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18. Determinanten

Zum Ende des ersten Teils der linearen Algebra wollen wir jetzt noch die sogenannten Determinan-
ten einführen, die beim Rechnen mit Matrizen ein unverzichtbares Hilfsmittel sind. Determinanten
haben sehr viele schöne Eigenschaften und können demzufolge auch auf viele verschiedene Arten
motiviert werden. Eine mögliche Herangehensweise ist, dass man nach einem einfachen Kriterium
für die Invertierbarkeit quadratischer Matrizen sucht, so wie in dem folgenden einfachen Lemma für
2×2-Matrizen:

Lemma 18.1. Eine 2×2-Matrix

A =

(
a1,1 a1,2
a2,1 a2,2

)
über einem Körper K ist genau dann invertierbar, wenn a1,1a2,2−a1,2a2,1 ̸= 0 gilt.

Beweis. Wir unterscheiden zwei Fälle:

Fall 1: Ist a1,1 = 0, so ist A genau dann invertierbar, wenn a1,2 ̸= 0 und a2,1 ̸= 0 gilt – denn wenn
diese beiden Einträge ungleich Null sind, sind die beiden Spalten von A offensichtlich linear
unabhängig (so dass dann rkA = 2 ist), während A andernfalls eine Nullzeile oder Nullspalte
enthält und somit höchstens Rang 1 haben kann. Im Fall a1,1 = 0 sind die Bedingungen
a1,2 ̸= 0 und a2,1 ̸= 0 aber äquivalent zu a1,1a2,2−a1,2a2,1 ̸= 0.

Fall 2: Ist a1,1 ̸= 0, so wenden wir den Gauß-Algorithmus aus Satz 15.27 an, um rkA zu berech-
nen:

A =

(
a1,1 a1,2
a2,1 a2,2

) 1
a1,1

Z1→Z1

−→

(
1 a1,2

a1,1

a2,1 a2,2

)
Z2−a2,1 Z1→Z2
−→

1 a1,2
a1,1

0 a2,2−
a1,2a2,1

a1,1

 .

Diese Matrix hat genau dann Rang 2, ist also genau dann invertierbar, wenn a2,2−
a1,2a2,1

a1,1
̸= 0,

d. h. wenn a1,1a2,2−a1,2a2,1 ̸= 0 gilt. □

Die Zahl a1,1a2,2−a1,2a2,1 werden wir später die Determinante detA von A nennen (weil sie „deter-
miniert“, ob A invertierbar ist oder nicht).

Unser Ziel in diesem Kapitel ist es, Lemma 18.1 auf größere quadratische Matrizen zu verallge-
meinern, also zu jeder Matrix A ∈ Kn×n eine Zahl detA ∈ K zu definieren, die ein Polynom in den
Einträgen von A ist und (neben vielen anderen schönen Eigenschaften) genau dann ungleich Null
ist, wenn A invertierbar ist.

18.A Die Konstruktion der Determinante

Leider ist eine direkte Angabe der Determinante einer quadratischen Matrix A∈Kn×n als polynomia-
ler Ausdruck in den Einträgen von A so wie in Lemma 18.1 für allgemeines n zwar möglich (siehe
Bemerkung 18.14), aber auch recht kompliziert. Wir wollen daher hier den für euch wahrschein-
lich etwas ungewohnten Zugang wählen, die Determinante über ihre Eigenschaften zu definieren,
d. h. als eine Funktion A 7→ detA auf den n×n-Matrizen, die eine gewisse „Wunschliste“ elementa-
rer Eigenschaften erfüllt. Im Anschluss werden wir dann zeigen, dass unsere Wunschliste wirklich
erfüllbar ist und die Determinante in der Tat auch eindeutig bestimmt.

Hier ist nun unsere Wunschliste:

Definition 18.2 (Determinante). Es seien K ein Körper und n ∈ N>0 gegeben. Eine Abbildung
det : Kn×n→ K heißt Determinante (von n×n-Matrizen), wenn gilt:
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(a) („det ist multilinear“) Die Funktion det ist linear in jeder Zeile, d. h. für alle k ∈ {1, . . . ,n}
und λ ∈ K gilt

det


a1
...

ak +a′k...
an

= det


a1
...

ak
...

an

+det


a1
...

a′k...
an

 und det


a1
...

λ ak
...

an

= λ ·det


a1
...

ak
...

an

 ,

wobei a1, . . . ,ak,a′k, . . . ,an ∈ K1×n die Zeilen der jeweiligen (quadratischen) Matrizen be-
zeichnen. (Halten wir also alle Zeilen bis auf die k-te fest, so haben wir genau eine lineare
Abbildung in der k-ten Zeile im Sinne von Definition 16.1.)

