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18. Determinanten

Zum Ende des ersten Teils der linearen Algebra wollen wir jetzt noch die sogenannten Determinan-
ten einfithren, die beim Rechnen mit Matrizen ein unverzichtbares Hilfsmittel sind. Determinanten
haben sehr viele schone Eigenschaften und konnen demzufolge auch auf viele verschiedene Arten
motiviert werden. Eine mogliche Herangehensweise ist, dass man nach einem einfachen Kriterium
fiir die Invertierbarkeit quadratischer Matrizen sucht, so wie in dem folgenden einfachen Lemma fiir

2 x 2-Matrizen:
a a
A= (911 12
a) ap

iiber einem Korper K ist genau dann invertierbar, wenn ay 1az2 — aj 2az 1 7 0 gilt.

Lemma 18.1. Eine 2 x 2-Matrix

Beweis. Wir unterscheiden zwei Fille:

Fall 1: Ist a; | = 0, so ist A genau dann invertierbar, wenn a; » # 0 und a; ; # 0 gilt — denn wenn
diese beiden Eintrige ungleich Null sind, sind die beiden Spalten von A offensichtlich linear
unabhingig (so dass dann rkA = 2 ist), wihrend A andernfalls eine Nullzeile oder Nullspalte
enthilt und somit hochstens Rang 1 haben kann. Im Fall a;; = 0 sind die Bedingungen
app = 0 und az = 0 aber #dquivalent zu ajjaxp —ap a1 #£0.

Fall 2: Ist a; 1 # 0, so wenden wir den GauB3-Algorithmus aus Satz 15.27 an, um rkA zu berech-

nen:
1 a2
ar1 ajn) a1 A2 meayziez2 ] arr
A= ) , , 1,1 ,
a

ajsa
a1 ap 2,1 a2 0 ayp — lazl 12’1

. . . . . ayra
Diese Matrix hat genau dann Rang 2, ist also genau dann invertierbar, wenn as » — % #£0,

d. h. wenn apaz2 —a)paz 75 0 gilt. ]

Die Zahl ay a2 — a1, 2a>,1 werden wir spiter die Determinante detA von A nennen (weil sie ,,deter-
miniert”, ob A invertierbar ist oder nicht).

Unser Ziel in diesem Kapitel ist es, Lemma 18.1 auf groere quadratische Matrizen zu verallge-
meinern, also zu jeder Matrix A € K"*" eine Zahl detA € K zu definieren, die ein Polynom in den
Eintrdgen von A ist und (neben vielen anderen schonen Eigenschaften) genau dann ungleich Null
ist, wenn A invertierbar ist.

18.A Die Konstruktion der Determinante

Leider ist eine direkte Angabe der Determinante einer quadratischen Matrix A € K"*" als polynomia-
ler Ausdruck in den Eintrigen von A so wie in Lemma 18.1 fiir allgemeines n zwar moglich (siehe
Bemerkung 18.14), aber auch recht kompliziert. Wir wollen daher hier den fiir euch wahrschein-
lich etwas ungewohnten Zugang wihlen, die Determinante iiber ihre Eigenschaften zu definieren,
d. h. als eine Funktion A — detA auf den n x n-Matrizen, die eine gewisse ,,Wunschliste* elementa-
rer Eigenschaften erfiillt. Im Anschluss werden wir dann zeigen, dass unsere Wunschliste wirklich
erfiillbar ist und die Determinante in der Tat auch eindeutig bestimmt.

Hier ist nun unsere Wunschliste:

Definition 18.2 (Determinante). Es seien K ein Korper und n € N5 gegeben. Eine Abbildung
det: K™ — K heifit Determinante (von n X n-Matrizen), wenn gilt:
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(a) (,det ist multilinear*) Die Funktion det ist linear in jeder Zeile, d.h. fiir alle k € {1,...,n}
und A € K gilt

aj a aj aj aj
det | ax+a) | =det| ap | +det| a und det| Aay | =A-det| a; |,
an an an an an
wobei ay,...,ax,d,...,a, € K Ixn die Zeilen der jeweiligen (quadratischen) Matrizen be-

zeichnen. (Halten wir also alle Zeilen bis auf die k-te fest, so haben wir genau eine lineare
Abbildung in der k-ten Zeile im Sinne von Definition 16.1.)

