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21. Euklidische und unitäre Räume

Wir wollen uns nun mit einem ganz anderen Thema beschäftigen, nämlich wie man Längen von
Vektoren und Winkel zwischen zwei Vektoren berechnen (und überhaupt erst einmal definieren)
kann. Zur Motivation betrachten wir dazu zunächst einmal den sehr einfachen Fall des Vektorraums
R2, in dem sich diese beiden Fragen mit Hilfe von Elementargeometrie und Schulmathematik leicht
beantworten lassen.

Beispiel 21.1 (Längen und Winkel in R2). Wie ihr sicher aus der Schule wisst, ist das wesentliche
Hilfsmittel für die Längen- und Winkelmessung in R2 das sogenannte Skalarprodukt

⟨x,y⟩= x1y1 + x2y2 ∈ R für x =
(

x1
x2

)
, y =

(
y1
y2

)
∈ R2.

So ergibt sich z. B. wie im Bild unten links dargestellt aus dem Satz des Pythagoras, dass die Länge
eines Vektors x ∈ R2 durch den Ausdruck√

x2
1 + x2

2 =
√
⟨x,x⟩

gegeben ist, den wir im Folgenden kurz als ∥x∥ schreiben werden.

0

x1

x2

x

yx

y
∥y∥ = eiϕ · x

∥x∥

ϕ

∥x∥

∥x∥=
√
⟨x,x⟩

Wollen wir den Winkel ϕ zwischen zwei Vektoren x,y∈R2\{0}wie im Bild oben rechts berechnen,
betrachten wir dazu am besten zunächst einmal die Vektoren x

∥x∥ und y
∥y∥ , die in die gleiche Richtung

wie x bzw. y zeigen, aber die Länge 1 haben. Fassen wir dann x = x1 + ix2 und y = y1 + iy2 als
Elemente der komplexen Ebene C= R2 auf, so folgt aus den Bemerkungen 6.5 und 9.11, dass

y
∥y∥

= eiϕ · x
∥x∥

ist, da sich die Winkel bei der komplexen Multiplikation addieren und eiϕ eine Zahl mit Winkel ϕ

und Betrag 1 ist. Einfache Umformungen in C ergeben nun wegen ∥x∥2 = xx

eiϕ =
y
x
· ∥x∥
∥y∥

=
xy
xx
· ∥x∥
∥y∥

=
xy

∥x∥ · ∥y∥
.

Wegen xy = (x1− ix2)(y1 + iy2) = x1y1 +x2y2 + i(x1y2−x2y1) besagt der Realteil dieser Gleichung

cosϕ =
x1y1 + x2y2

∥x∥ · ∥y∥
,

woraus wir mit der obigen Definition des Skalarprodukts folgern, dass

ϕ = arccos
⟨x,y⟩
∥x∥ · ∥y∥

ist (beachte hierbei, dass der Arkuskosinus nur Werte zwischen 0 und π zurückliefert und aufgrund
der Symmetrien der Kosinusfunktion damit den unorientierten Winkel zwischen x und y ergibt).
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Sowohl Längen als auch Winkel lassen sich damit durch das Skalarprodukt ausdrücken. Wenn wir
diese beiden Konzepte auch in anderen Vektorräumen definieren wollen, sollten wir den Begriff des
Skalarprodukts also auf beliebige Vektorräume verallgemeinern.

Das Problem dabei ist jedoch, dass die Formel ⟨x,y⟩ = x1y1 + x2y2 (oder eine entsprechend verall-
gemeinerte Version für höhere Dimensionen) explizit die Koordinaten der beiden Vektoren x und y
benutzt. In einem allgemeinen Vektorraum gäbe es solche Koordinaten aber erst nach Wahl einer
Basis – und die Formel würde natürlich auch unterschiedliche Ergebnisse liefern, wenn man die
Koordinaten bezüglich verschiedener Basen nehmen würde. Wir schließen daraus, dass es in einem
allgemeinen Vektorraum kein natürlich definiertes Skalarprodukt gibt, sondern dass ein Skalarpro-
dukt eine Zusatzstruktur darstellt, die man zusätzlich zum Vektorraum erst einmal festlegen muss,
bevor man mit konkreten Rechnungen anfangen kann.

Wir müssen diese Zusatzstruktur also zunächst erst einmal genauer definieren, d. h. konkret ange-
ben, welche Eigenschaften ein Skalarprodukt haben soll. Klar ist, dass wir zwei Elementen eines
K-Vektorraums V ein Element des zugrunde liegenden Körpers K zuordnen wollen, also formal ei-
ne Abbildung von V ×V nach K betrachten müssen. Mit solchen Abbildungen wollen wir uns nun
zunächst beschäftigen.

21.A Bilinearformen

Die erste wichtige Eigenschaft eines Skalarprodukts ist, dass es linear in beiden Vektoren ist. Derar-
tige Abbildungen bezeichnet man als Bilinearformen.

Definition 21.2 (Bilinearformen). Eine Bilinearform auf einem K-Vektorraum V ist eine Abbildung
b : V ×V → K, (x,y) 7→ b(x,y), die in beiden Komponenten eine lineare Abbildung ist, d. h. für die
für alle x1,x2,x,y1,y2,y ∈V und λ ∈ K die Eigenschaften

b(x1 + x2,y) = b(x1,y)+b(x2,y),

b(λx,y) = λ b(x,y),

b(x,y1 + y2) = b(x,y1)+b(x,y2),

b(x,λy) = λ b(x,y)

gelten. Wie man leicht nachprüft, ist die Menge aller Bilinearformen auf V ein Unterraum von
Abb(V ×V,K) (siehe Beispiel 13.3 (c)) und damit ein K-Vektorraum. Wir bezeichnen ihn mit
BLF(V ).

Beispiel 21.3.
(a) Die Abbildung

b : R2×R2→ R,
((

x1
x2

)
,

(
y1
y2

))
7→ x1y1 + x1y2 + x2y1 +4x2y2

ist offensichtlich eine Bilinearform auf R2: Hält man y1 und y2 fest, so ist der gegebene
Ausdruck eine lineare Abbildung in x1 und x2, und umgekehrt. Hingegen ist

b : R2×R2→ R,
((

x1
x2

)
,

(
y1
y2

))
7→ x1y1 + x1 + y1

keine Bilinearform: Da lineare Abbildungen nach Bemerkung 16.2 stets 0 auf 0 abbilden,
kann b wegen

b
((

0
0

)
,

(
1
0

))
= 1

bei festgehaltener zweiter Komponente y nicht linear im ersten Argument x sein.

(b) Da die Determinante nach Bemerkung 18.10 linear in jeder Spalte ist, ist die Abbildung

b : R2×R2→ R, (x,y) 7→ det(x |y)
eine Bilinearform auf R2.
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(c) Ist A ∈ Kn×n eine quadratische Matrix, so ist

bA : Kn×Kn→ K, b(x,y) = xTAy (∗)

nach den Rechenregeln für Matrizen aus Lemma 15.7 eine Bilinearform auf Kn – beachte,
dass das Ergebnis hierbei als Produkt dreier Matrizen der Größen 1×n, n×n und n×1 eine
1× 1-Matrix, also ein Element von K ist. Ist A = (ai, j)i, j und sind x1, . . . ,xn und y1, . . . ,yn
die Koordinaten von x und y, so ist eine alternative Schreibweise für (∗) nach Definition 15.5

b(x,y) = (x1 · · · xn ) ·

a1,1 · · · a1,n
...

...
an,1 · · · an,n

 ·
y1

...
yn

=
n

∑
i, j=1

xiai, jy j.

Wir wollen nun sehen, dass man in der Tat sogar jede mögliche Bilinearform auf Kn auf diese
Art aus einer eindeutig bestimmten Matrix erhalten kann. Dies besagt der folgende Satz, der
völlig analog zu Satz 16.23 und Folgerung 16.24 (a) über den Zusammenhang zwischen
linearen Abbildungen und Matrizen ist, und der damit letztlich besagt, dass Bilinearformen
auf Kn und n×n-Matrizen über K „im Prinzip dasselbe“ sind.

Satz und Definition 21.4 (Bilinearformen auf Kn und Matrizen). Es sei n ∈ N.

(a) Zu jeder Bilinearform b : Kn×Kn→ K gibt es genau eine Matrix A ∈ Kn×n mit b = bA wie
in Beispiel 21.3 (c), also mit

b(x,y) = xTAy für alle x,y ∈ Kn,

nämlich A = (b(ei,e j))i, j. Man nennt sie die Gramsche Matrix von b und bezeichnet sie mit
Ab.

(b) Die Abbildung Kn×n → BLF(Kn), A 7→ bA ist ein Isomorphismus mit Umkehrabbildung
BLF(Kn)→ Kn×n, b 7→ Ab.

Beweis.

(a) Zunächst einmal legt die Bedingung b = bA die Matrix A = (ai, j)i, j eindeutig fest: Da wir
den Eintrag in Zeile i und Spalte j von A als das Matrixprodukt eT

i Ae j schreiben können, ist
notwendigerweise

ai, j = eT
i Ae j = b(ei,e j),

und damit A = Ab. Da b bilinear ist, folgt aus dieser Gleichung aber auch für alle Vektoren
x = x1e1 + · · ·+ xnen und y = y1e1 + · · ·+ ynen

b(x,y) = b
( n

∑
i=1

xiei,
n

∑
j=1

y je j

)
=

n

∑
i, j=1

xib(ei,e j)y j = xTAy,

und damit b = bA.

(b) Die Abbildung Kn×n→ BLF(Kn), A 7→ bA ist linear, denn für alle A,B ∈ Kn×n, λ ∈ K und
x,y ∈ Kn gilt

bA+B(x,y) = xT(A+B)y = xTAy+ xTBy = bA(x,y)+bB(x,y)

und bλA(x,y) = xT(λA)y = λ xTAy = λ bA(x,y),

und damit bA+B = bA + bB und bλA = λbA. Da sie nach (a) auch bijektiv ist, ist sie damit
ein Isomorphismus. Nach Definition der Gramschen Matrix ist ihre Umkehrabbildung genau
BLF(Kn)→ Kn×n, b 7→ Ab. □

Beispiel 21.5.
(a) Zur Bilinearform

b : R2×R2→ R,
((

x1
x2

)
,

(
y1
y2

))
7→ x1y1 + x1y2 + x2y1 +4x2y2 (∗)
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aus Beispiel 21.3 (a) ist die zugehörige Gramsche Matrix

Ab =

(
b(e1,e1) b(e1,e2)
b(e2,e1) b(e2,e2)

)
=

(
1 1
1 4

)
.

Eine alternative Beschreibung von Ab = (ai, j)i, j ist offensichtlich, dass ai, j in einer Darstel-
lung der Form (∗) von b(x,y) genau der Koeffizient von xiy j ist.

Umgekehrt können wir nun nach Satz 21.4 aus dieser Matrix auch die ursprüngliche Biline-
arform durch die Formel

b(x,y) = (x1 x2 ) ·
(

1 1
1 4

)
·
(

y1
y2

)
= x1y1 + x1y2 + x2y1 +4x2y2

zurückgewinnen.

(b) Die Einheitsmatrix E ∈ Kn×n entspricht in der Korrespondenz aus Satz 21.4 genau der Bili-
nearform

bE : Kn×Kn→ K, (x,y) 7→ xT y = x1y1 + · · ·+ xnyn,

die wir in Beispiel 21.1 im Fall K = R und n = 2 schon beim gewöhnlichen Skalarprodukt
auf R2 gesehen haben.

Genau wie bei linearen Abbildungen in Satz 16.26 und Folgerung 16.27 (a) können wir unsere Kor-
respondenz zwischen Bilinearformen und Matrizen nun unmittelbar von Kn auf beliebige endlich-
dimensionale Vektorräume erweitern, indem wir dort eine Basis wählen und mit den Koordinaten-
vektoren bezüglich dieser Basis arbeiten.

Folgerung 21.6 (Bilinearformen auf V und Matrizen). Es seien V ein endlich-dimensionaler
K-Vektorraum sowie B = (x1, . . . ,xn) eine Basis von V mit zugehöriger Koordinatenabbildung
ΦB : V → Kn (siehe Konstruktion 16.18). Dann ist die Abbildung

Kn×n→ BLF(V ), A 7→ bB
A mit bB

A(x,y) := ΦB(x)TAΦB(y)

wieder ein Isomorphismus mit Umkehrabbildung

BLF(V )→ Kn×n, b 7→ AB
b mit AB

b := (b(xi,x j))i, j.

Wie oben nennt man AB
b die Gramsche Matrix von b bezüglich der Basis B.

Beweis. Die Abbildung

BLF(Kn)→ BLF(V ), b 7→
(
(x,y) 7→ b(ΦB(x),ΦB(y))

)
,

die einer Bilinearform b auf Kn die Bilinearform auf V zuordnet, bei der man einfach in b die
Koordinatenvektoren der Vektoren aus V einsetzt, ist offensichtlich ein Isomorphismus mit Umkehr-
abbildung

BLF(V )→ BLF(Kn), b 7→
(
(x,y) 7→ b(Φ−1

B (x),Φ−1
B (y))

)
.

