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21. Euklidische und unitire Raume

Wir wollen uns nun mit einem ganz anderen Thema beschiftigen, ndmlich wie man Léangen von
Vektoren und Winkel zwischen zwei Vektoren berechnen (und iiberhaupt erst einmal definieren)
kann. Zur Motivation betrachten wir dazu zunéchst einmal den sehr einfachen Fall des Vektorraums
RR?, in dem sich diese beiden Fragen mit Hilfe von Elementargeometrie und Schulmathematik leicht
beantworten lassen.

Beispiel 21.1 (Lingen und Winkel in R?). Wie ihr sicher aus der Schule wisst, ist das wesentliche
Hilfsmittel fiir die Lingen- und Winkelmessung in R? das sogenannte Skalarprodukt

. X1 Vi 2
X, V) =x1y1 +x2y2 € R fiir x = = € R-.
x,) 1y1 +x2)2 (xZ) Y <y2>

So ergibt sich z. B. wie im Bild unten links dargestellt aus dem Satz des Pythagoras, dass die Liange
eines Vektors x € R? durch den Ausdruck

Vg = V)

gegeben ist, den wir im Folgenden kurz als ||x|| schreiben werden.

G L

x| = v/ (x,0) T =€ T

Wollen wir den Winkel ¢ zwischen zwei Vektoren x,y € R?\ {0} wie im Bild oben rechts berechnen,
betrachten wir dazu am besten zunéchst einmal die Vektoren ﬁ und ”i—”, die in die gleiche Richtung

wie x bzw. y zeigen, aber die Lange 1 haben. Fassen wir dann x = x| +ix; und y = y; +1iy; als
Elemente der komplexen Ebene C = R? auf, so folgt aus den Bemerkungen 6.5 und 9.11, dass

Y e X

Iyl Xl
ist, da sich die Winkel bei der komplexen Multiplikation addieren und e'? eine Zahl mit Winkel ¢
und Betrag 1 ist. Einfache Umformungen in C ergeben nun wegen |[|x||> = ¥x

o v Il %l F
Iyl xx Ayl el vl
Wegen Xy = (x; —ixp)(y1 +1iy2) = x1y1 +x2y2 +i(x1y2 — xpy1 ) besagt der Realteil dieser Gleichung
X1y1 +x2)2
[l - 1yl

woraus wir mit der obigen Definition des Skalarprodukts folgern, dass

(x,y)
[l - flyll

ist (beachte hierbei, dass der Arkuskosinus nur Werte zwischen 0 und 7 zuriickliefert und aufgrund
der Symmetrien der Kosinusfunktion damit den unorientierten Winkel zwischen x und y ergibt).

cosQ =

@ = arccos
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Sowohl Lingen als auch Winkel lassen sich damit durch das Skalarprodukt ausdriicken. Wenn wir
diese beiden Konzepte auch in anderen Vektorrdumen definieren wollen, sollten wir den Begriff des
Skalarprodukts also auf beliebige Vektorrdume verallgemeinern.

Das Problem dabei ist jedoch, dass die Formel (x,y) = x1y; +x2y» (oder eine entsprechend verall-
gemeinerte Version fiir hohere Dimensionen) explizit die Koordinaten der beiden Vektoren x und y
benutzt. In einem allgemeinen Vektorraum gibe es solche Koordinaten aber erst nach Wahl einer
Basis — und die Formel wiirde natiirlich auch unterschiedliche Ergebnisse liefern, wenn man die
Koordinaten beziiglich verschiedener Basen nehmen wiirde. Wir schlieen daraus, dass es in einem
allgemeinen Vektorraum kein natiirlich definiertes Skalarprodukt gibt, sondern dass ein Skalarpro-
dukt eine Zusatzstruktur darstellt, die man zusitzlich zum Vektorraum erst einmal festlegen muss,
bevor man mit konkreten Rechnungen anfangen kann.

Wir miissen diese Zusatzstruktur also zunéchst erst einmal genauer definieren, d. h. konkret ange-
ben, welche Eigenschaften ein Skalarprodukt haben soll. Klar ist, dass wir zwei Elementen eines
K-Vektorraums V ein Element des zugrunde liegenden Korpers K zuordnen wollen, also formal ei-
ne Abbildung von V x V nach K betrachten miissen. Mit solchen Abbildungen wollen wir uns nun
zunichst beschéftigen.

21.A Bilinearformen

Die erste wichtige Eigenschaft eines Skalarprodukts ist, dass es linear in beiden Vektoren ist. Derar-
tige Abbildungen bezeichnet man als Bilinearformen.

Definition 21.2 (Bilinearformen). Eine Bilinearform auf einem K-Vektorraum V ist eine Abbildung
b:VxV =K, (x,y) — b(x,y), die in beiden Komponenten eine lineare Abbildung ist, d. h. fiir die
fiir alle x1,x2,x,y1,y2,y € V und A € K die Eigenschaften

b(x1 +x2,y) = b(x1,y) + b(x2,y),
b(Ax,y) = Ab(x,y),
b(x,y1 +y2) = b(x,y1) +b(x,y2),
b(x,Ay) = A b(x,y)
gelten. Wie man leicht nachpriift, ist die Menge aller Bilinearformen auf V ein Unterraum von
Abb(V x V,K) (siehe Beispiel 13.3 (c)) und damit ein K-Vektorraum. Wir bezeichnen ihn mit
BLF(V).
Beispiel 21.3.
(a) Die Abbildung

b: R* xR* — R, ((2) , (i;)) — x1y1 +X1y2 +x2y1 +4x2)2

ist offensichtlich eine Bilinearform auf R?: Hilt man y; und y, fest, so ist der gegebene
Ausdruck eine lineare Abbildung in x; und x;, und umgekehrt. Hingegen ist

b: RZXR2—>R, (<2> , <§;>) — Xx1y1 +x1 + 1

keine Bilinearform: Da lineare Abbildungen nach Bemerkung 16.2 stets 0 auf O abbilden,

R

bei festgehaltener zweiter Komponente y nicht linear im ersten Argument x sein.
(b) Da die Determinante nach Bemerkung 18.10 linear in jeder Spalte ist, ist die Abbildung
b: R*xR* 5 R, (x,y) — det(x]|y)

eine Bilinearform auf R2.
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(c) IstA € K™ eine quadratische Matrix, so ist
by: K"x K" — K, b(x,y):xTAy (%)

nach den Rechenregeln fiir Matrizen aus Lemma 15.7 eine Bilinearform auf K" — beachte,
dass das Ergebnis hierbei als Produkt dreier Matrizen der GréBen 1 x n, n x nund n x 1 eine
1 x 1-Matrix, also ein Element von K ist. Ist A = (a; ;); ; und sind x1,...,x, und yi,...,y,
die Koordinaten von x und y, so ist eine alternative Schreibweise fiir (*) nach Definition 15.5
ail o Qg 1 .
b(x,y) = (x1 ==+ x5)-| Sl = Z Xid; jy;-
dn,1 *°° Qun Yn hi=l
Wir wollen nun sehen, dass man in der Tat sogar jede mogliche Bilinearform auf K" auf diese
Art aus einer eindeutig bestimmten Matrix erhalten kann. Dies besagt der folgende Satz, der
vollig analog zu Satz 16.23 und Folgerung 16.24 (a) iiber den Zusammenhang zwischen

linearen Abbildungen und Matrizen ist, und der damit letztlich besagt, dass Bilinearformen
auf K" und n x n-Matrizen iiber K ,,im Prinzip dasselbe* sind.

Satz und Definition 21.4 (Bilinearformen auf K" und Matrizen). Es sei n € N.

(a) Zu jeder Bilinearform b: K" x K" — K gibt es genau eine Matrix A € K"*" mit b = by wie

in Beispiel 21.3 (c), also mit
b(x,y) = TAy  fiir alle x,y € K",

ndmlich A = (b(e;,e;)); j. Man nennt sie die Gramsche Matrix von b und bezeichnet sie mit
Ap.

(b) Die Abbildung K"*" — BLF(K"), A > by ist ein Isomorphismus mit Umkehrabbildung
BLF(K") — K™, b — A,

Beweis.

(a) Zundchst einmal legt die Bedingung b = b4 die Matrix A = (a; ;); j eindeutig fest: Da wir
den Eintrag in Zeile i und Spalte j von A als das Matrixprodukt e;rA e schreiben konnen, ist
notwendigerweise

aij=ejAej=bleie)),
und damit A = A,. Da b bilinear ist, folgt aus dieser Gleichung aber auch fiir alle Vektoren
x=xje;+---+xpep,undy =yre; +---+yuey,

n n n
b(x,y)=b ( Y xiei, ) )’jej> =Y xib(ei,ej)y; = xTAy,
i=1 j=1 ij=1

und damit b = by.
(b) Die Abbildung K"*" — BLF(K"), A — by ist linear, denn fiir alle A,B € K"*", A € K und

x,y € K" gilt

barp(x,y) =x'(A+B)y=x"Ay+x' By =ba(x,y) +bs(x.y)
und  bya(x,y) =xT(AA)y =AxTAy = Aba(x,y),

und damit ba.p = bs + bg und by 4 = Ab,. Da sie nach (a) auch bijektiv ist, ist sie damit

ein Isomorphismus. Nach Definition der Gramschen Matrix ist ihre Umkehrabbildung genau

BLF(K") — K™, b A,p. O

Beispiel 21.5.

(a) Zur Bilinearform

b: R?xR> >R, ((2) , <§;>) = X1y1 +X1y2 +x2y1 +4x2y2 (%)
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aus Beispiel 21.3 (a) ist die zugehorige Gramsche Matrix

A, — b(el,el) b(el,ez) o 1 1
b= b(ez,el) b(ez,ez) B 1 4 ’
Eine alternative Beschreibung von A, = (a;, j),-7 j ist offensichtlich, dass a; ; in einer Darstel-

lung der Form (*) von b(x,y) genau der Koeffizient von x;y; ist.

Umgekehrt kdnnen wir nun nach Satz 21.4 aus dieser Matrix auch die urspriingliche Biline-
arform durch die Formel

1 1
b(x,y) = (x1 x2)- (1 4> : (i;) =x1y1 +X1y2 +X21 +4x2)2
zuriickgewinnen.
(b) Die Einheitsmatrix E € K"*" entspricht in der Korrespondenz aus Satz 21.4 genau der Bili-
nearform
bE: K" xK" — K7 (x7y) '_>xTy =X1y1+ -+ XnYn,

die wir in Beispiel 21.1 im Fall K = R und n = 2 schon beim gewohnlichen Skalarprodukt
auf R? gesehen haben.

Genau wie bei linearen Abbildungen in Satz 16.26 und Folgerung 16.27 (a) konnen wir unsere Kor-
respondenz zwischen Bilinearformen und Matrizen nun unmittelbar von K" auf beliebige endlich-
dimensionale Vektorrdaume erweitern, indem wir dort eine Basis wihlen und mit den Koordinaten-
vektoren beziiglich dieser Basis arbeiten.

Folgerung 21.6 (Bilinearformen auf V und Matrizen). Es seien V ein endlich-dimensionaler
K-Vektorraum sowie B = (x,...,X,) eine Basis von V mit zugehoriger Koordinatenabbildung
®Pp: V — K" (siehe Konstruktion 16.18). Dann ist die Abbildung

K™" — BLE(V), A > b5 mit b (x,y) := ®p(x)TADg(y)
wieder ein Isomorphismus mit Umkehrabbildung
BLE(V) — K™ b AB mit Af := (b(x;,x;))ij-
Wie oben nennt man Ag die Gramsche Matrix von b beziiglich der Basis B.
Beweis. Die Abbildung
BLF(K") = BLE(V), b ((.9) 1= b(®5(x), ®(»)) ),

die einer Bilinearform b auf K" die Bilinearform auf V zuordnet, bei der man einfach in b die
Koordinatenvektoren der Vektoren aus V einsetzt, ist offensichtlich ein [somorphismus mit Umkehr-
abbildung

BLE(V) = BLE(K"), b ((x.y) = b(@5' (), ®5' (1) ).
Verketten wir den Isomorphismus aus Satz 21.4 mit dieser Abbildung, erhalten wir also wie be-
hauptet einen Isomorphismus K"*" — BLF(K") — BLF(V), der eine Matrix A auf die Bilinearform
(x,y) = ba(®p(x), Pp(y)) = Pp(x)TADg(y) abbildet, und dessen Umkehrung einer Bilinearform b
auf V die Matrix (b(®5' (e;),®5'(¢;)))i; = (b(xi,x;)): j zuordnet. O

Natiirlich hingt die Gramsche Matrix einer Bilinearform wie in Folgerung 21.6 von der gewihlten
Basis ab. Wie der folgende Satz zeigt, ist die Transformationsformel bei einem Basiswechsel jedoch
eine andere als fiir Endomorphismen (siche Bemerkung 19.3 (b)).