(b) (,det ist alternierend*‘) Stimmen zwei Zeilen von A € K"*" iiberein, so ist detA = 0.

(¢) (.det ist normiert”) Es gilt det(E,) = 1.

Beispiel 18.3. Die Funktion

a a
det: K2X2~>K, L1 1.2 —ap1a2p —ay a1
a1 a2

aus Lemma 18.1 ist eine Determinante:

(a) det ist multilinear: Die Additivitit in der ersten Zeile ergibt sich z. B. aus der Rechnung

/ /
a1 +a air+a
det( , 11 , 12

az, an ) = (a1,1+d) 1) aza — (@12 +d)5) a2

/ /
=a1,1022 —a1202,1 +ay 1022 — a1 2021
/ /
a a a a
et (A1 M2 g (D11 D12,
a axp a axp

die anderen Linearititseigenschaften folgen natiirlich genauso.

(b) det ist alternierend: Sind die beiden Zeilen der Matrix gleich, so ist

a a
det L1 1.2 =ap,ai2 —ai2al =0.
ai,1 app ’ ’

(c) det ist normiert, denn natiirlich ist det(E;) = 1.

Bemerkung 18.4.

(a) Wir werden in Folgerung 18.8 und Satz 18.12 noch sehen, dass es zu jedem Korper K und
jedem n € Ny in der Tat genau eine Determinante det: K"*" — K gibt, dass Definition 18.2
die Determinante also widerspruchsfrei und eindeutig festlegt. Solange wir dies noch nicht
gezeigt haben, sollten wir aber korrekterweise immer von einer Determinante (und nicht von
der Determinante) sprechen.

(b) Enthélt A eine Nullzeile, so konnen wir aus dieser Zeile den Faktor 0 herausziehen und
erhalten aus der Linearititseigenschaft in dieser Zeile sofort, dass dann detA = 0 sein muss.

(c) Aus Eigenschaft (b) der Definition 18.2 einer Determinante folgt, dass sich detA beim Ver-
tauschen zweier Zeilen mit — 1 multipliziert, also genau das Vorzeichen dndert (daher kommt
auch der Name ,alternierend” fiir diese Eigenschaft): Fiir alle k,/ € {1,...,n} mit k # [ er-
gibt sich zusammen mit der Multilinearitit ndmlich (wobei die angegebenen Eintrige in den
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Zeilen k bzw. [ stehen)

ai+a ay aj
det = det + det :
ai+ay ar+ay ar+ay
—_——
=0
Aag Ay aj aj
=det| : | +det| : |+det]| : |+det| : |,
ai aj ag aj
—— ——
=0 =0
und damit
Aag a
det| : | =—det
aj ag

(d) Analog zu (c) wollen wir jetzt untersuchen, was mit einer Determinante passiert, wenn wir
in einer Matrix A fiir gegebenes k € {1,...,n} die k-te Zeile unter Beibehaltung der Reihen-
folge der anderen Zeilen ganz nach oben schieben. Wir konnen dies wie folgt durch k£ — 1
Vertauschungen zweier benachbarter Zeilen erreichen:

ag
: : 4
ax—2 ag—2 ) ‘1
ax_ a :
A— | H- ) k
ag ak—1 Ag—1

A1 A1 A1

Da sich bei jeder dieser Vertauschungen nach (c) das Vorzeichen der Determinante dndert,
dndert das gesamte Verschieben der k-ten Zeile ganz nach oben die Determinante von A also
um einen Faktor (—1)1,

Um die weiteren Eigenschaften von Determinanten zu untersuchen, beginnen wir zunédchst mit den
Elementarmatrizen.

Lemma 18.5 (Determinanten von Elementarmatrizen). Es sei det: K" — K eine Determinante.
Dann gilt fiir alle A € K"™" sowie fiir alle n x n-Elementarmatrizen Fi(A) und Fy ;(A) aus Konstruk-
tion 15.24:

(a) det(Fr(A)-A) = A detA.
(b) det(Fj;(A)-A) = detA.

