n) als Gruppen). Sind A,B € K"*" orthogonal bzw. unitcir, so auch AB
und A=, Insbesondere sind O(n) und U(n) also Gruppen (siehe Definition 3.1) mit der Matrixmul-
tiplikation als Verkniipfung; man nennt sie die orthogonalen bzw. unitiren Gruppen.

Beweis. Es gelte A'A=B'B=E.Dam folgt zunéchst

BB AT AB—B EB=B' B=E.

AB'AB

Also sind AB und A~! ebenfalls orthogonal bzw. unitir. Da auch die Einheitsmatrix (als neutrales
Element) orthogonal bzw. unitir ist, sind O(n) und U(#n) damit Gruppen beziiglich der Matrixmulti-
plikation. g

Lemma 22.7 (Determinante und Eigenwerte orthogonaler und unitirer Matrizen). Fiir jede ortho-
gonale oder unitdre Matrix A gilt:

(a) |detA| = 1.
(b) Ist A ein Eigenwert von A, so ist || = 1.

Beweis.

(a) Wie im Beweis von Folgerung 21.34 (a) ist detA = detA. Aus XTA = E ergibt sich damit
sofort 1 = detE = detA - detA = detA - detA = | detA|2.

(b) GiltAx = Ax fiir ein x € K"\ {0}, so ist auch Ax = A%, nach Transponieren also J?TZT =Ax'.
Zusammen erhalten wir mit A' A = E so

Fx=3"A Ax = A% - Ax = AP -x"x,
wegen X' x # 0 also |A|> = 1, und damit |A| = 1. O

Bemerkung 22.8. Nach Lemma 22.3 (a) gelten die Aussagen aus Lemma 22.7 genauso fiir ortho-
gonale bzw. unitidre Endomorphismen endlich erzeugter Vektorraume mit Skalarprodukt.
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Bemerkung 22.9 (Spezielle orthogonale und unitdre Matrizen). Bei einer orthogonalen Matrix kon-
nen die Determinante und die Eigenwerte nach Lemma 22.7 nur 1 und —1 sein. Fiir eine komplexe
unitdre Matrix ist dagegen jede Zahl auf dem komplexen Einheitskreis moglich. In beiden Féllen
spielen aber diejenigen Matrizen, deren Determinante gleich 1 ist, eine groe Rolle. Man definiert
daher:

(a) Eine orthogonale Matrix A € O(n) heibt spezielle orthogonale Matrix, wenn detA = 1 gilt.
Die Menge der speziellen orthogonalen n x n-Matrizen wird mit SO(n) bezeichnet.

(b) Eine unitire Matrix A € U(n) heifit spezielle unitire Matrix, wenn detA = 1 gilt. Man be-
zeichnet die Menge der speziellen unitéren n X n-Matrizen mit SU(n).

Man sieht leicht, dass auch SO(n) und SU(n) Gruppen beziiglich der Matrixmultiplikation sind,
denn wenn detA = detB = 1 gilt, so ist nach Satz 18.6 ja auch det(AB) = detA~! = 1.

In Beispiel 22.5 haben die Drehungen in (a) Determinante 1, und die Spiegelungen in (b) Determi-
nante —1. In diesem Fall entsprechen die Elemente von SO(2) also den Drehungen, die Elemente
von O(2)\ SO(2) den Spiegelungen. In der Tat gilt eine analoge Interpretation auch in héheren Di-
mensionen. Um dies zu einer exakten Aussage machen zu konnen, brauchten wir aber natiirlich erst
einmal eine exakte Definition der Begriffe ,,Drehung* und ,,Spiegelung® — was wir hier nicht weiter
verfolgen wollen.

Aufgabe 22.10 (O(3) und O(4)). Man zeige:

(a) IstA € O(3),so gibtesein @ € Rund T € O(3) mit

+1 0 0
T'AT=| 0 cosa —sina
0 sinx cosa

(b) Ist A € O(4), so gibt es im Allgemeinen kein & € R und T € O(4) mit

+1 0 0 0
0 =1 0 0
0 0 cosax —sina
0 0 sinx cosa

T AT =

(Hinweis: Untersuche, ob A einen Eigenwert besitzen muss.)

Was bedeutet das Ergebnis geometrisch?

Aufgabe 22.11. Es seien V ein endlich erzeugter euklidischer Vektorraum und v € V mit ||v|| = 1.
Wir betrachten den Endomorphismus f: V — V, x —x—2(v,x)v.

(a) Zeige, dass f eine orthogonale Abbildung ist.

(b) Berechne das charakteristische Polynom y¢.

(c) Wie kann man f geometrisch beschreiben?

Aufgabe 22.12. Zeige, dass fiir jeden Endomorphismus f: V — V eines endlich-dimensionalen
euklidischen Raums V die folgenden Aussagen dquivalent sind:

(a) Firalle x,y € Vmitx Ly gilt f(x) L f(y).
(b) Es gibtein A € Rx, so dass || f(x)]| = A||x|| fiir alle x € V gilt.
(c) Es gibtein A € R und eine orthogonale Abbildung g: V — V mit f = Ag.

Aufgabe 22.13 (OR-Zerlegung). Zeige, dass sich jede reelle invertierbare Matrix A € GL(n,R) ein-
deutig in der Form A = QR schreiben lésst, wobei Q € O(n) eine orthogonale Matrix und R eine
obere Dreiecksmatrix mit positiven Diagonaleintrigen ist.

(Hinweis: Bezeichne die Spaltenvektoren von A bzw. Q mit ay,...,a, € R" bzw. x{,...,x, € R" und
schreibe die Matrixgleichung A = QR in Gleichungen fiir diese Spaltenvektoren um.)
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Diese Zerlegung wird in der Vorlesung ,.Einfithrung in die Numerik® im zweiten Studienjahr noch
eine wichtige Rolle spielen. Mochte man ein Gleichungssystem Ax = b 16sen, so ist dies mit der
Zerlegung A = QR wie oben natiirlich iquivalent zum System Rx = Q" b, das sich wegen der oberen
Diagonalform von R einfach durch Riickwértseinsetzen 16sen lasst. In der Regel ist dieses Verfahren
fiir groe Gleichungssysteme schneller und unanfilliger fiir eine Verstiarkung von Rundungsfehlern
als der GauB3-Algorithmus.

22.B Selbstadjungierte Abbildungen

In diesem Abschnitt wollen wir eine weitere Art der Vertrdglichkeit eines Endomorphismus mit
einem Skalarprodukt behandeln. Obwohl sie im Gegensatz zur Bedingung einer orthogonalen bzw.
unitdren Abbildung keine einfache geometrische Interpretation besitzt, ist sie dennoch in der Praxis
sehr wichtig — vor allem, da sie einfach an der Abbildungsmatrix abzulesen ist. Um sie einzufiihren,
brauchen wir das folgende Konzept der adjungierten Abbildungen.

Satz und Definition 22.14 (Adjungierte Abbildung). Es sei f: V — V ein Endomorphismus eines
endlich-dimensionalen Vektorraums V mit Skalarprodukt. Dann gilt:

(a) Es gibt genau einen Endomorphismus f*: V —V mit
(f(x),y) = (e, f7(¥)
fiir alle x,y € V. Man nennt f* die zu f adjungierte Abbildung.
(b) Ist B eine Orthonormalbasis von'V, so gilt fiir die Abbildungsmatrix von [* beziiglich B

—T
B _ 4B
Ap =Ap .
Beweis. Esseien B= (x1,...,x,) eine Orthonormalbasis von V und g: V — V ein Endomorphismus.
Beachte zunéchst, dass mit demselben Argument wie in Bemerkung 22.2 (a) genau dann
(f(x),3) = (x.8(v) ()

fiir alle x,y € V ist, wenn <f(x,-),xj> = <x,~,g(xj)> firallei,j=1,...,n gilt. Wegen der Hermitizitit
des Skalarprodukts ist diese Bedingung nun aber dquivalent zu

(Gejn f(x0))) = ((xis8(x1)))ijo
—T
nach Satz 21.37 (b) also zu A? = AgB . Also gibt es genau einen solchen Endomorphismus g, ndmlich

—T
denjenigen, der beziiglich der Basis B zur Abbildungsmatrix A? gehort. Dies zeigt bereits beide
Teile des Satzes. U

Bemerkung 22.15.