Satz 21.7 (Verhalten von Gramschen Matrizen unter Basiswechsel). Es seien b eine Bilinearform
auf einem endlich-dimensionalen K-Vektorraum 'V sowie B und B' zwei Basen von V. Dann gilt fiir
die Gramschen Matrizen von b beziiglich B und B

AP —TTABT,

wobei T = AB'B die Basiswechselmatrix aus Definition 16.38 ist.
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Beweis. Es seien B = (xi,...,x,) und B’ = (x},...,x),) die gewihlten Basen. Nach Definition 16.38
enthilt die k-te Spalte von T’ = (a;,;); ; fiir k= 1,...,n genau den Koordinatenvektor von x beziiglich
B, d.h. es gilt

Xp = @1 X1+ -y j X
Damit folgt fiir die Gramschen Matrizen mit der Formel aus Folgerung 21.6 sofort

n n n
Af = (b x)ks = (b(Zal;kxi, )y “j,lxj>> = < Y “ivkb(xivxj)“j,l> =TTAJT. O
i=1 j=1 K ij=1 K
Bemerkung 21.8 (Verhalten von Matrizen unter Basiswechsel). Bisher hatten wir Matrizen nahezu
ausschlieBlich zur Beschreibung von linearen Abbildungen benutzt. Nach Definition ist eine Matrix
aber zundchst einmal nichts weiter als ein rechteckiges Zahlenschema, ohne Vorgabe einer Bedeu-
tung dieser Zahlen. In der Tat haben wir nun gesehen, dass man Matrizen auch noch fiir ganz andere
Dinge verwenden kann, namlich z. B. zur Darstellung von Bilinearformen.

Ohne weitere Informationen ergibt es daher keinen Sinn zu fragen, wie sich eine (quadratische)
Matrix unter einem Basiswechsel transformiert. Die Antwort auf diese Frage hingt nach Bemerkung
19.3 (b) und Satz 21.7 davon ab, welche Bedeutung die Eintrige in der Matrix haben:

Bei einem Basiswechsel mit zugehoriger Basiswechselmatrix 7' transformiert sich . ..

...eine Abbildungsmatrix A zu einem Endomorphismus in die Matrix 7 'AT,
...eine Gramsche Matrix A zu einer Bilinearform in die Matrix TTAT.

Wie bei linearen Abbildungen oder Endomorphismen konnten wir uns nun schlielich auch bei Bili-
nearformen wieder nach einer Normalform fragen: Wie konnen wir zu einer gegebenen Bilinearform
b € BLF(V) eine Basis von V so wihlen, dass die zugehorige Gramsche Matrix A® moglichst ein-
fach wird? Wir wollen diese Frage hier allerdings nicht in dieser vollen Allgemeinheit beantworten,
da wir im Folgenden hauptsédchlich an Bilinearformen mit noch weiteren speziellen Eigenschaften
interessiert sind. Diese Eigenschaften wollen wir jetzt einfiihren.

21.B Skalarprodukte

Wir kommen nun zu den in der Einleitung zu diesem Kapitel bereits angekiindigten Skalarprodukten.
Sie sind als Bilinearformen mit den folgenden beiden Eigenschaften definiert, die wir auch gleich
wieder analog fiir Matrizen einfiihren wollen.

Definition 21.9 (Symmetrie und positive Definitheit). Es seien b € BLF(V) eine Bilinearform auf
einem K-Vektorraum V und A € K"*",
(a) Die Bilinearform b heift symmetrisch, wenn b(x,y) = b(y,x) fiir alle x,y € V gilt.
Die Matrix A heift symmetrisch, wenn AT = A gilt.
(b) Es sei nun zusitzlich K = R.
Die Bilinearform b heiit dann positiv definit, wenn b(x,x) > 0 fiir alle x € V\{0} gilt.
Die Matrix A heift dann positiv definit, wenn xT A x > 0 fiir alle x € R"\ {0} gilt.
Bemerkung 21.10.

(a) Die Bedingung der positiven Definitheit ldsst sich offensichtlich nur fiir einen geordneten
Korper (siehe Kapitel 4.B) formulieren. Fiir uns ist hierbei eigentlich nur der Fall K = R
interessant. Wir werden die Bedingung der positiven Definitheit in Konstruktion 21.18 aber
noch etwas abiandern, so dass sie dann auch im Fall K = C anwendbar ist.

(b) Da eine Bilinearform b in jedem Eintrag linear ist, gilt natiirlich stets 5(0,0) = 0. Eine positiv
definite Bilinearform auf einem R-Vektorraum V erfiillt damit also immer b(x,x) > 0 fiir
alle x € V. Diese Bedingung, die wir spiter fiir Skalarprodukte fordern werden, wird uns
dann sicherstellen, dass wir aus b(x,x) die Wurzel ziehen und so die Linge von x definieren
konnen.
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(c) In manchen Fillen (siehe Satz 26.20) benétigt man auch die folgenden zur positiven Defini-
theit analogen Bedingungen: Eine Bilinearform » € BLF(V) auf einem reellen Vektorraum
V heifit ...

o ...negativ definit, wenn b(x,x) < O fiir alle x € V\{0} gilt;
e ...positiv semidefinit, wenn b(x,x) > 0 fiir alle x € V gilt;
o ...negativ semidefinit, wenn b(x,x) < 0 fiir alle x € V gilt;

o ...indefinit, wenn sie weder positiv noch negativ semidefinit ist, also wenn es x,y € V
gibt mit b(x,x) < 0 und b(y,y) > 0.

Entsprechende Eigenschaften definiert man natiirlich auch fiir reelle quadratische Matrizen.

Als Erstes wollen wir nun die wohl erwartete Aussage zeigen, dass sich die in Definition 21.9 ein-
gefiihrten Begriffe fiir Bilinearformen und Matrizen entsprechen.

Lemma 21.11 (Symmetrie und positive Definitheit bei Bilinearformen und Matrizen). Es seien b
eine Bilinearform auf einem endlich-dimensionalen K-Vektorraum V, B eine Basis von V, und Aff
wie in Folgerung 21.6 die zugehorige Gramsche Matrix. Dann gilt:

(a) Die Bilinearform b ist genau dann symmetrisch, wenn die Matrix Af symmetrisch ist.

(b) Im Fall K =R ist b genau dann positiv definit, wenn Af positiv definit ist.
Beweis. Essei B= (x1,...,x).
(a) ,,=: Ist b symmetrisch, so folgt natiirlich sofort
(AD)T = (b(xj,x))ij = (b(xisx;))ij = Ap-

<= Ist umgekehrt Alg symmetrisch, so gilt nach Folgerung 21.6 fiir alle x,y € V

(*)
b(x,y) = Pp(x) Af 5 (y) = Pp(y)" (AF) ®p(x) = Pa(y) A} Pp(x) = b(y,x),
wobei wir in (x) gemal Lemma 15.7 (d) die transponierte 1 x 1-Matrix gebildet haben.

(b) Da die Koordinatenabbildung ®p: V — R" ein Isomorphismus ist, ist die Matrix A,lf genau
dann positiv definit, wenn ®g(x) TAZ ®p(x) > 0 fiir alle x € V\ {0} gilt. Nach Folgerung 21.6
bedeutet dies genau b(x,x) > 0 fiir alle x € V\{0}, also dass b positiv definit ist. O

Bemerkung 21.12 (Invarianz von Symmetrie und positiver Definitheit). Sind A,A’ € K™*" zwei
quadratische Matrizen mit A’ = TTAT fiir ein T € GL(n,K), so besagt Lemma 21.11 insbesondere,
dass A’ genau dann symmetrisch (bzw. im Fall K = R positiv definit) ist, wenn dies fiir A gilt: A’
und A beschreiben nach Satz 21.7 ndmlich die gleiche Bilinearform beziiglich zweier evtl. verschie-
dener Basen, und nach Lemma 21.11 hingt es nur von dieser Bilinearform (aber eben nicht von der
gewihlten Basis) ab, ob die Matrix symmetrisch bzw. positiv definit ist.

Mit Hilfe der eingefiihrten Konzepte konnen wir nun Skalarprodukte auf reellen Vektorrdaumen defi-
nieren.

Definition 21.13 (Skalarprodukte). Es sei V ein R-Vektorraum. Ein Skalarprodukt auf V ist eine
positiv definite, symmetrische Bilinearform b: V x V — R. Ein R-Vektorraum V zusammen mit
einem Skalarprodukt heif3t ein euklidischer Raum.

Fiir x,y € V schreiben wir statt b(x,y) dann auch (x,y). Die (wegen der positiven Definitheit existie-
rende) Zahl

Xl = v {xx) € Rxo

heiflt in Verallgemeinerung von Beispiel 21.1 die Norm oder Linge von x (beziiglich ). Man nennt
einen Vektor x € V normiert (beziiglich b), falls ||x|| = 1 gilt.

48
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Bemerkung 21.14.

(a)

(b)

Ist V ein endlich erzeugter R-Vektorraum und B eine Basis von V, so ldsst sich ein Ska-
larprodukt auf V nach Lemma 21.11 also genau durch eine positiv definite, symmetrische
Matrix A € R"*" beschreiben bzw. definieren (nimlich durch die Gramsche Matrix des Ska-
larprodukts beziiglich der Basis B).

Die Einschrinkung eines Skalarprodukts auf einen Untervektorraum ist offensichtlich wie-
der ein Skalarprodukt.

Beispiel 21.15.

(a)

(b)

()

Ist A = diag(Ay,...,A,) € R"*" eine Diagonalmatrix, so ist A natiirlich zunichst einmal
symmetrisch. Gilt nun zusitzlich A; > O fiir alle i = 1,...,n, so ist A auch positiv definit,
denn fiir alle x € R"\ {0} ist

n
xTAx= Z)»,'xiz >0,
i=1
da in dieser Summe alle Terme nicht-negativ sind und mindestens einer positiv ist. Also ist
die zugehorige Bilinearform

n
(x,y) =xTAy =Y Aixiy;
i=1

ein Skalarprodukt auf R”. Speziell fir A = E erhalten wir daraus die schon in Beispiel
21.5 (b) betrachtete Bilinearform

n
(ey)=x"y=Y xi.
i=1
Sie ist die direkte Verallgemeinerung von Beispiel 21.1 und wird das Standardskalarpro-
dukt auf R” (und nach Bemerkung 21.14 (b) auch auf Unterrdumen von R") genannt.

Gilt analog 4; <0/ A; >0/ A; <Ofiirallei = 1,...,n, so ist die oben konstruierte Bilinear-
form negativ definit / positiv semidefinit / negativ semidefinit. Sie ist indefinit, falls es unter
den Ay,..., A, eine positive und eine negative Zahl gibt.

Die in Beispiel 21.5 (a) schon betrachtete reelle Matrix A = G i) ist positiv definit: Fiir

alle x € R? ist zunichst
X Ax = x% 4+ x1x2 + X2X] +4x% =(x +x2)2 + 3x% >0,
und die Gleichheit kann hier nur gelten fiir x; +x; = x, = 0, also fiir x = 0. Da A auch sym-
metrisch ist, ist die durch diese Matrix (beziiglich der Standardbasis) definierte Bilinearform
(x,y) =xTAy = x1y1 +x1y2 +x2y1 +4x2)2
also ein Skalarprodukt auf R?.