Insbesondere gilt also detFy(A) = A und detFy ;(A) = 1, und damit det(FA) = detF - detA fiir jede
Elementarmatrix F und jede beliebige quadratische Matrix A.
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Beweis. Esseienay,...,a, € K'*" die Zeilen von A. Nach Konstruktion 15.24 entspricht eine Mul-
tiplikation von A mit einer Elementarmatrix von links genau einer elementaren Zeilenumformung.
Damit erhalten wir mit den Eigenschaften (a) und (b) aus Definition 18.2

det(F(1)-A) =det | Aax | =Adet| @ | =2 deta
und

ar+Aa ay a ay

det(Fi(A)-A) = det : =det| : | +Adet| ! | =det| : | =detA,
a a a ap
=0

was die beiden Teile des Lemmas zeigt. Die Determinanten der Elementarmatrizen erhélt man daraus
firA =E,. O

Aus diesem einfachen Lemma folgt nun bereits die wahrscheinlich wichtigste Eigenschaft von De-
terminanten:

Satz 18.6 (Produktsatz fiir Determinanten). Es sei det: K"*" — K eine Determinante. Dann gilt
fiir alle A,B € K"*":

(a) det(AB) = detA - detB.
(b) A ist genau dann invertierbar, wenn detA # 0. In diesem Fall ist det(A~') =

detA*

Beweis. Wir unterscheiden zwei Fille:

Fall 1: A ist invertierbar. Dann ist A = Fj - - - - - F;, nach Folgerung 15.36 ein Produkt von Elemen-
tarmatrizen. Durch k-fache Anwendung von Lemma 18.5 erhilt man also

det(AB) = det(F} - -+ - Fy-B) = detFj - --- -detF - detB
sowie detA = det(Fy-----F,) = detF)-----detky,

und damit wie behauptet det(AB) = detA - detB. Setzt man hier B = A~! ein, so ergibt
sich insbesondere detA - detA~! = det(AA™!) = detE, = 1, d. h. es gilt auch detA # 0 und
det(A™1) = ;L.

Fall 2: A ist nicht invertierbar, also rkA < n. Bringen wir A dann mit einem Produkt F von
Elementarmatrizen auf Zeilenstufenform FA, so hat FA weniger als n Stufen und damit am
Ende (mindestens) eine Nullzeile. Also ist det(FA) = 0 nach Bemerkung 18.4 (b). Da F als
Produkt von Elementarmatrizen invertierbar ist, bedeutet dies nach dem bereits gezeigten
Fall 1 auch detF - detA = 0; wegen det F # 0 also detA = 0.

Mit FA hat aber auch FAB eine Nullzeile. Damit folgt genauso wie oben auch det(AB) =0,
also insbesondere det(AB) = detA - detB. O

Bemerkung 18.7. Im Gegensatz zu Produkten gibt es keine Formel fiir die Determinante det(A + B)
einer Summe von zwei Matrizen — insbesondere ist im Allgemeinen det(A + B) # detA + detB!

Als Folgerung aus dem Produktsatz kdnnen wir nun bereits beweisen, dass die Eigenschaften aus
Definition 18.2 eine Determinante eindeutig festlegen.

Folgerung 18.8 (Eindeutigkeit der Determinante). Zu jedem Korper K und n € N~ gibt es hochs-
tens eine Determinante det: K" — K.
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Beweis. Essei A € K™, Ist A nicht invertierbar, so ist nach Satz 18.6 notwendigerweise detA = 0.
Andernfalls ist A = F| - - - - - F; nach Folgerung 15.36 ein Produkt von Elementarmatrizen, und damit
ist nach Satz 18.6 (a)

detA =detFy - --- -detFy.

Da die Determinante der Elementarmatrizen nach Lemma 18.5 aber durch Definition 18.2 eindeutig
bestimmt ist, ist damit auch detA durch diese Definition eindeutig festgelegt. g

Auf ganz dhnliche Art wollen wir nun zeigen, dass sich eine Determinante beim Transponieren der
Matrizen nicht dndert.

Folgerung 18.9. Ist A € K" und det: K"" — K eine Determinante, so gilt det(AT) = detA.

Beweis. Ist A nicht invertierbar, also rkA < n, so ist nach Bemerkung 15.40 auch AT nicht invertier-
bar, und damit ist det(AT) = 0 = detA nach Satz 18.6 (b).