(a) Aufgrund von Satz 22.14 (b) nennt man zu einer Matrix A € K"*"* manchmal ZT auch die
adjungierte Matrix und schreibt sie als A*. Beziiglich einer Orthonormalbasis entsprechen
sich dann also die Konzepte der adjungierten Abbildung und der adjungierten Matrix.

—T
(b) Da offensichtlich XT = A fiir alle A € K™*" gilt, ist nach Satz 22.14 (b) auch (f*)* = f fiir

jeden Endomorphismus f eines endlich erzeugten K-Vektorraums mit Skalarprodukt. Dies
bedeutet, dass nicht nur

(f(x),y) = (6, f*(¥)), sondernauch  (f*(x),y) = (x,(f*)"()) = (5, f())

fiir alle x,y € V gilt: Man kann in einem Skalarprodukt stets die Abbildung f auf der einen
Seite durch f* auf der anderen Seite ersetzen (und umgekehrt).

(c) Fiir einen Endomorphismus f: V — V eines endlich-dimensionalen euklidischen Vektor-
raum V hatten wir in Aufgabe 21.52 (c) schon eine andere Art gesehen, die adjungierte Ab-
bildung zu konstruieren: Unter Verwendung des natiirlichen Isomorphismus zwischen V und
seinem Dualraum V* aus Satz 21.48 entspricht sie genau der dualen Abbildung f*: V* — V*
(was auch die gleiche Notation erklart).
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Beispiel 22.16 (Adjungierte Abbildung einer orthogonalen bzw. unitdren Abbildung). Ist eine Ma-

trix A € K"*" orthogonal bzw. unitir, also AA=E , 8O ist A=A die adjungierte Matrix zu A.
Fiir eine orthogonale oder unitire Abbildung f eines endlich-dimensionalen Vektorraums mit Ska-
larprodukt ist dementsprechend also f* = £~ 1.

Die fiir diesen Abschnitt angekiindigte Vertraglichkeitsbedingung eines Endomorphismus mit einem
Skalarprodukt besteht nun einfach darin, dass die adjungierte Abbildung mit der urspriinglichen
tibereinstimmt.

Definition 22.17 (Selbstadjungierte Abbildungen). Ein Endomorphismus f: V — V eines endlich-
dimensionalen Vektorraums V mit Skalarprodukt heifit selbstadjungiert, wenn f* = f, also

(f(x),y) = (x, ()
fiir alle x,y € V gilt.

Bemerkung 22.18 (Selbstadjungierte Matrizen). Gemif} Satz 22.14 (b) ist ein Endomorphismus
f:V — V genau dann selbstadjungiert, wenn die Abbildungsmatrix A‘fg beziiglich einer Orthonor-

—T
malbasis B von V symmetrisch bzw. hermitesch ist, also AZ" = A2 gilt. Man bezeichnet symmetri-
sche bzw. hermitesche Matrizen daher manchmal auch als selbstadjungiert.

Beispiel 22.19 (Selbstadjungiertheit orthogonaler Projektionen). Es seien U ein Unterraum eines
endlich erzeugten Vektorraums V mit Skalarprodukt und f: V — V die orthogonale Projektion auf
U wie in Definition 21.29. Ist (xy,...,x;) eine Orthonormalbasis von U, die wir zu einer Orthonor-
malbasis B = (xj,...,x,) von V ergéinzen (siche Satz 21.31), so ist also

fxi)=x;firi=1,...;k und f(x,)=0firi=k+1,...,n,
und damit Ajlf = diag(1,...,1,0,...,0) (mit k Eintréigen 1 und n — k Eintriigen 0) nach Satz 16.26.
Da diese Matrix hermitesch ist, ist f nach Bemerkung 22.18 selbstadjungiert.

Beachte jedoch, dass orthogonale Projektionen (auch wenn man es vom Namen her anders vermuten
konnte) nach Bemerkung 22.4 (a) keine orthogonalen Abbildungen sind, da sie ja in der Regel nicht
invertierbar sind, wie man an der obigen Form der Abbildungsmatrix ablesen kann.

Lemma 22.20 (Determinante und Eigenwerte hermitescher Matrizen). Fiir jede hermitesche Matrix
A e C™" gilt:

(a) detA € R.

(b) Ist A ein Eigenwert von A, so ist A € R.

Beweis.

(a) Dies hatten wir bereits in Folgerung 21.34 (a) gesehen.

(b) Gilt Ax = Ax fiir ein x € K"\ {0}, so auch A% = A%, und damit 1A' = Ax'. Also folgt

AT X =T Ax=%'4 x = Axx,
nach Division durch ¥"x # 0 also A = A und damit A € R. O

Um die weiteren Eigenschaften von orthogonalen, unitiren und selbstadjungierten Abbildungen zu
untersuchen, wenden wir nun einen kleinen Trick an: Es stellt sich heraus, dass alle diese Abbildun-
gen Spezialfille einer noch etwas allgemeineren Klasse von Abbildungen, den sogenannten norma-
len Abbildungen, sind, und dass man viele gemeinsame Eigenschaften orthogonaler, unitirer und

selbstadjungierter Abbildungen auch fiir diese normalen Abbildungen zeigen kann — mit einem ein-
zigen Beweis, der dann alle bisher betrachteten Fille abdeckt.

Definition 22.21 (Normale Endomorphismen und Matrizen).

(a) Ein Endomorphismus f: V — V eines endlich erzeugten Vektorraums V mit Skalarprodukt
heifit normal, wenn f* o f = fo f* gilt.
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(b) Eine Matrix A € K™*" heifit normal, wenn ATA—AA gilt.
Bemerkung 22.22.

(a) Da die Verkettung von Morphismen der Matrixmultiplikation entspricht, ist ein Endomor-
phismus nach Satz 22.14 (b) genau dann normal, wenn seine Abbildungsmatrix beziiglich
einer beliebigen Orthonormalbasis normal ist.

(b) Der Begriff eines normalen Endomorphismus ist ebenso wie der eines selbstadjungierten
Endomorphismus ein theoretisches Konzept, fiir das es keine einfache geometrische Inter-
pretation gibt. Auch sollte der Name ,,normal* nicht dartiber hinwegtéduschen, dass es fiir
einen Endomorphismus durchaus nicht normal ist, normal zu sein: Die ,,meisten* Endomor-
phismen sind dies nicht. Die speziellen Morphismen, die wir in diesem Kapitel betrachten
wollen, haben diese Eigenschaft jedoch:

Beispiel 22.23.

(a) Ist f: V — V ein orthogonaler bzw. unitirer Endomorphismus eines endlich-dimensionalen

Vektorraums V mit Skalarprodukt, so gilt f* = f~! nach Beispiel 22.16, und daher auch
frof=flof=idv=fof ' =fof".
Ist f selbstadjungiert, also f* = f, so gilt natiirlich trivialerweise ebenfalls f*o f = fo f*.

Orthogonale, unitdre und selbstadjungierte Endomorphismen (und damit auch Matrizen)
sind also normal.

(b) Jede Diagonalmatrix A = diag(Ay,...,4,) ist normal: Wegen A= diag(Ay,...,A,) ist dann
nimlich A' A = diag(|A1]%,...,|Ax|?) = AA". Da eine solche Matrix nach Lemma 22.7 und
Lemma 22.20 nur dann orthogonal, unitir oder selbstadjungiert sein kann, wenn |A;| = 1
bzw. A; € R fiir alle i gilt, gibt es insbesondere also auch normale Endomorphismen, die
nicht von der Form wie in (a) sind.

Wir wollen jetzt solche normalen Endomorphismen und Matrizen untersuchen — um nach Beispiel
22.23 (a) dann jedes Ergebnis dazu auf orthogonale, unitére und selbstadjungierte Endomorphismen
anwenden zu konnen.