Verketten wir den Isomorphismus aus Satz 21.4 mit dieser Abbildung, erhalten wir also wie be-
hauptet einen Isomorphismus Kn×n→ BLF(Kn)→ BLF(V ), der eine Matrix A auf die Bilinearform
(x,y) 7→ bA(ΦB(x),ΦB(y)) = ΦB(x)TAΦB(y) abbildet, und dessen Umkehrung einer Bilinearform b
auf V die Matrix (b(Φ−1

B (ei),Φ
−1
B (e j)))i, j = (b(xi,x j))i, j zuordnet. □

Natürlich hängt die Gramsche Matrix einer Bilinearform wie in Folgerung 21.6 von der gewählten
Basis ab. Wie der folgende Satz zeigt, ist die Transformationsformel bei einem Basiswechsel jedoch
eine andere als für Endomorphismen (siehe Bemerkung 19.3 (b)).

Satz 21.7 (Verhalten von Gramschen Matrizen unter Basiswechsel). Es seien b eine Bilinearform
auf einem endlich-dimensionalen K-Vektorraum V sowie B und B′ zwei Basen von V . Dann gilt für
die Gramschen Matrizen von b bezüglich B und B′

AB′
b = T TAB

b T,

wobei T = AB′,B die Basiswechselmatrix aus Definition 16.38 ist.
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Beweis. Es seien B = (x1, . . . ,xn) und B′ = (x′1, . . . ,x
′
n) die gewählten Basen. Nach Definition 16.38

enthält die k-te Spalte von T =(ai, j)i, j für k = 1, . . . ,n genau den Koordinatenvektor von x′k bezüglich
B, d. h. es gilt

x′k = a1,kx1 + · · ·+an,kxn.

Damit folgt für die Gramschen Matrizen mit der Formel aus Folgerung 21.6 sofort

AB′
b = (b(x′k,x

′
l))k,l =

(
b
( n

∑
i=1

ai,kxi,
n

∑
j=1

a j,lx j

))
k,l

=

(
n

∑
i, j=1

ai,kb(xi,x j)a j,l

)
k,l

= T TAB
b T. □

Bemerkung 21.8 (Verhalten von Matrizen unter Basiswechsel). Bisher hatten wir Matrizen nahezu
ausschließlich zur Beschreibung von linearen Abbildungen benutzt. Nach Definition ist eine Matrix
aber zunächst einmal nichts weiter als ein rechteckiges Zahlenschema, ohne Vorgabe einer Bedeu-
tung dieser Zahlen. In der Tat haben wir nun gesehen, dass man Matrizen auch noch für ganz andere
Dinge verwenden kann, nämlich z. B. zur Darstellung von Bilinearformen.
Ohne weitere Informationen ergibt es daher keinen Sinn zu fragen, wie sich eine (quadratische)
Matrix unter einem Basiswechsel transformiert. Die Antwort auf diese Frage hängt nach Bemerkung
19.3 (b) und Satz 21.7 davon ab, welche Bedeutung die Einträge in der Matrix haben:

Bei einem Basiswechsel mit zugehöriger Basiswechselmatrix T transformiert sich . . .
. . . eine Abbildungsmatrix A zu einem Endomorphismus in die Matrix T−1AT ,
. . . eine Gramsche Matrix A zu einer Bilinearform in die Matrix T TAT .

Wie bei linearen Abbildungen oder Endomorphismen könnten wir uns nun schließlich auch bei Bili-
nearformen wieder nach einer Normalform fragen: Wie können wir zu einer gegebenen Bilinearform
b ∈ BLF(V ) eine Basis von V so wählen, dass die zugehörige Gramsche Matrix AB

b möglichst ein-
fach wird? Wir wollen diese Frage hier allerdings nicht in dieser vollen Allgemeinheit beantworten,
da wir im Folgenden hauptsächlich an Bilinearformen mit noch weiteren speziellen Eigenschaften
interessiert sind. Diese Eigenschaften wollen wir jetzt einführen.

21.B Skalarprodukte
Wir kommen nun zu den in der Einleitung zu diesem Kapitel bereits angekündigten Skalarprodukten.
Sie sind als Bilinearformen mit den folgenden beiden Eigenschaften definiert, die wir auch gleich
wieder analog für Matrizen einführen wollen.

Definition 21.9 (Symmetrie und positive Definitheit). Es seien b ∈ BLF(V ) eine Bilinearform auf
einem K-Vektorraum V und A ∈ Kn×n.

(a) Die Bilinearform b heißt symmetrisch, wenn b(x,y) = b(y,x) für alle x,y ∈V gilt.

Die Matrix A heißt symmetrisch, wenn AT = A gilt.
(b) Es sei nun zusätzlich K = R.

Die Bilinearform b heißt dann positiv definit, wenn b(x,x)> 0 für alle x ∈V\{0} gilt.

Die Matrix A heißt dann positiv definit, wenn xTAx > 0 für alle x ∈ Rn\{0} gilt.

Bemerkung 21.10.
(a) Die Bedingung der positiven Definitheit lässt sich offensichtlich nur für einen geordneten

Körper (siehe Kapitel 4.B) formulieren. Für uns ist hierbei eigentlich nur der Fall K = R
interessant. Wir werden die Bedingung der positiven Definitheit in Konstruktion 21.18 aber
noch etwas abändern, so dass sie dann auch im Fall K = C anwendbar ist.

(b) Da eine Bilinearform b in jedem Eintrag linear ist, gilt natürlich stets b(0,0) = 0. Eine positiv
definite Bilinearform auf einem R-Vektorraum V erfüllt damit also immer b(x,x) ≥ 0 für
alle x ∈ V . Diese Bedingung, die wir später für Skalarprodukte fordern werden, wird uns
dann sicherstellen, dass wir aus b(x,x) die Wurzel ziehen und so die Länge von x definieren
können.
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(c) In manchen Fällen (siehe Satz 26.20) benötigt man auch die folgenden zur positiven Defini-
theit analogen Bedingungen: Eine Bilinearform b ∈ BLF(V ) auf einem reellen Vektorraum
V heißt . . .

• . . . negativ definit, wenn b(x,x)< 0 für alle x ∈V\{0} gilt;

• . . . positiv semidefinit, wenn b(x,x)≥ 0 für alle x ∈V gilt;

• . . . negativ semidefinit, wenn b(x,x)≤ 0 für alle x ∈V gilt;

• . . . indefinit, wenn sie weder positiv noch negativ semidefinit ist, also wenn es x,y∈V
gibt mit b(x,x)< 0 und b(y,y)> 0.

Entsprechende Eigenschaften definiert man natürlich auch für reelle quadratische Matrizen.
48

Als Erstes wollen wir nun die wohl erwartete Aussage zeigen, dass sich die in Definition 21.9 ein-
geführten Begriffe für Bilinearformen und Matrizen entsprechen.

Lemma 21.11 (Symmetrie und positive Definitheit bei Bilinearformen und Matrizen). Es seien b
eine Bilinearform auf einem endlich-dimensionalen K-Vektorraum V , B eine Basis von V , und AB

b
wie in Folgerung 21.6 die zugehörige Gramsche Matrix. Dann gilt:

(a) Die Bilinearform b ist genau dann symmetrisch, wenn die Matrix AB
b symmetrisch ist.

(b) Im Fall K = R ist b genau dann positiv definit, wenn AB
b positiv definit ist.

Beweis. Es sei B = (x1, . . . ,xn).

(a) „⇒“: Ist b symmetrisch, so folgt natürlich sofort

(AB
b )

T = (b(x j,xi))i, j = (b(xi,x j))i, j = AB
b .

„⇐“: Ist umgekehrt AB
b symmetrisch, so gilt nach Folgerung 21.6 für alle x,y ∈V

b(x,y) = ΦB(x)TAB
b ΦB(y)

(∗)
= ΦB(y)T(AB

b )
T

ΦB(x) = ΦB(y)TAB
b ΦB(x) = b(y,x),

wobei wir in (∗) gemäß Lemma 15.7 (d) die transponierte 1×1-Matrix gebildet haben.

(b) Da die Koordinatenabbildung ΦB : V → Rn ein Isomorphismus ist, ist die Matrix AB
b genau

dann positiv definit, wenn ΦB(x)TAB
b ΦB(x)> 0 für alle x∈V\{0} gilt. Nach Folgerung 21.6

bedeutet dies genau b(x,x)> 0 für alle x ∈V\{0}, also dass b positiv definit ist. □

Bemerkung 21.12 (Invarianz von Symmetrie und positiver Definitheit). Sind A,A′ ∈ Kn×n zwei
quadratische Matrizen mit A′ = T TAT für ein T ∈ GL(n,K), so besagt Lemma 21.11 insbesondere,
dass A′ genau dann symmetrisch (bzw. im Fall K = R positiv definit) ist, wenn dies für A gilt: A′

und A beschreiben nach Satz 21.7 nämlich die gleiche Bilinearform bezüglich zweier evtl. verschie-
dener Basen, und nach Lemma 21.11 hängt es nur von dieser Bilinearform (aber eben nicht von der
gewählten Basis) ab, ob die Matrix symmetrisch bzw. positiv definit ist.

Mit Hilfe der eingeführten Konzepte können wir nun Skalarprodukte auf reellen Vektorräumen defi-
nieren.

Definition 21.13 (Skalarprodukte). Es sei V ein R-Vektorraum. Ein Skalarprodukt auf V ist eine
positiv definite, symmetrische Bilinearform b : V ×V → R. Ein R-Vektorraum V zusammen mit
einem Skalarprodukt heißt ein euklidischer Raum.

Für x,y ∈V schreiben wir statt b(x,y) dann auch ⟨x,y⟩. Die (wegen der positiven Definitheit existie-
rende) Zahl

∥x∥ :=
√
⟨x,x⟩ ∈ R≥0

heißt in Verallgemeinerung von Beispiel 21.1 die Norm oder Länge von x (bezüglich b). Man nennt
einen Vektor x ∈V normiert (bezüglich b), falls ∥x∥= 1 gilt.
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Bemerkung 21.14.
(a) Ist V ein endlich erzeugter R-Vektorraum und B eine Basis von V , so lässt sich ein Ska-

larprodukt auf V nach Lemma 21.11 also genau durch eine positiv definite, symmetrische
Matrix A ∈Rn×n beschreiben bzw. definieren (nämlich durch die Gramsche Matrix des Ska-
larprodukts bezüglich der Basis B).

(b) Die Einschränkung eines Skalarprodukts auf einen Untervektorraum ist offensichtlich wie-
der ein Skalarprodukt.

Beispiel 21.15.
(a) Ist A = diag(λ1, . . . ,λn) ∈ Rn×n eine Diagonalmatrix, so ist A natürlich zunächst einmal

symmetrisch. Gilt nun zusätzlich λi > 0 für alle i = 1, . . . ,n, so ist A auch positiv definit,
denn für alle x ∈ Rn\{0} ist

xTAx =
n

∑
i=1

λix2
i > 0,

da in dieser Summe alle Terme nicht-negativ sind und mindestens einer positiv ist. Also ist
die zugehörige Bilinearform

⟨x,y⟩= xTAy =
n

∑
i=1

λixiyi

ein Skalarprodukt auf Rn. Speziell für A = E erhalten wir daraus die schon in Beispiel
21.5 (b) betrachtete Bilinearform

⟨x,y⟩= xT y =
n

∑
i=1

xiyi.

Sie ist die direkte Verallgemeinerung von Beispiel 21.1 und wird das Standardskalarpro-
dukt auf Rn (und nach Bemerkung 21.14 (b) auch auf Unterräumen von Rn) genannt.

Gilt analog λi < 0 / λi ≥ 0 / λi ≤ 0 für alle i = 1, . . . ,n, so ist die oben konstruierte Bilinear-
form negativ definit / positiv semidefinit / negativ semidefinit. Sie ist indefinit, falls es unter
den λ1, . . . ,λn eine positive und eine negative Zahl gibt.

(b) Die in Beispiel 21.5 (a) schon betrachtete reelle Matrix A =

(
1 1
1 4

)
ist positiv definit: Für

alle x ∈ R2 ist zunächst

xTAx = x2
1 + x1x2 + x2x1 +4x2

2 = (x1 + x2)
2 +3x2

2 ≥ 0,

und die Gleichheit kann hier nur gelten für x1 + x2 = x2 = 0, also für x = 0. Da A auch sym-
metrisch ist, ist die durch diese Matrix (bezüglich der Standardbasis) definierte Bilinearform

⟨x,y⟩= xTAy = x1y1 + x1y2 + x2y1 +4x2y2

also ein Skalarprodukt auf R2.

(c) Betrachten wir reelle m× n-Matrizen über ihre Einträge als Vektoren in Rmn, so können
wir das Standardskalarprodukt zweier Matrizen A = (ai, j)i, j und B = (bi, j)i, j im Vektorraum
Rm×n mit der Definition des Matrixprodukts und der Spur schreiben als

⟨A,B⟩=
m

∑
i=1

n

∑
j=1

ai, jbi, j = Spur
(
ATB

)
.

Wir werden dies in Zukunft als das Standardskalarprodukt auf Matrizenräumen wählen.