Andernfalls istA = Fj - - - - - F, nach Folgerung 15.36 wieder ein Produkt von Elementarmatrizen. Da
die zu zeigende Aussage fiir Elementarmatrizen aus Lemma 18.5 offensichtlich ist (es ist ndmlich
(Fi(A))T = Fi (L) und (Fii(1))T = Fix(A)), folgt somit nach Lemma 15.7 (d) und Satz 18.6 (a)

det(AT) = det((Fy---F)") = det(F] ---F|) = det(F) - - -det(F]|) = det F - - -det F, = detA. [

Bemerkung 18.10. Folgerung 18.9 besagt anschaulich, dass alle Eigenschaften, die fiir die Zeilen
einer Determinante gelten, analog auch fiir die Spalten gelten. So ist eine Determinante z. B. auch
linear in jeder Spalte (vgl. Definition 18.2 (a)) und @ndert ihr Vorzeichen beim Vertauschen zweier
Spalten (vgl. Bemerkung 18.4 (¢)).

Um sicherzustellen, dass wir mit Definition 18.2 keine in sich widerspriichliche Wunschliste auf-
geschrieben haben, kommen wir nun aber endlich zum bereits angekiindigten Resultat, dass eine
Determinante mit den geforderten Eigenschaften auch wirklich existiert. Wir werden die Funktio-
nen det: K"*" — K rekursiv iiber n definieren und verwenden dazu die folgende Konstruktion, um
Matrizen der GrofBe n auf solche der GroBe n — 1 zuriickzufiihren.

Definition 18.11 (Streichungsmatrix). Zu A = (a; j);; € K"*" sowie k,l € {1,...,n} sei

api ap—1 api+1 Aain

a _ e a _ _ a _ e a _ _ _
Aiz:: k—1,1 k—1,1—1 k—1,1+1 k—1,n 6K(n Dx(n—1)

Air1,1 0 k1,01 Akg1i+1 0 Akl

dn,1 t Aapl—1 ap,l+1 e Aan.n

die Matrix, die man erhilt, wenn man aus A die k-te Zeile und [-te Spalte herausstreicht. Wir be-
zeichnen diese Matrizen als Streichungsmatrizen zu A.

Satz 18.12 (Existenz der Determinante). Fiir alle n € N~ definieren wir det: K"*" — K rekursiv
iiber n durch die folgende Vorschrift:

e Fiirn =1 setzen wir det(ay 1) :=ay 1.

o Fiirn > 1 setzen wir

n
detA:= Y (=1)""ay; detd}
k=1
wobei wie iiblich ay die Eintriige der ersten Spalte von A und A, die zu diesen Eintriigen

gehorigen Streichungsmatrizen sind.

40 Dann ist det eine (und damit nach Folgerung 18.8 ,,die ) Determinante fiir alle n.

Bevor wir diesen Satz beweisen, wollen wir uns ein paar Beispiele anschauen, um die angegebene
rekursive Formel besser zu verstehen.
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Beispiel 18.13 (Determinante von 2 x 2- und 3 x 3-Matrizen).
(a) Fiir n = 2 besagt die Formel aus Satz 18.12
apr a2 1+1 2+1
det ’ ) =(—1 ayq det(azs)+(—1 a1 det(a
(az,l az,z) (1) ar1 det(azn) +(=1)""az,1 det(ar2)
=aj1a2 —az1ai2
und reproduziert damit die Formel aus Lemma 18.1.

(b) Fiir n = 3 ergibt sich unter Benutzung des Ergebnisses aus (a)

ail aip a13

a a a a
det | a1 azp arz | =(—1)"agydet( 522 23 ) 4 (—1)* gy det ( 12 13
' ' asp a3 ’ asp a3

as1 asp a3

a a
+ (—1)3+1a371 det [ “12 13
arp a3

=a1,1022033 — 41,1A23032 — 42,141 2033 + 02,141,303 2
+az1a12a23 —as1a13a27.
Am einfachsten kann man sich diese Formel nach der sogenannten Regel von Sarrus mer-
ken: Bilden wir die 3 x 5-Matrix, in der wir neben der Matrix A die beiden ersten Spalten

noch einmal wiederholen, so ergeben sich die 6 Terme der Determinante mit ihren Vorzei-
chen aus dem folgenden Schema:

’;' ;' ;'
al  adip  ar3 cadil o ai?
ap dzp A3z : dzl A3

A U N
as] azp assz : dzl  4sp
NN O\
+ + +

Beachte aber, dass diese einfache Merkregel nur fiir n = 3 gilt — fiir grofere n ist der komplett
ausmultiplizierte Ausdruck fiir detA deutlich komplizierter (und fiir konkrete numerische
Berechnungen in der Tat auch nicht mehr geeignet).