(b) („det ist alternierend“) Stimmen zwei Zeilen von A ∈ Kn×n überein, so ist detA = 0.

(c) („det ist normiert“) Es gilt det(En) = 1.

Beispiel 18.3. Die Funktion

det : K2×2→ K,

(
a1,1 a1,2
a2,1 a2,2

)
7→ a1,1a2,2−a1,2a2,1

aus Lemma 18.1 ist eine Determinante:

(a) det ist multilinear: Die Additivität in der ersten Zeile ergibt sich z. B. aus der Rechnung

det
(

a1,1 +a′1,1 a1,2 +a′1,2
a2,1 a2,2

)
= (a1,1 +a′1,1)a2,2− (a1,2 +a′1,2)a2,1

= a1,1a2,2−a1,2a2,1 +a′1,1a2,2−a′1,2a2,1

= det
(

a1,1 a1,2
a2,1 a2,2

)
+det

(
a′1,1 a′1,2
a2,1 a2,2

)
;

die anderen Linearitätseigenschaften folgen natürlich genauso.

(b) det ist alternierend: Sind die beiden Zeilen der Matrix gleich, so ist

det
(

a1,1 a1,2
a1,1 a1,2

)
= a1,1a1,2−a1,2a1,1 = 0.

(c) det ist normiert, denn natürlich ist det(E2) = 1.

Bemerkung 18.4.

(a) Wir werden in Folgerung 18.8 und Satz 18.12 noch sehen, dass es zu jedem Körper K und
jedem n∈N>0 in der Tat genau eine Determinante det : Kn×n→K gibt, dass Definition 18.2
die Determinante also widerspruchsfrei und eindeutig festlegt. Solange wir dies noch nicht
gezeigt haben, sollten wir aber korrekterweise immer von einer Determinante (und nicht von
der Determinante) sprechen.

(b) Enthält A eine Nullzeile, so können wir aus dieser Zeile den Faktor 0 herausziehen und
erhalten aus der Linearitätseigenschaft in dieser Zeile sofort, dass dann detA = 0 sein muss.

(c) Aus Eigenschaft (b) der Definition 18.2 einer Determinante folgt, dass sich detA beim Ver-
tauschen zweier Zeilen mit−1 multipliziert, also genau das Vorzeichen ändert (daher kommt
auch der Name „alternierend“ für diese Eigenschaft): Für alle k, l ∈ {1, . . . ,n} mit k ̸= l er-
gibt sich zusammen mit der Multilinearität nämlich (wobei die angegebenen Einträge in den
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Zeilen k bzw. l stehen)

det



...
ak +al

...
ak +al

...


︸ ︷︷ ︸

=0

= det



...
ak
...

ak +al
...

+det



...
al
...

ak +al
...



= det



...
ak
...

ak
...


︸ ︷︷ ︸

=0

+det



...
ak
...

al
...

+det



...
al
...

ak
...

+det



...
al
...

al
...


︸ ︷︷ ︸

=0

,

und damit

det



...
ak
...

al
...

=−det



...
al
...

ak
...

 .

(d) Analog zu (c) wollen wir jetzt untersuchen, was mit einer Determinante passiert, wenn wir
in einer Matrix A für gegebenes k ∈ {1, . . . ,n} die k-te Zeile unter Beibehaltung der Reihen-
folge der anderen Zeilen ganz nach oben schieben. Wir können dies wie folgt durch k− 1
Vertauschungen zweier benachbarter Zeilen erreichen:

A =



...
ak−2
ak−1
ak

ak+1
...


−→



...
ak−2
ak

ak−1
ak+1

...


−→ ·· · −→



ak
a1
...

ak−1
ak+1

...


.

Da sich bei jeder dieser Vertauschungen nach (c) das Vorzeichen der Determinante ändert,
ändert das gesamte Verschieben der k-ten Zeile ganz nach oben die Determinante von A also
um einen Faktor (−1)k−1.

Um die weiteren Eigenschaften von Determinanten zu untersuchen, beginnen wir zunächst mit den
Elementarmatrizen.

Lemma 18.5 (Determinanten von Elementarmatrizen). Es sei det : Kn×n → K eine Determinante.
Dann gilt für alle A∈Kn×n sowie für alle n×n-Elementarmatrizen Fk(λ ) und Fk,l(λ ) aus Konstruk-
tion 15.24:

(a) det(Fk(λ ) ·A) = λ detA.

(b) det(Fk,l(λ ) ·A) = detA.

