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22. Endomorphismen euklidischer und unitärer Räume

Im letzten Kapitel haben wir ausführlich Vektorräume studiert, auf denen die Zusatzstruktur ei-
nes Skalarprodukts gegeben ist. Wir wollen nun sehen, welche Vorteile und Vereinfachungen uns
diese Zusatzstruktur bei der Untersuchung von Endomorphismen gibt, wenn diese in gewissem Sin-
ne mit dem gegebenen Skalarprodukt verträglich sind. Das zentrale Resultat dieses Kapitels wird
schließlich der sogenannte Spektralsatz in Abschnitt 22.C sein, der die Diagonalisierbarkeit solcher
Endomorphismen garantiert und – wie wir sehen werden – so universell ist, dass er bei geschickter
Anwendung auch Aussagen über Bilinearformen bzw. Sesquilinearformen und in Abschnitt 22.D
sogar über lineare Abbildungen mit unterschiedlichem Start- und Zielraum machen kann.

22.A Orthogonale und unitäre Abbildungen

Die natürlichste Verträglichkeitsbedingung zwischen Morphismen und Skalarprodukten ist vermut-
lich die folgende.

Definition 22.1 (Orthogonale und unitäre Abbildungen und Matrizen).
(a) Ein Endomorphismus f : V → V eines Vektorraums V mit Skalarprodukt heißt orthogonal

(im Fall K= R) bzw. unitär (im Fall K= C), wenn

⟨ f (x), f (y)⟩= ⟨x,y⟩
für alle x,y ∈V gilt.

(b) Eine Matrix A∈Rn×n heißt orthogonal, wenn ATA = E gilt, also wenn A invertierbar ist mit
A−1 = AT. Wir bezeichnen die Menge aller orthogonalen n×n-Matrizen mit O(n)⊂ Rn×n.

Eine Matrix A ∈ Cn×n heißt unitär, wenn ATA = E gilt, also wenn A invertierbar ist mit
A−1 = AT. Die Menge aller unitären n×n-Matrizen wird mit U(n)⊂ Cn×n bezeichnet.

Wie üblich schreiben wir diese Bedingung im Folgenden oft in beiden Fällen als ATA = E.

Bemerkung 22.2.
(a) Ist (x1, . . . ,xn) eine Basis von V , so genügt es, die Bedingung eines orthogonalen bzw. uni-

tären Morphismus f : V → V für alle Paare von Basisvektoren zu überprüfen: Ist nämlich〈
f (xi), f (x j)

〉
=
〈
xi,x j

〉
für alle i, j = 1, . . . ,n, so gilt wegen der Linearität von f und der

Bilinearität bzw. Sesquilinearität des Skalarprodukts auch für alle x = λ1x1 + · · ·+λnxn und
y = µ1x1 + · · ·+µnxn

⟨ f (x), f (y)⟩=
n

∑
i, j=1

λiµ j
〈

f (xi), f (x j)
〉
=

n

∑
i, j=1

λiµ j
〈
xi,x j

〉
= ⟨x,y⟩ .

(b) Eine Matrix A = (ai, j)i, j ∈ Kn×n ist genau dann orthogonal bzw. unitär, wenn die Spalten
von A eine Orthonormalbasis bezüglich des Standardskalarprodukts bilden: Nach Definition
des Matrixprodukts ist nämlich

AT A =

(
n

∑
j=1

a j,i a j,k

)
i,k

.

Der Ausdruck ∑
n
j=1 a j,i a j,k ist aber genau das Standardskalarprodukt der i-ten mit der k-ten

Spalte von A. Daher bilden diese Spalten genau dann eine Orthonormalbasis bezüglich des
Standardskalarprodukts, wenn dieser Ausdruck gleich 1 für i = k und 0 für i ̸= k ist, also
wenn ATA = E ist.
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Es wäre also vermutlich konsequenter, eine reelle Matrix A mit ATA = E orthonormal statt
orthogonal zu nennen. Die Bezeichnung „orthogonale Matrix“ ist in der Literatur aber so
üblich, dass wir hier nicht davon abweichen wollen.

Wir wollen nun als Erstes zeigen, dass die oben eingeführten Bedingungen für orthogonale und
unitäre Matrizen wie erwartet denen der zugehörigen Endomorphismen entsprechen, sofern es sich
um Abbildungsmatrizen bezüglich einer Orthonormalbasis handelt.

Lemma 22.3. Es sei V ein endlich-dimensionaler K-Vektorraum mit Skalarprodukt und B eine Or-
thonormalbasis von V . Dann gilt:

(a) Ein Endomorphismus f : V →V ist genau dann orthogonal bzw. unitär, wenn AB
f orthogonal

bzw. unitär ist.

(b) Eine weitere Basis B′ von V ist genau dann auch eine Orthonormalbasis, wenn AB′,B ortho-
gonal bzw. unitär ist.

Beweis. Es seien B = (x1, . . . ,xn) und A =
(〈

xi,y j
〉)

i, j für Vektoren y1, . . . ,yn ∈Kn. Dann gilt

ATA =

(
n

∑
j=1

〈
x j,yi

〉〈
x j,yk

〉)
i,k

(Definition 15.5)

=

(〈
n

∑
j=1

〈
x j,yi

〉
x j,yk

〉)
i,k

(Sesquilinearität des Skalarprodukts)

= (⟨yi,yk⟩)i,k . (Satz 21.37 (a))

(a) Setzen wir yi = f (xi) für alle i und eine lineare Abbildung f : V → V , so ist A = AB
f nach

Satz 21.37 (b). Damit ist diese Abbildungsmatrix genau dann orthogonal bzw. unitär, wenn(
⟨ f (xi), f (xk)⟩

)
i,k = E =

(
⟨xi,xk⟩

)
i,k ist, also nach Bemerkung 22.2 (a) wenn f orthogonal

bzw. unitär ist.
(b) Setzen wir B′ = (y1, . . . ,yn), so ist A = AB′,B nach Satz 21.37 (c). Damit ist diese Basiswech-

selmatrix genau dann orthogonal bzw. unitär, wenn
(
⟨yi,yk⟩

)
i,k = E ist, also wenn B′ eine

Orthonormalbasis ist. □

Bemerkung 22.4.
(a) Gemäß Definition 22.1 (b) sind orthogonale bzw. unitäre Matrizen invertierbar. Mit Lemma

22.3 (a) bedeutet dies also, dass orthogonale bzw. unitäre Endomorphismen eines endlich
erzeugten Vektorraums mit Skalarprodukt stets Isomorphismen sind.

(b) Nach Definition 22.1 (a) erhalten orthogonale und unitäre Abbildungen Skalarprodukte, und
damit auch Längen, Orthogonalität und (im reellen Fall) Winkel zwischen zwei Vektoren.
Über R kann man sie sich daher als Drehungen und Spiegelungen (bzw. Kombinationen
davon) vorstellen. Dieselbe Interpretation gilt dann nach Lemma 22.3 (a) natürlich auch für
orthogonale Matrizen.
Das folgende Beispiel zeigt dies deutlich im zweidimensionalen Fall (für höhere Dimensio-
nen siehe auch Aufgabe 22.10).

Beispiel 22.5 (O(2)). Nach Bemerkung 22.2 (b) ist eine Matrix A = (a1 |a2) ∈R2×2 mit a1,a2 ∈R2

genau dann orthogonal, wenn bezüglich des Standardskalarprodukts

∥a1∥= 1, ∥a2∥= 1 und a1 ⊥ a2

gilt. Also liegt a1 auf dem Einheitskreis und lässt sich nach der Polarkoordinatendarstellung aus Satz
9.27 damit als

a1 =

(
cosα

sinα

)
für ein α ∈ R schreiben, und a2 entsteht aus a1 durch eine positive oder negative Drehung um π

2 .
Wir erhalten also die folgenden beiden Möglichkeiten:
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α

a2 =

(
−sinα

cosα

)

e1

e2

a1 =

(
cosα

sinα

)
a1 =

(
cosα

sinα

)

e1

(b) A =

(
cosα sinα

sinα −cosα

)

e2

(a) A =

(
cosα −sinα

sinα cosα

)

α

a2 =

(
sinα

−cosα

)

In beiden Fällen werden die Einheitsvektoren e1 und e2 durch A (wie durch die grauen Pfeile ange-
deutet) auf a1 und a2 abgebildet. In (a) haben wir damit geometrisch eine Drehung um den Winkel
α wie in Beispiel 19.13, in (b) eine Spiegelung an der gestrichelt eingezeichneten Winkelhalbieren-
den zwischen e1 und a1. Damit lassen sich alle Elemente von O(2) in der Tat wie erwartet durch
Drehungen und Spiegelungen beschreiben.

Zum Ende dieses Abschnitts wollen wir noch kurz die wichtigsten Eigenschaften orthogonaler und
unitärer Matrizen untersuchen.

Lemma 22.6 (O(n) und U(n) als Gruppen). Sind A,B ∈ Kn×n orthogonal bzw. unitär, so auch AB
und A−1. Insbesondere sind O(n) und U(n) also Gruppen (siehe Definition 3.1) mit der Matrixmul-
tiplikation als Verknüpfung; man nennt sie die orthogonalen bzw. unitären Gruppen.

Beweis. Es gelte ATA = BTB = E. Dann folgt zunächst

ABTAB
15.7 (d)
= BTATAB = BTEB = BTB = E.

Wegen A−1 ·A = A−1 A = E = E ist außerdem A−1 = A−1, und damit auch

A−1T
A−1 =

(
A−1)TA−1 15.20 (a)

=
(
AT)−1A−1 15.18 (a)

=
(
AAT)−1

= E−1 = E.