Lemma 22.24 (Eigenschaften normaler Endomorphismen). Es seien V ein endlich erzeugter Vek-
torraum mit Skalarprodukt und f: V — 'V ein normaler Endomorphismus. Dann gilt:

@) Fiiralle x €V gilt f*(x)]| = |/ )].

(b) Ist x ein Eigenvektor von f zum Eigenwert A, so ist x auch ein Eigenvektor von f* zum
Eigenwert A.

(c) Eigenvektoren von f zu verschiedenen Eigenwerten stehen senkrecht aufeinander.
Beweis.
(a) Furx e Vst
* * * * (*) s
£l = (7 (), f* () = (e f(FA () = ()
wobei wir in (x) die Normalitit von f ausgenutzt haben.
(b) Essei f(x) = Ax. Dann ist

I (x) = Ax|* = f*(X)—1x,f*(X)—IX>
= (), () = A x, 1)) = A (f(x),2) + A4 (x,x)

a

= (f(x),£(x) = A (f(x),0) = A (x, f(x)) + AL (x,x)
= (f(x) = Ax, f(x) — Ax)
07

(f(0), () = IF @)1,

—
el

und damit f*(x) — Ax = 0.
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(c) Sind x,y € V und f(x) = Ax sowie f(y) = uy mit A # u, so folgt

Aey) = (Rxy) 2 (7 @0) = (6. 0)) = (vpy) = 1 (),
also (A — ) (x,y) = 0. Wegen A # u ergibt sich daraus sofort (x,y) = 0. O

22.C Der Spektralsatz

Wir kommen nun zum Hauptresultat dieses Kapitels. Es besagt, dass normale Endomorphismen
mit zerfallendem charakteristischen Polynom stets diagonalisierbar sind, und zwar sogar mit einer
Orthonormalbasis. Dieser Satz wird der Spektralsatz genannt, da die Menge aller Eigenwerte eines
Endomorphismus oft als das Spektrum dieses Endomorphismus bezeichnet wird und dieser Satz
durch die Diagonalisierbarkeit eine Aussage liber diese Eigenwerte und ihre Vielfachheiten macht.

Satz 22.25 (Spektralsatz). Fiir einen Endomorphismus f eines endlich-dimensionalen Vektorraums
V mit Skalarprodukt sind dquivalent:

(a) fist normal und Y zerfiillt in Linearfaktoren;

(b) V besitzt eine Orthonormalbasis aus Eigenvektoren von f.
Insbesondere ist f dann nach Folgerung 19.30 also diagonalisierbar; man sagt fiir (b) auch, dass f
orthogonal bzw. unitdr diagonalisierbar ist.
Beweis.

(a) = (b): Wir zeigen diese Richtung mit Induktion {iber n := dimV’; der Fall n = 0 ist trivial.
Fiir den Induktionsschritt n — 1 — n sei nun also n > 0.
Da yr nach Voraussetzung in Linearfaktoren zerfillt, gibt es einen Eigenwert A von f mit
zugehorigem Eigenvektor x;. Durch Normieren konnen wir diesen so wihlen, dass ||x;|| = 1.
Es sei U = Lin(x)).
Wir ergénzen nun x; zu einer Orthonormalbasis B = (xj,x5,...,x,) von V, so dass nach
Bemerkung 21.40 also B’ = (x},...,x],) eine Orthonormalbasis von U+ ist. Unser Ziel ist
es, die Induktionsvoraussetzung auf die Einschrinkung von f auf U+ anzuwenden. Dazu
miissen wir die folgenden Dinge tiberpriifen:

e f(UY) C U™, d.h. f ldsst sich zu einem Endomorphismus f|,.: U+ — U' ein-
schrinken: Fiir alle x € U+ gilt

(F(x),x1) = {x, f*(x1)) (Satz 22.14 (a))

o~

I
P

x,Ix1> (Lemma 22.24 (b), da f normal)

{x,x1)

Il
o >

(wegen x € U,

und damit auch f(x) € U*.

e Die Einschrinkung f' := f|,.: U+ — U erfiillt die Voraussetzung (a) des Satzes:
Fiir die Abbildungsmatrix A? gilt

s (2] 0
Ay = 0| A%

(wobei gemiB Satz 16.26 die erste Spalte aus f(x;) = Ax; und die Nullen neben A aus
f(U*) c U+ folgen). Da f normal ist, ist nun nach Bemerkung 22.22 (a)

AP 0 AP0
— — —
B AB - B 4B ’
0 Af/ Af/ 0 Af/ Afl

—T —T
B AB _ AB 4B
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also A?: und damit f’ normal; und wegen x(r) = (t — 4) x(t) zerfillt mit x; auch
Xy in Linearfaktoren.

Nach der Induktionsvoraussetzung gibt es nun also eine Orthonormalbasis (x;,...,x,) von
U+ aus Eigenvektoren von f (bzw. f'), so dass wie gewiinscht (x1,...,x,) eine Orthonor-
malbasis von V' aus Eigenvektoren von f ist.

(b) = (a): Es sei B eine Orthonormalbasis von V aus Eigenvektoren von f. Dann ist die Ab-
bildungsmatrix A = A? nach Folgerung 19.30 eine Diagonalmatrix. Insbesondere ist diese
Matrix normal nach Beispiel 22.23 (b) und hat ein zerfallendes charakteristisches Polynom
nach Folgerung 19.36 (a). Dasselbe gilt damit auch fiir f. O

Da der Spektralsatz in der Praxis sehr hdaufig gebraucht wird, schreiben wir ihn hier auch noch einmal
in Matrixform auf:

Folgerung 22.26 (Spektralsatz in Matrixform). Fiir eine quadratische Matrix A € K"*" sind dqui-
valent:

(a) A ist normal und Y zerfillt in Linearfaktoren;

(b) es gibt eine orthogonale bzw. unitire Matrix T, so dass
T 'AT =T'AT = diag(A1,..., A)
eine Diagonalmatrix (mit den Eigenwerten Ay, ..., A, von A auf der Diagonale) ist.
Man sagt fiir (b) wieder, dass A orthogonal bzw. unitdr diagonalisierbar ist.

Beweis. Essei f = fs: K" — K", x — Ax die zu A gehorige lineare Abbildung, so dass umgekehrt
also A = A die Abbildungsmatrix von f beziiglich der Standardbasis von K" ist. Wir versehen K"
mit dem Standardskalarprodukt, fiir das die Standardbasis natiirlich eine Orthonormalbasis ist.

Nach Bemerkung 22.22 (a) ist A nun genau dann normal mit in Linearfaktoren zerfallendem charak-
teristischen Polynom, wenn dies fiir f gilt. Dies ist nach dem Spektralsatz 22.25 wiederum genau
dann der Fall, wenn K" eine Orthonormalbasis (xj,...,x,) aus Eigenvektoren von f bzw. A besitzt.
MitT = (x;| -+ |x,) und Ay,...,A, den Eigenwerten zu xy, ..., x, ist diese Aussage nach Folgerung
19.30 und Lemma 22.3 (b) aber genau dquivalent dazu, dass 7' orthogonal bzw. unitir istund 7 'AT
die Diagonalmatrix mit Eintrdgen Ay, ..., A, ist. O

Beispiel 22.27. Die fiir uns wichtigsten Spezialfille von Folgerung 22.26 sind:

(a) K= C und A ist hermitesch oder unitir: Dann ist A nach Bemerkung 22.23 (a) normal, und
wegen des Fundamentalsatzes der Algebra aus Satz 6.11 zerfidllt x4 in Linearfaktoren. Also
ist A dann nach Folgerung 22.26 unitér diagonalisierbar.

