20. Die Jordansche Normalform 249

20. Die Jordansche Normalform

Im letzten Kapitel haben wir bereits ausfiithrlich untersucht, wie man zu einer gegebenen quadra-
tischen Matrix A € K"*" eine moglichst einfache dhnliche Matrix finden kann (bzw. wie man zu
einem Endomorphismus f: V — V eines endlich-dimensionalen Vektorraums V eine Basis B von V
finden kann, so dass die zugehorige Abbildungsmatrix A? moglichst einfach wird). Wir haben dabei

in Folgerung 19.40 gesehen, dass A genau unter den Bedingungen

(a) xa zerfillt in Linearfaktoren, und
(b) pg(A,A) = pa(A,A) fiir alle Eigenwerte A

diagonalisierbar, also zu einer Diagonalmatrix dhnlich ist, und dass eine solche Diagonalform in
diesem Fall auch das bestmogliche Ergebnis ist (sieche Lemma 19.33). Wir wollen uns in diesem
Kapitel nun anschauen, was wir erreichen kdnnen, wenn eine der beiden obigen Bedingungen nicht
erfiillt ist (und A nach Folgerung 19.40 damit nicht diagonalisierbar ist).

Die Bedingung (a), dass das charakteristische Polynom in Linearfaktoren zerfillt, ist dabei eher
harmlos. Ist dies nimlich z.B. bei einer reellen Matrix A € R"*" nicht der Fall, so konnen wir A
einfach als komplexe Matrix A € C"*" auffassen. Nach dem Fundamentalsatz der Algebra (siche
Satz 6.11) zerfillt x4 dann zumindest iiber C in Linearfaktoren, und somit konnen wir wieder eine
Diagonalform erreichen (wenn auch mit komplexen Eigenwerten und Eigenvektoren). So war z. B.
die Matrix A aus Beispiel 19.37 (a) mit charakteristischem Polynom x4 (t) = #*> + 1 zwar iiber R nicht
diagonalisierbar, iiber C ist aber x4 (t) = (t +1)(r —1) und A damit diagonalisierbar nach Bemerkung
19.41 (a).

Wie in der Vorlesung ,.Einfithrung in die Algebra® des zweiten Studienjahres gezeigt wird, ldsst
sich dieser Trick nicht nur fiir reelle Matrizen, sondern iiber jedem Grundkorper K anwenden: Man
kann stets zu einem groferen Korper iibergehen, in dem das charakteristische Polynom dann in
Linearfaktoren zerfillt. Das Problem eines nicht zerfallenden charakteristischen Polynoms ist also
recht einfach zu beheben, und daher wollen wir hier auch nicht mehr weiter darauf eingehen. Wir
werden in diesem Kapitel in der Regel also Matrizen betrachten, deren charakteristisches Polynom
zwar in Linearfaktoren zerfillt, fiir die aber i. A. nicht die Bedingung (b) oben gilt, und wollen
wiederum nach einer moglichst einfachen dhnlichen Matrix suchen. Nach Satz 19.35 bedeutet dies
dann e (A, A) < pa(A,A) fiir einen Eigenwert A von A.

20.A Hauptriume

Es sei A € K"*" eine quadratische Matrix, deren charakteristisches Polynom in Linearfaktoren zer-
fallt. Nach Lemma 19.27 (a) ist A genau dann diagonalisierbar, wenn es eine Basis von K" aus Ei-
genvektoren von A gibt — diese konnen wir dann als Spalten in eine Matrix T € GL(n, K) schreiben,
und erhalten fiir 7' AT eine Diagonalform.

Ist nun pg(A,A) < Ha(A,A) fiir mindestens einen Eigenwert A von A, so haben wir im Beweis von
Folgerung 19.36 gezeigt, dass wir nicht genug linear unabhingige Eigenvektoren fiir eine solche
Basis finden. Unsere Strategie wird es in diesem Fall daher sein, den Begriff der Eigenvektoren etwas
zu verallgemeinern, so dass einerseits von diesen verallgemeinerten Eigenvektoren stets geniigend
viele existieren, um aus ihnen eine Basis von K" zusammenstellen und in eine invertierbare Matrix
T schreiben zu konnen, und andererseits die transformierte Matrix 7~ 'AT auch im Fall einer Basis
aus derartigen verallgemeinerten Eigenvektoren noch recht einfach ist. Die Idee hierfiir ist, statt
Eigenvektoren, also Vektoren x # 0 mit (AE —A) x = 0, nun solche zu betrachten, fiir die zumindest
(AE —A)"x =0 fiir irgendein r € N gilt.

Konstruktion 20.1 (Hauptrdume). Es seien A € K"*" und A € K.
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(a) Firr € N heilit
H, (A 1) :=Ker((AE—A)") <K"
der verallgemeinerte Eigenraum der Stufe » von A zu A.
Offensichtlich ist Hy(A,A) = KerE = {0} und H;(A,A) = Eig(4,1).
(b) Die verallgemeinerten Eigenrdume bilden eine aufsteigende Kette
{0} =Ho(A, 1) < Hi(A,A) < H(A, 1) <
von Unterrdumen von K”: Ist namlich x € H,(A,A) fiir ein r € N, also (AE —A)"x =0, so
ist natiirlich auch (AE —A)"*'x = (AE —A)(AE — A)"x = 0 und damit x € H, (A, ). Die
Dimensionen der verallgemeinerten Eigenrdume sind also monoton wachsend, konnen aber

natiirlich nicht groBer als die Dimension n des umgebenden Raumes werden. Es muss also
ein r € N geben mit

Hy(A, L) = Hyy (A L) = Hypo(AA) = -+ =1 H(A,A).

Dieser Unterraum H(A,A), den wir uns also als ,,Grenzwert der verallgemeinerten Eigen-
raume H,(A, ) fiir r — oo vorstellen konnen, heifit der Hauptraum von A zu A.

(c) Fiir r € N5 nennt man die Vektoren x € H,(A,A)\H,_(A,A), fiir die also (AE —A)"x=0
und (AE —A)"~'x # 0 gilt, Hauptvektoren oder verallgemeinerte Eigenvektoren der Stufe
r von A zum Eigenwert A.

Der Hauptraum besteht also aus dem Nullvektor zusammen mit den Hauptvektoren aller
Stufen. Die gewohnlichen Eigenvektoren aus Definition 19.11 (a) sind gerade die Hauptvek-
toren der Stufe 1, ndmlich die Elemente von H; (A, A1)\Ho(A,A) = Eig(A,1)\{0}.

Bemerkung 20.2 (Hauptraume von Endomorphismen). Natiirlich gibt es zu Konstruktion 20.1 auch
wieder eine entsprechende Version fiir Endomorphismen f: V — V eines endlich-dimensionalen
Vektorraums V: Analog zu Bemerkung 19.12 (b) sind die verallgemeinerten Eigenrdume in diesem
Fall H,(f,A) = Ker((Aidy —f)"), wobei die Potenz hier fiir die r-fache Verkettung von Aidy —f
mit sich selbst steht.

Bemerkung 20.3. Sind A € K", A € K und r € N mit H.(A,A) = H,11(A, 1), so dass also in der
aufsteigenden Kette der verallgemeinerten Eigenrdume in Konstruktion 20.1 (b) an irgendeiner Stelle
die Gleichheit gilt, so gilt auch an der folgenden Stelle H,;1(A, A1) = H,12(A, 1) die Gleichheit, denn
fiir alle x € H-42(A, A) folgt dann
(AE —A)T'(AE—-A)x=0
= (AE—A)x € H-41(A,A) =H, (A1)
= (AE—-A)"(AE—-A)x=0,
und damit auch x € H,;(A, ). Daraus erhalten wir sofort:
(a) Aus der Gleichheit H.(A,A) = H,; (A, 1) an einer Stelle r € N folgt induktiv bereits
Hr(Aal) = Hr+l (A7A) = Hr+2(A7)L) =y
und damit H(A,1) = H,(A, ).

(b) Speziell fiir r = 0 bedeutet (a): Ist A € K kein Eigenwert von A, gibt es also keine Eigenvekto-
ren zu A und ist damit H; (A,A) = Eig(A, 1) = {0} = Hy(A, ), so folgt auch H(A, 1) = {0},
d. h. dann gibt es auch keine verallgemeinerten Eigenvektoren zu A. Anders formuhert ver-
allgemeinern wir also nur den Begriff der Eigenvektoren, aber nicht den der Eigenwerte.