Insbesondere gilt also detFk(λ ) = λ und detFk,l(λ ) = 1, und damit det(FA) = detF ·detA für jede
Elementarmatrix F und jede beliebige quadratische Matrix A.
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Beweis. Es seien a1, . . . ,an ∈ K1×n die Zeilen von A. Nach Konstruktion 15.24 entspricht eine Mul-
tiplikation von A mit einer Elementarmatrix von links genau einer elementaren Zeilenumformung.
Damit erhalten wir mit den Eigenschaften (a) und (b) aus Definition 18.2

det(Fk(λ ) ·A) = det


...

λ ak
...

= λ det


...

ak
...

= λ detA

und

det(Fk,l(λ ) ·A) = det



...
ak +λ al

...
al
...

= det



...
ak
...

al
...

+λ det



...
al
...

al
...


︸ ︷︷ ︸

=0

= det



...
ak
...

al
...

= detA,

was die beiden Teile des Lemmas zeigt. Die Determinanten der Elementarmatrizen erhält man daraus
für A = En. □

Aus diesem einfachen Lemma folgt nun bereits die wahrscheinlich wichtigste Eigenschaft von De-
terminanten:

Satz 18.6 (Produktsatz für Determinanten). Es sei det : Kn×n → K eine Determinante. Dann gilt
für alle A,B ∈ Kn×n:

(a) det(AB) = detA ·detB.

(b) A ist genau dann invertierbar, wenn detA ̸= 0. In diesem Fall ist det(A−1) = 1
detA .

Beweis. Wir unterscheiden zwei Fälle:

Fall 1: A ist invertierbar. Dann ist A = F1 · · · · ·Fk nach Folgerung 15.36 ein Produkt von Elemen-
tarmatrizen. Durch k-fache Anwendung von Lemma 18.5 erhält man also

det(AB) = det(F1 · · · · ·Fk ·B) = detF1 · · · · ·detFk ·detB
sowie detA = det(F1 · · · · ·Fk) = detF1 · · · · ·detFk,

und damit wie behauptet det(AB) = detA · detB. Setzt man hier B = A−1 ein, so ergibt
sich insbesondere detA · detA−1 = det(AA−1) = detEn = 1, d. h. es gilt auch detA ̸= 0 und
det(A−1) = 1

detA .

Fall 2: A ist nicht invertierbar, also rkA < n. Bringen wir A dann mit einem Produkt F von
Elementarmatrizen auf Zeilenstufenform FA, so hat FA weniger als n Stufen und damit am
Ende (mindestens) eine Nullzeile. Also ist det(FA) = 0 nach Bemerkung 18.4 (b). Da F als
Produkt von Elementarmatrizen invertierbar ist, bedeutet dies nach dem bereits gezeigten
Fall 1 auch detF ·detA = 0; wegen detF ̸= 0 also detA = 0.

Mit FA hat aber auch FAB eine Nullzeile. Damit folgt genauso wie oben auch det(AB) = 0,
also insbesondere det(AB) = detA ·detB. □

Bemerkung 18.7. Im Gegensatz zu Produkten gibt es keine Formel für die Determinante det(A+B)
einer Summe von zwei Matrizen – insbesondere ist im Allgemeinen det(A+B) ̸= detA+detB!

Als Folgerung aus dem Produktsatz können wir nun bereits beweisen, dass die Eigenschaften aus
Definition 18.2 eine Determinante eindeutig festlegen.

Folgerung 18.8 (Eindeutigkeit der Determinante). Zu jedem Körper K und n ∈ N>0 gibt es höchs-
tens eine Determinante det : Kn×n→ K.
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Beweis. Es sei A ∈ Kn×n. Ist A nicht invertierbar, so ist nach Satz 18.6 notwendigerweise detA = 0.
Andernfalls ist A = F1 · · · · ·Fk nach Folgerung 15.36 ein Produkt von Elementarmatrizen, und damit
ist nach Satz 18.6 (a)

detA = detF1 · · · · ·detFk.

Da die Determinante der Elementarmatrizen nach Lemma 18.5 aber durch Definition 18.2 eindeutig
bestimmt ist, ist damit auch detA durch diese Definition eindeutig festgelegt. □

Auf ganz ähnliche Art wollen wir nun zeigen, dass sich eine Determinante beim Transponieren der
Matrizen nicht ändert.

Folgerung 18.9. Ist A ∈ Kn×n und det : Kn×n→ K eine Determinante, so gilt det(AT) = detA.

Beweis. Ist A nicht invertierbar, also rkA < n, so ist nach Bemerkung 15.40 auch AT nicht invertier-
bar, und damit ist det(AT) = 0 = detA nach Satz 18.6 (b).