Also sind AB und A−1 ebenfalls orthogonal bzw. unitär. Da auch die Einheitsmatrix (als neutrales
Element) orthogonal bzw. unitär ist, sind O(n) und U(n) damit Gruppen bezüglich der Matrixmulti-
plikation. □

Lemma 22.7 (Determinante und Eigenwerte orthogonaler und unitärer Matrizen). Für jede ortho-
gonale oder unitäre Matrix A gilt:

(a) |detA|= 1.

(b) Ist λ ein Eigenwert von A, so ist |λ |= 1.

Beweis.

(a) Wie im Beweis von Folgerung 21.34 (a) ist detA = detA. Aus ATA = E ergibt sich damit
sofort 1 = detE = detAT ·detA = detA ·detA = |detA|2.

(b) Gilt Ax = λx für ein x ∈Kn\{0}, so ist auch Ax = λx, nach Transponieren also xTAT
= λxT.

Zusammen erhalten wir mit ATA = E so

xTx = xTATAx = λxT ·λx = |λ |2 · xTx,

wegen xTx ̸= 0 also |λ |2 = 1, und damit |λ |= 1. □

Bemerkung 22.8. Nach Lemma 22.3 (a) gelten die Aussagen aus Lemma 22.7 genauso für ortho-
gonale bzw. unitäre Endomorphismen endlich erzeugter Vektorräume mit Skalarprodukt.
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Bemerkung 22.9 (Spezielle orthogonale und unitäre Matrizen). Bei einer orthogonalen Matrix kön-
nen die Determinante und die Eigenwerte nach Lemma 22.7 nur 1 und −1 sein. Für eine komplexe
unitäre Matrix ist dagegen jede Zahl auf dem komplexen Einheitskreis möglich. In beiden Fällen
spielen aber diejenigen Matrizen, deren Determinante gleich 1 ist, eine große Rolle. Man definiert
daher:

(a) Eine orthogonale Matrix A ∈ O(n) heißt spezielle orthogonale Matrix, wenn detA = 1 gilt.
Die Menge der speziellen orthogonalen n×n-Matrizen wird mit SO(n) bezeichnet.

(b) Eine unitäre Matrix A ∈ U(n) heißt spezielle unitäre Matrix, wenn detA = 1 gilt. Man be-
zeichnet die Menge der speziellen unitären n×n-Matrizen mit SU(n).

Man sieht leicht, dass auch SO(n) und SU(n) Gruppen bezüglich der Matrixmultiplikation sind,
denn wenn detA = detB = 1 gilt, so ist nach Satz 18.6 ja auch det(AB) = detA−1 = 1.

In Beispiel 22.5 haben die Drehungen in (a) Determinante 1, und die Spiegelungen in (b) Determi-
nante −1. In diesem Fall entsprechen die Elemente von SO(2) also den Drehungen, die Elemente
von O(2)\SO(2) den Spiegelungen. In der Tat gilt eine analoge Interpretation auch in höheren Di-
mensionen. Um dies zu einer exakten Aussage machen zu können, bräuchten wir aber natürlich erst
einmal eine exakte Definition der Begriffe „Drehung“ und „Spiegelung“ – was wir hier nicht weiter
verfolgen wollen.

Aufgabe 22.10 (O(3) und O(4)). Man zeige:

(a) Ist A ∈ O(3), so gibt es ein α ∈ R und T ∈ O(3) mit

T−1AT =

±1 0 0
0 cosα −sinα

0 sinα cosα

 .

(b) Ist A ∈ O(4), so gibt es im Allgemeinen kein α ∈ R und T ∈ O(4) mit

T−1AT =


±1 0 0 0
0 ±1 0 0
0 0 cosα −sinα

0 0 sinα cosα

 .

(Hinweis: Untersuche, ob A einen Eigenwert besitzen muss.)

Was bedeutet das Ergebnis geometrisch?

Aufgabe 22.11. Es seien V ein endlich erzeugter euklidischer Vektorraum und v ∈ V mit ∥v∥ = 1.
Wir betrachten den Endomorphismus f : V →V, x 7→ x−2⟨v,x⟩v.

(a) Zeige, dass f eine orthogonale Abbildung ist.

(b) Berechne das charakteristische Polynom χ f .

(c) Wie kann man f geometrisch beschreiben?

Aufgabe 22.12. Zeige, dass für jeden Endomorphismus f : V → V eines endlich-dimensionalen
euklidischen Raums V die folgenden Aussagen äquivalent sind:

(a) Für alle x,y ∈V mit x⊥ y gilt f (x)⊥ f (y).

(b) Es gibt ein λ ∈ R≥0, so dass ∥ f (x)∥= λ∥x∥ für alle x ∈V gilt.

(c) Es gibt ein λ ∈ R≥0 und eine orthogonale Abbildung g : V →V mit f = λg.

Aufgabe 22.13 (QR-Zerlegung). Zeige, dass sich jede reelle invertierbare Matrix A ∈GL(n,R) ein-
deutig in der Form A = QR schreiben lässt, wobei Q ∈ O(n) eine orthogonale Matrix und R eine
obere Dreiecksmatrix mit positiven Diagonaleinträgen ist.

(Hinweis: Bezeichne die Spaltenvektoren von A bzw. Q mit a1, . . . ,an ∈Rn bzw. x1, . . . ,xn ∈Rn und
schreibe die Matrixgleichung A = QR in Gleichungen für diese Spaltenvektoren um.)
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Diese Zerlegung wird in der Vorlesung „Einführung in die Numerik“ im zweiten Studienjahr noch
eine wichtige Rolle spielen. Möchte man ein Gleichungssystem Ax = b lösen, so ist dies mit der
Zerlegung A = QR wie oben natürlich äquivalent zum System Rx = QTb, das sich wegen der oberen
Diagonalform von R einfach durch Rückwärtseinsetzen lösen lässt. In der Regel ist dieses Verfahren
für große Gleichungssysteme schneller und unanfälliger für eine Verstärkung von Rundungsfehlern
als der Gauß-Algorithmus.

53

22.B Selbstadjungierte Abbildungen
In diesem Abschnitt wollen wir eine weitere Art der Verträglichkeit eines Endomorphismus mit
einem Skalarprodukt behandeln. Obwohl sie im Gegensatz zur Bedingung einer orthogonalen bzw.
unitären Abbildung keine einfache geometrische Interpretation besitzt, ist sie dennoch in der Praxis
sehr wichtig – vor allem, da sie einfach an der Abbildungsmatrix abzulesen ist. Um sie einzuführen,
brauchen wir das folgende Konzept der adjungierten Abbildungen.

Satz und Definition 22.14 (Adjungierte Abbildung). Es sei f : V → V ein Endomorphismus eines
endlich-dimensionalen Vektorraums V mit Skalarprodukt. Dann gilt:

(a) Es gibt genau einen Endomorphismus f ∗ : V →V mit

⟨ f (x),y⟩= ⟨x, f ∗(y)⟩
für alle x,y ∈V . Man nennt f ∗ die zu f adjungierte Abbildung.

(b) Ist B eine Orthonormalbasis von V , so gilt für die Abbildungsmatrix von f ∗ bezüglich B

AB
f ∗ = AB

f
T
.

Beweis. Es seien B= (x1, . . . ,xn) eine Orthonormalbasis von V und g : V →V ein Endomorphismus.
Beachte zunächst, dass mit demselben Argument wie in Bemerkung 22.2 (a) genau dann

⟨ f (x),y⟩= ⟨x,g(y)⟩ (∗)
für alle x,y ∈V ist, wenn

〈
f (xi),x j

〉
=
〈
xi,g(x j)

〉
für alle i, j = 1, . . . ,n gilt. Wegen der Hermitizität

des Skalarprodukts ist diese Bedingung nun aber äquivalent zu(〈
x j, f (xi)

〉)
i, j = (

〈
xi,g(x j)

〉
)i, j,

nach Satz 21.37 (b) also zu AB
f
T
= AB

g . Also gibt es genau einen solchen Endomorphismus g, nämlich

denjenigen, der bezüglich der Basis B zur Abbildungsmatrix AB
f
T

gehört. Dies zeigt bereits beide
Teile des Satzes. □

Bemerkung 22.15.

(a) Aufgrund von Satz 22.14 (b) nennt man zu einer Matrix A ∈ Kn×n manchmal AT auch die
adjungierte Matrix und schreibt sie als A∗. Bezüglich einer Orthonormalbasis entsprechen
sich dann also die Konzepte der adjungierten Abbildung und der adjungierten Matrix.

(b) Da offensichtlich ATT
= A für alle A ∈Kn×n gilt, ist nach Satz 22.14 (b) auch ( f ∗)∗ = f für

jeden Endomorphismus f eines endlich erzeugten K-Vektorraums mit Skalarprodukt. Dies
bedeutet, dass nicht nur

⟨ f (x),y⟩= ⟨x, f ∗(y)⟩ , sondern auch ⟨ f ∗(x),y⟩= ⟨x,( f ∗)∗(y)⟩= ⟨x, f (y)⟩
für alle x,y ∈ V gilt: Man kann in einem Skalarprodukt stets die Abbildung f auf der einen
Seite durch f ∗ auf der anderen Seite ersetzen (und umgekehrt).