(b) K =R und A ist symmetrisch (also selbstadjungiert): Wie in (a) ist A auch dann wieder
normal. Auflerdem konnen wir A auch als komplexe hermitesche Matrix auffassen; das cha-
rakteristische Polynom zerfillt dann zumindest iiber C wieder in Linearfaktoren, d. h. es ist
xa(t) = (t—A1)--- (¢t — A,) mit den Eigenwerten A,,...,4, € C von A. Diese Eigenwerte
sind nach Lemma 22.20 (b) aber reell, und damit zerfillt y4 sogar iiber R in Linearfaktoren.
Wir erhalten so den sicher wichtigsten Fall des Spektralsatzes:

’ Symmetrische reelle Matrizen sind stets orthogonal diagonalisierbar.

(¢) K=R und A ist orthogonal: Dann muss )4 nicht notwendig in Linearfaktoren zerfallen —
wie z. B. bei einer Drehung in R? wie in Beispiel 19.13 (c). Nach Folgerung 19.40 ist A dann
also auch nicht notwendig diagonalisierbar.

Beispiel 22.28. Die Berechnung der Matrix 7 in Folgerung 22.26 bzw. der Orthonormalbasis in Satz
22.25 ist mit unserem Vorwissen nicht mehr weiter kompliziert: Wir berechnen mit dem Verfahren
von Gram-Schmidt aus Satz 21.31 Orthonormalbasen aller Eigenrdume — besonders einfach ist dies
natiirlich fiir alle eindimensionalen Eigenrdume, weil wir fiir diese nur jeweils einen normierten
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Eigenvektor bendtigen. Nach Lemma 22.24 (c) erhalten wir auf diese Art eine orthonormale Familie,
und wegen der aus dem Spektralsatz folgenden Diagonalisierbarkeit sogar eine Orthonormalbasis.

Als konkretes Beispiel sei
(21 2%2
A= (1 2) e R**~.

Die Matrix A ist offensichtlich reell symmetrisch und damit nach Beispiel 22.27 (b) orthogonal
diagonalisierbar. Wie iiblich (siehe Beispiel 19.16) berechnen wir dazu zuerst die Eigenwerte und
-rdaume von A. Die Rechnung zeigt, dass A zwei Eigenwerte besitzt, und zwar

1
e A; = 3 mit Eigenraum Eig(A,3) = Lin ( } ), also normiertem Eigenvektor 7 . ( } ) , und

1
e A, = 1 mit Eigenraum Eig(A, 1) = Lin (11 ) , also normiertem Eigenvektor 7 . (11 )

(wie man durch Riickwirtseinsetzen auch leicht bestitigen kann). Beachte, dass wir dabei fiir die
Bestimmung der Orthonormalbasen das Standardskalarprodukt nehmen miissen und nicht die durch
A bestimmte Bilinearform b(x,y) = TAy. Dies wird aus dem Beweis von Folgerung 22.26 deutlich;
man sieht es aber auch schon daran, dass wir nach Bemerkung 22.2 (b) fiir eine orthogonale Matrix
ja Spaltenvektoren brauchen, die beziiglich des Standardskalarprodukts orthonormal sind.

Schreiben wir diese Vektoren nun wie iiblich als Spalten in eine Matrix, so erhalten wir also die

orthogonale Matrix
1 1 1

(wie man leicht sieht, bilden die Spalten in der Tat eine Orthonormalbasis von R? beziiglich des
Standardskalarprodukts), und es gilt dann

-1 T . A O (3 0
T ATTAT<0 A2)<0 1),

wie man auch leicht durch direkte Matrixmultiplikation (bzw. Inversenbildung) iiberpriifen kann.
Aufgabe 22.29 (Wurzelziehen fiir Matrizen). Es sei A € R"*" eine symmetrische Matrix. Man zeige:
(a) IstA positiv semidefinit, so gibt es eine eindeutig bestimmte symmetrische positiv semidefi-
nite Matrix B € R"*" mit B> = A. Man nennt sie die Wurzel aus A.
(b) Ist A nicht positiv semidefinit, so kann es zwar eine Matrix B € R"*" mit B2=A geben, aber
keine symmetrische.
Aufgabe 22.30.

(a) Esseien V ein endlich-dimensionaler unitdrer Vektorraum und f: V — V ein Endomorphis-
mus. Zeige, dass die folgenden drei Aussagen dquivalent sind:

@ ff=-71.
(i1) Es gibt eine Orthonormalbasis von V aus Eigenvektoren von f, und der Realteil jedes
Eigenwerts ist 0.

(iii) Fiir alle x € V gilt (x, f(x)) € iR.

(b) Man zeige: Fiir alle n € N5 und jede Matrix A € R"*" mit AT+ A =0ist E — A invertierbar
und (E —A)"'(E+A) € SO(n).

Aufgabe 22.31. Es sei B € R"*" eine symmetrische Matrix. Zeige, dass es eine Matrix A € R"*"
gibt mit A3 +A = B.

In seiner urspriinglichen Form macht der Spektralsatz 22.25 eine Aussage iiber Endomorphismen.
Wir wollen nun sehen, dass man ihn jedoch ebenso gewinnbringend auf Bilinearformen bzw. Sesqui-
linearformen anwenden kann — denn obwohl sich deren Gramsche Matrizen nach Bemerkung 21.8
zunichst einmal anders transformieren als die Abbildungsmatrizen von Endomorphismen (ndmlich
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mit A — TTAT statt mit A — T~!AT), stimmen diese beiden Transformationsregeln fiir eine ortho-
gonale bzw. unitire Matrix 7 ja liberein.

Als Erstes wollen wir eine in der Praxis besonders wichtige Charakterisierung positiv definiter Ma-
trizen (bzw. Bilinear- oder Sesquilinearformen) mit Hilfe von Eigenwerten angeben. Wir stellen sie
im Folgenden noch einmal mit dem uns bereits aus Satz 21.42 bekannten Hurwitz-Kriterium zusam-
men und erweitern diese Aussagen auch auf negativ definite und indefinite Matrizen, da wir dies fiir
die spitere Anwendung auf Extremwertuntersuchungen bendtigen werden (siehe Satz 26.20).

Satz 22.32 (Kriterien fiir die Definitheit von Matrizen). Es sei A € K"*" eine symmetrische (fiir
K =R) bzw. hermitesche (fiir K = C) Matrix. Ferner sei A € K& fiir k = 1,...,n die Matrix, die
aus den ersten k Zeilen und Spalten von A besteht. Dann gilt:

(a) (Eigenwertkriterium)

A ist genau dann positiv definit / negativ definit / positiv semidefinit / negativ semidefinit,
wenn A >0/A <0/A >0/ <0 fiir jeden (nach Lemma 22.20 (b) reellen) Eigenwert A
von A gilt.

A ist genau dann indefinit, wenn A mindestens einen positiven und einen negativen Eigenwert
besitzt.

(b) (Hurwitz-Kriterium)
A ist genau dann positiv definit, wenn detAy > 0 fiir alle k.

A ist genau dann negativ definit, wenn detAy; > 0 fiir alle geraden und detA; < 0 fiir alle
ungeraden k.

Ist detA # O, so ist A genau dann positiv bzw. negativ semidefinit, wenn A positiv bzw. negativ
definit ist.

Ist detA # 0, so ist A genau dann indefinit, wenn A weder positiv noch negativ definit
ist, also wenn die Vorzeichenfolge von detAy fiir k = 1,...,n weder (+,+,+,...) noch
(—,+,—,+,...) ist.

Beweis.

(a) Nach der Folgerung 22.26 aus dem Spektralsatz gibt es eine orthogonale bzw. unitire Matrix
T mit TAT = diag(A,...,A,), wobei A, ..., A, die Eigenwerte von A sind. Analog zu
Bemerkung 21.12 hat A nun genau dann eine der betrachteten Definitheitseigenschaften,
wenn diese fiir die Diagonalmatrix diag(Ai,...,A,) gilt. Die Aussage folgt damit unmittelbar
aus Beispiel 21.15 (a) bzw. Folgerung 21.18.

(b) Der Fall der positiven Definitheit ist genau Satz 21.42. Weiterhin ist A genau dann negativ
definit, wenn ¥'Ax < 0 und damit X" (—A)x > 0 fiir alle x € K"\ {0} gilt, also genau dann,
wenn —A positiv definit ist. Anwenden von Satz 21.42 auf —A ergibt in diesem Fall also
wegen det(—A;) = (—1)¥ detA; die Behauptung.