Andernfalls ist A = F1 · · · · ·Fk nach Folgerung 15.36 wieder ein Produkt von Elementarmatrizen. Da
die zu zeigende Aussage für Elementarmatrizen aus Lemma 18.5 offensichtlich ist (es ist nämlich
(Fk(λ ))

T = Fk(λ ) und (Fk,l(λ ))
T = Fl,k(λ )), folgt somit nach Lemma 15.7 (d) und Satz 18.6 (a)

det(AT) = det((F1 · · ·Fk)
T) = det(FT

k · · ·FT
1 ) = det(FT

k ) · · ·det(FT
1 ) = detF1 · · ·detFk = detA. □

Bemerkung 18.10. Folgerung 18.9 besagt anschaulich, dass alle Eigenschaften, die für die Zeilen
einer Determinante gelten, analog auch für die Spalten gelten. So ist eine Determinante z. B. auch
linear in jeder Spalte (vgl. Definition 18.2 (a)) und ändert ihr Vorzeichen beim Vertauschen zweier
Spalten (vgl. Bemerkung 18.4 (c)).

Um sicherzustellen, dass wir mit Definition 18.2 keine in sich widersprüchliche Wunschliste auf-
geschrieben haben, kommen wir nun aber endlich zum bereits angekündigten Resultat, dass eine
Determinante mit den geforderten Eigenschaften auch wirklich existiert. Wir werden die Funktio-
nen det : Kn×n→ K rekursiv über n definieren und verwenden dazu die folgende Konstruktion, um
Matrizen der Größe n auf solche der Größe n−1 zurückzuführen.

Definition 18.11 (Streichungsmatrix). Zu A = (ai, j)i, j ∈ Kn×n sowie k, l ∈ {1, . . . ,n} sei

A′k,l :=



a1,1 · · · a1,l−1 a1,l+1 · · · a1,n
...

...
...

...
ak−1,1 · · · ak−1,l−1 ak−1,l+1 · · · ak−1,n
ak+1,1 · · · ak+1,l−1 ak+1,l+1 · · · ak+1,n

...
...

...
...

an,1 · · · an,l−1 an,l+1 · · · an,n


∈ K(n−1)×(n−1)

die Matrix, die man erhält, wenn man aus A die k-te Zeile und l-te Spalte herausstreicht. Wir be-
zeichnen diese Matrizen als Streichungsmatrizen zu A.

Satz 18.12 (Existenz der Determinante). Für alle n ∈ N>0 definieren wir det : Kn×n → K rekursiv
über n durch die folgende Vorschrift:

• Für n = 1 setzen wir det(a1,1) := a1,1.

• Für n > 1 setzen wir

detA :=
n

∑
k=1

(−1)k+1ak,1 detA′k,1,

wobei wie üblich ak,1 die Einträge der ersten Spalte von A und A′k,1 die zu diesen Einträgen
gehörigen Streichungsmatrizen sind.

Dann ist det eine (und damit nach Folgerung 18.8 „die“) Determinante für alle n.
40

Bevor wir diesen Satz beweisen, wollen wir uns ein paar Beispiele anschauen, um die angegebene
rekursive Formel besser zu verstehen.
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Beispiel 18.13 (Determinante von 2×2- und 3×3-Matrizen).
(a) Für n = 2 besagt die Formel aus Satz 18.12

det
(

a1,1 a1,2
a2,1 a2,2

)
= (−1)1+1a1,1 det(a2,2)+(−1)2+1a2,1 det(a1,2)

= a1,1a2,2−a2,1a1,2

und reproduziert damit die Formel aus Lemma 18.1.

(b) Für n = 3 ergibt sich unter Benutzung des Ergebnisses aus (a)

det

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

= (−1)1+1a1,1 det
(

a2,2 a2,3
a3,2 a3,3

)
+(−1)2+1a2,1 det

(
a1,2 a1,3
a3,2 a3,3

)

+(−1)3+1a3,1 det
(

a1,2 a1,3
a2,2 a2,3

)
= a1,1a2,2a3,3−a1,1a2,3a3,2−a2,1a1,2a3,3 +a2,1a1,3a3,2

+a3,1a1,2a2,3−a3,1a1,3a2,2.

Am einfachsten kann man sich diese Formel nach der sogenannten Regel von Sarrus mer-
ken: Bilden wir die 3× 5-Matrix, in der wir neben der Matrix A die beiden ersten Spalten
noch einmal wiederholen, so ergeben sich die 6 Terme der Determinante mit ihren Vorzei-
chen aus dem folgenden Schema:

+ + +

− − −

a1,1

a2,1

a3,1

a1,2

a2,2

a3,2

a1,3

a2,3

a3,3

a1,1

a2,1

a3,1

a1,2

a2,2

a3,2

Beachte aber, dass diese einfache Merkregel nur für n= 3 gilt – für größere n ist der komplett
ausmultiplizierte Ausdruck für detA deutlich komplizierter (und für konkrete numerische
Berechnungen in der Tat auch nicht mehr geeignet).