Konstruktion 21.16 (Skalarprodukte auf Funktionenräumen). Auch auf unendlich-dimensionalen
Vektorräumen sind Skalarprodukte eine sehr nützliche Zusatzstruktur. Ein besonders wichtiges Bei-
spiel dafür ist wie in Definition 11.7 der reelle Vektorraum V = C0([a,b]) der stetigen Funktionen
auf einem abgeschlossenen Intervall [a,b] mit a < b. Wir behaupten, dass dann

⟨ f ,g⟩ :=
∫ b

a
f (x)g(x)dx (∗)
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ein Skalarprodukt auf V definiert. Die Existenz dieses Integrals ergibt sich hierbei sofort aus Satz
12.12. Auch die Bilinearität folgt direkt aus den Eigenschaften des Integrals in Satz 12.13; z. B. ist
für f1, f2,g ∈V

⟨ f1 + f2,g⟩=
∫ b

a
( f1(x)+ f2(x))g(x)dx =

∫ b

a
f1(x)g(x)dx+

∫ b

a
f2(x)g(x)dx

= ⟨ f1,g⟩+ ⟨ f2,g⟩ .

Die Symmetrie ist natürlich offensichtlich. Für die positive Definitheit müssen wir zeigen, dass

⟨ f , f ⟩=
∫ b

a
f (x)2 dx > 0

für alle f ∈V\{0} gilt. Dies ergibt sich aus der folgenden etwas allgemeineren Aussage, die wir spä-
ter noch mehrmals verwenden werden: Ist h : [a,b]→ R≥0 eine stetige Funktion, die an mindestens
einer Stelle ungleich 0 ist (in unserem Fall h(x) = f (x)2), so ist

∫ b
a h(x)> 0.

Um diese Aussage zu zeigen, sei also x0 ∈ [a,b] mit c := h(x0) > 0. Da
die Funktion h nach Voraussetzung stetig ist, gibt es dann nach Bemerkung
8.8 wie im Bild rechts ein ε ∈ R>0, so dass h(x) > c

2 für alle x ∈ [a,b] mit
|x− x0| ≤ ε gilt. Unter dem Graphen von h liegt also sicher ein positives
Flächenstück (der Breite 2ε und Höhe c

2 , falls x0 nicht zu weit am Rand des
Intervalls [a,b] liegt). Da die Funktion h nirgends negativ ist, folgt damit wie
behauptet

∫ b
a h(x)dx > 0.

x0

c
c
2

x

h(x)

x0− ε x0 + ε

Damit definiert die Formel (∗) ein Skalarprodukt auf V – und somit nach Bemerkung 21.14 (b)
auch auf allen Unterräumen davon, wie z. B. dem Unterraum C1([a,b]) aller stetig differenzierbaren
Funktionen oder dem Unterraum Pol([a,b],R) aller Polynomfunktionen auf [a,b]. Beachte, dass
diese Formel ganz analog zum Standardskalarprodukt auf Rn in Beispiel 21.15 (a) ist, wenn wir die
Summe über die Koordinaten von Rn durch ein Integral über alle Punkte im Definitionsintervall [a,b]
ersetzen. Auch die Interpretation z. B. der Norm ∥ f∥=

√
⟨ f , f ⟩ ist in dem Sinne analog, dass diese

Norm klein ist, wenn die Funktion „nur wenig von der Nullfunktion abweicht“. Man bezeichnet
dieses Skalarprodukt daher auch als Standardskalarprodukt auf C0([a,b]).

Beachte, dass die Stetigkeit der Funktionen für die Existenz dieses Skalarprodukts entscheidend ist:
Wäre z. B. für einen gegebenen Punkt x0 ∈ [a,b] die unstetige Funktion

f : [a,b]→ R, x 7→

{
0 für x ̸= x0,

1 für x = x0

zugelassen, so wäre hier ⟨ f , f ⟩ =
∫ b

a f (x)2 dx = 0, obwohl f nicht die Nullfunktion ist. Wir hätten
in diesem Fall also nur eine positiv semidefinite Bilinearform, aber kein Skalarprodukt (siehe auch
Aufgabe 21.23 (c)).

Aufgabe 21.17. Es sei n ∈ N>0. Untersuche, ob die folgenden Abbildungen b Skalarprodukte auf
dem reellen Vektorraum V sind:

(a) V = Rn, b(x,y) = xTAy mit A =


2 1 01 2 1

. . . . . . . . .

0 1 2 1
1 2

;

(b) V = Rn×n, b(A,B) = Spur(AB).

Im Rest dieses Kapitels wollen wir nun die grundlegenden Eigenschaften von euklidischen Räumen
untersuchen. Da es in der Praxis öfters einmal vorkommt, werden wir den Begriff des Skalarprodukts
aber zunächst noch auf den Fall von komplexen Vektorräumen erweitern.
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Konstruktion 21.18 (Skalarprodukte im komplexen Fall). Wollen wir die Definition 21.13 auf einen
komplexen Vektorraum übertragen, so haben wir das Problem, dass die Bedingung der positiven
Definitheit über C zunächst einmal keinen Sinn ergibt, da C kein geordneter Körper ist. Dies hat zur
Folge, dass wir die Norm eines Vektors nicht mehr wie gewohnt definieren können: Würden wir wie
beim Standardskalarprodukt im Reellen auch in Cn die Formeln

⟨x,y⟩=
n

∑
i=1

xiyi und ∥x∥=
√
⟨x,x⟩=

√
x2

1 + · · ·+ x2
n

verwenden, so müssten wir hier die Wurzel aus einer im Allgemeinen komplexen Zahl x2
1 + · · ·+ x2

n
bilden – was nicht eindeutig möglich ist und auch nicht wie gewünscht zu einer nicht-negativen
reellen Zahl als Länge eines Vektors führen würde. Die Lösung dieses Problems besteht darin, im
Skalarprodukt grundsätzlich jede Koordinate eines Eintrags komplex zu konjugieren. Es spielt dabei
keine Rolle, welchen Eintrag wir dafür wählen – wir werden in dieser Vorlesung immer den ersten
nehmen, aber auch die umgekehrte Konvention des zweiten Eintrags ist in der Literatur zu finden.
Durch diese komplexe Konjugation erhalten wir z. B. für das Standardskalarprodukt die Formeln

⟨x,y⟩=
n

∑
i=1

xi yi und damit ∥x∥=
√
⟨x,x⟩=

√
x1 x1 + · · ·+ xn xn =

√
|x1|2 + · · ·+ |xn|2,

was wieder zu einer reellen, nicht-negativen Länge eines Vektors führt.

Mit dem Hintergrund dieser Idee sind die entsprechenden Abänderungen für beliebige Skalarpro-
dukte auf komplexen Vektorräumen relativ offensichtlich. Wir werden die sich daraus ergebenden
Definitionen und Resultate im Folgenden nur kurz auflisten; die Beweise dieser Aussagen sind völlig
analog zu denen im reellen Fall.

Es sei also V ein C-Vektorraum. Eine Sesquilinearform auf V ist eine Abbildung s : V ×V →C, so
dass für alle x1,x2,x,y1,y2,y ∈V und λ ∈ C die Eigenschaften

s(x1 + x2,y) = s(x1,y)+ s(x2,y),

s(λx,y) = λ s(x,y),

s(x,y1 + y2) = s(x,y1)+ s(x,y2),

s(x,λy) = λ s(x,y)

gelten. Der einzige Unterschied zu Bilinearformen besteht also in der komplexen Konjugation des
Skalars in der zweiten Zeile oben – und in der Tat kommt der Begriff „Sesquilinearform“ aus dem
Lateinischen und bedeutet „eineinhalbfach lineare Form“.

Die Sesquilinearformen auf V bilden einen C-Vektorraum, den wir mit SLF(V ) bezeichnen wollen.
Ist V endlich-dimensional und B = (x1, . . . ,xn) eine Basis von V , so ist SLF(V ) wie in Folgerung
21.6 isomorph zu Cn×n über die beiden zueinander inversen Isomorphismen

Cn×n→ SLF(V ), A 7→ sB
A mit sB

A(x,y) := ΦB(x)
T

AΦB(y)

und SLF(V )→ Cn×n, s 7→ AB
s mit AB

s := (s(xi,x j))i, j,

wobei der Querstrich über ΦB(x) ∈Cn bedeutet, dass jede Komponente des Vektors komplex konju-
giert wird. Man bezeichnet AB

s wieder als die Gramsche Matrix von s. Ist B′ eine weitere Basis von
V , so transformieren sich die Gramschen Matrizen analog zu Satz 21.7 gemäß

AB′
s = T TAB

s T mit T = AB′,B,

wobei T = AB′,B die übliche Basiswechselmatrix ist.

Eine Sesquilinearform s auf einem C-Vektorraum V heißt hermitesch, wenn s(x,y) = s(y,x) für alle
x,y ∈V . Ist dies der Fall, so erhalten wir daraus insbesondere mit y = x

s(x,x) = s(x,x), also s(x,x) ∈ R
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für alle x ∈ V . Wir können daher fragen, ob diese reelle Zahl immer nicht-negativ ist, und nennen
eine hermitesche Sesquilinearform s analog zum reellen Fall positiv definit, wenn s(x,x) > 0 für
alle x ∈V mit x ̸= 0.

Entsprechend heißt eine Matrix A ∈ Cn×n hermitesch, wenn AT
= A. In diesem Fall ist xTAx ∈ R

für alle x ∈ Cn, denn es ist

xTAx = xTAx
(∗)
= xTAT x = xTAx,

wobei in (∗) nach Lemma 15.7 (d) die transponierte 1×1-Matrix gebildet wurde. Gilt sogar xTAx> 0
für alle x ∈ Cn mit x ̸= 0, so heißt A positiv definit. Wie in Lemma 21.11 ist eine Sesquilinear-
form auf einem endlich-dimensionalen Vektorraum genau dann hermitesch, bzw. eine hermitesche
Sesquilinearform genau dann positiv definit, wenn ihre Gramsche Matrix zu einer beliebigen Ba-
sis diese Eigenschaft besitzt. Dabei ist eine hermitesche Diagonalmatrix immer reell, und wie in
Beispiel 21.15 (a) genau dann positiv definit, wenn alle Diagonaleinträge positiv sind. Die ande-
ren Definitheitsbegriffe aus Bemerkung 21.10 (c) definiert man natürlich sowohl für hermitesche
Sesquilinearformen als auch für hermitesche Matrizen analog.

Ein Skalarprodukt auf einem C-Vektorraum V ist nun eine positiv definite, hermitesche Sesquili-
nearform s auf V , die wir dann wieder als ⟨x,y⟩ := s(x,y) schreiben. Ein C-Vektorraum zusammen
mit einem Skalarprodukt heißt ein unitärer Raum. Für x ∈V nennen wir in diesem Fall wieder

∥x∥ :=
√
⟨x,x⟩ ∈ R≥0

die Norm (oder Länge) von x.

Das Standardskalarprodukt auf Cn ist dasjenige, das bezüglich der Standardbasis der Einheitsma-
trix entspricht, also

⟨x,y⟩= xTy = x1 y1 + · · ·+ xn yn,

wobei x1, . . . ,xn und y1, . . . ,yn die Koordinaten von x bzw. y sind. Beachte, dass die Norm eines
Vektors x ∈ Cn in diesem Fall dann

∥x∥=
√
⟨x,x⟩=

√
|x1|2 + · · ·+ |xn|2 =

√
(Rex1)2 +(Imx1)2 + · · ·+(Rexn)2 +(Imxn)2,

und damit gleich seiner Norm in R2n bezüglich des Standardskalarprodukts ist. Das Standardskalar-
produkt für Matrizen A,B ∈ Cm×n ist ⟨A,B⟩= Spur

(
ATB

)
analog zu Beispiel 21.15 (c).

Im Folgenden wollen wir den reellen und komplexen Fall in der Regel zusammen behandeln. Wie
in der Analysis schreiben wir daher wieder K für einen der Körper R oder C, und sprechen von
einem Vektorraum mit Skalarprodukt, wenn wir einen euklidischen bzw. unitären Raum meinen. Die
Formeln werden wir dabei wie in Konstruktion 21.18 mit der komplexen Konjugation schreiben,
so dass sie dann für K = R und K = C gleichermaßen gelten – im reellen Fall ist die komplexe
Konjugation dann zwar unnötig, sie schadet aber natürlich auch nicht.

Als erstes Resultat über Skalarprodukte wollen wir nun eine sehr wichtige Ungleichung beweisen.

Satz 21.19 (Cauchy-Schwarz-Ungleichung). In jedem Vektorraum V mit Skalarprodukt gilt

| ⟨x,y⟩ | ≤ ∥x∥ · ∥y∥

für alle x,y ∈V , wobei die Gleichheit genau dann gilt, wenn x und y linear abhängig sind.

Beweis. Für y = 0 ist die Aussage des Satzes offensichtlich, denn dann sind beide Seiten gleich Null
und die Vektoren linear abhängig. Andernfalls setzen wir λ := ⟨y,x⟩

⟨y,y⟩ (und damit λ = ⟨x,y⟩
⟨y,y⟩ wegen der
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Symmetrie bzw. Hermitizität des Skalarprodukts) und folgern aus der positiven Definitheit, dass

0≤ ⟨x−λy,x−λy⟩ (∗)

= ⟨x,x⟩−λ ⟨x,y⟩−λ ⟨y,x⟩+λ λ ⟨y,y⟩

= ⟨x,x⟩− ⟨y,x⟩⟨x,y⟩⟨y,y⟩
− ⟨x,y⟩⟨y,x⟩⟨y,y⟩

+
⟨x,y⟩⟨y,x⟩
⟨y,y⟩

= ⟨x,x⟩− ⟨x,y⟩⟨y,x⟩⟨y,y⟩

= ∥x∥2− |⟨x,y⟩ |
2

∥y∥2

und damit | ⟨x,y⟩ |2 ≤ ∥x∥2∥y∥2 gilt. Wurzelziehen liefert nun die behauptete Ungleichung.

