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20. Die Jordansche Normalform

Im letzten Kapitel haben wir bereits ausführlich untersucht, wie man zu einer gegebenen quadra-
tischen Matrix A ∈ Kn×n eine möglichst einfache ähnliche Matrix finden kann (bzw. wie man zu
einem Endomorphismus f : V →V eines endlich-dimensionalen Vektorraums V eine Basis B von V
finden kann, so dass die zugehörige Abbildungsmatrix AB

f möglichst einfach wird). Wir haben dabei
in Folgerung 19.40 gesehen, dass A genau unter den Bedingungen

(a) χA zerfällt in Linearfaktoren, und

(b) µg(A,λ ) = µa(A,λ ) für alle Eigenwerte λ

diagonalisierbar, also zu einer Diagonalmatrix ähnlich ist, und dass eine solche Diagonalform in
diesem Fall auch das bestmögliche Ergebnis ist (siehe Lemma 19.33). Wir wollen uns in diesem
Kapitel nun anschauen, was wir erreichen können, wenn eine der beiden obigen Bedingungen nicht
erfüllt ist (und A nach Folgerung 19.40 damit nicht diagonalisierbar ist).

Die Bedingung (a), dass das charakteristische Polynom in Linearfaktoren zerfällt, ist dabei eher
harmlos. Ist dies nämlich z. B. bei einer reellen Matrix A ∈ Rn×n nicht der Fall, so können wir A
einfach als komplexe Matrix A ∈ Cn×n auffassen. Nach dem Fundamentalsatz der Algebra (siehe
Satz 6.11) zerfällt χA dann zumindest über C in Linearfaktoren, und somit können wir wieder eine
Diagonalform erreichen (wenn auch mit komplexen Eigenwerten und Eigenvektoren). So war z. B.
die Matrix A aus Beispiel 19.37 (a) mit charakteristischem Polynom χA(t) = t2+1 zwar über R nicht
diagonalisierbar, über C ist aber χA(t) = (t+ i)(t− i) und A damit diagonalisierbar nach Bemerkung
19.41 (a).

Wie in der Vorlesung „Einführung in die Algebra“ des zweiten Studienjahres gezeigt wird, lässt
sich dieser Trick nicht nur für reelle Matrizen, sondern über jedem Grundkörper K anwenden: Man
kann stets zu einem größeren Körper übergehen, in dem das charakteristische Polynom dann in
Linearfaktoren zerfällt. Das Problem eines nicht zerfallenden charakteristischen Polynoms ist also
recht einfach zu beheben, und daher wollen wir hier auch nicht mehr weiter darauf eingehen. Wir
werden in diesem Kapitel in der Regel also Matrizen betrachten, deren charakteristisches Polynom
zwar in Linearfaktoren zerfällt, für die aber i. A. nicht die Bedingung (b) oben gilt, und wollen
wiederum nach einer möglichst einfachen ähnlichen Matrix suchen. Nach Satz 19.35 bedeutet dies
dann µg(A,λ )< µa(A,λ ) für einen Eigenwert λ von A.

20.A Haupträume

Es sei A ∈ Kn×n eine quadratische Matrix, deren charakteristisches Polynom in Linearfaktoren zer-
fällt. Nach Lemma 19.27 (a) ist A genau dann diagonalisierbar, wenn es eine Basis von Kn aus Ei-
genvektoren von A gibt – diese können wir dann als Spalten in eine Matrix T ∈GL(n,K) schreiben,
und erhalten für T−1AT eine Diagonalform.

Ist nun µg(A,λ ) < µa(A,λ ) für mindestens einen Eigenwert λ von A, so haben wir im Beweis von
Folgerung 19.36 gezeigt, dass wir nicht genug linear unabhängige Eigenvektoren für eine solche
Basis finden. Unsere Strategie wird es in diesem Fall daher sein, den Begriff der Eigenvektoren etwas
zu verallgemeinern, so dass einerseits von diesen verallgemeinerten Eigenvektoren stets genügend
viele existieren, um aus ihnen eine Basis von Kn zusammenstellen und in eine invertierbare Matrix
T schreiben zu können, und andererseits die transformierte Matrix T−1AT auch im Fall einer Basis
aus derartigen verallgemeinerten Eigenvektoren noch recht einfach ist. Die Idee hierfür ist, statt
Eigenvektoren, also Vektoren x ̸= 0 mit (λE−A)x = 0, nun solche zu betrachten, für die zumindest
(λE−A)rx = 0 für irgendein r ∈ N gilt.

Konstruktion 20.1 (Haupträume). Es seien A ∈ Kn×n und λ ∈ K.
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(a) Für r ∈ N heißt

Hr(A,λ ) := Ker((λE−A)r) ≤ Kn

der verallgemeinerte Eigenraum der Stufe r von A zu λ .

Offensichtlich ist H0(A,λ ) = KerE = {0} und H1(A,λ ) = Eig(A,λ ).

(b) Die verallgemeinerten Eigenräume bilden eine aufsteigende Kette

{0}= H0(A,λ ) ≤ H1(A,λ ) ≤ H2(A,λ ) ≤ ·· ·

von Unterräumen von Kn: Ist nämlich x ∈ Hr(A,λ ) für ein r ∈ N, also (λE−A)rx = 0, so
ist natürlich auch (λE−A)r+1x = (λE−A)(λE−A)rx = 0 und damit x ∈ Hr+1(A,λ ). Die
Dimensionen der verallgemeinerten Eigenräume sind also monoton wachsend, können aber
natürlich nicht größer als die Dimension n des umgebenden Raumes werden. Es muss also
ein r ∈ N geben mit

Hr(A,λ ) = Hr+1(A,λ ) = Hr+2(A,λ ) = · · · =: H(A,λ ).

Dieser Unterraum H(A,λ ), den wir uns also als „Grenzwert der verallgemeinerten Eigen-
räume Hr(A,λ ) für r→ ∞“ vorstellen können, heißt der Hauptraum von A zu λ .

(c) Für r ∈ N>0 nennt man die Vektoren x ∈ Hr(A,λ )\Hr−1(A,λ ), für die also (λE−A)rx = 0
und (λE−A)r−1x ̸= 0 gilt, Hauptvektoren oder verallgemeinerte Eigenvektoren der Stufe
r von A zum Eigenwert λ .

Der Hauptraum besteht also aus dem Nullvektor zusammen mit den Hauptvektoren aller
Stufen. Die gewöhnlichen Eigenvektoren aus Definition 19.11 (a) sind gerade die Hauptvek-
toren der Stufe 1, nämlich die Elemente von H1(A,λ )\H0(A,λ ) = Eig(A,λ )\{0}.

Bemerkung 20.2 (Haupträume von Endomorphismen). Natürlich gibt es zu Konstruktion 20.1 auch
wieder eine entsprechende Version für Endomorphismen f : V → V eines endlich-dimensionalen
Vektorraums V : Analog zu Bemerkung 19.12 (b) sind die verallgemeinerten Eigenräume in diesem
Fall Hr( f ,λ ) = Ker((λ idV − f )r), wobei die Potenz hier für die r-fache Verkettung von λ idV − f
mit sich selbst steht.

Bemerkung 20.3. Sind A ∈ Kn×n, λ ∈ K und r ∈ N mit Hr(A,λ ) = Hr+1(A,λ ), so dass also in der
aufsteigenden Kette der verallgemeinerten Eigenräume in Konstruktion 20.1 (b) an irgendeiner Stelle
die Gleichheit gilt, so gilt auch an der folgenden Stelle Hr+1(A,λ ) =Hr+2(A,λ ) die Gleichheit, denn
für alle x ∈ Hr+2(A,λ ) folgt dann

(λE−A)r+1(λE−A)x = 0

⇒ (λE−A)x ∈ Hr+1(A,λ ) = Hr(A,λ )

⇒ (λE−A)r(λE−A)x = 0,

und damit auch x ∈ Hr+1(A,λ ). Daraus erhalten wir sofort:

(a) Aus der Gleichheit Hr(A,λ ) = Hr+1(A,λ ) an einer Stelle r ∈ N folgt induktiv bereits

Hr(A,λ ) = Hr+1(A,λ ) = Hr+2(A,λ ) = · · · ,

und damit H(A,λ ) = Hr(A,λ ).

(b) Speziell für r = 0 bedeutet (a): Ist λ ∈K kein Eigenwert von A, gibt es also keine Eigenvekto-
ren zu λ und ist damit H1(A,λ ) = Eig(A,λ ) = {0}=H0(A,λ ), so folgt auch H(A,λ ) = {0},
d. h. dann gibt es auch keine verallgemeinerten Eigenvektoren zu λ . Anders formuliert ver-
allgemeinern wir also nur den Begriff der Eigenvektoren, aber nicht den der Eigenwerte.