Bemerkung 18.14. Diejenigen von euch, die aus der Parallelvorlesung „Algebraische Strukturen“
die symmetrische Gruppe Sn aller Permutationen von {1, . . . ,n} kennen [G, Kapitel 2], können die
Formel für die Determinante einer Matrix A = (ai, j)i, j ∈ Kn×n auch nicht-rekursiv als

detA = ∑
σ∈Sn

sign(σ) ·a1,σ(1) · · · · ·an,σ(n) (∗)

hinschreiben. Man sieht an dieser Darstellung also, dass die Determinante aus einer Summe von n!
Termen besteht. Dabei ist jeder Term ein Produkt von genau n Einträgen von A, und zwar aus jeder
Zeile und jeder Spalte genau einem. Aufsummiert wird über alle Möglichkeiten, n Einträge von A
eben gerade so auszuwählen, dass man aus jeder Zeile und Spalte einen Eintrag genommen hat. Die
Vorzeichen der einzelnen Terme sind immer genau das Vorzeichen der entsprechenden Permutation.

Wir werden die Formel (∗) in dieser Vorlesung aber nicht benötigen und daher auch nicht beweisen,
dass sie wirklich mit der rekursiven Definition aus Satz 18.12 übereinstimmt bzw. die Eigenschaften
von Definition 18.2 erfüllt.

Wir kommen nun aber endlich zum Beweis des Existenzsatzes 18.12.

Beweis von Satz 18.12. Wir überprüfen die drei Eigenschaften aus Definition 18.2 mit Induktion
über n. Für n = 1 sind alle Aussagen klar. Wir können also annehmen, dass n > 1 ist und wir die
Eigenschaften von Definition 18.2 für Matrizen der Größe n− 1 bereits gezeigt haben; wir müssen
sie nun für Matrizen der Größe n zeigen.
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det ist multilinear: Der Ausdruck a1,1 detA′1,1 ist linear in der ersten Zeile, da a1,1 natürlich linear in
der ersten Zeile ist und A′1,1 nicht von der ersten Zeile abhängt. Die Ausdrücke ak,1 detA′k,1 für k > 1
sind ebenfalls linear in der ersten Zeile, da ak,1 nicht von der ersten Zeile abhängt und detA′k,1 nach
Induktionsvoraussetzung linear in der ersten Zeile ist. Damit ist auch detA als Linearkombination
dieser Ausdrücke linear in der ersten Zeile. Die Linearität in den anderen Zeilen folgt natürlich
analog.

det ist alternierend: Wir bezeichnen die Zeilen von A mit a1, . . . ,an ∈ K1×n. Weiterhin seien
a′1, . . . ,a

′
n ∈ K1×(n−1) die Zeilen von A, bei denen man jeweils den ersten Eintrag herausgestrichen

hat. Wir nehmen nun an, dass zwei Zeilen ai und a j von A übereinstimmen, und müssen zeigen, dass
detA = 0 folgt. Ohne Beschränkung der Allgemeinheit sei dazu i > j.

Beachte, dass dann auch in den Streichungsmatrizen A′k,1 mit k ̸= i und k ̸= j, bei denen wir also
weder die i-te noch die j-te Zeile herausgestrichen haben, jeweils zwei Zeilen übereinstimmen. Nach
Induktionsvoraussetzung ist die Determinante aller dieser Streichungsmatrizen gleich 0, und damit
bleibt in der rekursiven Formel für detA nur der Ausdruck

detA = (−1)i+1ai,1 detA′i,1 +(−1) j+1a j,1 detA′j,1 (∗)

übrig. Nun können wir wegen a′i = a′j

sowohl A′i,1 =



a′1...
a′j−1
a′j

a′j+1...
a′i−1
a′i+1

...


als auch A′j,1 =



a′1...
a′j−1
a′j+1...
a′i−1
a′i

a′i+1
...


auf die Form A′ :=



a′i
a′1...

a′j−1
a′j+1...
a′i−1
a′i+1

...


bringen, indem wir die Zeile a′j bzw. a′i unter Beibehaltung der Reihenfolge der anderen Zeilen
ganz nach oben schieben. Da det für Matrizen der Größe n− 1 nach Induktionsvoraussetzung eine
Determinante ist, ändern sich dadurch die Vorzeichen von detA′i,1 und detA′j,1 wie in Bemerkung
18.4 (d): Da wir in A′i,1 die Zeile mit der Nummer j, in A′j,1 jedoch die Zeile mit der Nummer i−1
nach oben schieben (im letzteren Fall fehlt ja die Zeile a′j oberhalb von a′i), ist also

detA′i,1 = (−1) j−1 detA′ und detA′j,1 = (−1)i−2 detA′

und damit nach (∗)

detA = (−1)i+ j ai,1 detA′+(−1)i+ j−1 a j,1 detA′ = 0

wegen ai,1 = a j,1.