(c) Da alle verallgemeinerten Eigenrdume von A in K" liegen und somit hochstens Dimension n
haben, kann in der aufsteigenden Kette dieser Rdume hochstens n-mal die strikte Inklusion
gelten. Zusammen mit (a) bedeutet dies, dass in jedem Fall H(A, A1) = H,(A,A) gilt, also
spétestens nach n Schritten in der Kette der Hauptraum erreicht sein muss.
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Beispiel 20.4. Die reelle Matrix

A=

S OO

2 0
0 0
0 2

hat nach Folgerung 18.18 das charakteristische Polynom y4 () = >(t — 2). Wir wollen zum Eigen-
wert A = 0 den Hauptraum H(A,0) bestimmen. Dazu berechnen wir der Reihe nach die verallge-
meinerten Eigenrdume H,(A,0):

0 -2 0
Hi(A,0) =Ker(OE—A)=Ker [0 0 0 | =Lin(e),
0 0 -2
000
Hy(A,0) = Ker(0OE —A)> =Ker [0 0 0] =Lin(e,en),
0 0 4
00 0
H3(A,0) =Ker(OE —A)* =Ker [0 0 0 | =Lin(ey,e2).
0 0 -8

Damit ist der gesuchte Hauptraum gleich H(A,0) = Lin(ej,e,): Dies folgt sowohl aus Bemerkung
20.3 (a) (da H(A,0) und H3(A,0) iibereinstimmen) als auch aus Bemerkung 20.3 (c) (da fiir 3 x 3-
Matrizen spitestens an der dritten Stelle der Hauptraum erreicht sein muss).

Wir sehen an diesem Beispiel also bereits, dass es mehr Hauptvektoren als Eigenvektoren geben
kann, denn Eig(A,0) = H; (A, 0) ist hier ja ein echter Unterraum von H(A,0) = H>(A,0). In unserem
Beispiel fiihrt dies dazu, dass die Standardbasis eine Basis von R? aus Hauptvektoren von A ist (die
ersten beiden Einheitsvektoren sind ja Hauptvektoren zum Eigenwert 0, der dritte ist offensichtlich
ein Eigenvektor zum Eigenwert 2), wohingegen wir wegen [ig(A,0) = 15(A,2) = 1 keine Basis von
RR? aus Eigenvektoren von A finden konnen und A damit nicht diagonalisierbar ist.

Wir wollen nun zeigen, dass wir in der Tat zu jeder Matrix A € K™*" mit zerfallendem charakteris-
tischen Polynom eine Basis aus Hauptvektoren finden konnen. Analog zu Abschnitt 19.C sind dies
gerade die beiden Aussagen:

(A) Wir finden in jedem Hauptraum geniigend viele linear unabhingige Vektoren, d.h. es ist
dimH (A, 1) = Ua(A,A) fiir alle Eigenwerte A.
(B) Alle diese Vektoren zusammen genommen sind linear unabhingig, d.h. die Summe der

Hauptraume ist direkt.

Fiir den Beweis dieser Aussagen in den nichsten beiden Sétzen bendtigen wir zuerst zwei kleine
Bemerkungen.

Bemerkung 20.5. Es sei A € K",

(a) (Kommutativitit von Matrixprodukten aus A und E) Natiirlich sind Matrixprodukte im All-
gemeinen nicht kommutativ, d. h. in der Regel ist AB # BA fiir eine weitere Matrix B € K"*".
Jedoch gilt hier offensichtlich die Gleichheit, falls B = A oder B = E ist. Dementsprechend
sind auch Produkte von Matrizen kommutativ, die durch Addition, Skalarmultiplikation und
Matrixmultiplikation aus A und E zusammengesetzt sind, wie z. B.

(AE—A)-A=A-(AE—A)
(in der Tat sind beide Seiten gleich AA — A?). Wir werden diese Kommutativitit im Folgen-
den oft benutzen, ohne jedes Mal wieder darauf hinzuweisen.

(b) (Invarianz der Hauptrdaume) Die Abbildung x — Ax ldsst sich auf jeden verallgemeinerten
Eigenraum H,(A,A) (und damit auch auf H(A,A)) zu einem Endomorphismus

Hi(A, ) = Hy(A, ), x> Ax
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einschrinken: Ist namlich x € H,(A,A), also (AE —A)"x = 0, so gilt nach (a) auch
(AE—A)Ax=A(AE—-A)x=0
und damit Ax € H,(A,A). Man sagt dafiir auch, dass die verallgemeinerten Eigenriume und

der Hauptraum A-invariant sind.

Satz 20.6 (Hauptraumdimension). Es seien A € K"*" eine quadratische Matrix mit zerfallendem
charakteristischen Polynom und A € K. Dann gilt:

(a) Fiirallep e Kmit p # A ist HA,A)NH(A,u) = {0}.

(b) dimH(A,A) = ia(A, ).

Beweis. Nach Bemerkung 20.5 (b) konnen wir die Abbildung f: K" — K", x — Ax auf einen En-
domorphismus des Hauptraums H (A, 1) einschréinken. Es gibt nach Aufgabe 17.24 (b) also lineare
Abbildungen

g HA,A) - H(A,A), x—~Ax und h: K"/H(A,A) — K"/H(A,}), X Ax.
Fiir die Eigenwerte dieser beiden Abbildungen gilt:

(1) Kein u # A ist ein Eigenwert von g: Ist x € H(A,A) mit Ax = Ux, so wissen wir einerseits
(AE —A)"x = 0 nach Bemerkung 20.3 (c) und andererseits (AE —A)x = (A — u)x. Damit
folgt

0=(AE—-A)"x= (A —u)x,
was wegen [ 7 A nur fiir x = 0 moglich ist. Also hat g keine Eigenvektoren zu pt, und damit

nach Bemerkung 20.3 (b) auch keine verallgemeinerten Eigenvektoren zu pt. Mit anderen
Worten ist H(A,A)NH(A,u) = H(g,u) = {0}, was (a) zeigt.

(2) Umgekehrt ist A kein Eigenwert von h: Ist X € K" /H(A, 1) mit Ax = A%, so folgt
RE—A)x=0
= (AE—-A)x€H(A,A)=H,(A,A) (Bemerkung 20.3 (c))
= (AE—-A)"(AE—-A)x=0
= x€H,1(A,A)=H(AL),

und damit X = 0. Also besitzt & keine Eigenvektoren zu A.

Nach Aufgabe 19.25 ist nun Y4 = X = X, - Xs, und dieses Polynom zerfillt nach Voraussetzung in
Linearfaktoren. Aus ), konnen nach (1) aber ausschlieBlich Linearfaktoren t — A kommen, aus xj,
dagegen nach (2) kein Linearfaktor  — A. Die algebraische Vielfachheit u, (A, 1), also die Anzahl der
Linearfaktoren  — A in x4, ist damit genau gleich dem Grad von Y, also der Dimension dimH (A, 1)
des Startraums von g. Damit ist auch (b) gezeigt. 0

Satz 20.7 (Hauptraumzerlegung). Es sei A € K"*" eine quadratische Matrix, deren charakteris-
tisches Polynom in Linearfaktoren zerfillt. Sind Ay, ..., A die verschiedenen Eigenwerte von A, so
gilt

HAM) @ - ©H(A X&) =K".