(c) Da alle verallgemeinerten Eigenräume von A in Kn liegen und somit höchstens Dimension n
haben, kann in der aufsteigenden Kette dieser Räume höchstens n-mal die strikte Inklusion
gelten. Zusammen mit (a) bedeutet dies, dass in jedem Fall H(A,λ ) = Hn(A,λ ) gilt, also
spätestens nach n Schritten in der Kette der Hauptraum erreicht sein muss.
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Beispiel 20.4. Die reelle Matrix

A =

0 2 0
0 0 0
0 0 2


hat nach Folgerung 18.18 das charakteristische Polynom χA(t) = t2(t−2). Wir wollen zum Eigen-
wert λ = 0 den Hauptraum H(A,0) bestimmen. Dazu berechnen wir der Reihe nach die verallge-
meinerten Eigenräume Hr(A,0):

H1(A,0) = Ker(0E−A) = Ker

0 −2 0
0 0 0
0 0 −2

= Lin(e1),

H2(A,0) = Ker(0E−A)2 = Ker

0 0 0
0 0 0
0 0 4

= Lin(e1,e2),

H3(A,0) = Ker(0E−A)3 = Ker

0 0 0
0 0 0
0 0 −8

= Lin(e1,e2).

Damit ist der gesuchte Hauptraum gleich H(A,0) = Lin(e1,e2): Dies folgt sowohl aus Bemerkung
20.3 (a) (da H2(A,0) und H3(A,0) übereinstimmen) als auch aus Bemerkung 20.3 (c) (da für 3×3-
Matrizen spätestens an der dritten Stelle der Hauptraum erreicht sein muss).

Wir sehen an diesem Beispiel also bereits, dass es mehr Hauptvektoren als Eigenvektoren geben
kann, denn Eig(A,0) = H1(A,0) ist hier ja ein echter Unterraum von H(A,0) = H2(A,0). In unserem
Beispiel führt dies dazu, dass die Standardbasis eine Basis von R3 aus Hauptvektoren von A ist (die
ersten beiden Einheitsvektoren sind ja Hauptvektoren zum Eigenwert 0, der dritte ist offensichtlich
ein Eigenvektor zum Eigenwert 2), wohingegen wir wegen µg(A,0) = µg(A,2) = 1 keine Basis von
R3 aus Eigenvektoren von A finden können und A damit nicht diagonalisierbar ist.

Wir wollen nun zeigen, dass wir in der Tat zu jeder Matrix A ∈ Kn×n mit zerfallendem charakteris-
tischen Polynom eine Basis aus Hauptvektoren finden können. Analog zu Abschnitt 19.C sind dies
gerade die beiden Aussagen:

(A) Wir finden in jedem Hauptraum genügend viele linear unabhängige Vektoren, d. h. es ist
dimH(A,λ ) = µa(A,λ ) für alle Eigenwerte λ .

(B) Alle diese Vektoren zusammen genommen sind linear unabhängig, d. h. die Summe der
Haupträume ist direkt.

Für den Beweis dieser Aussagen in den nächsten beiden Sätzen benötigen wir zuerst zwei kleine
Bemerkungen.

Bemerkung 20.5. Es sei A ∈ Kn×n.

(a) (Kommutativität von Matrixprodukten aus A und E) Natürlich sind Matrixprodukte im All-
gemeinen nicht kommutativ, d. h. in der Regel ist AB ̸= BA für eine weitere Matrix B∈Kn×n.
Jedoch gilt hier offensichtlich die Gleichheit, falls B = A oder B = E ist. Dementsprechend
sind auch Produkte von Matrizen kommutativ, die durch Addition, Skalarmultiplikation und
Matrixmultiplikation aus A und E zusammengesetzt sind, wie z. B.

(λE−A) ·A = A · (λE−A)

(in der Tat sind beide Seiten gleich λA−A2). Wir werden diese Kommutativität im Folgen-
den oft benutzen, ohne jedes Mal wieder darauf hinzuweisen.

(b) (Invarianz der Haupträume) Die Abbildung x 7→ Ax lässt sich auf jeden verallgemeinerten
Eigenraum Hr(A,λ ) (und damit auch auf H(A,λ )) zu einem Endomorphismus

Hr(A,λ )→ Hr(A,λ ), x 7→ Ax
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einschränken: Ist nämlich x ∈ Hr(A,λ ), also (λE−A)rx = 0, so gilt nach (a) auch

(λE−A)rAx = A(λE−A)rx = 0

und damit Ax ∈ Hr(A,λ ). Man sagt dafür auch, dass die verallgemeinerten Eigenräume und
der Hauptraum A-invariant sind.

Satz 20.6 (Hauptraumdimension). Es seien A ∈ Kn×n eine quadratische Matrix mit zerfallendem
charakteristischen Polynom und λ ∈ K. Dann gilt:

(a) Für alle µ ∈ K mit µ ̸= λ ist H(A,λ )∩H(A,µ) = {0}.
(b) dimH(A,λ ) = µa(A,λ ).

Beweis. Nach Bemerkung 20.5 (b) können wir die Abbildung f : Kn→ Kn, x 7→ Ax auf einen En-
domorphismus des Hauptraums H(A,λ ) einschränken. Es gibt nach Aufgabe 17.24 (b) also lineare
Abbildungen

g : H(A,λ )→ H(A,λ ), x 7→ Ax und h : Kn/H(A,λ )→ Kn/H(A,λ ), x 7→ Ax.

Für die Eigenwerte dieser beiden Abbildungen gilt:

(1) Kein µ ̸= λ ist ein Eigenwert von g: Ist x ∈ H(A,λ ) mit Ax = µx, so wissen wir einerseits
(λE−A)nx = 0 nach Bemerkung 20.3 (c) und andererseits (λE−A)x = (λ − µ)x. Damit
folgt

0 = (λE−A)nx = (λ −µ)nx,

was wegen µ ̸= λ nur für x = 0 möglich ist. Also hat g keine Eigenvektoren zu µ , und damit
nach Bemerkung 20.3 (b) auch keine verallgemeinerten Eigenvektoren zu µ . Mit anderen
Worten ist H(A,λ )∩H(A,µ) = H(g,µ) = {0}, was (a) zeigt.

(2) Umgekehrt ist λ kein Eigenwert von h: Ist x ∈ Kn/H(A,λ ) mit Ax = λx, so folgt

(λE−A)x = 0

⇒ (λE−A)x ∈ H(A,λ ) = Hn(A,λ ) (Bemerkung 20.3 (c))

⇒ (λE−A)n(λE−A)x = 0

⇒ x ∈ Hn+1(A,λ ) = H(A,λ ),

und damit x = 0. Also besitzt h keine Eigenvektoren zu λ .

Nach Aufgabe 19.25 ist nun χA = χ f = χg · χh, und dieses Polynom zerfällt nach Voraussetzung in
Linearfaktoren. Aus χg können nach (1) aber ausschließlich Linearfaktoren t−λ kommen, aus χh
dagegen nach (2) kein Linearfaktor t−λ . Die algebraische Vielfachheit µa(A,λ ), also die Anzahl der
Linearfaktoren t−λ in χA, ist damit genau gleich dem Grad von χg, also der Dimension dimH(A,λ )
des Startraums von g. Damit ist auch (b) gezeigt. □

Satz 20.7 (Hauptraumzerlegung). Es sei A ∈ Kn×n eine quadratische Matrix, deren charakteris-
tisches Polynom in Linearfaktoren zerfällt. Sind λ1, . . . ,λk die verschiedenen Eigenwerte von A, so
gilt

H(A,λ1)⊕·· ·⊕H(A,λk) = Kn.

Beweis. Wir zeigen mit Induktion über l = 1, . . . ,k, dass die Summe H(A,λ1)+ · · ·+H(A,λl) direkt
ist. Für den Induktionsanfang l = 1 ist dabei nichts zu zeigen. Für den Induktionsschritt l → l + 1
seien

x1 + · · ·+ xl+1 = y1 + · · ·+ yl+1 (1)

zwei Darstellungen desselben Vektors in Kn mit xi,yi ∈ H(A,λi) für alle i = 1, . . . , l + 1. Multipli-
zieren wir diese Gleichung von links mit (λl+1E −A)n, so fallen xl+1 und yl+1 nach Bemerkung
20.3 (c) weg, und wir erhalten

(λl+1E−A)n(x1− y1)+ · · ·+(λl+1E−A)n(xl− yl) = 0. (2)
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Nun ist aber (λl+1E−A)n(xi−yi) ∈Hn(A,λi) = H(A,λi) für alle i = 1, . . . , l, denn nach Bemerkung
20.5 (a) ist

(λiE−A)n(λl+1E−A)n(xi− yi) = (λl+1E−A)n (λiE−A)n(xi− yi)︸ ︷︷ ︸
=0

= 0.