det ist normiert: In der ersten Spalte der Einheitsmatrix sind natürlich der erste Eintrag gleich 1 und
alle anderen gleich 0. Weiterhin ist die Streichungsmatrix des Eintrags links oben gerade En−1. Also
folgt sofort

detEn = (−1)1+1 ·1 ·detEn−1 = 1.

Damit ist alles gezeigt. □

Insgesamt haben wir jetzt also gesehen, dass es für alle Körper K und n ∈ N genau eine Determi-
nante det : Kn×n→ K gibt. In Zukunft werden wir daher immer von der Determinante quadratischer
Matrizen sprechen.
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18.B Eigenschaften der Determinante

Im letzten Abschnitt haben wir die Determinante quadratischer Matrizen definiert und auch bereits
ihre ersten wichtigen Eigenschaften gesehen. Wir wollen diese Untersuchung der Determinante jetzt
fortsetzen und uns dabei als Erstes um ihre praktische Berechnung kümmern. In der Tat ist hierfür
die rekursive Formel aus Satz 18.12 bereits sehr nützlich. Wir können sie allerdings noch etwas
erweitern, denn dort ist ja momentan die erste Spalte der Matrix ausgezeichnet – obwohl aufgrund
von Definition 18.2 natürlich klar sein sollte, dass die erste Spalte der Matrix keine besondere Rolle
spielt. Wir sollten eine ähnliche Rekursionsformel also auch für die anderen Spalten (und aufgrund
von Folgerung 18.9 in der Tat auch für die Zeilen) erwarten können. Dies besagt der folgende Satz.

Satz 18.15 (Laplacescher Entwicklungssatz). Es sei A = (ai, j)i, j ∈ Kn×n.

(a) Für alle l ∈ {1, . . . ,n} gilt detA = ∑
n
k=1(−1)k+l ·ak,l ·detA′k,l .

(b) Für alle k ∈ {1, . . . ,n} gilt detA = ∑
n
l=1(−1)k+l ·ak,l ·detA′k,l .

Benutzt man diese Formeln, so sagt man auch, dass man die Determinante von A nach der l-ten
Spalte bzw. k-ten Zeile entwickelt.

Beweis.

(a) Es sei B = (bi, j)i, j die Matrix, die man aus A erhält, indem man die Spalte l unter Beibehal-
tung der Reihenfolge der anderen Spalten ganz nach links schiebt. Nach den Bemerkungen
18.4 (d) und 18.10 ist dann detA = (−1)l−1 detB. Andererseits ist natürlich bk,1 = ak,l und
B′k,1 = A′k,l für alle k ∈ {1, . . . ,n}. Damit folgt wie behauptet nach Satz 18.12 angewendet
auf B

detA = (−1)l−1 detB = (−1)l−1
n

∑
k=1

(−1)k+1 bk,1 detB′k,1 =
n

∑
k=1

(−1)k+l ak,l detA′k,l .

(b) Dies ergibt sich mit Bemerkung 18.10 sofort aus (a). □

Beispiel 18.16 (Berechnung von Determinanten). Die Entwicklung nach Laplace ist oft die ge-
schickteste Art, die Determinante einer Matrix A konkret zu berechnen – insbesondere wenn man
nach einer Spalte oder Zeile entwickeln kann, in der bereits viele Einträge gleich 0 sind, so dass die
entsprechenden Terme in der Summe wegfallen. In der Praxis empfiehlt es sich daher, zunächst mit
elementaren Spalten- oder Zeilenumformungen eine Spalte oder Zeile zu erzeugen, in der nur ein
Eintrag ungleich Null ist, und dann nach dieser Spalte bzw. Zeile zu entwickeln. Beachte, dass die
Determinante dabei nach Lemma 18.5 . . .

• mit λ multipliziert wird, wenn wir eine Spalte oder Zeile mit λ multiplizieren; und

• unverändert bleibt, wenn wir ein Vielfaches einer Spalte bzw. Zeile zu einer anderen addie-
ren.