Betrachten wir reelle m x n-Matrizen iiber ihre Eintrige als Vektoren in R™*, so konnen
wir das Standardskalarprodukt zweier Matrizen A = (a; ); j und B = (b; ;); j im Vektorraum
R™*" mit der Definition des Matrixprodukts und der Spur schreiben als

m n

<A,B> = Z Z aih,’b,-J = Spur (ATB).
i=1 j=1

Wir werden dies in Zukunft als das Standardskalarprodukt auf Matrizenrdumen wihlen.

Konstruktion 21.16 (Skalarprodukte auf Funktionenrdumen). Auch auf unendlich-dimensionalen
Vektorrdumen sind Skalarprodukte eine sehr niitzliche Zusatzstruktur. Ein besonders wichtiges Bei-
spiel dafiir ist wie in Definition 11.7 der reelle Vektorraum V = C°([a,b]) der stetigen Funktionen
auf einem abgeschlossenen Intervall [a, b] mit a < b. Wir behaupten, dass dann

= [ gt 8
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ein Skalarprodukt auf V definiert. Die Existenz dieses Integrals ergibt sich hierbei sofort aus Satz
12.12. Auch die Bilinearitit folgt direkt aus den Eigenschaften des Integrals in Satz 12.13; z. B. ist

furfl?f27g ev

(it o) = [ (0 + 500 = [ igoans [ s
= (f1,8) + (f.8)-

Die Symmetrie ist natiirlich offensichtlich. Fiir die positive Definitheit miissen wir zeigen, dass

b
.= [ f@pRar>o

fiir alle f € V\{0} gilt. Dies ergibt sich aus der folgenden etwas allgemeineren Aussage, die wir spi-
ter noch mehrmals verwenden werden: Ist A: [a,b] — R eine stetige Funktion, die an mindestens
einer Stelle ungleich 0 ist (in unserem Fall A(x) = f(x)?), so ist | ab h(x) > 0.

Um diese Aussage zu zeigen, sei also xo € [a,b] mit ¢ := h(xp) > 0. Da
die Funktion & nach Voraussetzung stetig ist, gibt es dann nach Bemerkung
8.8 wie im Bild rechts ein € € R, so dass i(x) > § fiir alle x € [a,b] mit
|x — xo| < € gilt. Unter dem Graphen von & liegt also sicher ein positives

(ST Y

Fliachenstiick (der Breite 2¢ und Hohe % falls xg nicht zu weit am Rand des X
Intervalls [a, b] liegt). Da die Funktion & nirgends negativ ist, folgt damit wie / *0 \
behauptet [ h(x)dx > 0. Xo—€ Xo+e

Damit definiert die Formel (%) ein Skalarprodukt auf V — und somit nach Bemerkung 21.14 (b)
auch auf allen Unterrdumen davon, wie z. B. dem Unterraum C! ([, b]) aller stetig differenzierbaren
Funktionen oder dem Unterraum Pol([a,b],R) aller Polynomfunktionen auf [a,b]. Beachte, dass
diese Formel ganz analog zum Standardskalarprodukt auf R” in Beispiel 21.15 (a) ist, wenn wir die
Summe iiber die Koordinaten von R" durch ein Integral iiber alle Punkte im Definitionsintervall [a, D]
ersetzen. Auch die Interpretation z. B. der Norm || f]| = +/(f, f) ist in dem Sinne analog, dass diese
Norm klein ist, wenn die Funktion ,,nur wenig von der Nullfunktion abweicht”. Man bezeichnet
dieses Skalarprodukt daher auch als Standardskalarprodukt auf C°([a,b]).

Beachte, dass die Stetigkeit der Funktionen fiir die Existenz dieses Skalarprodukts entscheidend ist:
Wiire z. B. fiir einen gegebenen Punkt xo € [a,b] die unstetige Funktion

0 fiir x # xo,

1 firx=uxp

Vi [a,b]—ﬂR,x»—){

zugelassen, so wire hier (f, f) = [ ab f(x)?dx = 0, obwohl f nicht die Nullfunktion ist. Wir hitten
in diesem Fall also nur eine positiv semidefinite Bilinearform, aber kein Skalarprodukt (siche auch
Aufgabe 21.23 (c)).

Aufgabe 21.17. Es sei n € N5(. Untersuche, ob die folgenden Abbildungen » Skalarprodukte auf
dem reellen Vektorraum V sind:

2 1
1 2 1 0
(@) V=R", b(x,y) =x"Ay mit A = ;
O 1 21
12
(b) V =R™" (A, B) = Spur(AB).

Im Rest dieses Kapitels wollen wir nun die grundlegenden Eigenschaften von euklidischen Riumen
untersuchen. Da es in der Praxis ofters einmal vorkommt, werden wir den Begriff des Skalarprodukts
aber zunichst noch auf den Fall von komplexen Vektorrdumen erweitern.
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Konstruktion 21.18 (Skalarprodukte im komplexen Fall). Wollen wir die Definition 21.13 auf einen
komplexen Vektorraum iibertragen, so haben wir das Problem, dass die Bedingung der positiven
Definitheit iiber C zunichst einmal keinen Sinn ergibt, da C kein geordneter Korper ist. Dies hat zur
Folge, dass wir die Norm eines Vektors nicht mehr wie gewohnt definieren konnen: Wiirden wir wie
beim Standardskalarprodukt im Reellen auch in C" die Formeln

n
Geyy =Y xyi und x| = /(x,x) = \[od+ o 22
i=1

verwenden, so miissten wir hier die Wurzel aus einer im Allgemeinen komplexen Zahl x% o x2
bilden — was nicht eindeutig moglich ist und auch nicht wie gewiinscht zu einer nicht-negativen
reellen Zahl als Lange eines Vektors fithren wiirde. Die Losung dieses Problems besteht darin, im
Skalarprodukt grundsétzlich jede Koordinate eines Eintrags komplex zu konjugieren. Es spielt dabei
keine Rolle, welchen Eintrag wir dafiir wihlen — wir werden in dieser Vorlesung immer den ersten
nehmen, aber auch die umgekehrte Konvention des zweiten Eintrags ist in der Literatur zu finden.
Durch diese komplexe Konjugation erhalten wir z. B. fiir das Standardskalarprodukt die Formeln

n
(x,y) =Y %y; unddamit |x]| = /(x,x) = VETXI o F X xe = /0[P [,
i=1

was wieder zu einer reellen, nicht-negativen Linge eines Vektors fiihrt.

Mit dem Hintergrund dieser Idee sind die entsprechenden Abédnderungen fiir beliebige Skalarpro-
dukte auf komplexen Vektorrdumen relativ offensichtlich. Wir werden die sich daraus ergebenden
Definitionen und Resultate im Folgenden nur kurz auflisten; die Beweise dieser Aussagen sind vollig
analog zu denen im reellen Fall.

Es sei also V ein C-Vektorraum. Eine Sesquilinearform auf V ist eine Abbildung s: V xV — C, so
dass fiir alle x,x2,x,y1,y2,y € V und A € C die Eigenschaften
S(.X'] +x2ay) = S('xl 7y) +S()C2’y),
s(Ax,y) = As(x,y),
s(x,y1+y2) = s(x,31) +5(x,32),
s(x,Ay) = As(x,y)
gelten. Der einzige Unterschied zu Bilinearformen besteht also in der komplexen Konjugation des

Skalars in der zweiten Zeile oben — und in der Tat kommt der Begriff ,,Sesquilinearform* aus dem
Lateinischen und bedeutet ,,eineinhalbfach lineare Form®.

Die Sesquilinearformen auf V bilden einen C-Vektorraum, den wir mit SLF(V) bezeichnen wollen.
Ist V endlich-dimensional und B = (xi,...,x,) eine Basis von V, so ist SLF(V) wie in Folgerung
21.6 isomorph zu C"*" {iber die beiden zueinander inversen Isomorphismen

—T
C™" — SLF(V), A+ s& mit 55 (x,y) 1= ®p(x) ADp(y)
und SLE(V) — C"™", 5+ AP mit AZ = (s(x;,x}))i ),

wobei der Querstrich iiber ®p(x) € C" bedeutet, dass jede Komponente des Vektors komplex konju-
giert wird. Man bezeichnet A? wieder als die Gramsche Matrix von s. Ist B eine weitere Basis von
V, so transformieren sich die Gramschen Matrizen analog zu Satz 21.7 gemif

AB =TTABT mitT = A58,

wobei T = AB'B die iibliche Basiswechselmatrix ist.

Eine Sesquilinearform s auf einem C-Vektorraum V heift hermitesch, wenn s(x,y) = s(y,x) fiir alle
x,y € V. Ist dies der Fall, so erhalten wir daraus insbesondere mit y = x

s(x,x) =s(x,x), also s(x,x)eR
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fuir alle x € V. Wir konnen daher fragen, ob diese reelle Zahl immer nicht-negativ ist, und nennen
eine hermitesche Sesquilinearform s analog zum reellen Fall positiv definit, wenn s(x,x) > 0 fiir
allex € V mit x # 0.

Entsprechend heifit eine Matrix A € C"*" hermitesch, wenn A" = A. In diesem Fall ist T Ax eR
fiir alle x € C", denn es ist

¥Ax=x"AX @ XTZTx = XTAJC7

wobei in (*) nach Lemma 15.7 (d) die transponierte 1 x 1-Matrix gebildet wurde. Gilt sogar TTAx>0
fiir alle x € C" mit x # 0, so heifit A positiv definit. Wie in Lemma 21.11 ist eine Sesquilinear-
form auf einem endlich-dimensionalen Vektorraum genau dann hermitesch, bzw. eine hermitesche
Sesquilinearform genau dann positiv definit, wenn ihre Gramsche Matrix zu einer beliebigen Ba-
sis diese Eigenschaft besitzt. Dabei ist eine hermitesche Diagonalmatrix immer reell, und wie in
Beispiel 21.15 (a) genau dann positiv definit, wenn alle Diagonaleintrige positiv sind. Die ande-
ren Definitheitsbegriffe aus Bemerkung 21.10 (c) definiert man natiirlich sowohl fiir hermitesche
Sesquilinearformen als auch fiir hermitesche Matrizen analog.

Ein Skalarprodukt auf einem C-Vektorraum V ist nun eine positiv definite, hermitesche Sesquili-
nearform s auf V, die wir dann wieder als (x,y) := s(x,y) schreiben. Ein C-Vektorraum zusammen
mit einem Skalarprodukt heifit ein unitirer Raum. Fiir x € V nennen wir in diesem Fall wieder

Il = v {xx) € Rxo

die Norm (oder Linge) von x.

Das Standardskalarprodukt auf C” ist dasjenige, das beziiglich der Standardbasis der Einheitsma-
trix entspricht, also

<x7y> :XT)’:XT)’I‘F‘F)TnYm

wobei x1,...,x, und yi,...,y, die Koordinaten von x bzw. y sind. Beachte, dass die Norm eines
Vektors x € C" in diesem Fall dann

Il = V/Gex) = /a2 b2 =/ (Rexa 24 (Imsy )24+ (Rex)2 o (1max, ),

und damit gleich seiner Norm in R?" beziiglich des Standardskalarprodukts ist. Das Standardskalar-
produkt fiir Matrizen A, B € C™*" ist (A, B) = Spur (ZTB) analog zu Beispiel 21.15 (c).

Im Folgenden wollen wir den reellen und komplexen Fall in der Regel zusammen behandeln. Wie
in der Analysis schreiben wir daher wieder K fiir einen der Korper R oder C, und sprechen von
einem Vektorraum mit Skalarprodukt, wenn wir einen euklidischen bzw. unitiren Raum meinen. Die
Formeln werden wir dabei wie in Konstruktion 21.18 mit der komplexen Konjugation schreiben,
so dass sie dann fiir K = R und K = C gleichermalien gelten — im reellen Fall ist die komplexe
Konjugation dann zwar unnétig, sie schadet aber natiirlich auch nicht.

Als erstes Resultat iiber Skalarprodukte wollen wir nun eine sehr wichtige Ungleichung beweisen.
Satz 21.19 (Cauchy-Schwarz-Ungleichung). In jedem Vektorraum V mit Skalarprodukt gilt

[ ey [ < [lxll- vl

fiir alle x,y € V, wobei die Gleichheit genau dann gilt, wenn x und y linear abhdingig sind.