Ist nun detA # 0, so ist A invertierbar, d. h. es ist Eig(4,0) = KerA = {0} und damit O kein
Eigenwert von A. Nach (a) ist A damit genau dann positiv bzw. negativ semidefinit, wenn A
positiv bzw. negativ definit ist, und indefinit, wenn dies beides nicht der Fall ist. OJ

Bemerkung 22.33. Zur Bestimmung der Definitheitseigenschaften einer symmetrischen bzw. her-
miteschen Matrix A mit Satz 22.32 ist das Hurwitz-Kriterium oftmals geeigneter, da die Berechnung
von Determinanten einfacher ist als die aller Eigenwerte. Es liefert aber nicht in jedem Fall eine
Entscheidung: Ist detA = 0, so lésst sich mit dem Hurwitz-Kriterium in der Regel keine allgemeine
Aussage treffen. Dies zeigt das Beispiel der drei Matrizen

diag(0,1,1), diag(0,—1,—1) und diag(0,1,—1),

die nach Satz 22.32 (a) positiv semidefinit, negativ semidefinit bzw. indefinit sind, fiir die aber alle
Untermatrizen der ersten k = 1,2,3 Zeilen und Spalten die Determinante 0 haben.
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Aufgabe 22.34. Es sei A = (a;;);; € R"*" eine symmetrische reelle Matrix mit
ai; > Y laijl
J#i
fur allei = 1,...,n. Beweise, dass A dann positiv definit ist — symmetrische Matrizen, deren Diago-
naleintrige im Vergleich zu den anderen ,,grof} genug® sind, sind also positiv definit.

Als weitere Anwendung des Spektralsatzes auf symmetrische Bilinearformen bzw. Sesquilinearfor-
men konnen wir dafiir den folgenden ,,Normalformensatz* zeigen, der die Aussage von Bemerkung
21.33 auf den nicht notwendig positiv definiten Fall verallgemeinert:

Satz 22.35 (Trégheitssatz von Sylvester). Es seien V ein endlich erzeugter K-Vektorraum und b
eine symmetrische Bilinearform (fiir K = R) bzw. hermitesche Sesquilinearform (fiir K = C). Dann
gibt es eine Basis B von 'V, beziiglich der die Gramsche Matrix von b die einfache Form

Ey 0

AB = diag(1,...,1,—-1,...,-1,0,...,0) = —E
S—— —— —
k 1 0 0

hat. Dabei ist die Anzahl k bzw. | der Eintrdge 1 bzw. —1 auf der Diagonalen durch b bereits ein-
deutig bestimmt, und zwar ist k bzw. | gleich

(a) der maximalen Dimension eines Unterraums von V, auf dem b positiv bzw. negativ definit
ist; und

(b) der (mit Vielfachheiten gezdhlten) Anzahl der positiven bzw. negativen Eigenwerte einer
beliebigen Gramschen Matrix zu b.

Beweis. Wir teilen den Beweis in zwei Teile:

Teil 1: Als Erstes zeigen wir die Eindeutigkeit von k& und / und den Ausdruck aus (a). Dazu betrach-
ten wir eine beliebige Basis B = (x1,...,x,) von V, fiir die A® = (b(x;,x;)); ; die im Satz angegebene
Form hat. Dann ist U := Lin(xy,...,x;) sicher ein k-dimensionaler Unterraum von V, auf dem b po-
sitiv definit ist, denn die Gramsche Matrix der Einschrinkung von b auf Uy ist ja gerade die positiv
definite Matrix Ey. Genauso sieht man natiirlich, dass U_ := Lin(x;1,...,x,) ein (n — k)-dimensio-
naler Unterraum ist, auf dem b negativ semidefinit ist.

Ist nun andererseits U <V ein beliebiger Unterraum, auf dem b positiv definit ist, so ist mit dem eben
gefundenen U_ sicher U NU_ = {0}, denn fiir ein x € U NU_ mit x # 0 ergébe sich aus b(x,x) >0
wegen x € U und b(x,x) < 0 wegen x € U_ sofort ein Widerspruch. Mit der Dimensionsformel aus
Satz 14.25 erhalten wir also

dimU = dim(UNU_) +dim(U +U_) —dimU_ < 0+n— (n—k) = k.
—_——

<n

Also ist k wirklich die maximale Dimension eines Unterraums von V, auf dem b positiv definit ist.
Analog zeigt man die entsprechende Aussage fiir /. Wir haben damit also den Ausdruck fiir k und /
in (a) bewiesen, und somit auch die Eindeutigkeit der im Satz angegebenen Matrixdarstellung.

Teil 2: Wir zeigen nun (konstruktiv) die Existenz einer Basis B wie in der Behauptung und dabei
den Ausdruck aus (b). Dazu sei zunichst B’ eine beliebige Basis von V. Nach Lemma 21.11 bzw.
Konstruktion 21.18 ist mit b auch die Gramsche Matrix A := Ag, symmetrisch bzw. hermitesch. Wir
gehen nun in zwei Schritten vor:

e Schritt 1: Drehung auf Diagonalform.

Aus dem Spektralsatz folgt wie in Beispiel 22.27 die Existenz einer orthogonalen bzw. uni-
taren Matrix 7', so dass

TTAT = diag(Ar,...,A)
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eine Diagonalmatrix mit den (nach Lemma 22.20 (b) reellen) Eigenwerten A4y,...,4, von A
ist. Dabei wihlen wir die Reihenfolge der Spalten von 7 und damit der Diagonaleintrige der
Matrix so, dass die Eigenwerte A1,..., A positiv, Ax.1,..., A1y negativ, und Agyvq,..., 4,
gleich O sind.

e Schritt 2: Koordinatenstreckung auf Normalform.

Wir setzen nun

T 1 1
S=§ =diag ey ,1,...,1 | € GL(n,K).
(\/Mll VAt )
Dann ist
—T <T=T T .
TS ATS=S T ATS=S -diag(y,...,A,) S =diag(1,...,1,—1,...,—1,0,...,0).

Nach Lemma 16.41 gibt es nun aber eine Basis B, so dass die Basiswechselmatrix ABB gleich TS
ist. Mit der Transformationsregel fiir Bilinearformen aus Satz 21.7 (bzw. fiir Sesquilinearformen aus
Konstruktion 21.18) hat die Matrix Ag dann die gewiinschte Form, wobei k und / wie in (b) sind. [

Bemerkung 22.36.

(a) Im Fall einer positiv definiten symmetrischen Bilinearform bzw. hermiteschen Sesquiline-
arform ist natiirlich k = n und [ = 0 in Satz 22.35, so dass Aff die Einheitsmatrix ist. Diese
Aussage ist genau die uns schon bekannte Existenz von Orthonormalbasen zu Skalarproduk-
ten wie in Bemerkung 21.33.

(b) Natiirlich gibt es auch vom Tréigheitssatz 22.35 eine Matrixform: Fiir jede reelle symmetri-
sche bzw. komplexe hermitesche Matrix A € K"*" gibt es (wie in Teil 2 des Beweises) eine

invertierbare Matrix 7, so dass TTAT die in Satz 22.35 angegebene Gestalt hat. Dabei sind
auch hier dann die Anzahlen &k und / der Diagonaleintrige 1 bzw. —1 eindeutig bestimmt und
gleich der maximalen Dimension eines Unterraums von K", auf dem A positiv bzw. negativ

definit ist, sowie gleich der Anzahl der positiven bzw. negativen Eigenwerte von ETAS fiir
eine beliebige invertierbare Matrix S € GL(n,KK). Mit den uns bekannten Entsprechungen
zwischen Bilinearformen bzw. Sesquilinearformen und Matrizen ergeben sich diese Aussa-
gen unmittelbar aus Satz 22.35 angewendet auf b(x,y) =x'Ay.