Bemerkung 18.14. Diejenigen von euch, die aus der Parallelvorlesung ,,Algebraische Strukturen®

die symmetrische Gruppe S, aller Permutationen von {1,...,n} kennen [G, Kapitel 2], kénnen die
Formel fiir die Determinante einer Matrix A = (a; ;); j € K"*" auch nicht-rekursiv als
detA = Z sign(0) @y g(1)* "+ Ano(n) (%)
oeS,

hinschreiben. Man sieht an dieser Darstellung also, dass die Determinante aus einer Summe von 7!
Termen besteht. Dabei ist jeder Term ein Produkt von genau n Eintrigen von A, und zwar aus jeder
Zeile und jeder Spalte genau einem. Aufsummiert wird iiber alle Moglichkeiten, n Eintrige von A
eben gerade so auszuwihlen, dass man aus jeder Zeile und Spalte einen Eintrag genommen hat. Die
Vorzeichen der einzelnen Terme sind immer genau das Vorzeichen der entsprechenden Permutation.

Wir werden die Formel (x) in dieser Vorlesung aber nicht benotigen und daher auch nicht beweisen,
dass sie wirklich mit der rekursiven Definition aus Satz 18.12 iibereinstimmt bzw. die Eigenschaften
von Definition 18.2 erfiillt.

Wir kommen nun aber endlich zum Beweis des Existenzsatzes 18.12.

Beweis von Satz 18.12. Wir tiberpriifen die drei Eigenschaften aus Definition 18.2 mit Induktion
iiber n. Fiir n = 1 sind alle Aussagen klar. Wir kdnnen also annehmen, dass n > 1 ist und wir die
Eigenschaften von Definition 18.2 fiir Matrizen der Grofle n — 1 bereits gezeigt haben; wir miissen
sie nun fiir Matrizen der GroBe n zeigen.
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det ist multilinear: Der Ausdruck a ; detA’L1 ist linear in der ersten Zeile, da a; 1 natiirlich linear in
der ersten Zeile ist und A/1,1 nicht von der ersten Zeile abhéngt. Die Ausdriicke ay | detA;{.l firk > 1
sind ebenfalls linear in der ersten Zeile, da ag,1 nicht von der ersten Zeile abhidngt und détA;ﬂ1 nach
Induktionsvoraussetzung linear in der ersten Zeile ist. Damit ist auch detA als Linearkombination
dieser Ausdriicke linear in der ersten Zeile. Die Linearitit in den anderen Zeilen folgt natiirlich
analog.

det ist alternierend: Wir bezeichnen die Zeilen von A mit aj,...,a, € K Ixn - \Weiterhin seien
ay,...,a, € K 1x(n=1) die Zeilen von A, bei denen man jeweils den ersten Eintrag herausgestrichen
hat. Wir nehmen nun an, dass zwei Zeilen a; und a; von A iibereinstimmen, und miissen zeigen, dass
detA = 0 folgt. Ohne Beschrinkung der Allgemeinheit sei dazu i > j.

Beachte, dass dann auch in den Streichungsmatrizen A | mit k # i und k # j, bei denen wir also
weder die i-te noch die j-te Zeile herausgestrichen haben, jeweils zwei Zeilen iibereinstimmen. Nach
Induktionsvoraussetzung ist die Determinante aller dieser Streichungsmatrizen gleich 0, und damit
bleibt in der rekursiven Formel fiir detA nur der Ausdruck

detA = (—1)"a;; detA]; + (—1)/"'a; | detA (%)

/

iibrig. Nun kénnen wir wegen aé =dj

/ /! /
al a) a/i
: : 4
! / .
aj71 a/jf1 ;
flj ajyy ‘1{‘71
sowohl A;,l =| 4+ als auch A'j_l = auf die Form A’ := | 4j11
. ) :
‘ i ;
/
diq i i1
/
it it dit1

bringen, indem wir die Zeile a} bzw. d; unter Beibehaltung der Reihenfolge der anderen Zeilen
ganz nach oben schieben. Da det fiir Matrizen der Grofe n — 1 nach Induktionsvoraussetzung eine

Determinante ist, indern sich dadurch die Vorzeichen von detA; , und detA’j , wie in Bemerkung