Gilt in dieser Ungleichung sogar die Gleichheit, gilt also die Gleichheit in (∗), so ergibt sich aus der
positiven Definitheit des Skalarprodukts sofort x−λy = 0, d. h. x und y sind linear abhängig. Sind
umgekehrt x und y linear abhängig, gilt also x = µ y für ein µ ∈K, so folgt direkt

| ⟨x,y⟩ |2 = | ⟨µy,y⟩ |2 = |µ ⟨y,y⟩ |2 = µµ ⟨y,y⟩2 = ⟨µy,µy⟩⟨y,y⟩= ⟨x,x⟩⟨y,y⟩= ∥x∥2∥y∥2. □
49

Mit der Cauchy-Schwarz-Ungleichung können wir die folgenden Eigenschaften der Norm herleiten:

Satz 21.20 (Eigenschaften der Norm). In jedem Vektorraum V mit Skalarprodukt gilt für alle x,y∈V
und λ ∈K:

(a) ∥λx∥= |λ | · ∥x∥ ;

(b) ∥x∥> 0 für alle x ̸= 0;

(c) ∥x+ y∥ ≤ ∥x∥+∥y∥ (Dreiecksungleichung).

Beweis.

(a) Es ist ∥λx∥=
√
⟨λx,λx⟩=

√
λλ ⟨x,x⟩=

√
|λ |2 ⟨x,x⟩= |λ | · ∥x∥.

(b) folgt sofort aus der positiven Definitheit des Skalarprodukts.

(c) Es gilt

∥x+ y∥2 = ⟨x+ y,x+ y⟩
= ⟨x,x⟩+ ⟨x,y⟩+ ⟨y,x⟩+ ⟨y,y⟩

= ∥x∥2 + ⟨x,y⟩+ ⟨x,y⟩+∥y∥2

= ∥x∥2 +2Re⟨x,y⟩+∥y∥2 (Bemerkung 6.4)

≤ ∥x∥2 +2 | ⟨x,y⟩ |+∥y∥2 (Lemma 6.9 (b))

≤ ∥x∥2 +2∥x∥ · ∥y∥+∥y∥2 (Satz 21.19)

= (∥x∥+∥y∥)2,

woraus durch Wurzelziehen die Behauptung folgt. □

Bemerkung 21.21 (Normen in der linearen Algebra und Analysis). In der Analysis werden wir spä-
ter normierte Vektorräume definieren als reelle oder komplexe Vektorräume mit einer reellwertigen
„Normabbildung“ ∥ · ∥, die die drei Eigenschaften aus Satz 21.20 erfüllt (siehe Definition 23.1). In
diesem Sinne sind Vektorräume mit Skalarprodukt also immer normierte Vektorräume aus der Sicht
der Analysis. Wir werden allerdings sehen, dass es auch sehr viele Normen gibt, die nicht von einem
Skalarprodukt kommen, z. B. in R2 die Summennorm ∥x∥ = |x1|+ |x2| oder die Maximumsnorm
∥x∥= max(|x1|, |x2|).

Wir kommen nun zum Winkel zwischen zwei Vektoren. Man definiert ihn in der Regel nur im re-
ellen Fall und orientiert sich dabei an der geometrischen Deutung aus Beispiel 21.1 im Fall des
Standardskalarprodukts.
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Konstruktion 21.22 (Winkel). Es seien V ein euklidischer Raum und x,y ∈ V\{0}. Nach der
Cauchy-Schwarz-Ungleichung aus Satz 21.19 ist dann

| ⟨x,y⟩ |
∥x∥ · ∥y∥

≤ 1, also −1≤ ⟨x,y⟩
∥x∥ · ∥y∥

≤ 1.

Die Zahl

ϕ = arccos
⟨x,y⟩
∥x∥ · ∥y∥

∈ [0,π]

ist daher wohldefiniert; wir nennen sie in Analogie zu Beispiel 21.1 den (unorientierten) Winkel
zwischen x und y.

Aufgabe 21.23 (Skalarprodukte aus positiv semidefiniten Formen). Zu einer symmetrischen Biline-
arform b auf einem reellen Vektorraum V sei Ub = {x ∈V : b(x,x) = 0}. Man zeige:

(a) Ub ist im Allgemeinen kein Unterraum von V .

(b) Ist b jedoch positiv semidefinit, so ist Ub ein Unterraum, und b(x,y) := b(x,y) ist ein wohl-
definiertes Skalarprodukt auf V/Ub.

(c) Was ergibt sich aus dieser Konstruktion, wenn V der Vektorraum aller stückweise stetigen
Funktionen auf einem Intervall [a,b] und b( f ,g) =

∫ b
a f (x)g(x)dx ist? Wie kann man sich in

diesem Fall die Elemente von Ub und V/Ub anschaulich vorstellen?

Aufgabe 21.24. Es sei f : V →V ein Endomorphismus eines K-Vektorraums mit Skalarprodukt, so
dass ⟨ f (x),x⟩= 0 für alle x ∈V . Man zeige:

(a) Ist V ein unitärer Raum (also K= C), so ist f die Nullabbildung.

(b) Ist V ein euklidischer Raum (also K= R), so ist f nicht notwendig die Nullabbildung.

21.C Orthogonalität

Der mit Abstand wichtigste Fall der Winkeldefinition ist derjenige, in dem die beiden betrachteten
Vektoren „senkrecht aufeinander stehen“, also dieser Winkel gleich π

2 und nach Konstruktion 21.22
damit das Skalarprodukt gleich 0 ist. Im Gegensatz zu allgemeinen Winkeln können wir diesen
Spezialfall auch wieder sowohl für reelle als auch für komplexe Vektorräume definieren.

Definition 21.25 (Orthogonale Vektoren). Es sei V ein Vektorraum mit Skalarprodukt.

(a) Zwei Vektoren x,y ∈ V heißen orthogonal bzw. senkrecht zueinander (in Zeichen: x ⊥ y),
wenn ⟨x,y⟩= 0 gilt. Für x ∈V und einen Unterraum U ≤V schreiben wir kurz x ⊥U , falls
x⊥ y für alle y ∈U .

(b) Eine (endliche) Familie B = (x1, . . . ,xn) von Vektoren in V heißt orthogonal, wenn xi ⊥ x j
für alle i ̸= j gilt, also wenn die gegebenen Vektoren paarweise zueinander senkrecht sind.
Gilt zusätzlich ∥xi∥= 1 für alle i, so nennt man B orthonormal.

(c) Eine Orthogonalbasis bzw. Orthonormalbasis von V ist eine orthogonale bzw. orthonor-
male Familie, die gleichzeitig eine Basis von V ist.

Beispiel 21.26.
(a) Nach Definition ist der Nullvektor orthogonal zu jedem anderen Vektor.

(b) Die Standardbasis von Rn bzw. Cn ist natürlich eine Orthonormalbasis bezüglich des Stan-
dardskalarprodukts, da in diesem Fall

〈
ei,e j

〉
= 0 und ∥ei∥= 1 für alle i, j = 1, . . . ,n gilt.

Bemerkung 21.27.
(a) Die Orthogonalitätsrelation ist symmetrisch: Gilt x ⊥ y für zwei Vektoren x und y in einem

Vektorraum mit Skalarprodukt, ist also ⟨x,y⟩ = 0, so folgt auch ⟨y,x⟩ = ⟨x,y⟩ = 0 = 0 und
damit y⊥ x.
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(b) Es sei U ein Unterraum eines Vektorraums V mit Skalarprodukt. Sind dann x ∈ V und
(x1, . . . ,xn) ein Erzeugendensystem von U , so genügt es für die Bedingung x ⊥U zu über-
prüfen, dass x⊥ xi für alle i = 1, . . . ,n: Dann gilt nämlich ⟨x,xi⟩= 0 für alle i = 1, . . . ,n, also
auch

⟨x,λ1x1 + · · ·+λnxn⟩= λ1 ⟨x,x1⟩+ · · ·+λn ⟨x,xn⟩= 0

für alle λ1, . . . ,λn ∈K, und damit ⟨x,y⟩= 0 für alle y ∈U .

(c) Natürlich ist jede orthonormale Familie auch orthogonal. Umgekehrt können wir aus einer
orthogonalen Familie, die nicht den Nullvektor enthält, immer eine orthonormale Familie
machen, indem wir jeden ihrer Vektoren normieren, also durch seine Länge dividieren.

Eine erste sehr nützliche Eigenschaft der Orthogonalität einer Familie ist, dass daraus bereits ihre
lineare Unabhängigkeit folgt:

Lemma 21.28. In einem Vektorraum mit Skalarprodukt ist jede orthogonale Familie, die nicht den
Nullvektor enthält, linear unabhängig.

Insbesondere ist sie damit also stets eine Orthogonalbasis des von ihr aufgespannten Unterraums.

Beweis. Es sei B = (x1, . . . ,xn) orthogonal mit xk ̸= 0 für alle k. Weiterhin sei λ1x1 + · · ·+λnxn = 0
mit λ1, . . . ,λn ∈K eine Linearkombination des Nullvektors. Bilden wir dann das Skalarprodukt von
xk für ein k ∈ {1, . . . ,n} mit dieser Gleichung, so folgt

0 = ⟨xk,λ1x1 + · · ·+λnxn⟩= λ1 ⟨xk,x1⟩+ · · ·+λn ⟨xk,xn⟩= λk ∥xk∥2,

weil B orthogonal ist und damit ⟨xk,xi⟩ = 0 für alle i ̸= k gilt. Da weiterhin nach Voraussetzung
xk ̸= 0 und damit aufgrund der positiven Definitheit ∥xk∥ ̸= 0 ist, folgt λk = 0. Dies gilt aber für alle
k, d. h. die ursprüngliche Linearkombination ist trivial, und B damit linear unabhängig. □

Wir wollen nun sehen, dass Orthogonalbasen (und damit nach
Bemerkung 21.27 (c) auch Orthonormalbasen) in jedem endlich-
dimensionalen Vektorraum mit Skalarprodukt existieren und zu
besonders schönen Eigenschaften führen. In der Tat gilt sogar ei-
ne „Basisergänzungseigenschaft“ analog zu Folgerung 14.16. Um
dies zu beweisen, brauchen wir die folgende Konstruktion der or-
thogonalen Projektion f : V →U eines Vektorraums V auf einen
Unterraum U , die im Bild rechts dargestellt ist.

Uf (x)

x V

Satz und Definition 21.29 (Orthogonale Projektionen). Es sei U ein endlich-dimensionaler Unter-
raum eines Vektorraums V mit Skalarprodukt. Ferner sei (x1, . . . ,xn) eine Orthogonalbasis von U
(wir werden in Satz 21.31 noch sehen, dass eine solche Orthogonalbasis immer existiert). Dann gilt:

(a) Es gibt genau eine lineare Abbildung f : V →U mit x− f (x)⊥U für alle x ∈V , nämlich

f (x) =
n

∑
i=1

⟨xi,x⟩
∥xi∥2 xi.

Man nennt sie die orthogonale Projektion von V auf U.

(b) Die orthogonale Projektion f (x) von x aus (a) ist der eindeutig bestimmte Punkt in U mit
kleinstem Abstand zu x, d. h. es gilt ∥y− x∥> ∥ f (x)− x∥ für alle y ∈U mit y ̸= f (x).
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Beweis.

(a) Für ein zunächst festes x ∈ V seien λ1, . . . ,λn ∈ K die Koordinaten des Vektors f (x) ∈ U
bezüglich der gegebenen Basis (x1, . . . ,xn), also f (x) = λ1x1 + · · ·+λnxn. Dann gilt

x− f (x)⊥U
21.27 (b)⇔ ⟨xi,x− f (x)⟩= 0 für alle i = 1, . . . ,n

⇔ ⟨xi,x−λ1x1−·· ·−λnxn⟩= 0 für alle i = 1, . . . ,n
(∗)⇔ ⟨xi,x⟩−λi ⟨xi,xi⟩= 0 für alle i = 1, . . . ,n,

⇔ λi =
⟨xi,x⟩
∥xi∥2 für alle i = 1, . . . ,n,

wobei wir in (∗) die Orthogonalität der Basis verwendet haben. Die Bedingung x− f (x)⊥U
für alle x ∈ V ist also äquivalent zur angegebenen Formel für f und legt f damit eindeutig
fest. Da diese Vorschrift offensichtlich auch linear in x ist, ist Teil (a) des Satzes damit
gezeigt.

(b) Es sei y ∈U mit y ̸= f (x), also y = f (x)+u für ein u ∈U\{0}. Dann gilt

∥y− x∥2 = ∥ f (x)+u− x∥2 = ⟨ f (x)+u− x, f (x)+u− x⟩
= ⟨ f (x)− x, f (x)− x⟩︸ ︷︷ ︸

=∥ f (x)−x∥2

+⟨u,u⟩︸ ︷︷ ︸
=∥u∥2

+⟨ f (x)− x,u⟩+ ⟨u, f (x)− x⟩︸ ︷︷ ︸
=0 wegen f (x)−x⊥U

.