Insbesondere bedeutet dies, dass die Matrizen A und STAS fiir alle S GL(n,K) die gleiche
Anzahl positiver (und analog negativer) Eigenwerte haben — obwohl die Eigenwerte selbst ja

nicht iibereinstimmen, da A und S AS im Allgemeinen nicht dhnlich zueinander sind. Diese
Aussage, die aus unserem Satz 22.35 folgt, wird in der Literatur auch oft Tréigheitssatz von
Sylvester genannt. Aus ihr leitet sich auch der Name , Trigheitssatz* ab: Der Satz zeigt,
dass sich die Anzahlen der positiven und negativen Eigenwerte einer hermiteschen Matrix

. =T . .. . . . . v
unter Transformationen der Form A — S A S nicht dndern, sich also in diesem Sinne ,,trige
verhalten.

Die in Teil 2 vom Beweis des Tréigheitssatzes 22.35 konstruierte Transformation, um eine gegebene
reelle symmetrische Bilinearform in die dort angegebene Normalform zu bringen, hat auch eine
einfache geometrische Bedeutung. Der Einfachheit halber betrachten wir diese zunéchst im positiv
definiten Fall, also wenn alle Diagonaleintrige der transformierten Matrix gleich 1 sind.

Konstruktion 22.37 (Hauptachsentransformation). Wir betrachten ein Skalarprodukt auf R” mit
Gramscher Matrix A € R”*" und wollen es visualisieren, indem wir die nach Definition 21.13 zuge-

horige Norm ||x|| = VxTAx betrachten und die Menge
M:={xeR":|x|=1}={xeR":x"Ax=1}

aller Punkte mit Norm 1 zeichnen, also den ,,Rand der Einheitskugel* beziiglich des Skalarprodukts.
Um M geometrisch zu beschreiben, fithren wir die zwei Schritte in Teil 2 des Beweises von Satz
22.35 durch:
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e Drehung auf Diagonalform: Wir finden nach dem Spektralsatz eine orthogonale Matrix 7T,
so dass TTAT = diag(A,...,A,) =: D eine Diagonalmatrix ist. Als Eigenwerte von A sind
diese Ay,..., A, nach Satz 22.32 (a) positiv.

Wir machen nun die Koordinatentransformation y := T x= TTx, also x = Ty, die wir uns
wegen T € O(n) als Drehung (bzw. Spiegelung) in R” vorstellen kénnen. Mit diesen neuen
Koordinaten ist

FAax=1 & YTTATy=1 & yDy=1 < Ay +-+Ay>=1.

e Koordinatenstreckung auf Normalform: Wegen A; > 0 fiir alle  konnen wir nun noch die wei-

tere Koordinatentransformation z; := v/A; y;, also y; = ﬁ z; firi = 1,...,n durchfiihren, die

einer Streckung der Koordinatenachsen (mit unterschiedlichen Streckfaktoren) entspricht. In
diesen neuen Koordinaten ist nun einfach

XAx=1 & Myi+4Ayi=1 & L4 42=1,
d. h. hier bekommen wir nun den Rand der ,,gewohnlichen Einheitskugel*.

Unsere urspriingliche Menge M ensteht also aus dem Rand der normalen Einheitskugel (in den
Koordinaten z;), indem wir zuerst die einzelnen Koordinaten strecken (Ubergang von den z; zu den
y;) und das resultierende Ellipsoid dann im Raum drehen (Ubergang von den y; zu den x;). Die
gesuchte Menge M ist also wie im folgenden Bild fiir n = 2 dargestellt ein im Raum gedrehtes
Ellipsoid.

22 y2 X2
4Y1
Y2

U

Wie im Bild angedeutet sind die charakteristischen Merkmale dieses Ellipsoids:

X1

N~ x| =1

e Seine Radien sind gerade ﬁ denn dies sind die y;-Werte, die z; = 1 entsprechen;

e Seine Symmetrieachsen werden aufgespannt von den x-Vektoren, die im y-Koordinatensys-
tem den Einheitsvektoren entsprechen — wegen x = Ty also von den Spalten Tey, ..., Te, von
T und damit genau von den Eigenvektoren von A. Diese Symmetrieachsen werden auch als
die Hauptachsen des Ellipsoids bezeichnet — daher der Name Hauptachsentransformation.

Als konkretes Beispiel ist die Menge M = {x € R" : xTAx = 1} fiir die Matrix

(21 2x2
A_(l 2> eR

aus Beispiel 22.28 also aufgrund der dort durchgefiihrten Rechnung eine Ellipse mit Hauptachsen

. (1 . 1
L1n<1> und L1n<_1>
und Radien % bzw. 1 in diesen beiden Richtungen.

Bemerkung 22.38. Untersuchen wir die Menge M = {x € R" : x" Ax = 1} wie in Konstruktion 22.37
fiir eine symmetrische Matrix A, die nicht mehr notwendig positiv definit ist, so kénnen wir immer
noch das Verfahren aus Teil 2 des Beweises von Satz 22.35 anwenden, erhalten jedoch am Ende in
den Koordinaten z; eine quadratische Gleichung, deren Koeffizienten 1, —1 und O sein konnen (je
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nachdem, wie viele Eigenwerte von A positiv, negativ bzw. 0 sind). Bis auf Permutation dieser Varia-
blen erhalten wir so z. B. fiir n = 2 als Moglichkeiten fiir ein nicht-leeres M wie im folgenden Bild
neben einem Kreis (bei zwei positiven Eigenwerten) eine Hyperbel (bei einem positiven und einem
negativen Eigenwert) und ein Geradenpaar (bei einem positiven Eigenwert und einem Eigenwert 0):

22 22 22

A Zl Zl
N | |

a+4=1 #-=1 Z2=1
Kreis Hyperbel Geradenpaar

Wie in Konstruktion 22.37 ist die urspriingliche Menge M dann eine in den Koordinatenrichtungen
gestreckte und anschlieBend gedrehte Variante dieser Bilder. Hat A keinen positiven Eigenwert, so
ist M = 0, da eine Summe von Quadraten mit nicht-positiven Vorfaktoren niemals 1 ergeben kann.
Fiir n > 2 gibt es natiirlich entsprechend mehr qualitativ verschiedene Moglichkeiten fiir M.

4 -2 =2
Aufgabe 22.39. Die symmetrische reelle Matrix A= | —2 7 4 | hat genau die beiden Ei-
-2 4 7

genwerte 3 und 12. Da alle Eigenwerte positiv sind, ist A nach Satz 22.32 (b) also positiv definit und
bestimmt somit ein Skalarprodukt auf R3.

(a) Berechne eine orthogonale Matrix T, so dass 7 'AT eine Diagonalmatrix ist.

(b) Bestimme mit einer Hauptachsentransformation die Punkte der Menge {x € R?: xTAx = 3},

die vom Ursprung (beziiglich des Standardskalarprodukts) den kleinsten Abstand haben.

Aufgabe 22.40. Man zeige: Ist A € Mat(n x n,C) normal, so ist A genau dann hermitesch, wenn
alle Eigenwerte von A reell sind.

Aufgabe 22.41 (Normalform antisymmetrischer Bilinearformen). Es sei V ein endlich-dimensiona-
ler Vektorraum iiber einem Korper K € {Q,R,C}. Wir nennen eine Bilinearform b auf V' antisym-
metrisch, wenn b(x,y) = —b(y,x) fiir alle x,y € V gilt, und eine Matrix A € K"*" antisymmetrisch,
wenn AT = —A ist. Analog zu Lemma 21.11 sieht man sofort, dass b genau dann antisymmetrisch
ist, wenn Af fiir eine beliebige Basis B von V antisymmetrisch ist. Man zeige:

(a) Zu jeder antisymmetrischen Bilinearform b auf V gibt es eine Basis B von V, so dass

| 0
mit 1= (? 01> € K¥*2

0 0

>
S

gilt, also so dass Ag eine Blockdiagonalmatrix mit einer gewissen Anzahl k von Blocken /7
(mit 0 < 2k < n) und n — 2k anschlieBenden Nullzeilen und -spalten ist.