Beweis. Fiir y =0 ist die Aussage des Satzes offensichtlich, denn dann sind beide Seiten gleich Null

und die Vektoren linear abhingig. Andernfalls setzen wir A := % (und damit A = % wegen der
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Symmetrie bzw. Hermitizitét des Skalarprodukts) und folgern aus der positiven Definitheit, dass
0< (x—Ay,x—Ay) (*)
= (x,x) = A (x,y) =4 () + A 4 (1)
o) — 00 (y) oy X)) 0hx)

() () o,y
) (,x)
)
_ HxHZ _ | <xay> |2
Iyl

und damit | {x,y)|* < ||x||?||y||> gilt. Wurzelziehen liefert nun die behauptete Ungleichung.

= (x,x) —

Gilt in dieser Ungleichung sogar die Gleichheit, gilt also die Gleichheit in (x), so ergibt sich aus der
positiven Definitheit des Skalarprodukts sofort x — Ay =0, d. h. x und y sind linear abhingig. Sind
umgekehrt x und y linear abhiéngig, gilt also x = py fiir ein u € K, so folgt direkt

| Ced) [P = ) P = (B o) P = 1 03)? = (o) (9) = (o) o) = P y)?. O
Mit der Cauchy-Schwarz-Ungleichung kdnnen wir die folgenden Eigenschaften der Norm herleiten:

Satz 21.20 (Eigenschaften der Norm). In jedem Vektorraum V mit Skalarprodukt gilt fiir alle x,y € V
und A € K:

(@) [[Axl] = [A]-[x];

(b) ||x|| > O fiir alle x # 0;

©) |lx+yll < x|+ Iyl (Dreiecksungleichung).
Beweis.

(a) Esist | Ax]| = /(Ax, Ax) = \/ A4 (x.x) = /JA2 (r,x) = [A] - |J].

(b) folgt sofort aus der positiven Definitheit des Skalarprodukts.
(c) Esgilt
e+ ylI* = (et y,x+)
= (5,x) + (x,y) + (nx) + ()
= [ell 4+ (. y) + Cey) + Iyl
= |lx]|* +2Re (x,y) + [|y||* (Bemerkung 6.4)
< [l 2] G ) [+ Iy I? (Lemma 6.9 (b))
< 20 I+l (Satz21.19)

= (Il + IvID?,
woraus durch Wurzelziehen die Behauptung folgt. O

Bemerkung 21.21 (Normen in der linearen Algebra und Analysis). In der Analysis werden wir spa-
ter normierte Vektorrdume definieren als reelle oder komplexe Vektorrdume mit einer reellwertigen
,Normabbildung® || - ||, die die drei Eigenschaften aus Satz 21.20 erfiillt (siche Definition 23.1). In
diesem Sinne sind Vektorrdaume mit Skalarprodukt also immer normierte Vektorrdume aus der Sicht
der Analysis. Wir werden allerdings sehen, dass es auch sehr viele Normen gibt, die nicht von einem
Skalarprodukt kommen, z. B. in R? die Summennorm ||x|| = |xi| + |x2| oder die Maximumsnorm
Il = max(|x], xal).

Wir kommen nun zum Winkel zwischen zwei Vektoren. Man definiert ihn in der Regel nur im re-
ellen Fall und orientiert sich dabei an der geometrischen Deutung aus Beispiel 21.1 im Fall des
Standardskalarprodukts.
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Konstruktion 21.22 (Winkel). Es seien V ein euklidischer Raum und x,y € V\{0}. Nach der
Cauchy-Schwarz-Ungleichung aus Satz 21.19 ist dann

| (2| <1 s 1< (x,y) <1.
[l - 1yl [l - 1yl
Die Zahl
(x,y)
¢ = arccos ———— € [0, 7]
[l - 1yl

ist daher wohldefiniert; wir nennen sie in Analogie zu Beispiel 21.1 den (unorientierten) Winkel
zwischen x und y.

Aufgabe 21.23 (Skalarprodukte aus positiv semidefiniten Formen). Zu einer symmetrischen Biline-
arform b auf einem reellen Vektorraum V sei U, = {x € V : b(x,x) = 0}. Man zeige:
(a) Up ist im Allgemeinen kein Unterraum von V.

(b) Ist b jedoch positiv semidefinit, so ist U, ein Unterraum, und b(%,y) := b(x,y) ist ein wohl-
definiertes Skalarprodukt auf V /Uj,.

(c) Was ergibt sich aus dieser Konstruktion, wenn V der Vektorraum aller stiickweise stetigen
Funktionen auf einem Intervall [a,b] und b(f,g) = | ab Sf(x)g(x) dx ist? Wie kann man sich in
diesem Fall die Elemente von U, und V /U, anschaulich vorstellen?

Aufgabe 21.24. Essei f: V — V ein Endomorphismus eines K-Vektorraums mit Skalarprodukt, so
dass (f(x),x) = 0 fiir alle x € V. Man zeige:

(a) IstV ein unitdrer Raum (also K = C), so ist f die Nullabbildung.

(b) Ist V ein euklidischer Raum (also K = R), so ist f nicht notwendig die Nullabbildung.

21.C Orthogonalitit

Der mit Abstand wichtigste Fall der Winkeldefinition ist derjenige, in dem die beiden betrachteten
Vektoren ,,senkrecht aufeinander stehen®, also dieser Winkel gleich % und nach Konstruktion 21.22
damit das Skalarprodukt gleich O ist. Im Gegensatz zu allgemeinen Winkeln kénnen wir diesen
Spezialfall auch wieder sowohl fiir reelle als auch fiir komplexe Vektorrdume definieren.

Definition 21.25 (Orthogonale Vektoren). Es sei V ein Vektorraum mit Skalarprodukt.

(a) Zwei Vektoren x,y € V heiflien orthogonal bzw. senkrecht zueinander (in Zeichen: x 1 y),
wenn (x,y) = 0 gilt. Fiir x € V und einen Unterraum U < V schreiben wir kurz x L U, falls
x LyfiralleyeU.

(b) Eine (endliche) Familie B = (x1,...,x,) von Vektoren in V heifit orthogonal, wenn x; L x;
fiir alle i # j gilt, also wenn die gegebenen Vektoren paarweise zueinander senkrecht sind.
Gilt zusitzlich ||x;|| = 1 fiir alle i, so nennt man B orthonormal.

(c) Eine Orthogonalbasis bzw. Orthonormalbasis von V ist eine orthogonale bzw. orthonor-
male Familie, die gleichzeitig eine Basis von V ist.

Beispiel 21.26.
(a) Nach Definition ist der Nullvektor orthogonal zu jedem anderen Vektor.
(b) Die Standardbasis von R” bzw. C”" ist natiirlich eine Orthonormalbasis beziiglich des Stan-
dardskalarprodukts, da in diesem Fall (e;,e;) =0 und ||e;|| = 1 fiiralle i, j = 1,...,n gilt.
Bemerkung 21.27.

(a) Die Orthogonalititsrelation ist symmetrisch: Gilt x L y fiir zwei Vektoren x und y in einem
Vektorraum mit Skalarprodukt, ist also (x,y) = 0, so folgt auch (y,x) = (x,y) = 0= 0 und
damity 1 x.
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(b) Es sei U ein Unterraum eines Vektorraums V mit Skalarprodukt. Sind dann x € V und

(x1,...,x,) ein Erzeugendensystem von U, so geniigt es fiir die Bedingung x 1 U zu iiber-
priifen, dass x | x; fiir alle i = 1,...,n: Dann gilt ndmlich (x,x;) =0 firallei=1,...,n, also
auch

(e, Mixy + -+ Auxn) = A1 (e, x1) -+ Ay (,x,) =0

fiir alle A, ...,4, € K, und damit (x,y) =0 fiiralle y € U.

(c) Natiirlich ist jede orthonormale Familie auch orthogonal. Umgekehrt konnen wir aus einer
orthogonalen Familie, die nicht den Nullvektor enthélt, immer eine orthonormale Familie
machen, indem wir jeden ihrer Vektoren normieren, also durch seine Lange dividieren.

Eine erste sehr niitzliche Eigenschaft der Orthogonalitét einer Familie ist, dass daraus bereits ihre
lineare Unabhéngigkeit folgt:

Lemma 21.28. In einem Vektorraum mit Skalarprodukt ist jede orthogonale Familie, die nicht den
Nullvektor enthdilt, linear unabhdngig.

Insbesondere ist sie damit also stets eine Orthogonalbasis des von ihr aufgespannten Unterraums.

Beweis. Essei B= (xi,...,x,) orthogonal mit x; # O fiir alle k. Weiterhin sei A;x; +---+ A,x, =0
mit Ay,...,A, € K eine Linearkombination des Nullvektors. Bilden wir dann das Skalarprodukt von
x; fiir ein k € {1,...,n} mit dieser Gleichung, so folgt

0= <xk,A,1X1 + - +)~nxn> =M (xk,x1> 4+ A (xk,xn) =M kaHz,

weil B orthogonal ist und damit (x;,x;) = O fiir alle i # k gilt. Da weiterhin nach Voraussetzung
X 7 0 und damit aufgrund der positiven Definitheit ||x || # O ist, folgt 4, = 0. Dies gilt aber fiir alle
k, d. h. die urspriingliche Linearkombination ist trivial, und B damit linear unabhingig. g

Wir wollen nun sehen, dass Orthogonalbasen (und damit nach

Bemerkung 21.27 (c) auch Orthonormalbasen) in jedem endlich- xe 74
dimensionalen Vektorraum mit Skalarprodukt existieren und zu '

besonders schonen Eigenschaften fithren. In der Tat gilt sogar ei-

ne ,,Basiserginzungseigenschaft” analog zu Folgerung 14.16. Um .

dies zu beweisen, brauchen wir die folgende Konstruktion der or- f(x) I U
thogonalen Projektion f: V — U eines Vektorraums V auf einen

Unterraum U, die im Bild rechts dargestellt ist.

Satz und Definition 21.29 (Orthogonale Projektionen). Es sei U ein endlich-dimensionaler Unter-
raum eines Vektorraums V mit Skalarprodukt. Ferner sei (xi,...,x,) eine Orthogonalbasis von U

(wir werden in Satz 21.31 noch sehen, dass eine solche Orthogonalbasis immer existiert). Dann gilt:

(a) Es gibt genau eine lineare Abbildung f: V — U mitx— f(x) L U fiir alle x € V, néimlich

Man nennt sie die orthogonale Projektion vonV auf U.

(b) Die orthogonale Projektion f(x) von x aus (a) ist der eindeutig bestimmte Punkt in U mit
kleinstem Abstand zu x, d. h. es gilt ||y —x|| > || f(x) — x| fiir alle y € U mit y # f(x).
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Beweis.

(a) Fiir ein zunichst festes x € V seien 4y,...,4, € K die Koordinaten des Vektors f(x) € U
beziiglich der gegebenen Basis (x1,...,x,), also f(x) = A;x| + - - + A,x,. Dann gilt

21.27 (b) . .
x—fx) LU & (xjx—f(x))=0firallei=1,...,n
& (i, x—Axp— - —Ayxy) =0 firallei=1,...,n
- (xi,x) — A {x;,x;) =0 firalle i = 1,...,n,
& A= <xi’x2> firallei=1,...,n,
x|

wobei wir in (x) die Orthogonalitit der Basis verwendet haben. Die Bedingung x— f(x) L U
fiir alle x € V ist also dquivalent zur angegebenen Formel fiir f und legt f damit eindeutig
fest. Da diese Vorschrift offensichtlich auch linear in x ist, ist Teil (a) des Satzes damit
gezeigt.

(b) Esseiye U mity# f(x), alsoy = f(x) 4 u fiir ein u € U\{0}. Dann gilt
ly =221 = 17 (o) +u—x]|> = {f(x) +u—x, f(x) +u—x)
= (f () =x,f (x) =2) + (w,0) + (f (%) —x,u) + (u, f (x) = x) .
——

=£ ()=l =l =0 wegen f(x)—x LU

Wegen der positiven Definitheit des Skalarprodukts ist aber ||u|| > 0, und damit wie behaup-
tet ||y —x[|* > || f(x) —x[*. B

Bemerkung 21.30. Die Formel fiir die orthogonale Projektion aus Satz 21.29 hat eine einfache
geometrische Deutung, die im Bild unten rechts fiir einen eindimensionalen Unterraum U = Lin(x;)
von V = R? dargestellt ist.