Da die Summe H(A,λ1)+ · · ·+H(A,λl) nach Induktionsvoraussetzung direkt ist, ergibt sich aus (2)
also

(λl+1E−A)n(xi− yi) = 0 für alle i = 1, . . . , l.
Damit ist xi− yi ∈ H(A,λi)∩H(A,λl+1), mit Satz 20.6 (a) also xi− yi = 0 und somit xi = yi für
i = 1, . . . , l. Einsetzen in (1) zeigt dann auch xl+1 = yl+1, und damit ist die Summe der Haupträume
direkt.

Da χA in Linearfaktoren zerfällt, ist nun aber auch

dim(H(A,λ1)⊕·· ·⊕H(A,λk))
17.3
=

k

∑
i=1

dimH(A,λi)
20.6 (b)
=

k

∑
i=1

µa(A,λi) = n,

und damit H(A,λ1)⊕·· ·⊕H(A,λk) = Kn. □

Bemerkung 20.8. Wollen wir den Hauptraum H(A,λ ) einer Matrix A∈Kn×n zu einem Eigenwert λ

bestimmen, indem wir nacheinander die verallgemeinerten Eigenräume Hr(A,λ ) mit r ∈ N berech-
nen, so folgt aus Satz 20.6 (b) insbesondere, dass wir mit der Berechnung dieser Räume aufhören
können, sobald einer von ihnen die Dimension µa(A,λ ) hat – und nicht erst wie in Beispiel 20.4,
wenn zwei von ihnen gleich sind oder r = n gilt. In der Tat hätten wir in diesem Beispiel damit
H3(A,0) nicht mehr berechnen müssen, da dort bereits dimH2(A,0) = µa(A,0) = 2 war und somit
H(A,0) = H2(A,0) gelten musste.
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20.B Jordandiagramme

Wir wollen nun endlich unser Problem lösen, zu einer quadratischen Matrix mit zerfallendem charak-
teristischen Polynom eine möglichst einfache ähnliche Matrix zu finden. Dazu haben wir im letzten
Abschnitt gesehen, dass sich diese Frage auf die Untersuchung der einzelnen Haupträume reduzieren
lässt. Wir fassen unser Ergebnis hier noch einmal in der jetzt benötigten Form zusammen.

Bemerkung 20.9 (Hauptraumzerlegung). Es sei A ∈ Kn×n eine Matrix, deren charakteristisches
Polynom in Linearfaktoren zerfällt. Sind λ1, . . . ,λk die verschiedenen Eigenwerte von A, so haben
wir in Satz 20.7 gesehen, dass

H(A,λ1)⊕·· ·⊕H(A,λk) = Kn.

Wählen wir also Basen B1, . . . ,Bk dieser Haupträume, so erhalten wir nach Aufgabe 17.7 mit allen
diesen Vektoren zusammen genommen eine Basis B von Kn. Damit können wir diese Vektoren in
die Spalten einer invertierbaren Matrix T schreiben.

Wegen der Invarianz der Haupträume gemäß Bemerkung 20.5 (b) können wir nun die Abbildung
f : Kn→ Kn, x 7→ Ax auf die Haupträume einschränken zu

fi : H(A,λi)→ H(A,λi), x 7→ Ax

für i = 1, . . . ,k. Die Matrix AB
f (die nach Bemerkung 19.3 (b) gleich T−1AT ist) kann nach Satz

16.26 in den zu Bi gehörigen Spalten also auch nur in den entsprechenden Zeilen Einträge ungleich
0 haben, und ist dort gleich der Abbildungsmatrix ABi

fi
. Wir erhalten für diese Matrix damit

AB
f = T−1AT =


AB1

f1
0

. . .
0 ABk

fk


Man sagt, dass AB

f eine Blockdiagonalmatrix mit den Blöcken AB1
f1
, . . . ,ABk

fk
ist.
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Um unsere Suche nach einer möglichst einfachen zu A ähnlichen Matrix zu beenden, müssen wir
jetzt also nur noch die Basen Bi der einzelnen Haupträume H(A,λi) für i = 1, . . . ,k so wählen,
dass die Abbildungsmatrizen ABi

fi
der auf die Haupträume eingeschränkten Abbildung möglichst

einfach werden. Hierfür ist das folgende Konzept der Jordandiagramme sehr nützlich, da es die
etwas komplizierte Berechnung von Bi auf grafische Art gut veranschaulicht.

Definition 20.10 (Jordandiagramme). Es sei A ∈ Kn×n eine quadratische Matrix, deren charakteris-
tisches Polynom in Linearfaktoren zerfällt. Wir wählen einen festen Eigenwert λ von A und setzen
zur Abkürzung der Schreibweise Hr := Hr(A,λ ) für alle r ∈ N.

Ein Jordandiagramm von A zum Eigenwert λ ist dann wie im Bild unten dargestellt ein in links-
bündigen Zeilen angeordnetes Diagramm von endlich vielen Kästchen, mit von oben nach unten
(nicht notwendig streng) monoton fallenden Zeilenlängen, und zusammen mit einem Vektor in Kn

in jedem dieser Kästchen, so dass die folgenden beiden Bedingungen erfüllt sind:

(a) (Zeilenbedingung) Für alle r > 0 bilden die Vektoren der ersten r Zeilen eine Basis von
Hr. Insbesondere bilden also die Vektoren in allen Kästchen zusammen eine Basis des
Hauptraums H(A,λ ).

(b) (Spaltenbedingung) Steht ein Vektor y in einer Spalte des Diagramms unmittelbar über dem
Vektor x, so ist y = (A−λE)x (im Diagramm unten ist also z. B. x2 = (A−λE)x3).

(A−λE)·
x1

x2

x3

x4
...

Basis von H1 Basis von H2 Basis von H3

Bemerkung 20.11 (Alternative Zeilenbedingung). Oft ist es nützlich, die Zeilenbedingung aus De-
finition 20.10 (a) äquivalent umzuformulieren zu:

(Alternative Zeilenbedingung) Für alle r > 0 liegen die Vektoren der Zeile r in Hr,
und ihre Klassen bilden eine Basis von Hr/Hr−1.

Diese alternative Bedingung ist nämlich nach Bemerkung 17.21 äquivalent dazu, dass die Vekto-
ren der Zeile r eine Basis von Hr−1 zu einer Basis von Hr ergänzen – und dies ist ja gerade die
ursprüngliche Zeilenbedingung.

Insbesondere heißt dies auch, dass alle Vektoren einer Zeile r in Hr\Hr−1 liegen, also Hauptvektoren
der Stufe r sind.

Wir werden in Satz 20.13 noch beweisen, dass Jordandiagramme immer existieren und auch einfach
berechenbar sind. Zuerst wollen wir aber sehen, warum gerade eine Basiswahl wie in den Kästchen
eines Jordandiagramms zu einer besonders einfachen Abbildungsmatrix führt.

Konstruktion 20.12 (Abbildungsmatrizen aus Jordandiagrammen). Wir be-
trachten zunächst eine Spalte der Länge m in einem Jordandiagramm zu einer
Matrix A ∈ Kn×n zum Eigenwert λ ; die Vektoren von oben nach unten gele-
sen seien x1, . . . ,xm (im Bild rechts ist eine solche Situation für den Fall m = 4
dargestellt).

(A−λE)·
(A−λE)·
(A−λE)·

x1

x2

x3

x4

Wegen x1 ∈H1 ist dann Ax1 = λx1, während für alle i = 2, . . . ,m nach der Spaltenbedingung (b) aus
Definition 20.10

(A−λE)xi = xi−1, also Axi = λxi + xi−1

gilt. Der Unterraum U = Lin(x1, . . . ,xm) ist damit im Sinne von Bemerkung 20.5 (b) A-invariant,
d. h. die Abbildung Kn→ Kn, x 7→ Ax lässt sich zu einer Abbildung U →U, x 7→ Ax einschränken,
und die Abbildungsmatrix dieser eingeschränkten Abbildung ist bezüglich der Basis (x1, . . . ,xm) von
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U nach Satz 16.26 gleich

Jm(λ ) :=


λ 1 0

. . . . . .
. . . 1

0 λ

 ∈ Km×m.

Wir nennen diese m×m-Matrix Jm(λ ), bei der alle Einträge auf der Diagonale gleich λ , die unmit-
telbar darüber gleich 1, und alle anderen gleich 0 sind, einen Jordanblock (oder manchmal auch ein
Jordankästchen) der Größe m zum Eigenwert λ .