Wegen der positiven Definitheit des Skalarprodukts ist aber ∥u∥> 0, und damit wie behaup-
tet ∥y− x∥2 > ∥ f (x)− x∥2. □

Bemerkung 21.30. Die Formel für die orthogonale Projektion aus Satz 21.29 hat eine einfache
geometrische Deutung, die im Bild unten rechts für einen eindimensionalen Unterraum U = Lin(x1)
von V = R2 dargestellt ist.

Die Abbildung konstruiert in diesem Fall zu einem x ∈V das Lot
auf den Unterraum U ; der so entstehende Punkt ist die orthogo-
nale Projektion f (x). Nach Konstruktion 21.22 ist damit

∥ f (x)∥= ∥x∥ cosϕ = ∥x∥ · ⟨x1,x⟩
∥x1∥ · ∥x∥

=
⟨x1,x⟩
∥x1∥

,

und damit wie in Satz 21.29

f (x) = ∥ f (x)∥ · x1

∥x1∥
=
⟨x1,x⟩
∥x1∥2 x1. 0 f (x)

U

x

x1ϕ

x− f (x)

Beachte, dass f (x) wie in Satz 21.29 auch anschaulich im Bild der Punkt in U ist, der am nächsten
an x liegt, und dass die Differenz x− f (x) senkrecht zu x1 ist.

Nach Satz 21.29 können wir einen Vektor konstruieren, der auf einem gegebenen Unterraum U
senkrecht steht, indem wir von einem beliebigen Vektor x /∈U seine orthogonale Projektion auf U
abziehen. Dies ist nun die Grundidee des folgenden Verfahrens zur Bestimmung von Orthogonalba-
sen.

Satz 21.31 (Gram-Schmidtsches Orthogonalisierungsverfahren). Es seien V ein endlich-dimen-
sionaler Vektorraum mit Skalarprodukt und U ≤ V ein Untervektorraum. Dann lässt sich jede Or-
thogonalbasis von U zu einer Orthogonalbasis von V ergänzen.

Insbesondere besitzt also jeder endlich-dimensionale Vektorraum mit Skalarprodukt eine Orthogo-
nalbasis (und damit nach Bemerkung 21.27 (c) auch eine Orthonormalbasis).

Beweis. Der Beweis dieses Satzes ist konstruktiv und erlaubt daher auch eine einfache (iterative)
Konstruktion solcher Orthogonalbasen.
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Es sei (x1, . . . ,xn) die gegebene Orthonormalbasis von U . Ist bereits U = V , so sind wir natürlich
fertig. Ansonsten wählen wir einen beliebigen Vektor x ∈V\U und setzen

xn+1 := x−
n

∑
i=1

⟨xi,x⟩
∥xi∥2 xi.

Nach Satz 21.29 (a) ist dieser Vektor senkrecht zu U . Außerdem ist er wegen x /∈U = Lin(x1, . . . ,xn)
nicht der Nullvektor. Nach Lemma 21.28 ist (x1, . . . ,xn+1) also eine Orthogonalbasis eines Unter-
raums U ′ = Lin(x1, . . . ,xn+1)⊋U .

Ist jetzt U ′ =V , so sind wir fertig. Ansonsten setzen wir das obige Verfahren iterativ mit dem neuen
Unterraum U ′ fort, bis wir genügend Vektoren gefunden haben. □

Beispiel 21.32. Wir wollen eine Orthogonal- bzw. Orthonormalbasis von R2 für das Skalarprodukt

⟨x,y⟩= xT
(

1 1
1 4

)
y

aus Beispiel 21.15 (b) bestimmen. Den ersten Vektor können wir dabei (ungleich 0) beliebig wählen,
z. B. x1 = e1. Für den zweiten Vektor starten wir mit einem beliebigen Element von R2\Lin(x1),
z. B. x = e2, und subtrahieren davon wie im Beweis von Satz 21.31 seine orthogonale Projektion auf
Lin(x1). Mit

⟨x1,e2⟩= (1 0)
(

1 1
1 4

)(
0
1

)
= 1 und ∥x1∥2 = ⟨x1,x1⟩= (1 0)

(
1 1
1 4

)(
1
0

)
= 1

erhalten wir so

x2 = e2−
⟨x1,e2⟩
∥x1∥2 x1 =

(
−1
1

)
.

Die Familie (x1,x2) ist also eine Orthogonalbasis von R2 bezüglich des gegebenen Skalarprodukts.
Um eine Orthonormalbasis zu bestimmen, müssen wir diese beiden Vektoren noch normieren: We-
gen ∥x1∥2 = 1 und

∥x2∥2 = ⟨x2,x2⟩= (−1 1)
(

1 1
1 4

)(
−1
1

)
= 3

ist eine Orthonormalbasis (
x1

∥x1∥
,

x2

∥x2∥

)
=

((
1
0

)
,

1√
3

(
−1
1

))
.

Bemerkung 21.33 (Gram-Schmidt als Normalformensatz). Es sei V ein endlich erzeugter Vektor-
raum mit Skalarprodukt ⟨x,y⟩ = b(x,y). Ist dann B = (x1, . . . ,xn) gemäß Satz 21.31 eine Orthonor-
malbasis von V , so ist die Gramsche Matrix von b bezüglich B nach Folgerung 21.6 gerade

AB
b =

(〈
xi,x j

〉)
i, j = En,

denn es ist ja
〈
xi,x j

〉
gleich 1 für i = j und 0 für i ̸= j. In Analogie zu den Normalformaussagen

aus Satz 17.29 und Folgerung 20.14 kann man die Existenz von Orthonormalbasen damit auch so
auffassen, dass es zu jedem Skalarprodukt eine Basis gibt, bezüglich der die Gramsche Matrix die
Einheitsmatrix ist, also diese sehr einfache Form hat.

Da sich Gramsche Matrizen unter Basiswechsel wie in Satz 21.7 bzw. Konstruktion 21.18 verhal-
ten, ist die entsprechende Aussage in Matrixform gemäß Lemma 21.11 also, dass es zu jeder positiv
definiten, symmetrischen (im Fall K = R) bzw. hermiteschen (im Fall K = C) Matrix A ∈ Kn×n

eine invertierbare Matrix T ∈ GL(n,K) gibt mit T TAT = E: Man muss in die Spalten von T ein-
fach eine Orthonormalbasis von Kn bezüglich des Skalarprodukts ⟨x,y⟩ = xTAy schreiben. Für das
Skalarprodukt und die Orthonormalbasis aus Beispiel 21.32 ergibt sich also z. B.

T TAT = E mit A =

(
1 1
1 4

)
und T =

(
1 − 1√

3
0 1√

3

)
,

was man durch direkte Berechnung des Matrixprodukts auch sofort bestätigen kann.
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Eine Verallgemeinerung dieser Aussage auf nicht notwendig positiv definite symmetrische Bilinear-
formen bzw. hermitesche Sesquilinearformen werden wir in Satz 22.35 bzw. Bemerkung 22.36 (b)
kennenlernen. 50

Folgerung 21.34. Für jede symmetrische bzw. hermitesche Matrix A ∈Kn×n gilt:

(a) detA ∈ R.
(b) Ist A zusätzlich positiv definit, so ist sogar detA > 0.

Beweis.
(a) Da die Determinante ausschließlich über Summen und Produkte in K definiert ist und die

komplexe Konjugation nach Lemma 6.9 (a) mit diesen Rechenoperationen vertauscht, gilt
zunächst einmal detA = detA. Nach der Voraussetzung AT

= A folgt damit

detA = detA = detAT
= detA,

also detA ∈ R.

(b) Nach Bemerkung 21.33 gibt es eine invertierbare Matrix T mit T TAT = E. Damit ist analog
zur Rechnung in (a)

1 = detE = detT T ·detA ·detT = detA ·detT ·detT = detA · |detT |2,
woraus detA > 0 folgt. □

Aufgabe 21.35.

(a) Für welche m,n ∈ N definiert ⟨ f ,g⟩ :=
m

∑
i=0

f (i)g(i) ein Skalarprodukt auf Poln(R,R)?

(b) Berechne für dieses Skalarprodukt eine Orthonormalbasis von Pol2(R,R) im Fall m= n= 2.
Aufgabe 21.36. Es sei V = C0([−π,π]) der reelle Vektorraum
aller stetigen Funktionen auf dem Intervall [−π,π] mit dem Stan-
dardskalarprodukt ⟨ f ,g⟩ :=

∫
π

−π
f (x)g(x)dx wie in Konstruktion

21.16. Wir betrachten darin das Element g ∈ V definiert durch
g(x) := 1− 2

π
|x|.

Für alle n ∈ N>0 seien weiterhin fn ∈V mit fn(x) := cosnx, und
Un := Lin( f1, . . . , fn)≤V .

−1

1

g(x)

π−π

(a) Zeige, dass ( f1, . . . , fn) für alle n eine Orthogonalbasis von Un ist.
(b) Berechne für alle n ∈ N>0 die orthogonale Projektion gn von g auf Un (also die Funktion in

Un, die nach Satz 21.29 (b) von g den kleinsten Abstand hat, d. h. sie am besten approxi-
miert).

(c) Zeichne die Funktionen gn für kleine n mit einem Computer und vergleiche sie mit der
ursprünglichen Funktion g.

Wir wollen nun noch drei interessante Anwendungen von Orthonormalbasen betrachten. Die erste
betrifft Abbildungsmatrizen bzw. Basiswechselmatrizen: Bisher mussten wir zur Berechnung sol-
cher Matrizen wie in Bemerkung 19.1 Koordinatendarstellungen von Vektoren berechnen und die
dabei erhaltenen Koeffizienten in die Spalten einer Matrix schreiben. Dies erfordert die Lösung li-
nearer Gleichungssysteme und ist daher recht rechenaufwendig. In einem Vektorraum mit Skalarpro-
dukt ist die Berechnung solcher Matrizen bezüglich Orthonormalbasen dagegen deutlich einfacher:

Satz 21.37 (Abbildungsmatrizen zu Orthonormalbasen). Es seien V ein endlich-dimensionaler Vek-
torraum mit Skalarprodukt und B = (x1, . . . ,xn) eine Orthonormalbasis von V .

(a) Für alle x ∈V gilt

x = ⟨x1,x⟩x1 + · · ·+ ⟨xn,x⟩xn.

Mit anderen Worten ist in der Koordinatendarstellung x = λ1x1+ · · ·+λnxn bezüglich B also
λi = ⟨xi,x⟩ für alle i = 1, . . . ,n.
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(b) Ist f : V → V ein Endomorphismus, so ist die Abbildungsmatrix von f bezüglich B gleich
AB

f =
(〈

xi, f (x j)
〉)

i, j.

(c) Ist B′=(y1, . . . ,yn) eine weitere Basis von V , so ist die zugehörige Basiswechselmatrix gleich
AB′,B =

(〈
xi,y j

〉)
i, j.

Beweis.

(a) Bilden wir für i = 1, . . . ,n das Skalarprodukt von xi mit der Gleichung x = λ1x1+ · · ·+λnxn,
so erhalten wir wegen der Orthonormalität von B sofort ⟨xi,x⟩= λi ⟨xi,xi⟩= λi.

(b) Nach Satz 16.26 ist der Eintrag in Zeile i und Spalte j von AB
f genau die i-te Koordinate von

f (x j) bezüglich B, nach (a) also
〈
xi, f (x j)

〉
.

(c) Nach Definition 16.38 ist der Eintrag in Zeile i und Spalte j von AB′,B genau die i-te Koordi-
nate von y j bezüglich B, nach (a) also

〈
xi,y j

〉
. □

In der zweiten Anwendung von Orthonormalbasen geht es um Komplemente von Unterräumen in
endlich erzeugten Vektorräumen: Wir wissen ja nach Beispiel 17.10 und Satz 17.11 bereits, dass
solche Komplemente zwar immer existieren, aber in der Regel nicht eindeutig bestimmt sind. Falls
im zugrundeliegenden Vektorraum aber ein Skalarprodukt gegeben ist, wollen wir jetzt sehen, dass
es zu jedem Unterraum ein besonderes Komplement gibt – nämlich das sogenannte orthogonale
Komplement – das immer eindeutig bestimmt ist.

Definition 21.38 (Orthogonales Komplement). Es seien V ein Vektor-
raum mit Skalarprodukt und U ≤V ein Unterraum von V . Dann nennen
wir die Menge

U⊥ := {x ∈V : x⊥U}
= {x ∈V : ⟨x,y⟩= 0 für alle y ∈U}

das orthogonale Komplement von U . (Das Bild rechts illustriert dies
für den Vektorraum R2 mit dem Standardskalarprodukt.)

U
U⊥

Satz 21.39. Es seien V ein endlich-dimensionaler Vektorraum mit Skalarprodukt und U ≤V ein Un-
terraum. Dann ist das orthogonale Komplement U⊥ ein Komplement von U im Sinne von Definition
17.8, d. h. es gilt V =U⊕U⊥.

