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17. Komplemente und Quotientenrdume

In diesem Kapitel wollen wir uns mit der folgenden Frage beschiftigen, die in der linearen Algebra
oft auftritt: Gegeben sei ein Unterraum U eines Vektorraums V. Koénnen wir dann jeden Vektor x € V
in einem gewissen Sinne eindeutig in einen ,,Anteil in U* und einen ,,Restteil zerlegen?

Diese Frage ist so sicher erst einmal nicht mathematisch exakt formuliert, und in der Tat werden
wir in den beiden Abschnitten dieses Kapitels zwei ganz verschiedene Arten sehen, wie man sie
interpretieren kann. Das folgende Beispiel zeigt aber schon einmal in einem sehr einfachen Fall,
was damit gemeint sein kann: Sind V = R? und U = Lin(e;) die horizontale Koordinatenachse, so
konnen wir natiirlich jeden Vektor x € V eindeutig als x = xje; + xe, mit seinen Koordinaten x;
und x, beziiglich der Standardbasis schreiben. Wir haben x damit also geschrieben als Summe von
einem Anteil xje; in U und einem Rest x,e, der in Lin(ey) liegt. Diese recht naheliegende Idee,
einen Vektor eindeutig in eine Summe zu zerlegen, bei der jeder Summand in einem gegebenen
Unterraum liegt, wollen wir jetzt im ersten Abschnitt dieses Kapitels untersuchen.

17.A Direkte Summen und Komplemente

Wir betrachten noch einmal die Konstruktion der Summe U; + - - - + U, von Unterrdumen Uy, ...,U,
eines Vektorraums V wie in Lemma 13.13:

Bemerkung 17.1 (Eindeutigkeit der Summendarstellung). Jeder Vek-
tor in einer Summe U; + --- + U, von Unterrdumen eines Vektor- X2
raums V lésst sich nach Definition als x| + - - - +x,, mit x; € U; fiir alle
i=1,...,nschreiben. Allerdings ist diese Darstellung im Allgemeinen
natiirlich nicht eindeutig: Betrachten wir z. B. wie im Bild rechts die Ui X1
drei Ursprungsgeraden

U1:Lin((1)>, (]2:]_,11‘1(?)7 U3 :Lln(i) U3 U2

in R, so hat der Vektor

<i> @*@*@@+@+@ €U +Us+Us =R

el e, €Uz el e, €Uz

zwei verschiedene Darstellungen dieser Art. Ist die Darstellung jedoch immer eindeutig, so geben
wir dieser Situation einen besonderen Namen:

Definition 17.2 (Direkte Summe von Unterrdumen). Es seien Uj,...,U, Untervektorrdume eines
K-Vektorraums V und U = U} + --- + U,. Hat jedes x € U eine eindeutige Darstellung der Form
X=Xx1+ -+x, mitx; € U; firallei = 1,...,n, so nennt man die Summe direkt. M6chte man dies
auch in der Notation andeuten, so schreibt man dafirU = U1 & --- ® U,,.

Die Summe in Bemerkung 17.1 ist also nicht direkt — was natiirlich einfach daran liegt, dass die drei
aufspannenden Vektoren von U;, U, und Us linear abhéngig sind. In der Tat kann man sich direkte
Summen als eine Verallgemeinerung des Konzepts der linearen Unabhingigkeit auf Unterrdume
vorstellen.

Lemma 17.3 (Alternatives Kriterium fiir direkte Summen). Die Summe Uy + --- + U,, von Unter-
raumen Uy, ..., U, eines K-Vektorraums V ist genau dann direkt, wenn die Abbildung

fiU X xUy = U4+ Uy, (X1,...,%0) = X1+ Xy
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ein Isomorphismus ist. Ist V endlich-dimensional, so gilt in diesem Fall also die Dimensionsformel
fiir direkte Summen
dimU; + - +dimU, =dim(U; & --- ®Uy).

Beweis. Es ist klar, dass die Abbildung f in jedem Fall linear ist; auerdem ist f nach Definition
der Summe Uj + --- 4 U, stets surjektiv. Injektiv ist f genau dann, wenn fiir alle x;,y; € U; aus
X1+ +x, =y1+- 4y, bereits (x1,...,x,) = (y1,..., ), also x; = y; fiir alle i folgt. Dies bedeutet
nach Definition 17.2 aber genau, dass die Summe direkt ist.