Wir gehen nun zum gesamten Jordandiagramm zu λ über, nehmen also alle Spalten zusammen.
Wählen wir als Basis von H(A,λ ) die Vektoren im Diagramm, spaltenweise von oben nach unten
gelesen, so erhalten wir für die Abbildungsmatrix zu x 7→ Ax auf H(A,λ ) analog zu Bemerkung 20.9
eine Blockdiagonalform mit Jordanblöcken wie oben beschrieben, also Jm1(λ ) 0

. . .
0 Jml (λ )

 ,

wobei jeder Jordanblock einer Spalte im Jordandiagramm entspricht und die Größen m1, . . . ,ml der
Jordanblöcke genau die Längen dieser Spalten (in der gewählten Reihenfolge) sind. Dies ist die
einfache Form der Abbildungsmatrix, nach der wir gesucht haben.

Wir haben nun also gesehen, dass man mit Hilfe von Jordandiagrammen Hauptraumbasen bestim-
men kann, die letztlich zu sehr einfachen Abbildungsmatrizen führen. Im nächsten Satz wollen wir
daher zeigen, dass solche Jordandiagramme auch wirklich existieren. Der Beweis des Satzes gibt
gleichzeitig auch ein einfaches konstruktives Verfahren zur Berechnung eines solchen Diagramms.

Satz 20.13 (Existenz und Berechnung von Jordandiagrammen). Es seien A∈Kn×n eine quadratische
Matrix, deren charakteristisches Polynom in Linearfaktoren zerfällt, und λ ein Eigenwert von A.
Dann gibt es ein Jordandiagramm von A zum Eigenwert λ .

Beweis. Wie oben setzen wir wieder Hk := Hk(A,λ ) für alle k ∈ N. Es sei r ∈ N die kleinste Zahl
mit Hr(A,λ ) = H(A,λ ), also die benötigte Anzahl Zeilen im Jordandiagramm. Wir konstruieren das
gesuchte Diagramm nun nach folgendem Verfahren zeilenweise von unten nach oben:

(a) In die letzte Zeile r schreiben wir beliebige Vektoren in Hr, deren Klassen wie in Bemer-
kung 20.11 eine Basis von Hr/Hr−1 bilden – z. B. indem wir wie in Bemerkung 17.21 eine
Basis von Hr−1 zu einer Basis von Hr ergänzen und die hinzugenommenen Vektoren in die
letzte Zeile des Diagramms schreiben. (Die dafür bestimmte Basis von Hr−1 wird dabei im
Folgenden nicht mehr benötigt.)

(b) Um für k = r− 1, . . . ,1 die Zeile k aus Zeile k + 1 zu konstruieren, schreiben wir wie im
Bild unten dargestellt zunächst unmittelbar über die Vektoren x1, . . . ,xm der Zeile k+ 1 die
Vektoren (A−λE)x1, . . . ,(A−λE)xm in Zeile k, und ergänzen diese Vektoren dann so, dass
die Klassen der Vektoren in Zeile k insgesamt eine Basis von Hk/Hk−1 bilden.

(A−λE)· Zeile k
Zeile k+1

ergänzen zu Basis von Hk/Hk−1

x1 x2 x3

Nach Konstruktion sind im ausgefüllten Diagramm dann überall die alternative Zeilenbedingung aus
Bemerkung 20.11 und die Spaltenbedingung aus Definition 20.10 (b) erfüllt. Außerdem müssen die
Zeilenlängen dann natürlich von oben nach unten monoton fallend sein. Um sicherzustellen, dass
Schritt (b) immer funktioniert (wenn das Diagramm unterhalb dieser Zeile schon korrekt ausgefüllt
ist), müssen wir aber noch zwei Dinge überprüfen:
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• Die Vektoren (A− λE)xi liegen wirklich in Hk für alle i = 1, . . . ,m: Da xi in Zeile k + 1
steht, ist xi ∈ Hk+1, also (λE −A)k+1xi = 0 bzw. (A− λE)k+1xi = 0. Dies bedeutet aber
auch (A−λE)k(A−λE)xi = 0, und damit (A−λE)xi ∈ Hk.

• Die Klassen der Vektoren (A−λE)x1, . . . ,(A−λE)xm sind linear unabhängig in Hk/Hk−1,
so dass wir sie zu einer Basis dieses Raumes ergänzen können: Für µ1, . . . ,µm ∈ K gilt

µ1 (A−λE)x1 + · · ·+µm (A−λE)xm = 0 ∈ Hk/Hk−1

⇒ µ1 (A−λE)x1 + · · ·+µm (A−λE)xm ∈ Hk−1 (Bemerkung 17.16)

⇒ (A−λE)k−1(A−λE)(µ1x1 + · · ·+µmxm) = 0 (Definition von Hk−1)
⇒ µ1x1 + · · ·+µmxm ∈ Hk (Definition von Hk)

⇒ µ1 x1 + · · ·+µm xm = 0 ∈ Hk+1/Hk (Bemerkung 17.16)
⇒ µ1 = · · ·= µm = 0,

da die Vektoren x1, . . . ,xm eine Basis von Hk+1/Hk bilden und damit in diesem Quotienten-
raum linear unabhängig sind. □

Ein konkretes Beispiel für dieses Verfahren werden wir in Beispiel 20.17 noch angeben. Zunächst
aber wollen wir unsere Ergebnisse zusammenfassen und damit das Hauptergebnis dieses Kapitels
zeigen.

Folgerung 20.14 (Jordansche Normalform). Es sei A ∈ Kn×n eine quadratische Matrix, deren cha-
rakteristisches Polynom in Linearfaktoren zerfällt. Dann ist A ähnlich zu einer Blockdiagonalmatrix
der Form

J =

 Jm1(λ1) 0
. . .

0 Jmk(λk)

 ,

wobei die Jm1(λ1), . . . ,Jmk(λk) Jordanblöcke wie in Konstruktion 20.12 für gewisse m1, . . . ,mk ∈N>0
und nicht notwendig verschiedene Eigenwerte λ1, . . . ,λk von A sind, d. h. für i = 1, . . . ,k ist

Jmi(λi) =


λi 1 0

. . .
. . .
. . . 1

0 λi

 ∈ Kmi×mi .

Man nennt eine solche Matrix J die Jordanform oder Jordansche Normalform von A (wir werden
in Aufgabe 20.21 noch sehen, dass sie bis auf die Reihenfolge der Blöcke eindeutig bestimmt ist).

Ist T = (x1 | · · · |xn) ∈ GL(n,K) eine Matrix mit J = T−1AT , so dass J also die Abbildungsmatrix
von Kn→ Kn, x 7→ Ax bezüglich der Basis B = (x1, . . . ,xn) ist, so heißt B eine Jordanbasis von A.

Beweis. Auch der Beweis dieser Folgerung ist konstruktiv: Man bestimme zunächst mit Hilfe des
charakteristischen Polynoms χA die Eigenwerte von A, und dann zu jedem dieser Eigenwerte ein
Jordandiagramm mit dem Verfahren aus Satz 20.13. Aus jedem Diagramm erhalten wir eine Basis
des entsprechenden Hauptraums, und so nach der Hauptraumzerlegung aus Satz 20.7 insgesamt eine
Basis von Kn. Dies ist dann eine Jordanbasis: Lesen wir die Basisvektoren in den Diagrammen
spaltenweise von oben nach unten und schreiben sie in die Matrix T , so ist T−1AT nach Bemerkung
20.9 eine Blockdiagonalmatrix mit einem Block für jeden Eigenwert λ , wobei nach Konstruktion
20.12 jeder dieser Blöcke selbst wieder eine Blockdiagonalform aus Jordanblöcken zu λ ist. □

Bemerkung 20.15 (Bestimmung der Jordanform ohne Jordanbasis). Möchte man zu einer Matrix
A (mit in Linearfaktoren zerfallendem charakteristischen Polynom) nur die Jordanform, aber kei-
ne Jordanbasis bestimmen, so ist das Verfahren hierfür sehr viel einfacher. Weil wir genau einen
Jordanblock der Größe m zum Eigenwert λ für jede Spalte der Länge m im Jordandiagramm zu
λ bekommen, benötigen wir zur Bestimmung der Jordanform nämlich nur die äußere Form der
Jordandiagramme, aber nicht die in ihnen stehenden Vektoren. Da die äußere Form eines solchen
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Diagramms zum Eigenwert λ nach Bemerkung 20.11 aber wiederum dadurch eindeutig bestimmt
ist, dass Zeile r für alle r die Länge dimHr(A,λ )−dimHr−1(A,λ ) hat, genügt also die Information
der Dimensionen aller Räume Hr(A,λ ), um die Jordanform zu bestimmen.