Beweis. Nach Satz 21.31 können wir eine Orthonormalbasis (x1, . . . ,xk) von U finden und zu einer
Orthonormalbasis (x1, . . . ,xn) von V ergänzen. Nach Bemerkung 17.12 ist U ′ := Lin(xk+1, . . . ,xn)
dann ein Komplement von U . Es genügt also zu zeigen, dass U ′ =U⊥ gilt: Für einen Vektor x ∈ V
mit der Darstellung x = ⟨x1,x⟩x1 + · · ·+ ⟨xn,x⟩xn wie in Satz 21.37 (a) folgt unmittelbar

x ∈U ′ = Lin(xk+1, . . . ,xn) ⇔ ⟨x1,x⟩= · · ·= ⟨xk,x⟩= 0
21.27 (b)⇔ x ∈U⊥. □

Bemerkung 21.40. Der Beweis von Satz 21.39 zeigt auch, wie man das orthogonale Komplement
eines Unterraums U in V berechnen kann: Man ergänzt eine Orthonormalbasis (x1, . . . ,xk) von U zu
einer Orthonormalbasis (x1, . . . ,xn) von V ; die dabei neu hinzugenommenen Vektoren (xk+1, . . . ,xn)
bilden dann eine Orthonormalbasis von U⊥.

Da in diesem Fall natürlich auch x1, . . . ,xk die Vektoren xk+1, . . . ,xn zu einer Orthonormalbasis von
V ergänzen, folgt aus dieser Beschreibung auch sofort, dass (U⊥)⊥ =U gilt.

Beispiel 21.41 (Orthogonale Komplemente in unendlich-dimensionalen Vektorräumen). Als „ab-
schreckendes Beispiel“ dafür, dass Satz 21.39 nicht so selbstverständlich ist, wie er vielleicht scheint,
wollen wir kurz zeigen, dass diese Aussage für unendlich-dimensionale Vektorräume im Allgemei-
nen falsch ist, dass das orthogonale Komplement dann also nicht unbedingt immer ein Komplement
im Sinne von Definition 17.8 ist. Dazu sei V = C0([a,b]) der Vektorraum aller stetigen Funktio-
nen auf dem Intervall [a,b] mit dem Standardskalarprodukt ⟨ f ,g⟩=

∫ b
a f (x)g(x)dx aus Konstruktion
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21.16. Wir betrachten darin den Unterraum U = C1([a,b]) ⊊ V aller stetig differenzierbaren Funk-
tionen und werden zeigen, dass U⊥ = {0} gilt, so dass also insbesondere U +U⊥ =U ̸=V , d. h. U⊥

kein Komplement von U ist.

Dazu sei f ∈ V\{0} beliebig; wir werden zeigen, dass f /∈ U⊥ gilt.
Wegen f ̸= 0 gibt es ein x0 ∈ [a,b] mit f (x0) ̸= 0; ohne Einschränkung
sei f (x0) > 0. Da f stetig ist, gibt es dann nach Bemerkung 8.8 ein
ε ∈ R>0, so dass f (x)> 0 für alle x ∈ [a,b] mit |x− x0|< ε ist. Es sei
nun g : [a,b]→ R≥0 eine stetig differenzierbare Funktion wie rechts
im Bild, also mit g(x0) > 0 und g(x) = 0 für |x− x0| ≥ ε . Dann ist
f g stetig und nicht-negativ auf [a,b] mit f (x0)g(x0) > 0, und damit
⟨ f ,g⟩=

∫ b
a f (x)g(x)dx > 0 nach Konstruktion 21.16.

x
x0

f (x)

g(x)

x0− ε x0 + ε

Wir haben also ein g ∈U gefunden mit ⟨ f ,g⟩ ̸= 0. Damit ist f /∈U⊥, und da f ∈ V\{0} beliebig
war, folgt wie behauptet U⊥ = {0}.

Unsere letzte Anwendung der Existenz von Orthonormalbasen in diesem Kapitel ist das folgende
einfache Kriterium für die positive Definitheit einer Matrix.

Satz 21.42 (Hurwitz-Kriterium). Es sei A = (ai, j)i, j ∈ Kn×n eine symmetrische (für K = R) bzw.
hermitesche (für K= C) Matrix. Für k = 1, . . . ,n bezeichnen wir mit Ak = (ai, j)i, j=1,...,k ∈Kk×k die
Matrizen, die man erhält, wenn man von A nur die ersten k Zeilen und Spalten betrachtet. (Beachte,
dass ihre Determinanten nach Folgerung 21.34 (a) in jedem Fall reell sind.)

Dann ist A genau dann positiv definit, wenn detAk > 0 für alle k = 1, . . . ,n.

Beweis. Es sei b die zu A gehörige symmetrische Bilinearform bzw. hermitesche Sesquilinearform
auf Kn, so dass also A = (b(ei,e j))i, j bzw. b(x,y) = xTAy für alle x,y ∈Kn gilt.

„⇒“: Ist A positiv definit und b damit ein Skalarprodukt, so ist nach Bemerkung 21.14 (b) auch die
Einschränkung von b auf den Unterraum Lin(e1, . . . ,ek) ein Skalarprodukt. Die zugehörige
Gramsche Matrix (b(ei,e j))i, j=1,...,k = Ak ist also ebenfalls positiv definit und hat damit nach
Folgerung 21.34 (b) eine positive Determinante.

„⇐“: Wir zeigen die Aussage mit Induktion über n, der Induktionsanfang für n = 1 ist trivial.

Für den Induktionsschritt n→ n+1 bemerken wir zunächst, dass nach Annahme insbesonde-
re detAk > 0 für k = 1, . . . ,n gilt. Damit ist An nach Induktionsvoraussetzung positiv definit,
und wir können nach Satz 21.31 eine Orthonormalbasis (x1, . . . ,xn) für das zugehörige Ska-
larprodukt finden, das gerade die Einschränkung von b auf Lin(e1, . . . ,en) ist. Bilden wir nun
wie im Gram-Schmidt-Verfahren in Satz 21.31 den Vektor

xn+1 := en+1−
n

∑
i=1

b(xi,en+1)xi /∈ Lin(x1, . . . ,xn)

(beachte, dass hier wegen b(xi,xi) = 1 kein Nenner auftritt), so gilt wieder

b(x j,xn+1) = b(x j,en+1)−
n

∑
i=1

b(xi,en+1)b(x j,xi) = b(x j,en+1)−b(x j,en+1) = 0

für alle j = 1, . . . ,n, da (x1, . . . ,xn) orthonormal ist. Damit hat die Gramsche Matrix von b
bezüglich der Basis B = (x1, . . . ,xn+1) die Form

AB
b = T TAT = (b(xi,x j))i, j =

(
En 0
0 b(xn+1,xn+1)

)
,

wobei wir wie üblich T = (x1 | · · · |xn+1) gesetzt haben. Insbesondere folgt damit

b(xn+1,xn+1) = detAB
b = det

(
T TAT

)
= detT ·detA ·detT = |detT |2 ·detA > 0.

Die Matrix AB
b ist also eine Diagonalmatrix mit positiven Diagonaleinträgen, und damit nach

Beispiel 21.15 (a) (bzw. Konstruktion 21.18) positiv definit. Daher ist auch b, und somit auch
A positiv definit. □
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Bemerkung 21.43. Die Determinanten von quadratischen Teilmatrizen einer gegebenen Matrix A
werden oft auch Minoren von A genannt, die in Satz 21.42 auftretenden Determinanten detAk be-
zeichnet man als Hauptminoren von A. Das Hurwitz-Kriterium ist daher auch unter dem Namen
Hauptminorenkriterium bekannt.

Beispiel 21.44. Wir betrachten noch ein letztes Mal die symmetrische reelle Matrix

A =

(
1 1
1 4

)
aus Beispiel 21.15 (b), die wir dort schon durch eine direkte Rechnung als positiv definit erkannt
haben. Mit dem Hurwitz-Kriterium folgt dies (in der Notationen des Satzes) nun auch einfacher aus

detA1 = det(1) = 1 > 0 und detA2 = detA = 3 > 0.

Aufgabe 21.45. Für ein λ ∈ R sei A =

λ 1 2
1 2 3
2 3 7

.

(a) Für welche λ ist A positiv definit? Für welche λ ist A negativ definit?
(b) Wir betrachten nun V = R3 als euklidischen Vektorraum mit dem Skalarprodukt bA für den

Wert λ = 1. Berechne zu U = Lin(e1) ≤ V eine Orthonormalbasis des orthogonalen Kom-
plements U⊥.

21.D Dualräume
Zu einem K-Vektorraum V haben wir bisher zwei Möglichkeiten betrachtet, aus Abbildungen neue
Vektorräume zu bilden: den Vektorraum End(V ) aller linearen Abbildungen V →V und den Vektor-
raum BLF(V ) aller Bilinearformen V ×V → K. Wir wollen nun in den abschließenden beiden Ab-
schnitten dieses Kapitels noch kurz zwei weitere Konstruktionen dieser Art untersuchen. Als Erstes
betrachten wir dazu in diesem Abschnitt den Raum Hom(V,K) aller linearen Abbildungen V → K.
Er ist natürlich ein Spezialfall des Vektorraums Hom(V,W ) aller Morphismen in einen weiteren K-
Vektorraum W , den wir in Abschnitt 16.C schon ausführlich betrachtet haben, hat aber trotzdem –
gerade auch im Zusammenhang mit den in diesem Kapitel eingeführten Skalarprodukten – ein paar
besondere Eigenschaften.

Definition 21.46 (Linearformen und Dualräume). Eine lineare Abbildung von einem K-Vektorraum
V in seinen Grundkörper K bezeichnet man als Linearform auf V . Der Vektorraum Hom(V,K) aller
dieser Linearformen wird auch mit V ∗ bezeichnet und der Dualraum von V genannt.

Konstruktion 21.47 (Duale Basen). Es sei V ein endlich-dimensionaler Vektorraum mit gegebener
Basis B = (x1, . . . ,xn).

(a) Nach Folgerung 16.27 (a) gibt es einen Isomorphismus

V ∗→ K1×n, f 7→ ( f (x1) | · · · | f (xn)),

der jeder Linearform f : V →K seine Abbildungsmatrix bezüglich der Basis B im Startraum
zuordnet. Insbesondere ist also dimV ∗ = n = dimV , und V ∗ damit nach Abschnitt 16.B
isomorph zu V .

(b) Unter dem Isomorphismus V ∗∼=K1×n aus (a) entspricht der i-te Einheitsvektor in K1×n∼=Kn

offensichtlich genau der Linearform, die auf xi den Wert 1 und auf allen anderen Vektoren
von B den Wert 0 annimmt; man bezeichnet sie in der Regel mit x∗i ∈V ∗. Da Isomorphismen
Basen auf Basen abbilden, ist B∗ := (x∗1, . . . ,x

∗
n) damit eine Basis von V ∗. Sie heißt die duale

Basis zu B und ist also bestimmt durch

x∗i (x j) =

{
1 für i = j,
0 für i ̸= j

für alle i, j = 1, . . . ,n. (Beachte, dass ein dualer Basisvektor x∗i damit nicht nur von xi, son-
dern von allen x1, . . . ,xn abhängt.)
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51
Beachte, dass wir in Konstruktion 21.47 (a) zwar gesehen haben, dass ein endlich-dimensionaler
Vektorraum V immer isomorph zu seinem Dualraum V ∗ ist, dass wir einen konkreten Isomorphismus
zwischen V und V ∗ aber erst dann hinschreiben können, wenn wir eine Basis von V (und damit einen
Isomorphismus V ∼=Kn) gewählt haben. Man sagt daher auch, dass es zwischen V und V ∗ zwar einen
Isomorphismus, aber keinen natürlichen Isomorphismus gibt.

Diese Situation ändert sich, wenn V ein euklidischer Raum ist: In diesem Fall wollen wir jetzt zeigen,
dass das gegebene Skalarprodukt eine natürliche Einbettung von V in V ∗ liefert, die im endlich-di-
mensionalen Fall sogar natürlichen Isomorphismus zwischen V und V ∗ liefert.

Satz 21.48 (Natürliche Einbettung eines euklidischen Vektorraums in seinen Dualraum). Es sei V
ein euklidischer Vektorraum.

(a) Es gibt einen natürlichen injektiven Morphismus Γ : V →V ∗, wobei Γ(x)∈V ∗ für alle x ∈V
definiert ist durch Γ(x)(y) = ⟨x,y⟩ für alle y ∈V .

(b) Ist V endlich-dimensional, so ist die Abbildung Γ aus (a) sogar ein natürlicher Isomorphis-
mus.

Beweis.

(a) Wir müssen die folgenden Dinge überprüfen:

• Für alle x ∈V ist Γ(x) wirklich in V ∗, also eine lineare Abbildung von V nach K, weil
das Skalarprodukt im zweiten Eintrag linear ist: Für alle y1,y2 ∈V gilt

Γ(x)(y1 + y2) = ⟨x,y1 + y2⟩= ⟨x,y1⟩+ ⟨x,y2⟩= Γ(x)(y1)+Γ(x)(y2).

Die Verträglichkeit mit der Skalarmultiplikation zeigt man analog.

• Die Abbildung Γ : V → V ∗ ist linear, weil das Skalarprodukt im ersten Eintrag linear
ist: Für alle x1,x2 ∈V und y ∈V gilt

Γ(x1 + x2)(y) = ⟨x1 + x2,y⟩= ⟨x1,y⟩+ ⟨x2,y⟩= Γ(x1)(y)+Γ(x2)(y),

und damit Γ(x1 + x2) = Γ(x1)+Γ(x2) in V ∗. Auch hier folgt die Verträglichkeit mit
der Skalarmultiplikation wieder analog.