(c) Für einen Endomorphismus f : V → V eines endlich-dimensionalen euklidischen Vektor-
raum V hatten wir in Aufgabe 21.52 (c) schon eine andere Art gesehen, die adjungierte Ab-
bildung zu konstruieren: Unter Verwendung des natürlichen Isomorphismus zwischen V und
seinem Dualraum V ∗ aus Satz 21.48 entspricht sie genau der dualen Abbildung f ∗ : V ∗→V ∗

(was auch die gleiche Notation erklärt).
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Beispiel 22.16 (Adjungierte Abbildung einer orthogonalen bzw. unitären Abbildung). Ist eine Ma-
trix A ∈ Kn×n orthogonal bzw. unitär, also ATA = E, so ist AT

= A−1 die adjungierte Matrix zu A.
Für eine orthogonale oder unitäre Abbildung f eines endlich-dimensionalen Vektorraums mit Ska-
larprodukt ist dementsprechend also f ∗ = f−1.

Die für diesen Abschnitt angekündigte Verträglichkeitsbedingung eines Endomorphismus mit einem
Skalarprodukt besteht nun einfach darin, dass die adjungierte Abbildung mit der ursprünglichen
übereinstimmt.

Definition 22.17 (Selbstadjungierte Abbildungen). Ein Endomorphismus f : V →V eines endlich-
dimensionalen Vektorraums V mit Skalarprodukt heißt selbstadjungiert, wenn f ∗ = f , also

⟨ f (x),y⟩= ⟨x, f (y)⟩
für alle x,y ∈V gilt.

Bemerkung 22.18 (Selbstadjungierte Matrizen). Gemäß Satz 22.14 (b) ist ein Endomorphismus
f : V → V genau dann selbstadjungiert, wenn die Abbildungsmatrix AB

f bezüglich einer Orthonor-

malbasis B von V symmetrisch bzw. hermitesch ist, also AB
f
T
= AB

f gilt. Man bezeichnet symmetri-
sche bzw. hermitesche Matrizen daher manchmal auch als selbstadjungiert.

Beispiel 22.19 (Selbstadjungiertheit orthogonaler Projektionen). Es seien U ein Unterraum eines
endlich erzeugten Vektorraums V mit Skalarprodukt und f : V → V die orthogonale Projektion auf
U wie in Definition 21.29. Ist (x1, . . . ,xk) eine Orthonormalbasis von U , die wir zu einer Orthonor-
malbasis B = (x1, . . . ,xn) von V ergänzen (siehe Satz 21.31), so ist also

f (xi) = xi für i = 1, . . . ,k und f (xi) = 0 für i = k+1, . . . ,n,

und damit AB
f = diag(1, . . . ,1,0, . . . ,0) (mit k Einträgen 1 und n− k Einträgen 0) nach Satz 16.26.

Da diese Matrix hermitesch ist, ist f nach Bemerkung 22.18 selbstadjungiert.

Beachte jedoch, dass orthogonale Projektionen (auch wenn man es vom Namen her anders vermuten
könnte) nach Bemerkung 22.4 (a) keine orthogonalen Abbildungen sind, da sie ja in der Regel nicht
invertierbar sind, wie man an der obigen Form der Abbildungsmatrix ablesen kann.

Lemma 22.20 (Determinante und Eigenwerte hermitescher Matrizen). Für jede hermitesche Matrix
A ∈ Cn×n gilt:

(a) detA ∈ R.

(b) Ist λ ein Eigenwert von A, so ist λ ∈ R.

Beweis.

(a) Dies hatten wir bereits in Folgerung 21.34 (a) gesehen.

(b) Gilt Ax = λx für ein x ∈Kn\{0}, so auch Ax = λx, und damit xTAT
= λxT. Also folgt

λxTx = xTAx = xTATx = λxTx,

nach Division durch xTx ̸= 0 also λ = λ und damit λ ∈ R. □

Um die weiteren Eigenschaften von orthogonalen, unitären und selbstadjungierten Abbildungen zu
untersuchen, wenden wir nun einen kleinen Trick an: Es stellt sich heraus, dass alle diese Abbildun-
gen Spezialfälle einer noch etwas allgemeineren Klasse von Abbildungen, den sogenannten norma-
len Abbildungen, sind, und dass man viele gemeinsame Eigenschaften orthogonaler, unitärer und
selbstadjungierter Abbildungen auch für diese normalen Abbildungen zeigen kann – mit einem ein-
zigen Beweis, der dann alle bisher betrachteten Fälle abdeckt.

Definition 22.21 (Normale Endomorphismen und Matrizen).
(a) Ein Endomorphismus f : V →V eines endlich erzeugten Vektorraums V mit Skalarprodukt

heißt normal, wenn f ∗ ◦ f = f ◦ f ∗ gilt.
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(b) Eine Matrix A ∈Kn×n heißt normal, wenn ATA = AAT gilt.

Bemerkung 22.22.
(a) Da die Verkettung von Morphismen der Matrixmultiplikation entspricht, ist ein Endomor-

phismus nach Satz 22.14 (b) genau dann normal, wenn seine Abbildungsmatrix bezüglich
einer beliebigen Orthonormalbasis normal ist.

(b) Der Begriff eines normalen Endomorphismus ist ebenso wie der eines selbstadjungierten
Endomorphismus ein theoretisches Konzept, für das es keine einfache geometrische Inter-
pretation gibt. Auch sollte der Name „normal“ nicht darüber hinwegtäuschen, dass es für
einen Endomorphismus durchaus nicht normal ist, normal zu sein: Die „meisten“ Endomor-
phismen sind dies nicht. Die speziellen Morphismen, die wir in diesem Kapitel betrachten
wollen, haben diese Eigenschaft jedoch:

Beispiel 22.23.
(a) Ist f : V →V ein orthogonaler bzw. unitärer Endomorphismus eines endlich-dimensionalen

Vektorraums V mit Skalarprodukt, so gilt f ∗ = f−1 nach Beispiel 22.16, und daher auch

f ∗ ◦ f = f−1 ◦ f = idV = f ◦ f−1 = f ◦ f ∗.

Ist f selbstadjungiert, also f ∗ = f , so gilt natürlich trivialerweise ebenfalls f ∗ ◦ f = f ◦ f ∗.

Orthogonale, unitäre und selbstadjungierte Endomorphismen (und damit auch Matrizen)
sind also normal.

(b) Jede Diagonalmatrix A = diag(λ1, . . . ,λn) ist normal: Wegen AT
= diag(λ1, . . . ,λn) ist dann

nämlich ATA = diag(|λ1|2, . . . , |λn|2) = AAT. Da eine solche Matrix nach Lemma 22.7 und
Lemma 22.20 nur dann orthogonal, unitär oder selbstadjungiert sein kann, wenn |λi| = 1
bzw. λi ∈ R für alle i gilt, gibt es insbesondere also auch normale Endomorphismen, die
nicht von der Form wie in (a) sind.

Wir wollen jetzt solche normalen Endomorphismen und Matrizen untersuchen – um nach Beispiel
22.23 (a) dann jedes Ergebnis dazu auf orthogonale, unitäre und selbstadjungierte Endomorphismen
anwenden zu können.

Lemma 22.24 (Eigenschaften normaler Endomorphismen). Es seien V ein endlich erzeugter Vek-
torraum mit Skalarprodukt und f : V →V ein normaler Endomorphismus. Dann gilt:

(a) Für alle x ∈V gilt ∥ f ∗(x)∥= ∥ f (x)∥.
(b) Ist x ein Eigenvektor von f zum Eigenwert λ , so ist x auch ein Eigenvektor von f ∗ zum

Eigenwert λ .

(c) Eigenvektoren von f zu verschiedenen Eigenwerten stehen senkrecht aufeinander.

Beweis.

(a) Für x ∈V ist

∥ f ∗(x)∥2 = ⟨ f ∗(x), f ∗(x)⟩= ⟨x, f ( f ∗(x))⟩ (∗)
= ⟨x, f ∗( f (x))⟩= ⟨ f (x), f (x)⟩= ∥ f (x)∥2,

wobei wir in (∗) die Normalität von f ausgenutzt haben.

(b) Es sei f (x) = λ x. Dann ist

∥ f ∗(x)−λ x∥2 =
〈

f ∗(x)−λ x, f ∗(x)−λ x
〉

= ⟨ f ∗(x), f ∗(x)⟩−λ ⟨x, f ∗(x)⟩−λ ⟨ f ∗(x),x⟩+λλ ⟨x,x⟩
(a)
= ⟨ f (x), f (x)⟩−λ ⟨ f (x),x⟩−λ ⟨x, f (x)⟩+λλ ⟨x,x⟩
= ⟨ f (x)−λ x, f (x)−λ x⟩
= 0,

und damit f ∗(x)−λ x = 0.
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(c) Sind x,y ∈V und f (x) = λ x sowie f (y) = µ y mit λ ̸= µ , so folgt

λ ⟨x,y⟩=
〈

λ x,y
〉

(b)
= ⟨ f ∗(x),y⟩= ⟨x, f (y)⟩= ⟨x,µ y⟩= µ ⟨x,y⟩ ,

also (λ −µ) ⟨x,y⟩= 0. Wegen λ ̸= µ ergibt sich daraus sofort ⟨x,y⟩= 0. □

22.C Der Spektralsatz

Wir kommen nun zum Hauptresultat dieses Kapitels. Es besagt, dass normale Endomorphismen
mit zerfallendem charakteristischen Polynom stets diagonalisierbar sind, und zwar sogar mit einer
Orthonormalbasis. Dieser Satz wird der Spektralsatz genannt, da die Menge aller Eigenwerte eines
Endomorphismus oft als das Spektrum dieses Endomorphismus bezeichnet wird und dieser Satz
durch die Diagonalisierbarkeit eine Aussage über diese Eigenwerte und ihre Vielfachheiten macht.

Satz 22.25 (Spektralsatz). Für einen Endomorphismus f eines endlich-dimensionalen Vektorraums
V mit Skalarprodukt sind äquivalent:

(a) f ist normal und χ f zerfällt in Linearfaktoren;

(b) V besitzt eine Orthonormalbasis aus Eigenvektoren von f .