Ist V dariiber hinaus endlich-dimensional, so gilt dies nach Lemma 14.23 (a) auch fiir die Unter-
rdume Uy, ...,U,. Da endlich erzeugte isomorphe Vektorrdume nach Lemma 16.17 (c) die gleiche
Dimension haben, ist also

dimU; + - +dimU, 'E" dim(U; x --- x Uy) = dim(U; & - -- & Uy,). O
Im Fall von nur zwei Unterrdumen kann man besonders einfach feststellen, ob ihre Summe direkt
ist:
Lemma 17.4. Die Summe U; + U, von zwei Unterriumen U, und U, eines K-Vektorraums V ist
genau dann direkt, wenn Uy N U, = {0}.
Beweis. Nach Lemma 17.3 ist die Summe U + U, genau dann direkt, wenn die Abbildung

f: U xUy — Uy +Us, (xl,X2) —x1+x2

ein Isomorphismus ist. Wir hatten im Beweis dieses Lemmas aber auch schon gesehen, dass f stets

linear und surjektiv ist. Also ist die Summe U; + U, genau dann direkt, wenn f injektiv ist, d. h. nach
Lemma 16.9 genau dann, wenn Ker f = {(0,0)} gilt. Nun ist aber

Ker f = {(x1,x2) : x; € U1,x2 € Uz, x| +x2 =0}
={(x1,—x1) :x; €U, —x; € Up}
={(x1,—x1) :x; €U N>},
und damit ist wie behauptet genau dann Ker f = {(0,0)}, wenn U; NU, = {0}. O

Beispiel 17.5.

(a) Die Summe U; 4 U, der x;-Achse und der x-Achse in R? in Beispiel 13.14 ist direkt, denn
in diesem Fall ist natiirlich U; N U, = {0}. In der Tat sieht man in diesem Beispiel auch
sofort, dass sich jeder Vektor in der x;-x;-Ebene U; 4+ U, wie in der Einleitung zu diesem
Kapitel eindeutig als Summe von einem Vektor in U; und einem in U, schreiben lisst.

(b) Die Summe U; + U, + U3z in Bemerkung 17.1 ist hingegen nicht direkt, wie wir dort bereits
gesehen hatten. Allerdings ist in diesem Fall trotzdem U; NU, N U3 = {0} — was zeigt, dass
sich die Aussage von Lemma 17.4 nicht genauso auf mehr als zwei Summanden {ibertra-
gen ldsst. Zu Lemma 17.4 analoge Aussagen fiir allgemeine Summen sind stattdessen die
folgenden.

Aufgabe 17.6. Es seienn € Nund Uy, ..., U, Unterrdume eines endlich-dimensionalen Vektorraums.
Zeige, dass die folgenden Aussagen dquivalent sind:

(a) Die Summe U; + - - -+ U, ist direkt.

(b) Sindx; e U; firi=1,...,ns0dass x; +---+x, = 0 ist, so gilt bereits x; = --- = x, = 0.

© UunU+-4U_1+Uy1+---+U,) ={0}firallei = 1,...,n.

@ UiNn(Uip1+---+U,) ={0} firallei=1,...,n— L.
Aufgabe 17.7. Es seien Uj,...,U, Unterrdume eines endlich erzeugten Vektorraums V. Zeige in
Ergédnzung zu Lemma 17.3, dass die Summe U} + - - - 4+ U,, genau dann direkt ist, wenn

dim(U; +---+U,) =dimU, +--- +dimU,,

und dass man in diesem Fall eine Basis von U; + - - - 4+ U, erhilt, indem man Basen von Uy,...,U,
vereinigt.
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Sind nun U ein Unterraum eines Vektorraums V und U’ ein weiterer Unterraum mit U U’ =V,
so haben wir genau die am Anfang dieses Kapitels beschriebene Situation, dass sich jeder Vektor
x € V eindeutig als x = y 4 z schreiben lésst, wobei y in U liegt und z als ,,Restteil” des Vektors in
U’ aufgefasst werden kann. Diese Situation hat einen besonderen Namen:

Definition 17.8 (Komplemente). Es sei U ein Unterraum eines K-Vektorraums V. Ein Unterraum
U’ <V heiBt Komplement oder komplementiirer Unterraum von U in V, wenn U ®U’ =V (nach
Lemma 17.4 alsoU+ U’ =V und U NU’ = {0}) gilt.

Bemerkung 17.9 (Dimensionsformel fiir Komplemente). Nach Lemma 17.3 gilt fiir jedes Komple-
ment U’ eines Untervektorraums U in einem endlich-dimensionalen Vektorraum V die Dimensions-
formel dimU +dimU’ = dimV, also

dimU’ = dimV —dimU.

Beispiel 17.10 (Nichteindeutigkeit von Komplementen). Wie im Bild unten rechts seien U = Lin(x)
und U’ = Lin(y) zwei verschiedene Ursprungsgeraden in R%. Da x und y dann keine Vielfachen
voneinander sind, sind diese beiden Vektoren also linear unabhingig und bilden damit eine Basis
des zweidimensionalen Vektorraums R?.

Esistalso U +U’ = Lin(x,y) = R?, auBerdem gilt natiirlich U U’ = {0}. t
Also ist U’ ein Komplement von U.

Da es zu einer gegebenen Ursprungsgeraden U in R? aber natiirlich un-
endlich viele Geraden U’ # U gibt, folgt daraus insbesondere, dass Kom-
plemente von Unterrdumen in der Regel nicht eindeutig sind. Wir wollen
nun aber sehen, dass Komplemente zumindest im endlich-dimensionalen U’
Fall stets existieren: R?

Satz 17.11 (Existenz von Komplementen). Jeder Unterraum U eines endlich-dimensionalen Vek-
torraums 'V besitzt ein Komplement.