(Hinweis: Ist b # 0, so zeige man die Existenz eines zweidimensionalen Unterraums U <V,
so dass die Einschrinkung von b auf U beziiglich einer geeigneten Basis die Gramsche
Matrix [ hat, und verwende dann Induktion iiber dimV wie im Beweis des Spektralsatzes.)

(b) Die Determinante jeder ganzzahligen antisymmetrischen Matrix ist eine Quadratzahl.



22. Endomorphismen euklidischer und unitirer Rdume 307

22.D Die Singulirwertzerlegung

Als Abschluss der linearen Algebra wollen wir nun noch sehen, dass die Eigenwerttheorie und der
Spektralsatz iiberraschenderweise sogar auf beliebige lineare Abbildungen mit unterschiedlichem
Start- und Zielraum angewendet werden konnen — und damit eine Briicke zuriick zu Kapitel 16
schlagen, in dem wir derartige Abbildungen untersucht haben.

Dazu erinnern wir uns an unseren ersten Normalformensatz 17.29: Zu einem Morphismus f: V — W
zwischen endlich-dimensionalen Vektorrdaumen V und W gibt es stets Basen B und C von V bzw. W,
so dass die zugehorige Abbildungsmatrix die besonders einfache Form

B,C __ Er 0
A= (%W)

hat. Wir suchen nun nach einer analogen Aussage, bei der V und W Vektorrdume mit Skalarprodukt
sind und wir nur Orthonormalbasen B und C zulassen wollen. Da uns dies mehr einschrinkt, erwar-
ten wir natiirlich, dass die zugehorige Normalform dann nicht mehr ganz so einfach sein wird. Wir
werden allerdings sehen, dass es gentigt, statt der Einsen auf der ,,.Diagonalen‘ der Abbildungsma-
trix beliebige positive reelle Zahlen zuzulassen. Daher fiihren wir fiir derartige Matrizen zunéchst
eine einfache Notation ein:

Notation 22.42 (Nichtquadratische Diagonalmatrizen). Im Folgenden wollen wir auch eine nicht
notwendig quadratische Matrix D = (d, ;); j € K™*" als Diagonalmatrix bezeichnen, wenn d; ; = 0
fiir alle i # j. Analog zu Definition 19.29 schreiben wir fiir A, ..., A, € K mit r < min(m,n)

M 0
| 0

D =diag(Ay,...,A) == 0 A e Kmxn
0 0

(wobei die GroBe der Matrix aus dieser Schreibweise nicht ersichtlich ist und aus dem Zusammen-
hang klar sein muss). Oft verlangen wir dabei, dass A1, ..., A, ungleich 0 sind, in diesem Fall ist dann
natiirlich r = rk D.

Beachte, dass auch diese Diagonalmatrizen wie erwartet transponiert und multipliziert werden kon-
nen: Ist D = diag(A4,...,A4,) € K™*", so ist z. B. auch

D" =diag(A;,...,A,) €K™ und D'D=diag(A?,...,A%) € K"
Damit kénnen wir nun den angekiindigten Normalformensatz beweisen, der in der Literatur unter

dem Namen Singuldrwertzerlegung bekannt ist. Fiir den Beweis ist es praktisch, zunéchst die Ma-
trixform dieses Satzes zu betrachten.

Satz 22.43 (Singuldrwertzerlegung). Zu jeder Matrix A € K™*" gibt es orthogonale bzw. unitiire
Matrizen S € K"" und T € K"™", so dass

STIAT =S'AT = diag(Ay,...,A,) =D €K™
eine Diagonalmatrix mit reellen positiven Ay, ..., A, und r = kA ist.

Die Ay, ..., A, sind dabei bis auf die Reihenfolge eindeutig bestimmt und heiflen die Singulidrwerte
von A. Man nennt die Produktdarstellung A= SDT~! = § DT die Singulirwertzerlegung von A.

Beweis. Wir zeigen zunichst die Eindeutigkeit der Singuldrwerte: Sind S und T beliebige ortho-
gonale bzw. unitidre Matrizen der passenden Grofen, so dass STAT = diag(Ay,...,A,) =: D eine
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Diagonalmatrix mit reellen positiven Ay,..., A, ist, so folgt durch Transponieren und Konjugieren
auchT'A' §=D' = DT, und damit

T'AAT =T'A'AT =T'A' SS'AT =D" D = diag(A?,...,1?) €K™
Die Matrix A'A ist also dhnlich zur Diagonalmatrix D D und hat damit dieselben Eigenwerte. Die
AZ,..., A% (und damit auch A,,...,A,) sind daher bis auf ihre Reihenfolge eindeutig bestimmt, ném-
lich als die Eigenwerte von A'A ungleich 0.

Der Existenzbeweis der Singuldrwertzerlegung ist konstruktiv und erfolgt in zwei Schritten, wobei
der erste eng an den gerade gefiihrten Eindeutigkeitsbeweis angelehnt ist:

(a) Bestimmung von T'.
.. . . . . A oI .
Motiviert durch den Eindeutigkeitsbeweis betrachten wir die Matrix A' A € K"*". Sie ist

symmetrisch bzw. hermitesch, da AA =A'A gilt. Nach dem Spektralsatz gibt es wie in
Beispiel 22.27 also eine orthogonale bzw. unitire Matrix 7, so dass TATAT eine Diago-
nalmatrix ist; ihre Eintrige sind auferdem nach Lemma 22.20 (b) reell.
Nun ist A' A aber auch positiv semidefinit, denn es gilt ¥'A ' Ax = Ax' Ax = || Ax||> > O fiir
alle x € K", wobei || - || die Norm des Standardskalarprodukts ist. Die Eintriige der Diagonal-
matrix TTXTA T sind also nicht-negativ, und damit konnen wir (nach geeigneter Anordnung
der Spalten von T)
T'ATAT = diag(A%,...,12)

mit reellen Ay,..., A4, > O fiir ein < n schreiben.

(b) Bestimmung von S.

Fiir alle i < r setzen wir
1
= IIA Tei € K™,
Diese Vektoren sind beziiglich des Standardskalarprodukts orthonormal, denn fiir alle i, j < r
gilt
T (a) 2 1 fllr l = j7
58 = 7L)L TAAT]—U ~diag(Af,...,A%) -ej = 0 fiiri

Wir konnen sie nach Satz 21.31 also zu einer Orthonormalbasis von K erginzen (insbeson-
dere ist damit auch r < m) und daraus die orthogonale bzw. unitére Matrix S := (s1 | -+ | $m)
bilden.

Wir setzen nun D := diag(4,,...,A,) € K™*" und behaupten, dass damit wie gewiinscht STAT = D,
also AT = SD € K"™*" gilt. Die Gleichheit dieser Matrizen iiberpriifen wir spaltenweise, d. h. wir
zeigen ATe; = SDe; firallei=1,...,n
e Fiiri <rgilt ATe; = s;A; = S De; nach (b).
e Fiiri > rist
|ATei|> =TT A'ATe; 2 T - diag(A2,...,A2) - ¢; = 0
und damit A Te; = 0 = S De;, da die i-te Spalte De; von D eine Nullspalte ist.

MitS' AT = D sind A und D nun insbesondere auch dquivalent, so dass r = rk D = rkA nach Folge-
rung 16.46 gilt. Damit ist alles gezeigt. U

Bemerkung 22.44 (Singuldrwertzerlegung fiir Morphismen). Wie am Anfang dieses Abschnitts er-
wihnt gibt es natiirlich auch eine Variante der Singuldrwertzerlegung fiir Morphismen: Ist f: V — W
eine lineare Abbildung zwischen zwei endlich-dimensionalen Vektorrdumen V und W mit Skalar-
produkt, so gibt es Orthonormalbasen B und C von V bzw. W, so dass die Abbildungsmatrix A?’C
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diagonal mit reellen nicht-negativen Diagonaleintrigen ist. Dies ergibt sich unmittelbar aus Satz
22.43 angewendet auf eine Abbildungsmatrix von f zu beliebigen Orthonormalbasen.

Beispiel 22.45.