Beweis. Wir zeigen mit Induktion iiber / = 1,.. .k, dass die Summe H(A,A;) +---+ H(A, A;) direkt
ist. Fiir den Induktionsanfang / = 1 ist dabei nichts zu zeigen. Fiir den Induktionsschritt I — /41
seien

XA X =yt ey
zwei Darstellungen desselben Vektors in K" mit x;,y; € H(A,A;) fir alle i = 1,...,/ 4 1. Multipli-
zieren wir diese Gleichung von links mit (A4, 1E —A)", so fallen x;1; und y;, nach Bemerkung
20.3 (c) weg, und wir erhalten

(A1 E—A)"(x1 —y1) +- -+ (L1 E—=A)"(x—y) =0. 2
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Nun ist aber (A1 E —A)"(x; —yi) € Hy(A, X)) = H(A, ;) fir alle i = 1,...,I, denn nach Bemerkung
20.5 (a) ist
(},,E —A)n(),H,]E —A)”(x,- _yi) = (A,[JHE —A)n (A,,E —A)”(x,- —y,') =0.
=0

Da die Summe H(A,A;) +-- -+ H (A, A;) nach Induktionsvoraussetzung direkt ist, ergibt sich aus (2)
also

(AI+IE —A)”(x,- —y,') =0 flrallei= 17 .. .,l.
Damit ist x; —y; € H(A, ;) NH(A, A;11), mit Satz 20.6 (a) also x; —y; = 0 und somit x; = y; fiir

i=1,...,l. Einsetzen in (1) zeigt dann auch x; | = y;; |, und damit ist die Summe der Hauptraume
direkt.

Da x4 in Linearfaktoren zerfillt, ist nun aber auch

20.6 (b)

k k
dim(H(A,M) @@ H(A,4) ' Y dimH(A,4) "2V Y pa(4,4) =n,
i=1 i=1

und damit H(A,A;) @ --- & H(A, A) = K". O

Bemerkung 20.8. Wollen wir den Hauptraum H (A, A ) einer Matrix A € K" zu einem Eigenwert 4
bestimmen, indem wir nacheinander die verallgemeinerten Eigenrdume H,(A,A) mit r € N berech-
nen, so folgt aus Satz 20.6 (b) insbesondere, dass wir mit der Berechnung dieser Rdume aufhéren
konnen, sobald einer von ihnen die Dimension t,(A,A) hat — und nicht erst wie in Beispiel 20.4,
wenn zwei von ihnen gleich sind oder r = n gilt. In der Tat hitten wir in diesem Beispiel damit
H3(A,0) nicht mehr berechnen miissen, da dort bereits dimH>(A,0) = u,(A,0) = 2 war und somit
H(A,0) = Hy(A,0) gelten musste.

20.B Jordandiagramme

Wir wollen nun endlich unser Problem 16sen, zu einer quadratischen Matrix mit zerfallendem charak-
teristischen Polynom eine moglichst einfache dhnliche Matrix zu finden. Dazu haben wir im letzten
Abschnitt gesehen, dass sich diese Frage auf die Untersuchung der einzelnen Hauptraume reduzieren
lasst. Wir fassen unser Ergebnis hier noch einmal in der jetzt bendtigten Form zusammen.

Bemerkung 20.9 (Hauptraumzerlegung). Es sei A € K"*" eine Matrix, deren charakteristisches
Polynom in Linearfaktoren zerfillt. Sind A4, ...,A; die verschiedenen Eigenwerte von A, so haben
wir in Satz 20.7 gesehen, dass

HAM)&---H(A A) =K".
Wihlen wir also Basen By, ..., By dieser Hauptrdume, so erhalten wir nach Aufgabe 17.7 mit allen

diesen Vektoren zusammen genommen eine Basis B von K. Damit konnen wir diese Vektoren in
die Spalten einer invertierbaren Matrix T schreiben.

Wegen der Invarianz der Hauptriume gemall Bemerkung 20.5 (b) kdnnen wir nun die Abbildung
f: K" — K", x — Ax auf die Hauptrdume einschrinken zu

fir HA L) = H(A L), x— Ax

fir i = 1,...,k. Die Matrix A? (die nach Bemerkung 19.3 (b) gleich T~'AT ist) kann nach Satz
16.26 in den zu B; gehorigen Spalten also auch nur in den entsprechenden Zeilen Eintrige ungleich
0 haben, und ist dort gleich der Abbildungsmatrix AI;I,". Wir erhalten fiir diese Matrix damit

B

Man sagt, dass A} eine Blockdiagonalmatrix mit den Blocken A?ll yenn ,A?kk ist.

AB=T71AT =
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Um unsere Suche nach einer moglichst einfachen zu A dhnlichen Matrix zu beenden, miissen wir
jetzt also nur noch die Basen B; der einzelnen Hauptrdume H(A,A;) fiir i = 1,...,k so wihlen,
dass die Abbildungsmatrizen Afﬁi" der auf die Hauptrdume eingeschrinkten Abbildung moglichst
einfach werden. Hierfiir ist das folgende Konzept der Jordandiagramme sehr niitzlich, da es die
etwas komplizierte Berechnung von B; auf grafische Art gut veranschaulicht.

Definition 20.10 (Jordandiagramme). Es sei A € K"*" eine quadratische Matrix, deren charakteris-
tisches Polynom in Linearfaktoren zerfillt. Wir wihlen einen festen Eigenwert A von A und setzen
zur Abkiirzung der Schreibweise H, := H,(A,A) fiir alle r € N.

Ein Jordandiagramm von A zum Eigenwert A ist dann wie im Bild unten dargestellt ein in links-
biindigen Zeilen angeordnetes Diagramm von endlich vielen Késtchen, mit von oben nach unten
(nicht notwendig streng) monoton fallenden Zeilenldngen, und zusammen mit einem Vektor in K"
in jedem dieser Kistchen, so dass die folgenden beiden Bedingungen erfiillt sind:

(a) (Zeilenbedingung) Fiir alle r > 0 bilden die Vektoren der ersten r Zeilen eine Basis von
H,. Insbesondere bilden also die Vektoren in allen Kistchen zusammen eine Basis des
Hauptraums H(A, ).

(b) (Spaltenbedingung) Steht ein Vektor y in einer Spalte des Diagramms unmittelbar {iber dem
Vektor x, so ist y = (A — AE) x (im Diagramm unten ist also z. B. x; = (A — AE) x3).

X1 | x4 | <— Basis von H; .
: Basis von H,

(A—AE)- I X2

X3

Basis von H3

Bemerkung 20.11 (Alternative Zeilenbedingung). Oft ist es niitzlich, die Zeilenbedingung aus De-
finition 20.10 (a) d4quivalent umzuformulieren zu:

(Alternative Zeilenbedingung) Fiir alle r > 0 liegen die Vektoren der Zeile r in H,,
und ihre Klassen bilden eine Basis von H,./H,_j.

Diese alternative Bedingung ist namlich nach Bemerkung 17.21 &dquivalent dazu, dass die Vekto-
ren der Zeile r eine Basis von H,_; zu einer Basis von H, erginzen — und dies ist ja gerade die
urspriingliche Zeilenbedingung.

Insbesondere heiBt dies auch, dass alle Vektoren einer Zeile r in H,\H,_ liegen, also Hauptvektoren
der Stufe r sind.

Wir werden in Satz 20.13 noch beweisen, dass Jordandiagramme immer existieren und auch einfach
berechenbar sind. Zuerst wollen wir aber sehen, warum gerade eine Basiswahl wie in den Kistchen
eines Jordandiagramms zu einer besonders einfachen Abbildungsmatrix fiihrt.

Konstruktion 20.12 (Abbildungsmatrizen aus Jordandiagrammen). Wir be-
trachten zunichst eine Spalte der Lénge m in einem Jordandiagramm zu einer
Matrix A € K"*" zum Eigenwert 4; die Vektoren von oben nach unten gele-
sen seien x1, .. ., X, (im Bild rechts ist eine solche Situation fiir den Fall m =4
dargestellt).

Wegen x| € Hj ist dann Ax; = Ax;, wihrend fiir alle i = 2, ..., m nach der Spaltenbedingung (b) aus
Definition 20.10

(A —/’LE)x,~ =xi_1, also Ax;=Ax;+xi_g

gilt. Der Unterraum U = Lin(xp,...,x,) ist damit im Sinne von Bemerkung 20.5 (b) A-invariant,
d.h. die Abbildung K" — K", x — Ax lésst sich zu einer Abbildung U — U, x — Ax einschrinken,
und die Abbildungsmatrix dieser eingeschriinkten Abbildung ist beziiglich der Basis (x1,...,x;) von
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U nach Satz 16.26 gleich

Al 0
Jm(A)Z: . | EKme'
0 A

Wir nennen diese m x m-Matrix J,,(1), bei der alle Eintrdge auf der Diagonale gleich A, die unmit-
telbar dariiber gleich 1, und alle anderen gleich O sind, einen Jordanblock (oder manchmal auch ein
Jordankistchen) der GroRe m zum Eigenwert A.