Hier ist ein Beispiel, bei dem wir der Reihe nach die erste von der dritten Spalte subtrahieren, nach
der dritten Spalte entwickeln, und noch einmal nach der zweiten Zeile entwickeln: Es ist

det


1 1 1 1
1 0 1 0
0 1 2 0
0 1 0 3

 S3−S1→S3
= det


1 1 0 1
1 0 0 0
0 1 2 0
0 1 0 3

= (−1)3+3 ·2 ·det

1 1 1
1 0 0
0 1 3


= 2 · (−1)2+1 ·1 ·det

(
1 1
1 3

)
=−4.

Ein besonders einfacher Fall – der aber dennoch häufig vorkommt – sind die sogenannten Dreiecks-
matrizen, bei denen oberhalb oder unterhalb der Diagonale nur Nullen stehen.
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Definition 18.17 (Dreiecksmatrizen). Eine quadratische Matrix A = (ai, j)i, j ∈ Kn×n heißt obere
Dreiecksmatrix, falls ai, j = 0 für alle i > j gilt, und untere Dreiecksmatrix, falls ai, j = 0 für alle
i < j gilt. Obere bzw. untere Dreiecksmatrizen haben also die Form

a1,1 ∗. . .

0
. . .

an,n

 bzw.


a1,1 0. . .

∗ . . .
an,n

 .

Sind zusätzlich noch alle Einträge ai,i auf der Diagonale gleich Null, so heißt A echte (obere bzw.
untere) Dreiecksmatrix.

Folgerung 18.18 (Determinante von Dreiecksmatrizen). Ist A = (ai, j)i, j ∈ Kn×n eine (obere oder
untere) Dreiecksmatrix, so ist ihre Determinante gleich dem Produkt ihrer Einträge auf der Diago-
nale

detA = a1,1 · · · · ·an,n.

Beweis. Da untere Dreiecksmatrizen beim Transponieren in obere übergehen, reicht es nach Folge-
rung 18.9, die Aussage für obere Dreiecksmatrizen zu zeigen. Wir beweisen die Aussage in diesem
Fall mit Induktion über n; der Fall n = 1 ist dabei trivial. Für n > 1 entwickeln wir detA gemäß
Satz 18.15 nach der 1. Spalte: Da hier nur der erste Eintrag ungleich Null ist, ergibt sich sofort nach
Induktionsvoraussetzung

detA = (−1)1+1 a1,1 detA′1,1 = a1,1 · (a2,2 · · · · ·an,n),

da auch A′1,1 ∈K(n−1)×(n−1) eine obere Dreiecksmatrix (mit Diagonaleinträgen a2,2, . . . ,an,n) ist. □

Aufgabe 18.19.
(a) Berechne det(A5) und det(5A) für die Matrix

A =

1 0 2
2 −1 3
4 1 8

 ∈ R3×3.

(b) Für a1, . . . ,an ∈ K\{0} zeige man

det


0 1 1 · · · 1
1 a1 0 · · · 0

1 0 a2
. . .

...
...

...
. . . . . . 0

1 0 · · · 0 an

=−

(
n

∏
i=1

ai

)
·

(
n

∑
i=1

1
ai

)
.

Aufgabe 18.20. Es sei A ∈ Kn×n eine quadratische Matrix, die eine Blockgestalt der Form

A =

(
B ∗
0 C

)
hat, wobei B ∈ Km×m und C ∈ K(n−m)×(n−m) selbst quadratische Matrizen sind. Zeige, dass dann
detA = detB ·detC gilt.

(Hinweis: Es hilft, zunächst die Fälle zu betrachten, in denen eine der Matrizen B und C nicht inver-
tierbar oder die Einheitsmatrix ist.)

Wir wollen nun noch zwei Ergebnisse zu Determinanten beweisen, die mehr aus theoretischer als
aus rechnerischer Sicht interessant sind. Das erste betrifft inverse Matrizen: Ist A eine invertierbare
Matrix, so haben wir in Satz 15.35 ja bereits gesehen, wie man A−1 konkret berechnen kann. Mit
Hilfe von Determinanten können wir nun auch eine explizite Formel für A−1 angeben – die allerdings
den Nachteil hat, dass sie bei konkreten Berechnungen relativ aufwendig ist, weil für jeden Eintrag
von A−1 eine eigene Determinante berechnet werden muss.
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Satz 18.21 (Explizite Formel für die inverse Matrix). Es sei A = (ai, j)i, j ∈ Kn×n.

(a) Ist C = (ci, j)i, j ∈ Kn×n die Matrix mit Einträgen

ci, j = (−1)i+ j detA′j,i

(beachte die Vertauschung von Spalten- und Zeilenindizes bei der Streichungsmatrix!), so ist
CA = AC = (detA) ·En.

(b) Ist A invertierbar, so ist die inverse Matrix von A gegeben durch

A−1 =
1

detA
·C =

(
(−1)i+ j detA′j,i

detA

)
i, j

mit C wie in (a).