(a) Ist A € K™ quadratisch, symmetrisch bzw. hermitesch und positiv semidefinit, so finden
wir nach dem Spektralsatz wie in Beispiel 22.27 bereits eine orthogonale bzw. unitire Matrix
T, so dass T'AT eine Diagonalmatrix ist, deren Eintridge nach Satz 22.32 (a) in R>¢ liegen.
Wir konnen in Satz 22.43 dann also § = T wihlen, und die Singuldrwerte von A sind genau
die positiven Eigenwerte von A. In diesem Sinne kann man Singuldrwerte also als eine Art
Verallgemeinerung von Eigenwerten auf nicht-quadratische Matrizen ansehen.

(b) Wir wollen eine Singularwertzerlegung der Matrix

10
A=1[1 1 c R3*2
0 1

finden. Um wie im Beweis von Satz 22.43 zunédchst T zu bestimmen, miissen wir nach dem
Spektralsatz die symmetrische, positiv semidefinite Matrix

1 0
ATA<(1) i ?) 11 G é) € R?*2
0 1

orthogonal diagonalisieren. Dies haben wir bereits in Beispiel 22.28 getan: Mit

1 1 1 . T.T (3 0\ . 2,12 0

Die Singulérwerte von A sind also A; = V3und Ay = v/1=1. Um nun auch S zu bestimmen,

setzen wir

1 0 1

1 1 1 1 1
s1:=—ATe 1 1)-— =—-12
I DRV R P ﬁ(l) Ve \ 7
und $7: 1ATe ! (1)

2= 0= 2= =— "
A2 V2 \

Beachte, dass diese beiden Vektoren in der Tat wie in der Konstruktion von Satz 22.43 be-
ziiglich des Standardskalarprodukts orthonormal sind. Wir erginzen sie leicht (z. B. mit dem
Gram-Schmidtschen Orthonormalisierungsverfahren aus Satz 21.31, falls man das Ergebnis
nicht bereits sieht) mit
1
. 1 1

s3:=—-| —
zu einer Orthonormalbasis von R3. Nach Satz 22.43 gilt dann mit der orthogonalen Matrix
S:=(s1]|s2]s3) € O(3) also

A0 V3 0
STIAT=8STAT=10 XL|=[0 1
0 0 0 0

Beispiel 22.46 (Approximation von Matrizen). Eine interessante praktische Anwendung der Sin-
guldrwertzerlegung liegt im Bereich der Approximation von Matrizen durch Matrizen von kleinem
Rang. Dazu betrachten wir einmal eine (groBe) reelle Matrix A = (a;);x € R™*" in ihrer Singu-
larwertzerlegung A = SDTT, so dass fiiralle i = 1,...,mund k = 1,...,n nach Definition 15.5 der
Matrixmultiplikation also

.
ajx = Z SijAjt,j (*)
Jj=1
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mit § = (s;j)ij € O(m), D = diag(Ay,...,4,) e R und T = (t)jx € O(n) gilt, wobei wir die
Singuldrwerte so anordnen, dass A; > Ay > --- > A, > 0 (mit » = rkA). Beachte dabei, dass in (x)
nur die ersten r Spalten von S und T benétigt werden, da in der Summe stets j < r ist. Wir konnen
A also exakt rekonstruieren, wenn wir nur diese Teile von S und 7 sowie die Diagonaleintrige von
D kennen, was insgesamt

rm+rn+r=r(m+n+1)
reelle Zahlen sind. Wenn der Rang r von A klein ist, konnen dies deutlich weniger Zahlen sein als
wenn wir uns die mn Eintréige von A direkt merken wiirden. Matrizen von kleinem Rang lassen sich
so also z. B. in einem Computer sehr platzsparend abspeichern.

Fiir beliebige Matrizen, deren Rang in der Regel nicht klein ist, =m0 oo o
hilft dies natiirlich erst einmal nicht weiter. Ist es aber akzepta- ; :
bel, die Werte in der Matrix nur ndherungsweise abzuspeichern —
wie etwa in dem Foto rechts, das mit seinen Helligkeitswerten
eine reelle Matrix der Grée 1000 x 1000 darstellt — so konnen
wir sehr einfach eine Ndherung des Ausdrucks () bilden, indem
wir ein 7 < r wihlen und in der Summe nur die groBten (also
,.wichtigsten) # Singulérwerte A, ..., A, beriicksichtigen, d. h.
A =SDTT durch die Matrix

A'=SD'T"T mit D' =diag(Ai,...,A)

vom Rang ' approximieren, die sich dann wieder wie oben platzsparend abspeichern ldsst. Wir kon-
nen den Fehler, den wir dabei machen, auch genau berechnen: Beziiglich des Standardskalarprodukts
auf R™*" wie in Beispiel 21.15 (c) ist

lA—a'|? = ||s(p-D)TT|?

= Spur(T(D—D")TS"-S(D—D"TT)
~—~—
=F

"2 Spur (D—D")(D—D)TT)
—~—
_ 2
~ YA
j>r

Da die weggelassenen Singulidrwerte A; fiir j > 1 ja die kleinsten sind, ist diese Néherung also wirk-
lich recht gut. In der Tat kann man zeigen, dass sie im Sinne dieser Norm die beste Approximation
von A durch eine Matrix vom Rang hichstens 7 ist. Fiir das obige Foto sind drei dieser Ndherungen
fiir (sehr) kleine Werte von 7’ unten dargestellt.

=1

Die urspriingliche Matrix A € R1000x1000 hat wie erwartet maximalen Rang r = 1000, ihre Singu-
larwerte fallen allerdings sehr schnell ab: Schon der erste im mittleren Ndherungsfoto weggelassene
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Singuldrwert A4 ist nur noch etwa %-mal so groB wie A, und nahezu die Hilfte aller Singuldrwerte
ist kleiner als ﬁ - A1, so dass deren Vernachlédssigung praktisch nicht mehr erkennbar ist. Das rech-
te Nidherungsfoto belegt weniger als 5 % des Speicherplatzes der urspriinglichen Matrix A. Beachte
auch, dass man dem linken Néherungsfoto ansieht, dass es Rang 1 hat: Alle Spalten der Matrix sind
ein Vielfaches desselben Vektors, haben also von oben nach unten die gleiche Helligkeitsverteilung
und sind nur insgesamt heller oder dunkler — wodurch das deutlich sichtbare Streifenmuster entsteht.

Aufgabe 22.47 (Pseudoinverse Matrizen).

(a) Zeige mit Hilfe der Singuldrwertzerlegung, dass es zu jeder Matrix A € R"*" eine eindeutig
bestimmte Matrix B € R"*™ gibt, so dass

ABA=A und BAB=B
gilt und AB sowie BA symmetrisch sind.

Ist A quadratisch und invertierbar, so ist dann offensichtlich B = A~!. Fiir eine allgemeine
Matrix A, die nicht notwendig quadratisch ist bzw. vollen Rang hat, nennt man B daher die

pseudoinverse Matrix zu A.
0 00
A= (1 1 0)

(b) Berechne fiir die Matrix
eine Singuldrwertzerlegung und die pseudoinverse Matrix wie in (a).
Aufgabe 22.48. Es seien n € N5 und A € R**". Man zeige:
(a) Die Matrix A kann geschrieben werden als A = OB, wobei Q € O(n) eine orthogonale und
B € R™*" eine positiv semidefinite symmetrische Matrix ist.
(b) In der Zerlegung aus (a) ist die Matrix B eindeutig bestimmt. Ist dariiber hinaus A invertier-
bar, so ist auch Q eindeutig bestimmt, und B ist sogar positiv definit.

Wie kann man diese Aussage geometrisch interpretieren?

Aufgabe 22.49. Zu einer Matrix A = (a; ;); j € K™ mit A # 0 bezeichne 64 € R ihren grofiten
Singuldarwert. Man zeige beziiglich der Normen zu den Standardskalarprodukten auf K, K" und
Km)(l’l:
Ax
(a) oa :max{”xH 1X€E K”\{O}};
(b) oa < [|A]l.

Fiir welche Matrizen gilt hierbei die Gleichheit?