Wir gehen nun zum gesamten Jordandiagramm zu A iiber, nehmen also alle Spalten zusammen.
Wihlen wir als Basis von H(A,A) die Vektoren im Diagramm, spaltenweise von oben nach unten
gelesen, so erhalten wir fiir die Abbildungsmatrix zu x — Ax auf H(A, 1) analog zu Bemerkung 20.9
eine Blockdiagonalform mit Jordanblocken wie oben beschrieben, also

Iy (A) 0
0 Iy (M)
wobei jeder Jordanblock einer Spalte im Jordandiagramm entspricht und die GroBen my,...,m; der

Jordanblocke genau die Liangen dieser Spalten (in der gewihlten Reihenfolge) sind. Dies ist die
einfache Form der Abbildungsmatrix, nach der wir gesucht haben.

Wir haben nun also gesehen, dass man mit Hilfe von Jordandiagrammen Hauptraumbasen bestim-
men kann, die letztlich zu sehr einfachen Abbildungsmatrizen fithren. Im néchsten Satz wollen wir
daher zeigen, dass solche Jordandiagramme auch wirklich existieren. Der Beweis des Satzes gibt
gleichzeitig auch ein einfaches konstruktives Verfahren zur Berechnung eines solchen Diagramms.

Satz 20.13 (Existenz und Berechnung von Jordandiagrammen). Es seien A € K"*" eine quadratische
Matrix, deren charakteristisches Polynom in Linearfaktoren zerfillt, und A ein Eigenwert von A.
Dann gibt es ein Jordandiagramm von A zum Eigenwert A.

Beweis. Wie oben setzen wir wieder Hy := Hy(A,A) fiir alle k € N. Es sei r € N die kleinste Zahl
mit H,(A,A) = H(A, ), also die benétigte Anzahl Zeilen im Jordandiagramm. Wir konstruieren das
gesuchte Diagramm nun nach folgendem Verfahren zeilenweise von unten nach oben:

(a) In die letzte Zeile r schreiben wir beliebige Vektoren in H,, deren Klassen wie in Bemer-
kung 20.11 eine Basis von H,/H,_; bilden — z. B. indem wir wie in Bemerkung 17.21 eine
Basis von H,_; zu einer Basis von H, erginzen und die hinzugenommenen Vektoren in die
letzte Zeile des Diagramms schreiben. (Die dafiir bestimmte Basis von H,_; wird dabei im
Folgenden nicht mehr benétigt.)

(b) Um fiir k =r—1,...,1 die Zeile k aus Zeile k+ 1 zu konstruieren, schreiben wir wie im
Bild unten dargestellt zunédchst unmittelbar iiber die Vektoren xi,...,x,, der Zeile k+ 1 die
Vektoren (A —AE)xj,...,(A— AE)x,, in Zeile k, und erginzen diese Vektoren dann so, dass
die Klassen der Vektoren in Zeile k insgesamt eine Basis von Hy/H_ bilden.

o erginzen zu Basis von Hy/Hy_
f%

@-apy | gt L L] zeiek
X1 | X2 [x3 Zeile k+1

Nach Konstruktion sind im ausgefiillten Diagramm dann iiberall die alternative Zeilenbedingung aus
Bemerkung 20.11 und die Spaltenbedingung aus Definition 20.10 (b) erfiillt. AuBerdem miissen die
Zeilenldngen dann natiirlich von oben nach unten monoton fallend sein. Um sicherzustellen, dass
Schritt (b) immer funktioniert (wenn das Diagramm unterhalb dieser Zeile schon korrekt ausgefiillt
ist), miissen wir aber noch zwei Dinge iiberpriifen:
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e Die Vektoren (A — AE)x; liegen wirklich in Hy fiir alle i = 1,...,m: Da x; in Zeile k+ 1
steht, ist x; € Hy1, also (AE —A)1x; = 0 bzw. (A — AE)*1x; = 0. Dies bedeutet aber
auch (A — AE)*(A — AE)x; = 0, und damit (A — AE) x; € H;.

e Die Klassen der Vektoren (A —AE)xi,...,(A— AE)x,, sind linear unabhingig in Hy/H;_1,

so dass wir sie zu einer Basis dieses Raumes ergénzen konnen: Fiir yy,...,u, € K gilt
i (A=2AE)xi+ -+l (A—AE)xy =0 € He/Hy_

= WA—AE)x1+ -+ Uy (A—AE) x,, € H,_4 (Bemerkung 17.16)

= (A—AE)"YA—AE) (x4 -+ UpmXm) =0 (Definition von Hy_)

= Wx;+-+ Wpxm € Hy (Definition von Hj)

= WX+ A+ UpXy =0 € Hi 1 /H; (Bemerkung 17.16)

= ==y =0,
da die Vektoren X7,...,X,, eine Basis von Hy/Hj bilden und damit in diesem Quotienten-
raum linear unabhéngig sind. g

Ein konkretes Beispiel fiir dieses Verfahren werden wir in Beispiel 20.17 noch angeben. Zunéchst
aber wollen wir unsere Ergebnisse zusammenfassen und damit das Hauptergebnis dieses Kapitels
zeigen.

Folgerung 20.14 (Jordansche Normalform). Es sei A € K"*" eine quadratische Matrix, deren cha-
rakteristisches Polynom in Linearfaktoren zerfdllt. Dann ist A dhnlich zu einer Blockdiagonalmatrix

der Form
oy (A1) 0

J = 9
0 I (M)

wobei die J,, (A1), ..., Jm, (Ak) Jordanblicke wie in Konstruktion 20.12 fiir gewisse my, ... ,my € N5
und nicht notwendig verschiedene Eigenwerte Ay, ..., A von A sind, d. h. fiiri =1,... k ist

A1 0
Jmi(ﬁ,i) _ . | c Km,-xm,-.
0 Ai

Man nennt eine solche Matrix J die Jordanform oder Jordansche Normalform von A (wir werden
in Aufgabe 20.21 noch sehen, dass sie bis auf die Reihenfolge der Blocke eindeutig bestimmt ist).

Ist T = (x| -+ |xy) € GL(n,K) eine Matrix mit J = T AT, so dass J also die Abbildungsmatrix
von K" — K", x — Ax beziiglich der Basis B = (x1,...,X,) ist, so heiit B eine Jordanbasis von A.

Beweis. Auch der Beweis dieser Folgerung ist konstruktiv: Man bestimme zunéchst mit Hilfe des
charakteristischen Polynoms x4 die Eigenwerte von A, und dann zu jedem dieser Eigenwerte ein
Jordandiagramm mit dem Verfahren aus Satz 20.13. Aus jedem Diagramm erhalten wir eine Basis
des entsprechenden Hauptraums, und so nach der Hauptraumzerlegung aus Satz 20.7 insgesamt eine
Basis von K". Dies ist dann eine Jordanbasis: Lesen wir die Basisvektoren in den Diagrammen
spaltenweise von oben nach unten und schreiben sie in die Matrix T, so ist 7~ 'AT nach Bemerkung
20.9 eine Blockdiagonalmatrix mit einem Block fiir jeden Eigenwert A, wobei nach Konstruktion
20.12 jeder dieser Blocke selbst wieder eine Blockdiagonalform aus Jordanblécken zu A ist. d

Bemerkung 20.15 (Bestimmung der Jordanform ohne Jordanbasis). Mochte man zu einer Matrix
A (mit in Linearfaktoren zerfallendem charakteristischen Polynom) nur die Jordanform, aber kei-
ne Jordanbasis bestimmen, so ist das Verfahren hierfiir sehr viel einfacher. Weil wir genau einen
Jordanblock der Grofe m zum Eigenwert A fiir jede Spalte der Linge m im Jordandiagramm zu
A bekommen, benétigen wir zur Bestimmung der Jordanform namlich nur die duflere Form der
Jordandiagramme, aber nicht die in ihnen stehenden Vektoren. Da die duflere Form eines solchen
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Diagramms zum Eigenwert A nach Bemerkung 20.11 aber wiederum dadurch eindeutig bestimmt
ist, dass Zeile r fiir alle r die Lénge dimH,(A,A) —dim H,_; (A, A) hat, geniigt also die Information
der Dimensionen aller Rdume H,(A, A1), um die Jordanform zu bestimmen.