Beweis. Nach Lemma 14.23 (a) ist U endlich erzeugt, besitzt damit also nach Satz 14.11 eine Basis
(x1,...,%,). Wir ergénzen sie gemiB Folgerung 14.16 zu einer Basis (xi,...,Xu,¥1,...,Ym) von V
und zeigen, dass U’ := Lin(yy,...,y,,) dann ein Komplement von U ist:

e Esist offensichtlich U + U’ =V, denn nach Beispiel 13.14 ist
U+U' =Lin(xy,...,x,) +Lin(y1,...,ym) = Lin(x1, ..., X0, 1, ..., ym) = V.

e Nach der Dimensionsformel aus Satz 14.25 ist damit
dim(UNU') =dimU +dimU’ —dim(U +U’') =n+m— (n+m) =0,
——
=V

also auch UNU' = {0}. O

Bemerkung 17.12 (Berechnung von Komplementen). Beachte, dass der Beweis von Satz 17.11
konstruktiv ist, d. h. auch die konkrete Berechnung eines Komplements ermoglicht: Mochte man
ein Komplement U’ zu einem Unterraum U eines endlich-dimensionalen Vektorraums V berech-
nen, muss man nur eine Basis von U zu einer Basis von V erginzen; die dafiir hinzugenommenen
Vektoren bilden dann eine Basis eines Komplements U’.

So haben wir z. B. in Beispiel 16.22 (b) im Raum Pol3(R,RR) aller Polynome vom Grad hochstens
3 die Basis (14 2x%,x +x%>+x) von U := Lin(1 4 2x*,x +x*> +x*) mit den Polynomen x> und x*
zu einer Basis von Pol3 (R, R) erginzt; dementsprechend ist U’ := Lin(x?, x*) also ein Komplement
vonU inV.

Aufgabe 17.13. Es seien Uy,U,,U; und U Unterrdume eines Vektorraums V mit Uy & U, = U und
UdUs;=V.

Zeige, dass dann Uy @ U, G U3 =V gilt.
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17.B Quotientenriume

Komplemente von Unterrdumen sind in der Praxis sehr niitzlich: Wir haben gerade gesehen, dass
ein Komplement U’ eines Unterraums U in einem Vektorraum V die ,,Restteile* von Vektoren in V
misst, wenn man ihren Anteil in U heraus nimmt. Unschon ist an dieser Konstruktion allerdings, dass
ein Komplement nach Beispiel 17.10 nicht eindeutig bestimmt und damit ein recht unnatiirliches
Objekt ist. Was im obigen Sinne der Restteil eines Vektors in V nach Herausnehmen des Anteils in
U ist, lasst sich also nicht beantworten, solange man nicht eine (letztlich willkiirliche) Wahl eines
Komplements von U in V getroffen hat.

Wir wollen nun eine deutlich schonere Konstruktion einfiihren, die solche Restteile auch ohne will-
kiirliche Wahlen messen kann. Der Preis dafiir ist, dass der Vektorraum, der diese Restteile auf ganz
natiirliche Art beschreibt, kein Unterraum von V mehr ist, sondern ein sogenannter Quotientenraum:
ein Raum von Aquivalenzklassen von Vektoren in V wie in Abschnitt 2.B, wobei wir zwei Vektoren
in V miteinander identifizieren wollen, wenn sie sich um ein Element von U voneinander unterschei-
den. Diejenigen von euch, die auch die Vorlesung ,,Algebraische Strukturen besuchen, kennen diese
Idee vermutlich bereits von den Faktorgruppen [G, Kapitel 6].

Lemma und Definition 17.14. Es seien V ein K-Vektorraum und
U <V ein fest gewdhlter Unterraum. Dann ist durch

x~y & x—yeU fiir alle x,y €V §
eine Aquivalenzrelation auf' V definiert. Fiir die Aquivalenzklasse ei-
nes Vektors x € V beziiglich dieser Relation gilt

X=x4+U:={x+u:uclU}, Xo

=
I
=
+
S

=

d. h. X ist (wie in Beispiel 13.12 (c) und im Bild rechts) ein verscho-
bener Unterraum mit Aufpunkt x. Man nennt dies auch einen affinen
Unterraum mit Aufpunkt x.

Die Menge V| ~ aller Aquivalenzklassen beziiglich dieser Relation
bezeichnet man mit V JU.

Beweis. Wir zeigen zuniichst, dass ~ eine Aquivalenzrelation wie in Definition 2.31 ist.

Reflexivitit: Fiir alle x € V gilt x —x = 0 € U nach Definition 13.8 (a), und damit x ~ x.

Symmetrie: Es seien x,y € V mit x ~ y, also x —y € U. Dann ist nach Definition 13.8 (c) auch

(—1)(x—y) =y—x €U, und damit y ~ x.

Transitivitit: Sind x,y,z € V mitx ~yund y ~ z, alsox—y € U und y — z € U, so ist nach Definition

13.8 (b) auch (x—y)+ (y—z) =x—z € U, und damit x ~ z.