Insbesondere ist f dann nach Folgerung 19.30 also diagonalisierbar; man sagt für (b) auch, dass f
orthogonal bzw. unitär diagonalisierbar ist.

Beweis.

(a) ⇒ (b): Wir zeigen diese Richtung mit Induktion über n := dimV ; der Fall n = 0 ist trivial.
Für den Induktionsschritt n−1→ n sei nun also n > 0.

Da χ f nach Voraussetzung in Linearfaktoren zerfällt, gibt es einen Eigenwert λ von f mit
zugehörigem Eigenvektor x1. Durch Normieren können wir diesen so wählen, dass ∥x1∥= 1.
Es sei U = Lin(x1).

Wir ergänzen nun x1 zu einer Orthonormalbasis B = (x1,x′2, . . . ,x
′
n) von V , so dass nach

Bemerkung 21.40 also B′ = (x′2, . . . ,x
′
n) eine Orthonormalbasis von U⊥ ist. Unser Ziel ist

es, die Induktionsvoraussetzung auf die Einschränkung von f auf U⊥ anzuwenden. Dazu
müssen wir die folgenden Dinge überprüfen:

• f (U⊥) ⊂ U⊥, d. h. f lässt sich zu einem Endomorphismus f |U⊥ : U⊥ → U⊥ ein-
schränken: Für alle x ∈U⊥ gilt

⟨ f (x),x1⟩= ⟨x, f ∗(x1)⟩ (Satz 22.14 (a))

=
〈

x,λx1

〉
(Lemma 22.24 (b), da f normal)

= λ ⟨x,x1⟩

= 0 (wegen x ∈U⊥),

und damit auch f (x) ∈U⊥.

• Die Einschränkung f ′ := f |U⊥ : U⊥ →U⊥ erfüllt die Voraussetzung (a) des Satzes:
Für die Abbildungsmatrix AB

f gilt

AB
f =

(
λ 0
0 AB′

f ′

)
(wobei gemäß Satz 16.26 die erste Spalte aus f (x1) = λx1 und die Nullen neben λ aus
f (U⊥)⊂U⊥ folgen). Da f normal ist, ist nun nach Bemerkung 22.22 (a)

AB
f
T

AB
f = AB

f AB
f
T
⇒

 |λ |2 0

0 AB′
f ′

T
AB′

f ′

=

 |λ |2 0

0 AB′
f ′ AB′

f ′
T

 ,
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also AB′
f ′ und damit f ′ normal; und wegen χ f (t) = (t−λ )χ f ′(t) zerfällt mit χ f auch

χ f ′ in Linearfaktoren.

Nach der Induktionsvoraussetzung gibt es nun also eine Orthonormalbasis (x2, . . . ,xn) von
U⊥ aus Eigenvektoren von f (bzw. f ′), so dass wie gewünscht (x1, . . . ,xn) eine Orthonor-
malbasis von V aus Eigenvektoren von f ist.

(b) ⇒ (a): Es sei B eine Orthonormalbasis von V aus Eigenvektoren von f . Dann ist die Ab-
bildungsmatrix A = AB

f nach Folgerung 19.30 eine Diagonalmatrix. Insbesondere ist diese
Matrix normal nach Beispiel 22.23 (b) und hat ein zerfallendes charakteristisches Polynom
nach Folgerung 19.36 (a). Dasselbe gilt damit auch für f . □54

Da der Spektralsatz in der Praxis sehr häufig gebraucht wird, schreiben wir ihn hier auch noch einmal
in Matrixform auf:

Folgerung 22.26 (Spektralsatz in Matrixform). Für eine quadratische Matrix A ∈ Kn×n sind äqui-
valent:

(a) A ist normal und χA zerfällt in Linearfaktoren;

(b) es gibt eine orthogonale bzw. unitäre Matrix T , so dass

T−1AT = T TAT = diag(λ1, . . . ,λn)

eine Diagonalmatrix (mit den Eigenwerten λ1, . . . ,λn von A auf der Diagonale) ist.

Man sagt für (b) wieder, dass A orthogonal bzw. unitär diagonalisierbar ist.

Beweis. Es sei f = fA : Kn→Kn, x 7→ Ax die zu A gehörige lineare Abbildung, so dass umgekehrt
also A = A f die Abbildungsmatrix von f bezüglich der Standardbasis von Kn ist. Wir versehen Kn

mit dem Standardskalarprodukt, für das die Standardbasis natürlich eine Orthonormalbasis ist.

Nach Bemerkung 22.22 (a) ist A nun genau dann normal mit in Linearfaktoren zerfallendem charak-
teristischen Polynom, wenn dies für f gilt. Dies ist nach dem Spektralsatz 22.25 wiederum genau
dann der Fall, wenn Kn eine Orthonormalbasis (x1, . . . ,xn) aus Eigenvektoren von f bzw. A besitzt.
Mit T = (x1 | · · · |xn) und λ1, . . . ,λn den Eigenwerten zu x1, . . . ,xn ist diese Aussage nach Folgerung
19.30 und Lemma 22.3 (b) aber genau äquivalent dazu, dass T orthogonal bzw. unitär ist und T−1AT
die Diagonalmatrix mit Einträgen λ1, . . . ,λn ist. □

Beispiel 22.27. Die für uns wichtigsten Spezialfälle von Folgerung 22.26 sind:

(a) K= C und A ist hermitesch oder unitär: Dann ist A nach Bemerkung 22.23 (a) normal, und
wegen des Fundamentalsatzes der Algebra aus Satz 6.11 zerfällt χA in Linearfaktoren. Also
ist A dann nach Folgerung 22.26 unitär diagonalisierbar.

(b) K = R und A ist symmetrisch (also selbstadjungiert): Wie in (a) ist A auch dann wieder
normal. Außerdem können wir A auch als komplexe hermitesche Matrix auffassen; das cha-
rakteristische Polynom zerfällt dann zumindest über C wieder in Linearfaktoren, d. h. es ist
χA(t) = (t − λ1) · · ·(t − λn) mit den Eigenwerten λ1, . . . ,λn ∈ C von A. Diese Eigenwerte
sind nach Lemma 22.20 (b) aber reell, und damit zerfällt χA sogar über R in Linearfaktoren.
Wir erhalten so den sicher wichtigsten Fall des Spektralsatzes:

Symmetrische reelle Matrizen sind stets orthogonal diagonalisierbar.

(c) K = R und A ist orthogonal: Dann muss χA nicht notwendig in Linearfaktoren zerfallen –
wie z. B. bei einer Drehung in R2 wie in Beispiel 19.13 (c). Nach Folgerung 19.40 ist A dann
also auch nicht notwendig diagonalisierbar.

Beispiel 22.28. Die Berechnung der Matrix T in Folgerung 22.26 bzw. der Orthonormalbasis in Satz
22.25 ist mit unserem Vorwissen nicht mehr weiter kompliziert: Wir berechnen mit dem Verfahren
von Gram-Schmidt aus Satz 21.31 Orthonormalbasen aller Eigenräume – besonders einfach ist dies
natürlich für alle eindimensionalen Eigenräume, weil wir für diese nur jeweils einen normierten



22. Endomorphismen euklidischer und unitärer Räume 301

Eigenvektor benötigen. Nach Lemma 22.24 (c) erhalten wir auf diese Art eine orthonormale Familie,
und wegen der aus dem Spektralsatz folgenden Diagonalisierbarkeit sogar eine Orthonormalbasis.
Als konkretes Beispiel sei

A =

(
2 1
1 2

)
∈ R2×2.

Die Matrix A ist offensichtlich reell symmetrisch und damit nach Beispiel 22.27 (b) orthogonal
diagonalisierbar. Wie üblich (siehe Beispiel 19.16) berechnen wir dazu zuerst die Eigenwerte und
-räume von A. Die Rechnung zeigt, dass A zwei Eigenwerte besitzt, und zwar

• λ1 = 3 mit Eigenraum Eig(A,3) = Lin
(

1
1

)
, also normiertem Eigenvektor

1√
2
·
(

1
1

)
, und

• λ1 = 1 mit Eigenraum Eig(A,1) = Lin
(

1
−1

)
, also normiertem Eigenvektor

1√
2
·
(

1
−1

)
(wie man durch Rückwärtseinsetzen auch leicht bestätigen kann). Beachte, dass wir dabei für die
Bestimmung der Orthonormalbasen das Standardskalarprodukt nehmen müssen und nicht die durch
A bestimmte Bilinearform b(x,y) = xTAy. Dies wird aus dem Beweis von Folgerung 22.26 deutlich;
man sieht es aber auch schon daran, dass wir nach Bemerkung 22.2 (b) für eine orthogonale Matrix
ja Spaltenvektoren brauchen, die bezüglich des Standardskalarprodukts orthonormal sind.

Schreiben wir diese Vektoren nun wie üblich als Spalten in eine Matrix, so erhalten wir also die
orthogonale Matrix

T =
1√
2
·
(

1 1
1 −1

)
∈ O(2)

(wie man leicht sieht, bilden die Spalten in der Tat eine Orthonormalbasis von R2 bezüglich des
Standardskalarprodukts), und es gilt dann

T−1AT = T TAT =

(
λ1 0
0 λ2

)
=

(
3 0
0 1

)
,

wie man auch leicht durch direkte Matrixmultiplikation (bzw. Inversenbildung) überprüfen kann.

Aufgabe 22.29 (Wurzelziehen für Matrizen). Es sei A∈Rn×n eine symmetrische Matrix. Man zeige:

(a) Ist A positiv semidefinit, so gibt es eine eindeutig bestimmte symmetrische positiv semidefi-
nite Matrix B ∈ Rn×n mit B2 = A. Man nennt sie die Wurzel aus A.