In vielen Fillen reicht sogar noch viel weniger Information zur Bestimmung der Jordanform aus. So
haben z. B. die algebraische und geometrische Vielfachheit eines Eigenwerts eine direkte Interpre-
tation in den Jordandiagrammen und damit auch in der Jordanform:

(a) Die algebraische Vielfachheit p1,(A,A) ist nach Satz 20.6 (b) die Dimension von H(A, 1),
also gleich der Anzahl der Kistchen im Jordandiagramm zu A. Natiirlich ist dies dann gleich-
zeitig auch die Summe der Léangen aller Spalten in diesem Diagramm, und damit gleich der
Summe der GroBen aller Jordanblocke in der Jordanform von A.

(b) Die geometrische Vielfachheit p,(A,A) = dimEig(A,A) = dimH; (A, A) ist nach der Zeilen-
bedingung aus Definition 20.10 (a) genau die Linge der ersten Zeile des Jordandiagramms
zu A. Da die Zeilenléngen in einem Jordandiagramm von oben nach unten monoton fallend
sind, ist dies dasselbe wie die Anzahl der Spalten im Jordandiagramm, und damit wie die
Anzahl der Jordanblécke zum Eigenwert A in der Jordanform von A.

‘Wir halten also fest:

Ua(A,A) = Anzahl der Kistchen im Jordandiagramm zum Eigenwert A
= Summe der GroBen der Jordanblécke zum Eigenwert A in der Jordanform

Mg (A, A) = Anzahl der Spalten im Jordandiagramm zum Eigenwert A
= Anzahl der Jordanblocke zum Eigenwert A in der Jordanform

Im Fall p,(A,A) < 3 reichen diese beiden Zahlen in der Tat bereits aus, um das Jordandiagramm
und damit auch die von diesem Eigenwert kommenden Jordanblocke in der Jordanform eindeutig
zu bestimmen: Im Bild unten links sind alle méglichen Jordandiagramme mit hochstens 3 Késtchen
(und die sich daraus ergebenden Jordanblocke) angegeben, und diese unterscheiden sich alle in der
Anzahl ihrer Kistchen oder Spalten, also durch die algebraische oder geometrische Vielfachheit des
Eigenwerts. Erst im Fall i, (A, 1) = 4 gibt es zum ersten Mal zwei Jordandiagramme, die sich durch
diese beiden Zahlen nicht unterscheiden lassen, nimlich die beiden Diagramme unten rechts mit 4
Kistchen und 2 Spalten — und dementsprechend auch zwei verschiedene mogliche Jordanformen.
Mochte man zwischen diesen beiden Fillen unterscheiden, muss man auch noch dimH, (A, 1) be-
rechnen: Diese Zahl ist nach Definition 20.10 ja gleich der Anzahl der Késtchen in den ersten beiden
Zeilen des Jordandiagramms, in den beiden Fillen im Bild unten rechts also 3 bzw. 4.

Ua(A,A): 1 2 2 3 3 3 § 4 4
Ue(A,A): 1 1 2 1 2 3 : 2 2
Jordan- ] 1] [ I I |
diagramm N : B
Jordan- H Al Al A1 Al
blocke Al ; Al A

A : A 21

: [A] A

Bemerkung 20.16.

(a) Natiirlich gibt es einen zu Folgerung 20.14 analogen Satz auch wieder fiir Endomorphismen
f:V —V eines endlich erzeugten Vektorraums V': Zerfillt y; in Linearfaktoren, so gibt es
eine Jordanbasis B von V fiir f — also eine Basis, so dass die zugehorige Abbildungsmatrix
A% in Jordanform ist.
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(b) Beachte, dass der Fall von diagonalisierbaren Matrizen, also Folgerung 19.40, im Satz {iber
die Jordansche Normalform enthalten ist: Ist A eine quadratische Matrix, deren charakteristi-
sches Polynom in Linearfaktoren zerfillt, so ergibt sich aus Folgerung 20.14 und Bemerkung
20.15

A diagonalisierbar < alle Jordanblocke haben die Grofe 1
&> alle Spalten der Jordandiagramme haben die Linge 1
& alle Jordandiagramme haben genauso viele Spalten wie Késtchen
& Ug(A,A) = ta(A, A) fiir alle Eigenwerte A,
und damit Folgerung 19.40.

Beispiel 20.17. Es sei

0 110
-4 4 2 0 s
A=l o0 2 o R

1 01 3

Das charakteristische Polynom von A berechnet sich wohl am einfachsten durch Laplace-Entwick-
lung gemif Satz 18.15, zunédchst nach der letzten Spalte und dann nach der letzten Zeile:

t —1 —1 0 PR 1

Xa(t) = det 4 14 =20 =(t—3)-det|4 t—4 2
0 0 t-2 0 0 0 12
-1 0 -1 -3

=({—2)(t—3)-det (2 ;_14) =(t—2)(t—3)(* —4t+4)=(t—2)*(t—3).

Da x4 in Linearfaktoren zerfillt, besitzt A nach Folgerung 20.14 also eine Jordanform.

Wollen wir diese berechnen, miissen wir die Jordandiagramme zu den beiden Eigenwerten A; = 2
und A, = 3 bestimmen. Fiir A, = 3 ist dies einfach: Aus u,(A,3) = 1 folgt natiirlich bereits, dass
das zugehorige Jordandiagramm aus nur einem Kistchen besteht und die Jordanform von A daher
genau einen Jordanblock der Grofe 1 zum Eigenwert 3 hat. Fiir den Eigenwert A; = 2 hingegen ist
Ua(A,2) = 3, und daher gibt es fiir das Jordandiagramm noch die drei im Bild von Bemerkung 20.15
aufgelisteten Moglichkeiten, die drei Kdstchen im Jordandiagramm anzuordnen. Um zu entscheiden,
welcher dieser Fille hier vorliegt, berechnen wir die geometrische Vielfachheit p,(A,2): Mit dem
GauB-Algorithmus ergibt sich

2 -1 -1 0 1 1
4 -2 -2 0 . 2 3
H(A,2) = Ker(2E — A) = Ker o o o ol~= Lin o I'l 2 , (%)
-1 0 -1 -1 —1 0
——r ——
=X =X

und damit 1, (A, 2) = 2. Das Jordandiagramm zum Eigenwert 2 hat gemifl Bemerkung 20.15 also 3
Kistchen und 2 Spalten und muss damit wie im Bild am Ende dieses Beispiels in der ersten Spalte
zwei und in der zweiten Spalte ein Kistchen haben. Zum Eigenwert 2 gibt es also zwei Jordanblocke,
deren GroBen gerade diese Spaltenldngen 2 bzw. 1 sind. Die Jordanform von A ist damit

2 110 0
020 0
T=15 01210
00 03

Wollen wir auch noch eine Jordanbasis bestimmen, miissen wir die beiden Jordandiagramme zu den
Eigenwerten 2 und 3 noch mit Vektoren fiillen. Fiir den Eigenwert A, = 3 ist dies wieder einfach: Da
der vierte Einheitsvektor offensichtlich ein Eigenvektor zu diesem Eigenwert ist, konnen wir ihn wie
im Bild unten in das eine Kistchen des Jordandiagramms schreiben. Um auch das Jordandiagramm
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fiir A} = 2 zu fiillen, verwenden wir das Verfahren aus Satz 20.13 und beginnen also in der zwei-
ten Zeile des Diagramms, wofiir wir eine Basis fiir den eindimensionalen Raum H,(A,2)/H;(A,2)
brauchen. Wir miissen also erst einmal den verallgemeinerten Eigenraum H, (A, 2) bestimmen. Dies
konnen wir durch explizite Berechnung von H(A,2) = Ker(2E — A)? mit dem GauB-Algorithmus
machen und erhalten

0 00O 1 1 1
H>(A,2) = Ker(2E — A)? = Ker 8 g 8 8 =Lin (2) , _31 , (1)
-1 1 2 1 —1 0 0

=Y =2 =

Offensichtlich ist y3 ein Vektor, der eine Basis von H;(A,2) zu einer von Hz(A,2) erginzt. Wir

schreiben ihn also in das untere Kistchen des Jordandiagramms. Direkt dariiber gehort nun nach

dem Verfahren aus Satz 20.13 der Vektor
-2 —1
—4

(A-2E)y=|
1

SO~
—_— O N =
- o O O
OO ==
(e}

Beachte, dass dieser Vektor nach (x) tatséchlich in H;(A,2) liegt (dies ist eine gute Kontrolle der
Rechnung — wir hitten irgendwo einen Rechenfehler gemacht, wenn dies nicht so wire). Fiir das
rechte Kistchen des Jordandiagramms miissen wir ihn noch zu einer Basis von H) (A,2) erginzen,
nach (x) z. B. mit x,.