In vielen Fällen reicht sogar noch viel weniger Information zur Bestimmung der Jordanform aus. So
haben z. B. die algebraische und geometrische Vielfachheit eines Eigenwerts eine direkte Interpre-
tation in den Jordandiagrammen und damit auch in der Jordanform:

(a) Die algebraische Vielfachheit µa(A,λ ) ist nach Satz 20.6 (b) die Dimension von H(A,λ ),
also gleich der Anzahl der Kästchen im Jordandiagramm zu λ . Natürlich ist dies dann gleich-
zeitig auch die Summe der Längen aller Spalten in diesem Diagramm, und damit gleich der
Summe der Größen aller Jordanblöcke in der Jordanform von A.

(b) Die geometrische Vielfachheit µg(A,λ ) = dimEig(A,λ ) = dimH1(A,λ ) ist nach der Zeilen-
bedingung aus Definition 20.10 (a) genau die Länge der ersten Zeile des Jordandiagramms
zu λ . Da die Zeilenlängen in einem Jordandiagramm von oben nach unten monoton fallend
sind, ist dies dasselbe wie die Anzahl der Spalten im Jordandiagramm, und damit wie die
Anzahl der Jordanblöcke zum Eigenwert λ in der Jordanform von A.

Wir halten also fest:

µa(A,λ ) = Anzahl der Kästchen im Jordandiagramm zum Eigenwert λ

= Summe der Größen der Jordanblöcke zum Eigenwert λ in der Jordanform

µg(A,λ ) = Anzahl der Spalten im Jordandiagramm zum Eigenwert λ

= Anzahl der Jordanblöcke zum Eigenwert λ in der Jordanform

Im Fall µa(A,λ ) ≤ 3 reichen diese beiden Zahlen in der Tat bereits aus, um das Jordandiagramm
und damit auch die von diesem Eigenwert kommenden Jordanblöcke in der Jordanform eindeutig
zu bestimmen: Im Bild unten links sind alle möglichen Jordandiagramme mit höchstens 3 Kästchen
(und die sich daraus ergebenden Jordanblöcke) angegeben, und diese unterscheiden sich alle in der
Anzahl ihrer Kästchen oder Spalten, also durch die algebraische oder geometrische Vielfachheit des
Eigenwerts. Erst im Fall µa(A,λ ) = 4 gibt es zum ersten Mal zwei Jordandiagramme, die sich durch
diese beiden Zahlen nicht unterscheiden lassen, nämlich die beiden Diagramme unten rechts mit 4
Kästchen und 2 Spalten – und dementsprechend auch zwei verschiedene mögliche Jordanformen.
Möchte man zwischen diesen beiden Fällen unterscheiden, muss man auch noch dimH2(A,λ ) be-
rechnen: Diese Zahl ist nach Definition 20.10 ja gleich der Anzahl der Kästchen in den ersten beiden
Zeilen des Jordandiagramms, in den beiden Fällen im Bild unten rechts also 3 bzw. 4.

4
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1

1λ

λ

1
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µg(A,λ ):
µa(A,λ ):

diagramm
Jordan-

Jordan-
blöcke

Bemerkung 20.16.

(a) Natürlich gibt es einen zu Folgerung 20.14 analogen Satz auch wieder für Endomorphismen
f : V → V eines endlich erzeugten Vektorraums V : Zerfällt χ f in Linearfaktoren, so gibt es
eine Jordanbasis B von V für f – also eine Basis, so dass die zugehörige Abbildungsmatrix
AB

f in Jordanform ist.
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(b) Beachte, dass der Fall von diagonalisierbaren Matrizen, also Folgerung 19.40, im Satz über
die Jordansche Normalform enthalten ist: Ist A eine quadratische Matrix, deren charakteristi-
sches Polynom in Linearfaktoren zerfällt, so ergibt sich aus Folgerung 20.14 und Bemerkung
20.15

A diagonalisierbar ⇔ alle Jordanblöcke haben die Größe 1
⇔ alle Spalten der Jordandiagramme haben die Länge 1
⇔ alle Jordandiagramme haben genauso viele Spalten wie Kästchen

⇔ µg(A,λ ) = µa(A,λ ) für alle Eigenwerte λ ,

und damit Folgerung 19.40.
46

Beispiel 20.17. Es sei

A =


0 1 1 0
−4 4 2 0
0 0 2 0
1 0 1 3

 ∈ R4×4.

Das charakteristische Polynom von A berechnet sich wohl am einfachsten durch Laplace-Entwick-
lung gemäß Satz 18.15, zunächst nach der letzten Spalte und dann nach der letzten Zeile:

χA(t) = det


t −1 −1 0
4 t−4 −2 0
0 0 t−2 0
−1 0 −1 t−3

= (t−3) ·det

t −1 −1
4 t−4 −2
0 0 t−2


= (t−2)(t−3) ·det

(
t −1
4 t−4

)
= (t−2)(t−3)(t2−4t +4) = (t−2)3(t−3).

Da χA in Linearfaktoren zerfällt, besitzt A nach Folgerung 20.14 also eine Jordanform.

Wollen wir diese berechnen, müssen wir die Jordandiagramme zu den beiden Eigenwerten λ1 = 2
und λ2 = 3 bestimmen. Für λ2 = 3 ist dies einfach: Aus µa(A,3) = 1 folgt natürlich bereits, dass
das zugehörige Jordandiagramm aus nur einem Kästchen besteht und die Jordanform von A daher
genau einen Jordanblock der Größe 1 zum Eigenwert 3 hat. Für den Eigenwert λ1 = 2 hingegen ist
µa(A,2) = 3, und daher gibt es für das Jordandiagramm noch die drei im Bild von Bemerkung 20.15
aufgelisteten Möglichkeiten, die drei Kästchen im Jordandiagramm anzuordnen. Um zu entscheiden,
welcher dieser Fälle hier vorliegt, berechnen wir die geometrische Vielfachheit µg(A,2): Mit dem
Gauß-Algorithmus ergibt sich

H1(A,2) = Ker(2E−A) = Ker


2 −1 −1 0
4 −2 −2 0
0 0 0 0
−1 0 −1 −1

= Lin




1
2
0
−1


︸ ︷︷ ︸
=: x1

,


1
3
−1
0


︸ ︷︷ ︸
=: x2

 , (∗)

und damit µg(A,2) = 2. Das Jordandiagramm zum Eigenwert 2 hat gemäß Bemerkung 20.15 also 3
Kästchen und 2 Spalten und muss damit wie im Bild am Ende dieses Beispiels in der ersten Spalte
zwei und in der zweiten Spalte ein Kästchen haben. Zum Eigenwert 2 gibt es also zwei Jordanblöcke,
deren Größen gerade diese Spaltenlängen 2 bzw. 1 sind. Die Jordanform von A ist damit

J =


2 1 0 0
0 2 0 0
0 0 2 0
0 0 0 3

 .

Wollen wir auch noch eine Jordanbasis bestimmen, müssen wir die beiden Jordandiagramme zu den
Eigenwerten 2 und 3 noch mit Vektoren füllen. Für den Eigenwert λ2 = 3 ist dies wieder einfach: Da
der vierte Einheitsvektor offensichtlich ein Eigenvektor zu diesem Eigenwert ist, können wir ihn wie
im Bild unten in das eine Kästchen des Jordandiagramms schreiben. Um auch das Jordandiagramm
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für λ1 = 2 zu füllen, verwenden wir das Verfahren aus Satz 20.13 und beginnen also in der zwei-
ten Zeile des Diagramms, wofür wir eine Basis für den eindimensionalen Raum H2(A,2)/H1(A,2)
brauchen. Wir müssen also erst einmal den verallgemeinerten Eigenraum H2(A,2) bestimmen. Dies
können wir durch explizite Berechnung von H2(A,2) = Ker(2E−A)2 mit dem Gauß-Algorithmus
machen und erhalten

H2(A,2) = Ker(2E−A)2 = Ker


0 0 0 0
0 0 0 0
0 0 0 0
−1 1 2 1

= Lin




1
2
0
−1


︸ ︷︷ ︸
=: y1

,


1
3
−1
0


︸ ︷︷ ︸
=: y2

,


1
1
0
0


︸ ︷︷ ︸
=: y3



Offensichtlich ist y3 ein Vektor, der eine Basis von H1(A,2) zu einer von H2(A,2) ergänzt. Wir
schreiben ihn also in das untere Kästchen des Jordandiagramms. Direkt darüber gehört nun nach
dem Verfahren aus Satz 20.13 der Vektor

(A−2E) · y3 =


−2 1 1 0
−4 2 2 0
0 0 0 0
1 0 1 1

 ·


1
1
0
0

=


−1
−2
0
1

 .