Die Abbildung konstruiert in diesem Fall zu einem x € V das Lot
auf den Unterraum U; der so entstehende Punkt ist die orthogo- x — f(x) @ ox
nale Projektion f(x). Nach Konstruktion 21.22 ist damit : i

<x1,x> _ <x1,x>

£ )| = |Ix]| cos @ = ||x] - ”

N S
und damit wie in Satz 21.29 §4,:"(p H X
) = [f )] = B o o
= . = 1-
ol = TP

Beachte, dass f(x) wie in Satz 21.29 auch anschaulich im Bild der Punkt in U ist, der am nichsten
an x liegt, und dass die Differenz x — f(x) senkrecht zu x; ist.

Nach Satz 21.29 konnen wir einen Vektor konstruieren, der auf einem gegebenen Unterraum U
senkrecht steht, indem wir von einem beliebigen Vektor x ¢ U seine orthogonale Projektion auf U
abziehen. Dies ist nun die Grundidee des folgenden Verfahrens zur Bestimmung von Orthogonalba-
sen.

Satz 21.31 (Gram-Schmidtsches Orthogonalisierungsverfahren). Es seien V ein endlich-dimen-
sionaler Vektorraum mit Skalarprodukt und U <V ein Untervektorraum. Dann ldsst sich jede Or-
thogonalbasis von U zu einer Orthogonalbasis von 'V ergdnzen.

Insbesondere besitzt also jeder endlich-dimensionale Vektorraum mit Skalarprodukt eine Orthogo-

nalbasis (und damit nach Bemerkung 21.27 (c) auch eine Orthonormalbasis).

Beweis. Der Beweis dieses Satzes ist konstruktiv und erlaubt daher auch eine einfache (iterative)
Konstruktion solcher Orthogonalbasen.
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Es sei (x1,...,x,) die gegebene Orthonormalbasis von U. Ist bereits U =V, so sind wir natiirlich
fertig. Ansonsten wihlen wir einen beliebigen Vektor x € V\U und setzen

n .
Xp4l =X — Z (x,,x} X

i=1 ]2 ™
Nach Satz 21.29 (a) ist dieser Vektor senkrecht zu U. AuBerdem ist er wegen x ¢ U = Lin(xy,...,x,)
nicht der Nullvektor. Nach Lemma 21.28 ist (xy,...,x,+1) also eine Orthogonalbasis eines Unter-
raums U’ = Lin(x1,...,x,41) 2 U.

Ist jetzt U’ =V, so sind wir fertig. Ansonsten setzen wir das obige Verfahren iterativ mit dem neuen
Unterraum U’ fort, bis wir geniigend Vektoren gefunden haben. g

Beispiel 21.32. Wir wollen eine Orthogonal- bzw. Orthonormalbasis von R? fiir das Skalarprodukt

(1)

aus Beispiel 21.15 (b) bestimmen. Den ersten Vektor konnen wir dabei (ungleich 0) beliebig wihlen,
z.B. x| = e;. Fiir den zweiten Vektor starten wir mit einem beliebigen Element von R?\ Lin(x;),
z.B. x = e3, und subtrahieren davon wie im Beweis von Satz 21.31 seine orthogonale Projektion auf
Lin(x 1 ) Mit

<x1,62>(10)<} i) (‘1))1 und ||x1||2<x1,x1>(10)<} i) ((1))1

erhalten wir so
X =ep— feise2) = (1>
11 L)

Die Familie (x1,x,) ist also eine Orthogonalbasis von R? beziiglich des gegebenen Skalarprodukts.
Um eine Orthonormalbasis zu bestimmen, miissen wir diese beiden Vektoren noch normieren: We-

gen ||x;||> = 1 und
1 1 -1
b2 = (2,20 = (~1 1><1 4>< I )3

iSt eine OrthOIlOI‘malbaSiS

Bemerkung 21.33 (Gram-Schmidt als Normalformensatz). Es sei V ein endlich erzeugter Vektor-
raum mit Skalarprodukt (x,y) = b(x,y). Ist dann B = (x1,...,x,) gemiB Satz 21.31 eine Orthonor-
malbasis von V, so ist die Gramsche Matrix von b beziiglich B nach Folgerung 21.6 gerade

Af = (<xi’xj>)i,j = En,

denn es ist ja <x,~,x j> gleich 1 fiir i = j und O fiir i # j. In Analogie zu den Normalformaussagen
aus Satz 17.29 und Folgerung 20.14 kann man die Existenz von Orthonormalbasen damit auch so
auffassen, dass es zu jedem Skalarprodukt eine Basis gibt, beziiglich der die Gramsche Matrix die
Einheitsmatrix ist, also diese sehr einfache Form hat.

Da sich Gramsche Matrizen unter Basiswechsel wie in Satz 21.7 bzw. Konstruktion 21.18 verhal-
ten, ist die entsprechende Aussage in Matrixform geméf Lemma 21.11 also, dass es zu jeder positiv
definiten, symmetrischen (im Fall K = R) bzw. hermiteschen (im Fall K = C) Matrix A € K"*"
eine invertierbare Matrix T € GL(n,K) gibt mit TTAT = E: Man muss in die Spalten von 7T ein-
fach eine Orthonormalbasis von K" beziiglich des Skalarprodukts (x,y) = %' Ay schreiben. Fiir das
Skalarprodukt und die Orthonormalbasis aus Beispiel 21.32 ergibt sich also z. B.

1 —L
TTAT =E mit A:G i) und T:<O ,ﬁ),
Vi

was man durch direkte Berechnung des Matrixprodukts auch sofort bestitigen kann.
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Eine Verallgemeinerung dieser Aussage auf nicht notwendig positiv definite symmetrische Bilinear-
formen bzw. hermitesche Sesquilinearformen werden wir in Satz 22.35 bzw. Bemerkung 22.36 (b)
kennenlernen.

Folgerung 21.34. Fiir jede symmetrische bzw. hermitesche Matrix A € K™" gilt:
(a) detA € R.
(b) Ist A zusdtzlich positiv definit, so ist sogar detA > 0.

Beweis.

(a) Da die Determinante ausschlieBlich iiber Summen und Produkte in K definiert ist und die
komplexe Konjugation nach Lemma 6.9 (a) mit diesen Rechenoperationen vertauscht, gilt

zundchst einmal detA = detA. Nach der Voraussetzung XT = A folgt damit
detA — detA = detA' = detA,
also detA € R.

(b) Nach Bemerkung 21.33 gibt es eine invertierbare Matrix T mit T'AT = E. Damit ist analog
zur Rechnung in (a)

| = detE = detT -detA-detT = detA-detT -detT = detA - |detT|?,
woraus detA > 0 folgt. O
Aufgabe 21.35.

m
(a) Fiir welche m,n € N definiert (f,g) := Zf(i)g(i) ein Skalarprodukt auf Pol, (R, R)?
i=0

(b) Berechne fiir dieses Skalarprodukt eine Orthonormalbasis von Poly (R, R) im Fallm =n = 2.

Aufgabe 21.36. Es sei V = C°([—x,7]) der reelle Vektorraum
aller stetigen Funktionen auf dem Intervall [—7, 7] mit dem Stan-

dardskalarprodukt (f,g) := ["_ f(x)g(x)dx wie in Konstruktion /1\

21.16. Wir betrachten darin das Element g € V definiert durch —T

gx) :=1—2xl. / \
Fiir alle n € N5 seien weiterhin f,, € V mit f,,(x) := cosnx, und 1
Uy :=Lin(fi,....f,) <V.

(a) Zeige, dass (f1,..., f) fiir alle n eine Orthogonalbasis von U, ist.

(b) Berechne fiir alle n € N+ die orthogonale Projektion g, von g auf U, (also die Funktion in
U,, die nach Satz 21.29 (b) von g den kleinsten Abstand hat, d. h. sie am besten approxi-
miert).

(c) Zeichne die Funktionen g, fiir kleine n mit einem Computer und vergleiche sie mit der
urspriinglichen Funktion g.

Wir wollen nun noch drei interessante Anwendungen von Orthonormalbasen betrachten. Die erste
betrifft Abbildungsmatrizen bzw. Basiswechselmatrizen: Bisher mussten wir zur Berechnung sol-
cher Matrizen wie in Bemerkung 19.1 Koordinatendarstellungen von Vektoren berechnen und die
dabei erhaltenen Koeffizienten in die Spalten einer Matrix schreiben. Dies erfordert die Losung li-
nearer Gleichungssysteme und ist daher recht rechenaufwendig. In einem Vektorraum mit Skalarpro-
dukt ist die Berechnung solcher Matrizen beziiglich Orthonormalbasen dagegen deutlich einfacher:

Satz 21.37 (Abbildungsmatrizen zu Orthonormalbasen). Es seien V ein endlich-dimensionaler Vek-
torraum mit Skalarprodukt und B = (x1,...,x,) eine Orthonormalbasis von V.

(a) Fiirallex eV gilt
x = (x1,xX) X1 + -+ (X, %) Xp.

Mit anderen Worten ist in der Koordinatendarstellung x = A x1 + - - - + A, x,, beziiglich B also
Ai = (x;,x) fiirallei=1,... n.

50
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(b) Ist f: V — V ein Endomorphismus, so ist die Abbildungsmatrix von f beziiglich B gleich
A? = (<xi’f(xj)>)i7j'

(¢) IstB' = (y1,...,yn) eine weitere Basis von'V, so ist die zugehorige Basiswechselmatrix gleich
AB'E — ((xi7) )i,j'

Beweis.

(a) Bilden wir fiiri = 1,...,n das Skalarprodukt von x; mit der Gleichung x = Ayx; + - - - + Ayxy,
so erhalten wir wegen der Orthonormalitidt von B sofort (x;,x) = A; (x;,x;) = A;.

(b) Nach Satz 16.26 ist der Eintrag in Zeile i und Spalte j von A? genau die i-te Koordinate von
f(x;) beziiglich B, nach (a) also (x;, f(x;)).

(c) Nach Definition 16.38 ist der Eintrag in Zeile i und Spalte j von AB'B genau die i-te Koordi-
nate von y; beziiglich B, nach (a) also <x,<, y j>. O

In der zweiten Anwendung von Orthonormalbasen geht es um Komplemente von Unterrdumen in
endlich erzeugten Vektorrdumen: Wir wissen ja nach Beispiel 17.10 und Satz 17.11 bereits, dass
solche Komplemente zwar immer existieren, aber in der Regel nicht eindeutig bestimmt sind. Falls
im zugrundeliegenden Vektorraum aber ein Skalarprodukt gegeben ist, wollen wir jetzt sehen, dass
es zu jedem Unterraum ein besonderes Komplement gibt — ndmlich das sogenannte orthogonale
Komplement — das immer eindeutig bestimmt ist.

Definition 21.38 (Orthogonales Komplement). Es seien V ein Vektor-
raum mit Skalarprodukt und U <V ein Unterraum von V. Dann nennen Ut
wir die Menge U
Ut:={xeV:x LU}
={xeV:(x,y)=0firalleyc U}
das orthogonale Komplement von U. (Das Bild rechts illustriert dies
fiir den Vektorraum R? mit dem Standardskalarprodukt.)

Satz 21.39. Es seien'V ein endlich-dimensionaler Vektorraum mit Skalarprodukt und U <V ein Un-
terraum. Dann ist das orthogonale Komplement U ein Komplement von U im Sinne von Definition
17.8,d.h. es gilt V =U ®U*.

Beweis. Nach Satz 21.31 kénnen wir eine Orthonormalbasis (xi,...,x;) von U finden und zu einer
Orthonormalbasis (xp,...,x,) von V erginzen. Nach Bemerkung 17.12 ist U’ := Lin(x1,...,%,)
dann ein Komplement von U. Es geniigt also zu zeigen, dass U’ = U gilt: Fiir einen Vektor x € V
mit der Darstellung x = (x1,x) x; + - - - + (x,,x) x, wie in Satz 21.37 (a) folgt unmittelbar

21.27 (b
<:>()

X €U =Lin(xip1,. - 8) & (61,0) =+ = (1,%) =0 xeut. .