Insgesamt haben wir also die folgenden Jordandiagramme erhalten:

—1 1 0
=2 0

0 -1 0

1 0 1

1

1

0

o M=2 T =3

Fiir eine Jordanbasis miissen wir die Vektoren in diesen Késtchen nun nur noch spaltenweise von
oben nach unten lesen bzw. sie in dieser Reihenfolge als Spalten in die Transformationsmatrix T
schreiben. Dabei miissen wir die Spalten der Diagramme in der gleichen Reihenfolge durchgehen,
in der wir oben die Jordanblocke in J angeordnet haben:

11 1 0
=21 3 0
=10 0 -1 0

1 0 0 1

Damit gilt dann 7~!'AT = J nach Folgerung 20.14 (was wir durch direkte Berechnung von 7~! und
T~ AT natiirlich auch explizit iiberpriifen konnten).

Aufgabe 20.18. Berechne die Jordanschen Normalformen der reellen Matrizen

-1 0 0 -1 O 1 0 00O
0 1 0 1 1 1 2000
A=]10 0 2 0 O und B=10 1 3 0 O
1 0 0 1 0 001 40
0O -1 0 -1 -1 00 01 4

Fiir die Matrix A bestimme man dabei zusitzlich eine Jordanbasis; fiir die Matrix B hingegen versu-
che man, mit moglichst wenig Rechenaufwand lediglich die Jordanform zu ermitteln.
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Aufgabe 20.19. Fiir ein gegebenes n € N sei V = Pol, (R, R) der Vektorraum aller reellen Polynome
vom Grad hochstens n. Berechne die Jordansche Normalform der linearen Abbildung f: V — V mit

f(@)(x) = o(x+1).

Aufgabe 20.20 (Anwendung der Jordanform auf Systeme von Differentialgleichungen). In dieser
Aufgabe wollen wir ein vermutlich recht unerwartetes Beispiel fiir die Anwendung der Jordan-
form aus dem Bereich der Analysis geben. Das Ziel soll es sein, reelle differenzierbare Funktionen
f1,/2, f31 R — R zu bestimmen, so dass f1(0) = f2(0) = f3(0) = 1 und

fi=rH+2f
H=A+H+3f
fHi=—h—-/

(an jeder Stelle x € R) gilt, wobei f! wie iiblich die Ableitung von f; bezeichnet.

Derartige Systeme von sogenannten Differentialgleichungen, die also in jedem Punkt die Anderung
von Funktionen durch die Funktionswerte selbst ausdriicken, kommen in der Praxis iiberall vor.
Ausgehend von einem Anfangswert (hier bei x = 0) kann man mit ihnen die gesamten Funktionen
fi rekonstruieren.

Zur Losung schreibe man die gegebenen Gleichungen in Matrixform f' = A - f mit A € R3*3 und
bringe A in Jordanform, d. h. bestimme eine Matrix T € GL(3,R), so dass T—1AT = J eine Jordan-
matrix ist. Wenn ihr die Gleichungen dann umschreibt in Gleichungen fiir g = 7! f (also f = T'g),
sollte sich dieses neue Differentialgleichungssystem fiir g (mit den passenden Werten bei x = 0)
leicht 16sen lassen.

Aufgabe 20.21 (Eindeutigkeit der Jordanform). Wir wollen nun die bereits in Folgerung 20.14 be-
hauptete Eindeutigkeit der Jordanform (bis auf die Reihenfolge der Jordanblocke) beweisen. Man
zeige dazu:

(a) Sind A und B zwei dhnliche Matrizen, so gilt dimH,(A,A) = dimH,(B, A ) fiir alle r € N und
A €K.

(b) Ist A eine Matrix in Jordanscher Normalform, A ein Eigenwert von A und k € N+, so ist die
Anzahl der Jordanblocke der GroRe r zum Eigenwert A in A genau

2 dimH,(A,A) — dimH,_{(A,A) —dimH,, (A, A).

(c) Zwei Matrizen in Jordanscher Normalform sind genau dann @hnlich zueinander, wenn sie
aus den gleichen Jordanbl6cken, nur evtl. in anderer Reihenfolge bestehen.

Zum Abschluss dieses Abschnitts wollen wir schlieBlich noch ein paar Aufgaben betrachten, in
denen man die Niitzlichkeit der einfachen Matrixdarstellung der Jordanform in theoretischen Pro-
blemen sieht. Thnen allen ist gemeinsam, dass man die zu zeigende Aussage fiir Jordanblocke bzw.
Matrizen in Jordanform recht einfach sehen und sie dann mit Hilfe einer Ahnlichkeitstransforma-
tion problemlos auf beliebige Matrizen (mit zerfallendem charakteristischen Polynom) iibertragen
kann — wihrend ein direkter Beweis fiir beliebige Matrizen deutlich schwieriger wire.

Aufgabe 20.22. Beweise, dass jede quadratische komplexe Matrix A € C"*" zu ihrer transponierten
Matrix AT dhnlich ist.

Aufgabe 20.23. Es sei A € C"*". Zeige, dass dim{B € C"*" : AB= BA} > n.

Aufgabe 20.24. Eine quadratische Matrix N € K"*" heiflt nilpotent, wenn es ein k € N gibt mit
NF=0.

(a) Zeige, dass sich jede komplexe Matrix A € C"*" als Summe A = D + N schreiben ldsst,
wobei D diagonalisierbar und N nilpotent ist, sowie DN = ND gilt.
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(b) Berechne mit Hilfe von (a) fiir alle n € N die Potenzen

2 1\" d 4 —4\"
o 2/ Y 1 0

in R?*2 durch eine direkte Rechnung (also ohne erst durch Ausprobieren eine Formel zu
raten und sie danach durch Induktion zu beweisen).

(c) Wir definieren eine reelle Folge (a,),en rekursiv durch
ay=ay=1 und a, 2 =4a,1 —4a, firallenéeN.
Bestimme eine explizite Formel fiir alle a,,.

(Hinweis: Die Rekursionsgleichung ist offensichtlich dquivalent zu

ap42 \ _ 4 —4 [ Gn+1
av1) \1 0 an

fiir alle n € N.)

20.C Minimalpolynome

Als eine interessante Anwendung der Jordanschen Normalform wollen wir in diesem Abschnitt
Polynomausdriicke in Matrizen betrachten. Hier sind zunichst einmal zwei Beispiele dafiir.

Beispiel 20.25.

(a) Wenn wir im Polynom p(¢) = (t — A )* ,.fiir ¢ eine quadratische Matrix A einsetzen®, erhalten
wir (A — AE)¥. Diese Matrix haben wir in diesem Kapitel bereits oft betrachtet, denn ihr
Kern ist ja gerade der verallgemeinerte Eigenraum H (A, ).

(b) Es sei A eine quadratische Matrix mit A% = A, also eine ,,Nullstelle des Polynoms 12—
Wir kénnen uns fragen, was wir dann iiber A aussagen konnen, also ob wir die quadratische
Gleichung 2 —t =0 ,,im Matrizenraum l6sen® konnen. In der Tat werden wir die allgemeine
Matrixlosung dieser Gleichung in Beispiel 20.36 angeben konnen. Wir kdnnen hier aber
schon einmal am Beispiel der reellen Matrix

a= (2 1) meaeas (2 -3 )-(0000)

sehen, dass wir (im Gegensatz zur Losung der Gleichung 1> —¢ = ¢ (t — 1) = 0 in K) hier
nicht nur die ,,offensichtlichen* Losungen A = 0 und A = E erhalten werden.

Als Erstes sollten wir aber das Einsetzen einer Matrix in ein Polynom exakt definieren.