(b) Ist A nicht positiv semidefinit, so kann es zwar eine Matrix B ∈Rn×n mit B2 = A geben, aber
keine symmetrische.

Aufgabe 22.30.
(a) Es seien V ein endlich-dimensionaler unitärer Vektorraum und f : V →V ein Endomorphis-

mus. Zeige, dass die folgenden drei Aussagen äquivalent sind:

(i) f ∗ =− f .

(ii) Es gibt eine Orthonormalbasis von V aus Eigenvektoren von f , und der Realteil jedes
Eigenwerts ist 0.

(iii) Für alle x ∈V gilt ⟨x, f (x)⟩ ∈ iR.

(b) Man zeige: Für alle n ∈N>0 und jede Matrix A ∈Rn×n mit AT+A = 0 ist E−A invertierbar
und (E−A)−1(E +A) ∈ SO(n).

Aufgabe 22.31. Es sei B ∈ Rn×n eine symmetrische Matrix. Zeige, dass es eine Matrix A ∈ Rn×n

gibt mit A3 +A = B.

In seiner ursprünglichen Form macht der Spektralsatz 22.25 eine Aussage über Endomorphismen.
Wir wollen nun sehen, dass man ihn jedoch ebenso gewinnbringend auf Bilinearformen bzw. Sesqui-
linearformen anwenden kann – denn obwohl sich deren Gramsche Matrizen nach Bemerkung 21.8
zunächst einmal anders transformieren als die Abbildungsmatrizen von Endomorphismen (nämlich



302 Andreas Gathmann

mit A 7→ T TAT statt mit A 7→ T−1AT ), stimmen diese beiden Transformationsregeln für eine ortho-
gonale bzw. unitäre Matrix T ja überein.

Als Erstes wollen wir eine in der Praxis besonders wichtige Charakterisierung positiv definiter Ma-
trizen (bzw. Bilinear- oder Sesquilinearformen) mit Hilfe von Eigenwerten angeben. Wir stellen sie
im Folgenden noch einmal mit dem uns bereits aus Satz 21.42 bekannten Hurwitz-Kriterium zusam-
men und erweitern diese Aussagen auch auf negativ definite und indefinite Matrizen, da wir dies für
die spätere Anwendung auf Extremwertuntersuchungen benötigen werden (siehe Satz 26.20).

Satz 22.32 (Kriterien für die Definitheit von Matrizen). Es sei A ∈ Kn×n eine symmetrische (für
K= R) bzw. hermitesche (für K= C) Matrix. Ferner sei Ak ∈Kk×k für k = 1, . . . ,n die Matrix, die
aus den ersten k Zeilen und Spalten von A besteht. Dann gilt:

(a) (Eigenwertkriterium)

A ist genau dann positiv definit / negativ definit / positiv semidefinit / negativ semidefinit,
wenn λ > 0 / λ < 0 / λ ≥ 0 / λ ≤ 0 für jeden (nach Lemma 22.20 (b) reellen) Eigenwert λ

von A gilt.

A ist genau dann indefinit, wenn A mindestens einen positiven und einen negativen Eigenwert
besitzt.

(b) (Hurwitz-Kriterium)

A ist genau dann positiv definit, wenn detAk > 0 für alle k.

A ist genau dann negativ definit, wenn detAk > 0 für alle geraden und detAk < 0 für alle
ungeraden k.

Ist detA ̸= 0, so ist A genau dann positiv bzw. negativ semidefinit, wenn A positiv bzw. negativ
definit ist.

Ist detA ̸= 0, so ist A genau dann indefinit, wenn A weder positiv noch negativ definit
ist, also wenn die Vorzeichenfolge von detAk für k = 1, . . . ,n weder (+,+,+, . . .) noch
(−,+,−,+, . . .) ist.

Beweis.

(a) Nach der Folgerung 22.26 aus dem Spektralsatz gibt es eine orthogonale bzw. unitäre Matrix
T mit T TAT = diag(λ1, . . . ,λn), wobei λ1, . . . ,λn die Eigenwerte von A sind. Analog zu
Bemerkung 21.12 hat A nun genau dann eine der betrachteten Definitheitseigenschaften,
wenn diese für die Diagonalmatrix diag(λ1, . . . ,λn) gilt. Die Aussage folgt damit unmittelbar
aus Beispiel 21.15 (a) bzw. Folgerung 21.18.

(b) Der Fall der positiven Definitheit ist genau Satz 21.42. Weiterhin ist A genau dann negativ
definit, wenn xTAx < 0 und damit xT(−A)x > 0 für alle x ∈ Kn\{0} gilt, also genau dann,
wenn −A positiv definit ist. Anwenden von Satz 21.42 auf −A ergibt in diesem Fall also
wegen det(−Ak) = (−1)k detAk die Behauptung.

Ist nun detA ̸= 0, so ist A invertierbar, d. h. es ist Eig(A,0) = KerA = {0} und damit 0 kein
Eigenwert von A. Nach (a) ist A damit genau dann positiv bzw. negativ semidefinit, wenn A
positiv bzw. negativ definit ist, und indefinit, wenn dies beides nicht der Fall ist. □

Bemerkung 22.33. Zur Bestimmung der Definitheitseigenschaften einer symmetrischen bzw. her-
miteschen Matrix A mit Satz 22.32 ist das Hurwitz-Kriterium oftmals geeigneter, da die Berechnung
von Determinanten einfacher ist als die aller Eigenwerte. Es liefert aber nicht in jedem Fall eine
Entscheidung: Ist detA = 0, so lässt sich mit dem Hurwitz-Kriterium in der Regel keine allgemeine
Aussage treffen. Dies zeigt das Beispiel der drei Matrizen

diag(0,1,1), diag(0,−1,−1) und diag(0,1,−1),

die nach Satz 22.32 (a) positiv semidefinit, negativ semidefinit bzw. indefinit sind, für die aber alle
Untermatrizen der ersten k = 1,2,3 Zeilen und Spalten die Determinante 0 haben.
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Aufgabe 22.34. Es sei A = (ai, j)i, j ∈ Rn×n eine symmetrische reelle Matrix mit

ai,i > ∑
j ̸=i
|ai, j|

für alle i = 1, . . . ,n. Beweise, dass A dann positiv definit ist – symmetrische Matrizen, deren Diago-
naleinträge im Vergleich zu den anderen „groß genug“ sind, sind also positiv definit.

Als weitere Anwendung des Spektralsatzes auf symmetrische Bilinearformen bzw. Sesquilinearfor-
men können wir dafür den folgenden „Normalformensatz“ zeigen, der die Aussage von Bemerkung
21.33 auf den nicht notwendig positiv definiten Fall verallgemeinert:

Satz 22.35 (Trägheitssatz von Sylvester). Es seien V ein endlich erzeugter K-Vektorraum und b
eine symmetrische Bilinearform (für K= R) bzw. hermitesche Sesquilinearform (für K= C). Dann
gibt es eine Basis B von V , bezüglich der die Gramsche Matrix von b die einfache Form

AB
b = diag(1, . . . ,1︸ ︷︷ ︸

k

,−1, . . . ,−1︸ ︷︷ ︸
l

,0, . . . ,0) =


Ek 0

−El

0 0


hat. Dabei ist die Anzahl k bzw. l der Einträge 1 bzw. −1 auf der Diagonalen durch b bereits ein-
deutig bestimmt, und zwar ist k bzw. l gleich

(a) der maximalen Dimension eines Unterraums von V , auf dem b positiv bzw. negativ definit
ist; und

(b) der (mit Vielfachheiten gezählten) Anzahl der positiven bzw. negativen Eigenwerte einer
beliebigen Gramschen Matrix zu b.

Beweis. Wir teilen den Beweis in zwei Teile:

Teil 1: Als Erstes zeigen wir die Eindeutigkeit von k und l und den Ausdruck aus (a). Dazu betrach-
ten wir eine beliebige Basis B = (x1, . . . ,xn) von V , für die AB

b = (b(xi,x j))i, j die im Satz angegebene
Form hat. Dann ist U+ := Lin(x1, . . . ,xk) sicher ein k-dimensionaler Unterraum von V , auf dem b po-
sitiv definit ist, denn die Gramsche Matrix der Einschränkung von b auf U+ ist ja gerade die positiv
definite Matrix Ek. Genauso sieht man natürlich, dass U− := Lin(xk+1, . . . ,xn) ein (n−k)-dimensio-
naler Unterraum ist, auf dem b negativ semidefinit ist.

Ist nun andererseits U ≤V ein beliebiger Unterraum, auf dem b positiv definit ist, so ist mit dem eben
gefundenen U− sicher U ∩U− = {0}, denn für ein x ∈U ∩U− mit x ̸= 0 ergäbe sich aus b(x,x)> 0
wegen x ∈U und b(x,x)≤ 0 wegen x ∈U− sofort ein Widerspruch. Mit der Dimensionsformel aus
Satz 14.25 erhalten wir also

dimU = dim(U ∩U−)+dim(U +U−)︸ ︷︷ ︸
≤n

−dimU− ≤ 0+n− (n− k) = k.

Also ist k wirklich die maximale Dimension eines Unterraums von V , auf dem b positiv definit ist.
Analog zeigt man die entsprechende Aussage für l. Wir haben damit also den Ausdruck für k und l
in (a) bewiesen, und somit auch die Eindeutigkeit der im Satz angegebenen Matrixdarstellung.