Beachte, dass dieser Vektor nach (∗) tatsächlich in H1(A,2) liegt (dies ist eine gute Kontrolle der
Rechnung – wir hätten irgendwo einen Rechenfehler gemacht, wenn dies nicht so wäre). Für das
rechte Kästchen des Jordandiagramms müssen wir ihn noch zu einer Basis von H1(A,2) ergänzen,
nach (∗) z. B. mit x2.

Insgesamt haben wir also die folgenden Jordandiagramme erhalten:

λ1 = 2 λ2 = 3


0
0
0
1



−1
−2
0
1




1
3
−1
0




1
1
0
0


Für eine Jordanbasis müssen wir die Vektoren in diesen Kästchen nun nur noch spaltenweise von
oben nach unten lesen bzw. sie in dieser Reihenfolge als Spalten in die Transformationsmatrix T
schreiben. Dabei müssen wir die Spalten der Diagramme in der gleichen Reihenfolge durchgehen,
in der wir oben die Jordanblöcke in J angeordnet haben:

T :=


−1 1 1 0
−2 1 3 0
0 0 −1 0
1 0 0 1

 .

Damit gilt dann T−1AT = J nach Folgerung 20.14 (was wir durch direkte Berechnung von T−1 und
T−1AT natürlich auch explizit überprüfen könnten).

Aufgabe 20.18. Berechne die Jordanschen Normalformen der reellen Matrizen

A =


−1 0 0 −1 0
0 1 0 1 1
0 0 2 0 0
1 0 0 1 0
0 −1 0 −1 −1

 und B =


1 0 0 0 0
1 2 0 0 0
0 1 3 0 0
0 0 1 4 0
0 0 0 1 4

 .

Für die Matrix A bestimme man dabei zusätzlich eine Jordanbasis; für die Matrix B hingegen versu-
che man, mit möglichst wenig Rechenaufwand lediglich die Jordanform zu ermitteln.
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Aufgabe 20.19. Für ein gegebenes n∈N sei V = Poln(R,R) der Vektorraum aller reellen Polynome
vom Grad höchstens n. Berechne die Jordansche Normalform der linearen Abbildung f : V →V mit
f (ϕ)(x) = ϕ(x+1).

Aufgabe 20.20 (Anwendung der Jordanform auf Systeme von Differentialgleichungen). In dieser
Aufgabe wollen wir ein vermutlich recht unerwartetes Beispiel für die Anwendung der Jordan-
form aus dem Bereich der Analysis geben. Das Ziel soll es sein, reelle differenzierbare Funktionen
f1, f2, f3 : R→ R zu bestimmen, so dass f1(0) = f2(0) = f3(0) = 1 und

f ′1 = f2 +2 f3

f ′2 = f1 + f2 +3 f3

f ′3 =− f1− f3

(an jeder Stelle x ∈ R) gilt, wobei f ′i wie üblich die Ableitung von fi bezeichnet.

Derartige Systeme von sogenannten Differentialgleichungen, die also in jedem Punkt die Änderung
von Funktionen durch die Funktionswerte selbst ausdrücken, kommen in der Praxis überall vor.
Ausgehend von einem Anfangswert (hier bei x = 0) kann man mit ihnen die gesamten Funktionen
fi rekonstruieren.

Zur Lösung schreibe man die gegebenen Gleichungen in Matrixform f ′ = A · f mit A ∈ R3×3 und
bringe A in Jordanform, d. h. bestimme eine Matrix T ∈ GL(3,R), so dass T−1AT = J eine Jordan-
matrix ist. Wenn ihr die Gleichungen dann umschreibt in Gleichungen für g = T−1 f (also f = T g),
sollte sich dieses neue Differentialgleichungssystem für g (mit den passenden Werten bei x = 0)
leicht lösen lassen.

Aufgabe 20.21 (Eindeutigkeit der Jordanform). Wir wollen nun die bereits in Folgerung 20.14 be-
hauptete Eindeutigkeit der Jordanform (bis auf die Reihenfolge der Jordanblöcke) beweisen. Man
zeige dazu:

(a) Sind A und B zwei ähnliche Matrizen, so gilt dimHr(A,λ ) = dimHr(B,λ ) für alle r ∈N und
λ ∈ K.

(b) Ist A eine Matrix in Jordanscher Normalform, λ ein Eigenwert von A und k ∈N>0, so ist die
Anzahl der Jordanblöcke der Größe r zum Eigenwert λ in A genau

2 dimHr(A,λ )−dimHr−1(A,λ )−dimHr+1(A,λ ).

(c) Zwei Matrizen in Jordanscher Normalform sind genau dann ähnlich zueinander, wenn sie
aus den gleichen Jordanblöcken, nur evtl. in anderer Reihenfolge bestehen.

Zum Abschluss dieses Abschnitts wollen wir schließlich noch ein paar Aufgaben betrachten, in
denen man die Nützlichkeit der einfachen Matrixdarstellung der Jordanform in theoretischen Pro-
blemen sieht. Ihnen allen ist gemeinsam, dass man die zu zeigende Aussage für Jordanblöcke bzw.
Matrizen in Jordanform recht einfach sehen und sie dann mit Hilfe einer Ähnlichkeitstransforma-
tion problemlos auf beliebige Matrizen (mit zerfallendem charakteristischen Polynom) übertragen
kann – während ein direkter Beweis für beliebige Matrizen deutlich schwieriger wäre.

Aufgabe 20.22. Beweise, dass jede quadratische komplexe Matrix A ∈Cn×n zu ihrer transponierten
Matrix AT ähnlich ist.

Aufgabe 20.23. Es sei A ∈ Cn×n. Zeige, dass dim{B ∈ Cn×n : AB = BA} ≥ n.

Aufgabe 20.24. Eine quadratische Matrix N ∈ Kn×n heißt nilpotent, wenn es ein k ∈ N gibt mit
Nk = 0.

(a) Zeige, dass sich jede komplexe Matrix A ∈ Cn×n als Summe A = D+N schreiben lässt,
wobei D diagonalisierbar und N nilpotent ist, sowie DN = ND gilt.
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(b) Berechne mit Hilfe von (a) für alle n ∈ N die Potenzen(
2 1
0 2

)n

und
(

4 −4
1 0

)n

in R2×2 durch eine direkte Rechnung (also ohne erst durch Ausprobieren eine Formel zu
raten und sie danach durch Induktion zu beweisen).

(c) Wir definieren eine reelle Folge (an)n∈N rekursiv durch

a0 = a1 = 1 und an+2 = 4an+1−4an für alle n ∈ N.
Bestimme eine explizite Formel für alle an.

(Hinweis: Die Rekursionsgleichung ist offensichtlich äquivalent zu(
an+2
an+1

)
=

(
4 −4
1 0

)
·
(

an+1
an

)
für alle n ∈ N.)

20.C Minimalpolynome

Als eine interessante Anwendung der Jordanschen Normalform wollen wir in diesem Abschnitt
Polynomausdrücke in Matrizen betrachten. Hier sind zunächst einmal zwei Beispiele dafür.

Beispiel 20.25.
(a) Wenn wir im Polynom p(t) = (t−λ )k „für t eine quadratische Matrix A einsetzen“, erhalten

wir (A− λE)k. Diese Matrix haben wir in diesem Kapitel bereits oft betrachtet, denn ihr
Kern ist ja gerade der verallgemeinerte Eigenraum Hk(A,λ ).

(b) Es sei A eine quadratische Matrix mit A2 = A, also eine „Nullstelle des Polynoms t2− t“.
Wir können uns fragen, was wir dann über A aussagen können, also ob wir die quadratische
Gleichung t2− t = 0 „im Matrizenraum lösen“ können. In der Tat werden wir die allgemeine
Matrixlösung dieser Gleichung in Beispiel 20.36 angeben können. Wir können hier aber
schon einmal am Beispiel der reellen Matrix

A =

(
2 1
−2 −1

)
mit A2−A =

(
2 1
−2 −1

)
−
(

2 1
−2 −1

)
=

(
0 0
0 0

)
sehen, dass wir (im Gegensatz zur Lösung der Gleichung t2− t = t (t − 1) = 0 in K) hier
nicht nur die „offensichtlichen“ Lösungen A = 0 und A = E erhalten werden.

Als Erstes sollten wir aber das Einsetzen einer Matrix in ein Polynom exakt definieren.