• Der Morphismus Γ ist injektiv, d. h. KerΓ = {0}: Es sei x ∈V mit Γ(x) = 0 ∈V ∗, d. h.
Γ(x) ist die Nullabbildung von V nach K. Insbesondere ist dann also Γ(x)(x) = 0 ∈ K.
Nach Definition von Γ bedeutet dies ⟨x,x⟩ = 0, wegen der positiven Definitheit des
Skalarprodukts also x = 0.

(b) Im endlich-dimensionalen Fall folgt aus der Dimensionsformel für Morphismen aus Folge-
rung 16.30 (c) sofort

dimImΓ = dimV −dimKerΓ
(a)
= dimV

21.47 (a)
= dimV ∗,

und damit auch die Surjektivität von Γ. □

Bemerkung 21.49.

(a) Für einen endlich-dimensionalen euklidischen Raum V bildet der natürliche Isomorphis-
mus Γ aus Satz 21.48 (b) jede Orthonormalbasis B = (x1, . . . ,xn) auf ihre duale Basis
B∗ = (x∗1, . . . ,x

∗
n) wie in Konstruktion 21.47 (b) ab, denn für alle i, j = 1, . . . ,n gilt

Γ(xi)(x j) =
〈
xi,x j

〉
=

{
1 für i = j,
0 für i ̸= j

= x∗i (x j),

und damit Γ(xi) = x∗i .
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(b) Für einen unitären Raum V ist die wie in Satz 21.48 konstruierte Abbildung Γ : V →V ∗ zwar
noch definiert und injektiv, aber nicht mehr linear (und damit kein Isomorphismus), da das
Skalarprodukt im ersten Eintrag nicht linear ist und somit der obige Beweis der Linearität
von Γ nicht funktioniert.

Beispiel 21.50. Analog zu Beispiel 21.41 verhalten sich unendlich-dimensionale Vektorräume auch
in Satz 21.48 wieder anders als endlich-dimensionale, da die Einbettung Γ in den Dualraum dann
kein Isomorphismus mehr ist. Als konkretes Beispiel dafür betrachten wir wieder einmal den Raum
V =C0([a,b]) mit dem Standardskalarprodukt. Dabei wählen wir a und b mit a < 0 < b und betrach-
ten die Auswerteabbildung

δ : V → R, g 7→ g(0).
Sie ist offensichtlich linear, und damit ein Element des Dualraums V ∗. Allerdings wollen wir jetzt
sehen, dass sie nicht im Bild der natürlichen Abbildung Γ : V → V ∗ liegt, also dass es kein f ∈ V
gibt mit Γ( f ) = δ , d. h. mit Γ( f )(g) = δ (g), und damit mit∫ b

a
f (x)g(x)dx = g(0) für alle g ∈C0([a,b]). (∗)

Wir zeigen dies mit einem Widerspruchsbeweis analog zu Beispiel 21.41 und nehmen also an, dass
es doch eine solche stetige Funktion f ∈C0([a,b]) gibt.

Ist dann x0 ∈ [a,b]\{0} beliebig, so muss notwendigerweise f (x0) = 0
gelten: Wäre nämlich f (x0) ̸= 0, wobei wir ohne Einschränkung
f (x0)> 0 annehmen können, so gibt es nach Bemerkung 8.8 zunächst
ein ε ∈R>0 mit f (x)> 0 für alle x∈ [a,b] mit |x−x0|< ε . Wir können
nun wie im Bild rechts eine stetige Funktion g : [a,b]→ R≥0 wählen
mit g(x0) > 0, g(0) = 0 und g(x) = 0 für |x− x0| ≥ ε . Dann ist f g
stetig und nicht-negativ auf [a,b] mit f (x0)g(x0) > 0, und damit nach
Konstruktion 21.16

x
x0

f (x)

g(x)

x0− ε x0 + ε

a b

∫ b

a
f (x)g(x)dx > 0 = g(0)

im Widerspruch zu (∗). Also ist f (x0) = 0 für alle x0 ̸= 0. Da f stetig ist, müsste f dann aber schon
die Nullfunktion sein – was natürlich auch (∗) widerspricht. Also kann es keine solche Funktion f
geben, d. h. die Abbildung Γ : V →V ∗ ist in diesem Fall nicht surjektiv.

Bemerkung 21.51 (Die „Deltafunktion“). Man kann das Ergebnis von Beispiel 21.50 auch so inter-
pretieren: Da Γ eine natürliche Einbettung ist, können wir den Funktionenraum C0([a,b]) über Γ als
Teilmenge von (C0([a,b]))∗ auffassen und so zu einem „erweiterten Funktionenraum“ (C0([a,b]))∗

übergehen (in dem „Funktionen“ nicht mehr stetige Abbildungen von [a,b] nach R sind, sondern
lineare Abbildungen von C0([a,b]) nach R). Dies ist völlig analog z. B. zur Konstruktion der kom-
plexen Zahlen aus den reellen in Kapitel 6: Dort haben wir zunächst einen neuen Körper C = R2

eingeführt, dann eine natürliche Einbettung R→C, x 7→ (x,0) gefunden, und dies benutzt, um R als
Teilmenge von C bzw. C als eine Erweiterung von R aufzufassen.

Wie wir oben gesehen haben, existiert in diesem „erweiterten Funktionenraum“ (C0([a,b]))∗ nun
z. B. das Element δ , das sich gemäß (∗) so verhält, als würde es g(0) zurück liefern, wenn man
δ mit einer Funktion g multipliziert und darüber integriert. Dieses Element δ , das insbesondere in
der Physik eine große Rolle spielt, bezeichnet man oft als die „Deltafunktion“, auch wenn es sich
hierbei nicht um eine Funktion im eigentlichen, sondern nur im oben betrachteten erweiterten Sinne
handelt.

Oft wird δ in der Physik ohne Erwähnung von Dualräumen als eine „Funktion“ eingeführt, die
die Eigenschaft von f in (∗) hat, also insbesondere (wie wir oben gesehen haben) überall außer
in 0 gleich 0 ist und (mit g = 1)

∫ b
a δ (x)dx = 1 erfüllt – d. h. in 0 „gerade so unendlich“ ist, dass

die Fläche unter ihrem Graphen (der Breite 0 und Höhe ∞) gleich 1 ist. Dies erscheint natürlich
zunächst unsinnig, lässt sich aber wie eben gesehen durch eine Erweiterung des Funktionenraums
zu einer mathematisch exakten Theorie machen. Derartige Fragestellungen – also wie sich die lineare
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Algebra auf unendlich-dimensionalen Funktionenräumen verhält – sind die Inhalte der sogenannten
Funktionalanalysis, in die ihr im zweiten Studienjahr eine Einführung hören könnt.

Aufgabe 21.52 (Duale Abbildungen). Zu einer linearen Abbildung f : V →W zwischen endlich-di-
mensionalen Vektorräumen definiert man die duale Abbildung f ∗ zwischen den Dualräumen W ∗

und V ∗ durch
f ∗ : W ∗→V ∗, ϕ 7→ ϕ ◦ f .

Man zeige:

(a) Die Abbildungen f ∗ : W ∗ → V ∗ und Hom(V,W )→ Hom(W ∗,V ∗), f 7→ f ∗ sind ebenfalls
linear.

(b) Sind B und C Basen von V bzw. W mit dualen Basen B∗ bzw. C, so hat f ∗ die Abbildungs-
matrix

AC∗,B∗
f ∗ =

(
AB,C

f

)T
.

(c) Sind V und W euklidische Räume, so gibt es nach Satz 21.48 natürliche Isomorphismen
ΓV : V → V ∗ und ΓW : W →W ∗ zu den Dualräumen. Konstruieren wir damit aus f ∗ die
Abbildung g := Γ

−1
V ◦ f ∗ ◦ΓW : W →V , so gilt

⟨x, f (y)⟩= ⟨g(x),y⟩ für alle x ∈V und y ∈W .

Aufgabe 21.53 (Bidualräume). Zeige, dass für jeden endlich-dimensionalen Vektorraum V die na-
türliche Abbildung

Ψ : V → (V ∗)∗ mit Ψ(x)(ϕ) = ϕ(x) für alle x ∈V und ϕ ∈V ∗

ein Isomorphismus ist. Nimmt man von einem solchen Vektorraum zweimal den Dualraum, erhält
man also auf natürliche Art wieder den Ausgangsraum – was auch den Namen „Dualraum“ erklärt.

21.E Tensorprodukte

Dieser abschließende Abschnitt von Kapitel 21 gehört nicht mehr zum eigentlichen Stoff der
„Grundlagen der Mathematik“ und wird in der Vorlesung nur bei genügend zur Verfügung stehender
Zeit behandelt. Er wird im Rest dieses Skripts nicht mehr benötigt.

Wir wollen hier untersuchen, wie ganz generell Produkte von Vektoren konstruiert werden können.
Sind z. B. x und y zwei Vektoren in einem K-Vektorraum V , so wollen wir auf möglichst allgemeine
Art ein Produkt x⊗ y definieren, das wieder ein Vektor in einem noch zu bestimmenden Vektor-
raum ist. Dabei soll „allgemein“ bedeuten, dass das Produkt außer der Bilinearität keine weiteren
speziellen Eigenschaften hat: Sind B = (x1, . . . ,xn) eine Basis von V und x = λ1x1 + · · ·+λnxn bzw.
y = µ1x1 + · · ·+µnxn mit λ1, . . . ,λn,µ1, . . . ,µn ∈ K die Koordinatendarstellungen der beiden Vekto-
ren, so möchten wir bilinear

x⊗ y =
( n

∑
i=1

λixi

)
⊗
( n

∑
j=1

µ jx j

)
=

n

∑
i, j=1

λiµ j xi⊗ x j

rechnen können, dieser Ausdruck soll aber nicht weiter vereinfacht werden können, d. h. die hier auf-
tretenden Produkte xi⊗x j sollen voneinander unabhängig sein. Mit anderen Worten wollen wir einen
Vektorraum konstruieren, der eine Basis bestehend aus den Produkten xi⊗x j für i, j ∈ {1, . . . ,n} hat.
Diesen Vektorraum werden wir dann das Tensorprodukt von V mit sich selbst nennen und mit V ⊗V
bezeichnen. Ein allgemeines Element in V ⊗V – auch Tensor genannt – wird dann also die Form
∑

n
i, j=1 ai, j xi⊗ x j für gewisse ai, j ∈ K haben, und hat damit bezüglich der Basis B eine Darstellung

durch die Matrix (ai, j)i, j ∈ Kn×n. Solche Matrixdarstellungen sehen natürlich sehr analog zur Situa-
tion bei Bilinearformen und Endomorphismen aus, und in der Tat werden wir in Beispiel 21.59 noch
sehen, dass BLF(V ) und End(V ) letztlich Spezialfälle von Tensorprodukten sind.

Wir wollen diese Idee nun zu einer exakten Definition machen. Da diese Definition natürlich nicht
von der Wahl einer Basis von V abhängen sollte, müssen wir sie aber (leider) etwas abstrakter for-
mulieren als in der obigen Motivation.
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Definition 21.54 (Tensorprodukt). Es sei V ein K-Vektorraum.

(a) Analog zu Definition 21.2 heißt auch eine Abbildung f : V ×V → W in einen weiteren
K-Vektorraum W bilinear, wenn sie linear in beiden Komponenten ist.

(b) Ein Tensorprodukt von V mit sich selbst ist ein Vek-
torraum T zusammen mit einer bilinearen Abbildung
t : V ×V → T , so dass die folgende Eigenschaft gilt: Zu
jeder bilinearen Abbildung g : V ×V →W in einen weite-
ren Vektorraum W gibt es (wie im Bild rechts gestrichelt
eingezeichnet) eine eindeutig bestimmte lineare Abbildung
f : T →W mit f ◦ t = g.

T W
f linear

V ×V
t bilinear g bilinear

Wir werden gleich in Lemma 21.55 sehen, dass ein solcher Vektorraum T (zusammen mit
t) im Fall der Existenz bis auf Isomorphie eindeutig bestimmt ist. Wir bezeichnen ihn mit
V ⊗V , und für x,y ∈ V das Bild t(x,y) mit x⊗ y (es ist dann also g(x,y) = f (x⊗ y)). Die
Elemente von V ⊗V bezeichnet man als Tensoren.

Lemma 21.55 (Eindeutigkeit des Tensorproukts). Für jeden K-Vektorraum V ist ein Tensorprodukt
wie in Definition 21.54 bis auf natürliche Isomorphie eindeutig bestimmt.

Mit anderen Worten: Sind T und T̃ mit zugehörigen bilinearen Abbildungen t : V ×V → T bzw.
t̃ : V ×V → T̃ zwei Tensorprodukte, so gibt es einen eindeutigen Isomorphismus f : T → T̃ mit
f ◦ t = t̃ und f−1 ◦ t̃ = t.

Beweis. Da T mit t ein Tensorprodukt ist, existiert nach Definition 21.54 (b) für die bilineare Ab-
bildung t̃ : V ×V → T̃ wie im Bild unten links eine eindeutige lineare Abbildung f : T → T̃ mit
f ◦ t = t̃. Durch Vertauschen der Rollen von T und T̃ erhalten wir analog ein eindeutiges f̃ : T̃ → T
mit f̃ ◦ t̃ = t.