Teil 2: Wir zeigen nun (konstruktiv) die Existenz einer Basis B wie in der Behauptung und dabei
den Ausdruck aus (b). Dazu sei zunächst B′ eine beliebige Basis von V . Nach Lemma 21.11 bzw.
Konstruktion 21.18 ist mit b auch die Gramsche Matrix A := AB′

b symmetrisch bzw. hermitesch. Wir
gehen nun in zwei Schritten vor:

• Schritt 1: Drehung auf Diagonalform.

Aus dem Spektralsatz folgt wie in Beispiel 22.27 die Existenz einer orthogonalen bzw. uni-
tären Matrix T , so dass

T TAT = diag(λ1, . . . ,λn)
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eine Diagonalmatrix mit den (nach Lemma 22.20 (b) reellen) Eigenwerten λ1, . . . ,λn von A
ist. Dabei wählen wir die Reihenfolge der Spalten von T und damit der Diagonaleinträge der
Matrix so, dass die Eigenwerte λ1, . . . ,λk positiv, λk+1, . . . ,λk+l negativ, und λk+l+1, . . . ,λn
gleich 0 sind.

• Schritt 2: Koordinatenstreckung auf Normalform.

Wir setzen nun

S = ST
= diag

(
1√
|λ1|

, . . . ,
1√
|λk+l |

,1, . . . ,1

)
∈ GL(n,K).

Dann ist

T STAT S = STT TAT S = ST ·diag(λ1, . . . ,λn) ·S = diag(1, . . . ,1,−1, . . . ,−1,0, . . . ,0).

Nach Lemma 16.41 gibt es nun aber eine Basis B, so dass die Basiswechselmatrix AB,B′ gleich T S
ist. Mit der Transformationsregel für Bilinearformen aus Satz 21.7 (bzw. für Sesquilinearformen aus
Konstruktion 21.18) hat die Matrix AB

b dann die gewünschte Form, wobei k und l wie in (b) sind. □

Bemerkung 22.36.
(a) Im Fall einer positiv definiten symmetrischen Bilinearform bzw. hermiteschen Sesquiline-

arform ist natürlich k = n und l = 0 in Satz 22.35, so dass AB
b die Einheitsmatrix ist. Diese

Aussage ist genau die uns schon bekannte Existenz von Orthonormalbasen zu Skalarproduk-
ten wie in Bemerkung 21.33.

(b) Natürlich gibt es auch vom Trägheitssatz 22.35 eine Matrixform: Für jede reelle symmetri-
sche bzw. komplexe hermitesche Matrix A ∈Kn×n gibt es (wie in Teil 2 des Beweises) eine
invertierbare Matrix T , so dass T TAT die in Satz 22.35 angegebene Gestalt hat. Dabei sind
auch hier dann die Anzahlen k und l der Diagonaleinträge 1 bzw.−1 eindeutig bestimmt und
gleich der maximalen Dimension eines Unterraums von Kn, auf dem A positiv bzw. negativ
definit ist, sowie gleich der Anzahl der positiven bzw. negativen Eigenwerte von STAS für
eine beliebige invertierbare Matrix S ∈ GL(n,K). Mit den uns bekannten Entsprechungen
zwischen Bilinearformen bzw. Sesquilinearformen und Matrizen ergeben sich diese Aussa-
gen unmittelbar aus Satz 22.35 angewendet auf b(x,y) = xTAy.

Insbesondere bedeutet dies, dass die Matrizen A und STAS für alle S ∈GL(n,K) die gleiche
Anzahl positiver (und analog negativer) Eigenwerte haben – obwohl die Eigenwerte selbst ja
nicht übereinstimmen, da A und STAS im Allgemeinen nicht ähnlich zueinander sind. Diese
Aussage, die aus unserem Satz 22.35 folgt, wird in der Literatur auch oft Trägheitssatz von
Sylvester genannt. Aus ihr leitet sich auch der Name „Trägheitssatz“ ab: Der Satz zeigt,
dass sich die Anzahlen der positiven und negativen Eigenwerte einer hermiteschen Matrix
unter Transformationen der Form A 7→ STAS nicht ändern, sich also in diesem Sinne „träge“
verhalten.

55

Die in Teil 2 vom Beweis des Trägheitssatzes 22.35 konstruierte Transformation, um eine gegebene
reelle symmetrische Bilinearform in die dort angegebene Normalform zu bringen, hat auch eine
einfache geometrische Bedeutung. Der Einfachheit halber betrachten wir diese zunächst im positiv
definiten Fall, also wenn alle Diagonaleinträge der transformierten Matrix gleich 1 sind.

Konstruktion 22.37 (Hauptachsentransformation). Wir betrachten ein Skalarprodukt auf Rn mit
Gramscher Matrix A ∈Rn×n und wollen es visualisieren, indem wir die nach Definition 21.13 zuge-
hörige Norm ∥x∥=

√
xTAx betrachten und die Menge

M := {x ∈ Rn : ∥x∥= 1}= {x ∈ Rn : xTAx = 1}
aller Punkte mit Norm 1 zeichnen, also den „Rand der Einheitskugel“ bezüglich des Skalarprodukts.
Um M geometrisch zu beschreiben, führen wir die zwei Schritte in Teil 2 des Beweises von Satz
22.35 durch:
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• Drehung auf Diagonalform: Wir finden nach dem Spektralsatz eine orthogonale Matrix T ,
so dass T TAT = diag(λ1, . . . ,λn) =: D eine Diagonalmatrix ist. Als Eigenwerte von A sind
diese λ1, . . . ,λn nach Satz 22.32 (a) positiv.

Wir machen nun die Koordinatentransformation y := T−1x = T Tx, also x = Ty, die wir uns
wegen T ∈ O(n) als Drehung (bzw. Spiegelung) in Rn vorstellen können. Mit diesen neuen
Koordinaten ist

xTAx = 1 ⇔ yTT T ATy = 1 ⇔ yTDy = 1 ⇔ λ1y2
1 + · · ·+λny2

n = 1.

• Koordinatenstreckung auf Normalform: Wegen λi > 0 für alle i können wir nun noch die wei-
tere Koordinatentransformation zi :=

√
λi yi, also yi =

1√
λi

zi für i = 1, . . . ,n durchführen, die

einer Streckung der Koordinatenachsen (mit unterschiedlichen Streckfaktoren) entspricht. In
diesen neuen Koordinaten ist nun einfach

xTAx = 1 ⇔ λ1y2
1 + · · ·+λny2

n = 1 ⇔ z2
1 + · · ·+ z2

n = 1,

d. h. hier bekommen wir nun den Rand der „gewöhnlichen Einheitskugel“.

Unsere ursprüngliche Menge M ensteht also aus dem Rand der normalen Einheitskugel (in den
Koordinaten zi), indem wir zuerst die einzelnen Koordinaten strecken (Übergang von den zi zu den
yi) und das resultierende Ellipsoid dann im Raum drehen (Übergang von den yi zu den xi). Die
gesuchte Menge M ist also wie im folgenden Bild für n = 2 dargestellt ein im Raum gedrehtes
Ellipsoid.

z1 y1 x1

z2 y2 x2

1

1

1√
λ1

y1

y2

Te1
1√
λ2

Te2

∥x∥= 1

M

Wie im Bild angedeutet sind die charakteristischen Merkmale dieses Ellipsoids:

• Seine Radien sind gerade 1√
λi

, denn dies sind die yi-Werte, die zi = 1 entsprechen;

• Seine Symmetrieachsen werden aufgespannt von den x-Vektoren, die im y-Koordinatensys-
tem den Einheitsvektoren entsprechen – wegen x = Ty also von den Spalten Te1, . . . ,Ten von
T und damit genau von den Eigenvektoren von A. Diese Symmetrieachsen werden auch als
die Hauptachsen des Ellipsoids bezeichnet – daher der Name Hauptachsentransformation.

Als konkretes Beispiel ist die Menge M = {x ∈ Rn : xTAx = 1} für die Matrix

A =

(
2 1
1 2

)
∈ R2×2

aus Beispiel 22.28 also aufgrund der dort durchgeführten Rechnung eine Ellipse mit Hauptachsen

Lin
(

1
1

)
und Lin

(
1
−1

)
und Radien 1√

3
bzw. 1 in diesen beiden Richtungen.

Bemerkung 22.38. Untersuchen wir die Menge M = {x∈Rn : xTAx= 1}wie in Konstruktion 22.37
für eine symmetrische Matrix A, die nicht mehr notwendig positiv definit ist, so können wir immer
noch das Verfahren aus Teil 2 des Beweises von Satz 22.35 anwenden, erhalten jedoch am Ende in
den Koordinaten zi eine quadratische Gleichung, deren Koeffizienten 1, −1 und 0 sein können (je
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nachdem, wie viele Eigenwerte von A positiv, negativ bzw. 0 sind). Bis auf Permutation dieser Varia-
blen erhalten wir so z. B. für n = 2 als Möglichkeiten für ein nicht-leeres M wie im folgenden Bild
neben einem Kreis (bei zwei positiven Eigenwerten) eine Hyperbel (bei einem positiven und einem
negativen Eigenwert) und ein Geradenpaar (bei einem positiven Eigenwert und einem Eigenwert 0):

z2

z11

z2

z11

z2

z11

z2
1 + z2

2 = 1 z2
1− z2

2 = 1 z2
1 = 1

Hyperbel GeradenpaarKreis

1

Wie in Konstruktion 22.37 ist die ursprüngliche Menge M dann eine in den Koordinatenrichtungen
gestreckte und anschließend gedrehte Variante dieser Bilder. Hat A keinen positiven Eigenwert, so
ist M = /0, da eine Summe von Quadraten mit nicht-positiven Vorfaktoren niemals 1 ergeben kann.
Für n > 2 gibt es natürlich entsprechend mehr qualitativ verschiedene Möglichkeiten für M.