Beweis. Für alle i,k = 1, . . . ,n überprüfen wir den (i,k)-Eintrag des Matrixprodukts CA: Nach De-
finition 15.5 ist dies

n

∑
j=1

ci, ja j,k =
n

∑
j=1

(−1)i+ j a j,k detA′j,i
18.15
= det

Spalte i
↓a1,1 · · · a1,k · · · a1,n

...
...

...
an,1 · · · an,k · · · an,n

,

wobei die zweite Gleichung genau die Entwicklung nach Spalte i ist, und die Matrix auf der rechten
Seite aus A entsteht, indem die Einträge aus Spalte k auch in Spalte i geschrieben werden. Die
Determinante dieser Matrix ist aber 0 für i ̸= k (da dann zwei gleiche Spalten existieren) und detA
für i = k (denn dann ist diese Matrix gleich A). Damit ist CA = (detA)En.

Analog zeigt man auch AC = (detA)En und damit Teil (a). Die Formel in (b) folgt daraus natürlich
sofort mit Division durch detA. □

Beispiel 18.22. Für eine 2×2-Matrix

A =

(
a1,1 a1,2
a2,1 a2,2

)
hat die Matrix C aus Satz 18.21 die Einträge

c1,1 = (−1)1+1 det(a2,2) = a2,2, c1,2 = (−1)1+2 det(a1,2) =−a1,2,

und genauso c2,1 =−a2,1 und c2,2 = a1,1. Damit ist nach Satz 18.21 (b) im Fall einer invertierbaren
Matrix also

A−1 =
1

detA
·
(

a2,2 −a1,2
−a2,1 a1,1

)
.

Eine konkrete Anwendung von Satz 18.21 ergibt sich bei der Lösung linearer Gleichungssysteme:
Sind A∈GL(n,K) eine invertierbare Matrix und b∈Kn, so wissen wir bereits, dass das Gleichungs-
system Ax = b für x die eindeutige Lösung x = A−1b hat. Da wir gerade mit Hilfe von Determinanten
eine explizite Formel für die inverse Matrix A−1 gefunden haben, überrascht es nicht, dass wir auch
für die Koordinaten dieses Lösungsvektors x = A−1b eine ähnliche explizite Formel herleiten kön-
nen:

Satz 18.23 (Cramersche Regel). Es seien A ∈ GL(n,K) und b ∈ Kn. Wir bezeichnen die Spal-
ten von A mit a1, . . . ,an ∈ Kn. Dann ist die (nach Algorithmus 15.41 (a) eindeutige) Lösung des
Gleichungssystems Ax = b der Vektor x ∈ Kn mit den Komponenten

xi =
det(a1 | · · · |ai−1 |b |ai+1 | · · · |an)

detA
für i = 1, . . . ,n.
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Beweis. Natürlich ist x = A−1b. Nach Satz 18.21 (b) und Definition 15.5 der Matrixmultiplikation
ist die i-te Komponente dieses Matrixprodukts gleich

xi =
n

∑
j=1

(−1)i+ j detA′j,i
detA

·b j
18.15
=

1
detA

det(a1 | · · · |ai−1 |b |ai+1 | · · · |an),

wobei b j die j-te Komponente von b und die zweite Gleichheit die Entwicklung nach der i-ten Spalte
ist. □

Beispiel 18.24. Wir wollen mit der Cramerschen Regel das lineare Gleichungssystem

x1+ x2 = 2
x1−2x2 = −1 lösen, also

(
1 1
1 −2

)
·
(

x1
x2

)
=

(
2
−1

)
.

Dies ist sehr einfach: Es ist

x1 =

det
(

2 1
−1 −2

)
det
(

1 1
1 −2

) =
−3
−3

= 1 und x2 =

det
(

1 2
1 −1

)
det
(

1 1
1 −2

) =
−3
−3

= 1.

Beachte jedoch, dass es für konkrete Gleichungssysteme mit mehr als zwei Variablen sehr rechen-
aufwendig ist, die Cramersche Regel zu verwenden. Man wird diese Regel daher meistens nur für
theoretische Überlegungen verwenden, in denen man eine konkrete Formel für die Lösung (und nicht
nur ein Lösungsverfahren) braucht. Für numerische Berechnungen ist der Gauß-Algorithmus in Satz
15.33 wesentlich effizienter.

Aufgabe 18.25. Es sei A ∈ Rn×n eine invertierbare Matrix mit ganzzahligen Einträgen.

Zeige, dass A−1 genau dann ebenfalls nur ganzzahlige Einträge hat, wenn detA =±1 gilt.
41