Also ist ~ eine Aquivalenzrelation. Fiir die Klasse X eines Vektors x gilt nun nach Definition 2.31
x={yeV:iy—xeU}={yeV:y—x=ufireimnucU}={x+u:uclU}. O 5

Bemerkung 17.15 (Anschauliche Deutung von V /U). Die geo-

metrische Bedeutung des Raumes V /U lésst sich am besten wie

=l
Il
<

im Bild rechts erldutern, in dem V = R? und U = Lin ( i) ist.

Dort scheint die Sonne mit parallelen (hell eingezeichneten) Strah- L]
len in Richtung von U und wirft dabei von jedem Punkt in V einen
Schatten auf den Boden. In diesem Bild ist die Klasse X € V /U ei-
nes Punktes x € V gerade der Sonnenstrahl durch x. Zwei Punkte in
V bestimmen also genau dann den gleichen Punkt in V /U, wenn

sie auf dem gleichen Sonnenstrahl liegen, d. h. denselben Schat- *

tenpunkt auf dem Boden werfen. Im Bild rechts ist also X =y # Z. Schattenpunkt von x und y

[ ]
Y. Z
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In diesem Sinne kann man sich V /U damit als eine ,,Schattenwelt* von V vorstellen, die zwar jeden
Punkt von V sieht, aber nur mit einem Teil seiner Informationen: Der ,,Abstand zur Sonne* eines
Punktes in V ist anhand des Schattenbildes nicht mehr zu rekonstruieren. Fiir einen Vektor x € V
nimmt die Klasse X also wie beabsichtigt ,,den Anteil in U heraus®.

Bemerkung 17.16. Fiir zwei Vektoren x,y € V gilt nach Satz 2.33 (a) genau dann x =y in V /U,
wenn x ~ y ist. Wir sehen mit Definition 17.14 also fiir alle x,y € V in V /U

=I

=y & x—yeU,
0 <

insbesondere also x=0 xeU.

Mit diesen Rechenregeln kann man Gleichungen zwischen Aquivalenzklassen in V /U immer auf
Aussagen iiber die Représentanten in V zuriickfiihren. So ist in der Situation von Bemerkung 17.15

beispielsweise
3 6 . 3 6 -3
(5) =) e (5)-()=(5)=v

Allerdings fehlt uns noch ein letzter Schritt: Bisher ist der Raum V /U nur eine Menge ohne weitere
Struktur. Um ihn im Rahmen der linearen Algebra untersuchen zu kénnen, miissen wir ihn selbst
wieder zu einem Vektorraum machen, also auf ihm eine Vektoraddition und Skalarmultiplikation
definieren und zeigen, dass damit dann die Vektorraumeigenschaften fiir V /U gelten.

Die Idee hierfiir ist sehr einfach und im Bild rechts dargestellt: 5
Wollen wir die verschobenen Unterrdume X und y in V /U ad- \ Y

dieren, so addieren wir einfach wie im oberen Teil des Bildes \ Y/
die Aufpunkte x und y und verwenden den so erhaltenen Punkt
x+y als Aufpunkt fiir die Summe, d. h. wir setzen X --77

X+y:=x+y. (*) o e
Allerdings miissen wir dabei etwas aufpassen: Wir hitten fiir -’o: 7
dieselben verschobenen Unterrdume statt x und y ja auch wie im R
unteren Teil des Bildes genauso gut andere Aufpunkte x’ bzw. y’ Vel lgx +y

wihlen konnen und hitten dann als Ergebnis den verschobenen
Unterraum x’ 4y’ erhalten!

Damit die Vorschrift (x) wirklich widerspruchsfrei eine Verkniipfung auf V /U definiert, miissen
wir also iiberpriifen, dass der verschobene Unterraum x’ +y’ derselbe ist wie x+y, d.h. dass das
Endergebnis nicht von der Wahl der Aufpunkte abhingt. Man sagt dazu auch, dass wir die Wohl-
definiertheit von (x) iiberpriifen miissen. Eine solche Uberpriifung ist immer dann nétig, wenn wir
eine Funktion auf einer Menge von Aquivalenzklassen (hier: V /U) definieren wollen und bei der
Konstruktion die Wahl eines Reprisentanten einer Aquivalenzklasse (hier: eines Aufpunkts eines
verschobenen Unterraums) verwenden. Die allgemeine Situation ist die folgende:

Notation 17.17 (Wohldefiniertheit). Es sei ~ eine Aquivalenzrelation auf einer Menge M. Mochte
man auf der Menge M/~ der Aquivalenzklassen eine Abbildung in eine andere Menge N definieren,
so ist die Idee hierfiir in der Regel, dass man eine Abbildung g: M — N wihlt und dann

fiM)~ =N, f(7):=gx) ()

setzt. Man mochte das Bild einer Aquivalenzklasse unter f also dadurch definieren, dass man einen
Reprisentanten dieser Klasse wihlt und diesen dann mit g abbildet. Damit dies nun f widerspruchs-
frei definiert, brauchen wir offensichtlich, dass das Ergebnis dieser Vorschrift nicht von der Wahl des
Reprisentanten abhéngt: Sind x,y € M dquivalent zueinander, sind sie also Reprisentanten derselben
Aquivalenzklasse, so muss g(x) = g(y) gelten. Mit anderen Worten bendtigen wir

gx)=g(y) firallex,y € M mitx =5,
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damit die Definition (x) widerspruchsfrei ist. Statt ,,widerspruchsfrei” sagt man in diesem Fall wie
oben schon erwihnt in der Regel, dass f durch die Vorschrift (x) wohldefiniert ist. Die Wohldefi-
niertheit einer Funktion muss man also immer dann nachpriifen, wenn der Startraum der Funktion
eine Menge von Aquivalenzklassen ist und die Funktionsvorschrift Reprisentanten dieser Klassen
benutzt. Oder noch etwas allgemeiner: Wenn eine Funktionsvorschrift an irgendeiner Stelle eine
Wahl beinhaltet, muss man sich vergewissern, dass der letztliche Funktionswert von dieser Wahl
unabhingig ist.

Nach diesen Vorbemerkungen kénnen wir die Menge V /U nun wie angekiindigt zu einem Vektor-
raum machen:

Satz und Definition 17.18 (Quotientenrdume). Es sei U ein Unterraum eines K-Vektorraums V.
Dann sind die Verkniipfungen

X+y:=x+y und A-Xi=Ax fiirx,y€Vund A €K

auf 'V /U wohldefiniert und machen V /U zu einem K-Vektorraum. Man nennt ihn den Quotienten-
raum bzw. Faktorraum von'V nach U.

Man spricht V /U auch als ,,V modulo U “ und nennt x € V /U fiir ein x € V die Restklasse von x
modulo U.

Beweis. Wir zeigen zunichst die Wohldefiniertheit der Addition: Sind x,x’,y,y’ € V mit X = x’ und
y =Y/, so bedeutet dies nach Bemerkung 17.16 genau x —x' € U und y —y' € U. Nach Definition
13.8 (a) ist dann aber auch (x+y) — (X' +)') = (x—x') + (y— ') € U — was wiederum nach Bemer-
kung 17.16 genau x +y = x’ + ' bedeutet. Also ist die Addition auf V /U wohldefiniert.

Genauso zeigt man die Wohldefiniertheit der Skalarmultiplikation: Sind A € K und x,x' € V mit
X=X/, also x —x € U, so ist nach Definition 13.8 (a) auch Ax — Ax' = A(x —x’) € U und damit
Ax=Ax.

Die Vektorraumaxiome fiir V /U ergeben sich nun unmittelbar aus denen von V. So erhilt man z. B.
die Assoziativitit der Vektoraddition durch die einfache Rechnung

(X+y)+z=xFy+z=(x+y)+z=x+(+z)=X+yF+z=x+ (¥+2)

fiir alle x,y,z € V, wobei die mittlere Gleichheit die Assoziativitit in V ist und sich die anderen
Gleichungen aus der Definition der Addition in V /U ergeben. Die iibrigen Eigenschaften iiberpriift
man genauso; der Nullvektor in V /U ist die Klasse 0 des Nullvektors in V bzw. der unverschobene
Unterraum U, das additive Inverse eines Elements X € V /U ist —x. O

Aufgrund der anschaulichen Deutung von Komplementen und Quotientenraumen sollte es nicht ver-
wundern, dass wir nun zeigen konnen, dass diese beiden Konzepte letztlich das gleiche beschreiben,
also als Vektorrdume isomorph zueinander sind. Wie oben schon erwéhnt ist der Vorteil des Kom-
plements lediglich, dass es als Unterraum des urspriinglichen Vektorraums anschaulich leichter zu
verstehen ist; der Vorteil des Quotientenraums ist dagegen, dass er ohne willkiirliche Wahlen kon-
struiert werden kann und damit aus mathematischer Sicht das natiirlichere Objekt ist.

Satz 17.19 (Quotientenrdume und Komplemente). Es seien U ein Untervektorraum eines K-Vektor-
raums V und U’ ein Komplement von U. Dann ist die Abbildung

f:U =V/U x—%
ein Isomorphismus.
Ist V endlich-dimensional, so gilt also insbesondere die Dimensionsformel fiir Quotientenriume
dimV /U = dimV —dimU.

Beweis. Um zu zeigen, dass f ein Isomorphismus ist, miissen wir die folgenden Dinge iiberpriifen:
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e f ist eine lineare Abbildung, denn fiir alle x,y € U’ ist

F+y) =x+y=x+y=f(x)+f(),
und eine analoge Aussage gilt natiirlich fiir die Skalarmultiplikation.

o fistsurjektiv: Es seix € V /U beliebig, also x € V. Wegen V = U + U’ kénnen wir x = x1 +x»
mit x; € U und x, € U’ schreiben. Dann liegt x, in der Definitionsmenge U’ von f, und es
gilt f(x2) =¥ =X nach Bemerkung 17.16, dax—x; = x; € U. Also ist f surjektiv.

e fist injektiv: Es sei x € U’ mit f(x) =% =0, also x € U nach Bemerkung 17.16. Dann ist
aber x € UNU’ = {0}. Damit ist f nach Lemma 16.9 injektiv.