18.4 (d): Da wir in A} | die Zeile mit der Nummer j, in A’ | jedoch die Zeile mit der Nummer i — 1
nach oben schieben (im letzteren Fall fehlt ja die Zeile a’j oberhalb von ag), ist also

detA]; = (—1)/""detA” und detA; = (—1)"> detA’

und damit nach (x)
detA = (—1)" a; 1 detA’ + (—1)""1a; | detA’ =0

wegena;; =daji.

det ist normiert: In der ersten Spalte der Einheitsmatrix sind natiirlich der erste Eintrag gleich 1 und
alle anderen gleich 0. Weiterhin ist die Streichungsmatrix des Eintrags links oben gerade E,,_1. Also
folgt sofort

detE, = (—1)!"!.1.detE, ; = 1.
Damit ist alles gezeigt. O
Insgesamt haben wir jetzt also gesehen, dass es fiir alle Korper K und n € N genau eine Determi-

nante det: K"*" — K gibt. In Zukunft werden wir daher immer von der Determinante quadratischer
Matrizen sprechen.
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18.B Eigenschaften der Determinante

Im letzten Abschnitt haben wir die Determinante quadratischer Matrizen definiert und auch bereits
ihre ersten wichtigen Eigenschaften gesehen. Wir wollen diese Untersuchung der Determinante jetzt
fortsetzen und uns dabei als Erstes um ihre praktische Berechnung kiimmern. In der Tat ist hierfiir
die rekursive Formel aus Satz 18.12 bereits sehr niitzlich. Wir konnen sie allerdings noch etwas
erweitern, denn dort ist ja momentan die erste Spalte der Matrix ausgezeichnet — obwohl aufgrund
von Definition 18.2 natiirlich klar sein sollte, dass die erste Spalte der Matrix keine besondere Rolle
spielt. Wir sollten eine @hnliche Rekursionsformel also auch fiir die anderen Spalten (und aufgrund
von Folgerung 18.9 in der Tat auch fiir die Zeilen) erwarten konnen. Dies besagt der folgende Satz.

Satz 18.15 (Laplacescher Entwicklungssatz). Es sei A = (a;;);; € K"*".
(a) Fiirallel € {1,...,n} gilt detA = Y;_, (= 1)** . q; ;- detA} .
(b) Fiirallek € {1,...,n} giltdetA =Y7_ (—1)**.q;, ~detA} ;.

Benutzt man diese Formeln, so sagt man auch, dass man die Determinante von A nach der [-ten
Spalte bzw. k-ten Zeile entwickelt.

Beweis.

(a) Essei B= (b,', j),'7 ;j die Matrix, die man aus A erhilt, indem man die Spalte / unter Beibehal-
tung der Reihenfolge der anderen Spalten ganz nach links schiebt. Nach den Bemerkungen
18.4 (d) und 18.10 ist dann detA = (—1)~! detB. Andererseits ist natiirlich bg,1 = ax,; und
32,1 = A;(J fiir alle k£ € {1,...,n}. Damit folgt wie behauptet nach Satz 18.12 angewendet
auf B

n n
detA = (—1)" "' detB=(—1)""" Y (=1)"" by s detB) ; = Y (= 1) ay detAy,.
k=1 k=1

(b) Dies ergibt sich mit Bemerkung 18.10 sofort aus (a). Il

Beispiel 18.16 (Berechnung von Determinanten). Die Entwicklung nach Laplace ist oft die ge-
schickteste Art, die Determinante einer Matrix A konkret zu berechnen — insbesondere wenn man
nach einer Spalte oder Zeile entwickeln kann, in der bereits viele Eintrage gleich O sind, so dass die
entsprechenden Terme in der Summe wegfallen. In der Praxis empfiehlt es sich daher, zunichst mit
elementaren Spalten- oder Zeilenumformungen eine Spalte oder Zeile zu erzeugen, in der nur ein
Eintrag ungleich Null ist, und dann nach dieser Spalte bzw. Zeile zu entwickeln. Beachte, dass die
Determinante dabei nach Lemma 18.5 ...

e mit A multipliziert wird, wenn wir eine Spalte oder Zeile mit A multiplizieren; und
e unverindert bleibt, wenn wir ein Vielfaches einer Spalte bzw. Zeile zu einer anderen addie-
ren.