Bemerkung 21.40. Der Beweis von Satz 21.39 zeigt auch, wie man das orthogonale Komplement
eines Unterraums U in V berechnen kann: Man ergiinzt eine Orthonormalbasis (x1,...,x;) von U zu
einer Orthonormalbasis (x1,...,x,) von V; die dabei neu hinzugenommenen Vektoren (x1,...,x,)
bilden dann eine Orthonormalbasis von U+,

Da in diesem Fall natiirlich auch x,...,x; die Vektoren x;,...,x, zu einer Orthonormalbasis von
V erginzen, folgt aus dieser Beschreibung auch sofort, dass (U+)* = U gilt.

Beispiel 21.41 (Orthogonale Komplemente in unendlich-dimensionalen Vektorrdumen). Als ,,ab-
schreckendes Beispiel“ dafiir, dass Satz 21.39 nicht so selbstversténdlich ist, wie er vielleicht scheint,
wollen wir kurz zeigen, dass diese Aussage fiir unendlich-dimensionale Vektorrdume im Allgemei-
nen falsch ist, dass das orthogonale Komplement dann also nicht unbedingt immer ein Komplement
im Sinne von Definition 17.8 ist. Dazu sei V = C%([a,b]) der Vektorraum aller stetigen Funktio-
nen auf dem Intervall [a, b] mit dem Standardskalarprodukt (f, g) = fab f(x)g(x) dx aus Konstruktion
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21.16. Wir betrachten darin den Unterraum U = C!([a,b]) C V aller stetig differenzierbaren Funk-
tionen und werden zeigen, dass U+ = {0} gilt, so dass also insbesondere U + U+ =U #V,d.h. U+
kein Komplement von U ist.

Dazu sei f € V\{0} beliebig; wir werden zeigen, dass f ¢ U~ gilt.

Wegen f # 0 gibt es ein xq € [a,b] mit f(xo) # 0; ohne Einschrinkung 2 (x)

sei f(xg) > 0. Da f stetig ist, gibt es dann nach Bemerkung 8.8 ein /

€ € R, so dass f(x) > O fiir alle x € [a,b] mit |x — x| < € ist. Es sei A\ 8(%)

nun g: [a,b] — R eine stetig differenzierbare Funktion wie rechts J:\ X
im Bild, also mit g(xp) > 0 und g(x) = O fiir |x — xo| > €. Dann ist Jxo\

fg stetig und nicht-negativ auf [a,b] mit f(xo)g(xo) > 0, und damit  y, ¢ X0+ €

(f,8) = fabf(x)g(x) dx > 0 nach Konstruktion 21.16.

Wir haben also ein g € U gefunden mit (f,g) # 0. Damit ist f ¢ U=, und da f € V\{0} beliebig
war, folgt wie behauptet U+ = {0}.

Unsere letzte Anwendung der Existenz von Orthonormalbasen in diesem Kapitel ist das folgende
einfache Kriterium fiir die positive Definitheit einer Matrix.

Satz 21.42 (Hurwitz-Kriterium). Es sei A = (a; ;)i j € K"™" eine symmetrische (fiir K = R) bzw.
hermitesche (fiir K = C) Matrix. Fiir k = 1,...,n bezeichnen wir mit Ay = (a; j); j—1,...,

Matrizen, die man erhdlt, wenn man von A nur die ersten k Zeilen und Spalten betrachtet. (Beachte,
dass ihre Determinanten nach Folgerung 21.34 (a) in jedem Fall reell sind.)

Dann ist A genau dann positiv definit, wenn detA; > 0 fiirallek=1,...,n.

Beweis. Es sei b die zu A gehorige symmetrische Bilinearform bzw. hermitesche Sesquilinearform
auf K", so dass also A = (b(e;,e;));; bzw. b(x,y) = X' Ay fiir alle x,y € K" gilt.

»="“1 Ist A positiv definit und b damit ein Skalarprodukt, so ist nach Bemerkung 21.14 (b) auch die
Einschréinkung von b auf den Unterraum Lin(ey,...,e;) ein Skalarprodukt. Die zugehorige
Gramsche Matrix (b(e;,e;)); j1,.. x = Ay ist also ebenfalls positiv definit und hat damit nach
Folgerung 21.34 (b) eine positive Determinante.

: Wir zeigen die Aussage mit Induktion iiber n, der Induktionsanfang fiir n = 1 ist trivial.

Fiir den Induktionsschritt # — n+ 1 bemerken wir zunédchst, dass nach Annahme insbesonde-
re detA; > O fiir k = 1,...,n gilt. Damit ist A, nach Induktionsvoraussetzung positiv definit,
und wir kénnen nach Satz 21.31 eine Orthonormalbasis (xi,...,x,) fiir das zugehorige Ska-
larprodukt finden, das gerade die Einschriankung von b auf Lin(ey, ..., e,) ist. Bilden wir nun
wie im Gram-Schmidt-Verfahren in Satz 21.31 den Vektor

n
Xpil i=epy] — Zb(xi,enJrl)xi ¢ Lin(xy,...,x,)
i=1
(beachte, dass hier wegen b(x;,x;) = 1 kein Nenner auftritt), so gilt wieder

b(xj,xn+1) = b(xj,ent1) — ) b(xi,enr1)b(x},X;) = b(xj,€411) —b(xj,ep41) =0

-

i=1

fir alle j = 1,...,n, da (xi,...,x,) orthonormal ist. Damit hat die Gramsche Matrix von b
beziiglich der Basis B = (xi,...,x,+1) die Form
B_TTAT — (b)), (En] O
Ah =T AT = (b(xnxj))l,] = ( 0 ‘ b(xn+17xn+l) )
wobei wir wie iiblich 7 = (x1 | -+ |x,+1) gesetzt haben. Insbesondere folgt damit

b(xus1,%011) = detA? = det (T'AT) = detT - detA - det T = |det T|? - detA > 0.

Die Matrix Ag ist also eine Diagonalmatrix mit positiven Diagonaleintrigen, und damit nach
Beispiel 21.15 (a) (bzw. Konstruktion 21.18) positiv definit. Daher ist auch b, und somit auch
A positiv definit. g
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Bemerkung 21.43. Die Determinanten von quadratischen Teilmatrizen einer gegebenen Matrix A
werden oft auch Minoren von A genannt, die in Satz 21.42 auftretenden Determinanten detAy be-
zeichnet man als Hauptminoren von A. Das Hurwitz-Kriterium ist daher auch unter dem Namen
Hauptminorenkriterium bekannt.

Beispiel 21.44. Wir betrachten noch ein letztes Mal die symmetrische reelle Matrix
11
=(13)
aus Beispiel 21.15 (b), die wir dort schon durch eine direkte Rechnung als positiv definit erkannt

haben. Mit dem Hurwitz-Kriterium folgt dies (in der Notationen des Satzes) nun auch einfacher aus
detA; =det(1)=1>0 und detA; =detA=3>0.

A1 2
Aufgabe 21.45. FireinA € RseidA= (1 2 3
2 3 7

(a) Fiir welche A ist A positiv definit? Fiir welche A ist A negativ definit?

(b) Wir betrachten nun V = R3 als euklidischen Vektorraum mit dem Skalarprodukt b fiir den
Wert A = 1. Berechne zu U = Lin(e;) <V eine Orthonormalbasis des orthogonalen Kom-
plements U+

21.D Dualriume

Zu einem K-Vektorraum V haben wir bisher zwei Moglichkeiten betrachtet, aus Abbildungen neue
Vektorrdume zu bilden: den Vektorraum End (V') aller linearen Abbildungen V — V und den Vektor-
raum BLF(V) aller Bilinearformen V x V — K. Wir wollen nun in den abschlieBenden beiden Ab-
schnitten dieses Kapitels noch kurz zwei weitere Konstruktionen dieser Art untersuchen. Als Erstes
betrachten wir dazu in diesem Abschnitt den Raum Hom(V, K) aller linearen Abbildungen V — K.
Er ist natiirlich ein Spezialfall des Vektorraums Hom(V, W) aller Morphismen in einen weiteren K-
Vektorraum W, den wir in Abschnitt 16.C schon ausfiihrlich betrachtet haben, hat aber trotzdem —
gerade auch im Zusammenhang mit den in diesem Kapitel eingefiihrten Skalarprodukten — ein paar
besondere Eigenschaften.

Definition 21.46 (Linearformen und Dualrdume). Eine lineare Abbildung von einem K-Vektorraum
V in seinen Grundkorper K bezeichnet man als Linearform auf V. Der Vektorraum Hom(V, K) aller
dieser Linearformen wird auch mit V* bezeichnet und der Dualraum von V genannt.

Konstruktion 21.47 (Duale Basen). Es sei V ein endlich-dimensionaler Vektorraum mit gegebener
Basis B = (xq,...,X,).

(a) Nach Folgerung 16.27 (a) gibt es einen Isomorphismus
Vi KV f e () | | f (),

der jeder Linearform f: V — K seine Abbildungsmatrix beziiglich der Basis B im Startraum
zuordnet. Insbesondere ist also dimV* = n = dimV, und V* damit nach Abschnitt 16.B
isomorph zu V.

(b) Unter dem Isomorphismus V* 2 K'*" aus (a) entspricht der i-te Einheitsvektor in K1 *" 22 K"
offensichtlich genau der Linearform, die auf x; den Wert 1 und auf allen anderen Vektoren
von B den Wert 0 annimmt; man bezeichnet sie in der Regel mit x} € V*. Da Isomorphismen
Basen auf Basen abbilden, ist B* := (x],...,x;) damit eine Basis von V*. Sie heift die duale
Basis zu B und ist also bestimmt durch

) 1 fiiri=j,
X:(x;) =
Y 0 fiiri

fiir alle 7, j = 1,...,n. (Beachte, dass ein dualer Basisvektor x; damit nicht nur von x;, son-
dern von allen xy, ..., x, abhingt.)
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Beachte, dass wir in Konstruktion 21.47 (a) zwar gesehen haben, dass ein endlich-dimensionaler
Vektorraum V immer isomorph zu seinem Dualraum V* ist, dass wir einen konkreten Isomorphismus
zwischen V und V* aber erst dann hinschreiben kénnen, wenn wir eine Basis von V (und damit einen
Isomorphismus V =2 K™) gewihlt haben. Man sagt daher auch, dass es zwischen V und V* zwar einen
Isomorphismus, aber keinen natiirlichen Isomorphismus gibt.

Diese Situation dndert sich, wenn V ein euklidischer Raum ist: In diesem Fall wollen wir jetzt zeigen,
dass das gegebene Skalarprodukt eine natiirliche Einbettung von V in V* liefert, die im endlich-di-
mensionalen Fall sogar natiirlichen Isomorphismus zwischen V und V* liefert.

Satz 21.48 (Natiirliche Einbettung eines euklidischen Vektorraums in seinen Dualraum). Es sei V
ein euklidischer Vektorraum.

(a) Es gibt einen natiirlichen injektiven Morphismus T': V. — V*, wobei I'(x) € V* fiir alle x e V
definiert ist durch T'(x)(y) = (x,y) fiiralley € V.
(b) IstV endlich-dimensional, so ist die Abbildung 1" aus (a) sogar ein natiirlicher Isomorphis-
mus.
Beweis.
(a) Wir miissen die folgenden Dinge iiberpriifen:

e Fiir alle x € V ist I'(x) wirklich in V*, also eine lineare Abbildung von V nach K, weil
das Skalarprodukt im zweiten Eintrag linear ist: Fiir alle y;,y, € V gilt

L)1 +y2) = (61 +y2) = (6 y1) + (x,y2) =Tx) (01) +T(x) (v2).
Die Vertriaglichkeit mit der Skalarmultiplikation zeigt man analog.
e Die Abbildung I': V — V* ist linear, weil das Skalarprodukt im ersten Eintrag linear
ist: Fiir alle x;,x, € Vund y € V gilt
Do +02)(0) = (31 +x2,3) = 1,3} 4 (2,3) = D) (0) + T2) (),
und damit I'(x; +x2) = I'(x;) + T'(x2) in V*. Auch hier folgt die Vertréiglichkeit mit
der Skalarmultiplikation wieder analog.

e Der Morphismus I ist injektiv, d. h. KerI'={0}: Es seix € V mitI'(x) =0 € V*, d.h.
I'(x) ist die Nullabbildung von V nach K. Insbesondere ist dann also I'(x)(x) =0 € K.
Nach Definition von I" bedeutet dies (x,x) = 0, wegen der positiven Definitheit des
Skalarprodukts also x = 0.