T T
f̃ ◦ f = idT

V ×V
t bilinear t bilinear

T T̃
f linear

V ×V
t bilinear t̃ bilinear

Es ist also t = f̃ ◦ t̃ = f̃ ◦ f ◦ t. Betrachten wir nun noch einmal die Eigenschaft aus Definition 21.54
(b) für das Diagramm oben rechts, so erhalten wir daraus eine eindeutige lineare Abbildung T → T ,
die mit t verkettet wieder t ergibt. Da sowohl f̃ ◦ f als auch idT dies erfüllen, folgt also f̃ ◦ f = idT .
Analog ist auch f ◦ f̃ = idT̃ , d. h. f ist ein Isomorphismus mit Umkehrabbildung f̃ . □

Natürlich wollen wir jetzt auch noch sehen, dass ein solches Tensorprodukt auch wirklich existiert.
Obwohl man zeigen kann, dass dies für beliebige Vektorräume gilt, wollen wir uns dabei hier der
Einfachheit halber auf den endlich-dimensionalen Fall beschränken und im folgenden Beweis mit
gewählten Basen bzw. Koordinaten arbeiten. Lemma 21.55 stellt uns sicher, dass unser Ergebnis am
Ende nicht von diesen Wahlen abhängen wird.

Satz 21.56 (Existenz des Tensorprodukts). Es sei V ein endlich-dimensionaler Vektorraum. Dann
gilt:

(a) Es gibt ein (nach Lemma 21.55 eindeutig bestimmtes) Tensorprodukt V ⊗V .

(b) Ist B = (x1, . . . ,xn) eine Basis von V , so bilden die Tensoren xi⊗ x j für i, j ∈ {1, . . . ,n} eine
Basis von V ⊗V . Insbesondere ist also dim(V ⊗V ) = (dimV )2.

Beweis. Es sei B = (x1, . . . ,xn) eine Basis von V . Wie in Konstruktion 21.47 (b) bezeichnen wir die
dazu duale Basis von V ∗ mit B∗ = (x∗1, . . . ,x

∗
n).

Wir setzen nun T := Kn×n und werden zeigen, dass die (offensichtlich bilineare) Abbildung

t : V ×V → T, (x,y) 7→
(
x∗k(x)x∗l (y)

)
k,l
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ein Tensorprodukt im Sinne von Definition 21.54 (b) ist. Beachte dazu zunächst, dass nach Kon-
struktion der dualen Basis für alle i, j ∈ {1, . . . ,n}

xi⊗ x j := t(xi,x j) =
(
x∗k(xi)x∗l (x j)

)
k,l = Ei, j

gilt, wobei Ei, j ∈ Kn×n die Matrix bezeichnet, die an der Stelle (i, j) eine 1 und sonst überall Nullen
hat. Da diese Matrizen natürlich eine Basis von Kn×n bilden, zeigt dies bereits (b).

Es sei nun g : V ×V →W eine beliebige bilineare Abbildung in einen weiteren Vektorraum W .
Möchten wir nun wie in Definition 21.54 (b) eine lineare Abbildung f : T →W mit f ◦ t = g finden,
so muss f auf der Basis (Ei, j)i, j von Kn×n zwangsläufig die Werte

f (Ei, j) = f (t(xi,x j)) = g(xi,x j) ∈W (1)

annehmen. Nach Folgerung 16.32 existiert nun aber genau eine solche lineare Abbildung f , und
erfüllt darüber hinaus für alle λ1, . . . ,λn,µ1, . . . ,µn ∈ K

f
(

t
( n

∑
i=1

λixi,
n

∑
j=1

µ jx j

))
(2)
=

n

∑
i, j=1

λiµ j f (t(xi,x j))
(1)
=

n

∑
i, j=1

λiµ j g(xi,x j)
(3)
= g
( n

∑
i=1

λixi,
n

∑
j=1

µ jx j

)
,

also wie verlangt f ◦t = g (wobei wir in (2) Linearität von f und die Bilinearität von t benutzt haben,
und in (3) die Bilinearität von g). Dies zeigt auch den Teil (a) des Satzes. □

Bemerkung 21.57 (Matrixdarstellung von Tensoren). Es sei B = (x1, . . . ,xn) eine Basis eines
endlich-dimensionalen Vektorraums V . Da die Tensoren xi⊗ x j für i, j ∈ {1, . . . ,n} nach Satz 21.56
(b) eine Basis von V ⊗V bilden – so wie wir es uns am Anfang dieses Abschnitts gewünscht hatten –
sind Matrizen der Größe n×n und Tensoren in V⊗V also nach Wahl von B über den Isomorphismus

Kn×n→V ⊗V, (ai, j)i, j 7→
n

∑
i, j=1

ai, j xi⊗ x j

dasselbe (in der Tat sind dies auch genau die Matrizen, die im Beweis von Satz 21.56 auftraten).

Bemerkung 21.58 (Verallgemeinerung des Tensorprodukts). Mit exakt denselben Ideen und nur
etwas aufwändigerer Notation lassen sich sowohl die Definition als auch die Konstruktion des Ten-
sorprodukts leicht in zwei Richtungen verallgemeinern:

(a) Die beiden Vektorräume im Produkt müssen nicht dieselben sein: Man kann auch bilineare
Abbildungen auf V ×W und somit Tensorprodukte V ⊗W für zwei verschiedene Vektorräu-
me V und W betrachten. Im endlich-dimensionalen Fall mit Basen B=(x1, . . . ,xn) von V und
C = (y1, . . . ,ym) von W erhalten wir dann analog zu Bemerkung 21.57 einen Isomorphismus

Kn×m→V ⊗W, (ai, j)i, j 7→
n

∑
i=1

m

∑
j=1

ai, j xi⊗ y j;

es ist also dim(V ⊗W ) = dimV ·dimW .

(b) Durch die Untersuchung multilinearer statt bilinearer Abbildungen können auch Tensorpro-
dukte von mehr als zwei Vektorräumen gebildet werden. Betrachten wir z. B. das dreifache
Tensorprodukt eines endlich-dimensionalen Vektorraums V mit sich selbst, so erhalten wir
nach Wahl einer Basis B = (x1, . . . ,xn) von V einen Isomorphismus

Kn×n×n→V ⊗V ⊗V, (ai, j,k)i, j,k 7→
n

∑
i, j,k=1

ai, j,k xi⊗ x j⊗ xk;

d. h. solche Tensoren entsprechen nach einer Basiswahl einem Tupel von Skalaren ai, j,k ∈K,
die man sich in einem dreidimensionalen (statt wie bei Matrizen in einem zweidimensiona-
len) Schema angeordnet vorstellen kann. Insbesondere ist damit dim(V⊗V⊗V ) = (dimV )3;
Entsprechendes gilt natürlich auch für mehr als drei Faktoren.

52

Beispiel 21.59 (Bilinearformen und Endomorphismen als Tensoren). Es sei V ein endlich-dimen-
sionaler Vektorraum. Dann können wir die folgenden früher betrachteten Vektorräume auch als Ten-
sorprodukte auffassen:
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(a) V ∗⊗V ∗ ist auf natürliche Art isomorph zu BLF(V ) (während die Elemente von V ∗ Line-
arformen auf V sind, sind die Elemente von V ∗⊗V ∗ also Bilinearformen auf V ×V ):

Um dies zu zeigen, betrachten wir zunächst die Abbildung

V ∗×V ∗→ BLF(V ), (ϕ,ψ) 7→ bϕ,ψ mit bϕ,ψ(x,y) = ϕ(x)ψ(y) für alle x,y ∈V.

Man rechnet sofort nach, dass bϕ,ψ wirklich eine Bilinearform ist, und dass diese Abbildung
bilinear ist. Nach Definition 21.54 (b) gibt es dazu also eine natürliche lineare Abbildung

V ∗⊗V ∗→ BLF(V ) mit ϕ⊗ψ 7→ bϕ,ψ für alle ϕ,ψ ∈V ∗. (1)

Um nun zu überprüfen, dass sie tatsächlich ein Isomorphismus ist, können wir Koordi-
naten verwenden. Dazu wählen wir eine Basis B = (x1, . . . ,xn) von V mit dualer Ba-
sis B∗ = (x∗1, . . . ,x

∗
n) von V ∗, und zeigen, dass die zugehörigen Koordinatendarstellungen

der Tensoren in V ∗⊗V ∗ und Bilinearformen in BLF(V ) über die Abbildung (1) überein-
stimmen: Zur Matrix A = (ai, j)i, j ∈ Kn×n gehört nach Bemerkung 21.58 (a) der Tensor
∑

n
i, j=1 ai, j x∗i ⊗ x∗j , dazu gemäß (1) die Bilinearform ∑

n
i, j=1 ai, j bx∗i ,x

∗
j
, und diese hat nach Fol-

gerung 21.6 wieder die Gramsche Matrix( n

∑
i, j=1

ai, j bx∗i ,x
∗
j
(xk,xl)

)
k,l

=

( n

∑
i, j=1

ai, j x∗i (xk)x∗j(xl)

)
k,l

= (ak,l)k,l = A.

(b) Analog zu (a) zeigt man, dass V ⊗V ∗ auf natürliche Art isomorph zu End(V ) ist:

Die Abbildung

V ×V ∗ 7→ End(V ), (v,ϕ) 7→ fv,ϕ mit fv,ϕ(x) = ϕ(x)v für alle x ∈V

ist wieder bilinear und bestimmt damit nach Definition 21.54 (b) eine natürliche lineare
Abbildung

V ⊗V ∗→ End(V ) mit v⊗ϕ 7→ fv,ϕ für alle v ∈V und ϕ ∈V ∗. (2)

Wie in (a) benutzen wir nun wieder eine Basis B = (x1, . . . ,xn) und die zugehörigen Koor-
dinatendarstellungen, um zu überprüfen, dass dies ein Isomorphismus ist: Zu einer Matrix
A = (ai, j)i, j ∈ Kn×n gehört der Tensor ∑

n
i, j=1 ai, j xi⊗x∗j , dazu nach (2) der Endomorphismus

∑
n
i, j=1 ai, j fxi,x∗j

, und dieser hat nach Definition 16.26 die Abbildungsmatrix(
ΦB

( n

∑
i, j=1

ai, j x∗j(x1)xi

) ∣∣∣∣ · · · ∣∣∣∣ΦB

( n

∑
i, j=1

ai, j x∗j(xn)xi

))
=

(
ΦB

( n

∑
i=1

ai,1 xi

) ∣∣∣∣ · · · ∣∣∣∣ΦB

( n

∑
i=1

ai,n xi

))
= A.

In der Tat ist der Unterschied zwischen (a) und (b) – also dass BLF(V ) auf natürliche Art isomorph ist
zu V ∗⊗V ∗, aber End(V ) zu V⊗V ∗ – aus der Sicht der Tensorprodukte der Grund dafür, warum diese
Objekte zwar beide durch Matrizen beschrieben werden können, aber unter einem Basiswechsel ein
anderes Transformationsverhalten haben.

Aufgabe 21.60. Es sei V ein endlich-dimensionaler Vektorraum. Man zeige:

(a) Jeder Tensor α ∈ V ⊗V lässt sich als α = ∑
r
i=1 xi⊗ yi schreiben, wobei sowohl (x1, . . . ,xr)

als auch (y1, . . . ,yr) linear unabhängig ist.

(b) In (a) ist die Zahl r durch α eindeutig bestimmt, und zwar gleich dem Rang einer beliebigen
Matrixdarstellung von α .

Aufgabe 21.61. Es sei V ein endlich-dimensionaler Vektorraum. Aus der bilinearen Abbildung

V ×V ∗→ K, (x,ϕ) 7→ ϕ(x)

ergibt sich nach Definition 21.54 (b) die Existenz einer (auf natürliche Art definierten) zugehörigen
linearen Abbildung g : V ⊗V ∗ → K mit g(x⊗ ϕ) = ϕ(x). Andererseits wissen wir aus Beispiel
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21.59 (b), dass V ⊗V ∗ auf natürliche Art isomorph ist zu End(V ); wir können g also auch als lineare
Abbildung g : End(V )→ K auffassen.

Diese Abbildung g ist eine, die wir schon lange kennen – um welche handelt es sich?

Aufgabe 21.62 (Polynome in mehreren Variablen als Tensorprodukte). Es sei Pol(R2,R) der
Vektorraum aller reellen Polynomfunktionen in zwei Variablen, d. h. der Raum aller Funktionen
f : R2→ R, die geschrieben werden können als

f (x,y) = ∑
i, j∈N

ai, jxiy j für alle x,y ∈ R,

wobei nur endlich viele ai, j ∈ R ungleich 0 sind. Wie in Bemerkung 3.23 kann man auch hier be-
weisen, dass für jede solche Polynomfunktion ihre Koeffizienten ai, j eindeutig bestimmt sind (das
braucht ihr nicht zu tun).

(a) Zeige, dass Pol(R2,R) = Pol(R,R)⊗Pol(R,R) gilt (also dass Pol(R2,R) zusammen mit ei-
ner geeigneten bilinearen Abbildung Pol(R,R)×Pol(R,R)→ Pol(R2,R) die Bedingungen
aus Definition 21.54 (b) erfüllt).

(b) Gib ein Beispiel für ein Polynom f ∈ Pol(R2,R) = Pol(R,R)⊗Pol(R,R) an, das nicht als
f = p⊗q mit p,q ∈ Pol(R,R) geschrieben werden kann.