Hier ist ein Beispiel, bei dem wir der Reihe nach die erste von der dritten Spalte subtrahieren, nach
der dritten Spalte entwickeln, und noch einmal nach der zweiten Zeile entwickeln: Es ist

1111 1101 11
1 010 S3—Si—>S3 1 000 343

det 0120 = det 0120 (=1) 2-det (1) (3)
0103 0103

Ein besonders einfacher Fall — der aber dennoch héufig vorkommt — sind die sogenannten Dreiecks-
matrizen, bei denen oberhalb oder unterhalb der Diagonale nur Nullen stehen.
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Definition 18.17 (Dreiecksmatrizen). Eine quadratische Matrix A = (4, ;);; € K"*" heilit obere
Dreiecksmatrix, falls a; ; = O fiir alle i > j gilt, und untere Dreiecksmatrix, falls a; ; = O fiir alle
i < j gilt. Obere bzw. untere Dreiecksmatrizen haben also die Form

ap % apl O

bzw.

0 ann * an.n

Sind zusitzlich noch alle Eintrédge a;; auf der Diagonale gleich Null, so heifit A echte (obere bzw.
untere) Dreiecksmatrix.

Folgerung 18.18 (Determinante von Dreiecksmatrizen). Ist A = (a; ;)i ; € K"*" eine (obere oder
untere) Dreiecksmatrix, so ist ihre Determinante gleich dem Produkt ihrer Eintrige auf der Diago-
nale

detA = apl: - app-

Beweis. Da untere Dreiecksmatrizen beim Transponieren in obere iibergehen, reicht es nach Folge-
rung 18.9, die Aussage fiir obere Dreiecksmatrizen zu zeigen. Wir beweisen die Aussage in diesem
Fall mit Induktion tiber n; der Fall n = 1 ist dabei trivial. Fiir n > 1 entwickeln wir detA gemal
Satz 18.15 nach der 1. Spalte: Da hier nur der erste Eintrag ungleich Null ist, ergibt sich sofort nach
Induktionsvoraussetzung

detA = (—1)1+1 ap, detA’l’l =ap- (am SRR -a,,,”),
da auch A’l‘1 € K(=1)x(n=1) eine obere Dreiecksmatrix (mit Diagonaleintrigen as 5,...,a,,) ist. 0
Aufgabe 18.19.
(a) Berechne det(A%) und det(5A) fiir die Matrix
1 0 2
A=|2 -1 3] eR¥.
4 1 8

(b) Fiiray,...,a, € K\{0} zeige man

o 1 1 - 1
1 a4 O
n n 1
det|]1 0 ap =— Ha,- . Z—
) i=1 =1 Gi
1 0 0 a,

Aufgabe 18.20. Es sei A € K"*" eine quadratische Matrix, die eine Blockgestalt der Form

= (ore)

hat, wobei B € K™*™ und C € K (n=m)x(n=m) ga]phgt quadratische Matrizen sind. Zeige, dass dann
detA = detB-detC gilt.

(Hinweis: Es hilft, zunéchst die Fille zu betrachten, in denen eine der Matrizen B und C nicht inver-
tierbar oder die Einheitsmatrix ist.)

Wir wollen nun noch zwei Ergebnisse zu Determinanten beweisen, die mehr aus theoretischer als
aus rechnerischer Sicht interessant sind. Das erste betrifft inverse Matrizen: Ist A eine invertierbare
Matrix, so haben wir in Satz 15.35 ja bereits gesehen, wie man A~! konkret berechnen kann. Mit
Hilfe von Determinanten kénnen wir nun auch eine explizite Formel fiir A~! angeben — die allerdings
den Nachteil hat, dass sie bei konkreten Berechnungen relativ aufwendig ist, weil fiir jeden Eintrag
von A~! eine eigene Determinante berechnet werden muss.
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Satz 18.21 (Explizite Formel fiir die inverse Matrix). Es sei A = (a; ;)i j € K™".
(@) Ist C = (cij)i,j € K™ die Matrix mit Eintrigen
cij=(—1)" detA];
(beachte die Vertauschung von Spalten- und Zeilenindizes bei der Streichungsmatrix!), so ist
CA=AC = (detA) - E,,.

(b) Ist A invertierbar, so ist die inverse Matrix von A gegeben durch

1 . detA’. .
Al — c=| (-1t /&
detA << ) detA

i.j
mit C wie in (a).