(b) Im endlich-dimensionalen Fall folgt aus der Dimensionsformel fiir Morphismen aus Folge-
rung 16.30 (c) sofort

2147 (a)

dimImI" = dimV—dimKerF(a:)dimV dimV*,

und damit auch die Surjektivitdt von I'. U

Bemerkung 21.49.

(a) Fiir einen endlich-dimensionalen euklidischen Raum V bildet der natiirliche Isomorphis-
mus I' aus Satz 21.48 (b) jede Orthonormalbasis B = (xi,...,x,) auf ihre duale Basis
B* = (x},...,x};) wie in Konstruktion 21.47 (b) ab, denn fiir alle i, j = 1,...,n gilt
1 firi=j
C(xi)(xj) = (xi,xj) = '
() () = (%) {0 fiiri # j
=x; (%)),

und damit I'(x;) = xF.

4



286 Andreas Gathmann

(b) Fiir einen unitiren Raum V ist die wie in Satz 21.48 konstruierte Abbildung I': V — V* zwar
noch definiert und injektiv, aber nicht mehr linear (und damit kein Isomorphismus), da das
Skalarprodukt im ersten Eintrag nicht linear ist und somit der obige Beweis der Linearitéit
von I nicht funktioniert.

Beispiel 21.50. Analog zu Beispiel 21.41 verhalten sich unendlich-dimensionale Vektorrdume auch
in Satz 21.48 wieder anders als endlich-dimensionale, da die Einbettung I" in den Dualraum dann
kein Isomorphismus mehr ist. Als konkretes Beispiel dafiir betrachten wir wieder einmal den Raum
V = C%([a,b]) mit dem Standardskalarprodukt. Dabei wihlen wir @ und b mit a < 0 < b und betrach-
ten die Auswerteabbildung
0: VR, g—g(0).

Sie ist offensichtlich linear, und damit ein Element des Dualraums V*. Allerdings wollen wir jetzt
sehen, dass sie nicht im Bild der natiirlichen Abbildung I': V — V* liegt, also dass es kein f € V
gibt mit I'(f) = 8, d.h. mit T'(f)(g) = 6(g), und damit mit

/ab f(x)g(x)dx = g(0) fiir alle g € C°([a,b]). (%)

Wir zeigen dies mit einem Widerspruchsbeweis analog zu Beispiel 21.41 und nehmen also an, dass
es doch eine solche stetige Funktion f € C°([a, b)) gibt.

Ist dann xg € [a,b]\{0} beliebig, so muss notwendigerweise f(xp) =0
gelten: Wire nidmlich f(xp) # 0, wobei wir ohne Einschrinkung
f(x0) > 0 annehmen konnen, so gibt es nach Bemerkung 8.8 zunichst
ein € € R mit f(x) > 0 fiir alle x € [a,b] mit |x —xp| < €. Wir kdnnen
nun wie im Bild rechts eine stetige Funktion g: [a,b] — R>( wihlen
mit g(xo) > 0, g(0) = 0 und g(x) = 0 fiir |[x —xp| > €. Dann ist fg
stetig und nicht-negativ auf [a,b] mit f(xp)g(xo) > 0, und damit nach
Konstruktion 21.16

[ resar>0=(0)

im Widerspruch zu (x). Also ist f(xp) = O fiir alle xp # 0. Da f stetig ist, miisste f dann aber schon
die Nullfunktion sein — was natiirlich auch (x) widerspricht. Also kann es keine solche Funktion f
geben, d. h. die Abbildung I': V — V* ist in diesem Fall nicht surjektiv.

Bemerkung 21.51 (Die ,,Deltafunktion*). Man kann das Ergebnis von Beispiel 21.50 auch so inter-
pretieren: Da I" eine natiirliche Einbettung ist, kénnen wir den Funktionenraum C([a, b]) iiber I als
Teilmenge von (C°([a,b]))* auffassen und so zu einem ,erweiterten Funktionenraum® (C°([a,b]))*
iibergehen (in dem ,,Funktionen nicht mehr stetige Abbildungen von [a,b] nach R sind, sondern
lineare Abbildungen von C%([a,b]) nach R). Dies ist vollig analog z. B. zur Konstruktion der kom-
plexen Zahlen aus den reellen in Kapitel 6: Dort haben wir zunichst einen neuen Korper C = R?
eingefiihrt, dann eine natiirliche Einbettung R — C, x +— (x,0) gefunden, und dies benutzt, um R als
Teilmenge von C bzw. C als eine Erweiterung von R aufzufassen.

Wie wir oben gesehen haben, existiert in diesem ,.erweiterten Funktionenraum® (C%([a,b]))* nun
z.B. das Element 6, das sich gemiB (x) so verhilt, als wiirde es g(0) zuriick liefern, wenn man
J mit einer Funktion g multipliziert und dariiber integriert. Dieses Element &, das insbesondere in
der Physik eine groB3e Rolle spielt, bezeichnet man oft als die ,,Deltafunktion®, auch wenn es sich
hierbei nicht um eine Funktion im eigentlichen, sondern nur im oben betrachteten erweiterten Sinne
handelt.

Oft wird 6§ in der Physik ohne Erwihnung von Dualrdumen als eine ,,Funktion* eingefiihrt, die
die Eigenschaft von f in (%) hat, also insbesondere (wie wir oben gesehen haben) iiberall aufler
in 0 gleich 0 ist und (mit g = 1) |, f O(x)dx =1 erfiillt — d.h. in 0 ,,gerade so unendlich ist, dass
die Flache unter ihrem Graphen (der Breite 0 und Hohe o) gleich 1 ist. Dies erscheint natiirlich
zunichst unsinnig, ldsst sich aber wie eben gesehen durch eine Erweiterung des Funktionenraums
zu einer mathematisch exakten Theorie machen. Derartige Fragestellungen — also wie sich die lineare
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Algebra auf unendlich-dimensionalen Funktionenrdumen verhilt — sind die Inhalte der sogenannten
Funktionalanalysis, in die ihr im zweiten Studienjahr eine Einfithrung héren konnt.

Aufgabe 21.52 (Duale Abbildungen). Zu einer linearen Abbildung f: V — W zwischen endlich-di-
mensionalen Vektorrdumen definiert man die duale Abbildung f* zwischen den Dualrdumen W*
und V* durch

WSV e @of.

Man zeige:
(a) Die Abbildungen f*: W* — V* und Hom(V,W) — Hom(W*,V*), f — f* sind ebenfalls
linear.
(b) Sind B und C Basen von V bzw. W mit dualen Basen B* bzw. C, so hat f* die Abbildungs-
matrix

*. * , T
ACE = (AF9)".

(c) Sind V und W euklidische Rdume, so gibt es nach Satz 21.48 natiirliche Isomorphismen
I'v:V—=V* und I'y: W — W* zu den Dualrdumen. Konstruieren wir damit aus f* die
Abbildung g := F‘;l offoll'y: W —V,sogilt

(x,f(») =(g(x),y) firallexeVundyeW.

Aufgabe 21.53 (Bidualrdume). Zeige, dass fiir jeden endlich-dimensionalen Vektorraum V die na-
tiirliche Abbildung

Y:V— (V)" mit Px)(p)=¢(x) firallexeVundeecV*

ein Isomorphismus ist. Nimmt man von einem solchen Vektorraum zweimal den Dualraum, erhilt
man also auf natiirliche Art wieder den Ausgangsraum — was auch den Namen ,,Dualraum erklért.

21.E Tensorprodukte

Dieser abschlieBende Abschnitt von Kapitel 21 gehort nicht mehr zum eigentlichen Stoff der
,»QGrundlagen der Mathematik* und wird in der Vorlesung nur bei geniigend zur Verfiigung stehender
Zeit behandelt. Er wird im Rest dieses Skripts nicht mehr benotigt.

Wir wollen hier untersuchen, wie ganz generell Produkte von Vektoren konstruiert werden kénnen.
Sind z. B. x und y zwei Vektoren in einem K-Vektorraum V, so wollen wir auf moglichst allgemeine
Art ein Produkt x ® y definieren, das wieder ein Vektor in einem noch zu bestimmenden Vektor-
raum ist. Dabei soll ,,allgemein* bedeuten, dass das Produkt auBer der Bilinearitit keine weiteren
speziellen Eigenschaften hat: Sind B = (x1,...,x,) eine Basis von V und x = A, x| + - - - + A,,x,, bzw.
y=UxX] + 4 Upxy mit Ay, .. A, U, ... Uy € K die Koordinatendarstellungen der beiden Vekto-
ren, so mochten wir bilinear

n n n
XQy = ( MC;’) ® (Z IJij) = Z Ailljx; @ X
i=1 j=1 ij=1
rechnen konnen, dieser Ausdruck soll aber nicht weiter vereinfacht werden konnen, d. h. die hier auf-
tretenden Produkte x; ® x; sollen voneinander unabhéingig sein. Mit anderen Worten wollen wir einen
Vektorraum konstruieren, der eine Basis bestehend aus den Produkten x; ®x; fiir i, j € {1,...,n} hat.
Diesen Vektorraum werden wir dann das Tensorprodukt von V mit sich selbst nennen und mit V ® V
bezeichnen. Ein allgemeines Element in V ® V — auch Tensor genannt — wird dann also die Form
Y jo1aijxi @x; fir gewisse a;,; € K haben, und hat damit beziiglich der Basis B eine Darstellung
durch die Matrix (a; ;); j € K"*". Solche Matrixdarstellungen sehen natiirlich sehr analog zur Situa-
tion bei Bilinearformen und Endomorphismen aus, und in der Tat werden wir in Beispiel 21.59 noch
sehen, dass BLF(V) und End(V) letztlich Spezialfille von Tensorprodukten sind.

Wir wollen diese Idee nun zu einer exakten Definition machen. Da diese Definition natiirlich nicht
von der Wahl einer Basis von V abhingen sollte, miissen wir sie aber (leider) etwas abstrakter for-
mulieren als in der obigen Motivation.
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Definition 21.54 (Tensorprodukt). Es sei V ein K-Vektorraum.
(a) Analog zu Definition 21.2 heifit auch eine Abbildung f: V xV — W in einen weiteren
K-Vektorraum W bilinear, wenn sie linear in beiden Komponenten ist.

(b) Ein Tensorprodukt von V mit sich selbst ist ein Vek-
torraum 7 zusammen mit einer bilinearen Abbildung VXV

t: VxV =T, so dass die folgende Eigenschaft gilt: Zu - -

. . . . . t bilinear g bilinear
jeder bilinearen Abbildung g: V xV — W in einen weite-

ren Vektorraum W gibt es (wie im Bild rechts gestrichelt T ------ - W

eingezeichnet) eine eindeutig bestimmte lineare Abbildung f linear
[T —Wmit for=g.

Wir werden gleich in Lemma 21.55 sehen, dass ein solcher Vektorraum 7' (zusammen mit
t) im Fall der Existenz bis auf Isomorphie eindeutig bestimmt ist. Wir bezeichnen ihn mit
V@V, und fiir x,y € V das Bild #(x,y) mit x®y (es ist dann also g(x,y) = f(x®y)). Die
Elemente von V ® V bezeichnet man als Tensoren.

Lemma 21.55 (Eindeutigkeit des Tensorproukts). Fiir jeden K-Vektorraum V ist ein Tensorprodukt
wie in Definition 21.54 bis auf natiirliche Isomorphie eindeutig bestimmit.

Mit anderen Worten: Sind T und T mit zugehirigen bilinearen Abbildungen t: V xV — T bzw.
f: VxV = T zwei Tensorprodukte, so gibt es einen eindeutigen Isomorphismus f: T — T mit
fot=fund f~lof=1.