Die Zusatzaussage folgt nun sofort daraus, dass das Komplement U’ nach Bemerkung 17.9 die Di-
mension dimV —dimU hat. O

Bemerkung 17.20. Das Bild rechts illustriert in der Situation von
Bemerkung 17.15 noch einmal, dass der Morphismus f aus Satz
17.19 bijektiv ist: Die Bodenlinie U’ ist nach Beispiel 17.10 ein
Komplement der Richtung U der Sonnenstrahlen. Die Abbildung
f ordnet nun jedem Punkt x € U’ auf dem Boden den Sonnen- U
strahl X € V /U durch diesen Punkt zu, und liefert offensichtlich
eine Bijektion zwischen den Bodenpunkten und der Menge der
Sonnenstrahlen. Wenn wir in Bemerkung 17.15 gesagt haben,
dass V /U die ,,Schattenwelt” auf dem Boden ist, haben wir dabei
also schon den Isomorphismus zwischen dem eigentlichen Quo-
tientenraum V /U und dem Boden U’ verwendet.

X U’

Bemerkung 17.21 (Basen von Quotientenrdumen). Nach Satz 17.19 (und Lemma 16.17 (¢)) erhal-
ten wir im endlich-dimensionalen Fall eine Basis des Quotientenraums V /U, indem wir eine Basis
eines Komplements von U wihlen und die Restklassen dieser Vektoren in V /U nehmen. Kombi-
nieren wir dies mit dem Verfahren aus Bemerkung 17.12, so bedeutet dies: Wir konnen eine Basis
von V /U konstruieren, indem wir eine Basis von U zu einer Basis von V erginzen und dann die
Restklassen der hinzugenommenen Vektoren wihlen.

Im Beispiel V = R? und U = Lin(v) mit v = ( ! aus Bemerkung 17.15 erginzt z. B. ¢ den Vektor

1
v zu einer Basis von RZ, und damit ist (ﬁ) eine Basis von V /U.

Damit miissen wir z. B. den Vektor e; € V /U als Linearkombination dieser Basis, also als VielfacheE
von e7 schreiben konnen. Dies ist hier auch einfach zu sehen: Wegen e1 +ey =ve U iste; +e2 =0
in V/U, also ez = —ej. Im Bild von Bemerkung 17.20 bedeutet dies einfach, dass die Vektoren e,
und —e; auf dem gleichen Sonnenstrahl liegen.

Aufgabe 17.22. Essei U = {x € R®: —2x +xp +x3 = x; — 2x3 = 0} <R,

1 0
Sind die Vektoren [ 1 | und | 1 | linear unabhingig in R*/U?
0 1

Aufgabe 17.23.
(a) Bssei f: R? = R3/U, x+ X mit U = Lin(e; —2e; +e3).
Bestimme eine Basis B von R3 /U sowie die zugehsrige Abbildungsmatrix A?’B fiir die Stan-
dardbasis E von R?.
(b) Es sei U ein Unterraum eines endlich-dimensionalen K-Vektorraums V.

Man zeige: Ist (x,...,x,) eine Basis von U, und sind yy,...,y, € V so dass (7,...,y,) eine
Basis von V /U ist, dann ist (x1,...,Xu,Y1,-..,Vm) €ine Basis von V.
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Aufgabe 17.24.

(a) Zeige, dass f: Pol,(R,R)/Pol; (R,R) = R, @ — ¢"(1) fiir alle n € N> wohldefiniert ist,
und bestimme die Dimension von Ker f.

(b) Es seien U ein Unterraum eines K-Vektorraums V und f: V — V eine lineare Abbildung.
Zeige, dass

g:V/U—-V/U X f(x)
genau dann eine wohldefinierte lineare Abbildung ist, wenn f(U) C U gilt.

Mit Hilfe von Quotientenrdumen wollen wir jetzt sehen, wie man aus jeder linearen Abbildung
f:V = W ,einen Isomorphismus machen kann*. Die Idee hierfiir ist sehr einfach: Natiirlich kann
man f zunichst einmal surjektiv machen, indem man den Zielraum W durch den Bildraum Im f
ersetzt. Um f auch noch injektiv zu machen, also geméB Lemma 16.9 den Kern zu {0} zu machen,
konnen wir einfach den Startraum V' durch den Quotientenraum V /Ker f ersetzen: Auf diese Art
werden alle Elemente des Kerns von f miteinander identifiziert, so dass der Kern der neuen Abbil-
dung auf dem Quotientenraum nur noch aus dem einen Element 0 = Ker f besteht.

Satz 17.25 (Homomorphiesatz). Fiir jede lineare Abbildung f: V — W ist die Abbildung
g:V/Kerf —Imf, x— f(x)

(wohldefiniert und) ein Isomorphismus.