Aufgabe 22.39. Die symmetrische reelle Matrix A =

 4 −2 −2
−2 7 4
−2 4 7

 hat genau die beiden Ei-

genwerte 3 und 12. Da alle Eigenwerte positiv sind, ist A nach Satz 22.32 (b) also positiv definit und
bestimmt somit ein Skalarprodukt auf R3.

(a) Berechne eine orthogonale Matrix T , so dass T−1AT eine Diagonalmatrix ist.

(b) Bestimme mit einer Hauptachsentransformation die Punkte der Menge {x ∈R3 : xTAx = 3},
die vom Ursprung (bezüglich des Standardskalarprodukts) den kleinsten Abstand haben.

Aufgabe 22.40. Man zeige: Ist A ∈Mat(n× n,C) normal, so ist A genau dann hermitesch, wenn
alle Eigenwerte von A reell sind.

Aufgabe 22.41 (Normalform antisymmetrischer Bilinearformen). Es sei V ein endlich-dimensiona-
ler Vektorraum über einem Körper K ∈ {Q,R,C}. Wir nennen eine Bilinearform b auf V antisym-
metrisch, wenn b(x,y) = −b(y,x) für alle x,y ∈ V gilt, und eine Matrix A ∈ Kn×n antisymmetrisch,
wenn AT = −A ist. Analog zu Lemma 21.11 sieht man sofort, dass b genau dann antisymmetrisch
ist, wenn AB

b für eine beliebige Basis B von V antisymmetrisch ist. Man zeige:

(a) Zu jeder antisymmetrischen Bilinearform b auf V gibt es eine Basis B von V , so dass

AB
b =


I 0

. . .
I

0 0

 mit I :=
(

0 −1
1 0

)
∈ K2×2

gilt, also so dass AB
b eine Blockdiagonalmatrix mit einer gewissen Anzahl k von Blöcken I

(mit 0≤ 2k ≤ n) und n−2k anschließenden Nullzeilen und -spalten ist.

(Hinweis: Ist b ̸= 0, so zeige man die Existenz eines zweidimensionalen Unterraums U ≤V ,
so dass die Einschränkung von b auf U bezüglich einer geeigneten Basis die Gramsche
Matrix I hat, und verwende dann Induktion über dimV wie im Beweis des Spektralsatzes.)

(b) Die Determinante jeder ganzzahligen antisymmetrischen Matrix ist eine Quadratzahl.
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22.D Die Singulärwertzerlegung

Als Abschluss der linearen Algebra wollen wir nun noch sehen, dass die Eigenwerttheorie und der
Spektralsatz überraschenderweise sogar auf beliebige lineare Abbildungen mit unterschiedlichem
Start- und Zielraum angewendet werden können – und damit eine Brücke zurück zu Kapitel 16
schlagen, in dem wir derartige Abbildungen untersucht haben.

Dazu erinnern wir uns an unseren ersten Normalformensatz 17.29: Zu einem Morphismus f : V→W
zwischen endlich-dimensionalen Vektorräumen V und W gibt es stets Basen B und C von V bzw. W ,
so dass die zugehörige Abbildungsmatrix die besonders einfache Form

AB,C
f =

(
Er 0
0 0

)
hat. Wir suchen nun nach einer analogen Aussage, bei der V und W Vektorräume mit Skalarprodukt
sind und wir nur Orthonormalbasen B und C zulassen wollen. Da uns dies mehr einschränkt, erwar-
ten wir natürlich, dass die zugehörige Normalform dann nicht mehr ganz so einfach sein wird. Wir
werden allerdings sehen, dass es genügt, statt der Einsen auf der „Diagonalen“ der Abbildungsma-
trix beliebige positive reelle Zahlen zuzulassen. Daher führen wir für derartige Matrizen zunächst
eine einfache Notation ein:

Notation 22.42 (Nichtquadratische Diagonalmatrizen). Im Folgenden wollen wir auch eine nicht
notwendig quadratische Matrix D = (di, j)i, j ∈ Km×n als Diagonalmatrix bezeichnen, wenn di, j = 0
für alle i ̸= j. Analog zu Definition 19.29 schreiben wir für λ1, . . . ,λr ∈ K mit r ≤min(m,n)

D = diag(λ1, . . . ,λr) :=



λ1 0
. . . 0

0 λr

0 0

 ∈ Km×n

(wobei die Größe der Matrix aus dieser Schreibweise nicht ersichtlich ist und aus dem Zusammen-
hang klar sein muss). Oft verlangen wir dabei, dass λ1, . . . ,λr ungleich 0 sind, in diesem Fall ist dann
natürlich r = rkD.

Beachte, dass auch diese Diagonalmatrizen wie erwartet transponiert und multipliziert werden kön-
nen: Ist D = diag(λ1, . . . ,λr) ∈ Km×n, so ist z. B. auch

DT = diag(λ1, . . . ,λr) ∈ Kn×m und DTD = diag(λ 2
1 , . . . ,λ

2
r ) ∈ Kn×n.

Damit können wir nun den angekündigten Normalformensatz beweisen, der in der Literatur unter
dem Namen Singulärwertzerlegung bekannt ist. Für den Beweis ist es praktisch, zunächst die Ma-
trixform dieses Satzes zu betrachten.

Satz 22.43 (Singulärwertzerlegung). Zu jeder Matrix A ∈ Km×n gibt es orthogonale bzw. unitäre
Matrizen S ∈Km×m und T ∈Kn×n, so dass

S−1AT = STAT = diag(λ1, . . . ,λr) =: D ∈Km×n

eine Diagonalmatrix mit reellen positiven λ1, . . . ,λr und r = rkA ist.

Die λ1, . . . ,λr sind dabei bis auf die Reihenfolge eindeutig bestimmt und heißen die Singulärwerte
von A. Man nennt die Produktdarstellung A = SDT−1 = SDT T die Singulärwertzerlegung von A.

Beweis. Wir zeigen zunächst die Eindeutigkeit der Singulärwerte: Sind S und T beliebige ortho-
gonale bzw. unitäre Matrizen der passenden Größen, so dass STAT = diag(λ1, . . . ,λr) =: D eine
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Diagonalmatrix mit reellen positiven λ1, . . . ,λr ist, so folgt durch Transponieren und Konjugieren
auch T TAT S = DT

= DT, und damit

T−1ATAT = T TATAT = T TAT SSTAT = DT D = diag(λ 2
1 , . . . ,λ

2
r ) ∈Kn×n.

Die Matrix ATA ist also ähnlich zur Diagonalmatrix DT D und hat damit dieselben Eigenwerte. Die
λ 2

1 , . . . ,λ
2
r (und damit auch λ1, . . . ,λr) sind daher bis auf ihre Reihenfolge eindeutig bestimmt, näm-

lich als die Eigenwerte von ATA ungleich 0.

Der Existenzbeweis der Singulärwertzerlegung ist konstruktiv und erfolgt in zwei Schritten, wobei
der erste eng an den gerade geführten Eindeutigkeitsbeweis angelehnt ist:

(a) Bestimmung von T .

Motiviert durch den Eindeutigkeitsbeweis betrachten wir die Matrix ATA ∈ Kn×n. Sie ist

symmetrisch bzw. hermitesch, da ATA
T
= ATA gilt. Nach dem Spektralsatz gibt es wie in

Beispiel 22.27 also eine orthogonale bzw. unitäre Matrix T , so dass T TATAT eine Diago-
nalmatrix ist; ihre Einträge sind außerdem nach Lemma 22.20 (b) reell.

Nun ist ATA aber auch positiv semidefinit, denn es gilt xTATAx = AxT Ax = ∥Ax∥2 ≥ 0 für
alle x ∈Kn, wobei ∥·∥ die Norm des Standardskalarprodukts ist. Die Einträge der Diagonal-
matrix T TATAT sind also nicht-negativ, und damit können wir (nach geeigneter Anordnung
der Spalten von T )

T TATAT = diag(λ 2
1 , . . . ,λ

2
r )

mit reellen λ1, . . . ,λr > 0 für ein r ≤ n schreiben.

(b) Bestimmung von S.

Für alle i≤ r setzen wir

si :=
1
λi

ATei ∈Km.

Diese Vektoren sind bezüglich des Standardskalarprodukts orthonormal, denn für alle i, j≤ r
gilt

si
Ts j =

1
λiλ j

eT
i T TATATe j

(a)
=

1
λiλ j

eT
i ·diag(λ 2

1 , . . . ,λ
2
r ) · e j =

{
1 für i = j,
0 für i ̸= j.

Wir können sie nach Satz 21.31 also zu einer Orthonormalbasis von Km ergänzen (insbeson-
dere ist damit auch r ≤m) und daraus die orthogonale bzw. unitäre Matrix S := (s1 | · · · |sm)
bilden.

Wir setzen nun D := diag(λ1, . . . ,λr) ∈Km×n und behaupten, dass damit wie gewünscht STAT = D,
also AT = SD ∈ Km×n gilt. Die Gleichheit dieser Matrizen überprüfen wir spaltenweise, d. h. wir
zeigen ATei = SDei für alle i = 1, . . . ,n:

• Für i≤ r gilt ATei = siλi = SDei nach (b).

• Für i > r ist

∥ATei∥2 = eT
i T TATATei

(a)
= eT

i ·diag(λ 2
1 , . . . ,λ

2
r ) · ei = 0

und damit ATei = 0 = SDei, da die i-te Spalte Dei von D eine Nullspalte ist.