Definition 20.26 (Polynomausdrücke in Matrizen). Es seien p(t) = cktk+ · · ·+c1t+c0 ein Polynom
mit Koeffizienten in K und A ∈ Kn×n. Dann setzen wir

p(A) := ckAk + · · ·+ c1A+ c0E ∈ Kn×n.

Im Rest dieses Abschnitts wollen wir der Einfachheit halber annehmen, dass unser Grundkörper K
gleich C ist, so dass jedes Polynom p ̸= 0 nach dem Fundamentalsatz 6.11 der Algebra in Linearfak-
toren zerfällt und somit als p(t) = c(t−λ1) · · ·(t−λk) für c,λ1, . . . ,λk ∈ C mit c ̸= 0 geschrieben
werden kann. Einsetzen einer Matrix ergibt dann p(A) = c(A−λ1E) · · ·(A−λkE). Da wir jede reelle
Matrix auch als komplexe auffassen können, ist diese Beschränkung auf C für uns kein wesentliches
Problem. Wie schon in der Einleitung zu diesem Kapitel erwähnt, kann man in der Tat sogar zu
jedem Körper einen größeren finden, in dem Polynome immer in Linearfaktoren zerfallen. Mit einer
solchen Aussage würden sich die Ergebnisse, die wir jetzt zeigen werden, dann auch auf beliebige
Körper übertragen lassen.

Statt des in Beispiel 20.25 (b) erwähnten Problems, zu einem gegebenen komplexen Polynom p
alle quadratischen Matrizen A ∈ Cn×n mit p(A) = 0 zu finden, wollen wir diese Frage nun zunächst
umdrehen und zu einer gegebenen Matrix A alle Polynome p mit p(A) = 0 bestimmen. Es wird
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sich dabei herausstellen, dass es unter diesen Polynomen ein eindeutiges normiertes Polynom mit
minimalem Grad gibt, das wir dann das Minimalpolynom von A nennen werden.

Für die konkrete Berechnung, ob p(A) = 0 gilt, ist es natürlich nützlich, wenn die Matrix A eine
möglichst einfache Form hat. Daher werden wir diese Frage zunächst für Jordanblöcke untersuchen
(wo sie einfach zu beantworten ist), dann für Matrizen in Jordanform, und schließlich mit Hilfe von
Ähnlichkeitstransformationen für beliebige Matrizen.

Lemma 20.27. Es seien p ̸= 0 ein komplexes Polynom und A = Jm(λ ) ∈Cm×m ein Jordanblock wie
in Konstruktion 20.12.

Dann gilt p(A) = 0 genau dann, wenn λ in p eine Nullstelle der Vielfachheit mindestens m ist.

Beweis. Wir können p als p(t) = c(t − λ1)
a1 · · ·(t − λk)

ak mit c ∈ C\{0}, a1, . . . ,ak ∈ N und ver-
schiedenen λ1, . . . ,λk faktorisieren, so dass also

p(A) = c(A−λ1E)a1 · · ·(A−λkE)ak . (1)

Ein einzelner Faktor in p(A) hat dabei die Form

A−λiE =


λ −λi 1 0

. . . . . .
. . . 1

0 λ −λi

 . (2)

Für alle i mit λi ̸= λ hat diese Matrix Determinante (λ − λi)
m ̸= 0 und ist damit invertierbar. In

(1) kann also höchstens dann p(A) = 0 gelten, wenn λi = λ für ein i gilt; und in diesem Fall ist
p(A) = 0 äquivalent zu (A−λiE)ai = 0. Die Matrix A−λiE hat dann die Form (2) mit Nullen auf
der Diagonale, und bildet damit die Einheitsvektoren gemäß

em 7→ em−1 7→ · · · 7→ e2 7→ e1 7→ 0

ab. Die ai-fache Anwendung (A−λiE)ai dieser Abbildung ist damit also genau dann gleich 0, d. h.
bildet alle Einheitsvektoren auf 0 ab, wenn wie behauptet die Vielfachheit ai der Nullstelle λ in p
mindestens m ist. □

Bemerkung 20.28. Es seien p ein komplexes Polynom und A ∈ Cn×n.

(a) (p(A) für Blockdiagonalmatrizen) Ist A in Blockdiagonalform mit quadratischen Blöcken
A1, . . . ,Ak, so gilt aufgrund der Blockmultiplikation aus Bemerkung 15.8

A =

 A1 0
. . .

0 Ak

 ⇒ Ai =

 Ai
1 0

. . .
0 Ai

k

 für alle i ∈ N,

und damit auch für den Ausdruck p(A), der ja eine Linearkombination solcher Potenzen ist,

p(A) =

 p(A1) 0
. . .

0 p(Ak)

 .

Also ist p(A) = 0 genau dann, wenn p(A j) = 0 für alle j = 1, . . . ,k.

(b) (p(A) für ähnliche Matrizen) Ist T ∈ GL(n,C) und damit A′ := T−1AT ähnlich zu A, so gilt
p(A′) = 0 genau dann, wenn p(A) = 0: Es ist nämlich

(A′)i = (T−1AT )(T−1AT ) · · ·(T−1AT )︸ ︷︷ ︸
i-mal

= T−1AiT

für alle i ∈ N, da sich die Matrixprodukte T T−1 hier in der Mitte herauskürzen, und damit
für p(t) = cntn + · · ·c1t + c0

p(A′) = T−1 (cnAn + · · ·c1A+ c0E)T = T−1 p(A)T,
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was wegen der Invertierbarkeit von T genau dann gleich 0 ist, wenn p(A) = 0 gilt.

Folgerung und Definition 20.29 (Minimalpolynom). Es seien λ1, . . . ,λk die verschiedenen Eigen-
werte einer Matrix A ∈ Cn×n. Ferner sei ai für i = 1, . . . ,k die maximale Größe eines Jordanblocks
zum Eigenwert λi in der Jordanform von A.

(a) Es gibt ein eindeutiges normiertes Polynom pA minimalen Grades mit pA(A) = 0, nämlich

pA(t) = (t−λ1)
a1 · · ·(t−λk)

ak .

Man nennt pA das Minimalpolynom von A.

(b) Für ein beliebiges Polynom p gilt

p(A) = 0 ⇔ es gibt ein Polynom q mit p = q · pA

(man sagt dafür auch, dass p ein Vielfaches von pA bzw. pA ein Teiler von p ist).

Beweis. Nach Folgerung 20.14 und Bemerkung 20.28 (b) können wir annehmen, dass A eine Matrix
in Jordanform ist. Ist p ̸= 0 dann ein beliebiges komplexes Polynom, so ist nach Bemerkung 20.28 (a)
genau dann p(A) = 0, wenn p ausgewertet an jedem Jordanblock von A gleich 0 ist, was wiederum
nach Lemma 20.27 genau dann der Fall ist, wenn die Nullstellenordnung von allen λi in p mindestens
so groß ist wie jeder Jordanblock zu λi, also mindestens so groß wie ai. Die Polynome p mit p(A)= 0
sind also genau diejenigen der Form

p(t) = q · (t−λ1)
a1 · · ·(t−λk)

ak

für ein Polynom q. Dies zeigt bereits beide Teile der Folgerung. □

Bemerkung 20.30.
(a) Aus Bemerkung 20.28 (b) folgt unmittelbar, dass ähnliche Matrizen dasselbe Minimalpoly-

nom haben.

(b) Nach Folgerung 20.29 (a) sind die Nullstellen des Minimalpolynoms pA genau alle Eigen-
werte von A.

(c) Da jeder Jordanblock der Größe m einer Spalte der Länge m im Jordandiagramm entspricht,
ist die maximale Größe eines solchen Blocks genau die Anzahl der Zeilen im Jordandia-
gramm. Zusammen mit Bemerkung 20.15 können wir also für jeden Eigenwert einer kom-
plexen Matrix als Merkregel für die Jordandiagramme festhalten:

Anzahl der Kästchen im Jordandiagramm = algebraische Vielfachheit
Anzahl der Spalten im Jordandiagramm = geometrische Vielfachheit
Anzahl der Zeilen im Jordandiagramm = Vielfachheit im Minimalpolynom

(d) Für alle, die schon die Vorlesung „Algebraische Strukturen“ gehört haben, kann man Fol-
gerung 20.29 auch so formulieren: Man sieht leicht, dass die Menge aller Polynome p mit
p(A) = 0 ein Ideal im Polynomring C[t] ist. Da C[t] ein Hauptidealring ist [G, Beispiel
10.23], kann dieses Ideal von einem Element erzeugt werden – und dieser Erzeuger ist bis
auf Multiplikation mit Konstanten in C\{0} eindeutig. Das damit eindeutig bestimmte nor-
mierte Polynom, das dieses Ideal erzeugt, ist genau das Minimalpolynom von A.