Beweis. Wir miissen einige Dinge iiberpriifen:

e Die Abbildung g ist wohldefiniert: Sind x,y € V mit X =, also x —y € Ker f nach Bemerkung
17.16, soist f(x—y) = f(x) — f(y) = 0 und damit f(x) = f().
e Die Abbildung g ist linear: Fiir x,y € V gilt

8(x+y) =g +y) = flx+y) = f(x) +F(y) = g(X) +2(3);
analog folgt auch die Vertriglichkeit mit der Skalarmultiplikation.

e Die Abbildung g ist surjektiv: Dies ist klar nach Definition von Im f, denn jedes Element in
Im f ist ja von der Form f(x) = g(%) fireinx € V.

e Die Abbildung g ist injektiv: Nach Lemma 16.9 geniigt es dafiir zu zeigen, dass Kerg = {0}.
Es sei also x € V mit g(x) = 0. Dann ist f(x) =0, also x € Ker f und damitx =0 € V /Ker f
nach Bemerkung 17.16. O

Bemerkung 17.26 (Dimensionsformel aus dem Homomorphiesatz). Insbesondere liefert der Homo-
morphiesatz fiir eine lineare Abbildung f: V — W zwischen endlich-dimensionalen Vektorrdumen
einen alternativen Beweis der Dimensionsformel fiir Morphismen aus Folgerung 16.30 (c), der nicht
den Umweg iiber Matrizen und die algorithmischen Methoden aus Abschnitt 15.C nimmt: Da Iso-
morphismen nach Lemma 16.17 (c) die Dimension erhalten, folgt aus dem Homomorphiesatz 17.25
mit der Dimensionsformel fiir Quotientenrdume aus Satz 17.19 sofort

dimV —dimKer f =dimIm f, also dimIm f+dimKerf=dimV.

Beispiel 17.27 (Anschauliche Deutung des Homomorphiesatzes). Als anschauliches Beispiel fiir
den Homomorphiesatz konnen wir noch einmal die ,,Schattenwelt™ aus Bemerkung 17.15 und Be-
merkung 17.20 betrachten. Ist f: R? — R? die lineare Abbildung, die einen Punkt auf seinen Schat-
tenpunkt auf den Boden abbildet, so ist Ker f = U der Sonnenstrahl durch O und Im f = U’ der
Boden. Satz 17.25 gibt uns dann den Isomorphismus g: R? JU — U’, der jeden Sonnenstrahl auf
seinen Bodenpunkt abbildet und genau die Umkehrung des Isomorphismus aus Satz 17.19 ist.

Aufgabe 17.28. Die lineare Abbildung, die der Situation in Beispiel 17.27 entspricht, ist

. 2 2 X1 X1 —X2
e, (1) (57).
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Uberpriife den Homomorphiesatz in diesem Fall explizit, d. h. zeige durch eine direkte Rechnung,

dass die Abbildung
R2/Lin( ') = Lin( ! ) (TR
g 1 0) \x 0

wohldefiniert, linear, surjektiv und injektiv ist.

Als Anwendung des Homomorphiesatzes wollen wir zum Abschluss dieses Kapitels noch einmal
Abbildungsmatrizen wie in Satz 16.26 und Folgerung 16.27 betrachten. Dort hatten wir gesehen,
dass jeder Morphismus f: V — W zwischen endlich-dimensionalen Vektorrdumen nach Wahl von
Basen B und C von V bzw. W eindeutig durch seine Abbildungsmatrix A?"C beschrieben werden
kann. Allerdings ist die Wahl solcher Basen natiirlich oft willkiirlich, und eine andere Wabhl fiihrt
auch zu einer anderen Matrix — namlich nach Satz 16.42 zu einer Matrix der Form S ~A?’C -T, wobei
S und T die zugehoérigen Basiswechselmatrizen sind.

Es ist daher eine naheliegende Frage, in wie weit wir zumindest durch eine geschickte Wahl der

Basen B und C erreichen konnen, dass die Abbildungsmatrix A?’C moglichst einfach wird — also z. B.

viele Nullen enthélt. Dabei ist nach Bemerkung 16.29 natiirlich klar, dass ABC zumindest denselben
Rang wie f haben muss. Ansonsten besagt der folgende Satz aber, dass wir immer die einfachste
mogliche Matrix von diesem Rang erhalten konnen. Der Beweis ist dabei auch konstruktiv, gibt also
ein Verfahren an, wie B und C gefunden werden konnen.

Satz und Definition 17.29 (Normalform von Abbildungsmatrizen). Es sei f: V — W ein Mor-
phismus vom Rang r zwischen endlich-dimensionalen Vektorrdumen mit n = dimV und m = dimW.
Dann gibt es Basen B und C von 'V bzw. W, so dass die Abbildungsmatrix von f beziiglich dieser
Basen die Form

0

0 0

hat, d. h. so dass Einsen genau auf den ersten r Diagonalpositionen stehen, und sonst iiberall Nullen.
Man sagt, dass eine solche Abbildungsmatrix in Normalform ist. (Beachte dabei, dass unter der
Einheitsmatrix E, genau m — r Nullzeilen, rechts von der Einheitsmatrix hingegen n — r Nullspalten

stehen — die Matrix Alf}’c ist also nicht notwendig quadratisch.)