Beweis. Da T mit ¢ ein Tensorprodukt ist, existiert nach Definition 21.54 (b) fiir die bilineare Ab-
bildung 7: V x V — T wie im Bild unten links eine eindeutige lineare Abbildung f: T — T mit
fot =1f. Durch Vertauschen der Rollen von T und 7 erhalten wir analog ein eindeutiges f: 7 — T
mit fof=1t.

VxV VxV
t b111nef1/ \blhnear t bilinefl/ t bilinear
—————— T ------—»T
f linear fof=idr

Esistalsot = fof = fo fot. Betrachten wir nun noch einmal die Eigenschaft aus Definition 21.54
(b) fiir das Diagramm oben rechts, so erhalten wir daraus eine eindeutige lineare Abbildung 7 — T,
die mit ¢ verkettet wieder ¢ ergibt. Da sowohl fo f als auch id dies erfiillen, folgt also fo f = idy.
Analog ist auch fo f = id7, d. h. f ist ein Isomorphismus mit Umkehrabbildung f. O

Natiirlich wollen wir jetzt auch noch sehen, dass ein solches Tensorprodukt auch wirklich existiert.
Obwohl man zeigen kann, dass dies fiir beliebige Vektorrdiume gilt, wollen wir uns dabei hier der
Einfachheit halber auf den endlich-dimensionalen Fall beschrinken und im folgenden Beweis mit
gewihlten Basen bzw. Koordinaten arbeiten. Lemma 21.55 stellt uns sicher, dass unser Ergebnis am
Ende nicht von diesen Wahlen abhingen wird.

Satz 21.56 (Existenz des Tensorprodukts). Es sei V ein endlich-dimensionaler Vektorraum. Dann
gilt:

(a) Es gibt ein (nach Lemma 21.55 eindeutig bestimmtes) Tensorprodukt V®V.

(b) Ist B=(xi,...,X,) eine Basis von 'V, so bilden die Tensoren x; @ x; fiir i, j € {1,...,n} eine

Basis von V @ V. Insbesondere ist also dim(V @ V) = (dimV)2.

Beweis. Essei B= (xi,...,x,) eine Basis von V. Wie in Konstruktion 21.47 (b) bezeichnen wir die

dazu duale Basis von V* mit B* = (x7,...,x},).

Wir setzen nun 7 := K"*" und werden zeigen, dass die (offensichtlich bilineare) Abbildung

VXV =T, (x,y)— (xlt(x)x7(y))k,l
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ein Tensorprodukt im Sinne von Definition 21.54 (b) ist. Beachte dazu zunéchst, dass nach Kon-
struktion der dualen Basis fiir alle i, j € {1,...,n}
Xi @xj 1 =1t(x;,x;) = (x,f(xl-)xl*(xj))k,l =E;;

gilt, wobei E; ; € K" die Matrix bezeichnet, die an der Stelle (i, j) eine 1 und sonst iiberall Nullen
hat. Da diese Matrizen natiirlich eine Basis von K"*" bilden, zeigt dies bereits (b).
Es sei nun g: V xV — W eine beliebige bilineare Abbildung in einen weiteren Vektorraum W.
Mobchten wir nun wie in Definition 21.54 (b) eine lineare Abbildung f: T — W mit f ot = g finden,
so muss f auf der Basis (E; j); ; von K"*" zwangslaufig die Werte

f(Eij) = ft(xi,x))) = g(xi,xj) €W M
annehmen. Nach Folgerung 16.32 existiert nun aber genau eine solche lineare Abbildung f, und
erfiillt dariiber hinaus fiir alle A, ..., A, U1,..., Uy €K

f(t( ¥ ZW.;)) D o ) L Y Aty g(xioxy) @g(zzixl-, zu,»x.,-),
i=1 Jj=1 i i=1 j=1

i,j=1 i,j=1
also wie verlangt f ot = g (wobei wir in (2) Linearitét von f und die Bilinearitét von ¢ benutzt haben,
und in (3) die Bilinearitiit von g). Dies zeigt auch den Teil (a) des Satzes. O
Bemerkung 21.57 (Matrixdarstellung von Tensoren). Es sei B = (xj,...,x,) eine Basis eines
endlich-dimensionalen Vektorraums V. Da die Tensoren x; ® x; fiir i, j € {1,...,n} nach Satz 21.56

(b) eine Basis von V ®V bilden — so wie wir es uns am Anfang dieses Abschnitts gewiinscht hatten —
sind Matrizen der GroBe n x n und Tensoren in V ® V' also nach Wahl von B iiber den Isomorphismus

n
K" v QV, (a,-_,j),-yj — Z a; jXi QXj
i,j=1
dasselbe (in der Tat sind dies auch genau die Matrizen, die im Beweis von Satz 21.56 auftraten).

Bemerkung 21.58 (Verallgemeinerung des Tensorprodukts). Mit exakt denselben Ideen und nur
etwas aufwéndigerer Notation lassen sich sowohl die Definition als auch die Konstruktion des Ten-
sorprodukts leicht in zwei Richtungen verallgemeinern:

(a) Die beiden Vektorraume im Produkt miissen nicht dieselben sein: Man kann auch bilineare
Abbildungen auf V x W und somit Tensorprodukte V ® W fiir zwei verschiedene Vektorriu-

me V und W betrachten. Im endlich-dimensionalen Fall mit Basen B = (x1,...,x,) von V und
C=(y1,...,Ym) von W erhalten wir dann analog zu Bemerkung 21.57 einen Isomorphismus
n m

KPm Vew, (ai,j)i,j —> Z Zai,_/'xi@yj;
i=1 j=1

es ist also dim(V @ W) = dimV - dimW.

(b) Durch die Untersuchung multilinearer statt bilinearer Abbildungen konnen auch Tensorpro-
dukte von mehr als zwei Vektorrdumen gebildet werden. Betrachten wir z. B. das dreifache
Tensorprodukt eines endlich-dimensionalen Vektorraums V mit sich selbst, so erhalten wir
nach Wahl einer Basis B = (xi,...,x,) von V einen Isomorphismus

n
KV sV oVe V, (a,'vjyk),‘,j’k — Z aj j kXi R Xj & Xk
i,j k=1
d. h. solche Tensoren entsprechen nach einer Basiswahl einem Tupel von Skalaren g; ;; € K,
die man sich in einem dreidimensionalen (statt wie bei Matrizen in einem zweidimensiona-
len) Schema angeordnet vorstellen kann. Insbesondere ist damit dim(V @V ®@V) = (dimV)?;
Entsprechendes gilt natiirlich auch fiir mehr als drei Faktoren.

Beispiel 21.59 (Bilinearformen und Endomorphismen als Tensoren). Es sei V ein endlich-dimen-
sionaler Vektorraum. Dann kénnen wir die folgenden frither betrachteten Vektorrdume auch als Ten-
sorprodukte auffassen:
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(a) V*®@V* ist auf natiirliche Art isomorph zu BLF(V) (wihrend die Elemente von V* Line-
arformen auf V sind, sind die Elemente von V* ® V* also Bilinearformen auf V x V):

Um dies zu zeigen, betrachten wir zunéchst die Abbildung
V*xV* = BLE(V), (¢,y¥) — by mit by y(x,y)=¢@x)y(y) firallex,yeV.

Man rechnet sofort nach, dass b,y wirklich eine Bilinearform ist, und dass diese Abbildung
bilinear ist. Nach Definition 21.54 (b) gibt es dazu also eine natiirliche lineare Abbildung

V*@V* 5 BLE(V) mit @@y by, firalleo,yeV* (1)

Um nun zu iiberpriifen, dass sie tatsdchlich ein Isomorphismus ist, konnen wir Koordi-
naten verwenden. Dazu wihlen wir eine Basis B = (xy,...,x,) von V mit dualer Ba-
sis B* = (x},...,x) von V*, und zeigen, dass die zugehorigen Koordinatendarstellungen
der Tensoren in V* ® V* und Bilinearformen in BLF(V) iiber die Abbildung (1) iiberein-
stimmen: Zur Matrix A = (a; ;); j € K™" gehort nach Bemerkung 21.58 (a) der Tensor
Y oy aijx; @}, dazu gemiB (1) die Bilinearform Y./, a; ; bx;’x;, und diese hat nach Fol-

gerung 21.6 wieder die Gramsche Matrix
n n
( Z anjbx;*,x;(xk,xz)) = ( Z ai,jx?(xk)xj(xl)> = (ar )k = A.
ij=1 k,l ij=1 ki
(b) Analog zu (a) zeigt man, dass V ® V* auf natiirliche Art isomorph zu End(V) ist:
Die Abbildung
VxV*=End(V), (v,@) = frp mit f,o(x)=¢@(x)v firallexecV

ist wieder bilinear und bestimmt damit nach Definition 21.54 (b) eine natiirliche lineare
Abbildung

VeV*—=End(V) mit v@@r f,, firalleveVund@eV". )

Wie in (a) benutzen wir nun wieder eine Basis B = (xi,...,x,) und die zugehérigen Koor-
dinatendarstellungen, um zu iiberpriifen, dass dies ein Isomorphismus ist: Zu einer Matrix
A= (a;;)ij€ K"™" gehort der Tensor )::’ 1 Qi Xi ®x}‘-, dazu nach (2) der Endomorphismus
Zﬁ j=14ij thxj, und dieser hat nach Definition 16.26 die Abbildungsmatrix

( %( $ a,-,jx;f<X1)x,»> ‘ @B( y ai,,»x;f<xn)xi)>

i,j=1 i,j=1

(ou(Fane) o Faun)) -

In der Tat ist der Unterschied zwischen (a) und (b) — also dass BLF(V) auf natiirliche Art isomorph ist
zuV*®@V*, aber End(V) zu V ® V* — aus der Sicht der Tensorprodukte der Grund dafiir, warum diese
Objekte zwar beide durch Matrizen beschrieben werden konnen, aber unter einem Basiswechsel ein
anderes Transformationsverhalten haben.

Aufgabe 21.60. Es sei V ein endlich-dimensionaler Vektorraum. Man zeige:

(a) Jeder Tensor oo € V ®V lidsst sich als oo = Y/, x; ® y; schreiben, wobei sowohl (xi,...,x)
als auch (yi,...,y,) linear unabhingig ist.

(b) In (a) ist die Zahl r durch o eindeutig bestimmt, und zwar gleich dem Rang einer beliebigen
Matrixdarstellung von «.

Aufgabe 21.61. Es sei V ein endlich-dimensionaler Vektorraum. Aus der bilinearen Abbildung
VxV* =K, (x,0)— ¢(x)

ergibt sich nach Definition 21.54 (b) die Existenz einer (auf natiirliche Art definierten) zugehorigen
linearen Abbildung g: V ® V* — K mit g(x ® ¢) = @(x). Andererseits wissen wir aus Beispiel
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21.59 (b), dass V ® V* auf natiirliche Art isomorph ist zu End(V'); wir konnen g also auch als lineare
Abbildung g: End(V) — K auffassen.

Diese Abbildung g ist eine, die wir schon lange kennen — um welche handelt es sich?

Aufgabe 21.62 (Polynome in mehreren Variablen als Tensorprodukte). Es sei Pol(R?,R) der
Vektorraum aller reellen Polynomfunktionen in zwei Variablen, d.h. der Raum aller Funktionen
f: R? - R, die geschrieben werden konnen als
fly)=Y apx'y firallex,y€R,
i,jeN

wobei nur endlich viele g; ; € R ungleich 0 sind. Wie in Bemerkung 3.23 kann man auch hier be-
weisen, dass fiir jede solche Polynomfunktion ihre Koeffizienten a; ; eindeutig bestimmt sind (das
braucht ihr nicht zu tun).

(a) Zeige, dass Pol(R? R) = Pol(R,R) ® Pol(R,R) gilt (also dass Pol(R?,R) zusammen mit ei-
ner geeigneten bilinearen Abbildung Pol(R,R) x Pol(R,R) — Pol(R?R) die Bedingungen
aus Definition 21.54 (b) erfiillt).

(b) Gib ein Beispiel fiir ein Polynom f € Pol(R?,R) = Pol(R,R) ® Pol(R,R) an, das nicht als
f=p®qgmit p,g € Pol(R,R) geschrieben werden kann.