Definition 20.26 (Polynomausdriicke in Matrizen). Es seien p(t) = cxt* 4 - -4 c1t + o ein Polynom
mit Koeffizienten in K und A € K"*". Dann setzen wir

p(A) = A+ A+ cE € K

Im Rest dieses Abschnitts wollen wir der Einfachheit halber annehmen, dass unser Grundkorper K
gleich C ist, so dass jedes Polynom p # 0 nach dem Fundamentalsatz 6.11 der Algebra in Linearfak-
toren zerfillt und somit als p(¢t) = c(t — A1) -+ (t — A) fiir ¢, Ay,..., 4 € C mit ¢ # 0 geschrieben
werden kann. Einsetzen einer Matrix ergibt dann p(A) =c(A— A E) - - (A— AE). Da wir jede reelle
Matrix auch als komplexe auffassen konnen, ist diese Beschrankung auf C fiir uns kein wesentliches
Problem. Wie schon in der Einleitung zu diesem Kapitel erwihnt, kann man in der Tat sogar zu
jedem Korper einen groBeren finden, in dem Polynome immer in Linearfaktoren zerfallen. Mit einer
solchen Aussage wiirden sich die Ergebnisse, die wir jetzt zeigen werden, dann auch auf beliebige
Korper tibertragen lassen.

Statt des in Beispiel 20.25 (b) erwidhnten Problems, zu einem gegebenen komplexen Polynom p
alle quadratischen Matrizen A € C**" mit p(A) = 0 zu finden, wollen wir diese Frage nun zunichst
umdrehen und zu einer gegebenen Matrix A alle Polynome p mit p(A) = 0 bestimmen. Es wird
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sich dabei herausstellen, dass es unter diesen Polynomen ein eindeutiges normiertes Polynom mit
minimalem Grad gibt, das wir dann das Minimalpolynom von A nennen werden.

Fiir die konkrete Berechnung, ob p(A) = 0 gilt, ist es natiirlich niitzlich, wenn die Matrix A eine
moglichst einfache Form hat. Daher werden wir diese Frage zunichst fiir Jordanblocke untersuchen
(wo sie einfach zu beantworten ist), dann fiir Matrizen in Jordanform, und schlieBlich mit Hilfe von
Ahnlichkeitstransformationen fiir beliebige Matrizen.

Lemma 20.27. Es seien p # 0 ein komplexes Polynom und A = J,,(A) € C™™ ein Jordanblock wie
in Konstruktion 20.12.

Dann gilt p(A) = 0 genau dann, wenn A in p eine Nullstelle der Vielfachheit mindestens m ist.

Beweis. Wir konnen p als p(t) = c(t — A)™ -+ (t — A )% mit ¢ € C\{0}, ay,...,a; € N und ver-
schiedenen A, ..., A; faktorisieren, so dass also

P(A)=c(A—ME)" - (A— ME)%. (1)
Ein einzelner Faktor in p(A) hat dabei die Form
A=A 1 0
A—VE = R : ©)
|
0 A—X

Fiir alle i mit A4; # A hat diese Matrix Determinante (A — A;)™ # 0 und ist damit invertierbar. In
(1) kann also hochstens dann p(A) = 0 gelten, wenn A; = A fiir ein i gilt; und in diesem Fall ist
p(A) =0 dquivalent zu (A — L,E)% = 0. Die Matrix A — 4;E hat dann die Form (2) mit Nullen auf
der Diagonale, und bildet damit die Einheitsvektoren gemif3

emr>ep_1 ey e —0

ab. Die a;-fache Anwendung (A — 4;E)% dieser Abbildung ist damit also genau dann gleich 0, d. h.
bildet alle Einheitsvektoren auf 0 ab, wenn wie behauptet die Vielfachheit a; der Nullstelle A in p
mindestens m ist. ]

Bemerkung 20.28. Es seien p ein komplexes Polynom und A € C"*".

(a) (p(A) fiir Blockdiagonalmatrizen) Ist A in Blockdiagonalform mit quadratischen Blécken
Ayq,..., A, so gilt aufgrund der Blockmultiplikation aus Bemerkung 15.8

Al o Al o

A= = Al= . fir alle i € N,

0 A 0 [AT
und damit auch fiir den Ausdruck p(A), der ja eine Linearkombination solcher Potenzen ist,
p(A1) 0
p(A) =
0 p(Ax)

Also ist p(A) = 0 genau dann, wenn p(A;) =0 firalle j=1,...,k.
(b) (p(A) fiir dhnliche Matrizen) Ist T € GL(n,C) und damit A’ := T~ 'AT #hnlich zu A, so gilt
p(A’) =0 genau dann, wenn p(A) = 0: Es ist ndmlich
(A" = (T7'AT)(T'AT) - (T7'AT) =T 'A'T

i-mal
fiir alle i € N, da sich die Matrixprodukte TT~! hier in der Mitte herauskiirzen, und damit
fir p(r) = c,t"+---cit+co
p(A) =T A"+ clA+coE)T =T ' p(A) T,
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was wegen der Invertierbarkeit von 7' genau dann gleich 0 ist, wenn p(A) = 0 gilt.

Folgerung und Definition 20.29 (Minimalpolynom). Es seien Ay, ..., Ay die verschiedenen Eigen-
werte einer Matrix A € C"™", Ferner sei a; fiiri = 1,... .,k die maximale Grifle eines Jordanblocks
zum Eigenwert 2; in der Jordanform von A.

(a) Es gibt ein eindeutiges normiertes Polynom ps minimalen Grades mit ps(A) = 0, néimlich
pa(t) = (=AM - (t — Ag)%.
Man nennt ps das Minimalpolynom von A.
(b) Fiir ein beliebiges Polynom p gilt
p(A) =0 & es gibt ein Polynom q mit p = q- pa
(man sagt dafiir auch, dass p ein Vielfaches von ps bzw. py ein Teiler von p ist).
Beweis. Nach Folgerung 20.14 und Bemerkung 20.28 (b) konnen wir annehmen, dass A eine Matrix
in Jordanform ist. Ist p # 0 dann ein beliebiges komplexes Polynom, so ist nach Bemerkung 20.28 (a)
genau dann p(A) = 0, wenn p ausgewertet an jedem Jordanblock von A gleich 0 ist, was wiederum
nach Lemma 20.27 genau dann der Fall ist, wenn die Nullstellenordnung von allen 4; in p mindestens

so groB ist wie jeder Jordanblock zu A;, also mindestens so grof wie a;. Die Polynome p mit p(A) =0
sind also genau diejenigen der Form

Pl =g+ (= A) o+t = 24"

fiir ein Polynom ¢. Dies zeigt bereits beide Teile der Folgerung. O
Bemerkung 20.30.

(a) Aus Bemerkung 20.28 (b) folgt unmittelbar, dass dhnliche Matrizen dasselbe Minimalpoly-
nom haben.

(b) Nach Folgerung 20.29 (a) sind die Nullstellen des Minimalpolynoms p4 genau alle Eigen-
werte von A.

(c) Da jeder Jordanblock der Grof3e m einer Spalte der Lange m im Jordandiagramm entspricht,
ist die maximale Grofe eines solchen Blocks genau die Anzahl der Zeilen im Jordandia-
gramm. Zusammen mit Bemerkung 20.15 konnen wir also fiir jeden Eigenwert einer kom-
plexen Matrix als Merkregel fiir die Jordandiagramme festhalten:

Anzahl der Kistchen im Jordandiagramm = algebraische Vielfachheit

Anzahl der Spalten im Jordandiagramm = geometrische Vielfachheit

Anzahl der Zeilen im Jordandiagramm = Vielfachheit im Minimalpolynom

(d) Fir alle, die schon die Vorlesung ,,Algebraische Strukturen* gehort haben, kann man Fol-
gerung 20.29 auch so formulieren: Man sieht leicht, dass die Menge aller Polynome p mit
p(A) = 0 ein Ideal im Polynomring Clt] ist. Da CJt] ein Hauptidealring ist [G, Beispiel
10.23], kann dieses Ideal von einem Element erzeugt werden — und dieser Erzeuger ist bis
auf Multiplikation mit Konstanten in C\{0} eindeutig. Das damit eindeutig bestimmte nor-
mierte Polynom, das dieses Ideal erzeugt, ist genau das Minimalpolynom von A.