Beweis. Nach der Dimensionsformel aus Folgerung 16.30 (c) ist dimKer f =dimV —rtkf =n—r.
Wir kénnen also eine Basis (x,1,-..,x,) von Ker f wihlen und zu einer Basis B = (xi,...,x,) von
V ergidnzen. Damit ist (¥T,...,%;) nach Bemerkung 17.21 eine Basis des Quotientenraums V / Ker f.

Nach dem Homomorphiesatz 17.25 ist nun aber die Abbildung V/Ker f — Im f, X — f(x) ein Iso-
morphismus, und damit ist (y;,...,y,) mit y; := f(x;) fiir i = 1,...,r nach Lemma 16.17 (c) eine
Basis von Im f. Wir ergéinzen diese schlieBlich noch zu einer Basis C = (y1,...,y,) von W. Wegen

yi furi<r, e, furi<r,
)= also &P i)) =
f ) {0 fiiri > r, c(f(x)) {0 fiiri > 7,

hat die Matrix A?’C nach Definition 16.26 dann die gewiinschte Form (eq|--- |e,|0] ---]0). O

Bemerkung 17.30 (Normalform von Matrizen beziiglich Aquivalenz). Nach Bemerkung 16.45 (b)
konnen wir Satz 17.29 auch so formulieren: Ist A € K™*" eine beliebige Matrix vom Rang r, so ist

A dquivalent zur Matrix
(510). o
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d.h. es gibt invertierbare Matrizen S € GL(m,K) und T € GL(n,K), so dass SAT diese eine spe-
zielle Form hat. Insbesondere sind also alle Matrizen vom gleichen Rang zueinander dquivalent.
Zusammen mit Folgerung 16.46 bedeutet dies, dass zwei Matrizen (derselben Grofie) genau dann
zueinander dquivalent sind, wenn sie denselben Rang haben.

Analog zu Satz 17.29 nennt man () auch die Normalform von A (beziiglich der Aquivalenz von
Matrizen); sie ist die ,.einfachste* Matrix in der Aquivalenzklasse von A. Normalformen beziiglich
anderer Matrixtransformationen werden wir z. B. in Kapitel 20 und Satz 22.35 noch kennenlernen.

Bemerkung 17.31 (Alternativer Beweis von rkA = rk(AT) mit Normalformen). Als Beispiel fiir
die Niitzlichkeit von Normalformen wollen wir damit nun einen alternativen Beweis der Gleichung
rkA = rk(AT) fiir jede Matrix A € K"*" geben.

Bisher hatten wir diese sehr wichtige Aussage in Satz 15.38 durch den Vergleich von zwei verschie-
denen Verfahren zur Berechnung von ImA gezeigt. Auch wenn dies natiirlich ein vollstindiger Be-
weis war, gibt er dennoch durch seine algorithmische Struktur wenig Erkenntnisse dariiber, welche
Idee dahinter steckt — das Ergebnis ist einfach am Ende aus einer nicht besonders gut iiberschaubaren
Rechnung so herausgekommen.

Im Gegensatz dazu geben Normalformen einen sehr einfachen und sofort verstidndlichen Beweis
dieser Aussage: Da sich der Rang einer Matrix beim Ubergang zu einer #quivalenten Matrix nach
Folgerung 16.46 nicht @ndert, konnen wir ohne Einschrinkung annehmen, dass die Matrix in Nor-
malform beziiglich Aquivalenz ist. Fiir solche Matrizen ist die Aussage aber offensichtlich.

Die ausfiihrliche Formulierung dieses Beweises lautet so: Nach Bemerkung 17.30 gibt es Matrizen
S € GL(m,K)und T € GL(n,K), so dass

([ E |0 . _
SAT = ( 0 To ) mit r=rkA
gilt. Transponieren dieser Gleichung liefert dann mit Lemma 15.7 (d) die Matrix

T
170 (E |0\ [ E|O
s () - () e

nach Folgerung 16.46 ist also

k(A7) = k(TTATST) :rk( %’ 8 ) = r =1kA.

0 21 01

.. 100 0 1 1 4%5

Aufgabe 17.32. Essei A = 00000 € R¥.
01 1 0 1

(a) Fiir die Abbildung f: R’ — R* x+ Ax bestimme man Basen B von R> und C von R*, so
dass die Abbildungsmatrix A?"C in Normalform ist.

(b) Bestimme S € GL(4,R) und T € GL(5,RR) so, dass SAT in Normalform ist.
(c) Essei f: Poly(R,R) — Pol3(R,R) mit f(¢)(x) = x¢” (x) fiir alle x € R.
Gibt es Basen B und C von Poly(R,R) bzw. Pol3(R,R), so dass A?’C = A gilt?
Aufgabe 17.33.

(a) Bestimme Basen B und C von R>*2, so dass die Abbildungsmatrix A?’C der Transpositions-
abbildung f: R?*2 — R2*2 M +— M" in Normalform ist.

(b) Kann diese Normalform auch mit derselben Basis im Start- und Zielraum erreicht werden?