Beweis. Fiir alle i,k =1,...,n iiberpriifen wir den (i,k)-Eintrag des Matrixprodukts CA: Nach De-
finition 15.5 ist dies

Spalte i
n n a171 e a17k e aLn
_ i+ ;1815 . . .
Y cijaje =Y (=1)"ajpdetd]; ="det| : : E
— —
! ! ap,l " Apk *°° Qpn

wobei die zweite Gleichung genau die Entwicklung nach Spalte i ist, und die Matrix auf der rechten
Seite aus A entsteht, indem die Eintrdge aus Spalte k auch in Spalte i geschrieben werden. Die
Determinante dieser Matrix ist aber O fiir i # k (da dann zwei gleiche Spalten existieren) und detA
fiir i = k (denn dann ist diese Matrix gleich A). Damit ist CA = (detA) E,,.

Analog zeigt man auch AC = (detA) E,, und damit Teil (a). Die Formel in (b) folgt daraus natiirlich
sofort mit Division durch detA. O
Beispiel 18.22. Fiir eine 2 x 2-Matrix
A (al,l a1,z>
a1 a2
hat die Matrix C aus Satz 18.21 die Eintrédge

11 = (71)1_‘_1 det(azg) =azp, 12 = (71)1+2 det(alg) = —ayy,

und genauso c¢»,1 = —ap 1 und ¢z » = ay 1. Damit ist nach Satz 18.21 (b) im Fall einer invertierbaren

Matrix also
Al = 1 o a2 —aip
detA \—ax1 a1 )’

Eine konkrete Anwendung von Satz 18.21 ergibt sich bei der Losung linearer Gleichungssysteme:
Sind A € GL(n,K) eine invertierbare Matrix und b € K", so wissen wir bereits, dass das Gleichungs-
system Ax = b fiir x die eindeutige Losung x = A~!b hat. Da wir gerade mit Hilfe von Determinanten
eine explizite Formel fiir die inverse Matrix Al gefunden haben, {iberrascht es nicht, dass wir auch
fiir die Koordinaten dieses Losungsvektors x = A~!b eine dhnliche explizite Formel herleiten kin-
nen:

Satz 18.23 (Cramersche Regel). Es seien A € GL(n,K) und b € K". Wir bezeichnen die Spal-
ten von A mit ay,...,a, € K". Dann ist die (nach Algorithmus 15.41 (a) eindeutige) Losung des
Gleichungssystems Ax = b der Vektor x € K" mit den Komponenten

oo detla] a1 |blaii| - |an)
' detA

fiiri=1,...,n.
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Beweis. Natiirlich ist x = A~'h. Nach Satz 18.21 (b) und Definition 15.5 der Matrixmultiplikation
ist die i-te Komponente dieses Matrixprodukts gleich

n . detA’. . 1
— + Sy 1815 . A
xi*j;(*l)l "o Y = g detlarl - laii[blai] - fan),
wobei b; die j-te Komponente von b und die zweite Gleichheit die Entwicklung nach der i-ten Spalte
ist. U

Beispiel 18.24. Wir wollen mit der Cramerschen Regel das lineare Gleichungssystem

2 5 | 1 1 x1\ _ [ 2
_ 1 [losen,also | 2 w)=\-1)
Dies ist sehr einfach: Es ist

2 1 12
det(—l —2) = det(l —1) -3

Xj=——>+ = und xp = —& =

1 1 3 1 1\ -3
det(1 2) det(1 2)

Beachte jedoch, dass es fiir konkrete Gleichungssysteme mit mehr als zwei Variablen sehr rechen-
aufwendig ist, die Cramersche Regel zu verwenden. Man wird diese Regel daher meistens nur fiir
theoretische Uberlegungen verwenden, in denen man eine konkrete Formel fiir die Losung (und nicht
nur ein Losungsverfahren) braucht. Fiir numerische Berechnungen ist der Gau3-Algorithmus in Satz
15.33 wesentlich effizienter.

X1+ x2
X1—2XQ

Aufgabe 18.25. Es sei A € R"*" eine invertierbare Matrix mit ganzzahligen Eintrigen.

Zeige, dass A~! genau dann ebenfalls nur ganzzahlige Eintriige hat, wenn detA = +1 gilt.