Beispiel 20.31. Beachte, dass Folgerung 20.29 das Minimalpolynom einer Matrix A auf zwei ganz
unterschiedliche Arten beschreibt: als normiertes Polynom kleinsten Grades, das beim Einsetzen
von A Null ergibt, und als Polynom, dessen Nullstellenordnung bei jedem λ die maximale Grö-
ße eines Jordanblocks zum Eigenwert λ in der Jordanform von A ist. Um die Nützlichkeit beider
Beschreibungen zu sehen, betrachten wir noch einmal die reellen Matrizen

A =

(
2 1
−2 −1

)
und B =


0 1 1 0
−4 4 2 0
0 0 2 0
1 0 1 3

 .
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(a) Für die Matrix A haben wir in Beispiel 20.25 (a) bereits gesehen, dass p(A) = 0 für
p(t) = t2 − t = t (t − 1). Nach Folgerung 20.29 (b) muss dieses Polynom ein Vielfaches
des Minimalpolynoms pA sein. Für pA kommen also nur die Polynome t (t−1), t und t−1
in Frage. Da die letzten beiden Polynome beim Einsetzen von A aber offensichtlich nicht 0
ergeben (es ist A ̸= 0 und A−E ̸= 0), ist pA(t) = t2− t.

In diesem Fall konnten wir das Minimalpolynom also einfach berechnen, ohne irgendetwas
über die Eigenwerte oder die Jordanform von A zu wissen.

(b) Von der Matrix B haben wir in Beispiel 20.17 schon die Jordanform berechnet; sie bestand
aus zwei Jordanblöcken zum Eigenwert 2 mit den Größen 1 und 2 sowie einem Jordanblock
zum Eigenwert 3 der Größe 1. Mit Folgerung 20.29 (a) können wir daraus also sofort ablesen,
dass pB(t) = (t−2)2 (t−3).

Hier konnten wir durch die Kenntnis der Jordanform also das Minimalpolynom bestimmen,
ohne irgendwelche Polynomausdrücke in Matrizen berechnen zu müssen.

Aus unserer Charakterisierung des Minimalpolynoms ergeben sich zwei unmittelbare interessante
Folgerungen.

Folgerung 20.32 (Satz von Cayley-Hamilton). Für jede quadratische Matrix A ∈ Cn×n gilt
χA(A) = 0.

Beweis. Das charakteristische Polynom von A hat die Form

χA(t) = (t−λ1)
µa(A,λ1) · · ·(t−λk)

µa(A,λk),

wobei λ1, . . . ,λk die verschiedenen Eigenwerte von A sind. Für alle i ist aber nun µa(A,λi) nach
Bemerkung 20.30 (c) die Anzahl der Kästchen im Jordandiagramm zu λi, und damit sicher mindes-
tens so groß wie die Anzahl der Zeilen darin, also wie die Vielfachheit von λi im Minimalpolynom
pA. Wie in Folgerung 20.29 ist χA also ein Vielfaches des Minimalpolynoms pA, und damit ist
χA(A) = 0. □

Folgerung 20.33 (Diagonalisierbarkeit und Minimalpolynom). Eine Matrix A ∈ Cn×n ist genau
dann diagonalisierbar, wenn ihr Minimalpolynom pA nur einfache Nullstellen hat.

Beweis. Nach Bemerkung 20.16 (b) ist A genau dann diagonalisierbar, wenn alle Jordandiagramme
von A nur Spalten der Länge 1 haben, also genau eine Zeile besitzen. Nach Bemerkung 20.30 (c) ist
dies äquivalent dazu, dass alle Eigenwerte einfache Nullstellen von pA sind. □

Bemerkung 20.34 (Minimalpolynome reeller Matrizen sind reell). Es sei A ∈Rn×n eine reelle Ma-
trix, deren charakteristisches Polynom über R nicht notwendig in Linearfaktoren zerfällt. In der
Konstruktion des Minimalpolynoms in Folgerung 20.29 treten dann evtl. komplexe Eigenwerte von
A auf, so dass nicht mehr klar ist, ob pA ein reelles Polynom ist. In der Tat ist dies aber immer der
Fall: Ist pA(t) = tk + ck−1tk−1 + · · ·+ c1t + c0 (mit zunächst evtl. komplexen Koeffizienten), so gilt
für das komplex konjugierte Polynom pA(t) = tk + ck−1tk−1 + · · ·+ c1t + c0 wegen A = A

pA(A) = Ak + ck−1Ak−1 + · · ·+ c1A+ c0E = Ak + ck−1Ak−1 + · · ·+ c1A+ c0E = pA(A) = 0.

Da dieses Polynom pA außerdem normiert ist und den gleichen Grad hat wie pA, muss es nach der
Eindeutigkeitsaussage in Folgerung 20.29 (a) bereits das Minimalpolynom sein. Also ist pA = pA,
d. h. pA ist ein reelles Polynom.

Bemerkung 20.35 (Minimalpolynome für Endomorphismen). Natürlich lassen sich auch die Kon-
zepte und Ergebnisse dieses Abschnitts wieder auf die übliche Art auf Endomorphismen f : V →V
eines endlich-dimensionalen komplexen Vektorraums V übertragen: Für ein gegebenes komplexes
Polynom p(t) = cktk + · · ·+ c1t + c0 setzt man

p( f ) := ck f k + · · ·+ c1 f + c0 idV ∈ End(V ),

wobei f i für i = 1, . . . ,k für die i-fache Verkettung von f mit sich selbst steht. Auch hier erhält
man dann ein eindeutig bestimmtes normiertes Polynom p f minimalen Grades mit p f ( f ) = 0, das
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Minimalpolynom von f . Es hat die gleiche Charakterisierung durch die Jordanform wie in Folgerung
20.29, und auch der Satz von Cayley-Hamilton aus Folgerung 20.32 und die Charakterisierung der
Diagonalisierbarkeit aus Folgerung 20.33 gelten ganz analog.

47

Beispiel 20.36 (Quadratische Matrizen mit A2 = A). Wir können nun unser Beispiel 20.25 (b) vom
Anfang dieses Abschnitts noch einmal aufgreifen und die Frage klären, welche Matrizen A ∈ Cn×n

die Gleichung A2 = A erfüllen.

Wie in Beispiel 20.31 (a) sehen wir auch hier zunächst, dass genau dann A2 = A gilt, wenn das
Minimalpolynom pA ein Teiler von t2− t = t (t− 1) ist. Dies ist genau dann der Fall, wenn pA nur
einfache Nullstellen hat und alle Nullstellen in der Menge {0,1} liegen, nach Bemerkung 20.30 (b)
und Folgerung 20.33 also, wenn die Matrix A diagonalisierbar ist und ihre Eigenwerte eine Teil-
menge von {0,1} sind. Anders formuliert bedeutet dies genau, dass es ein r ∈ {0, . . . ,n} und eine
invertierbare Matrix T ∈ GL(n,C) gibt mit

T−1AT =

(
Er 0
0 0

)
, also A = T

(
Er 0
0 0

)
T−1.

Matrizen dieser Form sind daher die allgemeine Lösung der Matrixgleichung A2 = A über C. Beach-
te, dass dies die „offensichtlichen“ Lösungen A = 0 und A = E enthält (für r = 0 bzw. r = n), aber
dass es auch noch viele weitere Lösungen gibt.

Aufgabe 20.37. Es seien A,B ∈ C6×6,so dass gilt:

(a) A hat Rang 6 und erfüllt A4 + 3A2 = 3A3 +A, und einer der Eigenräume von A ist zweidi-
mensional.

(b) KerB = ImB.

Bestimme das Minimalpolynom und die Jordansche Normalform dieser beiden Matrizen.

Aufgabe 20.38. Untersuche, ob es eine komplexe 4×4-Matrix A bzw. B gibt mit

(a) A5 =


0 1 2 3
0 0 4 5
0 0 0 6
0 0 0 0

 ; (b) B5 +5B =


1 2 3 4
0 5 6 7
0 0 8 9
0 0 0 10

 .

(Es ist nicht notwendig, im Fall der Existenz eine solche Matrix anzugeben.)

Aufgabe 20.39. Es sei A ∈ GL(n,K). Zeige, dass es ein Polynom p mit Koeffizienten in K gibt, so
dass A−1 = p(A).

Aufgabe 20.40. Man zeige: Ist A ∈ Cn×n mit n ∈ N>0 eine invertierbare Matrix, so dass Am für ein
m ∈ N>0 diagonalisierbar ist, so ist auch A diagonalisierbar.