Mit STAT = D sind A und D nun insbesondere auch äquivalent, so dass r = rkD = rkA nach Folge-
rung 16.46 gilt. Damit ist alles gezeigt. □

Bemerkung 22.44 (Singulärwertzerlegung für Morphismen). Wie am Anfang dieses Abschnitts er-
wähnt gibt es natürlich auch eine Variante der Singulärwertzerlegung für Morphismen: Ist f : V →W
eine lineare Abbildung zwischen zwei endlich-dimensionalen Vektorräumen V und W mit Skalar-
produkt, so gibt es Orthonormalbasen B und C von V bzw. W , so dass die Abbildungsmatrix AB,C

f
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diagonal mit reellen nicht-negativen Diagonaleinträgen ist. Dies ergibt sich unmittelbar aus Satz
22.43 angewendet auf eine Abbildungsmatrix von f zu beliebigen Orthonormalbasen.

Beispiel 22.45.
(a) Ist A ∈ Kn×n quadratisch, symmetrisch bzw. hermitesch und positiv semidefinit, so finden

wir nach dem Spektralsatz wie in Beispiel 22.27 bereits eine orthogonale bzw. unitäre Matrix
T , so dass T TAT eine Diagonalmatrix ist, deren Einträge nach Satz 22.32 (a) in R≥0 liegen.
Wir können in Satz 22.43 dann also S = T wählen, und die Singulärwerte von A sind genau
die positiven Eigenwerte von A. In diesem Sinne kann man Singulärwerte also als eine Art
Verallgemeinerung von Eigenwerten auf nicht-quadratische Matrizen ansehen.

(b) Wir wollen eine Singulärwertzerlegung der Matrix

A =

1 0
1 1
0 1

 ∈ R3×2

finden. Um wie im Beweis von Satz 22.43 zunächst T zu bestimmen, müssen wir nach dem
Spektralsatz die symmetrische, positiv semidefinite Matrix

ATA =

(
1 1 0
0 1 1

)
·

1 0
1 1
0 1

=

(
2 1
1 2

)
∈ R2×2

orthogonal diagonalisieren. Dies haben wir bereits in Beispiel 22.28 getan: Mit

T =
1√
2
·
(

1 1
1 −1

)
∈ O(2) ist T TATAT =

(
3 0
0 1

)
=:
(

λ 2
1 0

0 λ 2
2

)
.

Die Singulärwerte von A sind also λ1 =
√

3 und λ2 =
√

1 = 1. Um nun auch S zu bestimmen,
setzen wir

s1 :=
1
λ1

ATe1 =
1√
3
·

1 0
1 1
0 1

 · 1√
2
·
(

1
1

)
=

1√
6
·

1
2
1


und s2 :=

1
λ2

ATe2 =

1 0
1 1
0 1

 · 1√
2
·
(

1
−1

)
=

1√
2
·

 1
0
−1

 .

Beachte, dass diese beiden Vektoren in der Tat wie in der Konstruktion von Satz 22.43 be-
züglich des Standardskalarprodukts orthonormal sind. Wir ergänzen sie leicht (z. B. mit dem
Gram-Schmidtschen Orthonormalisierungsverfahren aus Satz 21.31, falls man das Ergebnis
nicht bereits sieht) mit

s3 :=
1√
3
·

 1
−1
1


zu einer Orthonormalbasis von R3. Nach Satz 22.43 gilt dann mit der orthogonalen Matrix
S := (s1 |s2 |s3) ∈ O(3) also

S−1AT = STAT =

λ1 0
0 λ2
0 0

=

√3 0
0 1
0 0

 .

Beispiel 22.46 (Approximation von Matrizen). Eine interessante praktische Anwendung der Sin-
gulärwertzerlegung liegt im Bereich der Approximation von Matrizen durch Matrizen von kleinem
Rang. Dazu betrachten wir einmal eine (große) reelle Matrix A = (ai,k)i,k ∈ Rm×n in ihrer Singu-
lärwertzerlegung A = SDT T, so dass für alle i = 1, . . . ,m und k = 1, . . . ,n nach Definition 15.5 der
Matrixmultiplikation also

ai,k =
r

∑
j=1

si, j λ j tk, j (∗)



310 Andreas Gathmann

mit S = (si, j)i, j ∈ O(m), D = diag(λ1, . . . ,λr) ∈ Rm×n und T = (t j,k) j,k ∈ O(n) gilt, wobei wir die
Singulärwerte so anordnen, dass λ1 ≥ λ2 ≥ ·· · ≥ λr > 0 (mit r = rkA). Beachte dabei, dass in (∗)
nur die ersten r Spalten von S und T benötigt werden, da in der Summe stets j ≤ r ist. Wir können
A also exakt rekonstruieren, wenn wir nur diese Teile von S und T sowie die Diagonaleinträge von
D kennen, was insgesamt

rm+ rn+ r = r(m+n+1)
reelle Zahlen sind. Wenn der Rang r von A klein ist, können dies deutlich weniger Zahlen sein als
wenn wir uns die mn Einträge von A direkt merken würden. Matrizen von kleinem Rang lassen sich
so also z. B. in einem Computer sehr platzsparend abspeichern.

Für beliebige Matrizen, deren Rang in der Regel nicht klein ist,
hilft dies natürlich erst einmal nicht weiter. Ist es aber akzepta-
bel, die Werte in der Matrix nur näherungsweise abzuspeichern –
wie etwa in dem Foto rechts, das mit seinen Helligkeitswerten
eine reelle Matrix der Größe 1000× 1000 darstellt – so können
wir sehr einfach eine Näherung des Ausdrucks (∗) bilden, indem
wir ein r′ ≤ r wählen und in der Summe nur die größten (also
„wichtigsten“) r′ Singulärwerte λ1, . . . ,λr′ berücksichtigen, d. h.
A = SDT T durch die Matrix

A′ = SD′T T mit D′ = diag(λ1, . . . ,λr′)

vom Rang r′ approximieren, die sich dann wieder wie oben platzsparend abspeichern lässt. Wir kön-
nen den Fehler, den wir dabei machen, auch genau berechnen: Bezüglich des Standardskalarprodukts
auf Rm×n wie in Beispiel 21.15 (c) ist

∥A−A′∥2 =
∥∥S(D−D′)T T∥∥2

= Spur
(
T (D−D′)T ST ·S︸ ︷︷ ︸

=E

(D−D′)T T)
19.7
= Spur

(
(D−D′)T(D−D′)T TT︸︷︷︸

=E

)
= ∑

j>r′
λ

2
j .

Da die weggelassenen Singulärwerte λ j für j > r′ ja die kleinsten sind, ist diese Näherung also wirk-
lich recht gut. In der Tat kann man zeigen, dass sie im Sinne dieser Norm die beste Approximation
von A durch eine Matrix vom Rang höchstens r′ ist. Für das obige Foto sind drei dieser Näherungen
für (sehr) kleine Werte von r′ unten dargestellt.

r′ = 20r′ = 3r′ = 1

Die ursprüngliche Matrix A ∈ R1000×1000 hat wie erwartet maximalen Rang r = 1000, ihre Singu-
lärwerte fallen allerdings sehr schnell ab: Schon der erste im mittleren Näherungsfoto weggelassene
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Singulärwert λ4 ist nur noch etwa 1
10 -mal so groß wie λ1, und nahezu die Hälfte aller Singulärwerte

ist kleiner als 1
1000 ·λ1, so dass deren Vernachlässigung praktisch nicht mehr erkennbar ist. Das rech-

te Näherungsfoto belegt weniger als 5 % des Speicherplatzes der ursprünglichen Matrix A. Beachte
auch, dass man dem linken Näherungsfoto ansieht, dass es Rang 1 hat: Alle Spalten der Matrix sind
ein Vielfaches desselben Vektors, haben also von oben nach unten die gleiche Helligkeitsverteilung
und sind nur insgesamt heller oder dunkler – wodurch das deutlich sichtbare Streifenmuster entsteht.

Aufgabe 22.47 (Pseudoinverse Matrizen).
(a) Zeige mit Hilfe der Singulärwertzerlegung, dass es zu jeder Matrix A ∈Rm×n eine eindeutig

bestimmte Matrix B ∈ Rn×m gibt, so dass

ABA = A und BAB = B

gilt und AB sowie BA symmetrisch sind.

Ist A quadratisch und invertierbar, so ist dann offensichtlich B = A−1. Für eine allgemeine
Matrix A, die nicht notwendig quadratisch ist bzw. vollen Rang hat, nennt man B daher die
pseudoinverse Matrix zu A.

(b) Berechne für die Matrix

A =

(
0 0 0
1 1 0

)
eine Singulärwertzerlegung und die pseudoinverse Matrix wie in (a).

Aufgabe 22.48. Es seien n ∈ N>0 und A ∈ Rn×n. Man zeige:

(a) Die Matrix A kann geschrieben werden als A = QB, wobei Q ∈ O(n) eine orthogonale und
B ∈ Rn×n eine positiv semidefinite symmetrische Matrix ist.

(b) In der Zerlegung aus (a) ist die Matrix B eindeutig bestimmt. Ist darüber hinaus A invertier-
bar, so ist auch Q eindeutig bestimmt, und B ist sogar positiv definit.

Wie kann man diese Aussage geometrisch interpretieren?

Aufgabe 22.49. Zu einer Matrix A = (ai, j)i, j ∈Km×n mit A ̸= 0 bezeichne σA ∈ R>0 ihren größten
Singulärwert. Man zeige bezüglich der Normen zu den Standardskalarprodukten auf Km, Kn und
Km×n:

(a) σA = max
{
∥Ax∥
∥x∥

: x ∈Kn\{0}
}

;

(b) σA ≤ ∥A∥.
Für welche Matrizen gilt hierbei die Gleichheit?

56