Beispiel 20.31. Beachte, dass Folgerung 20.29 das Minimalpolynom einer Matrix A auf zwei ganz
unterschiedliche Arten beschreibt: als normiertes Polynom kleinsten Grades, das beim Einsetzen
von A Null ergibt, und als Polynom, dessen Nullstellenordnung bei jedem A die maximale Gro-
Be eines Jordanblocks zum Eigenwert A in der Jordanform von A ist. Um die Niitzlichkeit beider
Beschreibungen zu sehen, betrachten wir noch einmal die reellen Matrizen

0 1 0

2 1 —4 4
A= (_2 _1) und B= 0 0o
0

—_— NN =

0
0
3
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(a) Fur die Matrix A haben wir in Beispiel 20.25 (a) bereits gesehen, dass p(A) = O fiir
p(t) =t> —t = t(t — 1). Nach Folgerung 20.29 (b) muss dieses Polynom ein Vielfaches
des Minimalpolynoms py4 sein. Fiir p4 kommen also nur die Polynome 7 (¢t — 1), f und  — 1
in Frage. Da die letzten beiden Polynome beim Einsetzen von A aber offensichtlich nicht 0
ergeben (es ist A # 0 und A — E # 0), ist pa(t) = 1> —1.

In diesem Fall konnten wir das Minimalpolynom also einfach berechnen, ohne irgendetwas
iiber die Eigenwerte oder die Jordanform von A zu wissen.

(b) Von der Matrix B haben wir in Beispiel 20.17 schon die Jordanform berechnet; sie bestand
aus zwei Jordanblocken zum Eigenwert 2 mit den GréB3en 1 und 2 sowie einem Jordanblock
zum Eigenwert 3 der Grofle 1. Mit Folgerung 20.29 (a) konnen wir daraus also sofort ablesen,
dass pp(t) = (t —2)%(t —3).

Hier konnten wir durch die Kenntnis der Jordanform also das Minimalpolynom bestimmen,
ohne irgendwelche Polynomausdriicke in Matrizen berechnen zu miissen.

Aus unserer Charakterisierung des Minimalpolynoms ergeben sich zwei unmittelbare interessante
Folgerungen.

Folgerung 20.32 (Satz von Cayley-Hamilton). Fiir jede quadratische Matrix A € C*" gilt
XA (A) =0.

Beweis. Das charakteristische Polynom von A hat die Form
xa(t) = (t— A )ﬂa(Avll) et — )Lk)#a(Aﬂk)’

wobei Ai,...,A; die verschiedenen Eigenwerte von A sind. Fiir alle i ist aber nun y,(A, 4;) nach
Bemerkung 20.30 (c) die Anzahl der Késtchen im Jordandiagramm zu A;, und damit sicher mindes-
tens so groR} wie die Anzahl der Zeilen darin, also wie die Vielfachheit von A; im Minimalpolynom
pa. Wie in Folgerung 20.29 ist x4 also ein Vielfaches des Minimalpolynoms py4, und damit ist
Xa(A) =0. O

Folgerung 20.33 (Diagonalisierbarkeit und Minimalpolynom). Eine Matrix A € C"" ist genau
dann diagonalisierbar, wenn ihr Minimalpolynom pa nur einfache Nullstellen hat.

Beweis. Nach Bemerkung 20.16 (b) ist A genau dann diagonalisierbar, wenn alle Jordandiagramme
von A nur Spalten der Linge 1 haben, also genau eine Zeile besitzen. Nach Bemerkung 20.30 (c) ist
dies dquivalent dazu, dass alle Eigenwerte einfache Nullstellen von py4 sind. g

Bemerkung 20.34 (Minimalpolynome reeller Matrizen sind reell). Es sei A € R"*" eine reelle Ma-
trix, deren charakteristisches Polynom tiber R nicht notwendig in Linearfaktoren zerfillt. In der
Konstruktion des Minimalpolynoms in Folgerung 20.29 treten dann evtl. komplexe Eigenwerte von
A auf, so dass nicht mehr klar ist, ob p4 ein reelles Polynom ist. In der Tat ist dies aber immer der
Fall: Tst pa(t) = t* + ¢ 1t*~1 4+ ¢1t + ¢y (mit zunichst evtl. komplexen Koeffizienten), so gilt
fiir das komplex konjugierte Polynom pz(¢) = t* +ct5~! +--- +- &7t +Co wegen A = A

Pa(A) = A 1 G TAN 4 TA+GE = AR+ AR el A+ coE = pa(A) = 0.

Da dieses Polynom p4 auBlerdem normiert ist und den gleichen Grad hat wie p4, muss es nach der
Eindeutigkeitsaussage in Folgerung 20.29 (a) bereits das Minimalpolynom sein. Also ist pg = pa,
d.h. py ist ein reelles Polynom.

Bemerkung 20.35 (Minimalpolynome fiir Endomorphismen). Natiirlich lassen sich auch die Kon-
zepte und Ergebnisse dieses Abschnitts wieder auf die iibliche Art auf Endomorphismen f: V —V
eines endlich-dimensionalen komplexen Vektorraums V iibertragen: Fiir ein gegebenes komplexes
Polynom p(t) = cxt* + -+ +¢1t + ¢o setzt man

p(f) :=cef* +--+e1f+coidy  €End(V),

wobei f' fiir i = 1,...,k fiir die i-fache Verkettung von f mit sich selbst steht. Auch hier erhilt
man dann ein eindeutig bestimmtes normiertes Polynom p; minimalen Grades mit p¢(f) = 0, das
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Minimalpolynom von f. Es hat die gleiche Charakterisierung durch die Jordanform wie in Folgerung
20.29, und auch der Satz von Cayley-Hamilton aus Folgerung 20.32 und die Charakterisierung der
Diagonalisierbarkeit aus Folgerung 20.33 gelten ganz analog.

Beispiel 20.36 (Quadratische Matrizen mit A> = A). Wir konnen nun unser Beispiel 20.25 (b) vom
Anfang dieses Abschnitts noch einmal aufgreifen und die Frage kldren, welche Matrizen A € C**"
die Gleichung A% = A erfiillen.

Wie in Beispiel 20.31 (a) sehen wir auch hier zunichst, dass genau dann A> = A gilt, wenn das
Minimalpolynom p,4 ein Teiler von t> —¢ = ¢ (t — 1) ist. Dies ist genau dann der Fall, wenn p, nur
einfache Nullstellen hat und alle Nullstellen in der Menge {0, 1} liegen, nach Bemerkung 20.30 (b)
und Folgerung 20.33 also, wenn die Matrix A diagonalisierbar ist und ihre Eigenwerte eine Teil-
menge von {0, 1} sind. Anders formuliert bedeutet dies genau, dass es ein r € {0,...,n} und eine
invertierbare Matrix T € GL(n,C) gibt mit

TlAT:(%’ 8), also AzT(%’ g)Tl.

Matrizen dieser Form sind daher die allgemeine Losung der Matrixgleichung A? = A iiber C. Beach-
te, dass dies die ,,offensichtlichen” Losungen A = 0 und A = E enthilt (fiir r = 0 bzw. r = n), aber
dass es auch noch viele weitere Losungen gibt.

Aufgabe 20.37. Esseien A,B € C0%6 50 dass gilt:

(a) A hat Rang 6 und erfiillt A% +3A% = 343 + A, und einer der Eigenrdume von A ist zweidi-
mensional.

(b) KerB=1ImB.
Bestimme das Minimalpolynom und die Jordansche Normalform dieser beiden Matrizen.

Aufgabe 20.38. Untersuche, ob es eine komplexe 4 x 4-Matrix A bzw. B gibt mit

01 2 3 1 2 3 4
s |oo 4 s| s en |05 6 7
@A =15 0 0 6l ®) B+3B=14 5 g ¢

000 0 00 0 10

(Es ist nicht notwendig, im Fall der Existenz eine solche Matrix anzugeben.)

Aufgabe 20.39. Es sei A € GL(n,K). Zeige, dass es ein Polynom p mit Koeffizienten in K gibt, so
dass A~! = p(A).

Aufgabe 20.40. Man zeige: Ist A € C"" mit n € N+ eine invertierbare Matrix, so dass A™ fiir ein
m € N5 diagonalisierbar ist, so ist auch A diagonalisierbar.

47



